
Token Field Programming Guide for Cocoa
Cocoa > User Experience

2007-12-11

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iTunes, Mac, and
Mac OS are trademarks of Apple Inc., registered
in the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Token Field Programming Guide for Cocoa 7

Token Fields at a Glance 7
Organization of This Document 7

Chapter 1 About Token Fields 9

A Token Field in Operation 9
When To Use Token Fields 12

Chapter 2 How Token Fields Work 13

Tokens and Represented Objects 13
The Object Value of Token Fields 13
Basic Interaction With the Delegate 14

Chapter 3 Configuring Token Fields 17

Token Field Attributes 17
Token Field Connections 17

Chapter 4 Displaying the Completion List 19

Chapter 5 Returning Represented Objects 21

Chapter 6 Getting and Setting Token-Field Values 23

Chapter 7 Implementing Menus for Tokens 25

Document Revision History 27

3
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

4
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 About Token Fields 9

Figure 1-1 Tokens in a token field 10
Figure 1-2 A token field’s completion list 11
Figure 1-3 A menu attached to a token 12

Chapter 2 How Token Fields Work 13

Figure 2-1 Messages to the token field delegate 14

Chapter 3 Configuring Token Fields 17

Table 3-1 NSTokenField attributes in Interface Builder 17

Chapter 4 Displaying the Completion List 19

Listing 4-1 Returning a completion list 19

Chapter 5 Returning Represented Objects 21

Listing 5-1 Returning represented objects for tokens 21
Listing 5-2 Returning the display string for a represented object 21

Chapter 6 Getting and Setting Token-Field Values 23

Listing 6-1 Getting and setting the contents of a token filed 23

Chapter 7 Implementing Menus for Tokens 25

Listing 7-1 Implementing the menu delegation methods 25

5
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

6
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

This document discusses the role of token fields in a user interface, explains how they work, describes how
to configure them, and shows how integrate them into your application.

Token Fields at a Glance

A token field is a text field with tokens as content. A token represents a string or other object.

 ■ Construction: Single-cell control

 ■ Classes and inheritance:

 ❏ Control: NSTokenField : NSTextField : NSControl : NSView: NSResponder : NSObject

 ❏ Cell: NSTokenFieldCell : NSTextFieldCell : NSActionCell : NSCell : NSObject

 ■ Design patterns: Target-action, delegation, key-value observing

 ■ Object attributes: Tokenizing character set, completion delay, token style

 ■ Important methods: objectValue (NSControl),
tokenField:completionsForSubstring:indexOfToken:indexOfSelectedItem: (delegate),
tokenField:representedObjectForEditingString: (delegate),
tokenField:displayStringForRepresentedObject:d (delegate),
tokenField:menuForRepresentedObject: (delegate)

 ■ Important bindings: value

 ■ Usage guidelines: Under “Text Controls” in “Controls" (Apple Human Interface Guidelines)

Organization of This Document

This document consists of the following chapters:

 ■ “About Token Fields” (page 9) describes what token fields are designed to do in a user interface and
offers some guidelines for their usage.

 ■ “How Token Fields Work” (page 13) discusses the central concepts and mechanisms of token fields.

 ■ “Configuring Token Fields” (page 17) explains how to configure token fields and connect them to other
objects in an application.

Token Fields at a Glance 7
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Token Field Programming
Guide for Cocoa

 ■ “Displaying the Completion List” (page 19) describes how to display a list of possible completions for
the currently entered substring.

 ■ “Returning Represented Objects” (page 21) shows how to return an array of represented objects for the
tokens in a token field.

 ■ “Getting and Setting Token-Field Values” (page 23) shows how to extract and set the contents of a token
field.

 ■ “Implementing Menus for Tokens” (page 25) discusses how to associate menus with tokens in a token
field.

8 Organization of This Document
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Token Field Programming Guide for Cocoa

A token field is a text field with tokens as its content. A token represents a string or other object, A token’s
distinctive form makes it easy for users to recognize and manipulate it. Sometimes users select the string to
be tokenized from a list of possible entries presented to them, such as the list of email addresses in one’s
Address Book application. The following sections describe the look and behavior of tokens in token fields
and offer guidelines for the proper use of this control.

A Token Field in Operation

The basic purpose of a token field is to present entered strings as tokens when the user presses a tokenizing
character, such as a comma. The tokens in the field are easier to recognize and manipulate than, say, a
comma-separated list of strings. Manipulation of a token includes the ability to cut-and-paste them and to
drag them between fields. Through delegation, NSTokenField extends this basic behavior.

Before the user types in a token field, it looks exactly like a text field. The user types some text and then types
a character from tokenizing character set; default, the tokenizing characters are a comma or the newline
character (entered by pressing Return), which also may cause the action message to be sent. (Note that the
newline character is always implied and is not actually specified in the character set.) Upon receiving a
tokenizing character, the token field converts the entered string into a token (see Figure 1-1 for examples).
Usually a token takes the form of a blue rounded rectangle with the string as title. But there is also a plain-text
token style and possibly future styles.

A Token Field in Operation 9
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About Token Fields

Figure 1-1 Tokens in a token field

If an application implements the appropriate delegation method, after the entry of the first one or two (or
more) characters, the token field displays a completion list. When the list appears is determined by a
completion delay, a period that you can configure. Figure 1-2 shows what a typical completion list looks
like.

10 A Token Field in Operation
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About Token Fields

Figure 1-2 A token field’s completion list

As users continue typing, the token field narrows the completion list to the matching strings. Users can either
type the entire desired string, or they can use the mouse to select the desired string from the list by clicking
it. After selection, users type a tokenizing character to convert the string into a token.

Through delegation, tokens may have represented objects associated with them; for example, a token with
a title of “blue” could have an NSColor object associated with it. Tokens can also have menus attached to
them, as illustrated in Figure 1-3. These menus can present additional information about the token and can
present items that trigger actions on the object represented by the token.

A Token Field in Operation 11
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About Token Fields

Figure 1-3 A menu attached to a token

For additional guidance on using token fields, see the section on text controls in “Controls" in Apple Human
Interface Guidelines.

When To Use Token Fields

You use token fields for several reasons. The primary reason is to make what the user enters in the field easy
to recognize and convenient to move around, select, and otherwise manipulate.

But you may also to restrict what users enter in a token field to something from a finite list of possible entires.
And you may want to associate an underlying represented objects with this string entries. These could be
objects representing things such as email addresses, songs from an iTunes playlist, employee records, and
so on. To have these features, you must implement the appropriate delegation methods.

To further extend the usefulness of a token, you can give it a menu whose items send messages to the
represented object or return it upon request to a target object. When you copy-paste or drag the token
between user-interface elements of the same or different applications—assuming you implement the required
delegation methods—you are also moving the represented object.

You can also use token fields when all you are interested in is the string value of a token. For example, you
might opt for the plain-text token style when you use a token field to enforce the correct spelling of a textual
item. Note that there can be only one token per token field that is configured for the plain-text token style.

12 When To Use Token Fields
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About Token Fields

A token field works on the premise of a finite collection of objects as potential content. These objects can
be NSString objects or objects of any other type. Objects that are not strings require a display string.

Tokens and Represented Objects

In a sense a token is a labeled represented object even if that object is simply the string used for the label.
A represented object is an object that is arbitrarily associated with a cell or a menu item. A token field—more
precisely, the NSTokenFieldCell component of a token field—inherits the feature of represented objects
from NSCell. But the implementation extends the notion of represented object to make it apply to all tokens
in the field.

As an example, consider a token field in which users enter the names of people in their Address Book. The
token field is implemented so that each token field has a represented object of type ABPerson (a class in
the Address Book framework).

You are not required to assign a represented object to each token in the token field. In this case, the
represented object of a token is the string it displays.

For further information on represented objects, see “Represented Objects" in Control and Cell Programming
Topics for Cocoa and the section on controls and cells in “The Core Application Architecture" in Cocoa
Fundamentals Guide.

The Object Value of Token Fields

When you want to retrieve the contents of a token field, you send it an objectValuemessage. This message
returns an array of the field’s represented objects, whether those objects are strings or something else.
Conversely, you can set the contents of a token field by sending it a setObjectValue: message, passing
in an array of the represented objects you wish the field to have. If these objects are not strings, the token
field queries its delegate for the strings to display for the represented objects.

Because a token field is a direct descendent of NSTextField, it is a control that sends an action message
to its target when the user presses the Return key (or if the insertion point leaves the field, if the action is
configured as “Send on End Editing”). Pressing the Return key either tokenizes the most recently entered
string or causes the action message to be sent. Your implementation of the action method is an ideal place
to ask the token field (sender) for its object value.

Tokens and Represented Objects 13
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

How Token Fields Work

Basic Interaction With the Delegate

To acquire the capabilities of completion lists, represented objects, and token menus for token fields, you
must implement a number of delegation methods. A token field sends a series of messages to its delegate
as illustrated in Figure 2-1.

Figure 2-1 Messages to the token field delegate

NSTokenField Delegate

1
User enters text

3

User enters
tokenizing character

7
User clicks token menu

tokenField:
completionsForSubstring:
indexOfToken:
indexOfSelectedItem:

tokenField:
representedObjectForEditingString:

tokenField:
displayStringForRepresentedObject:

tokenField:
hasMenuForRepresentedObject:

2

4

5

6

tokenField:
MenuForRepresentedObject:

8

1. The user enters text in the token field.

2. The delegate receives the
tokenField:completionsForSubstring:indexOfToken:indexOfSelectedItem:message and
returns a list of possible completions for the passed-in substring.

The delegate continues to receive this message as the user continues typing in the token field; each
time it returns a progressively narrowed list of possible completions.

3. The user selects a string from the completion list and types the tokenizing character.

The user could enter a string that is not in the list of possible completions and that is also tokenized.

4. The delegate receives the tokenField:representedObjectForEditingString: message and
returns a represented object that corresponds to the passed-in editing string.

If the delegate doesn’t implement this message or returns nil, the entered string is the represented
object.

14 Basic Interaction With the Delegate
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

How Token Fields Work

5. If the delegate implements the tokenField:representedObjectForEditingString: method to
return a represented object for a entered string, it next receives the
tokenField:displayStringForRepresentedObject: message. The delegate implements this
method to return a display string for the given represented object. (This display string may be different
from the string entered from the completion list.)

6. The token queries the delegate with tokenField:hasMenuForRepresentedObject: to find out if
the token has a menu. If there is a menu, it adds a triangular discovery button when it draws the token.

7. The user clicks a token’s menu-discovery button.

8. The delegate receives thetokenField:menuForRepresentedObject:message and returns anNSMenu
object (containing the desired menu items) to the token field, which displays the menu.

There are several other methods that a token field sends to its delegate, including
tokenField:styleForRepresentedObject:, which allows the substitution of plain-text tokens for the
encapsulating kind.

Basic Interaction With the Delegate 15
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

How Token Fields Work

16 Basic Interaction With the Delegate
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

How Token Fields Work

The following sections describe how to set the attributes of token fields , establish common bindings between
token fields and controller objects, and to make delegate and target-action connections. You can accomplish
most of these tasks in Interface Builder.

Token Field Attributes

You can set the token field attributes listed in Table 3-1 in Interface Builder.

Table 3-1 NSTokenField attributes in Interface Builder

DescriptionAttribute

Choose one of Default, Plain, or Rounded. The default token style currently is Rounded—the
blue rounded rectangle. Tokens in the plain style are simple text without any background;
with the plain text style only one token is allowed per token field.

You can change the token style on a case-by-case basis by implementing the delegation
method tokenField: styleForRepresentedObject:.

Token Style

Specify the completion delay for the token field: the period (in seconds) after the user begins
typing before the token field displays the completion list. The default value is zero, which
means “display the list immediately”.

Comp. Delay

The tokenizing character set is an attribute not displayed by Interface Builder. When users enter one of the
characters from the current tokenizing character set, it tells the token field to convert the preceding string
to a token. The default tokenizing character is the comma; carriage return (or newline character) is not in the
set, but is implied in all cases. You can change the tokenizing character set using
setTokenizingCharacterSet:.

The Interface Builder inspector also displays attributes of the superclasses of NSTokenField, namely
NSTextField, NSControl, and NSView. None of the settings for these attributes has a particular consequence
for token fields.

Token Field Connections

For a token field to acquire the capabilities of completion lists, non-string represented objects, and token
menus, a delegate must respond to the messages sent by the control. Be sure to connect the delegate outlet
to an object in the application that implements the appropriate delegation methods. Also make a target-action
connection between the token field and an action method implemented by a target object in the application.
You can make these connections in Interface Builder or programmatically.

Token Field Attributes 17
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring Token Fields

18 Token Field Connections
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring Token Fields

When the user begins typing in a token field, the control sends (after the specified completion delay) a
tokenField:completionsForSubstring:indexOfToken:indexOfSelectedItem: message to its
delegate. The delegate evaluates the passed-in substring for the current token and returns an array of strings
that are the possible completions of the substring.

The code in Listing 4-1 is in an application that makes use of the Scripting Bridge technology (introduced in
Mac OS X 10.5) to query the iTunes application for the tracks in the user’s music library. The application stores
these tracks (iTunesTrack objects) in an instance variable named trackNames. The delegate in this method
gets the names of all tracks and then uses the NSArray method filteredArrayUsingPredicate: to
narrow this array of track names to those whose initial characters match the passed-in substring.

Listing 4-1 Returning a completion list

- (NSArray *)tokenField:(NSTokenField *)tokenFieldArg completionsForSubstring:(NSString
 *)substring indexOfToken:(NSInteger)tokenIndex indexOfSelectedItem:(NSInteger
*)selectedIndex {

 NSArray *trackNames = [tracks valueForKey:@"name"];
 NSArray *matchingTracks = [trackNames filteredArrayUsingPredicate:
 [NSPredicate predicateWithFormat:@"SELF beginswith[cd] %@", substring]];
 return matchingTracks;
}

The selectedIndex parameter, which is not used in this example, allows the delegate to return a default
selection in the completion list.

19
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Displaying the Completion List

20
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Displaying the Completion List

When the user enters a string and presses a tokenizing character, the token field sends the
tokenField:representedObjectForEditingString: message to its delegate. This message asks the
delegate to return a represented object for the entered token string (the editingString parameter in
Listing 5-1). In this example, the delegate finds and returns the iTunesTrack object with the name matching
editingString.

Listing 5-1 Returning represented objects for tokens

- (id)tokenField:(NSTokenField *)tokenField representedObjectForEditingString: (NSString
 *)editingString {
 iTunesTrack *track = [tracks objectWithName:editingString];
 if ([track exists])
 return track;
 return nil;
}

If the delegate returns nil, no represented objects are associated with the token string. Otherwise, the token
field queries its delegate for the display string to use for each token by invoking the
tokenField:displayStringForRepresentedObject: method. Listing 5-2 shows an implementation
of this delegation method.

Listing 5-2 Returning the display string for a represented object

- (NSString *)tokenField:(NSTokenField *)tokenFieldArg
displayStringForRepresentedObject:(id)representedObject { return [representedObject
 name]; }

21
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Returning Represented Objects

22
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Returning Represented Objects

To retrieve the objects represented by the tokens in a token field, send the token field an objectValue
message. Although this method is declared by NSControl, NSTokenField implements it to return an array
of represented objects. If the token field simply contains a series of strings, objectValue returns an array
of strings. To set the represented objects of a token field, use the setObjectValue: method, passing in an
array of represented objects. If these objects aren’t strings, NSTokenField then queries its delegate for the
display strings to use for each token.

A common place to call objectValue is in an action method. Listing 6-1 gives an example of such a method.

Listing 6-1 Getting and setting the contents of a token filed

- (IBAction)addToPlaylist:(id)sender { // sender is token field
 // add songs to playlist, select first one added
 NSIndexSet *curSongIndex = [NSIndexSet indexSetWithIndex:(NSUInteger)[currentList
count]];
 [currentList addObjectsFromArray:[sender objectValue]];
 [songTable reloadData];
 [songTable selectRowIndexes:curSongIndex byExtendingSelection:NO];
 [sender setObjectValue:nil];

}

Note that this method clears the token field by setting its object value to nil.

23
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Getting and Setting Token-Field Values

24
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Getting and Setting Token-Field Values

If you want tokens in a token field to have menus, you must implement the
tokenField:hasMenuForRepresentedObject: and tokenField:menuForRepresentedObject:
delegation methods. A token field invokes the former method just before it displays a token to find out if it
should draw a discovery triangle. It invokes the latter method when the user clicks the triangle.

Listing 7-1 gives a sample implementation of these methods. Note that it sets the token’s represented object
as the represented object of the menu item that invokes an action method. The target of the action method
fetches the represented object from the menu item to act upon it.

Listing 7-1 Implementing the menu delegation methods

- (BOOL)tokenField:(NSTokenField *)tokenField
hasMenuForRepresentedObject:(id)representedObject {
 return YES;
}

- (NSMenu *)tokenField:(NSTokenField *)tokenField
menuForRepresentedObject:(id)representedObject {

 NSMenu *tokenMenu = [[[NSMenu alloc] init] autorelease];

 if (![representedObject exists])
 return nil;

 NSMenuItem *artistItem = [[[NSMenuItem alloc] init] autorelease];
 [artistItem setTitle:[representedObject artist]];
 [tokenMenu addItem:artistItem];

 NSMenuItem *albumItem = [[[NSMenuItem alloc] init] autorelease];
 [albumItem setTitle:[NSString stringWithFormat:@"Album: %@", [representedObject
album]]];
 [tokenMenu addItem:albumItem];

 NSMenuItem *durationItem = [[[NSMenuItem alloc] init] autorelease];
 [durationItem setTitle:[NSString stringWithFormat:@"Time: %@", [representedObject
time]]];
 [tokenMenu addItem:durationItem];

 NSMenuItem *mItem = [[[NSMenuItem alloc] initWithTitle:@"Show Album Art"
action:@selector(showAlbumArt:) keyEquivalent:@""] autorelease];
 [mItem setTarget:self];
 [mItem setRepresentedObject:representedObject];
 [tokenMenu addItem:mItem];

 return tokenMenu;
}

25
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Implementing Menus for Tokens

26
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Implementing Menus for Tokens

This table describes the changes to Token Field Programming Guide for Cocoa.

NotesDate

New document that describes how to set up and programatically manage a
token field.

2007-12-11

27
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

28
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Token Field Programming Guide for Cocoa
	Contents
	Figures, Tables, and Listings
	Introduction
	About Token Fields
	A Token Field in Operation
	When To Use Token Fields

	How Token Fields Work
	Tokens and Represented Objects
	The Object Value of Token Fields
	Basic Interaction With the Delegate

	Configuring Token Fields
	Token Field Attributes
	Token Field Connections

	Displaying the Completion List
	Returning Represented Objects
	Getting and Setting Token-Field Values
	Implementing Menus for Tokens
	Revision History

