
Text System User Interface Layer
Programming Guide for Cocoa
Cocoa > Text & Fonts

2006-06-28

Apple Inc.
© 1997, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, and Objective-C
are trademarks of Apple Inc., registered in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Text System User Interface Layer 7

Who Should Read This Document 7
Organization of This Document 7
See Also 8

The User-Interface Layer: NSTextView Class 9

Creating an NSTextView Object 11

Creating an NSTextView Programmatically 15

Putting an NSTextView Object in an NSScrollView 17

Setting Up the Scroll View 17
Setting Up the Text View 17
Assembling the Pieces 18
Setting Up a Horizontal Scroll Bar 18

Using Multiple NSTextViews 21

Plain and Rich Text Objects 23

Setting Text Attributes 25

Kerning 25
Ligatures 25

Setting Text Margins 27

Document Revision History 29

Index 31

3
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

4
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Figures, Tables, and Listings

Creating an NSTextView Object 11

Figure 1 Cocoa-Text palette 11
Figure 2 Edit menu 11
Figure 3 Text menu 12
Figure 4 Font panel 12

Creating an NSTextView Programmatically 15

Listing 1 Creating an NSTextView programmatically 15

Putting an NSTextView Object in an NSScrollView 17

Listing 1 Setting up the scroll view 17
Listing 2 Setting up the text view 18
Listing 3 Assembling the pieces 18
Listing 4 Setting up a horizontal scroll bar 19

Plain and Rich Text Objects 23

Table 1 RTF control words recognized by all text objects 23

Setting Text Margins 27

Figure 1 Text margins and insets 27

5
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Text System User Interface Layer describes the high-level user interface to the Cocoa text system through the
NSTextView class.

Who Should Read This Document

You should read this document if your application needs to present a user interface to the full capabilities
of the text system, that is, if your users need to edit substantial amounts of text.

To understand this material you should have a general understanding of Cocoa programming conventions,
and you should have read Text System Overview.

Organization of This Document

This document contains the following articles:

 ■ "The User-Interface Layer: NSTextView Class" (page 9) describes the capabilities and features of the
NSTextView class, through which most applications interact with the text system.

 ■ "Creating an NSTextView Object" (page 11) explains how to instantiate an NSTextView object using
Interface Builder.

 ■ "Creating an NSTextView Programmatically" (page 15) explains how to create an NSTextView object in
code and cause it to create its supporting web of text-handling objects.

 ■ "Putting an NSTextView Object in an NSScrollView" (page 17) shows how to programmatically configure
an NSTextView object with scroll bars.

 ■ "Using Multiple NSTextViews" (page 21) describes the attributes held in common by multiple text views
configured to share a single layout manager.

 ■ "Plain and Rich Text Objects" (page 23) explains the difference between plain text and rich text and lists
the RTF control words that any text object recognizes.

 ■ "Setting Text Attributes" (page 25) discusses text attributes and the action methods you can use to
control them programmatically.

 ■ "Setting Text Margins" (page 27) describes the values, maintained by various text system objects, that
affect the apparent margins surrounding text on a printed page or display.

Who Should Read This Document 7
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Text System User Interface
Layer

See Also

For more information, refer to the following documents:

 ■ Text System Overview provides an overview of the Cocoa text system.

 ■ Text Editing ProgrammingGuide for Cocoa explains how the text system supports entering and modifying
text and attributes through user interaction with the user interface layer.

8 See Also
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Text System User Interface Layer

The vast majority of applications interact with the text system through one class: NSTextView. An NSTextView
object provides a rich set of text-handling features and can:

 ■ Display text in various fonts, colors, and paragraph styles

 ■ Display images

 ■ Read text and images from (and write them to) disk or the pasteboard

 ■ Let users control text attributes such as font, superscripting and subscripting, kerning, and the use of
ligatures

 ■ Cooperate with other views to enable scrolling and display of the ruler

 ■ Cooperate with the Font panel (Fonts window) and Spelling panel

 ■ Support various key bindings, such as those used in Emacs

The interface that this class declares (and inherits from its superclass NSText) lets you programmatically:

 ■ Control the size of the area in which text is displayed

 ■ Control the editability and selectability of the text

 ■ Select and act on portions of the text

NSTextView objects are used throughout the Cocoa user interface to provide standard text input and editing
features.

An NSTextView object is a convenient package of the most generally useful text-handling features. If the
features of the NSTextView class satisfy your application’s requirements and you need more programmatic
control over the characters and attributes that make up the text, you’ll have to learn something about the
object that stores this data, NSTextStorage.

One of the design goals of NSTextView is to provide a comprehensive set of text-handling features so that
you should rarely need to create a subclass. In its standard incarnation, NSTextView creates the requisite
group of objects that support the text system—NSTextContainer, NSLayoutManager, and NSTextStorage
objects. Here are the major features that NSTextView adds to those of NSText:

 ■ Rulers. NSTextView works with the NSRulerView class to let users control paragraph formatting, in
addition to using commands in the Text menu provided by Interface Builder, which is available as a
submenu of the Format menu as well as a menu in the menu bar.

 ■ Input management and key binding. Certain key combinations are bound to specific NSTextView
methods so that the user can, for example, move the insertion point without using the mouse.

 ■ Marked text attributes. NSTextView defines a set of text attributes that support special display
characteristics during input management. Marked text attributes affect only visual aspects of text—color,
underline, and so on—they don’t include any attributes that would change the layout of text.

9
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

The User-Interface Layer: NSTextView Class

 ■ File and graphic attachments. The extended text system provides programmatic access to text
attachments as instances of NSTextAttachment, through the NSTextView and NSTextStorage classes.

 ■ Delegate messages and notifications. NSTextView adds several delegate messages and notifications
to those used by NSText. The delegate and observers of an NSTextView can receive any of the messages
or notifications declared by either class.

10
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

The User-Interface Layer: NSTextView Class

The easiest way to use the text system is through Interface Builder. Interface Builder’s Cocoa-Text palette,
shown in Figure 1, supplies a specially configured NSScrollView object that contains an NSTextView object
as its document view. This NSTextView is configured to work with the NSScrollView and other user-interface
controls such as a ruler, the Font menu, the Edit menu, and so on.

Figure 1 Cocoa-Text palette

Using Interface Builder’s Info window (also called the inspector) you can specify, among other things, whether
the contained NSTextView allows multiple fonts and embedded graphics.

Much more of NSTextView’s functionality is accessible through menu commands. Interface Builder’s
Cocoa-Menus palette offers the ready-made Edit menu that contains text-editing commands shown in Figure
2.

Figure 2 Edit menu

11
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Creating an NSTextView Object

The Cocoa-Menus palette also has the Text menu, shown in Figure 3, which contains paragraph style controls
and provides user access to the document’s ruler.

Figure 3 Text menu

The Cocoa-Menus palette also has the system Font panel (or Fonts window) shown in Figure 4.

Figure 4 Font panel

By default, most of the commands in these menus operate on the first responder, that is, the view within the
key window that the user has selected for input. (See the reference documentation for NSResponder, NSView,
and NSWindow for more information on the first responder.) In practice, the first responder is the object
that’s displaying the selection, a drawing object in the case of a graphical selection or an NSTextView in the
case of a textual selection. By adding these menus to your application, you can offer the user access to many
powerful text-editing features.

NSTextViews cooperate with the Services facility through the Services menu, also available from the
Cocoa-Menus palette. By simply adding the Services menu item to your application’s main menu, the
NSTextViews in your application can access services provided by other applications. For example, if the user
selects a word within an NSTextView and chooses the Mail > Send Selection service, the NSTextView passes
its selected text to the Mail application which places the text in a new message.

12
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Creating an NSTextView Object

Interface Builder offers these direct ways of accessing the features of the text system. You can also configure
your own menu items or other controls within Interface Builder to send messages to an NSTextView object.
For example, you can make an NSTextView output its text for printing or faxing by sending it a print: or
fax:message. One way to do this is to drag a menu item from the Cocoa-Menus palette into your application’s
File menu and hook it up to an NSTextView (either through the first responder or by direct connection). By
specifying that the item send a print: message to its target, the NSTextView’s contents can be printed or
faxed when the application is running.

Interface Builder also offers other objects—of the NSTextField and NSForm classes—that make use of
NSTextView objects for their text-editing facilities. In fact, all NSTextField and NSForm objects within the
same window share the same NSTextView object (known as the field editor), thus reducing the memory
demands of an application. If your application requires standalone or grouped text fields that support editing
(and all the other facilities provided by the NSTextView class), these are the classes to use.

Using the Info window (inspector), you can set many text-related attributes of these controls. For example,
you can specify whether the text in a text field is selectable, editable, scrollable, and so on. The Info window
also lets you set the text alignment and background and foreground colors.

13
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Creating an NSTextView Object

14
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Creating an NSTextView Object

At times, you may need to assemble the text system programmatically. You can do this in either of two ways:
by creating an NSTextView object and letting it create its network of supporting objects or by building the
network of objects yourself. In most cases, you’ll find it sufficient to create an NSTextView object and let it
create the underlying network of text-handling objects, as discussed in this article. If your application has
complex text-layout requirements, you’ll have to create the network yourself; see “Assembling the Text
System by Hand” for information.

You create an NSTextView object programmatically in the usual way: by sending the alloc and init...
messages.

You can also create NSTextView objects using one of its constructors in Java or either of these methods in
Objective-C:

 ■ initWithFrame:textContainer: (the designated initializer)

 ■ initWithFrame:

The method that takes one argument, initWithFrame:, is the simplest way to obtain an NSTextView
object—it creates all the other components of the text system for you and releases them when you’re done.
If you use the method that takes two arguments, initWithFrame:textContainer:, you must create (and
release) the other components yourself.

Listing 1 shows how you can create an NSTextView object, given an NSWindow object represented by
aWindow.

Listing 1 Creating an NSTextView programmatically

/* determine the size for the NSTextView */
NSRect cFrame =[[aWindow contentView] frame];

/* create the NSTextView and add it to the window */
NSTextView *theTextView = [[NSTextView alloc] initWithFrame:cFrame];
[aWindow setContentView:theTextView];
[aWindow makeKeyAndOrderFront:nil];
[aWindow makeFirstResponder:theTextView];

This code determines the size for the NSTextView’s frame rectangle by asking aWindow for the size of its
content view. The NSTextView is then created and made the content view of aWindow using
setContentView:. Finally, the makeKeyAndOrderFront: and makeFirstResponder: messages display
the window and cause theTextView to prepare to accept keyboard input.

NSTextView’s initWithFrame: method not only initializes the receiving NSTextView object, it causes the
object to create and interconnect the other components of the text system. This is a convenience that frees
you from having to create and interconnect them yourself. Since the NSTextView created these supporting
objects, it’s responsible for releasing them when they are no longer needed. When you’re done with the
NSTextView, release it and it takes care of releasing the other objects of the text system. Note that this

15
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Creating an NSTextView Programmatically

ownership policy is in effect only if you let NSTextView create the components of the text system. See
“Assembling the Text System by Hand” for more information on object ownership when you create the
components yourself.

16
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Creating an NSTextView Programmatically

A scrolling text view is commonly required in applications, and Interface Builder provides an NSTextView
configured just for this purpose. However, at times you may need to create a scrolling text view
programmatically.

The process consists of three steps: setting up the NSScrollView, setting up the NSTextView, and assembling
the pieces. This article describes these steps in terms of a typical text view configured with a vertical scroll
bar only, then shows alternate statements used to configure a horizontal scroll bar.

Setting Up the Scroll View

Assuming an object has the variable theWindow that represents the window where the scrolling view is
displayed, you can set up the NSScrollView using the code in Listing 1.

Listing 1 Setting up the scroll view

NSScrollView *scrollview = [[NSScrollView alloc]
 initWithFrame:[[theWindow contentView] frame]];
NSSize contentSize = [scrollview contentSize];

[scrollview setBorderType:NSNoBorder];
[scrollview setHasVerticalScroller:YES];
[scrollview setHasHorizontalScroller:NO];
[scrollview setAutoresizingMask:NSViewWidthSizable |
 NSViewHeightSizable];

Note that the code creates an NSScrollView that completely covers the content area of the window it’s
displayed in. It also specifies a vertical scroll bar but no horizontal scroll bar, since this scrolling text view
wraps text within the horizontal extent of the NSTextView, but lets text flow beyond the vertical extent of
the NSTextView. To use a horizontal scroll bar, you must configure the scroll view and text view slightly
differently, as described in "Setting Up a Horizontal Scroll Bar" (page 18).

Finally, the code sets how the NSScrollView reacts when the window it’s displayed in changes size. Turning
on the NSViewWidthSizable and NSViewHeightSizable bits of its resizing mask ensures that the NSScrollView
grows and shrinks to match the window’s dimensions.

Setting Up the Text View

The next step is to create and configure an NSTextView to fit in the NSScrollView. Listing 2 shows the
statements that accomplish this step.

Setting Up the Scroll View 17
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Putting an NSTextView Object in an
NSScrollView

Listing 2 Setting up the text view

theTextView = [[NSTextView alloc] initWithFrame:NSMakeRect(0, 0,
 contentSize.width, contentSize.height)];
[theTextView setMinSize:NSMakeSize(0.0, contentSize.height)];
[theTextView setMaxSize:NSMakeSize(FLT_MAX, FLT_MAX)];
[theTextView setVerticallyResizable:YES];
[theTextView setHorizontallyResizable:NO];
[theTextView setAutoresizingMask:NSViewWidthSizable];

[[theTextView textContainer]
 setContainerSize:NSMakeSize(contentSize.width, FLT_MAX)];
[[theTextView textContainer] setWidthTracksTextView:YES];

Listing 2 specifies that the NSTextView’s width and height initially match those of the content area of the
NSScrollView. The setMinSize: message tells the NSTextView that it can get arbitrarily small in width, but
no smaller than its initial height. The setMaxSize: message allows the receiver to grow arbitrarily in either
dimension. These limits are used by the NSLayoutManager when it resizes the NSTextView to fit the text laid
out.

The next three messages determine how the NSTextView’s dimensions change in response to additions or
deletions of text and to changes in the scroll view’s size. The NSTextView is set to grow vertically as text is
added but not horizontally. Its resizing mask is set to allow it to change width in response to changes in the
width of its superview. Since, except for the minimum and maximum values, the NSTextView’s height is
determined by the amount of text it has in it, its height should not change with that of its superview.

The last two messages in this step are to the NSTextContainer, not the NSTextView. One message sets the
text container’s initial width to that of the scroll view and its height to the maximum size of the text view.
The last message tells the NSTextContainer to resize its width according to the width of the NSTextView.
Recall that the text system lays out text according to the dimensions stored in NSTextContainer objects. An
NSTextView provides a place for the text to be displayed, but its dimensions and those of its NSTextContainer
can be quite different. The setWidthTracksTextView:YES message ensures that as the NSTextView is
resized, the width dimension stored in its NSTextContainer is likewise resized, causing the text to be laid out
within the new boundaries.

Assembling the Pieces

The last step is to assemble and display the pieces. Listing 3 shows the statements that accomplish this step.

Listing 3 Assembling the pieces

[scrollview setDocumentView:theTextView];
[theWindow setContentView:scrollview];
[theWindow makeKeyAndOrderFront:nil];
[theWindow makeFirstResponder:theTextView];

Setting Up a Horizontal Scroll Bar

To set up both horizontal and vertical scroll bars, use the statements in Listing 4 in place of the corresponding
statements in the previous listings.

18 Assembling the Pieces
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Putting an NSTextView Object in an NSScrollView

Listing 4 Setting up a horizontal scroll bar

[[theTextView enclosingScrollView] setHasHorizontalScroller:YES];
[theTextView setHorizontallyResizable:YES];
[theTextView setAutoresizingMask:(NSViewWidthSizable | NSViewHeightSizable)];
[[theTextView textContainer] setContainerSize:NSMakeSize(FLT_MAX, FLT_MAX)];
[[theTextView textContainer] setWidthTracksTextView:NO];

This code fragment adds the horizontal scroll bar to the scroll view and makes the text view horizontally
resizable so it can display text of any width. The code sets the text view’s resizing mask so that it changes in
both width and height in response to corresponding changes in its superview. The next-to-last message sets
both dimensions of the text container to an arbitrarily large value, which essentially means the text is laid
out in one long line, and the last message ensures that the text container does not resize horizontally with
the text view.

Setting Up a Horizontal Scroll Bar 19
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Putting an NSTextView Object in an NSScrollView

20 Setting Up a Horizontal Scroll Bar
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Putting an NSTextView Object in an NSScrollView

A single NSLayoutManager can be assigned any number of NSTextContainers, in whose NSTextViews it lays
out text sequentially. In such a configuration, many of the attributes accessed through the NSTextView
interface are actually shared by all of these text views. Among these attributes are:

 ■ The selection

 ■ The delegate

 ■ Selectability

 ■ Editability

 ■ Whether they act as a field editor

 ■ Whether they display plain or rich text

 ■ Whether they import graphics

 ■ Whether they use the ruler

 ■ Whether the ruler is visible

 ■ Whether they use the Font panel (Fonts window)

Setting any of these attributes causes all associated NSTextView objects to share the new value.

With multiple NSTextViews, only one is the first responder at any time. NSLayoutManager defines these
methods for determining and appropriately setting the first responder:

 ■ layoutManagerOwnsFirstResponderInWindow:

 ■ firstTextView

 ■ textViewForBeginningOfSelection

See their descriptions in the NSLayoutManager class specification for more information.

21
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Using Multiple NSTextViews

22
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Using Multiple NSTextViews

Text objects such as NSText and NSTextView can contain either plain text or rich text. Plain text objects allow
only one set of text attributes for all of their text; rich text objects allow multiple fonts, sizes, indents, and
other attributes for different sets of characters and paragraphs. You can control whether a text object is plain
or rich using the setRichText: method. Rich text objects are also capable of allowing the user to drag
images and files into them. This behavior is controlled by the setImportsGraphics: method.

A rich NSText object can use RTF (Rich Text Format) as an interchange format. Not all RTF control words are
supported, however. On input, an NSText object ignores any control word it doesn’t recognize; some of those
it can read and interpret it doesn’t write out. Table 1 lists the RTF control words that any text object recognizes.
Subclasses may recognize more.

Table 1 RTF control words recognized by all text objects

Can be written outControl word

yes\ansi

yes\b

yes\cb

yes\cf

yes\colortbl

yes\dnn

yes\fin

yes\fn

yes\fonttbl

yes\fsn

yes\i

yes\lin

yes\margrn

yes\paperwn

no\mac

yes\margln

yes\par

23
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Plain and Rich Text Objects

Can be written outControl word

no\pard

no\pca

yes\qc

yes\ql

yes\qr

no\sn

yes\tab

yes\upn

24
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Plain and Rich Text Objects

NSTextView allows you to change the attributes of its text programmatically through various methods, most
inherited from the superclass, NSText. NSTextView adds its own methods for setting the attributes of text
that the user types, for setting the baseline offset of text as an absolute value, and for adjusting kerning and
use of ligatures. Most of the methods for changing attributes are defined as action methods and apply to
the selected text or typing attributes for a rich text view, or to all of the text in a plain text view.

An NSTextView maintains a set of typing attributes (font, size, color, and so on) that it applies to newly entered
text, whether typed by the user or pasted as plain text. It automatically sets the typing attributes to the
attributes of the first character immediately preceding the insertion point, of the first character of a paragraph
if the insertion point is at the beginning of a paragraph, or of the first character of a selection. The user can
change the typing attributes by choosing menu commands and using utilities such as the Font panel (Fonts
window). You can also set the typing attributes programmatically using setTypingAttributes:, though
you should rarely find need to do so unless creating a subclass.

NSText defines the action methods superscript:, subscript:, and unscript:, which raise and lower
the baseline of text by predefined increments. NSTextView gives you much finer control over the baseline
offset of text by defining the raiseBaseline: and lowerBaseline: action methods, which raise or lower
text by one point each time they’re invoked.

Kerning

NSTextView provides convenient action methods for adjusting the spacing between characters. By default,
an NSTextView object uses standard kerning (as provided by the data in a font’s AFM file). A turnOffKerning:
message causes this kerning information to be ignored and the selected text to be displayed using nominal
widths. The loosenKerning: and tightenKerning:methods adjust kerning values over the selected text
and useStandardKerning: reestablishes the default kerning values.

Kerning information is a character attribute that’s stored in the text view’s NSTextStorage object. If your
application needs finer control over kerning than the methods of this class provide, you should operate on
the NSTextStorage object directly through methods defined by its superclass, NSMutableAttributedString.
See the reference documentation for NSAttributedString Additions for information on setting attributes.

Ligatures

NSTextView’s support for ligatures provides the minimum required ligatures for a given font and script. The
required ligatures for a specific font and script are determined by the mechanisms that generate glyphs for
a specific language. Some scripts may well have no ligatures at all—English text, as an example, doesn’t
require ligatures, although certain ligatures such as “fi” and “fl” are desirable and are used if they’re available.
Other scripts, such as Arabic, demand that certain ligatures must be available even if a turnOffLigatures:

Kerning 25
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Setting Text Attributes

message is sent to the NSTextView. Other scripts and fonts have standard ligatures that are used if they’re
available. The useAllLigatures:method extends ligature support to include all possible ligatures available
in each font for a given script.

Ligature information is a character attribute that’s stored in the text view’s NSTextStorage object. If your
application needs finer control over ligature use than the methods of this class provide, you should operate
on the NSTextStorage object directly through methods defined by its superclass, NSMutableAttributedString.
See the reference documentation for NSAttributedString Additions for information on setting attributes.

26 Ligatures
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Setting Text Attributes

Many text system objects cooperate in the display of text, and several of them maintain inset values that
affect the apparent margins of text on a printed page or display. This article describes those settings and
their proper use. Figure 1 illustrates the various margins and insets you can place around text.

Figure 1 Text margins and insets

Line fragment padding

Text container inset
Text view inset
in superview

Print settings margins

Text container

Text view

Superview of text view (if present)

Printed page

Paragraph
head indent

We the People of the United States, in Order to form
a more perfect Union, establish Justice, insure domestic
Tranquility, provide for the common defence, promote
the general Welfare, and secure the Blessings of Liberty
to ourselves and our Posterity, do ordain and establish
this Constitution for the United States of America.

Paragraph
tail indent

Paragraph
first line indent

Line fragment padding

Paragraph style objects maintain head indent values for the first and subsequent lines and a tail indent value.
These values describe space between the beginning and end of text lines and the edge of the text container.
For left-to-right text, as shown in Figure 1, the head indents appear on the left side of the paragraph and the
tail indent on the right side. You can find the indent values using the NSParagraphStyle methods
firstLineHeadIndent, headIndent, and tailIndent. You set the values using the corresponding
NSMutableParagraphStyle methodssetFirstLineHeadIndent:,setHeadIndent:, andsetTailIndent:.

By default, a text container covers its text view exactly. However, you can specify blank space between the
edges of the text container and the edges of the text view with the NSTextView method
setTextContainerInset:. This method specifies a width and height by which the text container’s top-left
origin point is offset from the origin of the text view. The text container’s right and bottom edges are then
inset by an equal amount. The container inset is respected even when the container is set to track the height
and width of the text view. It’s possible to set the text container and text view sizes and resizing behavior so
that the inset cannot be maintained exactly, but the text system maintains it whenever possible.

The text container inset refers to the bounding rectangle of the text container’s region. However, you can
define the region to be a nonrectangular shape, in which case some lines of text can have additional space
between the ends of the lines and the bounding rectangle. See “Calculating Region, Bounding Rectangle,
and Inset” for more information.

27
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Setting Text Margins

Another parameter that you can set to leave space at the ends of lines of type is called line fragment padding.
You can set the padding value with the NSTextContainer method setLineFragmentPadding:. This
adjustment is meant to specify a small amount of blank space on each end of the line fragment rectangles
in which the typesetter sets lines of text. Line fragment padding keeps text from directly abutting any graphics
or other elements positioned next to the text container.

Finally, the text view itself can optionally be inset in a superview, as in TextEdit’s multiple-page view, and
views can be inset on a printed page using print settings.

28
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Setting Text Margins

This table describes the changes to Text System User Interface Layer Programming Guide for Cocoa.

NotesDate

Corrected line fragment padding representation in Figure 1 of "Setting Text
Margins."

2006-06-28

Made editorial revisions to previously unedited articles.2004-07-27

Added section to “Putting an NSTextView Object in an NSScrollView.” Added a
new article titled “Setting Text Margins.” Rewrote introduction and added an
index.

2004-02-06

Moved four articles to new Text Editing programming topic.2003-05-02

Corrected error in example code in the article “Putting an NSTextView Object
in an NSScrollView.”

2003-01-16

Revision history added to existing topic.2002-11-12

29
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

30
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

A

alloc method
to create an NSTextView object 15

E

Edit menu
and NSTextView 11

F

field editor 13
first line indent 27
first responder 12, 15, 21
firstLineHeadIndent method 27
firstTextView method 21

H

head indent 27
headIndent method 27

I

init... methods
to create an NSTextView object 15

initWithFrame: method 15
initWithFrame:textContainer: method 15
Interface Builder

to create a text view object 11

K

kerning of text 25

L

layoutManagerOwnsFirstResponderInWindow:
method 21

ligatures in fonts 25
line fragment padding 27
loosenKerning: method 25
lowerBaseline: method 25

M

makeFirstResponder: method 15
makeKeyAndOrderFront: method 15
margins of text 27
memory management

and Cocoa text objects 15
menu commands

of Cocoa text system 11

N

NSForm class 13
NSLayoutManager class 18, 21
NSMutableAttributedString class 25
NSScrollView class 11, 17
NSText class 9
NSTextContainer class 21
NSTextField class 13
NSTextStorage class 25
NSTextView class

configured as multiple text views 21
features of 9
in a scroll view 17

31
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Index

instantiating 11, 15
setting text attributes with 25

P

plain text
and Cocoa text objects 23

print settings margins 27

R

raiseBaseline: method 25
Rich Text Format (RTF)

and NSText objects 23
RTF. See Rich Text Format

S

scroll bars
and NSTextView 17, 18

scroll views, setting up 17
Services menu

and NSTextView 12
setContentView: method 15
setFirstLineHeadIndent: method 27
setHeadIndent: method 27
setImportsGraphics: method 23
setLineFragmentPadding: method 28
setMaxSize: method 18
setMinSize: method 18
setRichText: method 23
setTailIndent: method 27
setTextContainerInset: method 27
setTypingAttributes: method 25
setWidthTracksTextView: method 18
subscript: method 25
superscript: method 25

T

tail indent 27
tailIndent method 27
text attributes 23, 25–26
text container insets 27
Text menu

and NSTextView 12
text views

configuring 17
insets 27

text-handling features of NSTextView 9–10
textViewForBeginningOfSelection method 21
tightenKerning: method 25
turnOffKerning: method 25
turnOffLigatures: method 25
typing attributes 25

U

unscript: method 25
useAllLigatures: method 26
useStandardKerning: method 25

32
2006-06-28 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

	Text System User Interface Layer Programming Guide for Cocoa
	Contents
	Figures, Tables, and Listings
	Introduction
	The User-Interface Layer: NSTextView Class
	Creating an NSTextView Object
	Creating an NSTextView Programmatically
	Putting an NSTextView Object in an NSScrollView
	Setting Up the Scroll View
	Setting Up the Text View
	Assembling the Pieces
	Setting Up a Horizontal Scroll Bar

	Using Multiple NSTextViews
	Plain and Rich Text Objects
	Setting Text Attributes
	Kerning
	Ligatures

	Setting Text Margins
	Revision History
	Index
	A
	E
	F
	H
	I
	K
	L
	M
	N
	P
	R
	S
	T
	U

