
URL Loading System
Cocoa > Networking

2008-05-06

Apple Inc.
© 2003, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Safari are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to the URL Loading System 7

Organization of This Document 7
See Also 8

URL Loading System Overview 9

URL Loading 9
Cache Management 10
Authentication and Credentials 11
Cookie Storage 11
Protocol Support 12

Downloading Data Synchronously 13

Using NSURLConnection 15

Creating a Connection 15
Handling Request Changes 17
Handling Authentication Challenges 18
Controlling Response Caching 19

Using NSURLDownload 21

Downloading to a Predetermined Destination 21
Downloading a File Using the Suggested Filename 22
Displaying the Download Progress 24
Handling Request Changes 25
Handling Authentication Challenges 25
Decoding Encoded Files 27

Understanding Cache Access 29

Using the Cache for a Request 29
Cache Use Semantics for the http Protocol 29

NSURLDownload and NSURLConnection Differences 31

Response Caching 31
Handling of Non-existent URLs 31

Document Revision History 33

3
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

4
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Figures and Listings

URL Loading System Overview 9

Figure 1 The URL loading system class hierarchy 9

Using NSURLConnection 15

Listing 1 Creating a connection using NSURLConnection. 15
Listing 2 Example connection:didReceiveResponse: implementation 16
Listing 3 Example connection:didReceiveData: implementation 16
Listing 4 Example connectionDidFailWithError: implementation 16
Listing 5 Example connectionDidFinishLoading: implementation 17
Listing 6 Example connection:willSendRequest:redirectResponse: implementation. 18
Listing 7 Example of connection:didReceiveAuthenticationChallenge: delegate method 19
Listing 8 Example connection:withCacheResponse: implementation 20

Using NSURLDownload 21

Listing 1 Using NSURLDownload with a predetermined destination file location 21
Listing 2 Using NSURLDownload with a filename derived from the download 22
Listing 3 Logging the finalized filename using download:didCreateDestination: 23
Listing 4 Displaying the download progress 24
Listing 5 Example download:willSendRequest:redirectResponse: implementation. 25
Listing 6 Example download:didReceiveAuthenticationChallenge: implementation. 26
Listing 7 Example implementation of download:shouldDecodeSourceDataOfMIMEType:

method. 27

5
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

6
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

This programming topic describes the Foundation framework classes available for interacting with URLs and
communicating with servers using standard Internet protocols. Together theses classes are referred to as the
URL loading system.

The NSURL class provides the ability to manipulate URLs and the resources they refer to.

The Foundation framework also provides a rich collection of classes that include support for URL loading,
cookie storage, response caching, credential storage and authentication, and writing custom protocol
extensions.

The URL loading system provides support for accessing resources using the following protocols:

 ■ File Transfer Protocol (ftp://)

 ■ Hypertext Transfer Protocol (http://)

 ■ Secure 128-bit Hypertext Transfer Protocol (https://)

 ■ Local file URLs (file:///)

It also transparently supports both proxy servers and SOCKS gateways using the user’s system preferences.

Organization of This Document

This programming topic includes the following articles:

 ■ "URL Loading System Overview" (page 9) describes the classes of the URL loading system and their
interaction.

 ■ "Downloading Data Synchronously" (page 13) describes the NSURLConnection support for synchronous
connections.

 ■ "Using NSURLConnection" (page 15) describes using NSURLConnection for asynchronous connections.

 ■ "Using NSURLDownload" (page 21) describes using NSURLDownload to download files asynchronously
to disk.

 ■ "Understanding Cache Access" (page 29) describes how a connection uses the cache during a request.

 ■ "NSURLDownload and NSURLConnection Differences" (page 31) describes subtle differences in behavior
between these two classes.

Organization of This Document 7
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Introduction to the URL Loading System

See Also

The following sample code is available through Apple Developer Connection:

 ■ SpecialPictureProtocol implements a custom NSURLProtocol that creates jpeg images in memory as
data is downloaded.

 ■ AutoUpdater demonstrates how to check for, and download, an application update using
NSURLConnection and NSURLDownload.

8 See Also
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Introduction to the URL Loading System

The URL loading system is a set of classes and protocols that provide the underlying capability for an
application to access the data specified by a URL.

These classes fall into five categories: URL loading, cache management, authentication and credentials, cookie
storage, and protocol support.

Figure 1 The URL loading system class hierarchy

NSObject

URL Loading

NSURLConnection
NSMutableURLRequestNSURLRequest
NSHTTPURLResponseNSURLResponse

NSURLDownload

Cache Management

NSCacheURLRequest
NSURLCache

Cookie Storage

NSHTTPCookie
NSHTTPCookieStorage

Protocol Support

NSURLProtocolClient
NSURLProtocol

Authentication and Credentials

NSURLCredential
NSURLCredentialStorage
NSURLProtectionSpace

NSURLAuthenticationChallenge
NSURLAuthenticationChallengeSender

URL Loading

The most commonly used classes in the URL loading system allow an application to create a request for the
content of a URL and download it from the source.

A request for the contents of a URL is represented by an NSURLRequest object. The NSURLRequest class
encapsulates a URL and any protocol-specific properties, in a protocol-independent manner. It also provides
an interface to set the timeout for a connection and specifies the policy regarding the use of any locally
cached data. The NSMutableURLRequest class is a mutable subclass of NSURLRequest that allows a client
application to alter an existing request.

URL Loading 9
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

URL Loading System Overview

Note: When a client application initiates a connection or download using an instance of
NSMutableURLRequest, a deep copy is made of the request. Changes made to the initiating request have
no effect once a download has been initialized.

Protocols, such as HTTP, that support protocol-specific properties must create categories on the NSURLRequest
and NSMutableURLRequest classes to provide accessors for those properties. As an example, the HTTP
protocol adds methods to NSURLRequest to return the HTTP request body, headers, and transfer method.
It also adds methods to NSMutableURLRequest to set the corresponding values. Methods for setting and
getting property values in those accessors are exposed in the NSURLProtocol class.

The response from a server to a request can be viewed as two parts: metadata describing the contents and
the URL content data. The metadata that is common to most protocols is encapsulated by the NSURLResponse
class and consists of the MIME type, expected content length, text encoding (where applicable), and the URL
that provided the response. Protocols can create subclasses of NSURLResponse to store protocol-specific
metadata. NSHTTPURLResponse, for example, stores the headers and the status code returned by the web
server.

Note: It’s important to remember that only the metadata for the response is stored in an NSURLResponse
object. An NSCachedURLResponse instance is used to encapsulate an NSURLResponse, the URL content
data, and any application-provided information. See "Cache Management" (page 10) for details.

The NSURLConnection and NSURLDownload classes provide the interface to make a connection specified
by an NSURLRequest object and download the contents. An NSURLConnection object provides data to
the delegate as it is received from the originating source, whereas an NSURLDownload object writes the
request data directly to disk. Both classes provide extensive delegate support for responding to redirects,
authentication challenges, and error conditions.

the NSURLConnection class provides a delegate method that allows an application to control the caching
of a response on a per-request basis. Downloads initiated by an NSURLDownload instance are not cached.

Cache Management

The URL loading system provides a composite on-disk and in-memory cache allowing an application to
reduce its dependence on a network connection and provide faster turnaround for previously cached
responses. The cache is stored on a per-application basis.

The cache is queried by NSURLConnection or NSURLDownload according to the cache policy specified by
the initiating NSURLRequest.

The NSURLCache class provides methods to configure the cache size and its location on disk. It also provides
methods to manage the collection of NSCachedURLResponse objects that contain the cached responses.

An NSCachedURLResponse encapsulates the NSURLResponse and the URL content data.
NSCachedURLResponse also provides a user info dictionary that can be used by an application to cache any
custom data.

Not all protocol implementations support response caching. Currently only http and https requests are
cached, and https requests are never cached to disk.

10 Cache Management
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

URL Loading System Overview

An NSURLConnection can control whether a response is cached and whether the response should be cached
only in memory by implementing the connection:willCacheResponse: delegate method.

Authentication and Credentials

Some servers restrict access to certain content, requiring a user to authenticate with a valid user name and
password in order to gain access. In the case of a web server, restricted content is grouped together into a
realm that requires a single set of credentials.

The URL loading system provides classes that model credentials and protected areas as well as providing
secure credential persistence. Credentials can be specified to persist for a single request, for the duration of
an application’s launch, or permanently in the user’s keychain.

Note: Credentials stored in persistent storage are kept in the user's keychain and shared among all
applications.

The NSURLCredential class encapsulates a credential consisting of the user name, password, and the type of
persistence to use. The NSURLProtectionSpace class represents an area that requires a specific credential. A
protection space can be limited to a single URL, encompass a realm on a web server, or refer to a proxy.

A shared instance of the NSURLCredentialStorage class manages credential storage and provides the mapping
of an NSURLCredential object to the corresponding NSURLProtectionSpace object for which it provides
authentication.

The NSURLAuthenticationChallenge class encapsulates the information required by an NSURLProtocol
implementation to authenticate a request: a proposed credential, the protection space involved, the error
or response that the protocol used to determine that authentication is required, and the number of
authentication attempts that have been made. An NSURLAuthenticationChallenge instance also specifies
the object that initiated the authentication. The initiating object, referred to as the sender, must conform to
the NSURLAuthenticationChallengeSender protocol.

NSURLAuthenticationChallenge instances are used by NSURLProtocol subclasses to inform the URL loading
system that authentication is required. They are also provided to the delegate methods of NSURLConnection
and NSURLDownload that facilitate customized authentication handling.

Cookie Storage

Due to the stateless nature of the HTTP protocol, cookies are often used to provide persistent storage of data
across URL requests. The URL loading system provides interfaces to create and manage cookies as well as
sending and receiving cookies from web servers.

Note: Cookies are shared among all applications using the URL loading system.

The NSHTTPCookie class encapsulates a cookie, providing accessors for many of the common cookie attributes.
It also provides methods to convert HTTP cookie headers to NSHTTPCookie instances and convert an
NSHTTPCookie instance to headers suitable for use with an NSURLRequest. The URL loading system

Authentication and Credentials 11
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

URL Loading System Overview

automatically sends any stored cookies appropriate for an NSURLRequest unless the request specifies not to
send cookies. Likewise, cookies returned in an NSURLResponse are accepted in accordance with the current
cookie acceptance policy.

The NSHTTPCookieStorage class provides the interface for managing the collection of NSHTTPCookie objects
shared by all applications.

NSHTTPCookieStorage allows an application to specify a cookie acceptance policy. The cookie acceptance
policy controls whether cookies should always be accepted, never be accepted, or accepted only from the
same domain as the main document URL.

Note: Changing the cookie acceptance policy in an application affects the cookie acceptance policy for all
other running applications.

When another application changes the cookie storage or the cookie acceptance policy, NSHTTPCookieStorage
notifies an application by posting the NSHTTPCookieStorageCookiesChangedNotification and
NSHTTPCookieStorageAcceptPolicyChangedNotification notifications.

Protocol Support

The URL loading system design allows a client application to extend the protocols that are supported for
transferring data. The URL loading system natively supports http, https, file, and ftp protocols.

Custom protocols are implemented by subclassing NSURLProtocol and then registering the new class with
the URL loading system using the NSURLProtocol class method registerClass:. When an NSURLConnection
or NSURLDownload object initiates a connection for an NSURLRequest, the URL loading system consults each
of the registered classes in the reverse order of their registration. The first class that returns YES for a
canInitWithRequest: message is used to handle the request.

The URL loading system is responsible for creating and releasing NSURLProtocol instances when connections
start and complete. An application should never create an instance of NSURLProtocol directly.

When an NSURLProtocol subclass is initialized by the URL loading system, it is provided a client object that
conforms to the NSURLProtocolClient protocol. The NSURLProtocol subclass sends messages from the
NSURLProtocolClient protocol to the client object to inform the URL loading system of its actions as it creates
a response, receives data, redirects to a new URL, requires authentication, and completes the load. If the
custom protocol supports authentication, then it must conform to the NSURLAuthenticationChallengeSender
protocol.

12 Protocol Support
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

URL Loading System Overview

NSURLConnection provides support for downloading the contents of an NSURLRequest in a synchronous
manner using the class method sendSynchronousRequest:returningResponse:error:. Using this
method is simple and convenient, but has limitations:

 ■ The client application blocks until the data has been completely received, an error is encountered, or
the request times out.

 ■ Minimal support is provided for requests that require authentication.

 ■ There is no means of modifying the default behavior of response caching or accepting server redirects.

If the download succeeds the contents of the request is returned as an NSData object and an NSURLResponse
for the request is returned by-reference. If NSURLConnection is unable to download the URL the method will
return nil and any available NSError instance by-reference in the appropriate parameter.

If the request requires authentication in order to make the connection, valid credentials must already be
available in the NSURLCredentialStorage, or must be provided as part of the requested URL. If the credentials
are not available or fail to authenticate, the URL loading system will respond by sending the NSURLProtocol
subclass handling the connection a continueWithoutCredentialForAuthenticationChallenge:
message.

When a synchronous connection attempt encounters a server redirect, the redirect is always honored. Likewise
the response data is stored in the cache according to the default support provided by the protocol
implementation.

13
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Downloading Data Synchronously

14
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Downloading Data Synchronously

NSURLConnection provides the most flexible method of downloading the contents of a URL. It provides a
simple interface for creating and cancelling a connection, and supports a collection of delegate methods
that provide feedback and control of many aspects of the connection. These classes fall into five categories:
URL loading, cache management, authentication and credentials, cookie storage, and protocol support.

Creating a Connection

In order to download the contents of a URL, an application needs to provide a delegate object that, at a
minimum, implements the following delegate methods: connection:didReceiveResponse:,
connection:didReceiveData:, connection:didFailWithError: and
connectionDidFinishLoading:.

The example in Listing 1 initiates a connection for a URL. It begins by creating an NSURLRequest instance
for the URL, specifying the cache access policy and timeout interval for the connection. It then creates an
NSURLConnection instance using the request and specifying the delegate. If NSURLConnection can’t create
a connection for the request, initWithRequest:delegate: returns nil. If the connection is successful,
an instance of NSMutableData is created to store the data that will be provided to the delegate incrementally.

Listing 1 Creating a connection using NSURLConnection.

// create the request
NSURLRequest *theRequest=[NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://www.apple.com/"]
 cachePolicy:NSURLRequestUseProtocolCachePolicy
 timeoutInterval:60.0];
// create the connection with the request
// and start loading the data
NSURLConnection *theConnection=[[NSURLConnection alloc] initWithRequest:theRequest
 delegate:self];
if (theConnection) {
 // Create the NSMutableData that will hold
 // the received data
 // receivedData is declared as a method instance elsewhere
 receivedData=[[NSMutableData data] retain];
} else {
 // inform the user that the download could not be made
}

The download starts immediately upon receiving the initWithRequest:delegate: message. It can be
canceled any time before the delegate receives a connectionDidFinishLoading: or
connection:didFailWithError: message by sending the connection a cancel message.

Creating a Connection 15
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLConnection

When the server has provided sufficient data to create an NSURLResponse object, the delegate receives a
connection:didReceiveResponse: message. The delegate method can examine the provided
NSURLResponse and determine the expected content length of the data, MIME type, suggested filename
and other metadata provided by the server.

It's important that the delegate be prepared to receive the connection:didReceiveResponse: message
multiple times for a connection. This message can be sent due to server redirects, or in rare cases multi-part
MIME documents. Each time the delegate receives the connection:didReceiveResponse: message, it
should reset any progress indication and discard all previously received data. The example implementation
in Listing 2 simply resets the length of the received data to 0 each time it is called.

Listing 2 Example connection:didReceiveResponse: implementation

- (void)connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse
 *)response
{
 // this method is called when the server has determined that it
 // has enough information to create the NSURLResponse

 // it can be called multiple times, for example in the case of a
 // redirect, so each time we reset the data.
 // receivedData is declared as a method instance elsewhere
 [receivedData setLength:0];
}

As the connection progresses the delegate is sent connection:didReceiveData: messages as the data
is received. The delegate implementation is responsible for storing the newly received data. In the example
implementation in Listing 3, the new data is appended to the NSMutableData object created in Listing 1.

Listing 3 Example connection:didReceiveData: implementation

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data
{
 // append the new data to the receivedData
 // receivedData is declared as a method instance elsewhere
 [receivedData appendData:data];
}

You can also use the connection:didReceiveData: method to provide an indication of the connection’s
progress to the user.

If an error is encountered during the download, the delegate receives a connection:didFailWithError:
message. The NSError object passed as the parameter specifies the details of the error. It also provides the
URL of the request that failed in the user info dictionary using the key NSErrorFailingURLStringKey.

After the delegate receives a message connection:didFailWithError:, it receives no further delegate
messages for the specified connection.

The example in Listing 4 releases the connection, as well as any received data, and logs the error.

Listing 4 Example connectionDidFailWithError: implementation

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error
{
 // release the connection, and the data object

16 Creating a Connection
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLConnection

 [connection release];
 // receivedData is declared as a method instance elsewhere
 [receivedData release];

 // inform the user
 NSLog(@"Connection failed! Error - %@ %@",
 [error localizedDescription],
 [[error userInfo] objectForKey:NSErrorFailingURLStringKey]);
}

Finally, if the connection succeeds in downloading the request, the delegate receives the
connectionDidFinishLoading:message. The delegate will receive no further messages for the connection
and the NSURLConnection object can be released.

The example implementation in Listing 5 logs the length of the received data and releases both the connection
object and the received data.

Listing 5 Example connectionDidFinishLoading: implementation

- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 // do something with the data
 // receivedData is declared as a method instance elsewhere
 NSLog(@"Succeeded! Received %d bytes of data",[receivedData length]);

 // release the connection, and the data object
 [connection release];
 [receivedData release];
}

This represents the simplest implementation of a client using NSURLConnection. Additional delegate methods
provide the ability to customize the handling of server redirects, authorization requests and caching of the
response.

Handling Request Changes

It’s not uncommon for a server to redirect a request for one URL to another URL. The NSURLConnection
delegate will receive a connection:willSendRequest:redirectResponse: when this occurs.

If the delegate implements this method it can examine the new NSURLRequest and the NSURLResponse that
caused the redirect and allow the redirected NSURLRequest to be used for the connection, create a new
NSURLRequest for the connection, reject the redirect and have the connection return any data received from
the NSURLResponse that caused the redirect, or cancel the download entirely.

To allow the redirect, the delegate should return the provided NSURLRequest. The delegate could also create
a new NSURLRequest, pointing to a new URL, and return that request.

If the delegate wishes to reject the redirect, but receive any existing data for the connection, the method
should return nil.

Finally, the delegate can cancel the redirect and the connection, by sending the cancel message to
connection.

Handling Request Changes 17
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLConnection

The delegate will also receive this message if the NSURLProtocol subclass that handles the request has
changed the NSURLRequest in order to standardize its format, for example, changing a request for
“http://www.apple.com” to “http://www.apple.com/“. This is required because the standardized, or
canonical, version of the request is used for cache management. In this special case, the response passed to
the delegate is nil and the delegate should simply return the provided NSURLRequest.

The example implementation in Listing 6 allows canonical changes and denies all server redirects.

Listing 6 Example connection:willSendRequest:redirectResponse: implementation.

-(NSURLRequest *)connection:(NSURLConnection *)connection
 willSendRequest:(NSURLRequest *)request
 redirectResponse:(NSURLResponse *)redirectResponse
{
 NSURLRequest *newRequest=request;
 if (redirectResponse) {
 newRequest=nil;
 }
 return newRequest;
}

If the delegate doesn't implement connection:willSendRequest:redirectResponse:, all canonical
changes and server redirects are allowed.

Handling Authentication Challenges

If a request requires authentication and there are no valid credentials available, either as part of the requested
URL or in the shared NSURLCredentialStorage, the NSURLConnection delegate receives a
connection:didReceiveAuthenticationChallenge:message. In order for the connection to continue,
the delegate must provide credentials to attempt to use for authentication, attempt to continue without
credentials, or cancel the authentication request.

The NSURLAuthenticationChallenge instance passed to the delegate contains information about what
triggered the authentication challenge, the number of attempts that have been made for the challenge, any
attempted credentials, the NSURLProtocolSpace that requires the credentials, and the sender of the challenge.

Often the delegate prompts the user to enter a valid user name and password. If the authentication challenge
has tried to authenticate and failed, the attempted credentials are returned by sending challenge a
proposedCredential message. The delegate can then use these credentials to populate a dialog that it
presents to the user.

Invoking previousFailureCount on the challenge parameter returns the number of authentication
attempts. The delegate can provide this information to the end user, to determine if the credentials it supplied
previously are failing, or to limit the maximum number of authentication attempts.

To attempt to authenticate, the application should create an NSURLCredential object with the user name,
password and the type of persistence to use for the credentials, and then send the [challenge sender]
a useCredential:forAuthenticationChallenge: message.

18 Handling Authentication Challenges
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLConnection

If the delegate chooses not to provide a credential for the authentication challenge, it can attempt to continue
without one by sending [challenge sender] a
continueWithoutCredentialsForAuthenticationChallenge: message. Depending on the protocol
implementation, this may return alternate URL contents that don’t require authentication or cause the
connection to fail, receiving a connectionDidFailWithError: message.

The delegate may also choose to cancel the authentication challenge by sending
cancelAuthenticationChallenge: to [challenge sender]. The delegate receives a
connection:didCancelAuthenticationChallenge: message providing the opportunity to give the
user feedback.

The example implementation in Listing 7 attempts to authenticate the challenge by creating an
NSURLCredential instance using a user name and password supplied by the application’s preferences. If the
authentication has failed previously, it cancels the authentication challenge and informs the user.

Listing 7 Example of connection:didReceiveAuthenticationChallenge: delegate method

-(void)connection:(NSURLConnection *)connection
 didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge
{
 if ([challenge previousFailureCount] == 0) {
 NSURLCredential *newCredential;
 newCredential=[NSURLCredential credentialWithUser:[self preferencesName]
 password:[self preferencesPassword]
 persistence:NSURLCredentialPersistenceNone];
 [[challenge sender] useCredential:newCredential
 forAuthenticationChallenge:challenge];
 } else {
 [[challenge sender] cancelAuthenticationChallenge:challenge];
 // inform the user that the user name and password
 // in the preferences are incorrect
 [self showPreferencesCredentialsAreIncorrectPanel:self];
 }
}

If the delegate doesn’t implement connection:didReceiveAuthenticationChallenge: and the request
requires authentication, valid credentials must already be available in the NSURLCredentialStorage or must
be provided as part of the requested URL. If the credentials are not available or fail to authenticate, a
continueWithoutCredentialForAuthenticationChallenge: message is sent by the underlying
implementation.

Controlling Response Caching

By default the data for a connection is cached according to the support provided by the NSURLProtocol
subclass that handles the request. An NSURLConnection delegate can further refine that behavior by
implementing connection:willCacheResponse:.

This delegate method can examine the provided NSCachedURLResponse object and change how the response
is cached, perhaps restricting its storage to memory only or preventing it from being cached altogether. It
is also possible to insert objects in an NSCachedURLResponse’s user info dictionary, causing them to be
stored in the cache as part of the response.

Controlling Response Caching 19
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLConnection

Note: The delegate receives connection:willCacheResponse:messages only for protocols that support
caching.

The example in Listing 8 prevents the caching of https responses. It also adds the current date to the user
info dictionary for responses that are cached.

Listing 8 Example connection:withCacheResponse: implementation

-(NSCachedURLResponse *)connection:(NSURLConnection *)connection
 willCacheResponse:(NSCachedURLResponse *)cachedResponse
{
 NSCachedURLResponse *newCachedResponse=cachedResponse;

 if ([[[[cachedResponse response] URL] scheme] isEqual:@"https"]) {
 newCachedResponse=nil;
 } else {
 NSDictionary *newUserInfo;
 newUserInfo=[NSDictionary dictionaryWithObject:[NSCalendarDate date]
 forKey:@"Cached Date"];
 newCachedResponse=[[[NSCachedURLResponse alloc]
 initWithResponse:[cachedResponse response]
 data:[cachedResponse data]
 userInfo:newUserInfo
 storagePolicy:[cachedResponse storagePolicy]]
 autorelease];
 }
 return newCachedResponse;
}

20 Controlling Response Caching
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLConnection

NSURLDownload provides an application the ability to download the contents of a URL directly to disk. It
provides an interface similar to NSURLConnection, adding an additional method for specifying the destination
of the file. NSURLDownload can also decode commonly used encoding schemes such as MacBinary, BinHex
and gzip. Unlike NSURLConnection, data downloaded using NSURLDownload is not stored in the cache
system.

Note: If your application is not restricted to using Foundation classes, the Web Kit framework includes
WebDownload, a subclass of NSURLDownload that provides a user interface for authentication.

Downloading to a Predetermined Destination

One usage pattern for NSURLDownload is downloading a file to a predetermined filename on the disk. If the
application knows the destination of the download, it can explicitly set it using
setDestination:allowOverwrite:. Multiple setDestination:allowOverwrite: messages to an
NSURLDownload instance are ignored.

The download starts immediately upon receiving the initWithRequest:delegate: message. It can be
canceled any time before the delegate receives a downloadDidFinish: or download:didFailWithError:
message by sending the download a cancel message.

The example in Listing 1 sets the destination, and thus requires the delegate only implement the
download:didFailWithError: and downloadDidFinish: methods.

Listing 1 Using NSURLDownload with a predetermined destination file location

- (void)startDownloadingURL:sender
{
 // create the request
 NSURLRequest *theRequest=[NSURLRequest requestWithURL:[NSURL
URLWithString:CONFIG_SOURCE_URL_STRING]

cachePolicy:NSURLRequestUseProtocolCachePolicy
 timeoutInterval:60.0];
 // create the connection with the request
 // and start loading the data
NSURLDownload *theDownload=[[NSURLDownload alloc] initWithRequest:theRequest
 delegate:self];
 if (theDownload) {
 // set the destination file now
 [theDownload setDestination:CONFIG_SOURCE_PATH allowOverwrite:YES];
 } else {
 // inform the user that the download could not be made
 }
}

Downloading to a Predetermined Destination 21
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLDownload

- (void)download:(NSURLDownload *)download didFailWithError:(NSError *)error
{
 // release the connection
 [download release];

 // inform the user
 NSLog(@"Download failed! Error - %@ %@",
 [error localizedDescription],
 [[error userInfo] objectForKey:NSErrorFailingURLStringKey]);
}

- (void)downloadDidFinish:(NSURLDownload *)download
{
 // release the connection
 [download release];

 // do something with the data
 NSLog(@"%@",@"downloadDidFinish");
}

Additional methods can be implemented by the delegate to customize the handling of authentication, server
redirects and file decoding.

Downloading a File Using the Suggested Filename

Another common situation is that the application must derive the destination filename from the downloaded
data itself. This requires you to implement the delegate method
download:decideDestinationWithSuggestedFilename:and callsetDestination:allowOverwrite:
with the suggested filename. The example in Listing 2 saves the downloaded file to a users desktop using
the suggested filename.

Listing 2 Using NSURLDownload with a filename derived from the download

- (void)startDownloadingURL:sender
{
 // create the request
 NSURLRequest *theRequest=[NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://www.apple.com/index.html"]

cachePolicy:NSURLRequestUseProtocolCachePolicy
 timeoutInterval:60.0];
 // create the connection with the request
 // and start loading the data
NSURLDownload *theDownload=[[NSURLDownload alloc] initWithRequest:theRequest
delegate:self];
 if (!theDownload) {
 // inform the user that the download could not be made
 }
}

- (void)download:(NSURLDownload *)download
decideDestinationWithSuggestedFilename:(NSString *)filename

22 Downloading a File Using the Suggested Filename
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLDownload

{
 NSString *destinationFilename;
 NSString *homeDirectory=NSHomeDirectory();

 destinationFilename=[[homeDirectory stringByAppendingPathComponent:@"Desktop"]
 stringByAppendingPathComponent:filename];
 [download setDestination:destinationFilename allowOverwrite:NO];
}

- (void)download:(NSURLDownload *)download didFailWithError:(NSError *)error
{
 // release the connection
 [download release];

 // inform the user
 NSLog(@"Download failed! Error - %@ %@",
 [error localizedDescription],
 [[error userInfo] objectForKey:NSErrorFailingURLStringKey]);
}

- (void)downloadDidFinish:(NSURLDownload *)download
{
 // release the connection
 [download release];

 // do something with the data
 NSLog(@"%@",@"downloadDidFinish");
}

The downloaded file is stored on the user's desktop with the name index.html, which was derived from
the downloaded content. Passing NO to setDestination:allowOverwrite: prevents an existing file
from being overwritten by the download. Instead a unique filename is created by inserting a sequential
number after the filename, for example, index-1.html.

The delegate is informed when a file is created on disk if it implements the
download:didCreateDestination: method. This method also gives the application the opportunity to
determine the finalized filename with which the download is saved.

The example in Listing 3 logs the finalized filename.

Listing 3 Logging the finalized filename using download:didCreateDestination:

-(void)download:(NSURLDownload *)download didCreateDestination:(NSString *)path
{
 // path now contains the destination path
 // of the download, taking into account any
 // unique naming caused by -setDestination:allowOverwrite:
 NSLog(@"Final file destination: %@",path);
}

This message is sent to the delegate after it has been given an opportunity to respond to the
download:shouldDecodeSourceDataOfMIMEType: and
download:decideDestinationWithSuggestedFilename: messages.

Downloading a File Using the Suggested Filename 23
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLDownload

Displaying the Download Progress

The progress of the download can be determined by implementing the delegate methods
download:didReceiveResponse: and download:didReceiveDataOfLength:.

The download:didReceiveResponse: method provides the delegate an opportunity to determine the
expected content length from the NSURLResponse. The delegate should reset the progress each time this
message is received.

The example implementation in Listing 4 demonstrates using these methods to provide progress feedback
to the user.

Listing 4 Displaying the download progress

- (void)setDownloadResponse:(NSURLResponse *)aDownloadResponse
{
 [aDownloadResponse retain];
 [downloadResponse release];
 downloadResponse = aDownloadResponse;
}

- (void)download:(NSURLDownload *)download didReceiveResponse:(NSURLResponse
*)response
{
 // reset the progress, this might be called multiple times
 bytesReceived=0;

 // retain the response to use later
 [self setDownloadResponse:response];
}

- (void)download:(NSURLDownload *)download didReceiveDataOfLength:(unsigned)length
{
 long long expectedLength=[[self downloadResponse] expectedContentLength];

 bytesReceived=bytesReceived+length;

 if (expectedLength != NSURLResponseUnknownLength) {
 // if the expected content length is
 // available, display percent complete
 float percentComplete=(bytesReceived/(float)expectedLength)*100.0;
 NSLog(@"Percent complete - %f",percentComplete);
 } else {
 // if the expected content length is
 // unknown just log the progress
 NSLog(@"Bytes received - %d",bytesReceived);
 }
}

The delegate receives a download:didReceiveResponse: message before it begins receiving
download:didReceiveDataOfLength: messages.

24 Displaying the Download Progress
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLDownload

Handling Request Changes

It’s not uncommon for a server to redirect a request for one URL to another URL. The NSURLDownload
delegate receives a download:willSendRequest:redirectResponse: when this occurs.

If the delegate implements this method, it can examine the new NSURLRequest and the NSURLResponse
that caused the redirect and allow the redirected NSURLRequest to be used for the download, create a new
NSURLRequest for the download, reject the redirect and return any data received from the NSURLResponse
that caused the redirect, or cancel the download entirely.

To allow the redirect to occur, the delegate implementation should return the NSURLRequest passed to the
delegate method. The delegate could also create a new NSURLRequest, pointing to a new URL, and return
that request.

If the delegate wishes to reject the redirect, but receive any existing data for the connection, it should return
nil.

Finally, the delegate can cancel the redirect and the connection by calling [connection cancel].

The delegate also receives this message if the NSURLProtocol subclass that handles the request has changed
the NSURLRequest in order to standardize its format. For example, changing a request for
“http://www.apple.com” to “http://www.apple.com/“. This is required because the standardized, or
canonical, version of the request is used for cache management. In this special case the response passed to
the delegate is nil and the delegate should simply return the provided NSURLRequest.

The example in Listing 5 allows canonical changes and denies all server redirects.

Listing 5 Example download:willSendRequest:redirectResponse: implementation.

-(NSURLRequest *)download:(NSURLDownload *)download
 willSendRequest:(NSURLRequest *)request
 redirectResponse:(NSURLResponse *)redirectResponse
{
 NSURLRequest *newRequest=request;
 if (redirectResponse) {
 newRequest=nil;
 }
 return newRequest;
}

If the delegate doesn’t implementdownload:willSendRequest:redirectResponse:, the default behavior
is to allow all canonical changes and server redirects.

Handling Authentication Challenges

If a request requires authentication and there are no valid credentials available, either as part of the requested
URL or in the shared NSURLCredentialStorage, the NSURLDownload delegate receives a
download:didReceiveAuthenticationChallenge: message. In order for the download to continue,
the delegate must provide credentials, attempt to continue without credentials, or cancel the authentication
request.

Handling Request Changes 25
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLDownload

The NSURLAuthenticationChallenge (the challenge) passed to the delegate contains information about what
triggered the authentication challenge, the number of attempts that have been made for the challenge, any
attempted credentials, the NSURLProtocolSpace that requires the credentials, and the sender of the challenge.

If the authentication challenge has tried to authenticate and failed, the attempted credentials are returned
by calling [challenge proposedCredential]. The delegate can then use the previously attempted
credential to populate a dialog and prompt the user.

The number of attempts at authentication for the challenge is returned by calling [challenge
previousFailureCount]. The delegate can pass this information along to the end user, to determine if
the credentials supplied previously are failing, or to limit the maximum number of authentication attempts.

To attempt to authenticate, the application should create an NSURLCredential object with the user name,
password and the type of persistence to use for the credentials, and then send the [challenge sender]
a useCredential:forAuthenticationChallenge: message.

If the delegate chooses not to provide a credential for the authentication challenge it can attempt to continue
without one by sending [challenge sender] a
continueWithoutCredentialsForAuthenticationChallenge: message. Depending on the protocol
implementation, this may return alternate URL contents that don’t require authentication or cause the
connection to fail, receiving a connectionDidFailWithError: message.

The delegate may choose to cancel the authentication challenge by sending
cancelAuthenticationChallenge: to [challenge sender]. The delegate then receives a
connection:didCancelAuthenticationChallenge: message, providing the opportunity to give the
end user feedback.

The example in Listing 6 attempts to authenticate the challenge by creating an NSURLCredential instance
using a user name and password supplied by the application’s preferences. If the authentication has failed
previously, it cancels the authentication challenge and informs the user.

Listing 6 Example download:didReceiveAuthenticationChallenge: implementation.

-(void)download:(NSURLDownload *)download
 didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge
{
 if ([challenge previousFailureCount] == 0) {
 NSURLCredential *newCredential;
 newCredential=[NSURLCredential credentialWithUser:[self preferencesName]
 password:[self preferencesPassword]
 persistence:NSURLCredentialPersistenceNone];
 [[challenge sender] useCredential:newCredential
 forAuthenticationChallenge:challenge];
 } else {
 [[challenge sender] cancelAuthenticationChallenge:challenge];
 // inform the user that the user name and password
 // in the preferences are incorrect
 [self showPreferencesCredentialsAreIncorrectPanel:self];
 }
}

26 Handling Authentication Challenges
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLDownload

Decoding Encoded Files

NSURLDownload provides support for decoding selected file formats: MacBinary, BinHex and gzip. If
NSURLDownload determines that a file is encoded in a supported format, it attempts to send the delegate
a download:shouldDecodeSourceDataOfMIMEType: message. If the delegate implements this method,
it should examine the passed MIME type and return YES if the file should be decoded.

The example in Listing 7 compares the MIME type of the file and allows decoding of MacBinary and BinHex
encoded content.

Listing 7 Example implementation of download:shouldDecodeSourceDataOfMIMEType: method.

- (BOOL)download:(NSURLDownload *)download
 shouldDecodeSourceDataOfMIMEType:(NSString *)encodingType;
{
 BOOL shouldDecode=NO;

 if ([encodingType isEqual:@"application/macbinary"]) {
 shouldDecode=YES;
 } else if ([encodingType isEqual:@"application/binhex"]) {
 shouldDecode=YES;
 } else if ([encodingType isEqual:@"application/gzip"]) {
 shouldDecode=NO;
 }
 return shouldDecode;
}

Decoding Encoded Files 27
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLDownload

28 Decoding Encoded Files
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Using NSURLDownload

The URL loading system provides a composite on-disk and in-memory cache of responses to requests. This
cache allows an application to reduce its dependency on a network connection and increase its performance.

Using the Cache for a Request

An NSURLRequest instance specifies how the local cache is used by setting the cache policy to one of the
NSURLRequestCachePolicy values: NSURLRequestUseProtocolCachePolicy,
NSURLRequestReloadIgnoringCacheData, NSURLRequestReturnCacheDataElseLoad, or
NSURLRequestReturnCacheDataDontLoad.

The default cache policy for an NSURLRequest instance is NSURLRequestUseProtocolCachePolicy. The
NSURLRequestUseProtocolCachePolicy behavior is protocol specific and is defined as being the best
conforming policy for the protocol.

Setting the cache policy to NSURLRequestReloadIgnoringCacheData causes the URL loading system to
load the data from the originating source, ignoring the cache completely.

The NSURLRequestReturnCacheDataElseLoad cache policy will cause the URL loading system to use
cached data ignoring its age or expiration date, if it exists, and load the data from the originating source only
if there is no cached version.

The NSURLRequestReturnCacheDataDontLoad policy allows an application to specify that only data in
the cache should be returned. Attempting to create an NSURLConnection or NSURLDownload instance with
this cache policy returns nil immediately if the response is not in the local cache. This is similar in function
to an “offline” mode and never brings up a network connection.

Note: Currently, only responses to http and https requests are cached. The ftp and file protocols
attempt to access the originating source as allowed by the cache policy. Custom NSURLProtocol classes can
provide caching if they choose.

Cache Use Semantics for the http Protocol

The most complicated cache use situation is when a request uses the http protocol and has set the cache
policy to NSURLRequestUseProtocolCachePolicy.

If an NSCachedURLResponse does not exist for the request, then the data is fetched from the originating
source. If there is a cached response for the request, the URL loading system checks the response to determine
if it specifies that the contents must be revalidated. If the contents must be revalidated a connection is made
to the originating source to see if it has changed. If it has not changed, then the response is returned from
the local cache. If it has changed, the data is fetched from the originating source.

Using the Cache for a Request 29
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Understanding Cache Access

If the cached response doesn’t specify that the contents must be revalidated, the maximum age or expiration
specified in the response is examined. If the cached response is recent enough, then the response is returned
from the local cache. If the response is determined to be stale, the originating source is checked for newer
data. If newer data is available, the data is fetched from the originating source, otherwise it is returned from
the cache.

RFC 2616, Section 13 (http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13) specifies the semantics
involved in detail.

30 Cache Use Semantics for the http Protocol
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Understanding Cache Access

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13

Aside from the obvious capability differences, NSURLDownload and NSURLConnection have two more subtle,
yet significant, differences in behavior.

Response Caching

NSURLConnection provides support for caching of a response from a server in the application’s NSURLCache
storage. It also provides the delegate method connection:shouldCacheResponse: which allows an
application to customize the cached response.

NSURLDownload does not cache responses in the application’s NSURLCache storage, nor does it provide a
delegate method to enable this behavior.

Handling of Non-existent URLs

One of the significant differences between NSURLConnection and NSURLDownload is the handling of requests
for non-existent URLs when web server has be configured to return an alternate page in response to an error.

When using NSURLConnection the default behavior is to allow the redirect and return the contents of the
redirected URL, instead of returning an error. If an attempt is made to download the same URL using
NSURLDownload, an error is returned indicating that the file has not been found.

An NSURLConnection delegate can mimic the NSURLDownload behavior by implementing the
connection:willSendRequest:responseRequest:method, and examining the provided NSURLResponse.
If the response is an NSHTTPURLResponse object, and the statusCode is 4xx or 5xx, then the server is
attempting to redirect to an alternate error page. The delegate can prevent this by returning nil.

Response Caching 31
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

NSURLDownload and NSURLConnection
Differences

32 Handling of Non-existent URLs
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

NSURLDownload and NSURLConnection Differences

This table describes the changes to URL Loading System.

NotesDate

Made minor editorial changes.2008-05-06

Corrected minor typos.2007-07-10

Added links to sample code.2006-05-23

Updated sample code.2006-03-08

Corrected connectionDidFinishLoading: method signature.2005-09-08

Added accessor method to sample code. Corrected minor typos.2005-04-08

Corrected minor typos.2004-08-31

Corrected table of contents ordering.

Corrected willSendRequest:redirectResponse: method signature
throughout topic.

2003-07-03

Added additional article outlining differences in behavior between
NSURLDownload and NSURLConnection.

2003-06-11

First release of conceptual and task material covering the usage of new classes
in Mac OS X v10.2 with Safari 1.0 for downloading content from the Internet.

2003-06-06

33
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History

34
2008-05-06 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History

	URL Loading System
	Contents
	Figures and Listings
	Introduction
	URL Loading System Overview
	URL Loading
	Cache Management
	Authentication and Credentials
	Cookie Storage
	Protocol Support

	Downloading Data Synchronously
	Using NSURLConnection
	Creating a Connection
	Handling Request Changes
	Handling Authentication Challenges
	Controlling Response Caching

	Using NSURLDownload
	Downloading to a Predetermined Destination
	Downloading a File Using the Suggested Filename
	Displaying the Download Progress
	Handling Request Changes
	Handling Authentication Challenges
	Decoding Encoded Files

	Understanding Cache Access
	Using the Cache for a Request
	Cache Use Semantics for the http Protocol

	NSURLDownload and NSURLConnection Differences
	Response Caching
	Handling of Non-existent URLs

	Revision History

