
NSImage Class Reference
Cocoa > Graphics & Imaging

2009-01-06

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Carbon, Cocoa,
iChat, Mac, and Mac OS are trademarks of Apple
Inc., registered in the United States and other
countries.

Aperture, Finder, and Shuffle are trademarks
of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSImage Class Reference 9

Overview 9
Adopted Protocols 9
Tasks 10

Initializing a New NSImage Object 10
Setting the Image Attributes 10
Referring to Images by Name 10
Determining the Supported Image Types 11
Working With Image Representations 11
Setting the Image Representation Selection Criteria 11
Managing the Focus 12
Drawing the Image 12
Working With Alignment Metadata 13
Setting the Image Storage Options 13
Setting the Image Drawing Options 13
Assigning a Delegate 14
Producing TIFF Data for the Image 14
Managing Incremental Loads 14

Class Methods 15
canInitWithPasteboard: 15
imageFileTypes 15
imageNamed: 16
imagePasteboardTypes 17
imageTypes 18
imageUnfilteredFileTypes 18
imageUnfilteredPasteboardTypes 19
imageUnfilteredTypes 19

Instance Methods 20
addRepresentation: 20
addRepresentations: 20
alignmentRect 21
backgroundColor 21
bestRepresentationForDevice: 22
cacheDepthMatchesImageDepth 22
cacheMode 23
cancelIncrementalLoad 23
compositeToPoint:fromRect:operation: 23
compositeToPoint:fromRect:operation:fraction: 25
compositeToPoint:operation: 25
compositeToPoint:operation:fraction: 26
delegate 27

3
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

dissolveToPoint:fraction: 27
dissolveToPoint:fromRect:fraction: 28
drawAtPoint:fromRect:operation:fraction: 29
drawInRect:fromRect:operation:fraction: 30
drawRepresentation:inRect: 30
initByReferencingFile: 31
initByReferencingURL: 32
initWithContentsOfFile: 33
initWithContentsOfURL: 33
initWithData: 34
initWithIconRef: 34
initWithPasteboard: 34
initWithSize: 35
isCachedSeparately 36
isDataRetained 36
isFlipped 37
isTemplate 37
isValid 37
lockFocus 38
lockFocusOnRepresentation: 39
matchesOnMultipleResolution 39
name 40
prefersColorMatch 40
recache 41
removeRepresentation: 41
representations 41
scalesWhenResized 42
setAlignmentRect: 42
setBackgroundColor: 43
setCacheDepthMatchesImageDepth: 43
setCachedSeparately: 44
setCacheMode: 44
setDataRetained: 45
setDelegate: 45
setFlipped: 46
setMatchesOnMultipleResolution: 47
setName: 47
setPrefersColorMatch: 48
setScalesWhenResized: 48
setSize: 49
setTemplate: 50
setUsesEPSOnResolutionMismatch: 50
size 51
TIFFRepresentation 51
TIFFRepresentationUsingCompression:factor: 52
unlockFocus 53

4
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

usesEPSOnResolutionMismatch 53
Delegate Methods 54

image:didLoadPartOfRepresentation:withValidRows: 54
image:didLoadRepresentation:withStatus: 54
image:didLoadRepresentationHeader: 55
image:willLoadRepresentation: 55
imageDidNotDraw:inRect: 56

Constants 56
NSCompositingOperation 56
NSImageLoadStatus 59
NSImageCacheMode 60
Button Template Images 61
Multiple Documents Drag Image 65
Sharing Permissions Named Images 66
System Entity Images 67
Toolbar Named Images 68
View Type Template Images 69

Document Revision History 71

Index 73

5
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

6
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tables

NSImage Class Reference 9

Table 1 Default pasteboard types for image representations 35
Table 2 Placeholder values for compositing equations 59

7
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

8
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

TABLES

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Cocoa Drawing Guide

Declared in NSGraphics.h
NSImage.h

Related sample code ImageBackground
MyPhoto
QTKitMovieShuffler
RGB Image
Sketch-112

Overview

An NSImage object is a high-level class for manipulating image data. You use this class to load existing images
or create new ones and composite them into a view or other image. This class works in conjunction with one
or more image representation objects (subclasses of NSImageRep), which manage the actual image data.

Adopted Protocols

NSCoding
encodeWithCoder:

initWithCoder:

NSCopying
copyWithZone:

Overview 9
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Tasks

Initializing a New NSImage Object

– initByReferencingFile: (page 31)
Initializes and returns an NSImage instance and associates it with the specified file.

– initByReferencingURL: (page 32)
Initializes and returns an NSImage instance and associates it with the specified URL.

– initWithContentsOfFile: (page 33)
Initializes and returns an NSImage instance with the contents of the specified file.

– initWithContentsOfURL: (page 33)
Initializes and returns an NSImage instance with the contents of the specified URL.

– initWithData: (page 34)
Initializes and returns an NSImage instance with the contents of the specified NSData object.

– initWithPasteboard: (page 34)
Initializes and returns an NSImage instance with data from the specified pasteboard.

– initWithSize: (page 35)
Initializes and returns an NSImage instance whose size is set to the specified value.

– initWithIconRef: (page 34)
Initializes the image object with a Carbon-style icon resource.

Setting the Image Attributes

– setSize: (page 49)
Sets the width and height of the image.

– size (page 51)
Returns the size of the receiver.

– isTemplate (page 37)
Returns a Boolean value indicating whether the image is a template image.

– setTemplate: (page 50)
Sets whether the image represents a template image.

Referring to Images by Name

+ imageNamed: (page 16)
Returns the NSImage instance associated with the specified name.

– setName: (page 47)
Registers the receiver under the specified name.

– name (page 40)
Returns the name associated with the receiver, if any.

10 Tasks
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Determining the Supported Image Types

+ canInitWithPasteboard: (page 15)
Tests whether the receiver can create an instance of itself using pasteboard data.

+ imageTypes (page 18)
Returns an array of UTI strings identifying the image types supported by the registered NSImageRep
objects, either directly or through a user-installed filter service.

+ imageUnfilteredTypes (page 19)
Returns an array of UTI strings identifying the image types supported directly by the registered
NSImageRep objects.

+ imageFileTypes (page 15)
Returns an array of strings identifying the image types supported by the registered NSImageRep
objects.

+ imageUnfilteredFileTypes (page 18)
Returns an array of strings identifying the file types supported directly by the registered NSImageRep
objects.

+ imagePasteboardTypes (page 17)
Returns an array of strings identifying the pasteboard types supported directly by the registered
NSImageRep objects.

+ imageUnfilteredPasteboardTypes (page 19)
Returns an array of strings identifying the pasteboard types supported directly by the registered
NSImageRep objects.

Working With Image Representations

– addRepresentation: (page 20)
Adds the specified image representation object to to the receiver.

– addRepresentations: (page 20)
Adds an array of image representation objects to the receiver.

– bestRepresentationForDevice: (page 22)
Returns the best representation for the device with the specified characteristics.

– representations (page 41)
Returns an array containing all of the receiver's image representations.

– removeRepresentation: (page 41)
Removes the specified image representation from the receiver and releases it.

Setting the Image Representation Selection Criteria

– setPrefersColorMatch: (page 48)
Sets whether choosing an image representation favors color matching over resolution matching.

– prefersColorMatch (page 40)
Returns a Boolean value indicating whether the image prefers to choose image representations using
color matching or resolution matching.

Tasks 11
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

– setUsesEPSOnResolutionMismatch: (page 50)
Sets whether EPS image representations are preferred when no other representations match the
resolution of the device.

– usesEPSOnResolutionMismatch (page 53)
Returns a Boolean value indicating whether EPS representations are preferred when no other
representations match the resolution of the device.

– setMatchesOnMultipleResolution: (page 47)
Sets whether image representations whose resolutions are integral multiples of the device resolution
are considered a match.

– matchesOnMultipleResolution (page 39)
Returns a Boolean value indicating whether image representations whose resolution is an integral
multiple of the device resolution are considered a match.

Managing the Focus

– lockFocus (page 38)
Prepares the image to receive drawing commands.

– lockFocusOnRepresentation: (page 39)
Prepares the specified image representation to receive drawing commands.

– unlockFocus (page 53)
Removes the focus from the receiver.

Drawing the Image

– drawAtPoint:fromRect:operation:fraction: (page 29)
Draws all or part of the image at the specified point in the current coordinate system.

– drawInRect:fromRect:operation:fraction: (page 30)
Draws all or part of the image in the specified rectangle in the current coordinate system.

– drawRepresentation:inRect: (page 30)
Draws the image using the specified image representation object.

– compositeToPoint:operation: (page 25)
Composites the entire image to the specified point in the current coordinate system.

– compositeToPoint:fromRect:operation: (page 23)
Composites a portion of the image to the specified point in the current coordinate system.

– compositeToPoint:fromRect:operation:fraction: (page 25)
Composites a portion of the image at the specified opacity to the current coordinate system.

– compositeToPoint:operation:fraction: (page 26)
Composites the entire image at the specified opacity in the current coordinate system.

– dissolveToPoint:fraction: (page 27)
Composites the entire image to the specified location using the NSCompositeSourceOver operator.

– dissolveToPoint:fromRect:fraction: (page 28)
Composites a portion of the image to the specified location using the NSCompositeSourceOver
operator.

12 Tasks
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

– imageDidNotDraw:inRect: (page 56) delegate method
Sent to the delegate when the image object is unable, for whatever reason, to lock focus on its image
or draw in the specified rectangle.

Working With Alignment Metadata

– alignmentRect (page 21)
Returns alignment metadata that your code can use to position the image during layout.

– setAlignmentRect: (page 42)
Sets the alignment metadata that your code can use to position the image during layout.

Setting the Image Storage Options

– setCachedSeparately: (page 44)
Sets whether each image representation uses a separate offscreen window to cache its contents.

– isCachedSeparately (page 36)
Returns a Boolean value indicating whether each image representation caches its contents in a separate
offscreen window.

– setDataRetained: (page 45)
Sets whether the receiver retains its source image data.

– isDataRetained (page 36)
Returns a Boolean value indicating whether the receiver retains its source image data.

– setCacheDepthMatchesImageDepth: (page 43)
Sets whether the receiver's offscreen window caches use the same bit depth as the image data itself.

– cacheDepthMatchesImageDepth (page 22)
Returns a Boolean value indicating whether an image's offscreen window caches use the same bit
depth as the image data itself.

– cacheMode (page 23)
Returns the receiver’s caching mode.

– setCacheMode: (page 44)
Set the receiver’s caching mode.

Setting the Image Drawing Options

– isValid (page 37)
Returns a Boolean value indicating whether an image representation from the receiver can be drawn.

– setScalesWhenResized: (page 48)
Sets whether different-sized image representations are scaled to fit the receiver's size.

– scalesWhenResized (page 42)
Returns a Boolean value indicating whether image representations are scaled to fit the receiver's size.

– setBackgroundColor: (page 43)
Sets the background color of the image.

Tasks 13
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

– backgroundColor (page 21)
Returns the background color of image.

– setFlipped: (page 46)
Sets whether the polarity of the y axis is inverted when drawing an image.

– isFlipped (page 37)
Returns a Boolean value indicating whether the image uses a flipped coordinate system.

– recache (page 41)
Invalidates and frees the offscreen caches of all image representations.

Assigning a Delegate

– setDelegate: (page 45)
Sets the delegate object of the receiver.

– delegate (page 27)
Returns the delegate object of the receiver

Producing TIFF Data for the Image

– TIFFRepresentation (page 51)
Returns a data object containing TIFF data for all of the image representations in the receiver.

– TIFFRepresentationUsingCompression:factor: (page 52)
Returns a data object containing TIFF data with the specified compression settings for all of the image
representations in the receiver.

Managing Incremental Loads

– cancelIncrementalLoad (page 23)
Cancels the current download operation immediately, if the image is being incrementally loaded.

– image:didLoadPartOfRepresentation:withValidRows: (page 54) delegate method
During incremental loading, this method is called repeatedly to inform the delegate that more of the
image data is available.

– image:didLoadRepresentation:withStatus: (page 54) delegate method
For incremental loading, this method is invoked when the specified image has been loaded and
decompressed as fully as is possible.

– image:didLoadRepresentationHeader: (page 55) delegate method
During incremental loading, this method is called once enough data has been read to determine the
size of the image.

– image:willLoadRepresentation: (page 55) delegate method
For incremental loading, this method is invoked when you first attempt to draw the image or otherwise
access the bitmap data.

14 Tasks
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Class Methods

canInitWithPasteboard:
Tests whether the receiver can create an instance of itself using pasteboard data.

+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

The pasteboard containing the image data.

Return Value
YES if the receiver knows how to handle the data on the pasteboard; otherwise, NO.

Discussion
This method uses the NSImageRep class method imageUnfilteredPasteboardTypes to find a class that
can handle the data in the specified pasteboard. If you create your own NSImageRep subclasses, override
the imageUnfilteredPasteboardTypes method to notify NSImage of the pasteboard types your class
supports.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imagePasteboardTypes (page 17)

Related Sample Code
CocoaDragAndDrop

Declared In
NSImage.h

imageFileTypes
Returns an array of strings identifying the image types supported by the registered NSImageRep objects.

+ (NSArray *)imageFileTypes

Return Value
An array of NSString objects, each of which identifies a single supported file type. The array can include
encoded HFS file types as well as filename extensions.

Discussion
This list includes all file types supported by registered subclasses of NSImageRep plus those that can be
converted to a supported type by a user-installed filter service. You can pass the array returned by this method
directly to the runModalForTypes: method of NSOpenPanel.

When creating a subclass of NSImageRep, do not override this method. Instead, override the
imageUnfilteredFileTypes method to notify NSImage of the file types your class supports directly.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 15
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

See Also
+ imageUnfilteredFileTypes (page 18)

Related Sample Code
DeskPictAppDockMenu
TrackBall

Declared In
NSImage.h

imageNamed:
Returns the NSImage instance associated with the specified name.

+ (id)imageNamed:(NSString *)name

Parameters
name

The name associated with the desired image.

Return Value
The NSImage object associated with the specified name, or nil if no such image was found.

Discussion
This method searches for named images in several places, returning the first image it finds matching the
given name. The order of the search is as follows:

1. Search for an object whose name was set explicitly using the setName: method and currently resides in
the image cache.

2. Search the application's main bundle for a file whose name matches the specified string. (For information
on how the bundle is searched, see “Searching for Bundle Resources“ in Bundle Programming Guide.)

3. Search the Application Kit framework for a shared image with the specified name.

When looking for files in the application bundle, it is better (but not required) to include the filename extension
in the name parameter. When naming an image with the setName: method, it is also convention not to
include filename extensions in the names you specify. That way, you can easily distinguish between images
you have named explicitly and those you want to load from the application's bundle.

One particularly useful image you can retrieve is your application's icon. This image is set by Cocoa
automatically and referenced by the string @"NSApplicationIcon". Icons for other applications can be
obtained through the use of methods declared in the NSWorkspace class. You can also retrieve some standard
system images using Cocoa defined constants; for more information, see the Constants section of this class.

If an application is linked in Mac OS X v10.5 or later, images requested using this method and whose name
ends in the word “Template” are automatically marked as template images.

The NSImage class may cache a reference to the returned image object for performance in some cases.
However, the class holds onto cached objects only while the object exists. If the image object is subsequently
released, either because its retain count was 0 or it was not referenced anywhere in a garbage-collected
application, the object may be quietly removed from the cache. Thus, if you plan to hold onto a returned
image object, you must retain it like you would any Cocoa object. You can clear an image object from the
cache explicitly by calling the object’s setName: method and passing nil for the image name.

16 Class Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setName: (page 47)
– name (page 40)
– iconForFile: (NSWorkspace)
+ imageFileTypes (page 15)

Related Sample Code
Dicey
EnhancedDataBurn
GridCalendar
ImageMapExample
iSpend

Declared In
NSImage.h

imagePasteboardTypes
Returns an array of strings identifying the pasteboard types supported directly by the registered NSImageRep
objects.

+ (NSArray *)imagePasteboardTypes

Return Value
An array of NSString objects, each of which identifies a single supported pasteboard type. By default, this
list contains the NSPDFPboardType, NSPICTPboardType, NSPostScriptPboardType, and
NSTIFFPboardType types.

Discussion
This list includes all pasteboard types supported by registered subclasses of NSImageRep plus those that
can be converted to a supported type by a user-installed filter service.

When creating a subclass of NSImageRep, do not override this method. Instead, override the
imageUnfilteredPasteboardTypesmethod to notifyNSImageof the pasteboard types your class supports.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imageUnfilteredPasteboardTypes (page 19)

Related Sample Code
CocoaDragAndDrop
GLChildWindowDemo
Sketch-112

Declared In
NSImage.h

Class Methods 17
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

imageTypes
Returns an array of UTI strings identifying the image types supported by the registered NSImageRep objects,
either directly or through a user-installed filter service.

+ (NSArray *)imageTypes

Return Value
An array of NSString objects, each of which contains a UTI identifying a supported image type. Some sample
image-related UTI strings include "public.image”, "public.jpeg”, and "public.tiff”. For a list of
supported types, see UTCoreTypes.h.

Discussion
The returned list includes UTIs all file types supported by registered subclasses of NSImageRep plus those
that can be converted to a supported type by a user-installed filter service. You can use the returned UTI
strings with any method that supports UTIs.

You should not override this method directly. Instead, you should override the imageTypes method of
NSImageRep.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ imageUnfilteredTypes (page 19)

Declared In
NSImage.h

imageUnfilteredFileTypes
Returns an array of strings identifying the file types supported directly by the registered NSImageRep objects.

+ (NSArray *)imageUnfilteredFileTypes

Return Value
An array of NSString objects, each of which identifies a single supported file type. File types are identified
by file extension and HFS file types.

Discussion
The returned list does not contain pasteboard types that are available only through a user-installed filter
service.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imageFileTypes (page 15)

Declared In
NSImage.h

18 Class Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

imageUnfilteredPasteboardTypes
Returns an array of strings identifying the pasteboard types supported directly by the registered NSImageRep
objects.

+ (NSArray *)imageUnfilteredPasteboardTypes

Return Value
An array of NSString objects, each of which identifies a single supported pasteboard type.

Discussion
The returned list does not contain pasteboard types that are supported only through a user-installed filter
service.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imagePasteboardTypes (page 17)

Declared In
NSImage.h

imageUnfilteredTypes
Returns an array of UTI strings identifying the image types supported directly by the registered NSImageRep
objects.

+ (NSArray *)imageUnfilteredTypes

Return Value
An array of NSString objects, each of which contains a UTI identifying a supported image type. Some sample
image-related UTI strings include "public.image”, "public.jpeg”, and "public.tiff”. For a list of
supported types, see UTCoreTypes.h.

Discussion
The returned list includes UTI strings only for those file types that are supported directly by registered
subclasses of NSImageRep. It does not include types that are supported through user-installed filter services.
You can use the returned UTI strings with any method that supports UTIs.

You should not override this method directly. Instead, you should override the imageUnfilteredTypes
method of NSImageRep.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ imageTypes (page 18)

Declared In
NSImage.h

Class Methods 19
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Instance Methods

addRepresentation:
Adds the specified image representation object to to the receiver.

- (void)addRepresentation:(NSImageRep *)imageRep

Parameters
imageRep

The image representation to add.

Discussion
After invoking this method, you may need to explicitly set features of the new image representation, such
as the size, number of colors, and so on. This is true particularly when the NSImage object has multiple image
representations to choose from. See NSImageRep and its subclasses for the methods you use to complete
initialization.

Any representation added by this method is retained by the receiver. Image representations cannot be shared
among multiple NSImage objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representations (page 41)
– removeRepresentation: (page 41)

Related Sample Code
ColorMatching
Image Difference
Monochrome Image
PDFView
Reducer

Declared In
NSImage.h

addRepresentations:
Adds an array of image representation objects to the receiver.

- (void)addRepresentations:(NSArray *)imageReps

Parameters
imageReps

An array of NSImageRep objects.

20 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Discussion
After invoking this method, you may need to explicitly set features of the new image representations, such
as their size, number of colors, and so on. This is true particularly when the NSImage object has multiple
image representations to choose from. See NSImageRep and its subclasses for the methods you use to
complete initialization.

Representations added by this method are retained by the receiver. Image representations cannot be shared
among multiple NSImage objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representations (page 41)
– removeRepresentation: (page 41)

Declared In
NSImage.h

alignmentRect
Returns alignment metadata that your code can use to position the image during layout.

- (NSRect)alignmentRect

Return Value
A rectangle containing the layout information for the image. If not set, the returned rectangle has an origin
of (0, 0) and a size that matches the size of the image.

Discussion
The returned rectangle is merely a hint that your own code can use to determine positioning. The NSImage
class does not use this rectangle during drawing. However, instances of NSCell typically use this information
when laying out images within their own boundaries.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAlignmentRect: (page 42)

Declared In
NSImage.h

backgroundColor
Returns the background color of image.

- (NSColor *)backgroundColor

Return Value
The background color of the image. The default color is transparent, as returned by the clearColormethod
of NSColor.

Instance Methods 21
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Discussion
The background color is visible only if the drawn image representation does not completely cover all of the
pixels available for the image's current size.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

bestRepresentationForDevice:
Returns the best representation for the device with the specified characteristics.

- (NSImageRep *)bestRepresentationForDevice:(NSDictionary *)deviceDescription

Parameters
deviceDescription

A dictionary of attributes for the specified device, or nil to specify the current device. For a list of
dictionary keys and values appropriate to display and print devices, see the constants in NSScreen.

Return Value
The image representation that most closely matches the specified criteria.

Discussion
If deviceDescription is nil, this method uses the attributes of the device on which the content is to be
drawn.

For information on how the "best" representation is chosen, see the Images chapter of Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representations (page 41)
– prefersColorMatch (page 40)
– matchesOnMultipleResolution (page 39)
– usesEPSOnResolutionMismatch (page 53)

Related Sample Code
LayerBackedOpenGLView
NSOpenGL Fullscreen
PDF Annotation Editor
Sketch-112

Declared In
NSImage.h

cacheDepthMatchesImageDepth
Returns a Boolean value indicating whether an image's offscreen window caches use the same bit depth as
the image data itself.

22 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

- (BOOL)cacheDepthMatchesImageDepth

Return Value
YES if the offscreen window caches use the same bit depth as the image data; otherwise, NO. The default
value is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCacheDepthMatchesImageDepth: (page 43)

Declared In
NSImage.h

cacheMode
Returns the receiver’s caching mode.

- (NSImageCacheMode)cacheMode

Return Value
A value indicating the caching mode. For a list of possible values, see NSImageCacheMode (page 60). This
value is set to NSImageCacheDefault by default.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setCacheMode: (page 44)

Declared In
NSImage.h

cancelIncrementalLoad
Cancels the current download operation immediately, if the image is being incrementally loaded.

- (void)cancelIncrementalLoad

Discussion
This call has no effect if the image is not loading.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSImage.h

compositeToPoint:fromRect:operation:
Composites a portion of the image to the specified point in the current coordinate system.

Instance Methods 23
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

- (void)compositeToPoint:(NSPoint)aPoint fromRect:(NSRect)srcRect
operation:(NSCompositingOperation)op

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

srcRect
The portion of the image you want to draw, specified in the image's coordinate system.

op
The compositing operation to use when drawing the image to the screen. The supported compositing
operations are described in “Constants” (page 56).

Discussion
This method draws the specified portion of the image without checking the bounds rectangle you pass into
the srcRect parameter. If you specify a source rectangle that strays outside of the image's bounds rectangle,
it is conceivable that you could composite parts of the offscreen cache window that do not belong to the
receiver's image. You can avoid this problem by using the setCachedSeparately: (page 44) method to
force the image to be cached in its own offscreen window, which results in the content being clipped to the
window rectangle. Alternatively, you can use the drawAtPoint:fromRect:operation:fraction: (page
29) method, which checks the source rectangle before drawing.

During drawing, the image is composited from its offscreen window cache. Because the offscreen cache is
not created until the image representation is first used, this method may need to render the image before
compositing. Bitmap representations in particular are not cached until they are explicitly rendered. You can
use the lockFocus (page 38) and unlockFocus (page 53) methods to force the cached version to be
created.

Compositing part of an image is as efficient as compositing the whole image, but printing just part of an
image is not. When printing, it’s necessary to draw the whole image and rely on a clipping path to be sure
that only the desired portion appears.

During printing, this method ignores the op parameter. Even though this parameter is ignored, this method
attempts to render the image as close as possible to its appearance when the compositing operation is used
on the screen. In either case, the best image representation is chosen for the printing context.

Important: If you are writing new code, or updating old code, you should avoid using this method. Instead,
you should use the drawAtPoint:fromRect:operation:fraction: or
drawInRect:fromRect:operation:fraction: method to draw the image. Although the method itself
is not deprecated, the behavior it provides is not recommended for general use.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dissolveToPoint:fromRect:fraction: (page 28)
– drawAtPoint:fromRect:operation:fraction: (page 29)
– drawInRect:fromRect:operation:fraction: (page 30)

Declared In
NSImage.h

24 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

compositeToPoint:fromRect:operation:fraction:
Composites a portion of the image at the specified opacity to the current coordinate system.

- (void)compositeToPoint:(NSPoint)aPoint fromRect:(NSRect)srcRect
operation:(NSCompositingOperation)op fraction:(CGFloat)delta

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

srcRect
The portion of the image you want to draw, specified in the image's coordinate system.

op
The compositing operation to use when drawing the image to the screen. The supported compositing
operations are described in “Constants” (page 56).

delta
The desired opacity of the image, specified as a value between 0.0 and 1.0, with 1.0 representing total
opacity. Values larger than 1.0 are interpreted as 1.0. This method always expects to render something,
so for values that are equal to or less than 0, this method renders at full opacity.

Discussion
Behaves the same as compositeToPoint:fromRect:operation: (page 23) except that you can specify
the amount of opacity to use when drawing the image.

Important: If you are writing new code, or updating old code, you should avoid using this method. Instead,
you should use the drawAtPoint:fromRect:operation:fraction: or
drawInRect:fromRect:operation:fraction: method to draw the image. Although the method itself
is not deprecated, the behavior it provides is not recommended for general use.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dissolveToPoint:fromRect:fraction: (page 28)
– drawAtPoint:fromRect:operation:fraction: (page 29)
– drawInRect:fromRect:operation:fraction: (page 30)

Declared In
NSImage.h

compositeToPoint:operation:
Composites the entire image to the specified point in the current coordinate system.

- (void)compositeToPoint:(NSPoint)aPoint operation:(NSCompositingOperation)op

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

Instance Methods 25
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

op
The compositing operation to use when drawing the image to the screen. The supported compositing
operations are described in “Constants” (page 56).

Discussion
This method draws the receiver's best image representation at the specified point in the currently focused
view. The entire image is drawn using its current size information. During drawing, the image is composited
from its offscreen window cache. Because the offscreen cache is not created until the image representation
is first used, this method may need to render the image before compositing. Bitmap representations in
particular are not cached until they are explicitly rendered. You can use the lockFocus (page 38) and
unlockFocus (page 53) methods to force the cached version to be created.

During printing, this method ignores the op parameter. Even though this parameter is ignored, this method
attempts to render the image as close as possible to its appearance when the compositing operation is used
on the screen. In either case, the best image representation is chosen for the printing context.

Important: If you are writing new code, or updating old code, you should avoid using this method. Instead,
you should use the drawAtPoint:fromRect:operation:fraction: or
drawInRect:fromRect:operation:fraction: method to draw the image. Although the method itself
is not deprecated, the behavior it provides is not recommended for general use.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dissolveToPoint:fraction: (page 27)
– drawAtPoint:fromRect:operation:fraction: (page 29)
– drawInRect:fromRect:operation:fraction: (page 30)

Related Sample Code
ColorMatching
EnhancedAudioBurn
Image Difference
RGB ValueTransformers
Sketch-112

Declared In
NSImage.h

compositeToPoint:operation:fraction:
Composites the entire image at the specified opacity in the current coordinate system.

- (void)compositeToPoint:(NSPoint)aPoint operation:(NSCompositingOperation)op
fraction:(CGFloat)delta

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

26 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

op
The compositing operation to use when drawing the image to the screen. The supported compositing
operations are described in “Constants” (page 56).

delta
The desired opacity of the image, specified as a value between 0.0 and 1.0, with 1.0 representing total
opacity. Values larger than 1.0 are interpreted as 1.0. This method always expects to render something,
so for values that are equal to or less than 0, this method renders at full opacity.

Discussion
Behaves the same as compositeToPoint:operation: (page 25) except that you can specify the amount
of opacity to use when drawing the image.

Important: If you are writing new code, or updating old code, you should avoid using this method. Instead,
you should use the drawAtPoint:fromRect:operation:fraction: or
drawInRect:fromRect:operation:fraction: method to draw the image. Although the method itself
is not deprecated, the behavior it provides is not recommended for general use.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dissolveToPoint:fraction: (page 27)
– drawAtPoint:fromRect:operation:fraction: (page 29)
– drawInRect:fromRect:operation:fraction: (page 30)

Declared In
NSImage.h

delegate
Returns the delegate object of the receiver

- (id)delegate

Return Value
The current delegate object, or nil if no delegate has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 45)

Declared In
NSImage.h

dissolveToPoint:fraction:
Composites the entire image to the specified location using the NSCompositeSourceOver operator.

- (void)dissolveToPoint:(NSPoint)aPoint fraction:(CGFloat)delta

Instance Methods 27
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

delta
The desired opacity of the image, specified as a value between 0.0 and 1.0. A value of 0.0 renders the
image totally transparent while 1.0 renders it fully opaque. Values larger than 1.0 are interpreted as
1.0.

Discussion
Except for the choice of compositing operator, this method behaves in the same way as the
compositeToPoint:operation: (page 25) method. During printing, the delta parameter is ignored.

If the source image contains alpha information, this operation may promote the destination NSWindow object
to contain alpha information.

To slowly dissolve this image onto another, you can invoke this method (or the
dissolveToPoint:fromRect:fraction: (page 28) method) repeatedly with an ever-increasing delta
value. Because the delta parameter refers to the visible fraction of the source image, increasing the value
causes the source image to replace the destination content gradually. You should generally perform this
type of operation using a buffered window or other offscreen drawing environment.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

dissolveToPoint:fromRect:fraction:
Composites a portion of the image to the specified location using the NSCompositeSourceOver operator.

- (void)dissolveToPoint:(NSPoint)aPoint fromRect:(NSRect)srcRect
fraction:(CGFloat)delta

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

srcRect
The portion of the image you want to draw, specified in the image's coordinate system.

delta
The desired opacity of the image, specified as a value between 0.0 and 1.0. A value of 0.0 renders the
image totally transparent while 1.0 renders it fully opaque. Values larger than 1.0 are interpreted as
1.0.

Discussion
Except for the choice of compositing operator, this method behaves in the same way as the
compositeToPoint:fromRect:operation: (page 23) method. During printing, the delta parameter is
ignored.

If the source image contains alpha information, this operation may promote the destination NSWindow object
to contain alpha information.

28 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– dissolveToPoint:fraction: (page 27)

Declared In
NSImage.h

drawAtPoint:fromRect:operation:fraction:
Draws all or part of the image at the specified point in the current coordinate system.

- (void)drawAtPoint:(NSPoint)point fromRect:(NSRect)srcRect
operation:(NSCompositingOperation)op fraction:(CGFloat)delta

Parameters
point

The location in the current coordinate system at which to draw the image.

srcRect
The source rectangle specifying the portion of the image you want to draw. The coordinates of this
rectangle are specified in the image's own coordinate system. If you pass in NSZeroRect, the entire
image is drawn.

op
The compositing operation to use when drawing the image. See theNSCompositingOperation (page
56) constants.

delta
The opacity of the image, specified as a value from 0.0 to 1.0. Specifying a value of 0.0 draws the
image as fully transparent while a value of 1.0 draws the image as fully opaque. Values greater than
1.0 are interpreted as 1.0.

Discussion
The image content is drawn at its current resolution and is not scaled unless the CTM of the current coordinate
system itself contains a scaling factor. The image is otherwise positioned and oriented using the current
coordinate system.

Unlike the compositeToPoint:fromRect:operation: (page 23) and
compositeToPoint:fromRect:operation:fraction: (page 25) methods, this method checks the
rectangle you pass to the srcRect parameter and makes sure it does not lie outside the image bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dissolveToPoint:fraction: (page 27)
– drawInRect:fromRect:operation:fraction: (page 30)

Related Sample Code
Reducer

Declared In
NSImage.h

Instance Methods 29
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

drawInRect:fromRect:operation:fraction:
Draws all or part of the image in the specified rectangle in the current coordinate system.

- (void)drawInRect:(NSRect)dstRect fromRect:(NSRect)srcRect
operation:(NSCompositingOperation)op fraction:(CGFloat)delta

Parameters
dstRect

The rectangle in which to draw the image, specified in the current coordinate system.

srcRect
The source rectangle specifying the portion of the image you want to draw. The coordinates of this
rectangle must be specified using the image's own coordinate system. If you pass in NSZeroRect,
the entire image is drawn.

op
The compositing operation to use when drawing the image. See theNSCompositingOperation (page
56) constants.

delta
The opacity of the image, specified as a value from 0.0 to 1.0. Specifying a value of 0.0 draws the
image as fully transparent while a value of 1.0 draws the image as fully opaque. Values greater than
1.0 are interpreted as 1.0.

Discussion
If the srcRect and dstRect rectangles have different sizes, the source portion of the image is scaled to fit
the specified destination rectangle. The image is otherwise positioned and oriented using the current
coordinate system.

Unlike the compositeToPoint:fromRect:operation: (page 23) and
compositeToPoint:fromRect:operation:fraction: (page 25) methods, this method checks the
rectangle you pass to the srcRect parameter and makes sure it does not lie outside the image bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dissolveToPoint:fraction: (page 27)
– drawAtPoint:fromRect:operation:fraction: (page 29)

Related Sample Code
Clock Control
CocoaVideoFrameToNSImage
Transformed Image
WebKitDOMElementPlugIn

Declared In
NSImage.h

drawRepresentation:inRect:
Draws the image using the specified image representation object.

- (BOOL)drawRepresentation:(NSImageRep *)imageRep inRect:(NSRect)dstRect

30 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Parameters
imageRep

The image representation object to be drawn.

dstRect
The rectangle in which to draw the image representation, specified in the current coordinate system.

Return Value
YES if the image was successfully drawn; otherwise, returns NO.

Discussion
This method fills the specified rectangle with the image's current background color and then sends a message
to the specified image representation asking if to draw itself. If the image supports the ability to scale itself
when it is resized, this method sends a drawInRect:message; otherwise, it sends a drawAtPoint:message.

You should not call this method directly; an NSImage object uses it to cache and print its image
representations. You can override this method to change the way images are rendered into their caches and
onto the printed page. For example, you could scale or rotate the coordinate system before sending this
message to super to continue rendering the image representation.

If the background color is fully transparent and the image data is not being cached, the specified rectangle
is not to be filled before the representation draws.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 21)

Declared In
NSImage.h

initByReferencingFile:
Initializes and returns an NSImage instance and associates it with the specified file.

- (id)initByReferencingFile:(NSString *)filename

Parameters
filename

A full or relative path name specifying the file with the desired image data. Relative paths must be
relative to the current working directory.

Return Value
An initialized NSImage instance, or nil if the new instance cannot be initialized.

Discussion
This method initializes the image object lazily. It does not actually open the specified file or create any image
representations from its data until an application attempts to draw the image or request information about
it.

The filename parameter should include the file extension that identifies the type of the image data. The
mechanism that actually creates the image representation for filename looks for an NSImageRep subclass
that handles that data type from among those registered with NSImage.

Instance Methods 31
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Because this method doesn’t actually create image representations for the image data, your application
should do error checking before attempting to use the image; one way to do so is by invoking the
isValid (page 37) method to check whether the image can be drawn.

This method invokes setDataRetained: (page 45) with an argument of YES, thus enabling it to hold onto
its filename. When archiving an image created with this method, only the image's filename is written to the
archive.

If the cached version of the image uses less memory than the original image data, the original data is flushed
and the cached image is used. (This can occur for images whose resolution is greater than 72 dpi.) If you
resize the image by less than 50%, the data is loaded in again from the file. If you expect the file to change
or be deleted, you should use initWithContentsOfFile: (page 33) instead.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Clock Control
PictureTaker

Declared In
NSImage.h

initByReferencingURL:
Initializes and returns an NSImage instance and associates it with the specified URL.

- (id)initByReferencingURL:(NSURL *)url

Parameters
url

The URL identifying the image.

Return Value
An initialized NSImage instance, or nil if the new instance cannot be initialized.

Discussion
This method initializes the image object lazily. It does not attempt to retrieve the data from the specified
URL or create any image representations from that data until an application attempts to draw the image or
request information about it.

This url parameter should include a file extension that identifies the type of the image data. The mechanism
that actually creates the image representation looks for an NSImageRep subclass that handles that data type
from among those registered with NSImage.

Because this method doesn’t actually create image representations for the image data, your application
should do error checking before attempting to use the image; one way to do so is by invoking the
isValid (page 37) method to check whether the image can be drawn.

This method invokes setDataRetained: (page 45) with an argument of YES, thus enabling it to hold onto
its URL. When archiving an image created with this method, only the image's URL is written to the archive.

Availability
Available in Mac OS X v10.2 and later.

32 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Related Sample Code
TrackBall

Declared In
NSImage.h

initWithContentsOfFile:
Initializes and returns an NSImage instance with the contents of the specified file.

- (id)initWithContentsOfFile:(NSString *)filename

Parameters
filename

A full or relative path name specifying the file with the desired image data. Relative paths must be
relative to the current working directory.

Return Value
An initialized NSImage instance, or nil if the method cannot create an image representation from the
contents of the specified file.

Discussion
Unlike initByReferencingFile: (page 31), which initializes an NSImage object lazily, this method
immediately opens the specified file and creates one or more image representations from its data.

The filename parameter should include the file extension that identifies the type of the image data. This
method looks for an NSImageRep subclass that handles that data type from among those registered with
NSImage.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

initWithContentsOfURL:
Initializes and returns an NSImage instance with the contents of the specified URL.

- (id)initWithContentsOfURL:(NSURL *)aURL

Parameters
aUrl

The URL identifying the image.

Return Value
An initialized NSImage instance, or nil if the method cannot create an image representation from the
contents of the specified URL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaCreateMovie

Instance Methods 33
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Declared In
NSImage.h

initWithData:
Initializes and returns an NSImage instance with the contents of the specified NSData object.

- (id)initWithData:(NSData *)data

Parameters
data

The data object containing the image data.

Return Value
An initialized NSImage instance, or nil if the method cannot create an image representation from the
contents of the specified data object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

initWithIconRef:
Initializes the image object with a Carbon-style icon resource.

- (id)initWithIconRef:(IconRef)iconRef

Parameters
iconRef

A reference to a Carbon icon resource.

Return Value
An initialized NSImage instance.

Discussion
Creates one or more bitmap image representations, one for each size icon contained in the IconRef data
structure. This initialization method automatically retains the data in the iconRef parameter and loads the
bitmaps from that data file lazily.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSImage.h

initWithPasteboard:
Initializes and returns an NSImage instance with data from the specified pasteboard.

- (id)initWithPasteboard:(NSPasteboard *)pasteboard

34 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Parameters
pasteboard

The pasteboard containing the image data.

Return Value
An initialized NSImage instance, or nil if the method cannot create an image representation from the
contents of the pasteboard.

Discussion
The specified pasteboard should contain a type supported by one of the registered NSImageRep subclasses.
Table 1 lists the default pasteboard types and file extensions for several NSImageRep subclasses.

Table 1 Default pasteboard types for image representations

Default file extensionsDefault pasteboard typeImage representation class

tiff, gif, jpg, and othersNSTIFFPboardTypeNSBitmapImageRep

pdfNSPDFPboardTypeNSPDFImageRep

epsNSPostscriptPboardTypeNSEPSImageRep

pictNSPICTPboardTypeNSPICTImageRep

If the specified pasteboard contains the value NSFilenamesPboardType, each filename on the pasteboard
should have an extension supported by one of the registered NSImageRep subclasses. You can use the
imageUnfilteredFileTypes method of a given subclass to obtain the list of supported types for that
class.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

initWithSize:
Initializes and returns an NSImage instance whose size is set to the specified value.

- (id)initWithSize:(NSSize)aSize

Parameters
aSize

The size of the image, measured in points.

Return Value
An initialized NSImage instance.

Discussion
This method does not add any image representations to the image object.. It is permissible to initialize the
receiver by passing a size of (0.0, 0.0); however, the receiver’s size must be set to a non-zero value before the
NSImage object is used or an exception will be raised.

Instance Methods 35
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSize: (page 49)

Related Sample Code
Dicey
Image Difference
RGB Image
RGB ValueTransformers
Sketch-112

Declared In
NSImage.h

isCachedSeparately
Returns a Boolean value indicating whether each image representation caches its contents in a separate
offscreen window.

- (BOOL)isCachedSeparately

Return Value
YES if the image representations cache their content in separate offscreen windows; otherwise, NO. The
default value is NO.

Discussion
If this method returns NO, it means that the image may be cached in a shared window but is not required to
be. Images are cached in a shared window if they have the same general attributes, such as color space,
resolution, and bit depth.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

isDataRetained
Returns a Boolean value indicating whether the receiver retains its source image data.

- (BOOL)isDataRetained

Return Value
YES if the image retains its source data; otherwise, NO. The default value is NO with some exceptions, which
are covered in the discussion.

Discussion
For image objects initialized using either the initByReferencingFile: (page 31) or
initByReferencingURL: (page 32) method, this value is YES by default. The reason is that for these
methods, data retention simply involves retaining the filename or URL.

36 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Data retention increases the memory used by the NSImage object and its image representations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

isFlipped
Returns a Boolean value indicating whether the image uses a flipped coordinate system.

- (BOOL)isFlipped

Return Value
YES if the image's coordinate system is flipped; otherwise, NO. The default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFlipped: (page 46)

Declared In
NSImage.h

isTemplate
Returns a Boolean value indicating whether the image is a template image.

- (BOOL)isTemplate

Return Value
YES if the image is a template image; otherwise, NO.

Discussion
Template images consist of black and clear colors (and an alpha channel). Template images are not intended
to be used as standalone images and are usually mixed with other content to create the desired final
appearance.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setTemplate: (page 50)

Declared In
NSImage.h

isValid
Returns a Boolean value indicating whether an image representation from the receiver can be drawn.

Instance Methods 37
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

- (BOOL)isValid

Return Value
YES if the receiver can be drawn; otherwise, NO.

Discussion
If the receiver is initialized with an existing image file, but the corresponding image data is not yet loaded
into memory, this method loads the data and expands it as needed. If the receiver contains no image
representations and no associated image file, this method creates a valid cached image representation and
initializes it to the default bit depth. This method returns NO in cases where the file or URL from which it was
initialized is nonexistent or when the data in an existing file is invalid.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initByReferencingFile: (page 31)
– initByReferencingURL: (page 32)

Declared In
NSImage.h

lockFocus
Prepares the image to receive drawing commands.

- (void)lockFocus

Discussion
This method sets the current drawing context to the area of the offscreen window used to cache the receiver's
contents. Subsequent drawing commands are composited to this offscreen window. If the offscreen drawing
area already has some content, any new drawing commands are composited with that content. This method
does not modify the original image data directly.

When locking focus, this method chooses the best image representation object available and locks focus on
that object. If the receiver has no image representations, this method creates one with the default depth
and locks focus on it. For information on how the "best" representation is chosen, see the Images chapter of
Cocoa Drawing Guide.

A successful lockFocus message must be balanced with a matching unlockFocus (page 53) message to
the same NSImage object. These messages bracket the code that draws the image.

If lockFocus is unable to focus on the image, it raises an NSImageCacheException.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bestRepresentationForDevice: (page 22)
– isValid (page 37)
– prefersColorMatch (page 40)
– representations (page 41)

38 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Related Sample Code
Dicey
Image Difference
RGB Image
RGB ValueTransformers
Sketch-112

Declared In
NSImage.h

lockFocusOnRepresentation:
Prepares the specified image representation to receive drawing commands.

- (void)lockFocusOnRepresentation:(NSImageRep *)imageRepresentation

Parameters
imageRepresentation

An image representation belonging to the receiver, or nil if you want the receiver to choose which
image representation to use.

Discussion
This method sets the current drawing context to the area of the offscreen window used to cache the specified
image representation's contents. Subsequent drawing commands are composited to this offscreen window.
If the offscreen drawing area already has some content, any new drawing commands are composited with
that content. This method does not modify the original image data directly.

If imageRepresentation is nil, this method acts like the lockFocus (page 38) method, setting the focus
to the best representation for the NSImage object.

A successful lockFocusOnRepresentation: message must be balanced with a matching
unlockFocus (page 53) message to the same NSImage object. These messages bracket the code that draws
the image.

If lockFocusOnRepresentation: is unable to focus on the specified image representation, it raises an
NSImageCacheException.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isValid (page 37)

Declared In
NSImage.h

matchesOnMultipleResolution
Returns a Boolean value indicating whether image representations whose resolution is an integral multiple
of the device resolution are considered a match.

- (BOOL)matchesOnMultipleResolution

Instance Methods 39
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Return Value
YES if image representations whose resolution is an integral multiple of the device resolution are considered
a match; otherwise, NO.

Discussion
When this method returns NO, only image representations whose resolution is exactly the same as the device
resolution are considered matches. If this method returns YES and multiple image representations fit this
criteria, the one whose resolution is closest to the device resolution is chosen.

The default value is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMatchesOnMultipleResolution: (page 47)

Declared In
NSImage.h

name
Returns the name associated with the receiver, if any.

- (NSString *)name

Return Value
The name associated with the receiver, or nil if no name is assigned.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setName: (page 47)

Declared In
NSImage.h

prefersColorMatch
Returns a Boolean value indicating whether the image prefers to choose image representations using color
matching or resolution matching.

- (BOOL)prefersColorMatch

Return Value
YES if color matching is preferred over resolution matching; otherwise NO if resolution matching is preferred.

Discussion
Both color matching and resolution matching may influence the choice of an image representation. This
method simply indicates which technique is used first during the selection process. The default value is YES.

Availability
Available in Mac OS X v10.0 and later.

40 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

See Also
– setPrefersColorMatch: (page 48)

Declared In
NSImage.h

recache
Invalidates and frees the offscreen caches of all image representations.

- (void)recache

Discussion
If you modify an image representation, you must send a recache (page 41) message to the corresponding
image object to force the changes to be recached. The next time any image representation is drawn, it is
asked to recreate its cached image. If you do not send this message, the image representation may use the
old cache data. This method simply clears the cached image data; it does not delete the NSCachedImageRep
objects associated with any image representations.

If you do not plan to use an image again right away, you can free its caches to reduce the amount of memory
consumed by your program.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

removeRepresentation:
Removes the specified image representation from the receiver and releases it.

- (void)removeRepresentation:(NSImageRep *)imageRep

Parameters
imageRep

The image representation object you want to remove.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representations (page 41)

Declared In
NSImage.h

representations
Returns an array containing all of the receiver's image representations.

- (NSArray *)representations

Instance Methods 41
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Return Value
An array containing zero or more NSImageRep objects.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaCreateMovie
OpenGLCompositorLab
Reducer

Declared In
NSImage.h

scalesWhenResized
Returns a Boolean value indicating whether image representations are scaled to fit the receiver's size.

- (BOOL)scalesWhenResized

Return Value
YES if image representations are scaled to fit the receiver; otherwise, NO. The default value is NO.

Discussion
Images are not resized during drawing if this method returns YES. They are only resized when you change
the size by sending the receiver a setSize: (page 49) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setScalesWhenResized: (page 48)

Declared In
NSImage.h

setAlignmentRect:
Sets the alignment metadata that your code can use to position the image during layout.

- (void)setAlignmentRect:(NSRect)rect

Parameters
rect

The alignment rectangle for the image.

Discussion
Alignment rectangles specify baselines that you can use to position the content of an image more accurately.
These baselines are merely hints that your own code can use to determine positioning and are not used
internally by NSImage itself during drawing. For example, if you have a 20 x 20 pixel icon that includes a
glow effect, you might set the alignment rectangle to {{2, 2}, {16, 16}} to indicate the position of the underlying
icon without the glow effect.

42 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– alignmentRect (page 21)

Declared In
NSImage.h

setBackgroundColor:
Sets the background color of the image.

- (void)setBackgroundColor:(NSColor *)aColor

Parameters
aColor

The new background color for the image.

Discussion
The background color is visible only if the drawn image representation does not completely cover all of the
pixels available for the image's current size. The background color is ignored for cached image representations;
such caches are always created with a white background. This method does not cause the receiver to recache
itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– recache (page 41)
– backgroundColor (page 21)

Declared In
NSImage.h

setCacheDepthMatchesImageDepth:
Sets whether the receiver's offscreen window caches use the same bit depth as the image data itself.

- (void)setCacheDepthMatchesImageDepth:(BOOL)flag

Parameters
flag

YES if the offscreen caches use the same bit-depth associated with the image data; otherwise, NO to
indicate they should use the default bit depth.

Discussion
This method does not cause the receiver to recache itself. The default depth limit is equal to the bit depth
of the deepest screen on the system.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 43
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

See Also
– cacheDepthMatchesImageDepth (page 22)
– lockFocus (page 38)
– recache (page 41)

Declared In
NSImage.h

setCachedSeparately:
Sets whether each image representation uses a separate offscreen window to cache its contents.

- (void)setCachedSeparately:(BOOL)flag

Parameters
flag

YES if you want each of the receiver's image representation objects to use a separate offscreen window
for caching; otherwise, NO.

Discussion
If you specify NO, a representation can be cached together with other images, though in practice it might
not be. This method does not invalidate any existing caches.

If you plan to resize an NSImage object frequently, it is usually more efficient to cache its representations
separately. In some situations, you might also want to enable separate caching if you plan to use the
compositeToPoint:fromRect:operation: (page 23) or
compositeToPoint:fromRect:operation:fraction: (page 25)methods to draw the image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– recache (page 41)

Declared In
NSImage.h

setCacheMode:
Set the receiver’s caching mode.

- (void)setCacheMode:(NSImageCacheMode)mode

Parameters
mode

The caching mode to use with this image. For a list of possible values, see NSImageCacheMode (page
60).

Discussion
The caching mode determines when the receiver's image representations use offscreen caches. Offscreen
caches speed up rendering time but do so by using extra memory. In the default caching mode
(NSImageCacheDefault), each image representation chooses the caching technique that produces the

44 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

fastest drawing times. For example, in the default mode, the NSPDFImageRep and NSEPSImageRep classes
use the NSImageCacheAlways mode but the NSBitmapImageRep class uses the NSImageCacheBySize
mode.

For more information on image caching behavior, see the Images chapter of Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.2 and later.

See Also
– cacheMode (page 23)

Declared In
NSImage.h

setDataRetained:
Sets whether the receiver retains its source image data.

- (void)setDataRetained:(BOOL)flag

Parameters
flag

YES if you want the source image data to be retained; otherwise NO.

Discussion
Retention of the source image data is important if the source of the image data could change, be moved, or
be deleted. Data retention is also useful if you plan to resize an image frequently; otherwise, resizing occurs
on a cached copy of the image, which can lose image quality during successive scaling operations. With data
retention enabled, the image is resized from the original source data.

If the responsibility for drawing the image is delegated to another object, there is no reason to retain the
image data. Similarly, if the source of the image data is not expected to change or you do not plan to resize
the image, you do not need to retain the data. In fact, retaining the data leads to increased memory usage,
which could have a negative impact on performance.

If you create your image object using the initByReferencingFile: (page 31) method, the only data
retained is the name of the source file.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

setDelegate:
Sets the delegate object of the receiver.

- (void)setDelegate:(id)anObject

Instance Methods 45
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Parameters
anObject

The new delegate object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 27)

Declared In
NSImage.h

setFlipped:
Sets whether the polarity of the y axis is inverted when drawing an image.

- (void)setFlipped:(BOOL)flag

Parameters
flag

YES if you want the image data to be inverted before drawing; otherwise, NO.

Discussion
If flag is YES, the y-axis of the image's internal coordinate system is inverted, with the origin in the upper-left
corner and the positive y axis extending downward. This method affects only the coordinate system used
internally by the image and the orientation of the image when it is drawn; it does not affect the coordinate
system used to specify the position of an image in a view. This method does not cause the receiver to recache
itself.

If you set flag to YES and then lock focus and draw into the image, the content you draw is cached in the
inverted (flipped) orientation. Changing the value for flag does not affect the orientation of the cached
image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isFlipped (page 37)
– recache (page 41)

Related Sample Code
DockTile
Sketch-112
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSImage.h

46 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

setMatchesOnMultipleResolution:
Sets whether image representations whose resolutions are integral multiples of the device resolution are
considered a match.

- (void)setMatchesOnMultipleResolution:(BOOL)flag

Parameters
flag

YES if image representations whose resolution is an integral multiple of the device resolution should
be considered a match; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– matchesOnMultipleResolution (page 39)

Declared In
NSImage.h

setName:
Registers the receiver under the specified name.

- (BOOL)setName:(NSString *)aString

Parameters
aString

The name to associate with the receiver.

Return Value
YES if the receiver was successfully registered with the given name; otherwise, NO.

Discussion
If the receiver is already registered under a different name, this method unregisters the other name. If a
different image is registered under the name specified in aString, this method does nothing and returns
NO.

When naming an image using this method, it is convention not to include filename extensions in the names
you specify. That way, you can easily distinguish between images you have named explicitly and those you
want to load from the application's bundle. For information about the rules used to search for images, and
for information about the ownership policy of named images, see the imageNamed: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– name (page 40)
+ imageNamed: (page 16)

Related Sample Code
Clock Control
QTKitMovieShuffler

Instance Methods 47
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Declared In
NSImage.h

setPrefersColorMatch:
Sets whether choosing an image representation favors color matching over resolution matching.

- (void)setPrefersColorMatch:(BOOL)flag

Parameters
flag

YES if the receiver should match the color capabilities of the rendering device first; otherwise, NO to
indicate that resolution matching is preferred.

Discussion
Both color matching and resolution matching may influence the choice of an image representation. You use
this method to choose which technique should be used first during the selection process.

Availability
Available in Mac OS X v10.0 and later.

See Also
– prefersColorMatch (page 40)

Declared In
NSImage.h

setScalesWhenResized:
Sets whether different-sized image representations are scaled to fit the receiver's size.

- (void)setScalesWhenResized:(BOOL)flag

Parameters
flag

YES if image representations are scaled to fit; otherwise NO.

Discussion
Most images (especially those loaded from files and URLs) contain only a single image representation whose
size is the same as the receiver. It is possible to add image representations using the
addRepresentation: (page 20) or addRepresentations: (page 20) methods but doing so is rarely
necessary because modern hardware is powerful enough to resize and scale images quickly. The only reason
to consider creating new representations is if each representations contains a customized version of the
image at a specific size. (TIFF images may also contain a thumbnail version of an image, which is stored using
a separate image representation.) If you pass YES in the flag parameter, and subsequently send a
setSize: (page 49) message to the receiver, all such image representations would be scaled to the same
size. Scaling of bitmap images usually results in the interpolation of the bitmap data.

This method does not invalidate the caches of any of the receiver's image representations. The caches are
not invalidated until you change the image size using a setSize: (page 49) message. Scaling affects only
the cached offscreen data for a given image representation.

Availability
Available in Mac OS X v10.0 and later.

48 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

See Also
– scalesWhenResized (page 42)

Related Sample Code
CocoaDragAndDrop
CoreRecipes
FunkyOverlayWindow
MyCustomColorPicker

Declared In
NSImage.h

setSize:
Sets the width and height of the image.

- (void)setSize:(NSSize)aSize

Parameters
aSize

The new size of the image, measured in points.

Discussion
The size of an NSImage object must be set before it can be used. If the size of the image hasn’t already been
set when an image representation is added, the size is taken from the image representation's data. For EPS
images, the size is taken from the image's bounding box. For TIFF images, the size is taken from the
ImageLength and ImageWidth attributes.

Changing the size of an NSImage after it has been used effectively resizes the image. Changing the size
invalidates all its caches and frees them. When the image is next composited, the selected representation
will draw itself in an offscreen window to recreate the cache.

Availability
Available in Mac OS X v10.0 and later.

See Also
– size (page 51)
– initWithSize: (page 35)
– setScalesWhenResized: (page 48)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CocoaDragAndDrop
CoreRecipes
FunkyOverlayWindow
MyCustomColorPicker

Declared In
NSImage.h

Instance Methods 49
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

setTemplate:
Sets whether the image represents a template image.

- (void)setTemplate:(BOOL)isTemplate

Parameters
isTemplate

Specify YES if the image is a template image; otherwise, NO.

Discussion
Images you mark as template images should consist of only black and clear colors. You can use the alpha
channel in the image to adjust the opacity of black content, however.

Template images are not intended to be used as standalone images. They are always mixed with other
content and processed to create the desired appearance. You can mark an image as a “template image” to
notify clients who care that the image contains only black and clear content. The most common use for
template images is in image cells. For example, you might use a template image to provide the content for
a button or segmented control. Cocoa cells take advantage of the nature of template images—that is, their
simplified color scheme and use of transparency—to improve the appearance of the corresponding control
in each of its supported states.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isTemplate (page 37)

Declared In
NSImage.h

setUsesEPSOnResolutionMismatch:
Sets whether EPS image representations are preferred when no other representations match the resolution
of the device.

- (void)setUsesEPSOnResolutionMismatch:(BOOL)flag

Parameters
flag

YES if EPS image representations are preferred; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesEPSOnResolutionMismatch (page 53)
– setMatchesOnMultipleResolution: (page 47)

Declared In
NSImage.h

50 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

size
Returns the size of the receiver.

- (NSSize)size

Return Value
The size of the receiver or (0.0, 0.0) if no size has been set and the size cannot be determined from any of
the receiver's image representations.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSize: (page 49)

Related Sample Code
Clock Control
Reducer
RGB Image
Sketch-112
Transformed Image

Declared In
NSImage.h

TIFFRepresentation
Returns a data object containing TIFF data for all of the image representations in the receiver.

- (NSData *)TIFFRepresentation

Return Value
A data object containing the TIFF data, or nil if the TIFF data could not be created.

Discussion
You can use the returned data object to write the TIFF data to a file. For each image representation, this
method uses the TIFF compression option associated with that representation or NSTIFFCompressionNone,
if no option is set.

If one of the receiver's image representations does not support the creation of TIFF data natively (PDF and
EPS images, for example), this method creates the TIFF data from that representation's cached content.

Availability
Available in Mac OS X v10.0 and later.

See Also
– TIFFRepresentationUsingCompression:factor: (page 52)
– representationUsingType:properties: (NSBitmapImageRep)
– TIFFRepresentation (NSBitmapImageRep)
– TIFFRepresentationUsingCompression:factor: (NSBitmapImageRep)

Instance Methods 51
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Related Sample Code
bMoviePaletteCocoa
GLSLShowpiece
NURBSSurfaceVertexProg
Sketch-112
Vertex Optimization

Declared In
NSImage.h

TIFFRepresentationUsingCompression:factor:
Returns a data object containing TIFF data with the specified compression settings for all of the image
representations in the receiver.

- (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp
factor:(float)aFloat

Parameters
comp

The type of compression to use. For a list of values, see the constants in NSBitmapImageRep.

aFloat
Provides a hint for compression types that implement variable compression ratios. Currently, only
JPEG compression uses a compression factor.

Return Value
A data object containing the TIFF data, or nil if the TIFF data could not be created.

Discussion
You can use the returned data object to write the TIFF data to a file. If the specified compression isn’t
applicable, no compression is used. If a problem is encountered during generation of the TIFF data, this
method may raise an exception.

If one of the receiver's image representations does not support the creation of TIFF data natively (PDF and
EPS images, for example), this method creates the TIFF data from that representation's cached content.

Availability
Available in Mac OS X v10.0 and later.

See Also
– TIFFRepresentation (page 51)
– representationUsingType:properties: (NSBitmapImageRep)
– TIFFRepresentation (NSBitmapImageRep)
– TIFFRepresentationUsingCompression:factor: (NSBitmapImageRep)

Related Sample Code
PDFKitLinker2

Declared In
NSImage.h

52 Instance Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

unlockFocus
Removes the focus from the receiver.

- (void)unlockFocus

Discussion
This message must be sent after a successful lockFocus or lockFocusOnRepresentation: message and
the completion of any intermediate drawing commands. This method restores the focus to the previous
owner, if any.

Do not send this message if the preceding call to lock focus raised an NSImageCacheException.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dicey
Image Difference
RGB Image
RGB ValueTransformers
Sketch-112

Declared In
NSImage.h

usesEPSOnResolutionMismatch
Returns a Boolean value indicating whether EPS representations are preferred when no other representations
match the resolution of the device.

- (BOOL)usesEPSOnResolutionMismatch

Return Value
YES if EPS image representations are preferred; otherwise NO.

Discussion
The default value is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setUsesEPSOnResolutionMismatch: (page 50)
– matchesOnMultipleResolution (page 39)

Declared In
NSImage.h

Instance Methods 53
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Delegate Methods

image:didLoadPartOfRepresentation:withValidRows:
During incremental loading, this method is called repeatedly to inform the delegate that more of the image
data is available.

- (void)image:(NSImage *)image didLoadPartOfRepresentation:(NSImageRep *)rep
withValidRows:(NSInteger)rows

Parameters
image

The image object whose contents are being loaded.

rep
The image representation object that is receiving and processing the image data.

rows
The number of rows of data that have been decompressed.

Discussion
This method is optional; incremental loading will continue if the delegate does not implement it.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSImage.h

image:didLoadRepresentation:withStatus:
For incremental loading, this method is invoked when the specified image has been loaded and decompressed
as fully as is possible.

- (void)image:(NSImage *)image didLoadRepresentation:(NSImageRep *)rep
withStatus:(NSImageLoadStatus)status

Parameters
image

The image object whose contents are being loaded.

rep
The image representation object that loaded the image data.

status
The status of the load operation. For a list of possible values, see “Constants” (page 56).

Discussion
The delegate must implement this method if it wants to support the incremental loading of images. In that
case, you must also set up the image object to be loaded lazily, by initializing it using the
initByReferencingFile: (page 31) or initByReferencingURL: (page 32) method.

54 Delegate Methods
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

If an error occurs during downloading or decompression, the status parameter is set to
NSImageLoadStatusInvalidData, NSImageLoadStatusUnexpectedEOF, or
NSImageLoadStatusReadError. If the download was cancelled, the status parameter is set to
NSImageLoadStatusCancelled.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSImage.h

image:didLoadRepresentationHeader:
During incremental loading, this method is called once enough data has been read to determine the size of
the image.

- (void)image:(NSImage *)image didLoadRepresentationHeader:(NSImageRep *)rep

Parameters
image

The image object whose contents are being loaded.

rep
The image representation object that is receiving and processing the image data.

Discussion
By the time this method is called, the NSBitmapImageRep object specified in the rep parameter is valid and
has allocated the memory needed to store the bitmap. The bitmap itself is filled with the image's background
color. This method is optional; incremental loading will continue if the delegate does not implement it.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSImage.h

image:willLoadRepresentation:
For incremental loading, this method is invoked when you first attempt to draw the image or otherwise
access the bitmap data.

- (void)image:(NSImage *)image willLoadRepresentation:(NSImageRep *)rep

Parameters
image

The image object whose contents need to be loaded.

rep
The image representation object that was accessed.

Discussion
Downloading of the image begins immediately after this method returns. This method is optional; incremental
loading will continue if the delegate does not implement it.

Delegate Methods 55
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSImage.h

imageDidNotDraw:inRect:
Sent to the delegate when the image object is unable, for whatever reason, to lock focus on its image or
draw in the specified rectangle.

- (NSImage *)imageDidNotDraw:(id)sender inRect:(NSRect)aRect

Parameters
sender

The NSImage object that encountered the problem.

aRect
The rectangle that the image object was attempting to draw.

Return Value
An NSImage to draw in place of the one in sender, or nil if the delegate wants to draw the image itself.

Discussion
The delegate can do one of the following:

 ■ Return another NSImage object to draw in the sender’s place.

 ■ Draw the image itself and return nil,.

 ■ Simply return nil to indicate that sender should give up on the attempt at drawing the image.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

Constants

NSCompositingOperation
These constants specify compositing operators described in terms of having source and destination images,
each having an opaque and transparent region. The destination image after the operation is defined in terms
of the source and destination before images.

56 Constants
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

typedef enum _NSCompositingOperation {
 NSCompositeClear = 0,
 NSCompositeCopy = 1,
 NSCompositeSourceOver = 2,
 NSCompositeSourceIn = 3,
 NSCompositeSourceOut = 4,
 NSCompositeSourceAtop = 5,
 NSCompositeDestinationOver = 6,
 NSCompositeDestinationIn = 7,
 NSCompositeDestinationOut = 8,
 NSCompositeDestinationAtop = 9,
 NSCompositeXOR = 10,
 NSCompositePlusDarker = 11,
 NSCompositeHighlight = 12,
 NSCompositePlusLighter = 13
} NSCompositingOperation;

Constants
NSCompositeClear

Transparent. (R = 0)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeCopy
Source image. (R = S)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeSourceOver
Source image wherever source image is opaque, and destination image elsewhere. (R = S + D*(1
- Sa))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeSourceIn
Source image wherever both images are opaque, and transparent elsewhere. (R = S*Da)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeSourceOut
Source image wherever source image is opaque but destination image is transparent, and transparent
elsewhere. (R = S*(1 - Da))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeSourceAtop
Source image wherever both images are opaque, destination image wherever destination image is
opaque but source image is transparent, and transparent elsewhere. (R = S*Da + D*(1 - Sa))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

Constants 57
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

NSCompositeDestinationOver
Destination image wherever destination image is opaque, and source image elsewhere. (R = S*(1
- Da) + D)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeDestinationIn
Destination image wherever both images are opaque, and transparent elsewhere. (R = D*Sa)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeDestinationOut
Destination image wherever destination image is opaque but source image is transparent, and
transparent elsewhere. (R = D*(1 - Sa))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeDestinationAtop
Destination image wherever both images are opaque, source image wherever source image is opaque
but destination image is transparent, and transparent elsewhere. (R = S*(1 - Da) + D*Sa)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeXOR
Exclusive OR of source and destination images. (R = S*(1 - Da) + D*(1 - Sa))

Works only with black and white images and is not recommended for color contexts.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositePlusDarker
Sum of source and destination images, with color values approaching 0 as a limit. (R = MAX(0, (1
- D) + (1 - S)))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeHighlight

Source image wherever source image is opaque, and destination image elsewhere. (Deprecated.
Mapped to NSCompositeSourceOver.)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositePlusLighter
Sum of source and destination images, with color values approaching 1 as a limit. (R = MIN(1, S
+ D))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

Discussion
These compositing operators are defined in and used by compositeToPoint:fromRect:operation: (page
23), compositeToPoint:operation: (page 25),
compositeToPoint:fromRect:operation:fraction: (page 25),
compositeToPoint:operation:fraction: (page 26),

58 Constants
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

drawAtPoint:fromRect:operation:fraction: (page 29), and
drawInRect:fromRect:operation:fraction: (page 30). They are also used by drawing methods in
other classes that take a compositing operator.

The equations after each constant represent the mathematical formulas used to calculate the color value of
the resulting pixel. Table 2 lists the meaning of each placeholder value in the equations.

Table 2 Placeholder values for compositing equations

ParaPara

The premultiplied result color.R

The source colorS

The destination colorD

The alpha value of the source colorSa

The alpha value of the destination colorDa

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSImageLoadStatus
These constants are status values passed to the incremental loading delegate method
image:didLoadRepresentation:withStatus: (page 54).

typedef enum {
 NSImageLoadStatusCompleted,
 NSImageLoadStatusCancelled,
 NSImageLoadStatusInvalidData,
 NSImageLoadStatusUnexpectedEOF,
 NSImageLoadStatusReadError
} NSImageLoadStatus;

Constants
NSImageLoadStatusCompleted

Enough data has been provided to completely decompress the image.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

NSImageLoadStatusCancelled
Image loading was canceled.

The image contains the portions of the data that have already been successfully decompressed, if
any.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

Constants 59
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

NSImageLoadStatusInvalidData
An error occurred during image decompression.

The image data is probably corrupt. The image contains the portions of the data that have already
been successfully decompressed, if any.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

NSImageLoadStatusUnexpectedEOF
Not enough data was available for full decompression of the image.

The image contains the portions of the data that have already been successfully decompressed, if
any.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

NSImageLoadStatusReadError
Not enough data was available for full decompression of the image.

The image contains the portions of the data that have already been successfully decompressed, if
any.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSImage.h

NSImageCacheMode
These constants specify the caching policy on a per NSImage basis. The caching policy is set using
cacheMode (page 23) and setCacheMode: (page 44).

typedef enum {
 NSImageCacheDefault,
 NSImageCacheAlways,
 NSImageCacheBySize,
 NSImageCacheNever
} NSImageCacheMode;

Constants
NSImageCacheDefault

Caching is unspecified.

Use the image rep's default.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

NSImageCacheAlways
Always generate a cache when drawing.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

60 Constants
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

NSImageCacheBySize
Cache if cache size is smaller than the original data.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

NSImageCacheNever
Never cache; always draw direct.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

Discussion
The following table specifies the default caching policy for the various types of image representation.

Default caching policyImage Rep Class

NSImageCacheBySize. Cache if bitmap is 32-bits in 16-bit world or greater than
72 dpi.

NSBitmapImageRep

NSImageCacheBySize. Same reasoning as NSBitmapImageRep in the event the
PICT contains a bitmap.

NSPICTImageRep

NSImageCacheAlwaysNSPDFImageRep

NSImageCacheBySize. Cache if the bitmap depth does not match the screen depth
or the resolution is greater than 72 dpi.

NSCIImageRep

NSImageCacheAlwaysNSEPSImageRep

NSImageCacheAlwaysNSCustomImageRep

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSImage.h

Button Template Images
Images representing standard artwork and icons that you can use in your applications

Constants 61
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

NSString *const NSImageNameQuickLookTemplate;
NSString *const NSImageNameBluetoothTemplate;
NSString *const NSImageNameIChatTheaterTemplate;
NSString *const NSImageNameSlideshowTemplate;
NSString *const NSImageNameActionTemplate;
NSString *const NSImageNameSmartBadgeTemplate;
NSString *const NSImageNamePathTemplate;
NSString *const NSImageNameInvalidDataFreestandingTemplate;
NSString *const NSImageNameLockLockedTemplate;
NSString *const NSImageNameLockUnlockedTemplate;
NSString *const NSImageNameGoRightTemplate;
NSString *const NSImageNameGoLeftTemplate;
NSString *const NSImageNameRightFacingTriangleTemplate;
NSString *const NSImageNameLeftFacingTriangleTemplate;
NSString *const NSImageNameAddTemplate;
NSString *const NSImageNameRemoveTemplate;
NSString *const NSImageNameRevealFreestandingTemplate;
NSString *const NSImageNameFollowLinkFreestandingTemplate;
NSString *const NSImageNameEnterFullScreenTemplate;
NSString *const NSImageNameExitFullScreenTemplate;
NSString *const NSImageNameStopProgressTemplate;
NSString *const NSImageNameStopProgressFreestandingTemplate;
NSString *const NSImageNameRefreshTemplate;
NSString *const NSImageNameRefreshFreestandingTemplate;

Constants
NSImageNameQuickLookTemplate

A Quick Look template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameBluetoothTemplate

A Bluetooth template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameIChatTheaterTemplate

An iChat Theater template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameSlideshowTemplate

A slideshow template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameActionTemplate

An action menu template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

62 Constants
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

NSImageNameSmartBadgeTemplate

A badge for a “smart” item.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNamePathTemplate
A path button template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameInvalidDataFreestandingTemplate
An invalid data template image. Place this icon to the right of any fields containing invalid data. You

can use this image to implement a borderless button.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameLockLockedTemplate

A locked lock template image. Use to indicate locked content.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameLockUnlockedTemplate

An unlocked lock template image. Use to indicate modifiable content that can be locked.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameGoRightTemplate
A “go forward” template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameGoLeftTemplate

A “go back” template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameRightFacingTriangleTemplate

A generic right-facing triangle template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameLeftFacingTriangleTemplate

A generic left-facing triangle template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameAddTemplate
An add item template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Constants 63
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

NSImageNameRemoveTemplate
A remove item template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameRevealFreestandingTemplate

A reveal contents template image. You can use this image to implement a borderless button.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameFollowLinkFreestandingTemplate

A link template image. You can use this image to implement a borderless button.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameEnterFullScreenTemplate

An enter full-screen mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameExitFullScreenTemplate

An exit full-screen mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameStopProgressTemplate

A stop progress button template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameStopProgressFreestandingTemplate

A stop progress template image. You can use this image to implement a borderless button.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameRefreshTemplate

A refresh template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameRefreshFreestandingTemplate

A refresh template image. You can use this image to implement a borderless button.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Discussion
To access these images, pass the specified constant to the imageNamed: (page 16) method.

64 Constants
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

Images with the word “Template” in their title identify shapes that are not intended as standalone images.
You would typically use these icons as the custom image for a button, or you might apply them to a cell in
a control. For example, you might use the NSImageNameLockLockedTemplate image to indicate an item
is not modifiable. Template images should use black and clear colors only and it is fine to include varying
levels of alpha.

Images with the word “Freestanding” in their title can be used to implement borderless buttons. You do not
need to include any extra bezel artwork behind such images.

You should always use named images according to their intended purpose, and not according to how the
image appears when loaded. The appearance of images can change between releases. If you use an image
for its intended purpose (and not because of it looks), your code should look correct from release to release.

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameRefreshFreestandingTemplate would correspond to an image named
“NSRefreshFreestandingTemplate” in Interface Builder.

Declared In
NSImage.h

Multiple Documents Drag Image
Drag images you can use in your applications.

NSString *const NSImageNameMultipleDocuments;

Constants
NSImageNameMultipleDocuments

A drag image for multiple items.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Discussion
To access this image, pass the specified constant to the imageNamed: (page 16) method.

You can use this icon as the drag image when dragging multiple items. You should not use this image for
any other intended purpose, however. The appearance of images can change between releases. If you use
an image for its intended purpose (and not because of how it looks), your code should look correct from
release to release.

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

Constants 65
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameMultipleDocuments would correspond to an image named “NSMultipleDocuments” in
Interface Builder.

Declared In
NSImage.h

Sharing Permissions Named Images
Images representing sharing permission icons that you can use in your applications.

NSString *const NSImageNameUser;
NSString *const NSImageNameUserGroup;
NSString *const NSImageNameEveryone;

Constants
NSImageNameUser

Permissions for a single user.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameUserGroup

Permissions for a group of users.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameEveryone

Permissions for all users.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Discussion
To access these images, pass the specified constant to the imageNamed: (page 16) method.

You should use these images to reflect user and group permission or sharing information. The appearance
of images can change between releases. If you use an image for its intended purpose (and not because of
how it looks), your code should look correct from release to release.

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameEveryone would correspond to an image named “NSEveryone” in Interface Builder.

Declared In
NSImage.h

66 Constants
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

System Entity Images
Images representing Finder items.

NSString *const NSImageNameBonjour;
NSString *const NSImageNameDotMac;
NSString *const NSImageNameComputer;
NSString *const NSImageNameFolderBurnable;
NSString *const NSImageNameFolderSmart;
NSString *const NSImageNameNetwork;

Constants
NSImageNameBonjour

A Bonjour icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameDotMac

A Dot Mac icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameComputer

A computer icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameFolderBurnable

A burnable folder icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameFolderSmart

A smart folder icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameNetwork

A network icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Discussion
To access these images, pass the specified constant to the imageNamed: (page 16) method.

You should use these images to reflect specific elements of the Mac OS X environment. For example, you
might use the burnable folder icon if your software allows the user to organize content for burning onto an
optical disk. The appearance of images can change between releases. If you use an image for its intended
purpose (and not because of how it looks), your code should look correct from release to release.

Constants 67
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameNetwork would correspond to an image named “NSNetwork” in Interface Builder.

Declared In
NSImage.h

Toolbar Named Images
Images that you can use in application toolbars.

NSString *const NSImageNameUserAccounts;
NSString *const NSImageNamePreferencesGeneral;
NSString *const NSImageNameAdvanced;
NSString *const NSImageNameInfo;
NSString *const NSImageNameFontPanel;
NSString *const NSImageNameColorPanel;

Constants
NSImageNameUserAccounts

User account toolbar icon. Use in a preferences window only.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNamePreferencesGeneral

General preferences toolbar icon. Use in a preferences window only.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameAdvanced

Advanced preferences toolbar icon. Use in a preferences window only.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameInfo

An information toolbar icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

68 Constants
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

NSImageNameFontPanel

A font panel toolbar icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameColorPanel

A color panel toolbar icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Discussion
To access these images, pass the specified constant to the imageNamed: (page 16) method.

You should use these images as icons for toolbar items. The appearance of images can change between
releases. If you use an image for its intended purpose (and not because of how it looks), your code should
look correct from release to release.

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameColorPanel would correspond to an image named “NSColorPanel” in Interface Builder.

Declared In
NSImage.h

View Type Template Images
Images used in segmented controls to switch the current view type.

NSString *const NSImageNameIconViewTemplate;
NSString *const NSImageNameListViewTemplate;
NSString *const NSImageNameColumnViewTemplate;
NSString *const NSImageNameFlowViewTemplate;

Constants
NSImageNameIconViewTemplate

An icon view mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameListViewTemplate
A list view mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Constants 69
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

NSImageNameColumnViewTemplate
A column view mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameFlowViewTemplate
A cover flow view mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Discussion
To access these images, pass the specified constant to the imageNamed: (page 16) method.

Images with the word “Template” in their title identify shapes that are not intended as standalone images.
You would typically use these icons as the custom image for a button, or you might apply them to a cell in
a control. For example, you might use the NSImageNameIconViewTemplate image to indicate an item is
not modifiable. Template images should use black and clear colors only and it is fine to include varying levels
of alpha.

You should use these images in conjunction with the buttons (usually part of a segmented control) that
change the current viewing mode. The appearance of images can change between releases. If you use an
image for its intended purpose (and not because of how it looks), your code should look correct from release
to release.

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameFlowViewTemplatewould correspond to an image named “NSFlowViewTemplate” in Interface
Builder.

Declared In
NSImage.h

70 Constants
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

NSImage Class Reference

This table describes the changes to NSImage Class Reference.

NotesDate

Updated the description of the alignmentRect method.2009-01-06

Updated descriptions of the imageNamed: and compositing methods.2008-10-15

Updated for Mac OS X v10.5. Fixed a delegate method name.2007-10-31

Documented constants representing standard system images.

Updated descriptions for the imageFileTypes, imageUnfilteredFileTypes,
imagePasteboardTypes, and imageUnfilteredPasteboardTypes methods.

2006-10-03

Updated the drawing routine parameter descriptions to reflect the use of
NSZeroRect to specify the entire image.

Added a link to an explanation of how bundles are searched in relation to the
imageNamed: method.

2006-06-28

First publication of this content as a separate document.2006-05-23

71
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

72
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

addRepresentation: instance method 20
addRepresentations: instance method 20
alignmentRect instance method 21

B

backgroundColor instance method 21
bestRepresentationForDevice: instance method 22
Button Template Images 61

C

cacheDepthMatchesImageDepth instance method 22
cacheMode instance method 23
cancelIncrementalLoad instance method 23
canInitWithPasteboard: class method 15
compositeToPoint:fromRect:operation: instance

method 23
compositeToPoint:fromRect:operation:fraction:

instance method 25
compositeToPoint:operation: instance method 25
compositeToPoint:operation:fraction: instance

method 26

D

delegate instance method 27
dissolveToPoint:fraction: instance method 27
dissolveToPoint:fromRect:fraction: instance

method 28
drawAtPoint:fromRect:operation:fraction:

instance method 29
drawInRect:fromRect:operation:fraction:

instance method 30

drawRepresentation:inRect: instance method 30

I

image:didLoadPartOfRepresentation:withValidRows:
<NSObject> delegate method 54

image:didLoadRepresentation:withStatus:
<NSObject> delegate method 54

image:didLoadRepresentationHeader:<NSObject>
delegate method 55

image:willLoadRepresentation: <NSObject>
delegate method 55

imageDidNotDraw:inRect: <NSObject> delegate
method 56

imageFileTypes class method 15
imageNamed: class method 16
imagePasteboardTypes class method 17
imageTypes class method 18
imageUnfilteredFileTypes class method 18
imageUnfilteredPasteboardTypes class method 19
imageUnfilteredTypes class method 19
initByReferencingFile: instance method 31
initByReferencingURL: instance method 32
initWithContentsOfFile: instance method 33
initWithContentsOfURL: instance method 33
initWithData: instance method 34
initWithIconRef: instance method 34
initWithPasteboard: instance method 34
initWithSize: instance method 35
isCachedSeparately instance method 36
isDataRetained instance method 36
isFlipped instance method 37
isTemplate instance method 37
isValid instance method 37

L

lockFocus instance method 38
lockFocusOnRepresentation: instance method 39

73
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Index

M

matchesOnMultipleResolution instance method 39
Multiple Documents Drag Image 65

N

name instance method 40
NSCompositeClear constant 57
NSCompositeCopy constant 57
NSCompositeDestinationAtop constant 58
NSCompositeDestinationIn constant 58
NSCompositeDestinationOut constant 58
NSCompositeDestinationOver constant 58
NSCompositeHighlight constant 58
NSCompositePlusDarker constant 58
NSCompositePlusLighter constant 58
NSCompositeSourceAtop constant 57
NSCompositeSourceIn constant 57
NSCompositeSourceOut constant 57
NSCompositeSourceOver constant 57
NSCompositeXOR constant 58
NSCompositingOperation data type 56
NSImageCacheAlways constant 60
NSImageCacheBySize constant 61
NSImageCacheDefault constant 60
NSImageCacheMode data type 60
NSImageCacheNever constant 61
NSImageLoadStatus data type 59
NSImageLoadStatusCancelled constant 59
NSImageLoadStatusCompleted constant 59
NSImageLoadStatusInvalidData constant 60
NSImageLoadStatusReadError constant 60
NSImageLoadStatusUnexpectedEOF constant 60
NSImageNameActionTemplate constant 62
NSImageNameAddTemplate constant 63
NSImageNameAdvanced constant 68
NSImageNameBluetoothTemplate constant 62
NSImageNameBonjour constant 67
NSImageNameColorPanel constant 69
NSImageNameColumnViewTemplate constant 70
NSImageNameComputer constant 67
NSImageNameDotMac constant 67
NSImageNameEnterFullScreenTemplate constant 64
NSImageNameEveryone constant 66
NSImageNameExitFullScreenTemplate constant 64
NSImageNameFlowViewTemplate constant 70
NSImageNameFolderBurnable constant 67
NSImageNameFolderSmart constant 67
NSImageNameFollowLinkFreestandingTemplate

constant 64
NSImageNameFontPanel constant 69

NSImageNameGoLeftTemplate constant 63
NSImageNameGoRightTemplate constant 63
NSImageNameIChatTheaterTemplate constant 62
NSImageNameIconViewTemplate constant 69
NSImageNameInfo constant 68
NSImageNameInvalidDataFreestandingTemplate

constant 63
NSImageNameLeftFacingTriangleTemplate constant

63
NSImageNameListViewTemplate constant 69
NSImageNameLockLockedTemplate constant 63
NSImageNameLockUnlockedTemplate constant 63
NSImageNameMultipleDocuments constant 65
NSImageNameNetwork constant 67
NSImageNamePathTemplate constant 63
NSImageNamePreferencesGeneral constant 68
NSImageNameQuickLookTemplate constant 62
NSImageNameRefreshFreestandingTemplate

constant 64
NSImageNameRefreshTemplate constant 64
NSImageNameRemoveTemplate constant 64
NSImageNameRevealFreestandingTemplate constant

64
NSImageNameRightFacingTriangleTemplate

constant 63
NSImageNameSlideshowTemplate constant 62
NSImageNameSmartBadgeTemplate constant 63
NSImageNameStopProgressFreestandingTemplate

constant 64
NSImageNameStopProgressTemplate constant 64
NSImageNameUser constant 66
NSImageNameUserAccounts constant 68
NSImageNameUserGroup constant 66

P

prefersColorMatch instance method 40

R

recache instance method 41
removeRepresentation: instance method 41
representations instance method 41

S

scalesWhenResized instance method 42
setAlignmentRect: instance method 42
setBackgroundColor: instance method 43

74
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

INDEX

setCacheDepthMatchesImageDepth: instance method
43

setCachedSeparately: instance method 44
setCacheMode: instance method 44
setDataRetained: instance method 45
setDelegate: instance method 45
setFlipped: instance method 46
setMatchesOnMultipleResolution: instance method

47
setName: instance method 47
setPrefersColorMatch: instance method 48
setScalesWhenResized: instance method 48
setSize: instance method 49
setTemplate: instance method 50
setUsesEPSOnResolutionMismatch: instance method

50
Sharing Permissions Named Images 66
size instance method 51
System Entity Images 67

T

TIFFRepresentation instance method 51
TIFFRepresentationUsingCompression:factor:

instance method 52
Toolbar Named Images 68

U

unlockFocus instance method 53
usesEPSOnResolutionMismatch instance method 53

V

View Type Template Images 69

75
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

INDEX

	NSImage Class Reference
	Contents
	Tables
	NSImage Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing a New NSImage Object
	Setting the Image Attributes
	Referring to Images by Name
	Determining the Supported Image Types
	Working With Image Representations
	Setting the Image Representation Selection Criteria
	Managing the Focus
	Drawing the Image
	Working With Alignment Metadata
	Setting the Image Storage Options
	Setting the Image Drawing Options
	Assigning a Delegate
	Producing TIFF Data for the Image
	Managing Incremental Loads

	Class Methods
	canInitWithPasteboard:
	imageFileTypes
	imageNamed:
	imagePasteboardTypes
	imageTypes
	imageUnfilteredFileTypes
	imageUnfilteredPasteboardTypes
	imageUnfilteredTypes

	Instance Methods
	addRepresentation:
	addRepresentations:
	alignmentRect
	backgroundColor
	bestRepresentationForDevice:
	cacheDepthMatchesImageDepth
	cacheMode
	cancelIncrementalLoad
	compositeToPoint:fromRect:operation:
	compositeToPoint:fromRect:operation:fraction:
	compositeToPoint:operation:
	compositeToPoint:operation:fraction:
	delegate
	dissolveToPoint:fraction:
	dissolveToPoint:fromRect:fraction:
	drawAtPoint:fromRect:operation:fraction:
	drawInRect:fromRect:operation:fraction:
	drawRepresentation:inRect:
	initByReferencingFile:
	initByReferencingURL:
	initWithContentsOfFile:
	initWithContentsOfURL:
	initWithData:
	initWithIconRef:
	initWithPasteboard:
	initWithSize:
	isCachedSeparately
	isDataRetained
	isFlipped
	isTemplate
	isValid
	lockFocus
	lockFocusOnRepresentation:
	matchesOnMultipleResolution
	name
	prefersColorMatch
	recache
	removeRepresentation:
	representations
	scalesWhenResized
	setAlignmentRect:
	setBackgroundColor:
	setCacheDepthMatchesImageDepth:
	setCachedSeparately:
	setCacheMode:
	setDataRetained:
	setDelegate:
	setFlipped:
	setMatchesOnMultipleResolution:
	setName:
	setPrefersColorMatch:
	setScalesWhenResized:
	setSize:
	setTemplate:
	setUsesEPSOnResolutionMismatch:
	size
	TIFFRepresentation
	TIFFRepresentationUsingCompression:factor:
	unlockFocus
	usesEPSOnResolutionMismatch

	Delegate Methods
	image:didLoadPartOfRepresentation:withValidRows:
	image:didLoadRepresentation:withStatus:
	image:didLoadRepresentationHeader:
	image:willLoadRepresentation:
	imageDidNotDraw:inRect:

	Constants
	NSCompositingOperation
	NSImageLoadStatus
	NSImageCacheMode
	Button Template Images
	Multiple Documents Drag Image
	Sharing Permissions Named Images
	System Entity Images
	Toolbar Named Images
	View Type Template Images

	Revision History
	Index
	A
	B
	C
	D
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V

