
User Interface Validation
Cocoa > User Experience

2007-07-10

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Cocoa are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to User Interface Validation 5

Organization of This Document 5

Implementing Validation 7

The Target Object 7
Implementation Steps 7
Example Implementation 8

Implementing a Validated Item 9

Document Revision History 11

3
2007-07-10 | © 2007 Apple Inc. All Rights Reserved.

4
2007-07-10 | © 2007 Apple Inc. All Rights Reserved.

The protocols NSUserInterfaceValidations and NSValidatedUserInterfaceItemprovide a standard
way to validate user interface items—that is, to set their state as appropriate for the current application
context (for example, to disable the Paste menu item if there is no suitable data on the pasteboard).

You should read this document to learn how to implement user interface item validation and how to extend
the user interface validation protocol.

For more information about other ways to validate menus and pop-up lists, see ApplicationMenu and Pop-up
List Programming Topics for Cocoa.

Organization of This Document

“Implementing Validation” (page 7) describes how to use the NSUserInterfaceValidations and
NSValidatedUserInterfaceItem protocols to validate user interface items.

“Implementing a Validated Item” (page 9) describes you can implement an item that uses the validation
protocol to determine its state, and how to extend the NSUserInterfaceValidations protocol to provide
custom user interface item validation.

Organization of This Document 5
2007-07-10 | © 2007 Apple Inc. All Rights Reserved.

Introduction to User Interface Validation

6 Organization of This Document
2007-07-10 | © 2007 Apple Inc. All Rights Reserved.

Introduction to User Interface Validation

Before it is displayed, a user interface item checks to see if its target implements
validateUserInterfaceItem:. If it does, then the enabled status of the item is determined by the return
value of the method. You can therefore conditionally enable or disable an item by implementing
validateUserInterfaceItem: in the target object.

The Target Object

In some situations (typically if you set the target and action in Interface Builder), the target is the object to
which the user interface item is connected directly; in other situations (when the user interface item’s target
is nil—such as if you connected it to First Responder in Interface Builder), the target is the first object in
the responder chain that implements its action method. For more details, see “Responder Chain for Action
Messages” in Cocoa Event-Handling Guide > Event Architecture. In either case, the important thing to realize
is that the target is the object that implements the user interface item’s action method. (The target is also the
object that has the suitable context to know whether the action is appropriate.) Hence the object that must
implement validateUserInterfaceItem: is the same object that implements the action method.

For example, suppose you have a controller object that implements a paste: method. When the paste:
method is invoked, it retrieves a value from the pasteboard and then pastes it into the current selection. It
can only do this if there is a valid value on the pasteboard. The controller object therefore also implements
validateUserInterfaceItem:. The validateUserInterfaceItem: checks to see if the pasteboard
contains useable data, and if it does it returns YES otherwise it returns NO. If the pasteboard does not contain
useable data, the user interface item is disabled.

If in your application you have more than one controller that implements paste:—each responsible for
pasting different data—then each should have its own implementation of validateUserInterfaceItem:
that checks to see if the pasteboard contains data useable by it.

Implementation Steps

The implementation of validateUserInterfaceItem: should follow these steps:

1. To decide whether or not an item should be enabled, you need to know what it will do if the user selects
it. The sender implements the NSValidatedUserInterfaceItem protocol, so you can find out what
tag and action are associated with it. You typically first therefore check to see what action is associated
with the item (you need to test for each of the actions you’re interested in).

Checking the action rather than the tag means you avoid the fragility of having to remember to use the
same tag for each user interface element that invokes the same method on the target.

2. If the action is something you’re interested in, then return a Boolean value appropriate for the current
context.

The Target Object 7
2007-07-10 | © 2007 Apple Inc. All Rights Reserved.

Implementing Validation

3. If the action is not something you’re interested in, then either:

a. If your superclass implements the validation method (for example, NSDocument and
NSObjectController implement validateUserInterfaceItem:), invoke super’s
implementation; otherwise

b. Return a default value (typically YES).

Example Implementation

The following example illustrates the implementation of validateUserInterfaceItem: in a subclass of
NSDocument.

- (BOOL)validateUserInterfaceItem:(id <NSValidatedUserInterfaceItem>)anItem
{
 SEL theAction = [anItem action];

 if (theAction == @selector(copy:))
 {
 if (/* there is a current selection and it is copyable */)
 {
 return YES;
 }
 return NO;
 } else if (theAction == @selector(paste:))
 {
 if (/* there is a something on the pasteboard we can use and
 the user interface is in a configuration in which it makes sense
 to paste */)
 {
 return YES;
 }
 return NO;
 } else
 /* check for other relevant actions ... */
 }
 // subclass of NSDocument, so invoke super's implementation
 return [super validateUserInterfaceItem:anItem];
}

8 Example Implementation
2007-07-10 | © 2007 Apple Inc. All Rights Reserved.

Implementing Validation

NSValidatedUserInterfaceItem is used by the Application Kit’s standard user interface validation
mechanism, and must be implemented by validated objects.

Validated objects send validateUserInterfaceItem: to validators that can be determined by
NSApplication’s targetForAction:to:from:.

You can extend this functionality by introducing a new set of protocol pairs that is targeted to your specific
validated objects. NSMenuItemprotocol is one example extending this validation machinery to allow validators
to modify menu items being validated. You can extend UI validation by:

1. Declare a protocol that inherits from NSValidatedUserInterfaceItem.

You can add as many features you want for your validated objects in this protocol, for example:

@protocol NSValidatedToolbarItem <NSValidatedUserInterfaceItem>
- (NSImage *)image;
- (void)setImage:(NSImage *)theImage
- (NSString *)toolTip;
- (void)setToolTip:(NSString *)theToolTip;
@end

2. Declare validation method for validators.

You should declare the new selector that takes your objects as the argument, for example:

@protocol NSToolbarItemValidations
- (BOOL)validateToolbarItem:(id <NSValidatedToolbarItem>)theItem;
@end

3. Implement your update method.

You should, first, check if your current validator responds to your validation method, then, the generic
validateUserInterfaceItem:. This way, your object can be automatically enabled/disabled by the
Application Kit's standard objects like NSTextView without any additional coding, for example:

- (void)update {
 id validator = [NSApp targetForAction:[self action] to:[self target]
from:self];

 if ((validator == nil) || ![validator respondsToSelector:[self action]])
 {
 [self setEnabled:NO];
 }
 else if ([validator respondsToSelector:@selector(validateToolbarItem:)])
 {
 [self setEnabled:[validator validateToolbarItem:self]];
 }
 else if ([validator respondsToSelector:@selector(validateUserInterfaceItem:)])
 {

9
2007-07-10 | © 2007 Apple Inc. All Rights Reserved.

Implementing a Validated Item

 [self setEnabled:[validator validateUserInterfaceItem:self]];
 }
 else
 {
 [self setEnabled:YES];
 }
}

4. Optionally, implement category methods for standard objects .

Now you can implement default validation methods for standard objects likeNSTextVieworNSDocument,
for example:

@implementation NSTextView (NSToolbarValidation)

- (BOOL)validateToolbarItem:(id <NSValidatedToolbarItem>)theItem
{
 BOOL returnValue = [self validateUserInterfaceItem:theItem];
 // Your own validation
 return returnValue;
}
@end

10
2007-07-10 | © 2007 Apple Inc. All Rights Reserved.

Implementing a Validated Item

This table describes the changes to User Interface Validation.

NotesDate

Added link to Menus Programming Guide.2007-07-10

Corrected typographical errors in “Implementing a Validated Item” (page 9).2003-02-24

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

11
2007-07-10 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

12
2007-07-10 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

	User Interface Validation
	Contents
	Introduction
	Implementing Validation
	The Target Object
	Implementation Steps
	Example Implementation

	Implementing a Validated Item
	Revision History

