Timer Programming Topics for Cocoa

Cocoa > Events & Other Input

¢

2008-11-19

.

[

Apple Inc.

© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Cocoa are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Timers 5

Organization of This Document 5

Timers 7

Using Timers 9

Creating and Scheduling a Timer 9
Scheduled Timers 10
Unscheduled Timers 11
Initializing a Timer with a Fire Date 11
Stopping a Timer 12
Memory Management 13

Document Revision History 15

2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Timers

Timers provide a way to perform delayed or periodic actions.

Organization of This Document

This topic describes how to use the NSTimer objects. The topic is divided into the following articles:

m “Timers” (page 7)

m “Using Timers” (page 9)

Organization of This Document
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Timers

Organization of This Document
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Timers

A timer provides a way to perform a delayed action or a periodic action. The timer waits until a certain time
interval has elapsed and then fires, sending a specified message to a specified object. For example, you could
create a timer that sends a message to a window, telling it to update itself after a certain time interval. Timers
are represented by NSTimer objects.

Timers work in conjunction with NSRunLoop objects. NSRunLoop objects control loops that wait for input,
and they use timers to help determine the maximum amount of time they should wait. When the timer’s
time limit has elapsed, the run loop fires the timer (causing its message to be sent), then checks for new
input.

The run loop mode in which you register the timer must be running for the timer to fire. For applications
built using the Application Kit, the NSApp11ication object runs the main thread’s run loop for you. On
secondary threads, however, you have to run the run loop yourself. See Run Loops for details.

A timer is not a real-time mechanism; it fires only when one of the run loop modes to which the timer has
been added is running and able to check if the timer’s firing time has passed. Because of the various input
sources a typical run loop manages, the effective resolution of the time interval for a timer is limited to on
the order of 50-100 milliseconds. If a timer’s firing time occurs while the run loop is in a mode that is not
monitoring the timer or during a long callout, the timer does not fire until the next time the run loop checks
the timer. Therefore, the actual time at which the timer fires potentially can be a significant period of time
after the scheduled firing time.

A repeating timer reschedules itself based on the scheduled firing time, not the actual firing time. For example,
if a timer is scheduled to fire at a particular time and every 5 seconds after that, the scheduled firing time
will always fall on the original 5 second time intervals, even if the actual firing time gets delayed. If the firing
time is delayed so far that it passes one or more of the scheduled firing times, the timer is fired only once
for that time period; the timer is then rescheduled, after firing, for the next scheduled firing time in the future.

Each run loop timer can be registered in only one run loop at a time, although it can be added to multiple
run loop modes within that run loop.

Note that you can schedule message sends without the need for a timer. You can use
performSelector:withObject:afterDelay: and related methods to invoke a method directly on
another object. Some variants, such as performSelectorOnMainThread:withObject:waitUntilDone:,
allow you to invoke the method on a different thread. You can also cancel a delayed message send using
cancelPreviousPerformRequestsWithTarget: and related methods.

2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Timers

2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Using Timers

There are several aspects to using a timer. When you create a timer, you must configure it so that it knows
what message to send to what object when it fires. You must then associate it with a run loop so that it will
fire—some of the creation methods do this for you automatically. Finally, if you create a repeating timer, you
must invalidate it when you want it to stop firing.

Creating and Scheduling a Timer

There are broadly speaking three ways to create a timer: scheduling a timer with the current run loop; creating
an timer that you later register with a run loop; and initializing a timer with a given fire date. In all cases, you
have to configure the timer to tell it what message it should send to what object when it fires, and whether
it should repeat. With some methods, you may also provide a user info dictionary. You can put whatever you
want into this dictionary that may be useful in the method that the timer invokes when it fires.

There are two ways to tell a timer what message it should send and the object to which it should send the

message—by specifying each independently, or (in some cases) by using an instance of NSInvocation. If

you specify the selector for the message directly, the name of the method does not matter but it must have
the following signature:

- (void)timerFireMethod: (NSTimer*)theTimer

If you create an invocation object, you can specify whatever message you want. Note thatan NSTimer object
always instructs its NSInvocation object to retain its arguments, so you do not need to send
retainArguments yourself. (For more about invocation objects, seeUsing NSInvocation in Distributed Objects
Programming Topics.)

For the examples that follow, consider a timer controller object that declares methods to start and (in some
cases) stop four timers configured in different ways. It has properties for two of the timers and a timer count,
and three timer-related methods (timerFireMethod:,and invocationMethod:, and
countedTimerFireMethod:. It also provides a method to supply a user info dictionary.

@interface TimerController : NSObject {
NSTimer *repeatingTimer;
NSTimer *unregisteredTimer;
NSUInteger timerCount;

}

@property (nonatomic, assign) NSTimer *repeatingTimer;
@property (nonatomic, retain) NSTimer *unregisteredTimer;
@property (nonatomic) NSUInteger timerCount;

- (IBAction)startOneOffTimer:sender;

- (IBAction)startRepeatingTimer:sender;
- (IBAction)stopRepeatingTimer:sender;

Creating and Scheduling a Timer 9
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

10

Using Timers

- (IBAction)createUnregisteredTimer:sender;

- (IBAction)startUnregisteredTimer:sender;

- (IBAction)stopUnregisteredTimer:sender;

- (IBAction)startFireDateTimer:sender;

- (void)timerFireMethod: (NSTimer*)theTimer;

- (void)invocationMethod: (NSDate *)date;

- (void)countedTimerFireMethod: (NSTimer*)theTimer;
- (NSDictionary *)userInfo;

@end

The implementations of the user info method and two of the methods invoked by the timers might be as
follows (countedTimerFireMethod is described in “Stopping a Timer” (page 12)):

- (NSDictionary *)userInfo {
return [NSDictionary dictionaryWithObject:[NSDate date] forKey:@"StartDate"];
- (void)targetMethod: (NSTimer*)theTimer {
NSDate *startDate = [[theTimer userInfo] objectForKey:@"StartDate"];
NSLog(@"Timer started on %@", startDate);
- (void)invocationMethod: (NSDate *)date ({

NSLog(@"Invocation for timer started on %@", date);

Scheduled Timers

The following two class methods automatically register the new timer with the current NSRunlLoop object
in the default mode (NSDefaultRunLoopMode):

m scheduledTimerWithTimeInterval:invocation:repeats:

m scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:

The following example shows how you can schedule a one-off timer that uses a selector:
- (IBAction)startOneOffTimer:sender {

[NSTimer scheduledTimerWithTimelInterval:2.0
target:self
selector:@selector(targetMethod:)
userInfo:[self userInfol
repeats:NOJ;

}

The timer is automatically fired by the run loop after 2 seconds, and is then removed from the run loop.

The next example shows how you can schedule a repeating timer, that again uses a selector:

Creating and Scheduling a Timer
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Using Timers

- (IBAction)startRepeatingTimer:sender {

NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval:0.5
target:self selector:@selector(timerFireMethod:)
userInfo:[self userInfo] repeats:YES]T;
self.repeatingTimer = timer;
}

If you create a repeating timer, you often need to save a reference to it so that you can stop the timer at a
later stage (see “Initializing a Timer with a Fire Date” (page 11) for an example of when this is not the case).

Unscheduled Timers

The following methods create timers that you may schedule at a later time by sending the message
addTimer:forMode: toan NSRunLoop object.

m timerWithTimelInterval:invocation:repeats:

m timerWithTimelnterval:target:selector:userinfo:repeats:

The following example shows how you can in one method create a timer that uses an invocation object, and
then in another method start the timer by adding it to a run loop:

- (IBAction)createUnregisteredTimer:sender {

NSMethodSignature *methodSignature = [self
methodSignaturefForSelector:@selector(invocationMethod:)];

NSInvocation *invocation = [NSInvocation
invocationWithMethodSignature:methodSignature];

[invocation setTarget:self];

[invocation setSelector:@selector(invocationMethod:)];

NSDate *startDate = [NSDate datel;

[invocation setArgument:&startDate atlndex:2];

NSTimer *timer = [NSTimer timerWithTimelnterval:0.5 invocation:invocation
repeats:YEST;

self.unregisteredTimer = timer;
}

- (IBAction)startUnregisteredTimer:sender {
if (unregisteredTimer != nil) {
NSRunLoop *runLoop = [NSRunlLoop currentRunlLoopl;
[runLoop addTimer:unregisteredTimer forMode:NSDefaultRunlLoopMode];

Initializing a Timer with a Fire Date

You can allocate an NSTimer object yourself and send it an
initWithFireDate:interval:target:selector:userInfo:repeats: message. This allows you to
specify an initial fire date independently of the repeat interval. Once you've created a timer, the only property
you can modify is its firing date (using setFireDate:). All other parameters are immutable after creating
the timer. To cause the timer to start firing, you must add it to a run loop.

Creating and Scheduling a Timer n
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Using Timers

The following example shows how you can create a timer with a given start time (in this case, one second
in the future), and then start the timer by adding it to a run loop:

- (IBAction)startFireDateTimer:sender {

NSDate *fireDate = [NSDate dateWithTimelntervalSinceNow:1.0];

NSTimer *timer = [[NSTimer alloc] initWithFireDate:fireDate
interval:0.5
target:self
selector:@selector(countedtargetMethod:)
userInfo:[self userInfol
repeats:YEST;

timerCount = 1;
NSRunLoop *runLoop = [NSRunlLoop currentRunlLoop];
[runLoop addTimer:timer forMode:NSDefaultRunLoopMode];
[timer release];

}

In this example, although the timer is configured to repeat, it will be stopped after it has fired three times
by the countedtargetMethod: that it invokes—see “Stopping a Timer” (page 12).

Stopping a Timer

If you create a non-repeating timer, there is no need to take any further action. It automatically stops itself
after it fires. For example, there is no need to stop the timer created in the “Initializing a Timer with a Fire
Date” (page 11). If you create a repeating timer, however, you stop it by sending itan invalidate message.
You can also send a non-repeating timer an invalidate message before it fires to prevent it from firing.

The following examples show the stop methods for the timers created in the previous examples:

- (IBAction)stopRepeatingTimer:sender {
[repeatingTimer invalidatel];
self.repeatingTimer = nil;

}

- (IBAction)stopUnregisteredTimer:sender {
[unregisteredTimer invalidate];
self.unregisteredTimer = nil;

}

You can also invalidate a timer from the method it invokes. For example, the method invoked by the timer
shown in “Initializing a Timer with a Fire Date” (page 11) might look like this:

- (void)countedtargetMethod: (NSTimer*)theTimer {

NSDate *startDate = [[theTimer userInfo] objectForKey:@"StartDate"];
NSLog(@"Timer started on %@; fire count %d", startDate, timerCount);

timerCount++;

if (timerCount > 3) {
[theTimer invalidate];

}

12 Stopping a Timer
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Using Timers

This will invalidate the timer after it has fired three times. Since the timer is passed as an argument to the
method it invokes, there may be no need to maintain the timer as a variable. Typically, however, you might
nevertheless keep a reference to the timer in case you want the option of stopping it earlier.

Memory Management

It is important to realize that, in keeping with standard Cocoa memory management rules, a timer maintains
a strong reference to its target. (That is, in a reference-counted environment a timer retains it target, and in
a garbage-collected environment it has a strong reference to the target.) This means that as long as a timer
remains valid (and you otherwise properly abide by memory management rules), its target will not be
deallocated. As a corollary, this means that it does not make sense for a timer’s target to try to invalidate the
timer inits dealloc or finalize method—neither method will be invoked as long as the timer is valid.

Similarly, the timer maintains a strong reference to its user info dictionary—there is no need to maintain the
contents of the dictionary elsewhere.

Because the run loop maintains the timer, from the perspective of memory management there's typically
no need to keep a reference to a timer once you've scheduled it. Since the timer is passed as an argument
when you specify its method as a selector, you can invalidate a repeating timer when appropriate within
that method. In many situations, however, you also want the option of invalidating the timer—perhaps even
before it starts. In this case, you do need to keep a reference to the timer, so that you can send it an
invalidate message whenever is appropriate. If you create an unscheduled timer (see “Unscheduled
Timers” (page 11)), then you must maintain a strong reference to the timer (in a reference-counted
environment, you retain it) so that it is not deallocated before you use it.

Memory Management 13
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Using Timers

14 Memory Management
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

This table describes the changes to Timer Programming Topics for Cocoa.

Date Notes

2008-11-19 Corrected typographical errors.

2008-10-15 Updated to discuss use of timers in a garbage-collected environment.

2002-11-12 Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

15

16

Document Revision History

2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

	Timer Programming Topics for Cocoa
	Contents
	Introduction
	Timers
	Using Timers
	Creating and Scheduling a Timer
	Scheduled Timers
	Unscheduled Timers
	Initializing a Timer with a Fire Date

	Stopping a Timer
	Memory Management

	Revision History

