
Text System Storage Layer Overview
Cocoa > Text & Fonts

2005-08-11

Apple Inc.
© 1997, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, and Objective-C
are trademarks of Apple Inc., registered in the
United States and other countries.

Helvetica is a registered trademark of
Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO

THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Text System Storage Layer Overview 7

Who Should Read This Document 7
Organization of This Document 7
See Also 7

The Storage Layer: The NSTextStorage Class 9

Layout Geometry: The NSTextContainer Class 11

Creating Text Storage 13

Changing Text Storage 15

Displaying a Text Container 17

Calculating Region, Bounding Rectangle, and Inset 19

Tracking the Size of a Text View 21

Creating a Subclass of NSTextStorage 23

Document Revision History 25

Index 27

3
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Figures

The Storage Layer: The NSTextStorage Class 9

Figure 1 Capabilities of NSTextStorage 9

Calculating Region, Bounding Rectangle, and Inset 19

Figure 1 Text container region, bounding rectangle, and inset 19

5
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Text System Storage Layer Overview discusses the facilities that the Cocoa text system uses to store the text
and geometric shape information used for text layout.

Who Should Read This Document

You should read this document if you need to work directly with the text storage layer. For example, you
may need to change the text programmatically in a text storage object or extend its capabilities.

To understand this material you should have a general understanding of Cocoa programming conventions.
You should also have read Text System Overview.

Organization of This Document

This document contains the following articles:

 ■ "The Storage Layer: The NSTextStorage Class" (page 9) provides a general introduction to the capabilities
of text storage objects.

 ■ "Layout Geometry: The NSTextContainer Class" (page 11) explains how text containers define the area
in which the system lays out text and how they interact with other text system objects.

 ■ "Creating Text Storage" (page 13) explains how you create and set up text storage objects.

 ■ "Changing Text Storage" (page 15) describes the process of editing text in a text storage object
programmatically.

 ■ "Displaying a Text Container" (page 17) explains how you can display the text in a text storage object
in a text view or other NSView object.

 ■ "Calculating Region, Bounding Rectangle, and Inset" (page 19) discusses how to define a text container’s
text layout area.

 ■ "Tracking the Size of a Text View" (page 21) explains how you can set up a text container so that its
geometry interacts with that of its associated text view.

 ■ "Creating a Subclass of NSTextStorage" (page 23) discusses the requirements of NSTextStorage subclasses.

See Also

For further reading, refer to the following documents:

Who Should Read This Document 7
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to Text System Storage Layer
Overview

 ■ Attributed Strings Programming Guide provides information about the attributed string objects on which
NSTextStorage is built. NSTextStorage is a subclass of NSMutableAttributedString.

 ■ Text Layout Programming Guide for Cocoa describes the layout process involving text storage, text
container, text view, and layout manager objects.

8 See Also
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to Text System Storage Layer Overview

An NSTextStorage object serves as the character data repository for the Cocoa text system. The format for
this data is an attributed string, which is a sequence of characters (in Unicode encoding) and the attributes
(such as font, color, and paragraph style) that apply to them. The classes that represent attributed strings
are NSAttributedString and NSMutableAttributedString, of which NSTextStorage is a subclass. Conceptually,
each character in a block of text has a dictionary of keys and values associated with it. A key names an attribute
(such as NSFontAttributeName), and the associated value specifies the characteristics of that attribute
(such as Helvetica 12-point). For more information about attributed strings, see Attributed Strings
Programming Guide. Figure 1 illustrates the NSTextStorage class, showing its NSMutableAttributedString
component and its additional capabilities.

Figure 1 Capabilities of NSTextStorage

anNSDictionary

NSForegroundColorAttributeName

NSFontAttributeName

.

. anNSFont

anNSStringThis is a character string.

NSRange

NSTextStorage

NSMutableAttributedString

Change
management

Delegate
handling

Layout
manager

notification

anNSColor

The NSTextStorage methods let you operate programmatically on the attributes of the text displayed by the
NSTextView object; for example, your code can iterate through the text, tightening or loosening the kerning
for all characters of a certain font and size. An NSTextView object enables users to affect character attributes
through direct action; for example, the user selects some text and reduces the spacing between characters
by choosing the Tighten menu command.

9
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

The Storage Layer: The NSTextStorage Class

10
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

The Storage Layer: The NSTextStorage Class

An NSTextContainer object defines the area on a page in which the Cocoa text system lays out text. By default,
a text container defines a simple, rectangular area, but you can create subclasses that define areas with any
geometrical shape, including regions with holes around which text flows.

NSTextContainer provides one of the four primary text objects in the Cocoa text system. Text containers work
with text storage objects, layout managers, and text views to store, lay out, and display attributed text strings.
In particular, a text container works directly with a layout manager, which uses an NSTypesetter object to
generate line-fragment rectangles in which to place glyphs (character shapes), as described in “Line Fragment
Generation.”

When the typesetter generates line fragments, the text container is particularly concerned with the direction
in which text layout proceeds. There are two aspects to layout direction: line sweep and line movement. Line
sweep is the direction in which the system lays out glyphs within lines. Line movement is the direction in
which the system lays out lines upon the page. The typesetter object determines these parameters and
passes them as constant values to the text container. Both line sweep and line movement can proceed from
left to right, right to left, top to bottom, and bottom to top. In addition, the typesetter can specify no line
movement.

Note: The built-in typesetters currently support only top-to-bottom line movement and left-to-right sweep.
These typesetters do handle bidirectional text (Hebrew and Arabic) by laying it out in the proper display
order within the line fragments, but they do not use the line sweep mechanism.

The layout manager maintains an array of text containers. It sends a message to its delegate whenever it fills
a text container, and the delegate can then add a new text container to be filled. If a text container changes
size, or if changes to laid-out text in a container invalidate layout at that point, then the system invalidates
the layout in all the subsequent containers in the layout manager’s array.

You can specify that a text container track the size of its text view; that is, if the user resizes the view, the text
container resizes itself to match. For more information, see “Tracking the Size of a Text View” (page 21).

NSTextContainer instances have methods for initialization, managing connection to layout managers and
text views, getting and setting the container size, generating line fragments, and hit-testing. In addition,
NSTextContainer has methods for getting and setting the amount of padding to apply to line fragments.
Line fragment padding is extra space included at the ends of line fragments so laid-out glyphs don’t directly
touch other elements on the page, such as graphics.

11
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Layout Geometry: The NSTextContainer Class

12
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Layout Geometry: The NSTextContainer Class

As an abstract class of a class cluster, allocating and initializing an NSTextStorage object in Objective-C actually
produces an instance of a private subclass. You can use any NSAttributedString or NSMutableAttributedString
initialization method to create an NSTextStorage object. To create an NSTextStorage in Java, use one if its
constructors.

Having created the text storage object, you add NSLayoutManager objects to the text storage using
addLayoutManager:. A single text storage object can have multiple layout managers (which is why this
method name begins with “add” rather than “set”).

Creating a text storage object in this way and adding a layout manager is part of the process of assembling
the text system programmatically, which is described in more detail in “Assembling the Text System by Hand.”
You can also create an NSTextView object and let it assemble the text system automatically, in which case
the text view creates (and later deallocates) the text storage object. For more information, see “Creating a
Text View Programmatically.”

13
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Creating Text Storage

14
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Creating Text Storage

The behavior of an NSTextStorage object is best illustrated by following the messages you send to change
its text.There are three stages to editing a text storage object programmatically:

1. The first stage is to send it a beginEditing message to announce a group of changes.

2. In the second stage, you send it some editing messages, such as deleteCharactersInRange: and
addAttributes:range:, to effect the changes in characters or attributes. Each time you send such a
message, the text storage object invokes edited:range:changeInLength: to track the range of its
characters affected since it received the beginEditing message.

3. For the third stage, when you’re done changing the text storage object, you send it the endEditing
message. This causes it to invoke its own processEditingmethod, fixing attributes within the recorded
range of changed characters. (See Text Attributes for information about attribute fixing.)

After fixing its attributes, the text storage object sends a message to each associated layout manager indicating
the range in the text storage object that has changed, along with the nature of those changes. The layout
managers in turn use this information to recalculate their glyph locations and redisplay if necessary.
NSTextStorage also keeps a delegate and sends it messages before and after processing edits.

15
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Changing Text Storage

16
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Changing Text Storage

You normally use an NSTextView object to display the text laid out in an NSTextContainer. An NSTextView
can have only one NSTextContainer; however, because the two are separate objects, you can replace an
NSTextView’s container to change the layout of the text it displays. You can also display an NSTextContainer’s
text in any NSView by locking the graphic focus on it with lockFocus: and using the NSLayoutManager
methods drawBackgroundForGlyphRange:atPoint: and drawGlyphsForGlyphRange:atPoint:. If
you have no need to actually display the text—if you’re only calculating line breaks or number of lines or
pages, for example—you can use an NSTextContainer without an NSTextView.

17
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Displaying a Text Container

18
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Displaying a Text Container

An NSTextContainer object’s region is defined by a bounding rectangle whose coordinate system starts at
(0,0) in the top-left corner. The size of this rectangle is returned by the containerSize method and set
using setContainerSize:. You can define a container’s region so that it’s always the same shape, such as
a circle whose diameter is the narrower of the bounding rectangle’s dimensions, or you can define the region
relative to the bounding rectangle, such as an oval region that fits inside the bounding rectangle (and that’s
a circle when the bounding rectangle is square). Regardless of a text container’s shape, its NSTextView always
clips drawing to its bounding rectangle. Figure 1 illustrates these aspects of a text container.

Figure 1 Text container region, bounding rectangle, and inset

We the
People of the

United States, in Order to
form a more perfect Union,

establish Justice, insure domestic
Tranquility, provide for the common

defence, promote the general Welfare,
and secure the Blessings of Liberty to

ourselves and our Posterity, do ordain and
establish this Constitution for the United

States of America.

Section 1.	 All legislative Powers herein
granted shall be vested in a Congress of the

United States, which shall consist of a
Senate and House of Representatives.

Section 2. The House of
Representatives shall be
composed of members

chosen every

Text view

Line fragment rectangle

Line fragment padding

Text container region

Text container

Text container
bounding rectangle

Text container inset

A subclass of NSTextContainer defines its region by overriding three methods. The first,
isSimpleRectangularTextContainer, indicates whether the region is currently a nonrotated rectangle,
thus allowing the NSLayoutManager to optimize layout of text (since custom NSTextContainers typically
define more complex regions, your implementation of this method will probably return NO). The second
method, containsPoint:, is used for testing mouse events and determines whether or not a given point
lies in the region. The third method,
lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect:, is
used for the actual layout of text, defining the region in terms of rectangles available to lay text in. This
process is described in “Line Fragment Generation.”

19
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Calculating Region, Bounding Rectangle, and
Inset

An NSTextContainer usually covers its NSTextView exactly, but it can be inset within the view frame with the
NSTextView setTextContainerInset: method. The NSTextContainer object’s bounding rectangle from
the inset position then establishes the limits of the NSTextContainer object’s region. The inset also helps to
determine the size of the bounding rectangle when the NSTextContainer tracks the height or width of its
NSTextView, as described in “Tracking the Size of a Text View” (page 21).

Note that the text container inset does not fully determine the position of the container in the text view. The
text view calculates the position of the text container within it, and it tries to maintain the amount of space
given by the text container inset, but depending on the relative sizes of the text view and text container,
that may not be possible. It’s also possible that there’s more space to be distributed than that specified by
the text container inset. If you want to determine the true location of the text container, for example, to
convert between container and view coordinates, you should use the NSTextView textContainerOrigin
method, which is the actual value calculated by the text view.

20
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Calculating Region, Bounding Rectangle, and Inset

You can set an NSTextContainer to track the size of its NSTextView and adjust its own size to match whenever
the NSTextView size changes. ThesetHeightTracksTextView: andsetWidthTracksTextView:methods
allow you to control this tracking for either dimension.

When an NSTextContainer adjusts its size to match that of its NSTextView, it takes into account the inset
specified by the NSTextView so that the bounding rectangle is inset from every edge possible. In other words,
an NSTextContainer that tracks the size of its NSTextView is always smaller than the NSTextView (in the
appropriate dimension) by twice the inset. Suppose an NSTextContainer is set to track width and its NSTextView
gives it an inset of (10,10). Now, if the NSTextView’s width is changed to 138, the NSTextContainer’s top-left
corner is set to lie at (10,10) and its width is set to 118, so that its right edge is 10 points from the NSTextView’s
right edge. Its height remains the same.

Whether it tracks the size of its NSTextView or not, an NSTextContainer doesn’t grow or shrink as text is added
or deleted; instead, the NSLayoutManager resizes the NSTextView based on the portion of the NSTextContainer
actually filled with text. To allow an NSTextView to be resized in this manner, use NSTextView’s
setVerticallyResizable: or setHorizontallyResizable:methods (which are inherited from NSText)
as needed, set the text container not to track the size of its text view, and set the text container’s size in the
appropriate dimension large enough to accommodate a great amount of text—for example, 10,000,000
points (this incurs no cost whatever in processing or storage).

Note that an NSTextView can be resized based on its NSTextContainer, and an NSTextContainer can resize
itself based on its NSTextView. If you set both objects up to resize automatically in the same dimension, your
application can get trapped in an infinite loop. When text is added to the NSTextContainer, the NSTextView
is resized to fit the area actually used for text; this causes the NSTextContainer to resize itself and relay its
text, which causes the NSTextView to resize itself again, and so on ad infinitum. Each type of size tracking
has its proper uses; be sure to use only one for either dimension.

21
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Tracking the Size of a Text View

22
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Tracking the Size of a Text View

NSTextStorage isn’t a fully concrete class; rather, it is the abstract superclass of a class cluster, as described
in “Class Clusters”. It defines the storage for its NSLayoutManager objects and implements some methods,
but doesn’t provide the primitive attributed string methods to subclasses. A subclass must define the storage
for its attributed string, typically as an instance variable of type NSMutableAttributedString, override init
and define its own initialization methods (or define constructors in Java), and implement the primitive
methods of both NSAttributedString and NSMutableAttributedString. The Objective-C primitive methods
are:

string

attributesAtIndex:effectiveRange:

replaceCharactersInRange:withString:

setAttributes:range:

The Java methods are:

stringReference

attributesAtIndex

replaceCharactersInRange

setAttributesInRange

Beyond these requirements, if a subclass overrides or adds any methods that change its characters or attributes
directly, those methods must invoke edited:range:changeInLength: (in Java, editedInRange) after
performing the change in order to keep the change-tracking information up to date. See the description of
this method for more information.

23
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Creating a Subclass of NSTextStorage

24
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Creating a Subclass of NSTextStorage

This table describes the changes to Text System Storage Layer Overview.

NotesDate

Revised "Creating a Subclass of NSTextStorage" to remove ambiguity about
invoking edited:range:changeInLength: (in Java, editedInRange). Changed title
from "Text System Storage Layer."

2005-08-11

Rewrote introduction and added an index.2004-02-13

Added NSTextContainer article, clarifications, links, and minor revisions
throughout.

2003-05-02

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

25
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

26
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

A

addAttributes:range: method 15
addLayoutManager: method 13
attribute fixing 15
attributed string 9
attributes of text. See text attributes
attributesAtIndex method (Java) 23
attributesAtIndex:effectiveRange: method 23

B

beginEditing method 15
bounding rectangle

of NSTextContainer region 19

C

containerSize method 19
containsPoint: method 19

D

delegation 11
deleteCharactersInRange: method 15
drawBackgroundForGlyphRange:atPoint: method

17
drawGlyphsForGlyphRange:atPoint: method 17

E

edited:range:changeInLength: method 15, 23
editedInRange method (Java) 23
editing

programmatic 15

endEditing method 15

I

isSimpleRectangularTextContainer method 19

L

layout manager
adding to text storage 13
programmatic editing and 15
text containers and 11

layout of text. See text layout
line movement 11
line sweep 11
line-fragment rectangles 11
lineFragmentRectForProposedRect:sweepDirection:

movementDirection:remainingRect: method
19

lockFocus: method 17

N

NSAttributedString class 9, 13, 23
NSLayoutManager class 13, 23
NSMutableAttributedString class 9, 13, 23
NSTextContainer class

described 11
displaying 17
methods 11
region 19
tracking text view size 21

NSTextStorage class 9, 23
NSTextView class 9, 17, 20
NSTypesetter class 11

27
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

Index

P

primitive methods for NSTextStorage subclasses 23
processEditing method 15
programmatic editing 15

R

replaceCharactersInRange method (Java) 23
replaceCharactersInRange:withString: method

23

S

setAttributes:range: method 23
setAttributesInRange method (Java) 23
setContainerSize: method 19
setHeightTracksTextView: method 21
setHorizontallyResizable: method 21
setTextContainerInset: method 20
setVerticallyResizable: method 21
setWidthTracksTextView: method 21
string method 23
stringReference method (Java) 23

T

text attributes
fixing 15
NSTextStorage and 9

text containers
described 11
inset 21
region 19
resizing 21

text layout 11, 19
text objects 11
text views 11
typesetter 11

U

Unicode
NSTextStorage and 9

28
2005-08-11 | © 1997, 2005 Apple Computer, Inc. All Rights Reserved.

	Text System Storage Layer Overview
	Contents
	Figures
	Introduction
	The Storage Layer: The NSTextStorage Class
	Layout Geometry: The NSTextContainer Class
	Creating Text Storage
	Changing Text Storage
	Displaying a Text Container
	Calculating Region, Bounding Rectangle, and Inset
	Tracking the Size of a Text View
	Creating a Subclass of NSTextStorage
	Revision History
	Index
	A
	B
	C
	D
	E
	I
	L
	N
	P
	R
	S
	T
	U

