
Text Attributes
Cocoa > Text & Fonts

2004-02-16

Apple Inc.
© 1997, 2004 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Text Attributes 7

Who Should Read This Document 7
Organization of This Document 7
See Also 7

About Text Attributes 9

Character Attributes 9
Storing Character Attributes 9
Attribute Fixing 10

Temporary Attributes 10
Paragraph Attributes 11
Glyph Attributes 11
Document Attributes 11

Setting Text Attributes 13

Kerning 13
Ligatures 13

Accessing Attributes 15

Retrieving Attribute Values 15
Effective and Maximal Ranges 16

Changing an Attributed String 19

Modifying Attributes 19
Fixing Inconsistencies 20

Plain and Rich Text Objects 21

RTF Files and Attributed Strings 23

Reading and Writing RTF Data 23
Handling Document Attributes 24
Handling Attachments 25

Apple’s RTF Extensions 26

3
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Document Revision History 31

Index 33

4
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Figures and Tables

About Text Attributes 9

Figure 1 Composition of an NSAttributedString including its attributes dictionary 10

Plain and Rich Text Objects 21

Table 1 RTF control words recognized by all text objects 21

RTF Files and Attributed Strings 23

Table 1 Document attributes supported by RTF-handling methods 24
Table 2 Character attribute RTF extensions 26
Table 3 Paragraph attribute RTF extensions 28
Table 4 Document attribute RTF extensions 28

5
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

6
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Text Attributes describes the text-related attributes maintained by the Cocoa text system. Text attributes
provide the distinguishing characteristics of rich text and other formatting information for paragraphs and
documents.

Who Should Read This Document

You should read this document to understand the different types of text attributes in the text system,
especially if you deal directly with attributed strings and need to understand how the text system manages
their attributes.

To understand the information in this document, you should have prior general knowledge of the text
system’s capabilities and architecture, as well as basic Cocoa programming conventions.

Organization of This Document

This document includes the following articles:

 ■ “About Text Attributes” (page 9) introduces and defines the five types of text-related attributes used
in Cocoa. It also provides cross-references to more detailed documentation.

 ■ “Setting Text Attributes” (page 13) explains how you can programmatically set the attributes of text
displayed in a text view object using the methods of NSTextView and its superclass NSText.

 ■ “Accessing Attributes” (page 15) describes the attributes stored with an attributed string and explains
how to manipulate them.

 ■ “Changing an Attributed String” (page 19) describes the methods available to alter the characters and
attributes of an NSMutableAttributedString. This article also discusses attribute fixing.

 ■ “Plain and Rich Text Objects” (page 21) discusses text attributes of the rich text format (RTF) standard
recognized by text objects.

 ■ “RTF Files and Attributed Strings” (page 23) explains how to read and write character and document
attributes to RTF files.

See Also

For more information, refer to the following documents:

 ■ Text SystemOverview provides more information about how the text system stores and manipulates text.

Who Should Read This Document 7
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Introduction to Text Attributes

 ■ Attributed Strings ProgrammingGuide presents more detailed information about text strings and attributes.

8 See Also
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Introduction to Text Attributes

The Cocoa text system handles five kinds of text attributes: character attributes, temporary attributes,
paragraph attributes, glyph attributes, and document attributes. Character attributes include traits such as
font, color, and subscript, which can be associated with an individual character or a range of characters.
Temporary attributes are character attributes that apply only to a particular layout and are not persistent.
Paragraph attributes are traits such as indentation, tabs, and line spacing. Glyph attributes affect the way
the layout manager renders glyphs and include traits such as overstriking the previous glyph. Document
attributes include document-wide traits such as paper size, margins, and view zoom percentage.

This article provides a brief introduction to the various types of text attributes with cross references to more
detailed documentation.

Character Attributes

The text system stores character attributes persistently in attributed strings along with the characters to
which they apply. The text system’s predefined character attributes control the appearance of characters
(font, foreground color, background color, and ligature handling) and their placement (superscript, baseline
offset, and kerning).

Two special character attributes pertain to links and attachments. A link attribute points to a URL (encapsulated
in an NSURL object) or any other object of your choice. An attachment attribute is associated with a special
attachment character and points to an NSFileWrapper object containing the attached file or in-memory data.

Two of the predefined character attributes, NSCharacterShapeAttributeNameand
NSGlyphInfoAttributeName, are rarely used but described here for completeness.
NSCharacterShapeAttributeNameenables you to set a value for the character shape feature used in font
rendering by Apple Type Services. This feature is currently used to specify traditional shapes in Chinese and
Japanese scripts, but font developers could use it for other scripts as well.

In Mac OS X version 10.2 and later, the predefined character attribute NSGlyphInfoAttributeNamepoints
to an NSGlyphInfo object that provides a means to override the standard glyph generation process and
substitute a specified glyph over the attribute’s range.

Storing Character Attributes

An attributed string stores character attributes as key-value pairs in NSDictionary objects. The key is an
attribute name, represented by an identifier (an NSString constant) such as NSFontAttributeName. Figure
1 shows an attributed string with an attribute dictionary applied to a range within the string.

Character Attributes 9
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

About Text Attributes

Figure 1 Composition of an NSAttributedString including its attributes dictionary

anNSDictionary

NSForegroundColorAttributeName

NSFontAttributeName

.

. anNSFont

anNSString

anNSColor

This is a character string.

NSRange

Conceptually, each character in an attributed string has an associated dictionary of attributes. Typically,
however, an attribute dictionary applies to a longer range of characters. The NSAttributedString class provides
methods that take a character index and return the associated attribute dictionary and the range to which
its attribute values apply. See “Accessing Attributes” (page 15) for more information about using these
methods.

In addition to the predefined attributes, you can assign any attribute key-value pair you wish to a range of
characters. You add the attributes to the appropriate character range in the NSTextStorage object using the
NSMutableAttributedStringaddAttribute:value:range: method. You can also create an NSDictionary
containing the names and values of a set of custom attributes and add them to the character range in a
single step using the addAttributes:range: method. To make use of your custom attributes, you need
a custom subclass of NSLayoutManager that understands what to do with them. Your subclass should override
the drawGlyphsForGlyphRange:atPoint: method first to call the superclass to draw the glyph range,
then draw your own attributes on top, or else draw the glyphs entirely your own way.

Attribute Fixing

Editing attributed strings can cause inconsistencies that must be cleaned up by attribute fixing. The
Application Kit extensions to NSMutableAttributedString define fix... methods to fix inconsistencies
among attachment, font, and paragraph attributes. These methods ensure that attachments don’t remain
after their attachment characters are deleted, that font attributes apply only to characters available in that
font, and that paragraph attributes are consistent throughout paragraphs.

See Attributed Strings Programming Guide for more details about character attributes and attribute fixing.

Temporary Attributes

Temporary attributes are character attributes that are not stored with an attributed string. Rather, the layout
manager assigns temporary attributes during the layout process and uses them only when drawing the text.
For example, you can use temporary attributes to underline misspelled words or color key words in a
programming language.

Temporary attributes affect only the appearance of text, not the way in which it is laid out. You store temporary
attributes in an NSDictionary using the same keys as regular character attributes, or using custom attribute
names (if you have an NSLayoutManager subclass that can handle them). Then you add the attributes using

10 Temporary Attributes
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

About Text Attributes

an NSLayoutManager method such as addTemporaryAttributes:forCharacterRange:. By default, the
only temporary attributes recognized are those affecting color and underlines. During layout, temporary
attributes supersede regular character attributes. So, for example, if a character has a stored
NSForegroundColorAttributeNamevalue specifying blue and a temporary attribute of the same identifier
specifying red, then the character is rendered in red.

For more information on temporary attributes, see the NSLayoutManager reference documentation.

Paragraph Attributes

Paragraph attributes affect the way the layout manager arranges lines of text into paragraphs on a page.
The text system encapsulates paragraph attributes in objects of the NSParagraphStyle class. The value of one
of the predefined character attributes, NSParagraphStyleAttributeName, points to an NSParagraphStyle
object containing the paragraph attributes for that character range. Attribute fixing ensures that only one
NSParagraphStyle object pertains to the characters throughout each paragraph.

Paragraph attributes include traits such as alignment, tab stops, line-breaking mode, and line spacing (also
known as leading). Users of text applications control paragraph attributes through ruler views, defined by
the NSRulerView class.

See Rulers and Paragraph Styles for more details about paragraph attributes.

Glyph Attributes

Glyphs are the concrete representations of characters that the text system actually draws on a display. Glyph
attributes are not complex data structures like character attributes but are simply integer values that the
layout manager uses to denote special handling for particular glyphs during rendering.

The text system uses glyph attributes rarely, and applications should have little reason to be concerned with
them. Nonetheless, NSLayoutManager provides public methods that handle glyph attributes, so you can use
subclasses to extend the mechanism to handle custom glyph attributes if necessary.

The glyph generator sets built-in glyph attributes as required on glyphs during typesetting. They are
maintained in the layout manager’s glyph cache during that process, but they are not stored persistently.
Two examples of glyph attributes are the elastic attribute for spaces, used to lay out fully justified text, and
the attribute NSGlyphAttributeInscribe, which is used for situations such as drawing an umlaut over a
character when the font does not include a built-in character-with-umlaut.

For more information about glyph attributes, see the NSLayoutManager reference documentation describing
the setIntAttribute:value:forGlyphAtIndex: method.

Document Attributes

Document attributes pertain to a document as a whole. Document attributes include traits such as paper
size, margins, and view zoom percentage. Although the text system has no built-in mechanism to store
document attributes, initialization methods such as initWithRTF:documentAttributes: can populate

Paragraph Attributes 11
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

About Text Attributes

an NSDictionary object that you provide with document attributes derived from a stream of RTF or HTML
data. Conversely, methods that write RTF data, such as RTFFromRange:documentAttributes:, write
document attributes if you pass a reference to an NSDictionary object containing them with the message.

See “RTF Files and Attributed Strings” (page 23) and the NSAttributedString Additions reference documentation
for more information.

12 Document Attributes
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

About Text Attributes

NSTextView allows you to change the attributes of its text programmatically through various methods, most
inherited from the superclass, NSText. NSTextView adds its own methods for setting the attributes of text
that the user types, for setting the baseline offset of text as an absolute value, and for adjusting kerning and
use of ligatures. Most of the methods for changing attributes are defined as action methods and apply to
the selected text or typing attributes for a rich text view, or to all of the text in a plain text view.

An NSTextView maintains a set of typing attributes (font, size, color, and so on) that it applies to newly entered
text, whether typed by the user or pasted as plain text. It automatically sets the typing attributes to the
attributes of the first character immediately preceding the insertion point, of the first character of a paragraph
if the insertion point is at the beginning of a paragraph, or of the first character of a selection. The user can
change the typing attributes by choosing menu commands and using utilities such as the Font panel (Fonts
window). You can also set the typing attributes programmatically using setTypingAttributes:, though
you should rarely find need to do so unless creating a subclass.

NSText defines the action methods superscript:, subscript:, and unscript:, which raise and lower
the baseline of text by predefined increments. NSTextView gives you much finer control over the baseline
offset of text by defining the raiseBaseline: and lowerBaseline: action methods, which raise or lower
text by one point each time they’re invoked.

Kerning

NSTextView provides convenient action methods for adjusting the spacing between characters. By default,
an NSTextView object uses standard kerning (as provided by the data in a font’s AFM file). A turnOffKerning:
message causes this kerning information to be ignored and the selected text to be displayed using nominal
widths. The loosenKerning: and tightenKerning:methods adjust kerning values over the selected text
and useStandardKerning: reestablishes the default kerning values.

Kerning information is a character attribute that’s stored in the text view’s NSTextStorage object. If your
application needs finer control over kerning than the methods of this class provide, you should operate on
the NSTextStorage object directly through methods defined by its superclass, NSMutableAttributedString.
See the reference documentation for NSAttributedString Additions for information on setting attributes.

Ligatures

NSTextView’s support for ligatures provides the minimum required ligatures for a given font and script. The
required ligatures for a specific font and script are determined by the mechanisms that generate glyphs for
a specific language. Some scripts may well have no ligatures at all—English text, as an example, doesn’t
require ligatures, although certain ligatures such as “fi” and “fl” are desirable and are used if they’re available.
Other scripts, such as Arabic, demand that certain ligatures must be available even if a turnOffLigatures:

Kerning 13
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Setting Text Attributes

message is sent to the NSTextView. Other scripts and fonts have standard ligatures that are used if they’re
available. The useAllLigatures:method extends ligature support to include all possible ligatures available
in each font for a given script.

Ligature information is a character attribute that’s stored in the text view’s NSTextStorage object. If your
application needs finer control over ligature use than the methods of this class provide, you should operate
on the NSTextStorage object directly through methods defined by its superclass, NSMutableAttributedString.
See the reference documentation for NSAttributedString Additions for information on setting attributes.

14 Ligatures
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Setting Text Attributes

An attributed string identifies attributes by name, storing a value under the attribute name in an
NSDictionary object, which is in turn associated with an NSRange that indicates the characters to which
the dictionary’s attributes apply. You can assign any attribute name-value pair you wish to a range of characters,
in addition to the standard attributes.

Retrieving Attribute Values

With an immutable attributed string, you assign all attributes when you create the string. In Java, you use
the constructors. In Objective-C, you use methods such as initWithString:attributes:, which explicitly
take an NSDictionary object of name-value pairs, or initWithString:, which assigns no attributes. And
the Application Kit’s extensions to NSAttributedString adds methods that take an RTF file or an HTML
file. See “Changing an Attributed String” (page 19) for information on assigning attributes with a mutable
attributed string.

To retrieve attribute values from either type of attributed string, use any of these methods:

attributesAtIndex:effectiveRange:

attributesAtIndex:longestEffectiveRange:inRange:

attribute:atIndex:effectiveRange:

attribute:atIndex:longestEffectiveRange:inRange:

fontAttributesInRange:

rulerAttributesInRange:

The first two methods return all attributes at a given index, the attribute:... methods return the value
of a single named attribute. The Application Kit’s extensions to NSAttributedString add
fontAttributesInRange: and rulerAttributesInRange:, which return attributes defined to apply
only to characters or to whole paragraphs, respectively.

The first four methods also return by reference the effective range and the longest effective range of the
attributes. These ranges allow you to determine the extent of attributes. Conceptually, each character in an
attributed string has its own collection of attributes; however, it’s often useful to know when the attributes
and values are the same over a series of characters. This allows a routine to progress through an attributed
string in chunks larger than a single character. In retrieving the effective range, an attributed string simply
looks up information in its attribute mapping, essentially the dictionary of attributes that apply at the index
requested. In retrieving the longest effective range, the attributed string continues checking characters past
this basic range as long as the attribute values are the same. This extra comparison increases the execution
time for these methods but guarantees a precise maximal range for the attributes requested.

Retrieving Attribute Values 15
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Accessing Attributes

Effective and Maximal Ranges

Methods that return an effective range by reference are not guaranteed to return the maximal range to which
the attribute(s) apply; they are merely guaranteed to return some range over which they apply. In practice
they will return whatever range is readily available from the attributed string's internal storage mechanisms,
which may depend on the implementation and on the precise history of modifications to the attributed
string.

Methods that return a longest effective range by reference, on the other hand, are guaranteed to return the
longest range containing the specified index to which the attribute(s) in question apply (constrained by the
value of the argument passed in for inRange:). For efficiency, it is important that the inRange: argument
should be as small as appropriate for the range of interest to the client.

When you iterate over an attributed string by attribute ranges, either sort of method may be appropriate
depending on the situation. If there is some processing to be done for each range, and you know that the
full range for a given attribute is going to have to be handled eventually, it may be more efficient to use the
longest-effective-range variant, so as not to have to handle the range in pieces. However, you should use
the longest-effective-range methods with caution, because the longest effective range could be quite
long—potentially the entire length of the document, if the inRange: argument is not constrained.

The Objective-C code fragment below progresses through an attributed string in chunks based on the effective
range. The fictitious analyzer object here counts the number of characters in each font. The while loop
progresses as long as the effective range retrieved does not include the end of the attributed string, retrieving
the font in effect just past the latest retrieved range. For each font attribute retrieved, the analyzer tallies the
number of characters in the effective range. In this example, it is possible that consecutive invocations of
attribute:atIndex:effectiveRange: will return the same value.

NSAttributedString *attrStr;
unsigned int length;
NSRange effectiveRange;
id attributeValue;

length = [attrStr length];
effectiveRange = NSMakeRange(0, 0);

while (NSMaxRange(effectiveRange) < length) {
 attributeValue = [attrStr attribute:NSFontAttributeName
 atIndex:NSMaxRange(effectiveRange) effectiveRange:&effectiveRange];
 [analyzer tallyCharacterRange:effectiveRange font:attributeValue];
}

In contrast, the next Objective-C code fragment progresses through the attributed string according to the
maximum effective range for each font. In this case, the analyzer counts font changes, which may not be
represented by merely retrieving effective ranges. In this case the while loop is predicated on the length of
the limiting range, which begins as the entire length of the attributed string and is whittled down as the
loop progresses. After the analyzer records the font change, the limit range is adjusted to account for the
longest effective range retrieved.

NSAttributedString *attrStr;
NSRange limitRange;
NSRange effectiveRange;
id attributeValue;

limitRange = NSMakeRange(0, [attrStr length]);

16 Effective and Maximal Ranges
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Accessing Attributes

while (limitRange.length > 0) {
 attributeValue = [attrStr attribute:NSFontAttributeName
 atIndex:limitRange.location longestEffectiveRange:&effectiveRange
 inRange:limitRange];
 [analyzer recordFontChange:attributeValue];
 limitRange = NSMakeRange(NSMaxRange(effectiveRange),
 NSMaxRange(limitRange) - NSMaxRange(effectiveRange));
}

Note that the second code fragment is more complex. Because of this, and because
attribute:atIndex:longestEffectiveRange:inRange: is somewhat slower than
attribute:atIndex:effectiveRange:, you should typically use it only when absolutely necessary for
the work you’re performing. In most cases working by effective range is enough.

Effective and Maximal Ranges 17
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Accessing Attributes

18 Effective and Maximal Ranges
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Accessing Attributes

NSMutableAttributedString declares a number of methods for changing both characters and attributes.
You must take care not to modify attribute values after they have been passed to an attributed string. You
may also need to repair inconsistencies that can be introduced if you modify an attributed string.

Modifying Attributes

NSMutableAttributedString declares a number of methods for changing both characters and attributes,
such as the primitive replaceCharactersInRange:withString: and setAttributes:range:, or the
more convenient methods addAttribute:value:range:, applyFontTraits:range:, and so on.

The following example illustrates how to specify a link attribute for a selected range in an attributed string,
underline the text, and color it blue. Note that you can define whatever value you want for the link attribute, it
is up to you to interpret the value when the link is selected—see “Accessing Attributes” (page 15)—typically,
however, you use either a string or an URL. For an explanation of the role of beginEditing and endEditing
(shown in the sample), see “Fixing Inconsistencies” (page 20).

NSMutableAttributedString *string; // assume string exists
NSRange selectedRange; // assume this is set

NSURL *linkURL = [NSURL URLWithString:@"http://www.apple.com/"];

[string beginEditing];
[string addAttribute:NSLinkAttributeName
 value:linkURL
 range:selectedRange];

[string addAttribute:NSForegroundColorAttributeName
 value:[NSColor blueColor]
 range:selectedRange];

[string addAttribute:NSUnderlineStyleAttributeName
 value:[NSNumber numberWithInt:NSSingleUnderlineStyle]
 range:selectedRange];
[string endEditing];

Attribute values assigned to an attributed string become the property of that string, and should not be
modified “behind the attributed string” by other objects. Doing so can render inconsistent the attributed
string’s internal state. There are two main reasons for this:

 ■ How an attribute value propagates through an attributed string is not predictable. If you change the
value, you might be editing more of the attributed string than you thought. In fact the value could have
been copied to the undo stack, or to a totally different document, and so on.

 ■ Attributed strings do caching and uniquing of attributes, which assumes attribute values do not change.
The assumption is that isEqual: and hash on attribute values will not change once the attribute value
has been set.

Modifying Attributes 19
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Changing an Attributed String

If you must change attribute values, and are sure that the change will apply to the correct range, there are
two strategies you can adopt:

 ■ Use an attribute value whose isEqual: and hash do not depend on the values you are modifying.

 ■ Use indirection: use the attribute value as a lookup key into a table where the actual value can be changed.
For instance, this might be the appropriate approach for having a “stylesheet”-like attribute.

Fixing Inconsistencies

All of the methods for changing a mutable attributed string properly update the mapping between characters
and attributes, but after a change some inconsistencies can develop. Here are some examples of attribute
consistency requirements:

 ■ Paragraph styles must apply to entire paragraphs.

 ■ Scripts may only be assigned fonts that support them. For example, Kanji and Arabic characters can’t be
assigned the Times-Roman font, and must be reassigned fonts that support these scripts.

 ■ Deleting attachment characters from the string requires the corresponding attachment objects to be
released. Similarly, removing attachment objects requires the corresponding attachment characters to
be removed from the string.

 ■ A code editing application that displays all language keywords in boldface can automatically assign this
attribute as the user changes the font or edits the text.

The Application Kit’s extensions to NSMutableAttributedStringdefine methods to fix these inconsistencies
as changes are made. This allows the attributes to be cleaned up at a low level, hiding potential problems
from higher levels and providing for very clean update of display as attributes change. There are four methods
for fixing attributes and two to group editing changes:

fixAttributesInRange:

fixAttachmentAttributeInRange:

fixFontAttributeInRange:

fixParagraphStyleAttributeInRange:

beginEditing

endEditing

The first method, fixAttributesInRange:, invokes the other three fix... methods to clean up deleted
attachment references, font attributes, and paragraph attributes, respectively. The individual method
descriptions explain what cleanup entails for each case.

NSMutableAttributedString provides beginEditing and endEditing methods for subclasses of
NSMutableAttributedString to override. These methods allow instances of a subclass to record or buffer
groups of changes and clean themselves up on receiving an endEditingmessage. The endEditingmethod
also allows the receiver to notify any observers that it has been changed. NSTextStorage’s implementation
of endEditing, for example, fixes changed attributes and then notifies its layout managers that they need
to re-lay and redisplay their text. The default implementations do nothing.

20 Fixing Inconsistencies
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Changing an Attributed String

Text objects such as NSText and NSTextView can contain either plain text or rich text. Plain text objects allow
only one set of text attributes for all of their text; rich text objects allow multiple fonts, sizes, indents, and
other attributes for different sets of characters and paragraphs. You can control whether a text object is plain
or rich using the setRichText: method. Rich text objects are also capable of allowing the user to drag
images and files into them. This behavior is controlled by the setImportsGraphics: method.

A rich NSText object can use RTF (Rich Text Format) as an interchange format. Not all RTF control words are
supported, however. On input, an NSText object ignores any control word it doesn’t recognize; some of those
it can read and interpret it doesn’t write out. Table 1 lists the RTF control words that any text object recognizes.
Subclasses may recognize more.

Table 1 RTF control words recognized by all text objects

Can be written outControl word

yes\ansi

yes\b

yes\cb

yes\cf

yes\colortbl

yes\dnn

yes\fin

yes\fn

yes\fonttbl

yes\fsn

yes\i

yes\lin

yes\margrn

yes\paperwn

no\mac

yes\margln

yes\par

21
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Plain and Rich Text Objects

Can be written outControl word

no\pard

no\pca

yes\qc

yes\ql

yes\qr

no\sn

yes\tab

yes\upn

22
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Plain and Rich Text Objects

Rich Text Format (RTF) is a text formatting language devised by Microsoft Corporation. You can represent
character, paragraph, and document format attributes using plain text with interspersed RTF commands,
groups, and escape sequences. RTF is widely used as a document interchange format to transfer documents
with their formatting information across applications and computing platforms. The Application Kit has
support for reading and writing RTF. For text attributes not available in standard RTF, Apple has extended
RTF with custom commands.

Reading and Writing RTF Data

The Application Kit’s extensions for NSAttributedString add support for reading text attributes from, and
writing them to, RTF files or RTFD (rich text with attachments) files.

Important: The Application Kit extensions write the standard character-level attributes from the attributed
string and the standard document-level attributes from the document attributes dictionary; however, custom
attributes that you define and add to an attributed string are not written to the RTF file. Standard
character-level attribute keys are described in “Standard Attributes” in Attributed Strings Programming Guide,
and the document attributes are described in Table 1 (page 24).

The NSAttributedString methods for writing rich text are defined in NSAttributedString Application Kit
Additions Reference:

Returns an NSData object that contains an RTF
stream corresponding to the characters and
attributes within aRange, omitting all
attachment attributes.

RTFFromRange:documentAttributes:

Returns an NSData object that contains an
RTFD stream corresponding to the characters
and attributes within aRange.

RTFDFromRange:documentAttributes:

Returns an NSFileWrapper object that contains
an RTFD document corresponding to the
characters and attributes within aRange.

RTFDFileWrapperFromRange:documentAttributes:

Initializes a new NSAttributedString by
decoding the stream of RTF commands and
data contained in rtfData.

initWithRTF:documentAttributes:

Initializes a new NSAttributedString by
decoding the stream of RTFD commands and
data contained in rtfdData.

initWithRTFD:documentAttributes:

Reading and Writing RTF Data 23
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

RTF Files and Attributed Strings

Initializes a new NSAttributedString from
wrapper, an NSFileWrapper object containing
an RTFD document.

initWithRTFDFileWrapper:documentAttributes:

In addition to these explicit RTF-reading methods, four methods implicitly allow loading RTF data from a file
or URL-specified resource. NSAttributedString defines:

Initializes a new NSAttributedString from RTF or RTFD data
contained in the file at path.

initWithPath:documentAttributes:

The contents of aURL are examined to best load the file in
whatever format it’s in.

initWithURL:documentAttributes:

NSMutableAttributedString defines:

Sets the contents of receiver from the file at url.readFromURL:options:documentAttributes:

On return, the documentAttributes dictionary (if
provided) contains the various keys described in
the “Constants” section of NSAttributedString
Additions.

readFromData:options:documentAttributes:

Handling Document Attributes

Attributed strings store attribute information for characters and paragraphs only, while RTF also supports
more general attributes of a document, such as paper size and page layout. The Application Kit methods
that work with RTF read and write some RTF directives for document attributes, stored in an NSDictionary
object.

Many init methods return a dictionary containing the attributes read from RTF data, which you can use to
set up a page layout. Similarly, RTF extraction methods such as RTFFromRange:documentAttributes:,
accept a dictionary containing those attributes and write them into the RTF data, thus preserving the page
layout information.

Table 1 lists the RTF document attributes supported by the Application Kit.

Table 1 Document attributes supported by RTF-handling methods

TypeAttribute Key

NSValue, containing NSSizePaperSize

NSNumber, containing a float, in pointsLeftMargin

NSNumber, containing a float, in pointsRightMargin

NSNumber, containing a float, in pointsTopMargin

NSNumber, containing a float, in pointsBottomMargin

NSNumber, containing a floatHyphenationFactor

24 Reading and Writing RTF Data
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

RTF Files and Attributed Strings

TypeAttribute Key

NSString; may be NSPlainTextDocumentType, NSRTFTextDocumentType,
NSRTFDTextDocumentType, NSMacSimpleTextDocumentType, or
NSHTMLTextDocumentType.

DocumentType

NSNumber, containing an int specifying the NSStringEncoding used to interpret
the file; for plain text files only.

CharacterEncoding

NSValue, containing NSSize.ViewSize

NSValue, containing a float. 100 = 100% zoom.ViewZoom

NSValue, containing an int. 0 = normal; 1 = page layout (use value of PaperSize
attribute).

ViewMode

NSNumber, containing an int. If RTF file, stores the version of Cocoa with which
the file was created. Absence of this value indicates RTF file not created by Cocoa
or its predecessors. 0 = Not Cocoa writer, 1 = NextStep, 40 = OpenStep, 100 = Mac
OS X 10.0, 102 = 10.2. (Other than incrementing the number for future versions,
no assumptions should be made as to how the number will change in the future.)

CocoaRTFVersion

NSNumber, containing an int. Indicates whether the file was converted by a filter
service. If missing or zero, the file was originally in the format specified by document
type. If 1 or more, it was converted to this type by a filter service. If negative, the
file was converted “lossily,” meaning that some features of the original document
were left out.

Converted

Handling Attachments

Attachments, such as embedded images or files, are represented in an attributed string by both a special
character and an attribute. The character is identified by the global name NSAttachmentCharacter, and
indicates the presence of an attachment at its location in the string. The attribute, identified in the string by
the attribute name NSAttachmentAttributeName, is an NSTextAttachment object . An
NSTextAttachment object contains the data for the attachment itself, as well as an image to display when
the string is drawn.

You can use NSAttributedString’s attributedStringWithAttachment: class method to construct
an attachment string, which you can then add to a mutable attributed string using
appendAttributedString: or insertAttributedString:atIndex:. To write rich text data containing
one or more attachments, use the RTFDFromRange:documentAttributes: method and the
RTFDFileWrapperFromRange:documentAttributes:method. To initialize an attributed string with rich
text data containing attachments, use the initWithRTFD:documentAttributes:, and
initWithRTFDFileWrapper:documentAttributes: methods.

Reading and Writing RTF Data 25
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

RTF Files and Attributed Strings

Apple’s RTF Extensions

Apple has extended the RTF language to support text attributes and formatting constructs available in the
Cocoa text system but not representable with standard RTF. The Apple extensions take the same form as
standard RTF commands, groups, and escapes. RTF commands consist of a backslash followed by a string of
alphabetic characters (case sensitive) followed by an optional integer parameter value which can be positive
or negative. RTF groups begin with a left brace ({), followed by RTF sequences optionally including other
groups, closed by a right brace (}). RTF escapes consist of a backslash followed by a special character, such
as \{, which indicates a literal left brace instead of the beginning of a group.

RTF includes the concept of a destination, which is a group containing an RTF command and text possibly
to be inserted at a different location in a document, such as a footnote. The escape sequence * indicates
that RTF readers that don’t understand the command that follows should ignore the contents of the
destination.

Dimensions in RTF are expressed in twips—one twip is one twentieth of a point.

Table 2 lists Apple’s RTF extensions for character attributes.

Table 2 Character attribute RTF extensions

Parameter(s)DescriptionRTF Sequence

Value of NSLigatureAttributeName.

0 = no ligatures, 1 = default ligatures, 2 = all
ligatures. Default value 1.

Ligature control\CocoaLigatureN

2000 * value of NSExpansionAttributeName
(log of expansion factor).

Default value 0.

Expansion factor to be
applied to glyphs

\expansionN

2000 * value ofNSObliquenessAttributeName.

0 = no skew. Default value 0.

Skew to be applied to glyphs\obliquenessN

1000 * font size.

Written in addition to \fs when \fs is not an integral
or half-point value; value is overridden by \fs, so
this should be written immediately after \fs. Default
driven by \fs.

A finer specification for font
size

\fsmilliN

X and Y offsets in twips (0 = no offset).

Defaults are \shadx3 and \shady-3.

Shadow offset, written in
conjunction with \shad

\shadxN \shadyN

Blur radius in twips.

0 = no blur. Default value 0.

Shadow blur, written in
conjunction with \shad

\shadrN

Color number.

Default same as foreground text color.

Strikethrough color\strikecN

26 Apple’s RTF Extensions
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

RTF Files and Attributed Strings

Parameter(s)DescriptionRTF Sequence

Style and pattern mask, value of
NSObliquenessAttributeName.

0 = none; 0x8000 = by word; styles: 1 = single, 2 =
thick, 9 = double; patterns: 0x100 = dotted, 0x200
= dash, 0x300 = dash dot, 0x400 = dash dot dot.
Default value 0.

Strikethrough style, written
where \strike, \striked,
\strikew are not sufficient

\strikestyleN

Color number.

Default same as foreground text color.

Stroke color\strokecN

20 * stroke width as percentage of font point size.

0 = no stroke. Default value 0. Negative values
indicate that glyphs are both stroked and filled;
the stroke width is taken from the absolute value
of the parameter.

Glyph stroke width, written
in conjunction with \outl.

\strokewidthN

Style and pattern mask, value of
NSUnderlineStyleAttributeName.

0 = none; 0x8000 = by word; styles: 1 = single, 2 =
thick, 9 = double; patterns: 0x100 = dotted, 0x200
= dash, 0x300 = dash dot, 0x400 = dash dot dot.
Default value 0.

Underline style, written where
the standard \ul commands
are not sufficient

\ulstyleN

The attachment is the attachment file name,
encoded in UTF-8 and properly RTF-escaped.

The width and height parameters optionally specify
the attachment size in twips. The string is always
0xAC.

Name of attachment file in
the same folder as the RTF file
(typically packaged within an
RTFD document)

{{\NeXTGraphic
attachment \widthN
\heightN} string}

Glyph identifier (parameter to \glid). The basestring
is the string the glyph id is intended to override;
this attribute is then applied to the specified string.
Typically string and basestring are the same,
although string might contain multiple instances
of basestring.

Glyph ID for explicitly
specified glyphs. (The extra {}
pair is necessary to work
around an RTF reader bug in
Mac OS X version 10.2 and
earlier.)

{{}{*\glidN
basestring}string}

Character identifier (parameter to \glid) and
character collection (parameter to \glcol).

Collection IDs: 0 = identity, 1 = Adobe-CNS1, 2 =
Adobe-GB1, 3 = Adobe-Japan1, 4 = Adobe-Japan2,
5 = Adobe-Korea.

Glyph ID for explicitly
specified glyphs

{{}{*\glidN
basestring\glcolN}
string}

The glyphname is the glyph name in UTF-8
encoding.

Glyph ID for explicitly
specified glyphs

{{}{*\glid
basestring\glnam
glyphname}string}

Apple’s RTF Extensions 27
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

RTF Files and Attributed Strings

Parameter(s)DescriptionRTF Sequence

Value of NSCharacterShapeAttributeName.

The value is interpreted as Apple Type Services
kCharacterShapeType selector + 1. The value 0
disables this attribute. Default value 0.

Character shape control\AppleTypeServicesUN

Table 3 lists Apple’s RTF extensions for paragraph attributes.

Table 3 Paragraph attribute RTF extensions

Parameter(s)DescriptionRTF Sequence

Tab interval value in twips. 0 = no tabs
other than those explicitly specified.
Default value 0.

Default tab interval for paragraph\pardeftabN

NoneNatural text alignment for paragraph (based on
script), written along with \ql

\qnatural

Line spacing value in twips. Default
value 0.

Paragraph line spacing (NSParagraphStyle
lineSpacing method)

\slleadingN

Maximum line height value in twips.
Default value 0, implying no maximum.

Maximum line height (NSParagraphStyle
maximumLineHeight method), written along
with \sl and if needed \slmult

\slmaximumN

Minimum line height value in twips.
Default value 0.

Minimum line height (NSParagraphStyle
minimumLineHeight method), written along with
\sl and if needed \slmult

\slminimumN

Table 4 lists Apple’s RTF extensions for document attributes.

Table 4 Document attribute RTF extensions

Parameter(s)DescriptionRTF Sequence

0 = Not read-only, 1 = read-only. Default
value 0.

Read-only document. This has nothing to
do with the file system permissions or
ownership of the file; it's just a hint that
indicates that the document should be
presented in a read-only fashion to the user,
if the viewer or editor is capable.

\readonlydocN

28 Apple’s RTF Extensions
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

RTF Files and Attributed Strings

Parameter(s)DescriptionRTF Sequence

Incrementing version number. 0 = Not
Cocoa writer, 1 = NextStep, 40 = OpenStep,
100 = Mac OS X 10.0, 102 = 10.2. (Other than
incrementing the number for future
versions, no assumptions should be made
as to how the number will change in the
future.) Default value 0, although some
heuristics are used to recognize pre–Mac OS
X documents as such.

Cocoa RTF-writer version number. This is a
number used by Apple to indicate the
version number of the RTF writer used to
write this document.

\cocoartfN

Display area dimension in twips. Default
value unspecified.

Size of display area (not window or view
size) to be used for displaying the document

\viewhN
\viewwN

Apple’s RTF Extensions 29
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

RTF Files and Attributed Strings

30 Apple’s RTF Extensions
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

RTF Files and Attributed Strings

This table describes the changes to Text Attributes.

NotesDate

Rewrote introduction and added an index.2004-02-16

First content added to this programming topic. Renamed from Character
Attributes to Text Attributes.

2003-05-06

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

31
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Document Revision History

32
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Document Revision History

A

addAttribute:value:range: method 10
addAttributes:range: method 10
addTemporaryAttributes:forCharacterRange:

method 11
appendAttributedString: method 25
Apple Type Services 9
attachment attributes 9
attachment characters 20
attachments, text 25
attribute dictionary 9
attribute fixing 10, 20
attribute:atIndex:effectiveRange: method 15,

16
attribute:atIndex:longestEffectiveRange:inRange:

method 15
attributed strings 9
attributedStringWithAttachment: method 25
attributes of text. See text attributes
attributesAtIndex:effectiveRange: method 15
attributesAtIndex:longestEffectiveRange:inRange:

method 15

B

beginEditing method 20

C

character attributes 9

D

document attributes 9, 11, 24
drawGlyphsForGlyphRange:atPoint: method 10

E

effective range of text attributes 15
endEditing method 20

F

fixAttachmentAttributeInRange: method 20
fixAttributesInRange: method 20
fixFontAttributeInRange: method 20
fixParagraphStyleAttributeInRange: method 20
fontAttributesInRange: method 15

G

glyph attributes 9, 11

I

initWithRTF:documentAttributes: method 11
initWithRTFD:documentAttributes: method 25
initWithRTFDFileWrapper:documentAttributes:

method 25
initWithString: method 15
initWithString:attributes: method 15
insertAttributedString:atIndex: method 25

K

kerning of text 13
key-value pairs 10

33
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Index

L

layout manager 11
glyph attributes and 11
temporary attributes and 10

ligatures in fonts 13
link attributes 9
loosenKerning: method 13
lowerBaseline: method 13

N

NSAttachmentAttributeName constant 25
NSAttachmentCharacter constant 25
NSAttributedString class 10
NSCharacterShapeAttributeName constant 9
NSDictionary class 9, 12
NSFileWrapper class 9
NSFontAttributeName constant 9
NSForegroundColorAttributeName constant 11
NSGlyphInfo class 9
NSGlyphInfoAttributeName constant 9
NSLayoutManager class 10, 11, 20
NSMutableAttributedString class 10, 13, 19, 20
NSParagraphStyle class 11
NSParagraphStyleAttributeName constant 11
NSRulerView class 11
NSTextAttachment class 25
NSTextStorage class 10, 13
NSTextView class

setting text attributes with 13
NSURL class 9

P

paragraph attributes 9, 11
paragraph styles 20
plain text

and Cocoa text objects 21

R

raiseBaseline: method 13
Rich Text Format (RTF)

and NSText objects 21
rich text format (RTF)

described 23
reading and writing 23

RTF command formats 26
RTF extensions by Apple

character attributes 26
document attributes 28
introduced 26
paragraph attributes 28

RTF. See Rich Text Format
RTFDFileWrapperFromRange:documentAttributes:

method 25
RTFDFromRange:documentAttributes: method 25
RTFFromRange:documentAttributes:method 12,24
ruler views 11
rulerAttributesInRange: method 15

S

scripts
fonts and 20

setImportsGraphics: method 21
setIntAttribute:value:forGlyphAtIndex:method

11
setRichText: method 21
setTypingAttributes: method 13
strings

attributed 9
subscript: method 13
superscript: method 13

T

temporary attributes 9, 10
text attributes 13–14, 21

access 15
attachment 9
character 9
defined 9
document 9, 11
effective range 15
fixing 10, 20
for documents 24
glyph 9, 11
identifiers 15
link 9
paragraph 9, 11
temporary 9, 10
values 19

tightenKerning: method 13
turnOffKerning: method 13
turnOffLigatures: method 13
twips 26

34
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

typing attributes 13

U

unscript: method 13
useAllLigatures: method 14
useStandardKerning: method 13

35
2004-02-16 | © 1997, 2004 Apple Computer, Inc. All Rights Reserved.

	Text Attributes
	Contents
	Figures and Tables
	Introduction
	About Text Attributes
	Character Attributes
	Storing Character Attributes
	Attribute Fixing

	Temporary Attributes
	Paragraph Attributes
	Glyph Attributes
	Document Attributes

	Setting Text Attributes
	Kerning
	Ligatures

	Accessing Attributes
	Retrieving Attribute Values
	Effective and Maximal Ranges

	Changing an Attributed String
	Modifying Attributes
	Fixing Inconsistencies

	Plain and Rich Text Objects
	RTF Files and Attributed Strings
	Reading and Writing RTF Data
	Handling Document Attributes
	Handling Attachments

	Apple’s RTF Extensions

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	N
	P
	R
	S
	T
	U

