
NSApplication Class Reference
Cocoa > Runtime Architecture

2009-02-04

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleWorks, Cocoa,
Mac, Mac OS, Quartz, WebObjects, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSApplication Class Reference 9

Class at a Glance 9
Overview 10

The Delegate and Notifications 11
System Services 11
Subclassing Notes 11

Tasks 13
Getting the Application 13
Configuring Applications 13
Launching Applications 13
Terminating Applications 13
Managing Active Status 14
Hiding Applications 14
Managing the Event Loop 14
Handling Events 15
Posting Events 15
Managing Sheets 15
Managing Windows 16
Minimizing Windows 16
Hiding Windows 16
Updating Windows 16
Managing Window Layers 17
Accessing the Main Menu 17
Managing the Window Menu 17
Managing the Dock Menu 17
Accessing the Dock Tile 17
Managing the Services Menu 18
Providing Services 18
Managing Panels 18
Displaying Help 18
Displaying Errors 19
Managing Threads 19
Posting Actions 19
Drawing Windows 19
Logging Exceptions 19
Scripting 19
Managing User Attention Requests 20
Managing the Screen 20
Opening Files 20
Printing 20
Deprecated 20

3
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Class Methods 21
detachDrawingThread:toTarget:withObject: 21
sharedApplication 21

Instance Methods 22
abortModal 22
activateContextHelpMode: 22
activateIgnoringOtherApps: 23
addWindowsItem:title:filename: 24
applicationIconImage 24
arrangeInFront: 25
beginModalSessionForWindow: 25
beginModalSessionForWindow:relativeToWindow: 26
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: 26
cancelUserAttentionRequest: 27
changeWindowsItem:title:filename: 27
context 28
currentEvent 28
deactivate 29
delegate 29
discardEventsMatchingMask:beforeEvent: 30
dockTile 31
endModalSession: 31
endSheet: 31
endSheet:returnCode: 32
finishLaunching 32
hide: 33
hideOtherApplications: 33
isActive 34
isHidden 34
isRunning 34
keyWindow 35
mainMenu 35
mainWindow 36
makeWindowsPerform:inOrder: 36
miniaturizeAll: 37
modalWindow 37
nextEventMatchingMask:untilDate:inMode:dequeue: 37
orderedDocuments 38
orderedWindows 39
orderFrontCharacterPalette: 39
orderFrontColorPanel: 40
orderFrontStandardAboutPanel: 40
orderFrontStandardAboutPanelWithOptions: 41
postEvent:atStart: 41
preventWindowOrdering 42
registerServicesMenuSendTypes:returnTypes: 42

4
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

removeWindowsItem: 43
replyToApplicationShouldTerminate: 43
replyToOpenOrPrint: 44
reportException: 44
requestUserAttention: 45
run 45
runModalForWindow: 46
runModalForWindow:relativeToWindow: 47
runModalSession: 47
runPageLayout: 48
sendAction:to:from: 48
sendEvent: 49
servicesMenu 50
servicesProvider 50
setApplicationIconImage: 50
setDelegate: 51
setMainMenu: 51
setServicesMenu: 52
setServicesProvider: 52
setWindowsMenu: 53
setWindowsNeedUpdate: 53
showHelp: 53
stop: 54
stopModal 55
stopModalWithCode: 55
targetForAction: 55
targetForAction:to:from: 56
terminate: 57
tryToPerform:with: 58
unhide: 58
unhideAllApplications: 59
unhideWithoutActivation 59
updateWindows 59
updateWindowsItem: 60
validRequestorForSendType:returnType: 60
windows 61
windowsMenu 62
windowWithWindowNumber: 62

Delegate Methods 62
application:delegateHandlesKey: 62
application:openFile: 63
application:openFiles: 64
application:openFileWithoutUI: 64
application:openTempFile: 65
application:printFile: 66
application:printFiles:withSettings:showPrintPanels: 66

5
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

application:willPresentError: 67
applicationDidBecomeActive: 68
applicationDidChangeScreenParameters: 68
applicationDidFinishLaunching: 69
applicationDidHide: 69
applicationDidResignActive: 70
applicationDidUnhide: 70
applicationDidUpdate: 70
applicationDockMenu: 71
applicationOpenUntitledFile: 71
applicationShouldHandleReopen:hasVisibleWindows: 72
applicationShouldOpenUntitledFile: 73
applicationShouldTerminate: 73
applicationShouldTerminateAfterLastWindowClosed: 74
applicationWillBecomeActive: 74
applicationWillFinishLaunching: 75
applicationWillHide: 75
applicationWillResignActive: 76
applicationWillTerminate: 76
applicationWillUnhide: 76
applicationWillUpdate: 77

Constants 77
Return values for modal operations 77
NSUpdateWindowsRunLoopOrdering 78
NSApp 78
NSRequestUserAttentionType 79
NSApplicationDelegateReply 79
NSApplicationTerminateReply 80
NSApplicationPrintReply 81
Run loop modes 82
NSAppKitVersionNumber 82
Application Kit framework version numbers 82

Notifications 84
NSApplicationDidBecomeActiveNotification 84
NSApplicationDidChangeScreenParametersNotification 84
NSApplicationDidFinishLaunchingNotification 85
NSApplicationDidHideNotification 85
NSApplicationDidResignActiveNotification 85
NSApplicationDidUnhideNotification 85
NSApplicationDidUpdateNotification 85
NSApplicationWillBecomeActiveNotification 86
NSApplicationWillFinishLaunchingNotification 86
NSApplicationWillHideNotification 86
NSApplicationWillResignActiveNotification 86
NSApplicationWillTerminateNotification 87
NSApplicationWillUnhideNotification 87

6
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

NSApplicationWillUpdateNotification 87

Appendix A Deprecated NSApplication Methods 89

Deprecated in Mac OS X v10.4 89
application:printFiles: 89

Document Revision History 91

Index 93

7
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

8
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSResponder : NSObject

Conforms to NSUserInterfaceValidations
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in NSApplication.h
NSApplicationScripting.h
NSColorPanel.h
NSHelpManager.h
NSPageLayout.h

Companion guides Application Architecture Overview
Notification Programming Topics for Cocoa
Sheet Programming Topics for Cocoa
System Services

Related sample code CoreRecipes
ImageClient
NumberInput_IMKit_Sample
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Class at a Glance

An NSApplication object manages an application’s main event loop in addition to resources used by all
of that application’s objects.

Principal Attributes

 ■ Delegate

 ■ Key window

 ■ Display context

 ■ List of windows

 ■ Main window

Class at a Glance 9
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Commonly Used Methods

keyWindow (page 35)
Returns an NSWindow object representing the key window.

mainWindow (page 36)
Returns the application’s main window.

registerServicesMenuSendTypes:returnTypes: (page 42)
Specifies which services are valid for this application.

runModalForWindow: (page 46)
Runs a modal event loop for the specified NSWindow object.

Overview

The NSApplication class provides the central framework for your application’s execution.

Every application must have exactly one instance of NSApplication (or a subclass of NSApplication).
Your program’s main() function should create this instance by invoking the sharedApplication (page
21) class method. After creating the NSApplication object, the main() function should load your
application’s main nib file and then start the event loop by sending the NSApplication object a run (page
45) message. If you create an Application project in Xcode, this main() function is created for you. The
main() function Xcode creates begins by calling a function named NSApplicationMain(), which is
functionally similar to the following:

void NSApplicationMain(int argc, char *argv[]) {
 [NSApplication sharedApplication];
 [NSBundle loadNibNamed:@"myMain" owner:NSApp];
 [NSApp run];
}

The sharedApplication (page 21) class method initializes the display environment and connects your
program to the window server and the display server. The NSApplication object maintains a list of all the
NSWindow objects the application uses, so it can retrieve any of the application’s NSView objects.
sharedApplication (page 21) also initializes the global variable NSApp, which you use to retrieve the
NSApplication instance. sharedApplication (page 21) only performs the initialization once; if you
invoke it more than once, it simply returns the NSApplication object it created previously.

NSApplication performs the important task of receiving events from the window server and distributing
them to the proper NSResponder objects. NSApp translates an event into an NSEvent object, then forwards
the NSEvent object to the affected NSWindow object. All keyboard and mouse events go directly to the
NSWindow object associated with the event. The only exception to this rule is if the Command key is pressed
when a key-down event occurs; in this case, every NSWindow object has an opportunity to respond to the
event. When an NSWindow object receives an NSEvent object from NSApp, it distributes it to the objects in
its view hierarchy.

NSApplication is also responsible for dispatching certain Apple events received by the application. For
example, Mac OS X sends Apple events to your application at various times, such as when the application is
launched or reopened. NSApplication installs Apple event handlers to handle these events by sending a
message to the appropriate object. You can also use the NSAppleEventManager class to register your own
Apple event handlers. The applicationWillFinishLaunching: (page 75) method is generally the best

10 Overview
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

place to do so. For more information on how events are handled and how you can modify the default behavior,
including information on working with Apple events in scriptable applications, see How Cocoa Applications
Handle Apple Events in Cocoa Scripting Guide.

The NSApplication class sets up autorelease pools (instances of the NSAutoreleasePool class) during
initialization and inside the event loop—specifically, within its initialization (or sharedApplication (page
21)) and run (page 45) methods. Similarly, the methods the Application Kit adds to NSBundle employ
autorelease pools during the loading of nib files. These autorelease pools aren’t accessible outside the scope
of the respective NSApplication and NSBundle methods. Typically, an application creates objects either
while the event loop is running or by loading objects from nib files, so this lack of access usually isn’t a
problem. However, if you do need to use Cocoa classes within the main() function itself (other than to load
nib files or to instantiate NSApplication), you should create an autorelease pool before using the classes
and then release the pool when you’re done. For more information, see NSAutoreleasePool in the
Foundation Framework Reference.

The Delegate and Notifications

You can assign a delegate to NSApp. The delegate responds to certain messages on behalf of NSApp. Some
of these messages, such as application:openFile: (page 63), ask the delegate to perform an action.
Another message, applicationShouldTerminate: (page 73), lets the delegate determine whether the
application should be allowed to quit. The NSApplication class sends these messages directly to its delegate.

The NSApp also posts notifications to the application’s default notification center. Any object may register
to receive one or more of the notifications posted by NSApp by sending the message
addObserver:selector:name:object: to the default notification center (an instance of the
NSNotificationCenter class). The delegate of NSApp is automatically registered to receive these
notifications if it implements certain delegate methods. For example, NSApp posts notifications when it is
about to be done launching the application and when it is done launching the application
(NSApplicationWillFinishLaunchingNotification (page 86) and
NSApplicationDidFinishLaunchingNotification (page 85)). The delegate has an opportunity to
respond to these notifications by implementing the methods applicationWillFinishLaunching: (page
75) and applicationDidFinishLaunching: (page 69). If the delegate wants to be informed of both
events, it implements both methods. If it needs to know only when the application is finished launching, it
implements only applicationDidFinishLaunching: (page 69).

System Services

NSApplication interacts with the system services architecture to provide services to your application
through the Services menu.

Subclassing Notes

You rarely should find a real need to create a custom NSApplication subclass. Unlike some object-oriented
libraries, Cocoa does not require you to create a custom application class to customize application behavior.
Instead it gives you many other ways to customize an application. This section discusses both some of the
possible reasons to subclass NSApplication and some of the reasons not to subclass NSApplication.

Overview 11
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

To use a custom subclass of NSApplication, simply send sharedApplication (page 21) to your subclass
rather than directly to NSApplication. If you create your application in Xcode, you can accomplish this by
setting your custom application class to be the principal class. In Xcode, double-click the application target
in the Groups and Files list to open the Info window for the target. Then display the Properties pane of the
window and replace “NSApplication” in the Principal Class field with the name of your custom class. The
NSApplicationMain function sends sharedApplication (page 21) to the principal class to obtain the
global application instance (NSApp)—which in this case will be an instance of your custom subclass of
NSApplication.

Important: Many Application Kit classes rely on the NSApplication class and may not work properly until
this class is fully initialized. As a result, you should not, for example, attempt to invoke methods of other
Application Kit classes from an initialization method of an NSApplication subclass.

Methods to Override

Generally, you subclass NSApplication to provide your own special responses to messages that are routinely
sent to the global application object (NSApp). NSApplication does not have primitive methods in the sense
of methods that you must override in your subclass. Here are four methods that are possible candidates for
overriding:

 ■ Override run (page 45) if you want the application to manage the main event loop differently than it
does by default. (This a critical and complex task, however, that you should only attempt with good
reason.)

 ■ Override sendEvent: (page 49) if you want to change how events are dispatched or perform some
special event processing.

 ■ Override requestUserAttention: (page 45) if you want to modify how your application attracts the
attention of the user (for example, offering an alternative to the bouncing application icon in the Dock).

 ■ Override targetForAction: (page 55) to substitute another object for the target of an action message.

Special Considerations

The global application object uses autorelease pools in its run (page 45) method; if you override this method,
you’ll need to create your own autorelease pools.

Do not override sharedApplication (page 21). The default implementation, which is essential to application
behavior, is too complex to duplicate on your own.

Alternatives to Subclassing

NSApplication defines over twenty delegate methods that offer opportunities for modifying specific
aspects of application behavior. Instead of making a custom subclass of NSApplication, your application
delegate may be able to implement one or more of these methods to accomplish your design goals. In
general, a better design than subclassing NSApplication is to put the code that expresses your application’s
special behavior into one or more custom objects called controllers. Methods defined in your controllers can
be invoked from a small dispatcher object without being closely tied to the global application object. For
more about application architectures, see Cocoa Design Patterns and The Core Application Architecture.

12 Overview
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Tasks

Getting the Application

+ sharedApplication (page 21)
Returns the application instance, creating it if it doesn’t exist yet.

Configuring Applications

– applicationIconImage (page 24)
Returns the image used for the receiver’s icon.

– setApplicationIconImage: (page 50)
Sets the receiver’s icon to the specified image.

– delegate (page 29)
Returns the receiver’s delegate.

– setDelegate: (page 51)
Makes the given object the receiver’s delegate.

Launching Applications

– finishLaunching (page 32)
Activates the receiver, opens any files specified by the NSOpen user default, and unhighlights the
application’s icon.

– applicationWillFinishLaunching: (page 75) delegate method
Sent by the default notification center immediately before the application object is initialized.

– applicationDidFinishLaunching: (page 69) delegate method
Sent by the default notification center after the application has been launched and initialized but
before it has received its first event.

Terminating Applications

– terminate: (page 57)
Terminates the receiver.

– applicationShouldTerminate: (page 73) delegate method
Sent to notify the delegate that the application is about to terminate.

– applicationShouldTerminateAfterLastWindowClosed: (page 74) delegate method
Invoked when the user closes the last window the application has open.

– replyToApplicationShouldTerminate: (page 43)
Responds to NSTerminateLater once the application knows whether it can terminate.

– applicationWillTerminate: (page 76) delegate method
Sent by the default notification center immediately before the application terminates.

Tasks 13
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Managing Active Status

– isActive (page 34)
Returns a Boolean value indicating whether this is the active application.

– activateIgnoringOtherApps: (page 23)
Makes the receiver the active application.

– applicationWillBecomeActive: (page 74) delegate method
Sent by the default notification center immediately before the application becomes active.

– applicationDidBecomeActive: (page 68) delegate method
Sent by the default notification center immediately after the application becomes active.

– deactivate (page 29)
Deactivates the receiver.

– applicationWillResignActive: (page 76) delegate method
Sent by the default notification center immediately before the application is deactivated.

– applicationDidResignActive: (page 70) delegate method
Sent by the default notification center immediately after the application is deactivated.

Hiding Applications

– hideOtherApplications: (page 33)
Hides all applications, except the receiver.

– unhideAllApplications: (page 59)
Unhides all applications, including the receiver.

– applicationWillHide: (page 75) delegate method
Sent by the default notification center immediately before the application is hidden.

– applicationDidHide: (page 69) delegate method
Sent by the default notification center immediately after the application is hidden.

– applicationWillUnhide: (page 76) delegate method
Sent by the default notification center immediately after the application is unhidden.

– applicationDidUnhide: (page 70) delegate method
Sent by the default notification center immediately after the application is made visible.

Managing the Event Loop

– isRunning (page 34)
Returns a Boolean value indicating whether the main event loop is running.

– run (page 45)
Starts the main event loop.

– stop: (page 54)
Stops the main event loop.

– runModalForWindow: (page 46)
Starts a modal event loop for a given window.

14 Tasks
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

– stopModal (page 55)
Stops a modal event loop.

– stopModalWithCode: (page 55)
Stops a modal event loop, allowing you to return a custom result code.

– abortModal (page 22)
Aborts the event loop started by runModalForWindow: (page 46) or runModalSession: (page
47).

– beginModalSessionForWindow: (page 25)
Sets up a modal session with the given window and returns anNSModalSession structure representing
the session.

– runModalSession: (page 47)
Runs a given modal session, as defined in a previous invocation of beginModalSessionForWindow:.

– modalWindow (page 37)
Returns the modal window that the receiver is displaying.

– endModalSession: (page 31)
Finishes a modal session.

– sendEvent: (page 49)
Dispatches an event to other objects.

Handling Events

– currentEvent (page 28)
Returns the current event, the last event the receiver retrieved from the event queue.

– nextEventMatchingMask:untilDate:inMode:dequeue: (page 37)
Returns the next event matching a given mask, or nil if no such event is found before a specified
expiration date.

– discardEventsMatchingMask:beforeEvent: (page 30)
Removes all events matching the given mask and generated before the specified event.

Posting Events

– postEvent:atStart: (page 41)
Adds a given event to the receiver’s event queue.

Managing Sheets

– beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 26)
Starts a document modal session.

– endSheet: (page 31)
Ends a document modal session by specifying the sheet window.

– endSheet:returnCode: (page 32)
Ends a document modal session by specifying the sheet window.

Tasks 15
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Managing Windows

– keyWindow (page 35)
Returns the window that currently receives keyboard events.

– mainWindow (page 36)
Returns the main window.

– windowWithWindowNumber: (page 62)
Returns the window corresponding to the specified window number.

– windows (page 61)
Returns an array containing the receiver’s window objects.

– makeWindowsPerform:inOrder: (page 36)
Sends the specified message to each of the application’s window objects until one returns a non-nil
value.

– applicationWillUpdate: (page 77) delegate method
Sent by the default notification center immediately before the application object updates its windows.

– applicationDidUpdate: (page 70) delegate method
Sent by the default notification center immediately after the application object updates its windows.

– applicationShouldHandleReopen:hasVisibleWindows: (page 72) delegate method
Sent by the application to the delegate prior to default behavior to reopen (rapp) AppleEvents.

Minimizing Windows

– miniaturizeAll: (page 37)
Miniaturizes all the receiver’s windows.

Hiding Windows

– isHidden (page 34)
Returns a Boolean value indicating whether the receiver is hidden.

– hide: (page 33)
Hides all the receiver’s windows, and the next application in line is activated.

– unhide: (page 58)
Restores hidden windows to the screen and makes the receiver active.

– unhideWithoutActivation (page 59)
Restores hidden windows without activating their owner (the receiver).

Updating Windows

– updateWindows (page 59)
Sends an update message to each onscreen window.

– setWindowsNeedUpdate: (page 53)
Sets whether the receiver’s windows need updating when the receiver has finished processing the
current event.

16 Tasks
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Managing Window Layers

– preventWindowOrdering (page 42)
Suppresses the usual window ordering in handling the most recent mouse-down event.

– arrangeInFront: (page 25)
Arranges windows listed in the Window menu in front of all other windows.

Accessing the Main Menu

– mainMenu (page 35)
Returns the receiver’s main menu.

– setMainMenu: (page 51)
Makes the given menu the receiver’s main menu.

Managing the Window Menu

– windowsMenu (page 62)
Returns the Window menu of the application.

– setWindowsMenu: (page 53)
Makes the given menu the receiver’s Window menu.

– addWindowsItem:title:filename: (page 24)
Adds an item to the Window menu for a given window.

– changeWindowsItem:title:filename: (page 27)
Changes the item for a given window in the Window menu to a given string.

– removeWindowsItem: (page 43)
Removes the Window menu item for a given window.

– updateWindowsItem: (page 60)
Updates the Window menu item for a given window to reflect the edited status of that window.

Managing the Dock Menu

– applicationDockMenu: (page 71) delegate method
Allows the delegate to supply a dock menu for the application dynamically.

Accessing the Dock Tile

– dockTile (page 31)
Returns the application’s Dock tile.

Tasks 17
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Managing the Services Menu

– registerServicesMenuSendTypes:returnTypes: (page 42)
Registers the pasteboard types the receiver can send and receive in response to service requests.

– servicesMenu (page 50)
Returns the Services menu.

– setServicesMenu: (page 52)
Makes a given menu the receiver’s Services menu.

Providing Services

– validRequestorForSendType:returnType: (page 60)
Indicates whether the receiver can send and receive the specified pasteboard types.

– servicesProvider (page 50)
Returns the object that provides the services the receiver advertises in the Services menu of other
applications.

– setServicesProvider: (page 52)
Registers a given object as the service provider.

Managing Panels

– orderFrontColorPanel: (page 40)
Brings up the color panel, an instance of NSColorPanel.

– orderFrontStandardAboutPanel: (page 40)
Displays a standard About window.

– orderFrontStandardAboutPanelWithOptions: (page 41)
Displays a standard About window with information from a given options dictionary.

– orderFrontCharacterPalette: (page 39)
Opens the character palette.

– runPageLayout: (page 48)
Displays the receiver’s page layout panel, an instance of NSPageLayout.

Displaying Help

– showHelp: (page 53)
If your project is properly registered, and the necessary keys have been set in the property list, this
method launches Help Viewer and displays the first page of your application’s help book.

– activateContextHelpMode: (page 22)
Places the receiver in context-sensitive help mode.

18 Tasks
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Displaying Errors

– application:willPresentError: (page 67) delegate method
Sent to the delegate before the specified application presents an error message to the user.

Managing Threads

+ detachDrawingThread:toTarget:withObject: (page 21)
Creates and executes a new thread based on the specified target and selector.

Posting Actions

– tryToPerform:with: (page 58)
Dispatches an action message to the specified target.

– sendAction:to:from: (page 48)
Sends the given action message to the given target.

– targetForAction: (page 55)
Returns the object that receives the action message specified by the given selector

– targetForAction:to:from: (page 56)
Finds an object that can receive the message specified by the given selector.

Drawing Windows

– context (page 28)
Returns the receiver’s display context.

Logging Exceptions

– reportException: (page 44)
Logs a given exception by calling NSLog().

Scripting

– orderedDocuments (page 38)
Returns an array of document objects arranged according to the front-to-back ordering of their
associated windows.

– orderedWindows (page 39)
Returns an array of window objects arranged according to their front-to-back ordering on the screen.

– application:delegateHandlesKey: (page 62) delegate method
Sent by Cocoa’s built-in scripting support during execution of get or set script commands to find
out if the delegate can handle operations on the specified key-value key.

Tasks 19
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Managing User Attention Requests

– requestUserAttention: (page 45)
Starts a user attention request.

– cancelUserAttentionRequest: (page 27)
Cancels a previous user attention request.

– replyToOpenOrPrint: (page 44)
Handles errors that might occur when the user attempts to open or print files.

Managing the Screen

– applicationDidChangeScreenParameters: (page 68) delegate method
Sent by the default notification center when the configuration of the displays attached to the computer
is changed (either programmatically or when the user changes settings in the Displays control panel).

Opening Files

– application:openFile: (page 63) delegate method
Tells the delegate to open a single file.

– application:openFileWithoutUI: (page 64) delegate method
Tells the delegate to open a file programmatically.

– application:openTempFile: (page 65) delegate method
Tells the delegate to open a temporary file.

– application:openFiles: (page 64) delegate method
Tells the delegate to open multiple files.

– applicationOpenUntitledFile: (page 71) delegate method
Tells the delegate to open an untitled file.

– applicationShouldOpenUntitledFile: (page 73) delegate method
Invoked immediately before opening an untitled file.

Printing

– application:printFile: (page 66) delegate method
Sent when the user starts up the application on the command line with the -NSPrint option.

– application:printFiles:withSettings:showPrintPanels: (page 66) delegate method
Prints a group of files.

Deprecated

– runModalForWindow:relativeToWindow: (page 47)
(Deprecated. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 26)
instead.)

20 Tasks
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

– beginModalSessionForWindow:relativeToWindow: (page 26)
(Deprecated. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 26)
instead.)

– application:printFiles: (page 89) delegate method Deprecated in Mac OS X v10.4
(Deprecated. Use application:printFiles:withSettings:showPrintPanels: (page 66)
instead.)

Class Methods

detachDrawingThread:toTarget:withObject:
Creates and executes a new thread based on the specified target and selector.

+ (void)detachDrawingThread:(SEL)selector toTarget:(id)target withObject:(id)argument

Parameters
selector

The selector whose code you want to execute in the new thread.

target
The object that defines the specified selector.

argument
An optional argument you want to pass to the selector.

Discussion
This method is a convenience wrapper for the detachNewThreadSelector:toTarget:withObject:
method of NSThread. This method automatically creates an NSAutoreleasePool object for the new thread
before invoking selector.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

sharedApplication
Returns the application instance, creating it if it doesn’t exist yet.

+ (NSApplication *)sharedApplication

Return Value
The shared application object.

Discussion
This method also makes a connection to the window server and completes other initialization. Your program
should invoke this method as one of the first statements in main(); this invoking is done for you if you create
your application with Xcode. To retrieve the NSApplication instance after it has been created, use the
global variable NSApp or invoke this method.

Class Methods 21
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 45)
– terminate: (page 57)

Related Sample Code
CoreRecipes
ImageClient
NumberInput_IMKit_Sample
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSApplication.h

Instance Methods

abortModal
Aborts the event loop started by runModalForWindow: (page 46) or runModalSession: (page 47).

- (void)abortModal

Discussion
When stopped with this method, runModalForWindow: and runModalSession: return
NSRunAbortedResponse.

abortModal must be used instead of stopModal (page 55) or stopModalWithCode: (page 55) when you
need to stop a modal event loop from anywhere other than a callout from that event loop. In other words,
if you want to stop the loop in response to a user’s actions within the modal window, use stopModal;
otherwise, use abortModal. For example, use abortModal when running in a different thread from the
Application Kit’s main thread or when responding to an NSTimer that you have added to the
NSModalPanelRunLoopMode mode of the default NSRunLoop.

Availability
Available in Mac OS X v10.0 and later.

See Also
– endModalSession: (page 31)

Declared In
NSApplication.h

activateContextHelpMode:
Places the receiver in context-sensitive help mode.

- (void)activateContextHelpMode:(id)sender

22 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
sender

The object that sent the command.

Discussion
In this mode, the cursor becomes a question mark, and help appears for any user interface item the user
clicks.

Most applications don’t use this method. Instead, applications enter context-sensitive mode when the user
presses the Help key. Applications exit context-sensitive help mode upon the first event after a help window
is displayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– showHelp: (page 53)

Declared In
NSHelpManager.h

activateIgnoringOtherApps:
Makes the receiver the active application.

- (void)activateIgnoringOtherApps:(BOOL)flag

Parameters
flag

If NO, the application is activated only if no other application is currently active. If YES, the application
activates regardless.

Discussion
The flag parameter is normally set to NO. When the Finder launches an application, using a value of NO for
flag allows the application to become active if the user waits for it to launch, but the application remains
unobtrusive if the user activates another application. Regardless of the setting of flag, there may be a time
lag before the application activates—you should not assume the application will be active immediately after
sending this message.

You rarely need to invoke this method. Under most circumstances, the Application Kit takes care of proper
activation. However, you might find this method useful if you implement your own methods for interapplication
communication.

You don’t need to send this message to make one of the application’s NSWindows key. When you send a
makeKeyWindowmessage to an NSWindow object, you ensure that it is the key window when the application
is active.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deactivate (page 29)
– isActive (page 34)

Instance Methods 23
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Declared In
NSApplication.h

addWindowsItem:title:filename:
Adds an item to the Window menu for a given window.

- (void)addWindowsItem:(NSWindow *)aWindow title:(NSString *)aString
filename:(BOOL)isFilename

Parameters
aWindow

The window being added to the menu. If this window object already exists in the Window menu, this
method has no effect.

aString
The string to display for the window’s menu item. How the string is interpreted is dependent on the
value in the isFilename parameter.

isFilename
If NO, aString appears literally in the menu; otherwise, aString is assumed to be a converted
pathname with the name of the file preceding the path (the way the NSWindow method
setTitleWithRepresentedFilename: shows a title)

Discussion
You rarely need to invoke this method directly because Cocoa places an item in the Window menu
automatically whenever you set the title of an NSWindow object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– changeWindowsItem:title:filename: (page 27)
– setTitle: (NSWindow)

Related Sample Code
QTAudioExtractionPanel

Declared In
NSApplication.h

applicationIconImage
Returns the image used for the receiver’s icon.

- (NSImage *)applicationIconImage

Return Value
An image containing the application’s icon.

Availability
Available in Mac OS X v10.0 and later.

24 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

See Also
– setApplicationIconImage: (page 50)

Declared In
NSApplication.h

arrangeInFront:
Arranges windows listed in the Window menu in front of all other windows.

- (void)arrangeInFront:(id)sender

Parameters
sender

The object that sent the command.

Discussion
Windows associated with the application but not listed in the Window menu are not ordered to the front.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addWindowsItem:title:filename: (page 24)
– removeWindowsItem: (page 43)
– makeKeyAndOrderFront: (NSWindow)

Declared In
NSApplication.h

beginModalSessionForWindow:
Sets up a modal session with the given window and returns an NSModalSession structure representing the
session.

- (NSModalSession)beginModalSessionForWindow:(NSWindow *)aWindow

Parameters
aWindow

The window for the session.

Return Value
The NSModalSession structure that represents the session.

Discussion
In a modal session, the application receives mouse events only if they occur in aWindow. The window is made
key, and if not already visible is placed onscreen using the NSWindow method center.

The beginModalSessionForWindow: method only sets up the modal session. To actually run the session,
use runModalSession: (page 47). beginModalSessionForWindow: should be balanced by
endModalSession: (page 31). Make sure these two messages are sent within the same exception-handling
scope. That is, if you send beginModalSessionForWindow: inside an NS_DURING construct, you must send
endModalSession: before NS_ENDHANDLER.

Instance Methods 25
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

If an exception is raised, beginModalSessionForWindow: arranges for proper cleanup. Do not use
NS_DURING constructs to send an endModalSession: message in the event of an exception.

A loop using these methods is similar to a modal event loop run with runModalForWindow: (page 46),
except the application can continue processing between method invocations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

beginModalSessionForWindow:relativeToWindow:
(Deprecated. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 26) instead.)

- (NSModalSession)beginModalSessionForWindow:(NSWindow *)theWindow
relativeToWindow:(NSWindow *)docWindow

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo:
Starts a document modal session.

- (void)beginSheet:(NSWindow *)sheet modalForWindow:(NSWindow *)docWindow
modalDelegate:(id)modalDelegate didEndSelector:(SEL)didEndSelector
contextInfo:(void *)contextInfo

Parameters
sheet

The window object representing the sheet you want to display.

docWindow
The window object to which you want to attach the sheet.

modalDelegate
The delegate object that defines your didEndSelector method. If nil, the method in
didEndSelector is not called.

didEndSelector
An optional method to call when the sheet’s modal session has ended. This method must be defined
on the object in the modalDelegate parameter and have the following signature:

- (void)sheetDidEnd:(NSWindow *)sheet returnCode:(NSInteger)returnCode
contextInfo:(void *)contextInfo;

contextInfo
A pointer to the context info you want passed to the didEndSelector method when the sheet’s
modal session ends.

26 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Discussion
This method runs the modal event loop for the specified sheet synchronously. It displays the sheet, makes
it key, starts the run loop, and processes events for it. While the application is in the run loop, it does not
respond to any other events (including mouse, keyboard, or window-close events) unless they are associated
with the sheet. It also does not perform any tasks (such as firing timers) that are not associated with the
modal run loop. In other words, this method consumes only enough CPU time to process events and dispatch
them to the action methods associated with the modal window.

Availability
Available in Mac OS X v10.0 and later.

See Also
– endSheet: (page 31)
– endSheet:returnCode: (page 32)

Related Sample Code
IdentitySample
ImageClient
QTSSConnectionMonitor
QTSSInspector
WhackedTV

Declared In
NSApplication.h

cancelUserAttentionRequest:
Cancels a previous user attention request.

- (void)cancelUserAttentionRequest:(NSInteger)request

Parameters
request

The request identifier returned by the requestUserAttention: method.

Discussion
A request is also canceled automatically by user activation of the application.

Availability
Available in Mac OS X v10.1 and later.

See Also
– requestUserAttention: (page 45)

Declared In
NSApplication.h

changeWindowsItem:title:filename:
Changes the item for a given window in the Window menu to a given string.

Instance Methods 27
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

- (void)changeWindowsItem:(NSWindow *)aWindow title:(NSString *)aString
filename:(BOOL)isFilename

Parameters
aWindow

The window whose title you want to change in the Window menu. If aWindow is not in the Window
menu, this method adds it.

aString
The string to display for the window’s menu item. How the string is interpreted is dependent on the
value in the isFilename parameter.

isFilename
If NO, aString appears literally in the menu; otherwise, aString is assumed to be a converted
pathname with the name of the file preceding the path (the way the NSWindow method
setTitleWithRepresentedFilename: shows a title)

Availability
Available in Mac OS X v10.0 and later.

See Also
– addWindowsItem:title:filename: (page 24)
– removeWindowsItem: (page 43)
– setTitle: (NSWindow)

Declared In
NSApplication.h

context
Returns the receiver’s display context.

- (NSGraphicsContext *)context

Return Value
The current display context for the application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

currentEvent
Returns the current event, the last event the receiver retrieved from the event queue.

- (NSEvent *)currentEvent

Return Value
The last event object retrieved by the application.

28 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Discussion
NSApp receives events and forwards them to the affected NSWindow objects, which then distribute them to
the objects in its view hierarchy.

Availability
Available in Mac OS X v10.0 and later.

See Also
– discardEventsMatchingMask:beforeEvent: (page 30)
– postEvent:atStart: (page 41)
– sendEvent: (page 49)

Related Sample Code
Clock Control

Declared In
NSApplication.h

deactivate
Deactivates the receiver.

- (void)deactivate

Discussion
Normally, you shouldn’t invoke this method—the Application Kit is responsible for proper deactivation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– activateIgnoringOtherApps: (page 23)

Declared In
NSApplication.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The application delegate object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 51)

Declared In
NSApplication.h

Instance Methods 29
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

discardEventsMatchingMask:beforeEvent:
Removes all events matching the given mask and generated before the specified event.

- (void)discardEventsMatchingMask:(NSUInteger)mask beforeEvent:(NSEvent *)lastEvent

Parameters
mask

Contains one or more flags indicating the types of events to discard. The constants section of the
NSEvent class defines the constants you can add together to create this mask. The discussion section
also lists some of the constants that are typically used.

lastEvent
A marker event that you use to indicate which events should be discarded. Events that occurred
before this event are discarded but those that occurred after it are not.

Discussion
Use this method to ignore any events that occurred before a specific event. For example, suppose your
application has a tracking loop that you exit when the user releases the mouse button. You could use this
method, specifying NSAnyEventMask as the mask argument and the ending mouse-up event as the
lastEvent argument, to discard all events that occurred while you were tracking mouse movements in
your loop. Passing the mouse-up event as lastEvent ensures that any events that might have occurred
after the mouse-up event (that is, that appear in the queue after the mouse-up event) are not discarded.

Note: Typically, you send this message to an NSWindow object, rather than to the application object.
Discarding events for a window clears out all of the events for that window only, leaving events for other
windows in place.

For the mask parameter, you can add together event type constants such as the following:

NSLeftMouseDownMask

NSLeftMouseUpMask

NSRightMouseDownMask

NSRightMouseUpMask

NSMouseMovedMask

NSLeftMouseDraggedMask

NSRightMouseDraggedMask

NSMouseEnteredMask

NSMouseExitedMask

NSKeyDownMask

NSKeyUpMask

NSFlagsChangedMask

NSPeriodicMask

NSCursorUpdateMask

NSAnyEventMask

This method can also be called in subthreads. Events posted in subthreads bubble up in the main thread
event queue.

Availability
Available in Mac OS X v10.0 and later.

30 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

See Also
– nextEventMatchingMask:untilDate:inMode:dequeue: (page 37)

Declared In
NSApplication.h

dockTile
Returns the application’s Dock tile.

- (NSDockTile *)dockTile;

Return Value
The application’s Dock tile.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSApplication.h

endModalSession:
Finishes a modal session.

- (void)endModalSession:(NSModalSession)session

Parameters
session

A modal session structure returned by a previous invocation of beginModalSessionForWindow:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– beginModalSessionForWindow: (page 25)
– runModalSession: (page 47)

Declared In
NSApplication.h

endSheet:
Ends a document modal session by specifying the sheet window.

- (void)endSheet:(NSWindow *)sheet

Parameters
sheet

The sheet whose modal session you want to end.

Instance Methods 31
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Discussion
This method ends the modal session with the return code NSRunStoppedResponse.

Availability
Available in Mac OS X v10.0 and later.

See Also
– beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 26)
– endSheet:returnCode: (page 32)

Related Sample Code
QTSSConnectionMonitor
QTSSInspector
WhackedTV

Declared In
NSApplication.h

endSheet:returnCode:
Ends a document modal session by specifying the sheet window.

- (void)endSheet:(NSWindow *)sheet returnCode:(NSInteger)returnCode

Parameters
sheet

The sheet whose modal session you want to end.

returnCode
The return code to send to the delegate. You can use one of the return codes defined in “Return
values for modal operations” (page 77) or a custom value that you define.

Availability
Available in Mac OS X v10.0 and later.

See Also
– beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 26)
– endSheet: (page 31)

Related Sample Code
IdentitySample
ImageClient

Declared In
NSApplication.h

finishLaunching
Activates the receiver, opens any files specified by the NSOpen user default, and unhighlights the application’s
icon.

- (void)finishLaunching

32 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Discussion
The run (page 45) method invokes this method before it starts the event loop. When this method begins,
it posts an NSApplicationWillFinishLaunchingNotification (page 86) to the default notification
center. If you override finishLaunching (page 32), the subclass method should invoke the superclass
method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationWillFinishLaunching: (page 75)
– applicationDidFinishLaunching: (page 69)

Declared In
NSApplication.h

hide:
Hides all the receiver’s windows, and the next application in line is activated.

- (void)hide:(id)sender

Parameters
sender

The object that sent the command.

Discussion
This method is usually invoked when the user chooses Hide in the application’s main menu. When this method
begins, it posts an NSApplicationWillHideNotification (page 86) to the default notification center.
When it completes successfully, it posts an NSApplicationDidHideNotification (page 85).

Availability
Available in Mac OS X v10.0 and later.

See Also
– miniaturizeAll: (page 37)
– unhide: (page 58)
– unhideWithoutActivation (page 59)
– applicationDidHide: (page 69)
– applicationWillHide: (page 75)

Declared In
NSApplication.h

hideOtherApplications:
Hides all applications, except the receiver.

- (void)hideOtherApplications:(id)sender

Instance Methods 33
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
sender

The object that sent this message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

isActive
Returns a Boolean value indicating whether this is the active application.

- (BOOL)isActive

Return Value
YES if this is the active application; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– activateIgnoringOtherApps: (page 23)
– deactivate (page 29)

Declared In
NSApplication.h

isHidden
Returns a Boolean value indicating whether the receiver is hidden.

- (BOOL)isHidden

Return Value
YES if the receiver is hidden, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hide: (page 33)
– unhide: (page 58)
– unhideWithoutActivation (page 59)

Declared In
NSApplication.h

isRunning
Returns a Boolean value indicating whether the main event loop is running.

34 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

- (BOOL)isRunning

Return Value
YES if the main event loop is running; NO otherwise.

Discussion
NO means the stop: (page 54) method was invoked.

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 45)
– terminate: (page 57)

Declared In
NSApplication.h

keyWindow
Returns the window that currently receives keyboard events.

- (NSWindow *)keyWindow

Return Value
The window object currently receiving keyboard events or nil if there is no key window.

Discussion
This method might return nil if the application’s nib file hasn’t finished loading yet or if the receiver is not
active.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mainWindow (page 36)
– isKeyWindow (NSWindow)

Declared In
NSApplication.h

mainMenu
Returns the receiver’s main menu.

- (NSMenu *)mainMenu

Return Value
The menu object representing the application’s menu bar.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 35
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

See Also
– setMainMenu: (page 51)

Declared In
NSApplication.h

mainWindow
Returns the main window.

- (NSWindow *)mainWindow

Return Value
The application’s main window or nil if there is no main window.

Discussion
This method might return nil if the application’s nib file hasn’t finished loading, if the receiver is not active,
or if the application is hidden.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyWindow (page 35)
– isMainWindow (NSWindow)

Declared In
NSApplication.h

makeWindowsPerform:inOrder:
Sends the specified message to each of the application’s window objects until one returns a non-nil value.

- (NSWindow *)makeWindowsPerform:(SEL)aSelector inOrder:(BOOL)flag

Parameters
aSelector

The selector to perform on each window. This method must not take any arguments and must return
a value whose type that can be compared to nil.

flag
If YES, the aSelector message is sent to each of the window server’s onscreen windows, going in
z-order, until one returns a non-nil value. A minimized window is not considered to be onscreen for
this check. If NO, the message is sent to all windows in NSApp’s window list, regardless of whether or
not they are onscreen. This order is unspecified.

Return Value
The window that returned a non-nil value or nil if all windows returned nil from aSelector.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendAction:to:from: (page 48)

36 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

– tryToPerform:with: (page 58)
– windows (page 61)

Declared In
NSApplication.h

miniaturizeAll:
Miniaturizes all the receiver’s windows.

- (void)miniaturizeAll:(id)sender

Parameters
sender

The object that sent the command.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hide: (page 33)

Declared In
NSApplication.h

modalWindow
Returns the modal window that the receiver is displaying.

- (NSWindow *)modalWindow

Return Value
The modal window being displayed or nil if no modal window is being displayed.

Discussion
This method returns the current standalone modal window. It does not return sheets that are attached to
other windows. If you need to retrieve a sheet window, use the attachedSheet method of NSWindow.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

nextEventMatchingMask:untilDate:inMode:dequeue:
Returns the next event matching a given mask, or nil if no such event is found before a specified expiration
date.

- (NSEvent *)nextEventMatchingMask:(NSUInteger)mask untilDate:(NSDate *)expiration
inMode:(NSString *)mode dequeue:(BOOL)flag

Instance Methods 37
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
mask

Contains one or more flags indicating the types of events to return. The constants section of the
NSEvent class defines the constants you can add together to create this mask. The
discardEventsMatchingMask:beforeEvent: (page 30) method also lists several of these
constants.

expiration
The expiration date for the current event request. Specifying nil for this parameter is equivalent to
returning a date object using the distantPast method.

mode
The run loop mode in which to run while looking for events. The mode you specify also determines
which timers and run-loop observers may fire while the application waits for the event.

flag
Specify YES if you want the event removed from the queue.

Return Value
The event object whose type matches one of the event types specified by the mask parameter.

Discussion
You can use this method to short circuit normal event dispatching and get your own events. For example,
you may want to do this in response to a mouse-down event in order to track the mouse while its button is
down. (In such an example, you would pass the appropriate event types for mouse-dragged and mouse-up
events to the mask parameter and specify the NSEventTrackingRunLoopMode run loop mode.) Events
that do not match one of the specified event types are left in the queue.

You can specify one of the run loop modes defined by the Application Kit or a custom run loop mode used
specifically by your application. Application Kit defines the following run-loop modes:

NSDefaultRunLoopMode

NSEventTrackingRunLoopMode

NSModalPanelRunLoopMode

NSConnectionReplyMode

Availability
Available in Mac OS X v10.0 and later.

See Also
– postEvent:atStart: (page 41)
– run (page 45)
– runModalForWindow: (page 46)

Declared In
NSApplication.h

orderedDocuments
Returns an array of document objects arranged according to the front-to-back ordering of their associated
windows.

- (NSArray *)orderedDocuments

38 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Return Value
An array of NSDocument objects, where the position of a document is based on the front-to-back ordering
of its associated window.

Discussion
This method is called during script command evaluation—for example, while finding the document in the
script statement the third rectangle in the first document. For information on how your
application can return its own array of ordered documents, see application:delegateHandlesKey: (page
62).

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderedWindows (page 39)

Declared In
NSApplicationScripting.h

orderedWindows
Returns an array of window objects arranged according to their front-to-back ordering on the screen.

- (NSArray *)orderedWindows

Return Value
An array of NSWindow objects, where the position of each window in the array corresponds to the front-to-back
ordering of the windows on the screen.

Discussion
Only windows that are typically scriptable are included in the returned array. For example, panels are not
included.

This method is called during script command evaluation—for example, while finding the window in the
script statement close the second window. For information on how your application can return its own
array of ordered windows, see application:delegateHandlesKey: (page 62).

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderedDocuments (page 38)

Declared In
NSApplicationScripting.h

orderFrontCharacterPalette:
Opens the character palette.

- (void)orderFrontCharacterPalette:(id)sender

Instance Methods 39
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
sender

The object that sent the command.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSApplication.h

orderFrontColorPanel:
Brings up the color panel, an instance of NSColorPanel.

- (void)orderFrontColorPanel:(id)sender

Parameters
sender

The object that sent the command.

Discussion
If the NSColorPanel object does not exist yet, this method creates one. This method is typically invoked
when the user chooses Colors from a menu.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPanel.h

orderFrontStandardAboutPanel:
Displays a standard About window.

- (void)orderFrontStandardAboutPanel:(id)sender

Parameters
sender

The object that sent the command.

Discussion
This method calls orderFrontStandardAboutPanelWithOptions: (page 41) with a nil argument. See
orderFrontStandardAboutPanelWithOptions: for a description of what’s displayed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MenuItemView

Declared In
NSApplication.h

40 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

orderFrontStandardAboutPanelWithOptions:
Displays a standard About window with information from a given options dictionary.

- (void)orderFrontStandardAboutPanelWithOptions:(NSDictionary *)optionsDictionary

Parameters
optionsDictionary

A dictionary whose keys define the contents of the About window. See the discussion for a description
of the available keys.

Discussion
The following strings are keys that can occur in optionsDictionary:

 ■ @"Credits": An NSAttributedString displayed in the info area of the panel. If not specified, this method
then looks for a file named “Credits.html”, “Credits.rtf”, and “Credits.rtfd”, in that order, in
the bundle returned by the NSBundle class method mainBundle. The first file found is used. If none is
found, the info area is left blank.

 ■ @"ApplicationName": An NSString object displayed as the application’s name. If not specified, this
method then uses the value of CFBundleName (localizable). If neither is found, this method uses
[[NSProcessInfo processInfo] processName].

 ■ @"ApplicationIcon": An NSImage object displayed as the application’s icon. If not specified, this
method then looks for an image named “NSApplicationIcon”, using [NSImage
imageNamed:@"NSApplicationIcon"]. If neither is available, this method uses the generic application
icon.

 ■ @"Version": An NSString object with the build version number of the application (“58.4”), displayed
as “(v58.4)”. If not specified, obtain from the CFBundleVersion key in infoDictionary; if not specified,
leave blank (the “(v)” is not displayed).

 ■ @"Copyright": An NSString object with a line of copyright information. If not specified, this method
then looks for the value of NSHumanReadableCopyright in the localized version infoDictionary.
If neither is available, this method leaves the space blank.

 ■ @"ApplicationVersion": An NSString object with the application version (“Mac OS X”, “3”,
“WebObjects 4.5”, “AppleWorks 6”,...). If not specified, obtain from the CFBundleShortVersionString
key in infoDictionary. If neither is available, the build version, if available, is printed alone, as “Version
x.x”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFrontStandardAboutPanel: (page 40)

Declared In
NSApplication.h

postEvent:atStart:
Adds a given event to the receiver’s event queue.

- (void)postEvent:(NSEvent *)anEvent atStart:(BOOL)flag

Instance Methods 41
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
anEvent

The event object to post to the queue.

flag
Specify YES to add the event to the front of the queue; otherwise, specify NO to add the event to the
back of the queue.

Discussion
This method can also be called in subthreads. Events posted in subthreads bubble up in the main thread
event queue.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentEvent (page 28)
– sendEvent: (page 49)

Declared In
NSApplication.h

preventWindowOrdering
Suppresses the usual window ordering in handling the most recent mouse-down event.

- (void)preventWindowOrdering

Discussion
This method is only useful for mouse-down events when you want to prevent the window that receives the
event from being ordered to the front.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

registerServicesMenuSendTypes:returnTypes:
Registers the pasteboard types the receiver can send and receive in response to service requests.

- (void)registerServicesMenuSendTypes:(NSArray *)sendTypes returnTypes:(NSArray
*)returnTypes

Parameters
sendTypes

An array of NSString objects, each of which corresponds to a particular pasteboard type that the
application can send.

returnTypes
An array of NSString objects, each of which corresponds to a particular pasteboard type that the
application can receive.

42 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Discussion
If the receiver has a Services menu, a menu item is added for each service provider that can accept one of
the specified sendTypes or return one of the specified returnTypes. You should typically invoke this
method at application startup time or when an object that can use services is created. You can invoke it more
than once—its purpose is to ensure there is a menu item for every service the application can use. The
event-handling mechanism will dynamically enable the individual items to indicate which services are currently
appropriate. All the NSResponder objects in your application (typically NSView objects) should register every
possible type they can send and receive by sending this message to NSApp.

Availability
Available in Mac OS X v10.0 and later.

See Also
– validRequestorForSendType:returnType: (page 60)
– readSelectionFromPasteboard: (NSServicesRequests protocol)
– writeSelectionToPasteboard:types: (NSServicesRequests protocol)

Declared In
NSApplication.h

removeWindowsItem:
Removes the Window menu item for a given window.

- (void)removeWindowsItem:(NSWindow *)aWindow

Parameters
aWindow

The window whose menu item is to be removed.

Discussion
This method doesn’t prevent the item from being automatically added again. Use the
setExcludedFromWindowsMenu: method of NSWindow if you want the item to remain excluded from the
Window menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addWindowsItem:title:filename: (page 24)
– changeWindowsItem:title:filename: (page 27)

Declared In
NSApplication.h

replyToApplicationShouldTerminate:
Responds to NSTerminateLater once the application knows whether it can terminate.

- (void)replyToApplicationShouldTerminate:(BOOL)shouldTerminate

Instance Methods 43
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
shouldTerminate

Specify YES if you want the application to terminate; otherwise, specify NO.

Discussion
If your application delegate returns NSTerminateLater from its applicationShouldTerminate: (page
73) method, your code must subsequently call this method to let the NSApplication object know whether
it can actually terminate itself.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
NSApplication.h

replyToOpenOrPrint:
Handles errors that might occur when the user attempts to open or print files.

- (void)replyToOpenOrPrint:(NSApplicationDelegateReply)reply

Parameters
reply

The error that occurred. For a list of possible values, see “Constants” (page 77).

Discussion
Delegates should invoke this method if an error is encountered in the application:openFiles: (page
64) or application:printFiles: (page 89) delegate methods.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSApplication.h

reportException:
Logs a given exception by calling NSLog().

- (void)reportException:(NSException *)anException

Parameters
anException

The exception whose contents you want to write to the log file.

Discussion
This method does not raise anException. Use it inside of an exception handler to record that the exception
occurred.

44 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSetUncaughtExceptionHandler (Foundation Functions)

Declared In
NSApplication.h

requestUserAttention:
Starts a user attention request.

- (NSInteger)requestUserAttention:(NSRequestUserAttentionType)requestType

Parameters
requestType

The severity of the request. For a list of possible values, see “Constants” (page 77).

Return Value
The identifier for the request. You can use this value to cancel the request later using the
cancelUserAttentionRequest: method.

Discussion
Activating the application cancels the user attention request. A spoken notification will occur if spoken
notifications are enabled. Sending requestUserAttention: to an application that is already active has no
effect.

If the inactive application presents a modal panel, this method will be invoked with NSCriticalRequest
automatically. The modal panel is not brought to the front for an inactive application.

Availability
Available in Mac OS X v10.1 and later.

See Also
– cancelUserAttentionRequest: (page 27)

Declared In
NSApplication.h

run
Starts the main event loop.

- (void)run

Discussion
The loop continues until a stop: (page 54) or terminate: (page 57) message is received. Upon each
iteration through the loop, the next available event from the window server is stored and then dispatched
by sending it to NSApp using sendEvent: (page 49).

Instance Methods 45
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

After creating the NSApplication object, the main function should load your application’s main nib file
and then start the event loop by sending the NSApplication object a run message. If you create an Cocoa
application project in Xcode, this main function is implemented for you.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runModalForWindow: (page 46)
– runModalSession: (page 47)
– applicationDidFinishLaunching: (page 69)

Related Sample Code
NumberInput_IMKit_Sample

Declared In
NSApplication.h

runModalForWindow:
Starts a modal event loop for a given window.

- (NSInteger)runModalForWindow:(NSWindow *)aWindow

Parameters
aWindow

The window to be displayed modally. If it is not already visible, the window is centered on the screen
using the value in its centermethod and made visible and key. If it is already visible, it is simply made
key.

Return Value
An integer indicating the reason that this method returned. See the discussion for a description of possible
return values.

Discussion
This method runs a modal event loop for the specified window synchronously. It displays the specified
window, makes it key, starts the run loop, and processes events for that window. (You do not need to show
the window yourself.) While the application is in that loop, it does not respond to any other events (including
mouse, keyboard, or window-close events) unless they are associated with the window. It also does not
perform any tasks (such as firing timers) that are not associated with the modal run loop. In other words, this
method consumes only enough CPU time to process events and dispatch them to the action methods
associated with the modal window.

You can exit the modal loop by calling the stopModal, stopModalWithCode:, or abortModal methods
from your modal window code. If you use the stopModalWithCode: method to stop the modal event loop,
this method returns the argument passed to stopModalWithCode:. If you use stopModal instead, this
method returns the constant NSRunStoppedResponse. If you use abortModal, this method returns the
constant NSRunAbortedResponse.

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 45)

46 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

– runModalSession: (page 47)

Related Sample Code
WhackedTV

Declared In
NSApplication.h

runModalForWindow:relativeToWindow:
(Deprecated. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 26) instead.)

- (NSInteger)runModalForWindow:(NSWindow *)theWindow relativeToWindow:(NSWindow
*)docWindow

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

runModalSession:
Runs a given modal session, as defined in a previous invocation of beginModalSessionForWindow:.

- (NSInteger)runModalSession:(NSModalSession)session

Parameters
session

The modal session structure returned by the beginModalSessionForWindow: method for the
window to be displayed.

Return Value
An integer indicating the reason that this method returned. See the discussion for a description of possible
return values.

Discussion
A loop that uses this method is similar in some ways to a modal event loop run with runModalForWindow:,
except with this method your code can do some additional work between method invocations. When you
invoke this method, events for the NSWindow object of this session are dispatched as normal. This method
returns when there are no more events. You must invoke this method frequently enough in your loop that
the window remains responsive to events. However, you should not invoke this method in a tight loop
because it returns immediately if there are no events, and consequently you could end up polling for events
rather than blocking.

Typically, you use this method in situations where you want to do some additional processing on the current
thread while the modal loop runs. For example, while processing a large data set, you might want to use a
modal dialog to display progress and give the user a chance to cancel the operation. If you want to display
a modal dialog and do not need to do any additional work in parallel, use runModalForWindow: instead.
When there are no pending events, that method waits idly instead of consuming CPU time.

The following code shows a sample loop you can use in your code:

Instance Methods 47
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

NSModalSession session = [NSApp beginModalSessionForWindow:theWindow];
for (;;) {
 if ([NSApp runModalSession:session] != NSRunContinuesResponse)
 break;
 [self doSomeWork];
}
[NSApp endModalSession:session];

If the modal session was not stopped, this method returns NSRunContinuesResponse. At this point, your
application can do some work before the next invocation of runModalSession: (as indicated in the example’s
doSomeWork call). If stopModal (page 55) was invoked as the result of event processing, runModalSession:
returns NSRunStoppedResponse. If stopModalWithCode: (page 55) was invoked, this method returns
the value passed to stopModalWithCode:. If abortModal (page 22) was invoked, this method returns
NSRunAbortedResponse.

The window is placed on the screen and made key as a result of the runModalSession: message. Do not
send a separate makeKeyAndOrderFront: message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– beginModalSessionForWindow: (page 25)
– endModalSession: (page 31)
– run (page 45)
– runModalForWindow: (page 46)

Declared In
NSApplication.h

runPageLayout:
Displays the receiver’s page layout panel, an instance of NSPageLayout.

- (void)runPageLayout:(id)sender

Parameters
sender

The object that sent the command.

Discussion
If the NSPageLayout instance does not exist, this method creates one. This method is typically invoked when
the user chooses Page Setup from the application’s FIle menu.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPageLayout.h

sendAction:to:from:
Sends the given action message to the given target.

48 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

- (BOOL)sendAction:(SEL)anAction to:(id)aTarget from:(id)sender

Parameters
anAction

The action message you want to send.

aTarget
The target object that defines the specified action message.

sender
The object to pass for the action message’s parameter.

Return Value
YES if the action was successfully sent; otherwise NO. This method also returns NO if anAction is nil.

Discussion
If aTarget is nil, NSApp looks for an object that can respond to the message—that is, an object that
implements a method matching anAction. It begins with the first responder of the key window. If the first
responder can’t respond, it tries the first responder’s next responder and continues following next responder
links up the responder chain. If none of the objects in the key window’s responder chain can handle the
message, NSApp attempts to send the message to the key window’s delegate.

If the delegate doesn’t respond and the main window is different from the key window, NSApp begins again
with the first responder in the main window. If objects in the main window can’t respond, NSApp attempts
to send the message to the main window’s delegate. If still no object has responded, NSApp tries to handle
the message itself. If NSApp can’t respond, it attempts to send the message to its own delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– targetForAction: (page 55)
– tryToPerform:with: (page 58)
– makeWindowsPerform:inOrder: (page 36)

Declared In
NSApplication.h

sendEvent:
Dispatches an event to other objects.

- (void)sendEvent:(NSEvent *)anEvent

Parameters
anEvent

The event object to dispatch.

Discussion
You rarely invoke sendEvent: directly, although you might want to override this method to perform some
action on every event. sendEvent:messages are sent from the main event loop (the run (page 45) method).
sendEvent: is the method that dispatches events to the appropriate responders—NSApp handles application
events, the NSWindow object indicated in the event record handles window-related events, and mouse and
key events are forwarded to the appropriate NSWindow object for further dispatching.

Instance Methods 49
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentEvent (page 28)
– postEvent:atStart: (page 41)

Declared In
NSApplication.h

servicesMenu
Returns the Services menu.

- (NSMenu *)servicesMenu

Return Value
The Services menu or nil if no Services menu has been created

Availability
Available in Mac OS X v10.0 and later.

See Also
– setServicesMenu: (page 52)

Declared In
NSApplication.h

servicesProvider
Returns the object that provides the services the receiver advertises in the Services menu of other applications.

- (id)servicesProvider

Return Value
The application’s service provider object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setServicesProvider: (page 52)

Declared In
NSApplication.h

setApplicationIconImage:
Sets the receiver’s icon to the specified image.

- (void)setApplicationIconImage:(NSImage *)anImage

50 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
anImage

The image to use as the new application icon.

Discussion
This method sets the icon in the dock application tile. This method scales the image as necessary so that it
fits in the dock tile. You can use this method to change your application icon while running. To restore your
application’s original icon, you pass nil to this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationIconImage (page 24)

Declared In
NSApplication.h

setDelegate:
Makes the given object the receiver’s delegate.

- (void)setDelegate:(id)anObject

Parameters
anObject

The application delegate object.

Discussion
The messages a delegate can expect to receive are listed at the end of this specification. The delegate doesn’t
need to implement all the methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 29)

Related Sample Code
CocoaDVDPlayer
JavaSplashScreen
PictureSharing

Declared In
NSApplication.h

setMainMenu:
Makes the given menu the receiver’s main menu.

- (void)setMainMenu:(NSMenu *)aMenu

Instance Methods 51
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
aMenu

The new menu bar for the application.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mainMenu (page 35)

Declared In
NSApplication.h

setServicesMenu:
Makes a given menu the receiver’s Services menu.

- (void)setServicesMenu:(NSMenu *)aMenu

Parameters
aMenu

The new Services menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– servicesMenu (page 50)

Declared In
NSApplication.h

setServicesProvider:
Registers a given object as the service provider.

- (void)setServicesProvider:(id)aProvider

Parameters
aProvider

The new service provider object.

Discussion
The service provider is an object that performs all services the application provides to other applications.
When another application requests a service from the receiver, it sends the service request to aProvider.
Service requests can arrive immediately after the service provider is set, so invoke this method only when
your application is ready to receive requests.

Availability
Available in Mac OS X v10.0 and later.

See Also
– servicesProvider (page 50)

52 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Declared In
NSApplication.h

setWindowsMenu:
Makes the given menu the receiver’s Window menu.

- (void)setWindowsMenu:(NSMenu *)aMenu

Parameters
aMenu

The new Window menu for the application.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowsMenu (page 62)

Declared In
NSApplication.h

setWindowsNeedUpdate:
Sets whether the receiver’s windows need updating when the receiver has finished processing the current
event.

- (void)setWindowsNeedUpdate:(BOOL)flag

Parameters
flag

If YES, the receiver’s windows are updated after an event is processed.

Discussion
This method is especially useful for making sure menus are updated to reflect changes not initiated by user
actions, such as messages received from remote objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
– updateWindows (page 59)

Declared In
NSApplication.h

showHelp:
If your project is properly registered, and the necessary keys have been set in the property list, this method
launches Help Viewer and displays the first page of your application’s help book.

- (void)showHelp:(id)sender

Instance Methods 53
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
sender

The object that sent the command.

Discussion
For information on how to set up your project to take advantage of having Help Viewer display your help
book, see Specifying the Comprehensive Help File.

Availability
Available in Mac OS X v10.0 and later.

See Also
– activateContextHelpMode: (page 22)

Related Sample Code
HelpHook

Declared In
NSHelpManager.h

stop:
Stops the main event loop.

- (void)stop:(id)sender

Parameters
sender

The object that sent this message.

Discussion
This method notifies the application that you want to exit the current run loop as soon as it finishes processing
the current NSEvent object. This method does not forcibly exit the current run loop. Instead it sets a flag
that the application checks only after it finishes dispatching an actual event object. For example, you could
call this method from an action method responding to a button click or from one of the many methods
defined by the NSResponder class. However, calling this method from a timer or run-loop observer routine
would not stop the run loop because they do not result in the p of an NSEvent object.

If you call this method from an event handler running in your main run loop, the application object exits out
of the run method, thereby returning control to the main() function. If you call this method from within a
modal event loop, it will exit the modal loop instead of the main event loop.

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 45)
– runModalForWindow: (page 46)
– runModalSession: (page 47)
– terminate: (page 57)

Declared In
NSApplication.h

54 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

stopModal
Stops a modal event loop.

- (void)stopModal

Discussion
This method should always be paired with a previous invocation of runModalForWindow: (page 46) or
beginModalSessionForWindow: (page 25). When runModalForWindow: (page 46) is stopped with this
method, it returns NSRunStoppedResponse. This method stops the loop only if it’s executed by code
responding to an event. If you need to stop a runModalForWindow: (page 46) loop outside of one of its
event callbacks (for example, a method repeatedly invoked by an NSTimer object or a method running in a
different thread), use the abortModal (page 22) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runModalSession: (page 47)
– stopModalWithCode: (page 55)

Related Sample Code
WhackedTV

Declared In
NSApplication.h

stopModalWithCode:
Stops a modal event loop, allowing you to return a custom result code.

- (void)stopModalWithCode:(NSInteger)returnCode

Parameters
returnCode

The result code you want returned from the runModalForWindow: or runModalSession:method.
The meaning of this result code is up to you.

Availability
Available in Mac OS X v10.0 and later.

See Also
– abortModal (page 22)
– runModalForWindow: (page 46)

Declared In
NSApplication.h

targetForAction:
Returns the object that receives the action message specified by the given selector

- (id)targetForAction:(SEL)aSelector

Instance Methods 55
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
aSelector

The desired action message.

Return Value
The object that would receive the specified action message or nil if no target object would receive the
message. This method also returns nil if aSelector is nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendAction:to:from: (page 48)
– tryToPerform:with: (page 58)
– targetForAction:to:from: (page 56)

Declared In
NSApplication.h

targetForAction:to:from:
Finds an object that can receive the message specified by the given selector.

- (id)targetForAction:(SEL)anAction to:(id)aTarget from:(id)sender

Parameters
anAction

The desired action message.

aTarget
The first target object to check. Specify nil if you want the application to search the responder chain.

sender
The parameter to send to the action message.

Return Value
The object that can accept the specified action message or nil if no target object can receive the message.
This method also returns nil if anAction is nil.

Discussion
If aTarget is not nil, aTarget is returned. If aTarget is nil, NSApp looks for an object that can respond
to the message—that is, an object that implements a method matching anAction. The search begins with
the first responder of the key window. If the first responder does not handle the message, it tries the first
responder’s next responder and continues following next responder links up the responder chain. If none of
the objects in the key window’s responder chain can handle the message, NSApp asks the key window’s
delegate whether it can handle the message.

If the delegate cannot handle the message and the main window is different from the key window, NSApp
begins searching again with the first responder in the main window. If objects in the main window cannot
handle the message, NSApp tries the main window’s delegate. If it cannot handle the message, NSApp asks
itself. If NSApp doesn’t handle the message, it asks the application delegate. If there is no object capable of
handling the message, nil is returned.

Availability
Available in Mac OS X v10.0 and later.

56 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

See Also
– sendAction:to:from: (page 48)
– tryToPerform:with: (page 58)
– targetForAction: (page 55)

Declared In
NSApplication.h

terminate:
Terminates the receiver.

- (void)terminate:(id)sender

Parameters
sender

Typically, this parameter contains the object that initiated the termination request.

Discussion
This method is typically invoked when the user chooses Quit or Exit from the application’s menu.

When invoked, this method performs several steps to process the termination request. First, it asks the
application’s document controller (if one exists) to save any unsaved changes in its documents. During this
process, the document controller can cancel termination in response to input from the user. If the document
controller does not cancel the operation, this method then calls the delegate’s
applicationShouldTerminate:method. IfapplicationShouldTerminate: returns NSTerminateCancel,
the termination process is aborted and control is handed back to the main event loop. If the method returns
NSTerminateLater, the application runs its run loop in the NSModalPanelRunLoopMode mode until the
replyToApplicationShouldTerminate: method is called with the value YES or NO. If the
applicationShouldTerminate: method returns NSTerminateNow, this method posts a
NSApplicationWillTerminateNotification notification to the default notification center.

Do not bother to put final cleanup code in your application’s main() function—it will never be executed. If
cleanup is necessary, perform that cleanup in the delegate’s applicationWillTerminate: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 45)
– stop: (page 54)
– applicationShouldTerminate: (page 73)
– applicationWillTerminate: (page 76)
– replyToApplicationShouldTerminate: (page 43)
NSApplicationWillTerminateNotification (page 87)

Related Sample Code
JavaSplashScreen
QTSSInspector
StickiesExample
WhackedTV

Instance Methods 57
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Declared In
NSApplication.h

tryToPerform:with:
Dispatches an action message to the specified target.

- (BOOL)tryToPerform:(SEL)aSelector with:(id)anObject

Parameters
aSelector

The action message you want to dispatch.

anObject
The target object that defines the specified selector.

Return Value
YES if either the receiver or its delegate can accept the specified selector; otherwise, NO. This method also
returns NO if aSelector is nil.

Discussion
The receiver tries to perform the method aSelector using its inherited tryToPerform:with: method of
NSResponder. If the receiver doesn’t perform aSelector, the delegate is given the opportunity to perform
it using its inherited performSelector:withObject: method of NSObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
respondsToSelector: (NSObject protocol)

Declared In
NSApplication.h

unhide:
Restores hidden windows to the screen and makes the receiver active.

- (void)unhide:(id)sender

Parameters
sender

The object that sent the command.

Discussion
Invokes unhideWithoutActivation (page 59).

Availability
Available in Mac OS X v10.0 and later.

See Also
– activateIgnoringOtherApps: (page 23)
– hide: (page 33)

58 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Declared In
NSApplication.h

unhideAllApplications:
Unhides all applications, including the receiver.

- (void)unhideAllApplications:(id)sender

Parameters
sender

The object that sent this message.

Discussion
This action causes each application to order its windows to the front, which could obscure the currently
active window in the active application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

unhideWithoutActivation
Restores hidden windows without activating their owner (the receiver).

- (void)unhideWithoutActivation

Discussion
When this method begins, it posts an NSApplicationWillUnhideNotification (page 87) to the default
notification center. If it completes successfully, it posts an NSApplicationDidUnhideNotification (page
85).

Availability
Available in Mac OS X v10.0 and later.

See Also
– activateIgnoringOtherApps: (page 23)
– hide: (page 33)
– applicationDidUnhide: (page 70)
– applicationWillUnhide: (page 76)

Declared In
NSApplication.h

updateWindows
Sends an update message to each onscreen window.

- (void)updateWindows

Instance Methods 59
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Discussion
This method is invoked automatically in the main event loop after each event when running in
NSDefaultRunLoopMode or NSModalRunLoopMode. This method is not invoked automatically when running
in NSEventTrackingRunLoopMode.

When this method begins, it posts an NSApplicationWillUpdateNotification (page 87) to the default
notification center. When it successfully completes, it posts an
NSApplicationDidUpdateNotification (page 85).

Availability
Available in Mac OS X v10.0 and later.

See Also
– update (NSWindow)
– setWindowsNeedUpdate: (page 53)
– applicationDidUpdate: (page 70)
– applicationWillUpdate: (page 77)

Declared In
NSApplication.h

updateWindowsItem:
Updates the Window menu item for a given window to reflect the edited status of that window.

- (void)updateWindowsItem:(NSWindow *)aWindow

Parameters
aWindow

The window whose menu item is to be updated.

Discussion
You rarely need to invoke this method because it is invoked automatically when the edit status of an NSWindow
object is set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– changeWindowsItem:title:filename: (page 27)
– setDocumentEdited: (NSWindow)

Declared In
NSApplication.h

validRequestorForSendType:returnType:
Indicates whether the receiver can send and receive the specified pasteboard types.

- (id)validRequestorForSendType:(NSString *)sendType returnType:(NSString
*)returnType

60 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
sendType

The pasteboard type the application needs to send.

returnType
The pasteboard type the application needs to receive.

Return Value
The object that can send and receive the specified types or nil if the receiver knows of no object that can
send and receive data of that type.

Discussion
This message is sent to all responders in a responder chain. NSApp is typically the last item in the responder
chain, so it usually receives this message only if none of the current responders can send sendType data
and accept back returnType data.

The receiver passes this message on to its delegate if the delegate can respond (and isn’t an NSResponder
object with its own next responder). If the delegate cannot respond or returns nil, this method returns nil.
If the delegate can find an object that can send sendType data and accept back returnType data, it returns
that object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– registerServicesMenuSendTypes:returnTypes: (page 42)
– validRequestorForSendType:returnType: (NSResponder)
– readSelectionFromPasteboard: (NSServicesRequests protocol)
– writeSelectionToPasteboard:types: (NSServicesRequests protocol)

Declared In
NSApplication.h

windows
Returns an array containing the receiver’s window objects.

- (NSArray *)windows

Return Value
An array of NSWindow objects. This array includes both onscreen and offscreen windows.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSApplication.h

Instance Methods 61
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

windowsMenu
Returns the Window menu of the application.

- (NSMenu *)windowsMenu

Return Value
The window menu or nil if such a menu does not exist or has not yet been created.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWindowsMenu: (page 53)

Declared In
NSApplication.h

windowWithWindowNumber:
Returns the window corresponding to the specified window number.

- (NSWindow *)windowWithWindowNumber:(NSInteger)windowNum

Parameters
windowNum

The unique window number associated with the desired NSWindow object.

Return Value
The desired window object or nil if the window could not be found.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

Delegate Methods

application:delegateHandlesKey:
Sent by Cocoa’s built-in scripting support during execution of get or set script commands to find out if the
delegate can handle operations on the specified key-value key.

- (BOOL)application:(NSApplication *)sender delegateHandlesKey:(NSString *)key

Parameters
sender

The application object associated with the delegate.

key
The key to be handled.

62 Delegate Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Return Value
YES if your delegate handles the key or NO if it does not.

Discussion
The method should return YES if the delegate for the application sender handles the key specified by key,
which means it can get or set the scriptable property or element that corresponds to that key. The application
implements methods for each of the keys that it handles, where the method name matches the key.

For example, a scriptable application that doesn’t use Cocoa’s document-based application architecture can
implement this method to supply its own document ordering. Such an application might want to do this
because the standard application delegate expects to work with a document-based application. The TextEdit
application (whose source is distributed with Mac OS X developer tools) provides the following implementation:

return [key isEqualToString:@"orderedDocuments"];

TextEdit then implements the orderedDocuments method in its controller class to return an ordered list of
documents. An application with its own window ordering might add a test for the key orderedWindows so
that its delegate can provide its own version of orderedWindows.

Important: Cocoa scripting does not invoke this method for script commands other than get or set. For
information on working with other commands, see Script Commands in Cocoa Scripting Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderedDocuments (page 38)
– orderedWindows (page 39)

Declared In
NSApplicationScripting.h

application:openFile:
Tells the delegate to open a single file.

- (BOOL)application:(NSApplication *)theApplication openFile:(NSString *)filename

Parameters
theApplication

The application object associated with the delegate.

filename
The name of the file to open.

Return Value
YES if the file was successfully opened or NO if it was not.

Discussion
Sent directly by theApplication to the delegate. The method should open the file filename, returning
YES if the file is successfully opened, and NO otherwise. If the user started up the application by double-clicking
a file, the delegate receives the application:openFile: message before receiving
applicationDidFinishLaunching: (page 69). (applicationWillFinishLaunching: (page 75) is
sent before application:openFile:.)

Delegate Methods 63
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– application:openFileWithoutUI: (page 64)
– application:openTempFile: (page 65)
– applicationOpenUntitledFile: (page 71)

Declared In
NSApplication.h

application:openFiles:
Tells the delegate to open multiple files.

- (void)application:(NSApplication *)sender openFiles:(NSArray *)filenames

Parameters
sender

The application object associated with the delegate.

filenames
An array of NSString objects containing the names of the files to open..

Discussion
Identical to application:openFile: (page 63) except that the receiver opens multiple files corresponding
to the file names in the filenames array. Delegates should invoke the replyToOpenOrPrint: (page 44)
method upon success or failure, or when the user cancels the operation.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSApplication.h

application:openFileWithoutUI:
Tells the delegate to open a file programmatically.

- (BOOL)application:(id)sender openFileWithoutUI:(NSString *)filename

Parameters
sender

The object that sent the command.

filename
The name of the file to open.

Return Value
YES if the file was successfully opened or NO if it was not.

64 Delegate Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Discussion
Sent directly by sender to the delegate to request that the file filename be opened as a linked file. The
method should open the file without bringing up its application’s user interface—that is, work with the file
is under programmatic control of sender, rather than under keyboard control of the user.

Availability
Available in Mac OS X v10.0 and later.

See Also
– application:openFile: (page 63)
– application:openTempFile: (page 65)
– applicationOpenUntitledFile: (page 71)
– application:printFile: (page 66)

Declared In
NSApplication.h

application:openTempFile:
Tells the delegate to open a temporary file.

- (BOOL)application:(NSApplication *)theApplication openTempFile:(NSString *)filename

Parameters
theApplication

The application object associated with the delegate.

filename
The name of the temporary file to open.

Return Value
YES if the file was successfully opened or NO if it was not.

Discussion
Sent directly by theApplication to the delegate. The method should attempt to open the file filename,
returning YES if the file is successfully opened, and NO otherwise.

By design, a file opened through this method is assumed to be temporary—it’s the application’s responsibility
to remove the file at the appropriate time.

Availability
Available in Mac OS X v10.0 and later.

See Also
– application:openFile: (page 63)
– application:openFileWithoutUI: (page 64)
– applicationOpenUntitledFile: (page 71)

Declared In
NSApplication.h

Delegate Methods 65
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

application:printFile:
Sent when the user starts up the application on the command line with the -NSPrint option.

- (BOOL)application:(NSApplication *)theApplication printFile:(NSString *)filename

Parameters
theApplication

The application object that is handling the printing.

filename
The name of the file to print.

Return Value
YES if the file was successfully printed or NO if it was not.

Discussion
This message is sent directly by theApplication to the delegate. The application terminates (using the
terminate: (page 57) method) after this method returns.

If at all possible, this method should print the file without displaying the user interface. For example, if you
pass the -NSPrint option to the TextEdit application, TextEdit assumes you want to print the entire contents
of the specified file. However, if the application opens more complex documents, you may want to display
a panel that lets the user choose exactly what they want to print.

Availability
Available in Mac OS X v10.0 and later.

See Also
– application:openFileWithoutUI: (page 64)

Declared In
NSApplication.h

application:printFiles:withSettings:showPrintPanels:
Prints a group of files.

- (NSApplicationPrintReply)application:(NSApplication *)application
printFiles:(NSArray *)fileNames withSettings:(NSDictionary *)printSettings
showPrintPanels:(BOOL)showPrintPanels

Parameters
application

The application object that is handling the printing.

fileNames
An array of NSString objects, each of which contains the name of a file to print.

printSettings
Para

showPrintPanels
Para

66 Delegate Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Return Value
A constant indicating whether printing was successful. For a list of possible values, see “Constants” (page
77).

Discussion
Sent to the delegate by application. The method should print the files named in the fileNames array
using printSettings, a dictionary containing NSPrintInfo-compatible print job attributes. The
showPrintPanels argument is a flag indicating whether or not a print panel should be presented for each
file being printed. If it is NO, no print panels should be presented (but print progress indicators should still
be presented).

Return NSPrintingReplyLater if the result of printing cannot be returned immediately, for example, if
printing will cause the presentation of a sheet. If your method returns NSPrintingReplyLater it must
always invoke the NSApplication method replyToOpenOrPrint:] when the entire print operation has
been completed, successfully or not.

This delegate method replaces application:printFiles: (page 89), which is now deprecated. If your
application delegate only implements the deprecated method, it is still invoked, and NSApplication uses
private functionality to arrange for the print settings to take effect.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSApplication.h

application:willPresentError:
Sent to the delegate before the specified application presents an error message to the user.

- (NSError *)application:(NSApplication *)application willPresentError:(NSError
*)error

Parameters
application

The application object associated with the delegate.

error
The error object that is used to construct the error message. Your implementation of this method can
return a new NSError object or the same one in this parameter.

Return Value
The error object to display.

Discussion
You can implement this delegate method to customize the presentation of any error presented by your
application, as long as no code in your application overrides either of the NSResponder methods
presentError:modalForWindow:delegate:didPresentSelector:contextInfo:orpresentError:
in a way that prevents errors from being passed down the responder chain to the application object.

Your implementation of this delegate method can examine error and, if its localized description or recovery
information is unhelpfully generic, return an error object with specific localized text that is more suitable for
presentation in alert sheets and dialogs. If you do this, always use the domain and error code of the NSError
object to distinguish between errors whose presentation you want to customize and those you do not. Don’t

Delegate Methods 67
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

make decisions based on the localized description, recovery suggestion, or recovery options because parsing
localized text is problematic. If you decide not to customize the error presentation, just return the passed-in
error object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSApplication.h

applicationDidBecomeActive:
Sent by the default notification center immediately after the application becomes active.

- (void)applicationDidBecomeActive:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidBecomeActiveNotification (page 84). Calling the
object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationDidFinishLaunching: (page 69)
– applicationDidResignActive: (page 70)
– applicationWillBecomeActive: (page 74)

Declared In
NSApplication.h

applicationDidChangeScreenParameters:
Sent by the default notification center when the configuration of the displays attached to the computer is
changed (either programmatically or when the user changes settings in the Displays control panel).

- (void)applicationDidChangeScreenParameters:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidChangeScreenParametersNotification (page
84). Calling the object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

68 Delegate Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

applicationDidFinishLaunching:
Sent by the default notification center after the application has been launched and initialized but before it
has received its first event.

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidFinishLaunchingNotification (page 85). Calling
the object method of this notification returns the NSApplication object itself.

Discussion
Delegates can implement this method to perform further initialization. This method is called after the
application’s main run loop has been started but before it has processed any events. If the application was
launched by the user opening a file, the delegate’s application:openFile: method is called before this
method. If you want to perform initialization before any files are opened, implement the
applicationWillFinishLaunching: (page 75) method in your delegate, which is called before
application:openFile:.)

Availability
Available in Mac OS X v10.0 and later.

See Also
– finishLaunching (page 32)
– applicationWillFinishLaunching: (page 75)
– applicationDidBecomeActive: (page 68)
– application:openFile: (page 63)

Declared In
NSApplication.h

applicationDidHide:
Sent by the default notification center immediately after the application is hidden.

- (void)applicationDidHide:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidHideNotification (page 85). Calling the object
method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationWillHide: (page 75)
– applicationDidUnhide: (page 70)
– hide: (page 33)

Declared In
NSApplication.h

Delegate Methods 69
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

applicationDidResignActive:
Sent by the default notification center immediately after the application is deactivated.

- (void)applicationDidResignActive:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidResignActiveNotification (page 85). Calling the
object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationDidBecomeActive: (page 68)
– applicationWillResignActive: (page 76)

Declared In
NSApplication.h

applicationDidUnhide:
Sent by the default notification center immediately after the application is made visible.

- (void)applicationDidUnhide:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidUnhideNotification (page 85). Calling the object
method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationDidHide: (page 69)
– applicationWillUnhide: (page 76)
– unhide: (page 58)

Declared In
NSApplication.h

applicationDidUpdate:
Sent by the default notification center immediately after the application object updates its windows.

- (void)applicationDidUpdate:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidUpdateNotification (page 85). Calling the object
method of this notification returns the NSApplication object itself.

70 Delegate Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationWillUpdate: (page 77)
– updateWindows (page 59)

Declared In
NSApplication.h

applicationDockMenu:
Allows the delegate to supply a dock menu for the application dynamically.

- (NSMenu *)applicationDockMenu:(NSApplication *)sender

Parameters
sender

The application object associated with the delegate.

Return Value
The menu to display in the dock.

Discussion
You can also connect a menu in Interface Builder to the dockMenu outlet. A third way for your application
to specify a dock menu is to provide an NSMenu in a nib.

If this method returns a menu, this menu takes precedence over the dockMenu in the nib.

The target and action for each menu item are passed to the dock. On selection of the menu item the dock
messages your application, which should invoke [NSApp sendAction:selector to:target from:nil].

To specify an NSMenu in a nib, you add the nib name to the info.plist, using the key AppleDockMenu.
The nib name is specified without an extension. You then create a connection from the file’s owner object
(which by default is NSApplication) to the menu. Connect the menu to the dockMenu outlet of
NSApplication. The menu is in its own nib file so it can be loaded lazily when the dockMenu is requested,
rather than at launch time.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSApplication.h

applicationOpenUntitledFile:
Tells the delegate to open an untitled file.

- (BOOL)applicationOpenUntitledFile:(NSApplication *)theApplication

Parameters
theApplication

The application object associated with the delegate.

Delegate Methods 71
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Return Value
YES if the file was successfully opened or NO if it was not.

Discussion
Sent directly by theApplication to the delegate to request that a new, untitled file be opened.

Availability
Available in Mac OS X v10.0 and later.

See Also
– application:openFile: (page 63)
– application:openFileWithoutUI: (page 64)
– application:openTempFile: (page 65)

Declared In
NSApplication.h

applicationShouldHandleReopen:hasVisibleWindows:
Sent by the application to the delegate prior to default behavior to reopen (rapp) AppleEvents.

- (BOOL)applicationShouldHandleReopen:(NSApplication *)theApplication
hasVisibleWindows:(BOOL)flag

Parameters
theApplication

The application object.

flag
Indicates whether the NSApplication object found any visible windows in your application. You
can use this value as an indication of whether the application would do anything if you return YES.

Return Value
YES if you want the application to perform its normal tasks or NO if you want the application to do nothing.

Discussion
These events are sent whenever the Finder reactivates an already running application because someone
double-clicked it again or used the dock to activate it. By default the Application Kit will handle this event
by checking whether there are any visible NSWindow (not NSPanel) objects, and, if there are none, it goes
through the standard untitled document creation (the same as it does if theApplication is launched
without any document to open). For most document-based applications, an untitled document will be
created. The application delegate will also get a chance to respond to the normal untitled document delegate
methods. If you implement this method in your application delegate, it will be called before any of the default
behavior happens. If you return YES, then NSApplication will go on to do its normal thing. If you return
NO, then NSApplicationwill do nothing. So, you can either implement this method, do nothing, and return
NO if you do not want anything to happen at all (not recommended), or you can implement this method,
handle the event yourself in some custom way, and return NO.

Note that what happens to minimized windows is not determined yet, but the intent is that flag being NO
indicates whether the Application Kit will create a new window to satisfy the reopen event.

Availability
Available in Mac OS X v10.0 and later.

72 Delegate Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Declared In
NSApplication.h

applicationShouldOpenUntitledFile:
Invoked immediately before opening an untitled file.

- (BOOL)applicationShouldOpenUntitledFile:(NSApplication *)sender

Parameters
sender

The application object associated with the delegate.

Return Value
YES if the application should open a new untitled file or NO if it should not.

Discussion
Use this method to decide whether the application should open a new, untitled file. Note that
applicationOpenUntitledFile: (page 71) is invoked if this method returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

applicationShouldTerminate:
Sent to notify the delegate that the application is about to terminate.

- (NSApplicationTerminateReply)applicationShouldTerminate:(NSApplication *)sender

Parameters
sender

The application object that is about to be terminated.

Return Value
One of the values defined in NSApplicationTerminateReply (page 80) constants indicating whether the
application should terminate. For compatibility reasons, a return value of NO is equivalent to
NSTerminateCancel, and a return value of YES is equivalent to NSTerminateNow.

Discussion
This method is typically called after the application’s Quit or Exit command has been selected, or after the
FOO method has been called. Generally, you should return NSTerminateNow to allow the termination to
complete, but you can cancel the termination process or delay it somewhat as needed. For example, you
might delay termination to finish processing some critical data but then terminate the application as soon
as you are done by calling the replyToApplicationShouldTerminate: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– terminate: (page 57)
– applicationShouldTerminateAfterLastWindowClosed: (page 74)

Delegate Methods 73
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

– applicationWillTerminate: (page 76)

Declared In
NSApplication.h

applicationShouldTerminateAfterLastWindowClosed:
Invoked when the user closes the last window the application has open.

- (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication
*)theApplication

Parameters
theApplication

The application object whose last window was closed.

Return Value
NO if the application should not be terminated when its last window is closed; otherwise, YES to terminate
the application.

Discussion
The application sends this message to your delegate when the application’s last window is closed. It sends
this message regardless of whether there are still panels open. (A panel in this case is defined as being an
instance of NSPanel or one of its subclasses.)

If your implementation returns NO, control returns to the main event loop and the application is not terminated.
If you return YES, your delegate’s applicationShouldTerminate: method is subsequently invoked to
confirm that the application should be terminated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– terminate: (page 57)
– applicationShouldTerminate: (page 73)

Declared In
NSApplication.h

applicationWillBecomeActive:
Sent by the default notification center immediately before the application becomes active.

- (void)applicationWillBecomeActive:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationWillBecomeActiveNotification (page 86). Calling
the object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

74 Delegate Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

See Also
– applicationDidBecomeActive: (page 68)
– applicationWillFinishLaunching: (page 75)
– applicationWillResignActive: (page 76)

Declared In
NSApplication.h

applicationWillFinishLaunching:
Sent by the default notification center immediately before the application object is initialized.

- (void)applicationWillFinishLaunching:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationWillFinishLaunchingNotification (page 86). Calling
the object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationDidFinishLaunching: (page 69)
– applicationWillBecomeActive: (page 74)
– finishLaunching (page 32)

Declared In
NSApplication.h

applicationWillHide:
Sent by the default notification center immediately before the application is hidden.

- (void)applicationWillHide:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationWillHideNotification (page 86). Calling the object
method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationDidHide: (page 69)
– hide: (page 33)

Declared In
NSApplication.h

Delegate Methods 75
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

applicationWillResignActive:
Sent by the default notification center immediately before the application is deactivated.

- (void)applicationWillResignActive:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationWillResignActiveNotification (page 86). Calling
the object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationWillBecomeActive: (page 74)
– applicationDidResignActive: (page 70)

Declared In
NSApplication.h

applicationWillTerminate:
Sent by the default notification center immediately before the application terminates.

- (void)applicationWillTerminate:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationWillTerminateNotification (page 87). Calling the
object method of this notification returns the NSApplication object itself.

Discussion
Your delegate can use this method to perform any final cleanup before the application terminates.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationShouldTerminate: (page 73)
– terminate: (page 57)

Declared In
NSApplication.h

applicationWillUnhide:
Sent by the default notification center immediately after the application is unhidden.

- (void)applicationWillUnhide:(NSNotification *)aNotification

76 Delegate Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Parameters
aNotification

A notification of the type NSApplicationWillUnhideNotification (page 87). Calling the object
method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– unhide: (page 58)
– applicationDidUnhide: (page 70)
– applicationWillHide: (page 75)

Declared In
NSApplication.h

applicationWillUpdate:
Sent by the default notification center immediately before the application object updates its windows.

- (void)applicationWillUpdate:(NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationWillUpdateNotification (page 87). Calling the object
method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationDidUpdate: (page 70)
– updateWindows (page 59)

Declared In
NSApplication.h

Constants

Return values for modal operations
These are possible return values for runModalForWindow: (page 46) and runModalSession: (page 47).

Constants 77
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

enum {
 NSRunStoppedResponse = (-1000),
 NSRunAbortedResponse = (-1001),
 NSRunContinuesResponse = (-1002)
};

Constants
NSRunStoppedResponse

Modal session was broken with stopModal (page 55).

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

NSRunAbortedResponse
Modal session was broken with abortModal (page 22).

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

NSRunContinuesResponse
Modal session is continuing (returned by runModalSession: (page 47) only).

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

Discussion
The system also reserves all values below these.

Declared In
NSApplication.h

NSUpdateWindowsRunLoopOrdering
This constant is used by the NSRunLoop method performSelector:target:argument:order:modes:.

enum {
 NSUpdateWindowsRunLoopOrdering = 500000
};

Constants
NSUpdateWindowsRunLoopOrdering

Run-loop message priority for handling window updates.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

Declared In
NSApplication.h

NSApp
A global constant for the shared application instance.

78 Constants
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

id NSApp

Constants
NSApp

Global constant for the shared application instance.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

Discussion
This variable designates the shared application object, created by the sharedApplication (page 21) method.

Declared In
NSApplication.h

NSRequestUserAttentionType
These constants specify the level of severity of a user attention request and are used by
cancelUserAttentionRequest: (page 27) and requestUserAttention: (page 45).

typedef enum {
 NSCriticalRequest = 0,
 NSInformationalRequest = 10
} NSRequestUserAttentionType;

Constants
NSCriticalRequest

The user attention request is a critical request.

The dock icon will bounce until either the application becomes active or the request is canceled.

Available in Mac OS X v10.1 and later.

Declared in NSApplication.h.

NSInformationalRequest
The user attention request is an informational request.

The dock icon will bounce for one second. The request, though, remains active until either the
application becomes active or the request is canceled.

Available in Mac OS X v10.1 and later.

Declared in NSApplication.h.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSApplication.h

NSApplicationDelegateReply
These constants indicate whether or not a copy or print operation was successful, was cancelled, or failed.
These constants are used by the replyToOpenOrPrint: (page 44) method.

Constants 79
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

typedef enum NSApplicationDelegateReply {
 NSApplicationDelegateReplySuccess = 0,
 NSApplicationDelegateReplyCancel = 1,
 NSApplicationDelegateReplyFailure = 2
} NSApplicationDelegateReply;

Constants
NSApplicationDelegateReplySuccess

Indicates the operation succeeded.

Available in Mac OS X v10.3 and later.

Declared in NSApplication.h.

NSApplicationDelegateReplyCancel
Indicates the user cancelled the operation.

Available in Mac OS X v10.3 and later.

Declared in NSApplication.h.

NSApplicationDelegateReplyFailure
Indicates an error occurred processing the operation.

Available in Mac OS X v10.3 and later.

Declared in NSApplication.h.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSApplication.h

NSApplicationTerminateReply
These constants define whether an application should terminate and are used by
applicationShouldTerminate: (page 73).

typedef enum NSApplicationTerminateReply {
 NSTerminateCancel = 0,
 NSTerminateNow = 1,
 NSTerminateLater = 2
} NSApplicationTerminateReply;

Constants
NSTerminateNow

It is OK to proceed with termination.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

NSTerminateCancel
The application should not be terminated.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

80 Constants
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

NSTerminateLater
It may be OK to proceed with termination later. Returning this value causes Cocoa to run the run loop
in the NSModalPanelRunLoopMode until your application subsequently calls
replyToApplicationShouldTerminate: (page 43) with the value YES or NO. This return value is
for delegates that need to provide document modal alerts (sheets) in order to decide whether to quit.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationPrintReply
These constants are returned by application:printFiles:withSettings:showPrintPanels: (page
66).

typedef enum NSApplicationPrintReply {
 NSPrintingCancelled = 0,
 NSPrintingSuccess = 1,
 NSPrintingFailure = 3,
 NSPrintingReplyLater = 2
} NSApplicationPrintReply;

Constants
NSPrintingCancelled

Printing was cancelled.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSPrintingSuccess
Printing was successful.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSPrintingFailure
Printing failed.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSPrintingReplyLater
The result of printing cannot be returned immediately, for example, if printing will cause the
presentation of a sheet. If your method returns NSPrintingReplyLater it must always invoke
replyToOpenOrPrint: (page 44) when the entire print operation has been completed, successfully
or not.

Declared in NSApplication.h.

Available in Mac OS X v10.4 and later.

Declared In
NSApplication.h

Constants 81
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Run loop modes
These loop mode constants are defined by NSApplication.

NSString *NSModalPanelRunLoopMode;
NSString *NSEventTrackingRunLoopMode;

Constants
NSEventTrackingRunLoopMode

A run loop should be set to this mode when tracking events modally, such as a mouse-dragging loop.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

NSModalPanelRunLoopMode
A run loop should be set to this mode when waiting for input from a modal panel, such as
NSSavePanel or NSOpenPanel.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

Declared In
NSApplication.h

NSAppKitVersionNumber
This constant identifies the installed version of the Application Kit framework.

const double NSAppKitVersionNumber;

Constants
NSAppKitVersionNumber

This value corresponds to one of the constants defined in “Application Kit framework version
numbers” (page 82).

Available in Mac OS X v10.1 and later.

Declared in NSApplication.h.

Declared In
NSApplication.h

Application Kit framework version numbers
You can use the following constants to determine if you are using a version of the Application Kit framework
newer than the version delivered in Mac OS X v10.0.

82 Constants
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

#define NSAppKitVersionNumber10_0 577
#define NSAppKitVersionNumber10_1 620
#define NSAppKitVersionNumber10_2 663
#define NSAppKitVersionNumber10_2_3 663.6
#define NSAppKitVersionNumber10_3 743
#define NSAppKitVersionNumber10_3_2 743.14
#define NSAppKitVersionNumber10_3_3 743.2
#define NSAppKitVersionNumber10_3_5 743.24
#define NSAppKitVersionNumber10_3_7 743.33
#define NSAppKitVersionNumber10_3_9 743.36
#define NSAppKitVersionNumber10_4 824

Constants
NSAppKitVersionNumber10_0

The Application Kit framework included in Mac OS X v10.0.

Available in Mac OS X v10.1 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_1
The Application Kit framework included in Mac OS X v10.1.

Available in Mac OS X v10.2 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_2
The Application Kit framework included in Mac OS X v10.2.

Available in Mac OS X v10.3 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_2_3
The Application Kit framework included in Mac OS X v10.2.3.

Available in Mac OS X v10.3 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_3
The Application Kit framework included in Mac OS X v10.3.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_3_2
The Application Kit framework included in Mac OS X v10.3.2.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_3_3
The Application Kit framework included in Mac OS X v10.3.3.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_3_5
The Application Kit framework included in Mac OS X v10.3.5.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

Constants 83
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

NSAppKitVersionNumber10_3_7
The Application Kit framework included in Mac OS X v10.3.7.

Available in Mac OS X v10.5 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_3_9
The Application Kit framework included in Mac OS X v10.3.9.

Available in Mac OS X v10.5 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_4
The Application Kit framework included in Mac OS X v10.4.

Available in Mac OS X v10.5 and later.

Declared in NSApplication.h.

Declared In
NSApplication.h

Notifications

These notifications apply to NSApplication. See “Notifications” in NSWorkspace for additional, similar
notifications.

NSApplicationDidBecomeActiveNotification
Posted immediately after the application becomes active.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidChangeScreenParametersNotification
Posted when the configuration of the displays attached to the computer is changed.

The configuration change can be made either programmatically or when the user changes settings in the
Displays control panel. The notification object is NSApp. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

84 Notifications
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

NSApplicationDidFinishLaunchingNotification
Posted at the end of the finishLaunching (page 32) method to indicate that the application has completed
launching and is ready to run.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidHideNotification
Posted at the end of the hide: (page 33) method to indicate that the application is now hidden.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidResignActiveNotification
Posted immediately after the application gives up its active status to another application.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidUnhideNotification
Posted at the end of the unhideWithoutActivation (page 59) method to indicate that the application
is now visible.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidUpdateNotification
Posted at the end of the updateWindows (page 59) method to indicate that the application has finished
updating its windows.

Notifications 85
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillBecomeActiveNotification
Posted immediately after the application becomes active.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillFinishLaunchingNotification
Posted at the start of the finishLaunching (page 32) method to indicate that the application has completed
its initialization process and is about to finish launching.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillHideNotification
Posted at the start of the hide: (page 33) method to indicate that the application is about to be hidden.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillResignActiveNotification
Posted immediately before the application gives up its active status to another application.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

86 Notifications
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

Declared In
NSApplication.h

NSApplicationWillTerminateNotification
Posted by the terminate: (page 57) method to indicate that the application will terminate.

Posted only if the delegate method applicationShouldTerminate: (page 73) returns YES. The notification
object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillUnhideNotification
Posted at the start of the unhideWithoutActivation (page 59) method to indicate that the application
is about to become visible.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillUpdateNotification
Posted at the start of the updateWindows (page 59) method to indicate that the application is about to
update its windows.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

Notifications 87
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

88 Notifications
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSApplication Class Reference

A method identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.4

application:printFiles:
(Deprecated in Mac OS X v10.4. Useapplication:printFiles:withSettings:showPrintPanels: (page
66) instead.)

- (void)application:(NSApplication *)sender printFiles:(NSArray *)filenames

Discussion
Identical to application:printFile: (page 66) except that the receiver prints multiple files corresponding
to the file names in the filenames array.

Delegates should invoke the replyToOpenOrPrint: (page 44) method upon success or failure, or when
the user cancels the operation.

Availability
Deprecated in Mac OS X v10.4.

Declared In
NSApplication.h

Deprecated in Mac OS X v10.4 89
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated NSApplication Methods

90 Deprecated in Mac OS X v10.4
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated NSApplication Methods

This table describes the changes to NSApplication Class Reference.

NotesDate

Added dockTile method description.2009-02-04

Updated the list of AppKit version constants. Clarified information surrounding
the use of modal panels.

2008-10-15

Made editorial improvements.2007-04-24

Added NSTerminateCancel (page 80) to discussion of terminate: (page
57) method.

Corrected typo.2006-05-23

First publication of this content as a separate document.

Revised description for application:delegateHandlesKey: (page 62) to indicate
it is invoked by Cocoa scripting support only in handling the get and set script
commands.

91
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

92
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

abortModal instance method 22
activateContextHelpMode: instance method 22
activateIgnoringOtherApps: instance method 23
addWindowsItem:title:filename: instance method

24
Application Kit framework version numbers 82
application:delegateHandlesKey: <NSObject>

delegate method 62
application:openFile:<NSObject> delegate method

63
application:openFiles: <NSObject> delegate

method 64
application:openFileWithoutUI: <NSObject>

delegate method 64
application:openTempFile: <NSObject> delegate

method 65
application:printFile: <NSObject> delegate

method 66
application:printFiles: <NSObject> delegate

method 89
application:printFiles:withSettings:

showPrintPanels: <NSObject> delegate method
66

application:willPresentError: <NSObject>
delegate method 67

applicationDidBecomeActive:<NSObject> delegate
method 68

applicationDidChangeScreenParameters:
<NSObject> delegate method 68

applicationDidFinishLaunching: <NSObject>
delegate method 69

applicationDidHide: <NSObject> delegate method
69

applicationDidResignActive:<NSObject> delegate
method 70

applicationDidUnhide:<NSObject> delegate method
70

applicationDidUpdate:<NSObject> delegate method
70

applicationDockMenu:<NSObject> delegate method
71

applicationIconImage instance method 24
applicationOpenUntitledFile:<NSObject> delegate

method 71
applicationShouldHandleReopen:hasVisibleWindows:

<NSObject> delegate method 72
applicationShouldOpenUntitledFile:<NSObject>

delegate method 73
applicationShouldTerminateAfterLastWindowClosed:

<NSObject> delegate method 74
applicationShouldTerminate:<NSObject> delegate

method 73
applicationWillBecomeActive:<NSObject> delegate

method 74
applicationWillFinishLaunching: <NSObject>

delegate method 75
applicationWillHide:<NSObject> delegate method

75
applicationWillResignActive:<NSObject> delegate

method 76
applicationWillTerminate: <NSObject> delegate

method 76
applicationWillUnhide: <NSObject> delegate

method 76
applicationWillUpdate: <NSObject> delegate

method 77
arrangeInFront: instance method 25

B

beginModalSessionForWindow: instance method 25
beginModalSessionForWindow:relativeToWindow:

instance method 26
beginSheet:modalForWindow:modalDelegate:

didEndSelector:contextInfo: instance method
26

93
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Index

C

cancelUserAttentionRequest: instance method 27
changeWindowsItem:title:filename: instance

method 27
context instance method 28
currentEvent instance method 28

D

deactivate instance method 29
delegate instance method 29
detachDrawingThread:toTarget:withObject: class

method 21
discardEventsMatchingMask:beforeEvent: instance

method 30
dockTile instance method 31

E

endModalSession: instance method 31
endSheet: instance method 31
endSheet:returnCode: instance method 32

F

finishLaunching instance method 32

H

hide: instance method 33
hideOtherApplications: instance method 33

I

isActive instance method 34
isHidden instance method 34
isRunning instance method 34

K

keyWindow instance method 35

M

mainMenu instance method 35
mainWindow instance method 36
makeWindowsPerform:inOrder: instance method 36
miniaturizeAll: instance method 37
modalWindow instance method 37

N

nextEventMatchingMask:untilDate:inMode:dequeue:
instance method 37

NSApp 78
NSApp constant 79
NSAppKitVersionNumber 82
NSAppKitVersionNumber constant 82
NSAppKitVersionNumber10_0 constant 83
NSAppKitVersionNumber10_1 constant 83
NSAppKitVersionNumber10_2 constant 83
NSAppKitVersionNumber10_2_3 constant 83
NSAppKitVersionNumber10_3 constant 83
NSAppKitVersionNumber10_3_2 constant 83
NSAppKitVersionNumber10_3_3 constant 83
NSAppKitVersionNumber10_3_5 constant 83
NSAppKitVersionNumber10_3_7 constant 84
NSAppKitVersionNumber10_3_9 constant 84
NSAppKitVersionNumber10_4 constant 84
NSApplicationDelegateReply data type 79
NSApplicationDelegateReplyCancel constant 80
NSApplicationDelegateReplyFailure constant 80
NSApplicationDelegateReplySuccess constant 80
NSApplicationDidBecomeActiveNotification

notification 84
NSApplicationDidChangeScreenParametersNotification

notification 84
NSApplicationDidFinishLaunchingNotification

notification 85
NSApplicationDidHideNotification notification 85
NSApplicationDidResignActiveNotification

notification 85
NSApplicationDidUnhideNotification notification

85
NSApplicationDidUpdateNotification notification

85
NSApplicationPrintReply 81
NSApplicationTerminateReply data type 80
NSApplicationWillBecomeActiveNotification

notification 86
NSApplicationWillFinishLaunchingNotification

notification 86
NSApplicationWillHideNotification notification

86

94
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

INDEX

NSApplicationWillResignActiveNotification
notification 86

NSApplicationWillTerminateNotification
notification 87

NSApplicationWillUnhideNotificationnotification
87

NSApplicationWillUpdateNotificationnotification
87

NSCriticalRequest constant 79
NSEventTrackingRunLoopMode constant 82
NSInformationalRequest constant 79
NSModalPanelRunLoopMode constant 82
NSPrintingCancelled constant 81
NSPrintingFailure constant 81
NSPrintingReplyLater constant 81
NSPrintingSuccess constant 81
NSRequestUserAttentionType data type 79
NSRunAbortedResponse constant 78
NSRunContinuesResponse constant 78
NSRunStoppedResponse constant 78
NSTerminateCancel constant 80
NSTerminateLater constant 81
NSTerminateNow constant 80
NSUpdateWindowsRunLoopOrdering 78
NSUpdateWindowsRunLoopOrdering constant 78

O

orderedDocuments instance method 38
orderedWindows instance method 39
orderFrontCharacterPalette: instance method 39
orderFrontColorPanel: instance method 40
orderFrontStandardAboutPanel: instance method

40
orderFrontStandardAboutPanelWithOptions:

instance method 41

P

postEvent:atStart: instance method 41
preventWindowOrdering instance method 42

R

registerServicesMenuSendTypes:returnTypes:
instance method 42

removeWindowsItem: instance method 43
replyToApplicationShouldTerminate: instance

method 43

replyToOpenOrPrint: instance method 44
reportException: instance method 44
requestUserAttention: instance method 45
Return values for modal operations 77
run instance method 45
Run loop modes 82
runModalForWindow: instance method 46
runModalForWindow:relativeToWindow: instance

method 47
runModalSession: instance method 47
runPageLayout: instance method 48

S

sendAction:to:from: instance method 48
sendEvent: instance method 49
servicesMenu instance method 50
servicesProvider instance method 50
setApplicationIconImage: instance method 50
setDelegate: instance method 51
setMainMenu: instance method 51
setServicesMenu: instance method 52
setServicesProvider: instance method 52
setWindowsMenu: instance method 53
setWindowsNeedUpdate: instance method 53
sharedApplication class method 21
showHelp: instance method 53
stop: instance method 54
stopModal instance method 55
stopModalWithCode: instance method 55

T

targetForAction: instance method 55
targetForAction:to:from: instance method 56
terminate: instance method 57
tryToPerform:with: instance method 58

U

unhideAllApplications: instance method 59
unhide: instance method 58
unhideWithoutActivation instance method 59
updateWindows instance method 59
updateWindowsItem: instance method 60

95
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

INDEX

V

validRequestorForSendType:returnType: instance
method 60

W

windows instance method 61
windowsMenu instance method 62
windowWithWindowNumber: instance method 62

96
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

INDEX

	NSApplication Class Reference
	Contents
	NSApplication Class Reference
	Class at a Glance
	Overview
	The Delegate and Notifications
	System Services
	Subclassing Notes
	Methods to Override
	Special Considerations
	Alternatives to Subclassing

	Tasks
	Getting the Application
	Configuring Applications
	Launching Applications
	Terminating Applications
	Managing Active Status
	Hiding Applications
	Managing the Event Loop
	Handling Events
	Posting Events
	Managing Sheets
	Managing Windows
	Minimizing Windows
	Hiding Windows
	Updating Windows
	Managing Window Layers
	Accessing the Main Menu
	Managing the Window Menu
	Managing the Dock Menu
	Accessing the Dock Tile
	Managing the Services Menu
	Providing Services
	Managing Panels
	Displaying Help
	Displaying Errors
	Managing Threads
	Posting Actions
	Drawing Windows
	Logging Exceptions
	Scripting
	Managing User Attention Requests
	Managing the Screen
	Opening Files
	Printing
	Deprecated

	Class Methods
	detachDrawingThread:toTarget:withObject:
	sharedApplication

	Instance Methods
	abortModal
	activateContextHelpMode:
	activateIgnoringOtherApps:
	addWindowsItem:title:filename:
	applicationIconImage
	arrangeInFront:
	beginModalSessionForWindow:
	beginModalSessionForWindow:relativeToWindow:
	beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo:
	cancelUserAttentionRequest:
	changeWindowsItem:title:filename:
	context
	currentEvent
	deactivate
	delegate
	discardEventsMatchingMask:beforeEvent:
	dockTile
	endModalSession:
	endSheet:
	endSheet:returnCode:
	finishLaunching
	hide:
	hideOtherApplications:
	isActive
	isHidden
	isRunning
	keyWindow
	mainMenu
	mainWindow
	makeWindowsPerform:inOrder:
	miniaturizeAll:
	modalWindow
	nextEventMatchingMask:untilDate:inMode:dequeue:
	orderedDocuments
	orderedWindows
	orderFrontCharacterPalette:
	orderFrontColorPanel:
	orderFrontStandardAboutPanel:
	orderFrontStandardAboutPanelWithOptions:
	postEvent:atStart:
	preventWindowOrdering
	registerServicesMenuSendTypes:returnTypes:
	removeWindowsItem:
	replyToApplicationShouldTerminate:
	replyToOpenOrPrint:
	reportException:
	requestUserAttention:
	run
	runModalForWindow:
	runModalForWindow:relativeToWindow:
	runModalSession:
	runPageLayout:
	sendAction:to:from:
	sendEvent:
	servicesMenu
	servicesProvider
	setApplicationIconImage:
	setDelegate:
	setMainMenu:
	setServicesMenu:
	setServicesProvider:
	setWindowsMenu:
	setWindowsNeedUpdate:
	showHelp:
	stop:
	stopModal
	stopModalWithCode:
	targetForAction:
	targetForAction:to:from:
	terminate:
	tryToPerform:with:
	unhide:
	unhideAllApplications:
	unhideWithoutActivation
	updateWindows
	updateWindowsItem:
	validRequestorForSendType:returnType:
	windows
	windowsMenu
	windowWithWindowNumber:

	Delegate Methods
	application:delegateHandlesKey:
	application:openFile:
	application:openFiles:
	application:openFileWithoutUI:
	application:openTempFile:
	application:printFile:
	application:printFiles:withSettings:showPrintPanels:
	application:willPresentError:
	applicationDidBecomeActive:
	applicationDidChangeScreenParameters:
	applicationDidFinishLaunching:
	applicationDidHide:
	applicationDidResignActive:
	applicationDidUnhide:
	applicationDidUpdate:
	applicationDockMenu:
	applicationOpenUntitledFile:
	applicationShouldHandleReopen:hasVisibleWindows:
	applicationShouldOpenUntitledFile:
	applicationShouldTerminate:
	applicationShouldTerminateAfterLastWindowClosed:
	applicationWillBecomeActive:
	applicationWillFinishLaunching:
	applicationWillHide:
	applicationWillResignActive:
	applicationWillTerminate:
	applicationWillUnhide:
	applicationWillUpdate:

	Constants
	Return values for modal operations
	NSUpdateWindowsRunLoopOrdering
	NSApp
	NSRequestUserAttentionType
	NSApplicationDelegateReply
	NSApplicationTerminateReply
	NSApplicationPrintReply
	Run loop modes
	NSAppKitVersionNumber
	Application Kit framework version numbers

	Notifications
	NSApplicationDidBecomeActiveNotification
	NSApplicationDidChangeScreenParametersNotification
	NSApplicationDidFinishLaunchingNotification
	NSApplicationDidHideNotification
	NSApplicationDidResignActiveNotification
	NSApplicationDidUnhideNotification
	NSApplicationDidUpdateNotification
	NSApplicationWillBecomeActiveNotification
	NSApplicationWillFinishLaunchingNotification
	NSApplicationWillHideNotification
	NSApplicationWillResignActiveNotification
	NSApplicationWillTerminateNotification
	NSApplicationWillUnhideNotification
	NSApplicationWillUpdateNotification

	Appendix A: Deprecated NSApplication Methods
	Deprecated in Mac OS X v10.4
	application:printFiles:

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

