
User Defaults Programming Topics for Cocoa
Cocoa > User Experience

2007-10-31

Apple Inc.
© 2001, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Objective-C, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to User Defaults 7

Who Should Read This Document 7
Organization of This Document 7

Defaults Domains 9

Domains 9
Argument Domain 10
Application Domain 10
Global Domain 10
Languages Domain 10
Registration Domain 11

Using NSUserDefaults 13

Setting a Default in the NSRegistrationDomain 13
Allowing the User to Specify a Different Default Behavior 13
Using the Default Value to Determine Behavior 14
Synchronizing an NSUserDefaults Object with the Defaults Database 14
Using CFPreferences 15

User Defaults and Bindings 17

What Is NSUserDefaultsController? 17
The Shared User Defaults Controller 17
Binding to the Shared User Defaults Controller 18
initialValues Versus NSUserDefaults registerDefaults: 18
Search Order for Defaults Values 19
Programmatically Accessing NSUserDefaultsController Values 19

Storing NSColor in User Defaults 21

Extending NSUserDefaults to support NSColor 21
Establishing Bindings Between Colors and User Defaults 22

Document Revision History 25

3
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

4
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Figures and Listings

User Defaults and Bindings 17

Listing 1 Binding the userName defaults key to an NSTextField programmatically 18
Listing 2 Changing the initial values of the sharedUserDefaultsController instance 18

Storing NSColor in User Defaults 21

Figure 1 Establishing a binding between an NSColor value and user defaults 23
Listing 1 Storing an NSColor instance in user defaults 21
Listing 2 Retrieving an NSColor instance from user defaults 21
Listing 3 Contents of NSUserDefaults myColorSupport category .h file 21
Listing 4 Contents of NSUserDefaults myColorSupport category .m file 22
Listing 5 Establishing a binding between an NSColor property and

NSUserDefaultsController 24

5
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

6
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

This programming topic describes the programmatic interface for interacting with the Mac OS X user
preferences system—also known as the user defaults system—using Cocoa. Preference settings let you offer
ways for users to customize the appearance or behavior of your software. The user defaults system lets you
access and manage user preferences. You can use the defaults system to provide reasonable initial values
for application settings, as well as save and retrieve the user's own preference selections across sessions.

The NSUserDefaults class only supports the storage of objects that can be serialized to property lists. This
limitation would seem to exclude many kinds of objects, such as NSColor and NSFont objects, from the
user default system. But if objects conform to the NSCoding protocol they can be archived to NSData objects,
which are property list–compatible objects. For information on how to do this, see “Storing NSColor in User
Defaults (page 21)“; although this article focuses on NSColor objects, the procedure can be applied to any
object that can be archived.

NSUserDefaults does not currently support per-host preferences. To do this, you must use Preferences
Utilities Reference. However, NSUserDefaults correctly reads per-host preferences, so you can safely mix
CFPreferences code with NSUserDefaults.

Who Should Read This Document

You should read this document to understand the programmatic interface for interacting with the Mac OS X
user defaults system using Cocoa.

Organization of This Document

This programming topic contains the following articles:

 ■ “Defaults Domains” (page 9) describes the various defaults domain groupings.

 ■ “Using NSUserDefaults” (page 13) describes how to create and save user defaults.

 ■ User Defaults and Bindings (page 17) describes the role of NSUserDefaultsController and how it
works with NSUserDefaults.

 ■ Storing NSColor in User Defaults (page 21) describes how to store colors in an application’s user defaults.

Who Should Read This Document 7
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Introduction to User Defaults

8 Organization of This Document
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Introduction to User Defaults

Defaults are grouped in domains. For example, there’s a domain for application-specific defaults and another
for system-wide defaults that apply to all applications. All defaults are stored and accessed per user. Defaults
that affect all users are not provided for.

Domains

Defaults are grouped in domains. Each domain has a name by which it’s identified and stores defaults as
key-value pairs in an NSDictionary object. Each default is made up of three components:

 ■ The domain in which the default is stored

 ■ The name by which the default is identified (an NSString object)

 ■ The default’s value, which can be any property-list object (NSData, NSString, NSNumber, NSDate,
NSArray, or NSDictionary)

A domain is either persistent or volatile. Persistent domains are permanent and last past the life of the user
defaults object. Persistent domains are stored in a user’s defaults database. If you use a user defaults object
(an instance of NSUserDefaults or NSUserDefaultsController) to make a change to a default in a
persistent domain, the changes are saved in the user’s defaults database automatically. On the other hand,
volatile domains last only as long as the user defaults object exists; they aren’t saved in the user’s defaults
database. The standard domains are:

StateDomain

volatileNSArgumentDomain

persistentApplication (Identified by the application’s identifier)

persistentNSGlobalDomain

volatileLanguages (Identified by the language names)

volatileNSRegistrationDomain

A search for the value of a given default proceeds through the domains in an NSUserDefaults object’s
search list. Only domains in the search list are searched. The standard search list contains the domains from
the table above, in the order listed. A search ends when the default is found. Thus, if multiple domains contain
the same default, only the domain nearest the beginning of the search list provides the default’s value.

The following sections describe the purpose of each of the domains.

Domains 9
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Defaults Domains

Argument Domain

Default values can be set from command line arguments (if you start the application from the command
line) as well as from a user's defaults database. Default values set from the command line go in the
NSArgumentDomain. They are set on the command line by preceding the default name with a hyphen and
following it with a value. For example, the following command launches Xcode and sets Xcode’s IndexOnOpen
default to NO:

localhost> Xcode.app/Contents/MacOS/Xcode -IndexOnOpen NO

Defaults set from the command line temporarily override values from a user’s defaults database. In the
example above, Xcode won’t automatically index projects even if the user’s IndexOnOpen preference is set
to YES in the defaults database.

Application Domain

The application domain contains application-specific defaults that are read from a user’s defaults database.
The application domain is identified by the bundle identifier of the application. When you save a user’s
defaults in your application, this is typically the domain to which the values are saved. Values themselves
are stored in a file managed by the system. Currently, they are stored in
$HOME/Library/Preferences/<ApplicationIdentifier>.plist; it may be useful to inspect this file
for debugging purposes, but you should not modify this file directly—instead you should use the appropriate
API provided by the user defaults objects.

Global Domain

The global domain contains defaults that are read from a user’s defaults database and are applicable to all
applications that a user runs. Many Application Kit and Foundation objects use default values from the
NSGlobalDomain. For example, NSRulerView objects automatically use a user’s preferred measurement
units, as stored in the user’s defaults database under the key AppleMeasurementUnits. Consequently, ruler
views in all applications use the user’s preferred measurement units—unless an application overrides the
default by creating anAppleMeasurementUnitsdefault in its application domain. AnotherNSGlobalDomain
default, under the key AppleLanguages, allows users to specify a preference of languages as an array of
strings. For example, a user could specify English as the preferred language, followed by Spanish, French,
German, Italian, and Swedish.

Languages Domain

If a user has a value for the AppleLanguages default, then NSUserDefaults records language-specific
default values in domains identified by the language name. The language specific domains contain defaults
for a locale. Certain classes from the Foundation Framework (such as NSCalendarDate, NSDate, and
NSTimeZone, NSString, and NSScanner) use locale defaults to modify their behavior. For example, when
you request an NSString representation of an NSCalendarDate, the NSCalendarDate object looks at the
locale to determine what the months and the days of the week are named in your preferred language.

10 Argument Domain
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Defaults Domains

Registration Domain

The registration domain is a set of application-provided defaults that are used unless a user overrides them
(the “default defaults” or “factory settings”). For example, the first time you run Xcode, there isn’t an
IndexOnOpen value saved in your defaults database. Consequently, Xcode registers a default value for
IndexOnOpen in the NSRegistrationDomain as a “catch all” value. Xcode can thereafter assume that an
NSUserDefaults object always has a value to return for the default, simplifying the use of user defaults.

You set NSRegistrationDomain defaults programmatically with the method registerDefaults:.

Registration Domain 11
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Defaults Domains

12 Registration Domain
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Defaults Domains

Typically, you use the NSUserDefaults class by invoking the standardUserDefaults class method to
get an NSUserDefaults object. This method returns a global NSUserDefaults object with a search list
already initialized. Use the objectForKey: and setObject:forKey:methods to get and set default values.
Note that a default’s value can be only property list objects: NSData, NSString, NSNumber, NSDate, NSArray,
or NSDictionary (for more on property lists, see Property List Programming Guide).

The following sections discuss various aspects of using the NSUserDefaults class.

Setting a Default in the NSRegistrationDomain

An application can set values for all its defaults in the NSRegistrationDomain. If users specify a different
preference in their defaults database, the users’ preferences override the values from the
NSRegistrationDomain. An NSUserDefaults object only uses values from the NSRegistrationDomain
when a user hasn’t specified a different preference. So, you need to decide whether or not your application
should delete backup files by default.

To register the application’s default behavior, you get the application's shared instance of NSUserDefaults
and register default values with it. A good place to do this is in the initialize method of the class that
uses the default. The following example registers the value “YES” for the default named “DeleteBackup”.

+ (void)initialize{

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSDictionary *appDefaults = [NSDictionary
 dictionaryWithObject:@"YES" forKey:@"DeleteBackup"];

 [defaults registerDefaults:appDefaults];
}

The initialize message is sent to each class before it receives any other message, ensuring that the application's
defaults are set before the application needs to read them.

Allowing the User to Specify a Different Default Behavior

To allow users to specify a different default behavior for deleting backups, you must provide an interface in
which they can express their preference. Most applications provide a Preferences panel for this purpose.
When your application detects that a user has specified a new preference, it should save it in the shared
instance of NSUserDefaults.

Setting a Default in the NSRegistrationDomain 13
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Using NSUserDefaults

For example, assume that your application has an instance variable called deleteBackupButton that is an
outlet to an NSButton, and that users toggle this button’s state to indicate whether or not the application
should delete its backup files. You could use the following code to update the user’s value for the DeleteBackup
default:

if ([deleteBackupButton state]) {
 // The user wants to delete backup files.
 [[NSUserDefaults standardUserDefaults]
 setObject:@"YES" forKey:@"DeleteBackup"];
} else {
 // The user doesn’t want to delete backup files.
 [[NSUserDefaults standardUserDefaults]
 setObject:@"NO" forKey:@"DeleteBackup"];
}

After determining the button’s state, setObject:forKey: is used to set the value of the specified default
in the application domain.

You don’t have to use a Preferences panel to manage all defaults. For example, an NSWindow object can
store its placement in the user defaults system, so that it appears in the same location the next time the user
starts the application.

Using the Default Value to Determine Behavior

To find out whether or not to delete a backup file, you can use the following statement:

[[NSUserDefaults standardUserDefaults] boolForKey:@"DeleteBackup"];

As a convenience, NSUserDefaults provides boolForKey:, floatForKey:, and so on. Recall that a
default’s value can be only an NSData, NSString, NSNumber, NSDate, NSArray, or NSDictionary. boolForKey:
and similarly named methods attempt to get the value for the specified default and interpret it as a different
data type.

Synchronizing an NSUserDefaults Object with the Defaults Database

Since other applications (and the user) can write to a defaults database, the database and an NSUserDefaults
object might not agree on the value of a given default at all times.

You can update the defaults database with an NSUserDefaults object’s new values and update the
NSUserDefaults object with any changes that have been made to the database using the synchronize
method.

On Mac OS X v10.5 and later, in applications in which a run-loop is present, synchronize is automatically
invoked at periodic intervals. Consequently, you might synchronize before exiting a process, but otherwise
you shouldn’t need to.

14 Using the Default Value to Determine Behavior
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Using NSUserDefaults

Using CFPreferences

Since CFPreferences currently has some features not yet supported in NSUserDefaults, you may want to
use CFPreferences to perform some of your defaults operations. For example, CFPreferences supports per-host
preferences, and NSUserDefaults currently does not.

For more information about CFPreferences see the Core Foundation Programming Topic Preferences
Programming Topics for Core Foundation.

Using CFPreferences 15
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Using NSUserDefaults

16 Using CFPreferences
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Using NSUserDefaults

Many applications provide a preferences window that allows the user to customize an application’s settings.
NSUserDefaultsController provides a layer on top of NSUserDefaults and allows you to bind attributes of user
interface items to the corresponding key in an application’s user defaults.

What Is NSUserDefaultsController?

NSUserDefaultsController is a concrete subclass of NSController that implements a bindings-compatible
interface to NSUserDefaults. Properties of an instance of NSUserDefaultsController are bound to user interface
items to access and modify values stored using NSUserDefaults.

NSUserDefaultsController is typically used when implementing your application’s preference window interface,
or when you can bind a user interface item directly to a default value. NSUserDefaults remains the primary
programmatic interface to your application’s default values for the rest of your application.

By default NSUserDefaultsController immediately applies any changes made to its properties. It can be
configured so that changes are not applied until it receives an applyChanges: message, allowing the
preferences dialog to support an Apply button. NSUserDefaultsController also supports reverting to the last
applied set of values, using the revert: method.

NSUserDefaultsController also allows you to provide a dictionary of factory defaults that can be used to reset
the user configurable values for your application, usually done in response to a user clicking a Revert to
Factory Defaults button.

The Shared User Defaults Controller

NSUserDefaultsController provides a shared instance of itself via the class method
sharedUserDefaultsController. This shared instance uses the NSUserDefaults instance returned by the
method standardUserDefaults as its model, has no initial values, and immediately applies changes made
through its bindings.

Care must be taken that changes to the settings of the shared user defaults controller are made before any
nib files containing bindings to the shared controller are loaded. To ensure that these changes are made
before any nib files are loaded, they are often implemented in the initialize class method of the application
delegate, or in your preferences window controller.

What Is NSUserDefaultsController? 17
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

User Defaults and Bindings

Binding to the Shared User Defaults Controller

The shared NSUserDefaultsController is always available as a bindable controller in the Bindings Info window
in Interface Builder. When establishing a binding to a user default, set the Controller Key to values, and the
Model Key Path to the key of the default.

Creating bindings programmatically requires that you retrieve the shared user defaults controller using the
NSUserDefaultsController class method sharedUserDefaultsController. You then provide that object
as the observableController to the bind:toObject:withKeyPath:options: method.

The example in Listing 1 establishes a binding between an NSTextField (theTextField) and the userName
default using the shared user defaults controller.

Listing 1 Binding the userName defaults key to an NSTextField programmatically

 [theTextField bind:@"value"
 toObject:[NSUserDefaultsController sharedUserDefaultsController]
 withKeyPath:@"values.userName"
 options:[NSDictionary dictionaryWithObject:[NSNumber
numberWithBool:YES]

forKey:@"NSContinuouslyUpdatesValue"]];

initialValues Versus NSUserDefaults registerDefaults:

The initial values dictionary allows you to provide a means to reset the user configurable default values to
the factory defaults. Typically these values represent a subset of the defaults that your application registers
using the NSUserDefaults method registerDefaults:.

Calling the NSUserDefaultsController method setInitialValues: should not be considered a replacement
for registering your application's preference defaults using NSUserDefault's registerDefaults: method.

The example in Listing 2 loads the default values from a file in the application wrapper, registers those values
with NSUserDefaults, and then registers a subset of the values as the initial values of the shared user defaults
controller. The setupDefaultsmethod would be called from your application delegate’s initialize class
method.

Listing 2 Changing the initial values of the sharedUserDefaultsController instance

+ (void)setupDefaults
{
 NSString *userDefaultsValuesPath;
 NSDictionary *userDefaultsValuesDict;
 NSDictionary *initialValuesDict;
 NSArray *resettableUserDefaultsKeys;

 // load the default values for the user defaults
 userDefaultsValuesPath=[[NSBundle mainBundle] pathForResource:@"UserDefaults"
 ofType:@"plist"];
 userDefaultsValuesDict=[NSDictionary
dictionaryWithContentsOfFile:userDefaultsValuesPath];

18 Binding to the Shared User Defaults Controller
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

User Defaults and Bindings

 // set them in the standard user defaults
 [[NSUserDefaults standardUserDefaults]
registerDefaults:userDefaultsValuesDict];

 // if your application supports resetting a subset of the defaults to
 // factory values, you should set those values
 // in the shared user defaults controller
 resettableUserDefaultsKeys=[NSArray
arrayWithObjects:@"Value1",@"Value2",@"Value3",nil];
 initialValuesDict=[userDefaultsValuesDict
dictionaryWithValuesForKeys:resettableUserDefaultsKeys];

 // Set the initial values in the shared user defaults controller
 [[NSUserDefaultsController sharedUserDefaultsController]
setInitialValues:initialValuesDict];
}

Search Order for Defaults Values

When a method that is key-value coding compliant attempts to get a value for a key from an
NSUserDefaultsController the following search pattern is used:

1. The value of a corresponding key in values

2. The value of a corresponding key in the NSUserDefaults instance returned by the NSUserDefaultsController
method defaults.

3. The value of a corresponding key in the initial values dictionary

If no corresponding value is found, nil is returned.

The search path is somewhat different when you retrieve the result directly from the NSUserDefaults instance
associated with the NSUserDefaultsController. In that case, any unapplied values in the
NSUserDefaultsController, as well as the values in the initial values dictionary are ignored.

Programmatically Accessing NSUserDefaultsController Values

Although NSUserDefaults should remain your primary programmatic interface to the user defaults, some
circumstances require that you get and set the default values contained in an NSUserDefaultsController
instance directly. For example, when implementing portions of your preferences window that don’t directly
interact with an existing binding, such as setting a font or choosing a directory path.

The NSUserDefaultsController method values returns a KVC-compliant object that is used to access these
default values. To get the value of a default, use the valueForKey: method.

[[theDefaultsController values] valueForKey:@"userName"];

Similarly, to set a value for a default, use setValue:forKey:.

Search Order for Defaults Values 19
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

User Defaults and Bindings

[[theDefaultsController values] setValue:newUserName
 forKey:@"userName"];

The NSUserDefaultsController automatically provides notification of the value change to any established
bindings for that key path.

20 Programmatically Accessing NSUserDefaultsController Values
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

User Defaults and Bindings

It is often desirable to store the value of an NSColor instance in an application's user defaults. However,
NSUserDefaults only supports the storage of objects that can be represented in an property list.

The solution is to use object archiving to write the NSColor instance data to an NSData instance and then
store that as the default as shown in Listing 1. This is often done in an application life-cycle exit point such
as the applicationShouldTerminate: delegation method.

Listing 1 Storing an NSColor instance in user defaults

// store the value in aColor in user defaults
// as the value for key aKey
NSData *theData=[NSArchiver archivedDataWithRootObject:aColor];
[[NSUserDefaults standardUserDefaults] setObject:theData forKey:aKey];

To read the value back from NSUserDefaults an application retrieves the NSData instance for the required
key and unarchives the NSColor instance. The example in Listing 2 demonstrates retrieving the color. This is
often done in an application life-cycle entry point such as awakeFromNib.

Listing 2 Retrieving an NSColor instance from user defaults

// read the value of the user default with key aKey
// and return it in aColor
NSColor * aColor =nil;
NSData *theData=[[NSUserDefaults standardUserDefaults] dataForKey:aKey];
if (theData != nil)
 aColor =(NSColor *)[NSUnarchiver unarchiveObjectWithData:theData];

Extending NSUserDefaults to support NSColor

It's possible to take advantage of the support for categories in Objective-C to add NSColor support to the
existing NSUserDefaults class, without subclassing.

The example code in Listing 3 and Listing 4 shows an implementation of such a category. The method
setColor:forKey: in archives the specified color to an NSData instance and stores it in the user defaults
using the specified key. The method colorForKey: retrieves the NSData instance specified by the key, and
then unarchives an instance of NSColor using the data.

Listing 3 Contents of NSUserDefaults myColorSupport category .h file

#import <Foundation/Foundation.h>

@interface NSUserDefaults(myColorSupport)
- (void)setColor:(NSColor *)aColor forKey:(NSString *)aKey;
- (NSColor *)colorForKey:(NSString *)aKey;
@end

Extending NSUserDefaults to support NSColor 21
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Storing NSColor in User Defaults

Listing 4 Contents of NSUserDefaults myColorSupport category .m file

#import "NSUserDefaults+myColorSupport.h"

@implementation NSUserDefaults(myColorSupport)

- (void)setColor:(NSColor *)aColor forKey:(NSString *)aKey
{
 NSData *theData=[NSArchiver archivedDataWithRootObject:aColor];
 [self setObject:theData forKey:aKey];
}

- (NSColor *)colorForKey:(NSString *)aKey
{
 NSColor *theColor=nil;
 NSData *theData=[self dataForKey:aKey];
 if (theData != nil)
 theColor=(NSColor *)[NSUnarchiver unarchiveObjectWithData:theData];
 return theColor;
}

@end

Important: There is some risk in implementing a category with method names that are common enough
that Apple could use them in the future. An alternative would be to use prefixes that Apple would not use,
for example, my_colorForKey:.

Establishing Bindings Between Colors and User Defaults

You can easily establish a binding between a user-interface object whose value is a color (that is, an NSColor
object) and user defaults. When the user chooses a color preference for something in an application, the
binding preserves and restores the preference across successive launches of the application.

To effect the binding, use a ready-made instance of the NSUnarchiveFromDataTransformerName value
transformer in Interface Builder. An NSValueTransformer object converts an object value typically in two
directions: between the form in which it is displayed and the form in which it is stored. The
NSUnarchiveFromDataTransformerName value transformer works by archiving an NSColor object in an
NSData object and then, on the other side of the binding, unarchiving the color object from the data object.
For this value transformation to work, the archived object must implement the NSCoding protocol using
sequential archiving—which NSColor does.

An NSColorWell instance is a user-interface object whose value is a NSColor object. You can drag the
color-well object from the Controls palette of Interface Builder onto a view. To establish the binding between
this object and user defaults, complete the following steps:

1. With the color well still selected, open the Bindings pane of the Inspector and expose the value binding.

2. From the “Bind to” pop-up menu choose Shared User Defaults.

This action adds an instance of NSUserDefaultsController (“Shared Defaults”) to the nib file window.

3. Keep the Controller Key field as values but in the Model Key Path field specify a name under which to
save the color object (theColor, in this example).

22 Establishing Bindings Between Colors and User Defaults
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Storing NSColor in User Defaults

4. From the Value Transformer combo box select (or enter) NSUnarchiveFromData.

When you’re finished, your setup in Interface Builder should look similar to that in Figure 1.

Figure 1 Establishing a binding between an NSColor value and user defaults

If at this point you save your nib file and build your project, you can launch the application, change the color
in the color well, quit the application, and then relaunch. The color in the color well is what it was when you
last changed it.

Although the foregoing procedure establishes a binding between an NSColor value of a view and user
defaults, it does not propagate changes in that value to other objects in the application. You can do that by
explicitly setting the color to the restored default when the application launches and, thereafter, by having
the first responder handle the changeColor: message whenever the user changes the color. But you can
also use bindings so that any change in color value is propagated both to user defaults and applied to a
custom view in the application. This requires you to complete the following steps:

 ■ Declare an NSColor property of the custom view class.

 ■ Expose this property as a binding (exposeBinding:); do this in the class method initialize.

 ■ In the setter method for the property, send setNeedsDisplay: (or setNeedsDisplayInRect:) to
self after the new color is retained; this forces the view to redraw itself in the new color.

 ■ Define a controller object that acts as application delegate. When the application finishes launching,
this object establishes a binding between the custom view’s NSColor property and the property of the
NSUserDefaultsController object bound to the color well.

See Listing 5 for an example of this final step.

Establishing Bindings Between Colors and User Defaults 23
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Storing NSColor in User Defaults

Listing 5 Establishing a binding between an NSColor property and NSUserDefaultsController

@implementation AppDelegate
- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 [theColorBox bind:@"backgroundColor" toObject:[NSUserDefaultsController
sharedUserDefaultsController]
 withKeyPath:@"values.theColor"
 options:[NSDictionary dictionaryWithObject:NSUnarchiveFromDataTransformerName
forKey:NSValueTransformerNameBindingOption]];
}
@end

24 Establishing Bindings Between Colors and User Defaults
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Storing NSColor in User Defaults

This table describes the changes to User Defaults Programming Topics for Cocoa.

NotesDate

Updated information about periodic autosave behavior.2007-10-31

Corrected typos and capitalization mistakes.2007-01-08

Added overview of procedure for storing non-property-list objects in user
defaults, and linked to related article.

2006-11-07

Made small additions to the content. Changed title from "User Defaults."2006-09-05

Expanded explanation of user defaults in introduction.

Noted requirement that a default’s value must be a property list value at the
beginning of the Using Defaults (page 13) article.

Included an article that describes the use of NSUserDefaultsController. Corrected
minor typographical errors.

2005-08-11

Added article Storing NSColor in User Defaults (page 21).2004-02-03

Linked to the Core Foundation Preferences Programming Topic, which was also
incorrectly named.

2003-05-09

Added link in limitations area to CFPreferences. Corrected class name in Defaults
Domains Concept.

2003-01-13

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

25
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Document Revision History

26
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Document Revision History

	User Defaults Programming Topics for Cocoa
	Contents
	Figures and Listings
	Introduction
	Defaults Domains
	Domains
	Argument Domain
	Application Domain
	Global Domain
	Languages Domain
	Registration Domain

	Using NSUserDefaults
	Setting a Default in the NSRegistrationDomain
	Allowing the User to Specify a Different Default Behavior
	Using the Default Value to Determine Behavior
	Synchronizing an NSUserDefaults Object with the Defaults Database
	Using CFPreferences

	User Defaults and Bindings
	What Is NSUserDefaultsController?
	The Shared User Defaults Controller
	Binding to the Shared User Defaults Controller
	initialValues Versus NSUserDefaults registerDefaults:
	Search Order for Defaults Values
	Programmatically Accessing NSUserDefaultsController Values

	Storing NSColor in User Defaults
	Extending NSUserDefaults to support NSColor
	Establishing Bindings Between Colors and User Defaults

	Revision History

