
Text System Overview
Cocoa > Text & Fonts

2009-04-08

Apple Inc.
© 1997, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Objective-C, Quartz, Tiger, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

Smalltalk-80 is a trademark of ParcPlace
Systems.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Text System Overview 7

Who Should Read This Document 7
Organization of This Document 7
See Also 8

Text System Architecture 9

The Cocoa Text System, MLTE, and ATSUI 11

Typographical Features of the Cocoa Text System 13

Characters and Glyphs 13
Typefaces and Fonts 14
Text Layout 15

Text Fields, Text Views, and the Field Editor 19

Text Fields 19
Text Views 20
The Field Editor 20

The Text System and MVC 23

Common Configurations 25

Class Hierarchy of the Cocoa Text System 29

Building a Text Editor in 15 Minutes 31

Create the User Interface 31
Implement Document Archiving 34

Simple Text Tasks 39

Appending Text to a View 39
Setting Font Styles and Traits 39
Getting the View Coordinates of a Glyph 40

3
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Assembling the Text System by Hand 41

Set Up an NSTextStorage Object 41
Set Up an NSLayoutManager Object 42
Set Up an NSTextContainer Object 42
Set Up an NSTextView Object 43

Document Revision History 45

Index 47

4
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Figures

Text System Architecture 9

Figure 1 Major functional areas of the Cocoa text system 9

The Cocoa Text System, MLTE, and ATSUI 11

Figure 1 Text handling in Mac OS X 11

Typographical Features of the Cocoa Text System 13

Figure 1 Glyphs of the character A 13
Figure 2 Ligatures 14
Figure 3 Fonts in the Times font family 15
Figure 4 Glyph metrics 16
Figure 5 Kerning 16
Figure 6 Alignment of text relative to margins 17
Figure 7 Justified text 17

Text Fields, Text Views, and the Field Editor 19

Figure 1 A text field 19
Figure 2 A text view 20
Figure 3 The field editor 21

Common Configurations 25

Figure 1 Text object configuration for a single flow of text 25
Figure 2 Text object configuration for paginated text 26
Figure 3 Text object configuration for a multicolumn document 26
Figure 4 Text object configuration for multiple views of the same text 27
Figure 5 Text object configuration with custom text containers 28

Building a Text Editor in 15 Minutes 31

Figure 1 Drag an NSTextView from the Cocoa Text Controls palette 32
Figure 2 Set the resize characteristics of the scroll view 32
Figure 3 Add a Format menu 33
Figure 4 Connect the text view outlet of the File's Owner 35
Figure 5 Connect the delegate of the text view 36

5
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Assembling the Text System by Hand 41

Figure 1 Text System Memory Management 41

6
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Text System Overview provides a survey of the Cocoa text system. The articles introduce important features
and describe aspects of the text system as a whole.

Who Should Read This Document

Every developer who uses the text system directly should read this document.

To understand the information in this document you should have a general knowledge of Cocoa programming
paradigms and, to understand the code examples, familiarity with the Objective-C language.

Organization of This Document

This document contains the following articles:

 ■ “Text System Architecture” (page 9) presents a high-level discussion of the design goals and capabilities
of the text system, and it explains the roles of some important text classes.

 ■ “The Cocoa Text System, MLTE, and ATSUI” (page 11) briefly explains the position of the Cocoa text
system relative to other Mac OS X text-handling technologies.

 ■ “Typographical Features of the Cocoa Text System” (page 13) explains the concepts of typography—such
as glyphs, fonts, typefaces, and layout—that correlate with features of the text system.

 ■ “Text Fields, Text Views, and the Field Editor” (page 19) introduces the main user interface objects of
the text system.

 ■ “The Text System and MVC” (page 23) explains how objects of the text system relate to the
model-view-controller paradigm of object-oriented programming.

 ■ “Common Configurations” (page 25) describes various ways in which you can configure text system
objects to accomplish different text-handling goals.

 ■ “Class Hierarchy of the Cocoa Text System” (page 29) presents an inheritance diagram of the text system
classes.

 ■ “Building a Text Editor in 15 Minutes” (page 31) is a tutorial showing how you can quickly and easily
create a very capable text editing program using Cocoa.

 ■ “Simple Text Tasks” (page 39) presents programming techniques to accomplish several text-related
goals using the text system.

 ■ “Assembling the Text System by Hand” (page 41) shows how to instantiate and explicitly hook together
objects of the text system programmatically.

Who Should Read This Document 7
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Introduction to Text System Overview

See Also

The following documents discuss specific aspects of the text system architecture in greater detail:

 ■ Text System User Interface Layer Programming Guide for Cocoa describes the high-level interface to the
Cocoa text system.

 ■ Text System Storage Layer Overview discusses the lower-level facilities that the Cocoa text system uses to
store text.

For further reading, see other documents in the Cocoa Text and Fonts Documentation. In addition, please
refer to the Cocoa text-related code samples on the Apple Developer Connection website and the Application
Kit examples installed with the Xcode Tools.

8 See Also
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Introduction to Text System Overview

The text-handling component of any application presents one of the greatest challenges to software designers.
Even the most basic text-handling system must be relatively sophisticated, allowing for text input, layout,
display, editing, copying and pasting, and many other features. But these days developers and users commonly
expect even more than these basic features, requiring even simple editors to support multiple fonts, various
paragraph styles, embedded images, spell checking, and other features.

The Cocoa text system provides all these basic and advanced text-handling features, and it also satisfies
additional requirements that are emerging from our ever more interconnected computing world: support
for the character sets of the world’s living languages, powerful layout capabilities to handle various text
directionality and nonrectangular text containers, and sophisticated typesetting capabilities including control
of kerning and ligatures. Cocoa’s text system is designed to provide all these capabilities without requiring
you to learn about or interact with more of the system than is necessary to meet the needs of your application.

For most developers, the general-purpose programmatic interface of the NSTextView class is all you need to
learn. NSTextView provides the user interface to the text system. If you need more flexible, programmatic
access to the text, you’ll need to learn about the storage layer and the NSTextStorage class. And, of course,
to access all the available features, you can learn about and interact with any of the classes that support the
text-handling system.

Figure 1 shows the major functional areas of the text system with the user interface layer on top, the storage
layer on the bottom, and, in the middle region, the components that interpret keyboard input and arrange
the text for display.

Figure 1 Major functional areas of the Cocoa text system

Font & color
panels Text views Ruler views

Glyph
generator

Typesetter

Text containers Text storage

Layout
manager

Text input
management

The text classes exceed most other classes in the Application Kit in the richness and complexity of their
interface. One of their design goals is to provide a comprehensive set of text-handling features so that you’ll
rarely need to create a subclass. Among other things, a text object such as NSTextView can:

 ■ Control whether the user can select or edit text.

 ■ Control the font and layout characteristics of its text by working with the Font menu and Font panel
(also called the Fonts window).

9
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Text System Architecture

 ■ Let the user control the format of paragraphs by manipulating a ruler.

 ■ Control the color of its text and background.

 ■ Wrap text on a word or character basis.

 ■ Display graphic images within its text.

 ■ Write text to or read text from files in the form of RTFD—Rich Text Format files that contain TIFF or EPS
images, or attached files.

 ■ Let another object, the delegate, dynamically control its properties.

 ■ Let the user copy and paste text within and between applications.

 ■ Let the user copy and paste font and format information between NSText objects.

 ■ Let the user check the spelling of words in its text.

Graphical user-interface building tools (such as Interface Builder) may give you access to text objects in
several different configurations, such as those found in the NSTextField, NSForm, and NSScrollView objects.
These classes configure a text object for their own specific purposes. Additionally, all NSTextFields, NSForms,
NSButtons within the same window—in short, all objects that access a text object through associated
cells—share the same text object, called the field editor, reducing the memory demands of an application.
Thus, it’s generally best to use one of these classes whenever it meets your needs, rather than create text
objects yourself. But if one of these classes doesn’t provide enough flexibility for your purposes, you can
create text objects programmatically.

Text objects typically work closely with various other objects. Some of these—such as the delegate or an
embedded graphic object—require some programming on your part. Others—such as the Font panel, spell
checker, or ruler—take no effort other than deciding whether the service should be enabled or disabled.

To control layout of text on the screen or printed page, you work with the objects that link the NSTextStorage
repository to the NSTextView that displays its contents. These objects are of the NSLayoutManager and
NSTextContainer classes.

An NSTextContainer object defines a region where text can be laid out. Typically, a text container defines a
rectangular area, but by creating a subclass of NSTextContainer you can create other shapes: circles, pentagons,
or irregular shapes, for example. NSTextContainer isn’t a user-interface object, so it can’t display anything or
receive events from the keyboard or mouse. It simply describes an area that can be filled with text. Nor does
an NSTextContainer object store text—that’s the job of an NSTextStorage object.

A layout manager object, of the NSLayoutManager class, orchestrates the operation of the other text handling
objects. It intercedes in operations that convert the data in an NSTextStorage object to rendered text in an
NSTextView object’s display. It also oversees the layout of text within the areas defined by NSTextContainer
objects.

10
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Text System Architecture

The Cocoa text system is an object-oriented framework designed to provide all the text services needed by
Cocoa applications. Carbon applications, on the other hand, use the APIs of other text-oriented components
such as the Multilingual Text Engine (MLTE), which provides editing features, and Apple Type Services for
Unicode Imaging (ATSUI), which provides typography and layout services.

From the developer’s perspective, the Cocoa text system and ATSUI are two parallel APIs that both handle
line layout and character-to-glyph transformations, calling into the Quartz Core Graphics library for text
rendering. A developer using the Cocoa text system for a given project is not likely to use ATSUI and vice
versa.

The relationships among the Cocoa text system, MLTE, ATSUI, and other text-related components of the Mac
OS X development environment are shown in Figure 1.

Figure 1 Text handling in Mac OS X

Application Services (Carbon)

Carbon applications

Carbon UI text handling
Unicode text edit control,
ThemeText API, MLTE

Cocoa applications

Cocoa
text system

ATSUI
(AppleType Services for Unicode Imaging)

QuickDraw
Text rendering

Quartz
Text rendering

For more information about the Core Graphics rendering engine, see the Quartz 2D documentation.

11
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

The Cocoa Text System, MLTE, and ATSUI

12
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

The Cocoa Text System, MLTE, and ATSUI

The Cocoa text system is responsible for the processing and display of all visible text in Cocoa. It provides a
complete set of high-quality typographical services through the Application Kit classes. This article defines
typographical concepts relevant to the text system.

Characters and Glyphs

A character is the smallest unit of written language that carries meaning. Characters can correspond to a
particular sound in the spoken form of the language, as do the letters of the Roman alphabet; they can
represent entire words, such as Chinese ideographs; or they can represent independent concepts, such as
mathematical symbols. In every case, however, a character is an abstract concept.

Although characters must be represented in a display area by a recognizable shape, they are not identical
to that shape. That is, a character can be drawn in various forms and remain the same character. For example,
an “uppercase A” character can be drawn with a different size or a different stroke thickness, it can lean or
be vertical, and it can have certain optional variations in form, such as serifs. Any one of these various concrete
forms of a character is called a glyph. Figure 1 shows different glyphs that all represent the character
“uppercase A.”

Figure 1 Glyphs of the character A

Characters and glyphs do not have a one-to-one correspondence. In some cases a character may be
represented by multiple glyphs, such as an “é” which may be an “e” glyph combined with an acute accent
glyph “´”. In other cases, a single glyph may represent multiple characters, as in the case of a ligature, or
joined letter. Figure 2 shows individual characters and the single-glyph ligature often used when they are
adjacent. A ligature is an example of a contextual form in which the glyph used to represent a character
changes depending on the characters next to it. Other contextual forms include alternate glyphs for characters
beginning or ending a word.

Characters and Glyphs 13
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Typographical Features of the Cocoa Text
System

Figure 2 Ligatures

+ =

+ =

Computers store characters as numbers mapped by encoding tables to their corresponding characters. The
encoding scheme native to Mac OS X is called Unicode. The Unicode standard provides a unique number
for every character in every modern written language in the world, independent of the platform, program,
and programming language being used. This universal standard solves a longstanding problem of different
computer systems using hundreds of conflicting encoding schemes. Unicode provides the encoding used
to store characters in Cocoa. It also has features that simplify handling bidirectional text and contextual forms.

Glyphs are also represented by numeric codes called glyph codes. The glyphs used to depict characters are
selected by the Cocoa layout manager (NSLayoutManager) during composition and layout processing. The
layout manager determines which glyphs to use and where to place them in the display, or view. The layout
manager caches the glyph codes in use and provides methods to convert between characters and glyphs
and between characters and view coordinates. (See “Text Layout” (page 15) for more information about the
layout process.)

Typefaces and Fonts

A typeface is a set of visually related shapes for some or all of the characters in a written language. For
example, Times is a typeface, designed by Stanley Morrison in 1931 for The Times newspaper of London. All
of the letter forms in Times are related in appearance, having consistent proportions between stems (vertical
strokes) and counters (rounded shapes in letter bodies) and other elements. When laid out in blocks of text,
the shapes in a typeface work together to enhance readability.

A typestyle, or simply style, is a distinguishing visual characteristic of a typeface. For example, roman typestyle
is characterized by upright letters having serifs and stems thicker than horizontal lines. In italic typestyle, the
letters slant to the right and are rounded, similar to cursive or handwritten letter shapes. A typeface usually
has several associated typestyles.

A font is a series of glyphs depicting the characters in a consistent size, typeface, and typestyle. A font is
intended for use in a specific display environment. Fonts contain glyphs for all the contextual forms, such as
ligatures, as well as the normal character forms.

A font family is a group of fonts that share a typeface but differ in typestyle. So, for example, Times is the
name of a font family (as well as the name of its typeface). Times Roman and Times Italic are the names of
individual fonts belonging to the family. Figure 3 shows several of the fonts in the Times font family.

14 Typefaces and Fonts
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Typographical Features of the Cocoa Text System

Figure 3 Fonts in the Times font family

In some cases a particular style of a typeface is a separate font, but in other cases where such a font is not
available, the system can produce the typestyle programmatically by varying certain characteristics of another
font in the family. For example, an algorithm can create a bold typestyle by increasing the line weight of the
regular font of the same family. The Cocoa text system can substitute these variations as necessary. Styles,
also called traits, that are available in Cocoa include variations such as bold, italic, condensed, expanded,
narrow, small caps, poster fonts, and fixed pitch.

Text Layout

Text layout is the process of arranging glyphs on a display device, in an area called a text view, which
represents an area similar to a page in traditional typesetting. The way in which glyphs are laid out relative
to each other is called text direction. In English and other languages derived from Latin, glyphs are placed
side by side to form words that are separated by spaces. Words are laid out in lines beginning at the top left
of the text view proceeding from left to right until the text reaches the right side of the view. Text then begins
a new line at the left side of the view under the beginning of the previous line, and layout proceeds in the
same manner to the bottom of the text view.

In other languages, glyph layout can be quite different. For example, some languages lay out glyphs from
right to left or vertically instead of horizontally. It is common, especially in technical writing, to mix languages
with differing text direction, such as English and Hebrew, in the same line. Some writing systems even
alternate layout direction in every other line (an arrangement called boustrophedonic writing). Some languages
do not group glyphs into words separated by spaces. Moreover, some applications call for arbitrary
arrangements of glyphs; a graphic layout may require glyphs to be arranged on a nonlinear path.

The Cocoa layout manager (an instance of the NSLayoutManager class) lays out glyphs along an invisible
line called the baseline. In Roman text, the baseline is horizontal, and the bottom edge of most of the glyphs
rest on it. Some glyphs extend below the baseline, including those for characters like “g” that have descenders,
or “tails,” and large rounded characters like “O” that must extend slightly below the baseline to compensate
for optical effects. Other writing systems place glyphs below or centered on the baseline. Every glyph includes
an origin point that the layout manager uses to align it properly with the baseline.

Glyph designers provide a set of measurements with a font, called metrics, which describe the spacing around
each glyph in the font. The layout manager uses these metrics to determining glyph placement. In horizontal
text, the glyph has a metric called the advance width, which measures the distance along the baseline to
the origin point of the next glyph. Typically there is some space between the origin point and the left side
of the glyph, which is called the left-side bearing. There may also be space between the right side of the
glyph and the point described by the advance width, which is called the right-side bearing. The vertical
dimension of the glyph is provided by two metrics called the ascent and the descent. The ascent is the
distance from the origin (on the baseline) to the top of the tallest glyphs in the font. The descent, which is

Text Layout 15
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Typographical Features of the Cocoa Text System

the distance below the baseline to the bottom of the font’s deepest descenders. The rectangle enclosing the
visible parts of the glyph is called the bounding rectangle or bounding box. Figure 4 illustrates these metrics
and similar ones used for vertical glyph placement.

Figure 4 Glyph metrics

Advance width

= Origin

Ascent

Baseline

Right-side bearing

Descent

Left-side
bearing

Bounding
box

By default, typesetters place glyphs side-by-side using the advance width, resulting in a standard interglyph
space. However, in some combinations text is made more readable by kerning, which is shrinking or stretching
the space between two glyphs. A very common example of kerning occurs between an uppercase W and
uppercase A, as shown in Figure 5. Type designers include kerning information in the metrics for a font. The
Cocoa text system provides methods to turn kerning off, use the default settings provided with the font, or
tighten or loosen the kerning throughout a selection of text.

Figure 5 Kerning

With kerning

Without kerning

Type systems usually measure font metrics in units called points, which in Mac OS X measure exactly 72 per
inch. Adding the distance of the ascent and the descent of a font provides the font’s point size.

Space added during typesetting between lines of type is called leading, after the slugs of lead used for that
purpose in traditional metal-type page layout. (Leading is sometimes also called linegap.) The total amount
of ascent plus descent plus leading provides a font’s line height.

Although the typographic concepts of type design are somewhat esoteric, most people who have created
documents on a computer or typewriter are familiar with the elements of text layout on a page. For example,
the margins are the areas of white space between the edges of the page and the text area where the layout
engine places glyphs. Alignment describes the way text lines are placed relative to the margins. For example,
horizontal text can be aligned right, left, or centered, as shown in Figure 6.

16 Text Layout
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Typographical Features of the Cocoa Text System

Figure 6 Alignment of text relative to margins

Left aligned

Alignment or flushness, is the
process of placing text in relation to
one or both margins. You set
the alignment in the style object for
glyph and text shapes, not for
layout shapes.

Justification, is the process of
typographically “stretching” or
“shrinking” a line of text to fit
within a given width. Your
application can set the width of the
space in which the line of text
should appear; ATSUI then
distributes the white space available
on the line between words or
even between glyphs, depending on
the level of justification your
application or the user choses.

Centered

Alignment or flushness, is the
process of placing text in relation to

one or both margins. You set
the alignment in the style object for

glyph and text shapes, not for
layout shapes.

Justification, is the process of
typographically “stretching” or
“shrinking” a line of text to fit

within a given width. Your
application can set the width of the

space in which the line of text
should appear; ATSUI then

distributes the white space available
on the line between words or

even between glyphs, depending on
the level of justification your
application or the user choses.

Right aligned

Alignment or flushness, is the
process of placing text in relation to

one or both margins. You set
the alignment in the style object for

glyph and text shapes, not for
layout shapes.

Justification, is the process of
typographically “stretching” or
“shrinking” a line of text to fit

within a given width. Your
application can set the width of the

space in which the line of text
should appear; ATSUI then

distributes the white space available
on the line between words or

even between glyphs, depending on
the level of justification your

application or the user choses.

Lines of text can also be justified; for horizontal text the lines are aligned on both right and left margins, as
shown in Figure 7.

Figure 7 Justified text

Justified

Glyph designers provide a set of measurements with a
font, called metrics, which describe the spacing around
each glyph placement. Layout engines use the metrics to
determine glyph placement. In horizontal text, the glyph
has a metric called the advanced width, which measures
the distance along the baseline where the origin point if
the next glyph is placed. Typically there is some space
between the origin point and the left side of the glyph,
which is called the left-side bearing. There may also be
space between the right side of the glyph and the point
described by the advanced width, called the right-side
bearing. Vertical spacing of the glyph is provided by two
metrics called the ascent, which is the distance from the
origin (on the baseline) to a height slightly above the top
of the tallest glyphs in the font, and the descent, which is
below the baseline. The rectangle enclosing the visible

To create lines from a string of glyphs, the layout engine must perform line breaking by finding a point at
which to end one line and begin the next. In the Cocoa text system, you can specify line breaking at either
word or glyph boundaries. In Roman text, a word broken between glyphs requires insertion of a hyphen
glyph at the breakpoint. Once the text stream has been broken into lines, the system performs alignment
and justification, if requested.

Text Layout 17
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Typographical Features of the Cocoa Text System

18 Text Layout
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Typographical Features of the Cocoa Text System

Text fields, text views, and the field editor are important objects in the Cocoa text system because they are
central to the user’s interaction with the system. They provide text entry, manipulation, and display. If your
application deals in any way with user-entered text, you should understand these objects.

Text Fields

A text field is a user interface control object instantiated from the NSTextField class. Figure 1 shows a text
field. Text fields display small amounts of text, typically (although not necessarily) a single line. Text fields
also provide places for users to enter text responses, such as search parameters. Like all controls, a text field
has a target and an action. By default, text fields send their action message when editing ends—that is, when
the user presses Return or moves focus to another control. You can also control a text field’s shape and layout,
the font and color of its text, background color, whether the text is editable or read-only, whether it is
selectable or not (if read-only), and whether the text scrolls or wraps when the text exceeds the text field’s
visible area.

Figure 1 A text field

To create a secure text field for password entry, you use NSSecureTextField, a subclass of NSTextField. Secure
text fields display bullets in place of characters entered by the user, and they do not allow cutting or copying
of their contents. You can get the text field’s value using the stringValuemethod, but users have no access
to the value.

The usual way to instantiate a text field is to drag an NSTextField object from the the Cocoa-Views palette
in Interface Builder and place it in a window of your application’s user interface. Then, if you then want to
convert the text field to a secure text field, you select it, open the Info window (Command-Shift-I), choose
the Custom Class pane (Command-5), and select NSSecureTextField.

See Text Fields more information.

Text Fields 19
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Text Fields, Text Views, and the Field Editor

Text Views

Text views are user interface objects instantiated from the NSTextView class. Figure 2 shows a text view. Text
views typically display multiple lines of text laid out in paragraphs with all the characteristics of sophisticated
typesetting. A text view is the main user interface to the Cocoa text-editing system. It handles user events
to provide text entry and modification, and to display any font, including those of non-English languages,
with arbitrary colors, styles, and other attributes.

Figure 2 A text view

The Cocoa text system supports text views with many other underlying objects providing text storage, layout,
font and attribute manipulation, spell checking, undo and redo, copy and paste, drag and drop, saving of
text to files, and other features. NSTextView is a subclass of NSText, which is a separate class for historical
reasons. You don’t instantiate NSText, although it declares many of the methods you use with NSTextView.
When you put an NSTextView object in an NSWindow object, you have a full-featured text editor whose
capabilities are provided “for free” by the Cocoa text system. (See “Building a Text Editor in 15 Minutes” (page
31) for more information.)

The Field Editor

The field editor is a single NSTextView object that is shared among all the controls, including text fields, in
a window. This text view object inserts itself into the view hierarchy to provide text entry and editing services
for the currently active text field. When the user shifts focus to a text field, the field editor begins handling
keystroke events and display for that field. The field editor designates the current text field as its delegate,
enabling the text field to control changes to its contents. When the focus shifts to another text field, the field
editor attaches itself to that field instead. Figure 3 illustrates the disposition of the field editor in relation to
the text field it is editing.

20 Text Views
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Text Fields, Text Views, and the Field Editor

Figure 3 The field editor

anNSTextView

Field editor

delegate

Field editor becomes
first responder while
text field is being edited.

anNSTextField

Because only one of the text fields in a window can be active at a time, the system needs only one NSTextView
instance per window to be the field editor. Among its other duties, the field editor maintains the selection.
Therefore, a text field that's not being edited typically does not have a selection at all. (However, developers
can substitute custom field editors, in which case there could be more than one field editor.)

For more information about the field editor, see “Working With the Field Editor.”

The Field Editor 21
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Text Fields, Text Views, and the Field Editor

22 The Field Editor
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Text Fields, Text Views, and the Field Editor

The Cocoa text system’s architecture is both modular and layered to enhance its ease of use and flexibility.
Its modular design reflects the model-view-controller paradigm (originating with Smalltalk-80) where the
data, its visual representation, and the logic that links the two are represented by separate objects. In the
case of the text system, NSTextStorage holds the model’s text data, NSTextContainer models the geometry
of the layout area, NSTextView presents the view, and NSLayoutManager intercedes as the controller to make
sure that the data and its representation onscreen stay in agreement.

This factoring of responsibilities makes each component less dependent on the implementation of the others
and makes it easier to replace individual components with improved versions without having to redesign
the entire system. To illustrate the independence of the text-handling components, consider some of the
operations that are possible using different subsets of the text system:

 ■ Using only an NSTextStorage object, you can search text for specific characters, strings, paragraph styles,
and so on.

 ■ Using only an NSTextStorage object you can programmatically operate on the text without incurring
the overhead of laying it out for display.

 ■ Using all the components of the text system except for an NSTextView object, you can calculate layout
information, determining where line breaks occur, the total number of pages, and so forth.

The layering of the text system reduces the amount you have to learn to accomplish common text-handling
tasks. In fact, many applications interact with this system solely through the API of the NSTextView class.

23
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

The Text System and MVC

24
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

The Text System and MVC

The following diagrams give you an idea of how you can configure objects of the four primary text system
classes—NSTextStorage, NSLayoutManager, NSTextContainer, and NSTextView—to accomplish different
text-handling goals.

To display a single flow of text, arrange the objects as shown in Figure 1.

Figure 1 Text object configuration for a single flow of text

NSTextStorage NSLayoutManager NSTextContainer NSTextView

With one
NSTextView,
all of the text
flows within a
single, typically
rectangular,
area.

The NSTextView provides the view that displays the glyphs, and the NSTextContainer object defines an area
within that view where the glyphs are laid out. Typically in this configuration, the NSTextContainer’s vertical
dimension is declared to be some extremely large value so that the container can accommodate any amount
of text, while the NSTextView is set to size itself around the text using the setVerticallyResizable:
method defined by NSText, and given a maximum height equal to the NSTextContainer’s height. Then, with
the NSTextView embedded in an NSScrollView, the user can scroll to see any portion of this text.

If the NSTextContainer’s area is inset from the NSTextView’s bounds, a margin appears around the text. The
NSLayoutManager object, and other objects not pictured here, work together to generate glyphs from the
NSTextStorage’s data and lay them out within the area defined by the NSTextContainer.

This configuration is limited by having only one NSTextContainer-NSTextView pair. In such an arrangement,
the text flows uninterrupted within the area defined by the NSTextContainer. Page breaks, multicolumn
layout, and more complex layouts can’t be accommodated by this arrangement.

By using multiple NSTextContainer-NSTextView pairs, more complex layout arrangements are possible. For
example, to support page breaks, an application can configure the text objects as shown in Figure 2.

25
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Common Configurations

Figure 2 Text object configuration for paginated text

NSTextStorage NSLayoutManager

NSTextContainer NSTextView

As text is added, it
fills the region
defined by the first
NSTextContainer.
The text is displayed
in the NSTextView
that is paired with
the NSTextContainer.
When there's no
more room, another

NSTextContainer NSTextView

NSTextContainer
(and associated
NSTextView) is
added, and the text
flows onto the
second page.

Each NSTextContainer-NSTextView pair corresponds to a page of the document. The gray rectangle in the
diagram above represents a custom view object that your application provides as a background for the
NSTextViews. This custom view can be embedded in an NSScrollView to allow the user to scroll through the
document’s pages.

A multicolumn document uses a similar configuration, as shown in Figure 3.

Figure 3 Text object configuration for a multicolumn document

NSTextStorage NSLayoutManager

NSTextContainer NSTextView

NSTextContainer NSTextView

NSTextContainer NSTextView

NSTextContainer NSTextView

NSTextContainer
(and associated
NSTextView) is
added, and the text
flows onto the
second page.

With
multiple
text views
and
containers,
text can
flow in
more
complex
layouts,

text, a new
column is
added.
When the
second
column on
the page is
filled, a
new page
is added.

such as in
paginated
documents
having
multiple
columns.

As a
column
fills with

26
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Common Configurations

Instead of having one NSTextView-NSTextContainer pair correspond to a single page, there are now two
pairs—one for each column on the page. Each NSTextContainer-NSTextView controls a portion of the
document. As the text is displayed, glyphs are first laid out in the top-left view. When there is no more room
in that view, the NSLayoutManager informs its delegate that it has finished filling the container. The delegate
can check whether there’s more text that needs to be laid out and add another NSTextContainer and
NSTextView. The NSLayoutManager proceeds to lay out text in the next container, notifies the delegate when
finished, and so on. Again, a custom view (depicted as a gray rectangle) provides a canvas for these text
columns.

Not only can you have multiple NSTextContainer-NSTextView pairs, you can also have multiple
NSLayoutManagers accessing the same NSTextStorage. Figure 4 illustrates the simplest arrangement with
multiple layout managers.

Figure 4 Text object configuration for multiple views of the same text

NSTextStorage

NSLayoutManager

NSLayoutManager NSTextContainer NSTextView

NSTextContainer NSTextView

Multiple NSLayoutManagers
allow you to have multiple
presentations of the same
text. The text within each
view can have separate
layout and selections.

Multiple
NSLayoutManagers
allow you to have

multiple presentations
of the same text.

The text within each
view can have
separate layout
and selections.

The effect of this arrangement is to give multiple views on the same text. If the user alters the text in the top
view, the change is immediately reflected in the bottom view (assuming the location of the change is within
the bottom view’s bounds).

Finally, complex page layout requirements, such as permitting text to wrap around embedded graphics, can
be achieved by a configuration that uses a custom subclass of NSTextContainer. This subclass defines a region
that adapts its shape to accommodate the graphic image and uses the object configuration shown in Figure
5.

27
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Common Configurations

Figure 5 Text object configuration with custom text containers

NSTextStorage NSLayoutManager

MyTextContainer NSTextView

MyTextContainer NSTextView

 The text
 container
 defines a
region that wraps
around the embedded
graphic. A custom
view is the super
view for each of the
NSTextViews. It both
arranges the
NSTextViews as

pages and detects
when the
graphic has
moved. When
a graphic is
moved or added, the
text container must
adapt its shape to
accommodate the
new placement.

28
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Common Configurations

In addition to the four principal classes in the text system—NSTextStorage, NSLayoutManager,
NSTextContainer, NSTextView—there are a number of auxiliary classes and protocols. The diagrams below
give you a more complete picture of the text system. Names between angle brackets, such as <NSCopying>,
are protocols.

NSObject
<NSObject>

NSAttributedString
<NSCopying,NSMutableCopying>

NSCell
<NSCopying,NSMutableCopying>

NSMutableAttributedString NSTextStorage

NSTextView
<NSTextInput>

NSLayoutManager

NSTypesetter NSATSTypesetter

NSTextContainer

NSResponder

NSParagraphStyle

NSTextAttachment

NSMutableParagraphStyle

NSTextAttachmentCell

NSTextTab
<NSCopying>

NSView NSText
<NSChangeSpelling,

NSIgnoreMisspelledWords>

Here are some other text-system–related classes:

 ■ NSFileWrapper

 ■ NSInputManager

 ■ NSInputServer

 ■ NSFont

 ■ NSFontPanel

 ■ NSFontManager

 ■ NSFontDescriptor

 ■ NSGlyphGenerator

 ■ NSGlyphInfo

 ■ NSGlyphStorage protocol

29
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Class Hierarchy of the Cocoa Text System

 ■ NSRulerView

 ■ NSRulerMarker

 ■ NSTextField

 ■ NSSecureTextField

 ■ NSSpellChecker

 ■ NSTextBlock

 ■ NSTextTable

 ■ NSTextTableBlock

 ■ NSTextList

30
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Class Hierarchy of the Cocoa Text System

This article shows how you can use Cocoa to create a simple but highly capable text editor in less than 15
minutes using Xcode and Interface Builder. The Cocoa document architecture provides many of the features
required for this type of application automatically, requiring you to write a minimal amount of code.

Here is a simplified summary of the steps needed to complete this task:

 ■ Use Xcode to create a new document-based application.

 ■ Use Interface Builder to add an NSTextView object to the application’s window.

 ■ Add some code to the document’s controller class.

 ■ Connect the user interface to the code.

You can build and test the application at several stages of completion. The following steps expand and
explain this procedure. The steps assume that you have a basic acquaintance with Xcode and Interface Builder.

Create the User Interface

This section shows how to use Xcode and Interface Builder to create the project and build its user interface.

1. In Xcode, create a new Cocoa Document-based Application project.

2. Open the MyDocument.nib file, which is in the Resources folder. Double-click the MyDocument.nib
icon, which launches Interface Builder.

Create the User Interface 31
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Building a Text Editor in 15 Minutes

3. Delete the label reading “Your document contents here” from the Window object. Drag an NSTextView
object from the Cocoa-Text palette, which is shown in Figure 1 (page 32). Resize the text view to almost
fill the window, leaving margins as indicated by Interface Builder’s guide lines.

Figure 1 Drag an NSTextView from the Cocoa Text Controls palette

4. Click once inside the text view and choose Show Inspector from the Tools menu to open the Inspector
window. Choose Size from the pop-up menu, and set the view to resize with the window, by clicking on
the inner set of crossed lines, which changes their appearance to springs, as shown in Figure 2 (page
32).

Note: Clicking once inside the text view area selects the scroll view containing the text view, as indicated
by the title of the Inspector window. Clicking twice inside the text view selects the text view itself. Be
sure to set the resize characteristics of the scroll view.

Figure 2 Set the resize characteristics of the scroll view

32 Create the User Interface
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Building a Text Editor in 15 Minutes

5. Choose Attributes from the pop-up menu of the Inspector window, and ensure that the following options
are selected: Editable, Multiple fonts allowed, Undo allowed, Continuous Spell Checking, Uses Find Panel,
and Show Scroller.

6. Choose Test Interface from Interface Builder's File menu, and resize the window to ensure that the text
view resizes properly along with the window. Note that you can already edit text in the text view. When
you drag the NSTextView object from the Cocoa Text Controls palette, Interface Builder automatically
instantiates all the Cocoa text objects required for a complete editing and layout implementation. Choose
Quit Interface Builder to leave interface test mode (Interface Builder should continue running).

7. Add a Format menu to the application. In Xcode, double-click the MainMenu.nib icon to open the
MainMenu window, which represents the new application’s menu bar. From the Cocoa-Menus palette,
drag a Format menu to the menu bar. Typically, a Format menu goes to the right of the Edit menu, as
shown in Figure 3 (page 33).

Figure 3 Add a Format menu

8. Save both nib files and return to Xcode. Build and test the new application.

At this stage of your editor’s development, it has many sophisticated features. You should be able to enter,
edit, cut, copy, and paste text. You can find and replace text using the Find window. You can undo and redo
editing actions. You can also format text, setting its font, size, style, and color attributes. You can control text
alignment, justification, baseline position, kerning, and ligatures. You can display a ruler that provides a
graphical interface to manipulate many text and layout attributes, as well as setting tab stops. You can even
use the spelling checker.

In addition to its many editing features, your editor can open multiple documents, each with its own text
view and contents. What it lacks most prominently are the abilities to open files and save text in files (that
is, archiving and unarchiving documents). It also lacks such features as displaying its name in its menu bar,
having its own icon, and having useful information in its About window.

Quit your new application before proceeding to the next section.

Create the User Interface 33
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Building a Text Editor in 15 Minutes

Implement Document Archiving

This section explains how to enable your editor to open and save documents in files.

1. Add an instance variable for the text view, so you can connect the text view with the code in your
NSDocument subclass that handles archiving and unarchiving of documents in files. You also need to
add an instance variable to hold the text string being edited (the document’s data model). Put the
variable declarations in MyDocument.h as follows:

#import <Cocoa/Cocoa.h>
@interface MyDocument: NSDocument
{
 IBOutlet NSTextView *textView;
 NSAttributedString *mString;
}
@end

2. Initialize the string instance variable. Put the following lines in the init method (which has a stub
implementation) in MyDocument.m:

 if (mString == nil) {
 mString = [[NSAttributedString alloc] initWithString:@""];
 }

3. Write getter and setter methods for the string instance variable. Put them in MyDocument.m as follows:

- (NSAttributedString *) string { return [[mString retain] autorelease]; }

- (void) setString: (NSAttributedString *) newValue {
 if (mString != newValue) {
 if (mString) [mString release];
 mString = [newValue copy];
 }
}

4. Add method declarations for the getter and setter methods to the header file. MyDocument.h should
now appear as follows:

#import <Cocoa/Cocoa.h>
@interface MyDocument: NSDocument
{
 IBOutlet NSTextView *textView;
 NSAttributedString *mString;
}
- (NSAttributedString *) string;
- (void) setString: (NSAttributedString *) value;
@end

5. From Xcode, drag the MyDocument.h file icon onto the Instances pane of MyDocument.nib, which is
in Interface Builder. This step informs the MyDocument.nib file that the MyDocument interface now has
an outlet variable named textView .

6. In Interface Builder, click twice inside the text view to select the NSTextView object. Be sure you connect
to the NSTextView and not its containing NSScrollView.

34 Implement Document Archiving
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Building a Text Editor in 15 Minutes

7. Connect the textView outlet of the File's Owner by Control-dragging from the File's Owner icon in the
Instances pane of MyDocument.nib to the text view in the window, as shown in Figure 4 (page 35).
Use the File's Owner Inspector to make the connection by double-clicking the textView outlet or by
selecting the textView outlet and clicking the Connect button.

Figure 4 Connect the text view outlet of the File's Owner

Implement Document Archiving 35
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Building a Text Editor in 15 Minutes

8. In Interface Builder, make the File’s Owner (that is, the MyDocument object) the delegate of the text
view. Double-click to select the text view in the window and Control-drag from the text view to the File’s
Owner icon, as shown in Figure 5 (page 36). Use the Connections pane of the NSTextView Inspector
window to make the connection by double-clicking the delegate outlet or by selecting the delegate
outlet and clicking the Connect button.

Figure 5 Connect the delegate of the text view

9. Implement the text view’s delegate methodtextDidChange in MyDocument.m to synchronize the text
string in the document’s data model (the mString instance variable) with the text storage belonging
to the text view, whenever the user changes the text.

- (void) textDidChange: (NSNotification *) notification
{
 [self setString: [textView textStorage]];
}

10. Implement the archiving and unarchiving methods. When you initially created the project, Xcode placed
stubs for these methods in MyDocument.m. Fill in the method bodies as follows:

- (NSData *)dataRepresentationOfType:(NSString *)aType
{
 NSData *data;
 [self setString:[textView textStorage]];
 data = [NSArchiver archivedDataWithRootObject:[self string]];

36 Implement Document Archiving
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Building a Text Editor in 15 Minutes

 return data;
}
- (BOOL)loadDataRepresentation:(NSData *)data ofType:(NSString *)aType
{
 NSAttributedString *tempString = [NSUnarchiver unarchiveObjectWithData: data];
 [self setString:tempString];
 return YES;
}

Applications targeted for Mac OS X v10.4 or later systems should override dataOfType:error: and
readFromData:ofType:error: instead of the methods shown in this step.

11. Add one line of code to the windowControllerDidLoadNib method to place the contents of the
window’s data model into the text view when the window’s nib file is initially loaded. Leave the call to
the superclass windowControllerDidLoadNib method and add the following line after it:

if ([self string] != nil) {
 [[textView textStorage] setAttributedString: [self string]];
}

12. Build and test your application.

Your editor should now be able to save documents that you create into files, and it should be able to open
those documents again and continue editing them. If you attempt to close a document that has been changed
since it was last saved, the editor displays a warning sheet and lets you save the document.

At this stage of its development, your editor opens and saves documents only with an extension of ????.
To enable your application to save and open documents with a recognized file type, you need to use Xcode
to configure the application’s document types settings as described in “Storing Document Types Information
in the Application's Property List” in Document-Based Applications Overview. For complete details about
application property lists, see Runtime Configuration Guidelines.

For more examples of Cocoa text applications, refer to the following URL:

http://developer.apple.com/samplecode/Cocoa/idxTextFonts-date.html

Additional examples, including source code for TextEdit, are contained in the following directory installed
with Xcode Tools:

/Developer/Examples/AppKit/

Implement Document Archiving 37
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Building a Text Editor in 15 Minutes

http://developer.apple.com/samplecode/Cocoa/idxTextFonts-date.html

38 Implement Document Archiving
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Building a Text Editor in 15 Minutes

This article explains some programmatic techniques using the Cocoa text system to accomplish simple tasks
which may not be obvious until you see how they’re done.

Appending Text to a View

This section shows how to use NSTextView methods to append a text string to the text in the view. It also
scrolls the text in the view to ensure that the newly appended text is visible.

This code fragment defines a zero-length range of text beginning at the end of the NSTextStorage belonging
to the text view. Then it replaces the zero-length range with the string, effectively appending it to the original
text storage string, accessed through the text view. Finally, it resets the length of the range to that of the full
string in the text view and scrolls the view to make the end of the new range visible.

 NSTextView *myView;
 NSString *myText;
 NSRange endRange;

 endRange.location = [[myView textStorage] length];
 endRange.length = 0;
 [myView replaceCharactersInRange:endRange withString:myText];
 endRange.length = [myText length];
 [myView scrollRangeToVisible:endRange];

Setting Font Styles and Traits

This section shows how to programmatically set font styles, such as bold or italic, and font attributes, such
as underlining, in an attributed string.

Underlining is an attribute that can be easily set on an attributed string, using the
NSUnderlineStyleAttributeName constant, as explained in the Cocoa Foundation reference
documentation for NSMutableAttributedString. Use the following method:

- (void)addAttribute:(NSString *)name value:(id)value range:(NSRange)aRange

Pass NSUnderlineStyleAttributeName for the name argument with a value of [NSNumber
numberWithInt:1].

Unlike underlining, bold and italic are traits of the font, so you need to use a font manager instance to convert
the font to have the desired trait, then add the font attribute to the mutable attributed string. For a mutable
attributed string named attributedString, use the following technique:

NSFontManager *fontManager = [NSFontManager sharedFontManager];

Appending Text to a View 39
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Simple Text Tasks

unsigned idx = range.location;
NSRange fontRange;
NSFont *font;

while (NSLocationInRange(idx, range)){
 font = [attributedString attribute:NSFontAttributeName atIndex:idx
 longestEffectiveRange:&fontRange inRange:range];
 fontRange = NSIntersectionRange(fontRange, range);
 [attributedString applyFontTraits:NSBoldFontMask range:fontRange];
 idx = NSMaxRange(fontRange);
}

If your mutable attributed string is actually an NSTextStorage object, place this code between beginEditing
and endEditing calls.

Getting the View Coordinates of a Glyph

Glyph locations are figured relative to the origin of the bounding rectangle of the line fragment in which
they are laid out. To get the rectangle of the glyph’s line fragment in its container coordinates, use

lineFragmentRectForGlyphAtIndex:effectiveRange:

Then add the origin of that rectangle to the location of the glyph returned by

locationForGlyphAtIndex:

to get the glyph location in container coordinates.

The following code fragment from the CircleView example illustrates this technique.

usedRect = [layoutManager usedRectForTextContainer:textContainer];
NSRect lineFragmentRect = [layoutManager lineFragmentRectForGlyphAtIndex:glyphIndex
 effectiveRange:NULL];
NSPoint viewLocation, layoutLocation = [layoutManager
 locationForGlyphAtIndex:glyphIndex];
// Here layoutLocation is the location (in container coordinates) where the glyph was
laid out.
layoutLocation.x += lineFragmentRect.origin.x;
layoutLocation.y += lineFragmentRect.origin.y;

40 Getting the View Coordinates of a Glyph
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Simple Text Tasks

The vast majority of applications interact with the text system at a high level through one class: NSTextView.
It is also possible to build the network of objects that make up the text system from the bottom up, starting
with the NSTextStorage object. Understanding how this is done helps illuminate the design of the text-handling
system.

In creating the text-handling network by hand, you create four objects but then release three as they are
added to the network. You are left with a reference only to the NSTextStorage object. The NSTextView is
retained, however, by both its NSTextContainer and its superview; to fully destroy this group of text objects
you must send removeFromSuperview to the NSTextView object and then release the NSTextStorage object.

An NSTextStorage object is conceptually the owner of any network of text objects, no matter how complex.
When you release the NSTextStorage object, it releases its NSLayoutManagers, which release their
NSTextContainers, which in turn release their NSTextViews.

Figure 1 Text System Memory Management

NSTextStorage

NSLayoutManager

NSLayoutManager

MyTextContainer NSTextView

MyTextContainer NSTextView

MyTextContainer NSTextView

MyTextContainer NSTextView

Release

Release
Release

Release

Release

Release

Release

Release

Release

Release

Release

However, recall that the text system implements a simplified ownership policy for those whose only interaction
with the system is through the NSTextView class. See “Creating an NSTextView Programmatically” for more
information.

Set Up an NSTextStorage Object

You create an NSTextStorage object in the normal way, using the alloc and init... messages. In the
simplest case, where there’s no initial contents for the NSTextStorage, the initialization looks like this:

Set Up an NSTextStorage Object 41
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Assembling the Text System by Hand

textStorage = [[NSTextStorage alloc] init];

If, on the other hand, you want to initialize an NSTextStorage object with rich text data from a file, the
initialization looks like this (assume filename is defined):

textStorage = [[NSTextStorage alloc]
 initWithRTF:[NSData dataWithContentsOfFile:filename]
 documentAttributes:NULL];

We’ve assumed that textStorage is an instance variable of the object that contains this method. When
you create the text-handling system by hand, you need to keep a reference only to the NSTextStorage object
as you’ve done here. The other objects of the system are owned either directly or indirectly by this
NSTextStorage object, as you’ll see in the next steps.

Set Up an NSLayoutManager Object

Next, create an NSLayoutManager object:

NSLayoutManager *layoutManager;
layoutManager = [[NSLayoutManager alloc] init];
[textStorage addLayoutManager:layoutManager];
[layoutManager release];

Note that layoutManager is released after being added to textStorage. This is because the NSTextStorage
object retains each NSLayoutManager that’s added to it—that is, the NSTextStorage object owns its
NSLayoutManagers.

The NSLayoutManager needs a number of supporting objects—such as those that help it generate glyphs
or position text within a text container—for its operation. It automatically creates these objects (or connects
to existing ones) upon initialization. You only need to connect the NSLayoutManager to the NSTextStorage
object and to the NSTextContainer object, as seen in the next step.

Set Up an NSTextContainer Object

Next, create an NSTextContainer and initialize it with a size. Assume that theWindow is defined and represents
the window that displays the text view.

NSRect cFrame = [[theWindow contentView] frame];
NSTextContainer *container;

container = [[NSTextContainer alloc]
 initWithContainerSize:cFrame.size];
[layoutManager addTextContainer:container];
[container release];

Once you’ve created the NSTextContainer, you add it to the list of containers that the NSLayoutManager
owns, and then you release it. The NSLayoutManager now owns the NSTextContainer and is responsible for
releasing it when it’s no longer needed. If your application has multiple NSTextContainers, you can create
them and add them at this time.

42 Set Up an NSLayoutManager Object
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Assembling the Text System by Hand

Set Up an NSTextView Object

Finally, create the NSTextView (or NSTextViews) that displays the text:

NSTextView *textView = [[NSTextView alloc]
initWithFrame:cFrame textContainer:container];
[theWindow setContentView:textView];
[theWindow makeKeyAndOrderFront:nil];
[textView release];

Note that initWithFrame:textContainer: is used to initialize the NSTextView. This initialization method
does nothing more than what it says: initialize the receiver and set its text container. This is in contrast to
initWithFrame:, which not only initializes the receiver, but creates and interconnects the network of
objects that make up the text-handling system. Once the NSTextView has been initialized, it’s added to the
window, which is then displayed. Finally, you release the NSTextView.

Set Up an NSTextView Object 43
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Assembling the Text System by Hand

44 Set Up an NSTextView Object
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Assembling the Text System by Hand

This table describes the changes to Text System Overview.

NotesDate

Added link in "Building a Text Editor in 15 Minutes" to information explaining
how to configure an application's document types settings.

2009-04-08

Fixed problem with illustrations.2008-10-15

Made minor change to code snippet in "Simple Text Tasks" to set font trait.2007-10-02

Fixed bug in sample code in "Assembling the Text System by Hand."2007-03-06

Added Tiger classes to "Class Hierarchy of the Cocoa Text System." Simplified
setter method in tutorial.

2006-08-07

Updated the tutorial for Mac OS X v10.4 and made minor revisions throughout.
Changed title from Text System Architecture.

2005-08-11

Made editorial revisions to previously unedited articles.2004-05-27

Updated introduction and tutorial, made minor editorial corrections throughout,
and added an index.

2004-02-10

Added five new articles and rewrote introduction.2003-04-30

Revision history was added to existing topic.2002-11-12

45
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Document Revision History

46
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Document Revision History

A

advance width of glyphs 15
alignment of text 16
alloc method 41
Apple Type Services for Unicode Imaging (ATSUI) 11
ascent of glyphs 15
ATSUI. See Apple Type Services for Unicode Imaging

B

baseline of text 15
bearing of glyphs 15
beginEditing method 40
bounding rectangle of glyphs 16

C

Carbon applications
relation to Cocoa text system 11

characters 13
class hierarchy of Cocoa text system 29
Cocoa Text Controls palette

as source of text views 32
configuration of text system objects 25–27

D

data model 23, 34
delegate methods 36
delegates 36
descenders of glyphs 15
descent of glyphs 15
direction of text 15
document architecture 31
document archiving 34

E

endEditing method 40

F

field editors 10, 20
font attributes, setting 39
font families 14
font styles, setting 39
fonts

defined 14

G

glyphs
codes 14
defined 13
display 25
locations 40
metrics of 15

I

init... methods 41
initialization

of NSLayoutManager 42
of NSTextContainer 42
of NSTextStorage 42
of NSTextView 43

initWithFrame: method 43
initWithFrame:textContainer: method 43
Interface Builder

to create a text editor 31

47
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

Index

J

justified text 16

K

kerning 16

L

layout. See text layout
leading of text lines 16
left-side bearing of glyphs 15
ligatures 13
line gap 16
line height 16
lines of text

breaking 16

M

margins of text pages 16
metrics

glyph 15
MLTE. See Multilingual Text Engine
model-view-controller (MVC)

Cocoa text system and 23
Multilingual Text Engine (MLTE) 11
MVC. See model-view-controller

N

NSFileWrapper class 29
NSForm class 10
NSInputManager class 29
NSInputServer class 29
NSLayoutManager class

glyphs and 14
memory management and 41
MVC and 23
relation to other text objects 10, 25

NSScrollView class 10, 25
NSSecureTextField class 19
NSText class 20
NSTextContainer class

memory management and 41
MVC and 23

relation to other text objects 10, 25
NSTextField class 10, 19
NSTextStorage class 9, 23, 25, 41
NSTextView class

as primary interface to text system 9, 41
building a text editor with 31
methods for appending text 39
MVC and 23
relation to other text objects 25

O

origin of glyphs 15

P

point size of fonts 16
points 16

R

removeFromSuperview method 41
right-side bearing of glyphs 15

S

string variables
getter methods for 34
setter methods for 34

stringValue method 19

T

text editors
creating 31–37
features of 33

text fields 19
text layout

complex 25
defined 15

text system objects
assembling by hand 41–43
configuration of 25–27
features of 9

text views

48
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

appending text 39
defined 20

textDidChange method 36
typefaces 14
typestyles 14

U

Unicode
as Mac OS X native encoding 14

V

view coordinates of glyphs 40

W

windowControllerDidLoadNib method 37

X

Xcode
to create a text editor 31

49
2009-04-08 | © 1997, 2009 Apple Inc. All Rights Reserved.

	Text System Overview
	Contents
	Figures
	Introduction
	Text System Architecture
	The Cocoa Text System, MLTE, and ATSUI
	Typographical Features of the Cocoa Text System
	Characters and Glyphs
	Typefaces and Fonts
	Text Layout

	Text Fields, Text Views, and the Field Editor
	Text Fields
	Text Views
	The Field Editor

	The Text System and MVC
	Common Configurations
	Class Hierarchy of the Cocoa Text System
	Building a Text Editor in 15 Minutes
	Create the User Interface
	Implement Document Archiving

	Simple Text Tasks
	Appending Text to a View
	Setting Font Styles and Traits
	Getting the View Coordinates of a Glyph

	Assembling the Text System by Hand
	Set Up an NSTextStorage Object
	Set Up an NSLayoutManager Object
	Set Up an NSTextContainer Object
	Set Up an NSTextView Object

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

