
NSLayoutManager Class Reference
Cocoa > Text & Fonts

2008-12-20

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Quartz are trademarks of Apple Inc.,
registered in the United States and other
countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSLayoutManager Class Reference 9

Overview 9
Text Antialiasing 9
Thread Safety of NSLayoutManager 10
Noncontiguous Layout 10

Adopted Protocols 10
Tasks 11

Initializing 11
Setting the Text Storage 11
Setting Text Containers 11
Setting the Glyph Generator 11
Invalidating Glyphs and Layout 12
Enabling Background Layout 12
Accessing Glyphs 12
Mapping Characters to Glyphs 13
Setting Glyph Attributes 13
Handling Layout for Text Containers 14
Handling Line Fragment Rectangles 14
Laying Out Glyphs 15
Handling Layout for Text Blocks 16
Displaying Special Glyphs 16
Controlling Hyphenation 17
Finding Characters and Glyphs Not Laid Out 17
Using Screen Fonts 17
Handling Rulers 17
Managing the Responder Chain 17
Drawing 18
Accessing the Delegate 18
Accessing the Typesetter 18
Managing Typesetter Compatibility 19
Managing Temporary Attribute Support 19
Managing Noncontiguous Layout 19
Accessing the Font Leading 20

Instance Methods 20
addTemporaryAttribute:value:forCharacterRange: 20
addTemporaryAttributes:forCharacterRange: 21
addTextContainer: 21
allowsNonContiguousLayout 22
attachmentSizeForGlyphAtIndex: 23
attributedString 23
backgroundLayoutEnabled 23

3
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

boundingRectForGlyphRange:inTextContainer: 24
boundsRectForTextBlock:atIndex:effectiveRange: 24
boundsRectForTextBlock:glyphRange: 25
characterIndexForGlyphAtIndex: 26
characterRangeForGlyphRange:actualGlyphRange: 26
defaultAttachmentScaling 27
defaultBaselineOffsetForFont: 28
defaultLineHeightForFont: 28
delegate 29
deleteGlyphsInRange: 29
drawBackgroundForGlyphRange:atPoint: 29
drawGlyphsForGlyphRange:atPoint: 30
drawsOutsideLineFragmentForGlyphAtIndex: 31
drawStrikethroughForGlyphRange:strikethroughType:baselineOffset:
lineFragmentRect:lineFragmentGlyphRange:containerOrigin: 31
drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin: 32
ensureGlyphsForCharacterRange: 33
ensureGlyphsForGlyphRange: 34
ensureLayoutForBoundingRect:inTextContainer: 34
ensureLayoutForCharacterRange: 34
ensureLayoutForGlyphRange: 35
ensureLayoutForTextContainer: 35
extraLineFragmentRect 36
extraLineFragmentTextContainer 36
extraLineFragmentUsedRect 36
firstTextView 37
firstUnlaidCharacterIndex 37
firstUnlaidGlyphIndex 38
fractionOfDistanceThroughGlyphForPoint:inTextContainer: 38
getFirstUnlaidCharacterIndex:glyphIndex: 38
getGlyphs:range: 39
getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: 39
getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: bidiLevels: 40
getLineFragmentInsertionPointsForCharacterAtIndex:alternatePositions:
inDisplayOrder:positions:characterIndexes: 41
glyphAtIndex: 42
glyphAtIndex:isValidIndex: 42
glyphGenerator 43
glyphIndexForCharacterAtIndex: 43
glyphIndexForPoint:inTextContainer: 44
glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: 44
glyphRangeForBoundingRect:inTextContainer: 45
glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer: 46
glyphRangeForCharacterRange:actualCharacterRange: 47
glyphRangeForTextContainer: 47

4
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

hasNonContiguousLayout 48
hyphenationFactor 48
init 49
insertGlyph:atGlyphIndex:characterIndex: 49
insertGlyphs:length:forStartingGlyphAtIndex:characterIndex: 50
insertTextContainer:atIndex: 50
intAttribute:forGlyphAtIndex: 51
invalidateDisplayForCharacterRange: 52
invalidateDisplayForGlyphRange: 52
invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: 52
invalidateGlyphsOnLayoutInvalidationForGlyphRange: 53
invalidateLayoutForCharacterRange:actualCharacterRange: 53
invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: 54
isValidGlyphIndex: 55
layoutManagerOwnsFirstResponderInWindow: 55
layoutOptions 55
layoutRectForTextBlock:atIndex:effectiveRange: 56
layoutRectForTextBlock:glyphRange: 57
lineFragmentRectForGlyphAtIndex:effectiveRange: 57
lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: 58
lineFragmentUsedRectForGlyphAtIndex:effectiveRange: 59
lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: 59
locationForGlyphAtIndex: 60
notShownAttributeForGlyphAtIndex: 61
numberOfGlyphs 61
rangeOfNominallySpacedGlyphsContainingIndex: 62
rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer: rectCount: 62
rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: 63
removeTemporaryAttribute:forCharacterRange: 64
removeTextContainerAtIndex: 65
replaceGlyphAtIndex:withGlyph: 66
replaceTextStorage: 66
rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled: 67
rulerMarkersForTextView:paragraphStyle:ruler: 68
setAllowsNonContiguousLayout: 68
setAttachmentSize:forGlyphRange: 69
setBackgroundLayoutEnabled: 69
setBoundsRect:forTextBlock:glyphRange: 70
setCharacterIndex:forGlyphAtIndex: 70
setDefaultAttachmentScaling: 71
setDelegate: 71
setDrawsOutsideLineFragment:forGlyphAtIndex: 72
setExtraLineFragmentRect:usedRect:textContainer: 72
setGlyphGenerator: 73
setHyphenationFactor: 73
setIntAttribute:value:forGlyphAtIndex: 74

5
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

setLayoutRect:forTextBlock:glyphRange: 75
setLineFragmentRect:forGlyphRange:usedRect: 75
setLocation:forStartOfGlyphRange: 76
setLocations:startingGlyphIndexes:count:forGlyphRange: 77
setNotShownAttribute:forGlyphAtIndex: 77
setShowsControlCharacters: 78
setShowsInvisibleCharacters: 78
setTemporaryAttributes:forCharacterRange: 79
setTextContainer:forGlyphRange: 79
setTextStorage: 80
setTypesetter: 80
setTypesetterBehavior: 81
setUsesFontLeading: 81
setUsesScreenFonts: 82
showAttachmentCell:inRect:characterIndex: 82
showPackedGlyphs:length:glyphRange:atPoint:font:color:printingAdjustment: 83
showsControlCharacters 83
showsInvisibleCharacters 84
strikethroughGlyphRange:strikethroughType:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin: 84
substituteFontForFont: 85
temporaryAttribute:atCharacterIndex:effectiveRange: 85
temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange: 86
temporaryAttributesAtCharacterIndex:effectiveRange: 87
temporaryAttributesAtCharacterIndex:longestEffectiveRange:inRange: 88
textContainerChangedGeometry: 88
textContainerChangedTextView: 89
textContainerForGlyphAtIndex:effectiveRange: 89
textContainerForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: 90
textContainers 91
textStorage 91
textStorage:edited:range:changeInLength:invalidatedRange: 91
textViewForBeginningOfSelection 92
typesetter 93
typesetterBehavior 93
underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange: containerOrigin:
94
usedRectForTextContainer: 94
usesFontLeading 95
usesScreenFonts 95

Delegate Methods 96
layoutManager:didCompleteLayoutForTextContainer:atEnd: 96
layoutManager:shouldUseTemporaryAttributes:forDrawingToScreen:atCharacterIndex:
effectiveRange: 96
layoutManagerDidInvalidateLayout: 97

Constants 97

6
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Glyph Attributes 97
NSGlyphInscription 98
NSTypesetterBehavior 99

Document Revision History 101

Index 103

7
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

8
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSGlyphStorage
NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h

Companion guides Text System Overview
Text Layout Programming Guide for Cocoa

Related sample code Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus
TextLayoutDemo
Worm

Overview

An NSLayoutManager object coordinates the layout and display of characters held in an NSTextStorage
object. It maps Unicode character codes to glyphs, sets the glyphs in a series of NSTextContainer objects,
and displays them in a series of NSTextView objects. In addition to its core function of laying out text, an
NSLayoutManager object coordinates its NSTextView objects, provides services to those text views to
support NSRulerView instances for editing paragraph styles, and handles the layout and display of text
attributes not inherent in glyphs (such as underline or strikethrough). You can create a subclass of
NSLayoutManager to handle additional text attributes, whether inherent or not.

Text Antialiasing

NSLayoutManagerprovides the threshold for text antialiasing. It looks at theAppleAntiAliasingThreshold
default value. If the font size is smaller than or equal to this threshold size, the text is rendered aliased by
NSLayoutManager. You can change the threshold value from the Appearance pane of System Preferences.

Overview 9
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Thread Safety of NSLayoutManager

Generally speaking, a given layout manager (and associated objects) should not be used on more than one
thread at a time. Most layout managers are used on the main thread, since it is the main thread on which
their text views are displayed, and since background layout occurs on the main thread. If it is intended that
a layout manager should be used on a background thread, first make sure that text views associated with
that layout manager (if any) are not displayed while the layout manager is being used on the background
thread, and, second, turn off background layout for that layout manager while it is being used on the
background thread.

Noncontiguous Layout

Noncontiguous layout is an optional layout manager behavior new in Mac OS X v10.5. Previously, both glyph
generation and layout were always performed, in order, from the beginning to the end of the document.
When noncontiguous layout is turned on, however, the layout manager gains the option of performing glyph
generation or layout for one portion of the document without having done so for previous sections. This can
provide significant performance improvements for large documents.

Noncontiguous layout is not turned on automatically because direct clients of NSLayoutManager typically
have relied on the previous behavior—for example, by forcing layout for a given glyph range, and then
assuming that previous glyphs would therefore be laid out. Clients who use NSLayoutManager only
indirectly—for example, those who use NSTextView without directly calling the underlying layout
manager—can usually turn on noncontiguous layout without difficulty. Clients using NSLayoutManager
directly need to examine their usage before turning on noncontiguous layout.

To turn on noncontiguous layout, use setAllowsNonContiguousLayout: (page 68). In addition, see the
other methods in “Managing Noncontiguous Layout” (page 19), many of which enable you to ensure that
glyph generation and layout are performed for specified portions of the text. The behavior of a number of
other layout manager methods is affected by the state of noncontiguous layout, as noted in the discussion
sections of those method descriptions.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

NSGlyphStorage
– attributedString

– insertGlyphs:length:forStartingGlyphAtIndex:characterIndex:

– layoutOptions

– setIntAttribute:value:forGlyphAtIndex:

10 Adopted Protocols
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Tasks

Initializing

– init (page 49)
Initializes the receiver, a newly created NSLayoutManager object.

Setting the Text Storage

– setTextStorage: (page 80)
Sets the receiver’s NSTextStorage object.

– textStorage (page 91)
Returns the receiver’s text storage object.

– attributedString (page 23)
Returns the text storage object from which the NSGlyphGenerator object procures characters for
glyph generation.

– replaceTextStorage: (page 66)
Replaces the NSTextStorage object for the group of text-system objects containing the receiver
with the given text storage object.

Setting Text Containers

– textContainers (page 91)
Returns the receiver’s text containers.

– addTextContainer: (page 21)
Appends the given text container to the series of text containers where the receiver arranges text.

– insertTextContainer:atIndex: (page 50)
Inserts the given text container into the series of text containers at the given index.

– removeTextContainerAtIndex: (page 65)
Removes the text container at the given index and invalidates the layout as needed.

Setting the Glyph Generator

– setGlyphGenerator: (page 73)
Sets the glyph generator used by this layout manager.

– glyphGenerator (page 43)
Returns the glyph generator used by this layout manager.

Tasks 11
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Invalidating Glyphs and Layout

– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 52)
Invalidates the cached glyphs for the characters in the given character range, adjusts the character
indices of all the subsequent glyphs by the change in length, and invalidates the new character range.

– invalidateGlyphsOnLayoutInvalidationForGlyphRange: (page 53)
Specifies explicitly when portions of the glyph stream depend on layout.

– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 54)
Invalidates the layout information for the glyphs mapped to the given range of characters.

– invalidateLayoutForCharacterRange:actualCharacterRange: (page 53)
Invalidates the layout information for the glyphs mapped to the given range of characters.

– invalidateDisplayForCharacterRange: (page 52)
Invalidates display for the given character range.

– invalidateDisplayForGlyphRange: (page 52)
Marks the glyphs in the given glyph range as needing display, as well as the appropriate regions of
the NSTextView objects that display those glyphs (using the NSView method
setNeedsDisplayInRect:).

– layoutManagerDidInvalidateLayout: (page 97) delegate method
Informs the delegate that the given layout manager has invalidated layout information (not glyph
information).

– textContainerChangedGeometry: (page 88)
Invalidates the layout information, and possibly glyphs, for the given text container and all subsequent
NSTextContainer objects.

– textContainerChangedTextView: (page 89)
Updates information needed to manage NSTextView objects in the given text container.

– textStorage:edited:range:changeInLength:invalidatedRange: (page 91)
Invalidates glyph and layout information for a portion of the text in the given text storage object.

Enabling Background Layout

– setBackgroundLayoutEnabled: (page 69)
Specifies whether the receiver generates glyphs and lays them out when the application’s run loop
is idle.

– backgroundLayoutEnabled (page 23)
Indicates whether the receiver generates glyphs and lays out text when the application’s run loop is
idle.

Accessing Glyphs

– insertGlyph:atGlyphIndex:characterIndex: (page 49)
Inserts a single glyph into the glyph stream at the given index and maps it to the character at the
given character index.

– insertGlyphs:length:forStartingGlyphAtIndex:characterIndex: (page 50)
Inserts the given glyphs into the glyph cache at the given index and maps them to characters beginning
at the given character index.

12 Tasks
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

– isValidGlyphIndex: (page 55)
Indicates whether the specified index refers to a valid glyph, otherwise NO.

– glyphAtIndex: (page 42)
Returns the glyph at glyphIndex.

– glyphAtIndex:isValidIndex: (page 42)
If the given index is valid, returns the glyph at that location and optionally returns a flag indicating
whether the requested index is in range.

– replaceGlyphAtIndex:withGlyph: (page 66)
Replaces the glyph at the given index with a new glyph.

– getGlyphs:range: (page 39)
Fills the passed-in buffer with a sequence of glyphs

– getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: (page 39)
Returns the glyphs and information needed to perform layout for the given glyph range.

– getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:bidiLevels: (page
40)

Returns the glyphs and information needed to perform layout for the given glyph range.

– deleteGlyphsInRange: (page 29)
Deletes the glyphs in the given range from the receiver’s glyph store.

– numberOfGlyphs (page 61)
Returns the number of glyphs in the receiver.

Mapping Characters to Glyphs

– setCharacterIndex:forGlyphAtIndex: (page 70)
Sets the index of the character corresponding to the glyph at the given glyph index.

– characterIndexForGlyphAtIndex: (page 26)
Returns the index in the text storage for the first character associated with the given glyph.

– glyphIndexForCharacterAtIndex: (page 43)
Returns the index of the first glyph associated with the character at the specified index.

– characterRangeForGlyphRange:actualGlyphRange: (page 26)
Returns the range of characters that generated the glyphs in the given glyph range.

– glyphRangeForCharacterRange:actualCharacterRange: (page 47)
Returns the range of glyphs that are generated from the characters in the given character range.

Setting Glyph Attributes

– intAttribute:forGlyphAtIndex: (page 51)
Returns the value of the attribute identified by the given attribute tag for the glyph at the given index.

– setIntAttribute:value:forGlyphAtIndex: (page 74)
Sets a custom attribute value for a given glyph.

– setAttachmentSize:forGlyphRange: (page 69)
Sets the size at which the given glyph (assumed to be an attachment) is asked to draw in the given
glyph range.

Tasks 13
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

– attachmentSizeForGlyphAtIndex: (page 23)
For a glyph corresponding to an attachment, returns the size for the attachment cell to occupy.

– setDefaultAttachmentScaling: (page 71)
Sets the default scaling behavior to the given scaling if an attachment image is too large to fit in a
text container.

– defaultAttachmentScaling (page 27)
Returns the default behavior desired if an attachment image is too large to fit in a text container.

– showAttachmentCell:inRect:characterIndex: (page 82)
Draws an attachment cell.

Handling Layout for Text Containers

– setTextContainer:forGlyphRange: (page 79)
Sets text container where the glyphs in the given range are laid out.

– glyphRangeForTextContainer: (page 47)
Returns the range of glyphs laid out within the given text container.

– textContainerForGlyphAtIndex:effectiveRange: (page 89)
Returns the container in which the given glyph is laid out and (optionally) by reference the whole
range of glyphs that are in that container.

– textContainerForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page 90)
Returns the container in which the given glyph is laid out and (optionally) by reference the whole
range of glyphs that are in that container.

– usedRectForTextContainer: (page 94)
Returns the bounding rectangle for the glyphs laid out in the given text container.

– layoutManager:didCompleteLayoutForTextContainer:atEnd: (page 96) delegate method
Informs the delegate that the given layout manager has finished laying out text in the given text
container.

Handling Line Fragment Rectangles

– setLineFragmentRect:forGlyphRange:usedRect: (page 75)
Associates the given line fragment bounds with the given range of glyphs.

– lineFragmentRectForGlyphAtIndex:effectiveRange: (page 57)
Returns the rectangle for the line fragment in which the given glyph is laid out and (optionally), by
reference, the whole range of glyphs that are in that fragment.

– lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page 58)
Returns the line fragment rectangle containing the glyph at the given glyph index.

– lineFragmentUsedRectForGlyphAtIndex:effectiveRange: (page 59)
Returns the usage rectangle for the line fragment in which the given glyph is laid and (optionally) by
reference the whole range of glyphs that are in that fragment.

– lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page
59)

Returns the usage rectangle for the line fragment in which the given glyph is laid and (optionally) by
reference the whole range of glyphs that are in that fragment.

14 Tasks
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

– setExtraLineFragmentRect:usedRect:textContainer: (page 72)
Sets the bounds and container for the extra line fragment.

– extraLineFragmentRect (page 36)
Returns the rectangle defining the extra line fragment for the insertion point at the end of a text
(either in an empty text or after a final paragraph separator).

– extraLineFragmentUsedRect (page 36)
Returns the rectangle enclosing the insertion point drawn in the extra line fragment rectangle.

– extraLineFragmentTextContainer (page 36)
Returns the text container that contains the extra line fragment rectangle.

– setDrawsOutsideLineFragment:forGlyphAtIndex: (page 72)
Specifies whether the given glyph exceeds the bounds of the line fragment where it’s laid out.

– drawsOutsideLineFragmentForGlyphAtIndex: (page 31)
Indicates whether the glyph draws outside of its line fragment rectangle.

Laying Out Glyphs

– setLocation:forStartOfGlyphRange: (page 76)
Sets the location for the first glyph of the given range.

– setLocations:startingGlyphIndexes:count:forGlyphRange: (page 77)
Sets locations for many glyph ranges at once.

– locationForGlyphAtIndex: (page 60)
Returns the location for the given glyph within its line fragment.

– rangeOfNominallySpacedGlyphsContainingIndex: (page 62)
Returns the range for the glyphs around the given glyph that can be displayed using only their
advancements from the font, without pairwise kerning or other adjustments to spacing.

– getLineFragmentInsertionPointsForCharacterAtIndex:alternatePositions:inDisplayOrder:positions:characterIndexes: (page
41)

Returns insertion points in bulk for a given line fragment.

– rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:rectCount: (page
62)

Returns an array of rectangles and, by reference, the number of such rectangles, that define the region
in the given container enclosing the given character range.

– rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: (page
63)

Returns an array of rectangles and, by reference, the number of such rectangles, that define the region
in the given container enclosing the given glyph range.

– boundingRectForGlyphRange:inTextContainer: (page 24)
Returns a single bounding rectangle (in container coordinates) enclosing all glyphs and other marks
drawn in the given text container for the given glyph range, including glyphs that draw outside their
line fragment rectangles and text attributes such as underlining.

– glyphRangeForBoundingRect:inTextContainer: (page 45)
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within the given
rectangle in the given text container.

– glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer: (page 46)
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within the given
rectangle in the given text container.

Tasks 15
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

– glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: (page 44)
Returns the index of the glyph falling under the given point, expressed in the given container's
coordinate system.

– fractionOfDistanceThroughGlyphForPoint:inTextContainer: (page 38)
This method is a primitive for
glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: (page 44).
You should always call the main method, not the primitives.

– glyphIndexForPoint:inTextContainer: (page 44)
This method is a primitive for
glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: (page 44).
You should always call the main method, not the primitives.

Handling Layout for Text Blocks

– setLayoutRect:forTextBlock:glyphRange: (page 75)
Sets the layout rectangle enclosing the given text block containing the given glyph range.

– layoutRectForTextBlock:glyphRange: (page 57)
Returns the layout rectangle within which the given text block containing the given glyph range is
to be laid out.

– setBoundsRect:forTextBlock:glyphRange: (page 70)
Sets the bounding rectangle enclosing a given text block containing the given glyph range.

– boundsRectForTextBlock:glyphRange: (page 25)
Returns the bounding rectangle enclosing the given text block containing the given glyph range.

– layoutRectForTextBlock:atIndex:effectiveRange: (page 56)
Returns the layout rectangle within which the given text block containing the glyph at the given
index is to be laid out.

– boundsRectForTextBlock:atIndex:effectiveRange: (page 24)
Returns the bounding rectangle within which the given text block containing the glyph at the given
index is to be laid out.

Displaying Special Glyphs

– setNotShownAttribute:forGlyphAtIndex: (page 77)
Sets the glyph at the given index to be one that isn’t shown.

– notShownAttributeForGlyphAtIndex: (page 61)
Indicates whether the glyph at the given index is one that isn’t shown.

– setShowsInvisibleCharacters: (page 78)
Specifies whether to substitute visible glyphs for whitespace and other typically invisible characters
in layout.

– showsInvisibleCharacters (page 84)
Indicates whether the receiver substitutes visible glyphs for whitespace and other typically invisible
characters in layout.

– setShowsControlCharacters: (page 78)
Specifies whether to substitute visible glyphs for control characters in layout.

16 Tasks
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

– showsControlCharacters (page 83)
Indicates whether the receiver substitutes visible glyphs for control characters.

– layoutOptions (page 55)
Returns the layout manager’s current layout options.

Controlling Hyphenation

– setHyphenationFactor: (page 73)
Sets the threshold controlling when hyphenation is done.

– hyphenationFactor (page 48)
Returns the current hyphenation threshold.

Finding Characters and Glyphs Not Laid Out

– getFirstUnlaidCharacterIndex:glyphIndex: (page 38)
Returns the indexes for the first character and glyph that have invalid layout information.

– firstUnlaidCharacterIndex (page 37)
Returns the index for the first character in the layout manager that has not been laid out.

– firstUnlaidGlyphIndex (page 38)
Returns the index for the first glyph in the layout manager that has not been laid out.

Using Screen Fonts

– setUsesScreenFonts: (page 82)
Controls using screen fonts to calculate layout and display text.

– usesScreenFonts (page 95)
Indicates whether the receiver uses screen fonts to calculate layout and display text.

– substituteFontForFont: (page 85)
Returns a screen font suitable for use in place of the given font, if one is available.

Handling Rulers

– rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled: (page 67)
Returns the the accessory view that the text system uses for its ruler.

– rulerMarkersForTextView:paragraphStyle:ruler: (page 68)
Returns an array of text ruler objects for the current selection.

Managing the Responder Chain

– layoutManagerOwnsFirstResponderInWindow: (page 55)
Indicates whether the first responder in the given window is a text view associated with the receiver.

Tasks 17
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

– firstTextView (page 37)
Returns the first text view in the receiver’s series of text views.

– textViewForBeginningOfSelection (page 92)
Returns the text view containing the first glyph in the selection.

Drawing

– drawBackgroundForGlyphRange:atPoint: (page 29)
Draws background marks for the given glyph range, which must lie completely within a single text
container.

– drawGlyphsForGlyphRange:atPoint: (page 30)
Draws the glyphs in the given glyph range, which must lie completely within a single text container.

– drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:lineFragmentGlyphRange:containerOrigin: (page
32)

Draws underlining for the glyphs in a given range.

– underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:containerOrigin: (page
94)

Calculates subranges to be underlined for the glyphs in a given range and draws the underlining as
appropriate.

– showPackedGlyphs:length:glyphRange:atPoint:font:color:printingAdjustment: (page
83)

Draws a range of glyphs.

– drawStrikethroughForGlyphRange:strikethroughType:baselineOffset:lineFragmentRect:lineFragmentGlyphRange:containerOrigin: (page
31)

Draws a strikethrough for the glyphs in a given range.

– strikethroughGlyphRange:strikethroughType:lineFragmentRect:lineFragmentGlyphRange:containerOrigin: (page
84)

Calculates and draws strikethrough for the glyphs in the given range.

Accessing the Delegate

– setDelegate: (page 71)
Sets the receiver’s delegate.

– delegate (page 29)
Returns the receiver’s delegate.

Accessing the Typesetter

– setTypesetter: (page 80)
Sets the current typesetter.

– typesetter (page 93)
Returns the receiver’s typesetter.

18 Tasks
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Managing Typesetter Compatibility

– setTypesetterBehavior: (page 81)
Sets the default typesetter behavior.

– typesetterBehavior (page 93)
Returns the current typesetter behavior.

– defaultLineHeightForFont: (page 28)
Returns the default line height for a line of text drawn using a given font.

– defaultBaselineOffsetForFont: (page 28)
Returns the default baseline offset specified by the layout manager's typesetter behavior for the given
font.

Managing Temporary Attribute Support

– addTemporaryAttributes:forCharacterRange: (page 21)
Appends one or more temporary attributes to the attributes dictionary of the specified character
range.

– addTemporaryAttribute:value:forCharacterRange: (page 20)
Adds a temporary attribute with the given name and value to the characters in the specified range.

– setTemporaryAttributes:forCharacterRange: (page 79)
Sets one or more temporary attributes for the specified character range.

– removeTemporaryAttribute:forCharacterRange: (page 64)
Removes a temporary attribute from the list of attributes for the specified character range.

– temporaryAttribute:atCharacterIndex:effectiveRange: (page 85)
Returns the value for the temporary attribute with a given name of the character at a given index,
and by reference the range over which the attribute applies.

– temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange: (page 86)
Returns the value for the temporary attribute with a given name of the character at a given index,
and by reference the maximum range over which the attribute applies.

– temporaryAttributesAtCharacterIndex:effectiveRange: (page 87)
Returns the dictionary of temporary attributes for the character range specified in
effectiveCharRange at character index charIndex.

– temporaryAttributesAtCharacterIndex:longestEffectiveRange:inRange: (page 88)
Returns the temporary attributes for the character at a given index, and by reference the maximum
range over which the attributes apply.

– layoutManager:shouldUseTemporaryAttributes:forDrawingToScreen:atCharacterIndex:effectiveRange: (page
96) delegate method

Sent when the layout manager is drawing and needs to decide whether or not to use temporary
attributes.

Managing Noncontiguous Layout

– setAllowsNonContiguousLayout: (page 68)
Enables or disables noncontiguous layout.

Tasks 19
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

– allowsNonContiguousLayout (page 22)
Indicates whether noncontiguous layout is enabled or disabled.

– hasNonContiguousLayout (page 48)
Indicates whether the layout manager currently has any areas of noncontiguous layout.

– ensureGlyphsForCharacterRange: (page 33)
Forces the receiver to generate glyphs for the specified character range, if it has not already done so.

– ensureGlyphsForGlyphRange: (page 34)
Forces the receiver to generate glyphs for the specified glyph range, if it has not already done so.

– ensureLayoutForCharacterRange: (page 34)
Forces the receiver to perform layout for the specified character range, if it has not already done so.

– ensureLayoutForGlyphRange: (page 35)
Forces the receiver to perform layout for the specified glyph range, if it has not already done so.

– ensureLayoutForTextContainer: (page 35)
Forces the receiver to perform layout for the specified text container, if it has not already done so.

– ensureLayoutForBoundingRect:inTextContainer: (page 34)
Forces the receiver to perform layout for the specified area in the specified text container, if it has
not already done so.

Accessing the Font Leading

– usesFontLeading (page 95)
Indicates whether the receiver uses the leading provided in the font.

– setUsesFontLeading: (page 81)
Specifies whether or not the receiver uses the leading provided in the font.

Instance Methods

addTemporaryAttribute:value:forCharacterRange:
Adds a temporary attribute with the given name and value to the characters in the specified range.

- (void)addTemporaryAttribute:(NSString *)attrName value:(id)value
forCharacterRange:(NSRange)charRange

Parameters
attrName

The name of a temporary attribute.

value
The temporary attribute value associated with attrName.

charRange
The range of characters to which the specified attribute-value pair applies.

Discussion
Raises an NSInvalidArgumentException if attrName or value is nil.

20 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– addTemporaryAttributes:forCharacterRange: (page 21)
– setTemporaryAttributes:forCharacterRange: (page 79)
– removeTemporaryAttribute:forCharacterRange: (page 64)
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 87)

Declared In
NSLayoutManager.h

addTemporaryAttributes:forCharacterRange:
Appends one or more temporary attributes to the attributes dictionary of the specified character range.

- (void)addTemporaryAttributes:(NSDictionary *)attrs
forCharacterRange:(NSRange)charRange

Parameters
attrs

Attributes dictionary containing the temporary attributes to add.

charRange
The range of characters to which the specified attributes apply.

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView
uses them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes recognized are those that do not affect layout (colors, underlines, and so on).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTemporaryAttributes:forCharacterRange: (page 79)
– removeTemporaryAttribute:forCharacterRange: (page 64)
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 87)

Related Sample Code
LayoutManagerDemo

Declared In
NSLayoutManager.h

addTextContainer:
Appends the given text container to the series of text containers where the receiver arranges text.

- (void)addTextContainer:(NSTextContainer *)aTextContainer

Instance Methods 21
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Parameters
aTextContainer

The text container to append.

Discussion
Invalidates glyphs and layout as needed, but doesn’t perform glyph generation or layout.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertTextContainer:atIndex: (page 50)
– removeTextContainerAtIndex: (page 65)
– textContainers (page 91)
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 52)
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 54)

Related Sample Code
DockTile
Sketch-112
SpeedometerView
TextLayoutDemo
TextViewConfig

Declared In
NSLayoutManager.h

allowsNonContiguousLayout
Indicates whether noncontiguous layout is enabled or disabled.

- (BOOL)allowsNonContiguousLayout

Return Value
YES if noncontiguous layout is enabled; otherwise, NO.

Discussion
For more information about noncontiguous layout, see “Noncontiguous Layout” (page 10).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAllowsNonContiguousLayout: (page 68)
– hasNonContiguousLayout (page 48)

Declared In
NSLayoutManager.h

22 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

attachmentSizeForGlyphAtIndex:
For a glyph corresponding to an attachment, returns the size for the attachment cell to occupy.

- (NSSize)attachmentSizeForGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

The index of the attachment glyph.

Return Value
The size for the attachment cell to occupy. Returns {-1.0, -1.0} if there is no attachment laid for the
specified glyph.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttachmentSize:forGlyphRange: (page 69)
– defaultAttachmentScaling (page 27)

Declared In
NSLayoutManager.h

attributedString
Returns the text storage object from which the NSGlyphGenerator object procures characters for glyph
generation.

- (NSAttributedString *)attributedString

Return Value
The receiver’s text storage object.

Discussion
This method is part of the NSGlyphStorage protocol, for use by the glyph generator. For NSLayoutManager
the attributed string is equivalent to the text storage.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

backgroundLayoutEnabled
Indicates whether the receiver generates glyphs and lays out text when the application’s run loop is idle.

- (BOOL)backgroundLayoutEnabled

Return Value
YES if the receiver generates glyphs and lays out text when the application’s run loop is idle, NO if it performs
glyph generation and layout only when necessary.

Instance Methods 23
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundLayoutEnabled: (page 69)

Declared In
NSLayoutManager.h

boundingRectForGlyphRange:inTextContainer:
Returns a single bounding rectangle (in container coordinates) enclosing all glyphs and other marks drawn
in the given text container for the given glyph range, including glyphs that draw outside their line fragment
rectangles and text attributes such as underlining.

- (NSRect)boundingRectForGlyphRange:(NSRange)glyphRange
inTextContainer:(NSTextContainer *)container

Parameters
glyphRange

The range of glyphs for which to return the bounding rectangle.

container
The text container in which the glyphs are laid out.

Return Value
The bounding rectangle enclosing the given range of glyphs.

Discussion
The range is intersected with the container's range before computing the bounding rectangle. This method
can be used to translate glyph ranges into display rectangles for invalidation and redrawing when a range
of glyphs changes. Bounding rectangles are always in container coordinates.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphRangeForBoundingRect:inTextContainer: (page 45)
– glyphRangeForTextContainer: (page 47)
– drawsOutsideLineFragmentForGlyphAtIndex: (page 31)

Related Sample Code
LayoutManagerDemo

Declared In
NSLayoutManager.h

boundsRectForTextBlock:atIndex:effectiveRange:
Returns the bounding rectangle within which the given text block containing the glyph at the given index
is to be laid out.

24 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

- (NSRect)boundsRectForTextBlock:(NSTextBlock *)block
atIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange

Parameters
block

The text block whose bounding rectangle is returned.

glyphIndex
Index of the glyph.

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the text block.

Return Value
The bounding rectangle of the text block, or NSZeroRect if no rectangle has been set for the specified block
since the last invalidation.

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBoundsRect:forTextBlock:glyphRange: (page 70)

Declared In
NSLayoutManager.h

boundsRectForTextBlock:glyphRange:
Returns the bounding rectangle enclosing the given text block containing the given glyph range.

- (NSRect)boundsRectForTextBlock:(NSTextBlock *)block glyphRange:(NSRange)glyphRange

Parameters
block

The text block whose bounds rectangle is returned.

glyphRange
The range of glyphs in the text block.

Return Value
The bounding rectangle, or NSZeroRect if no rectangle has been set for the specified block since the last
invalidation

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBoundsRect:forTextBlock:glyphRange: (page 70)

Instance Methods 25
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

characterIndexForGlyphAtIndex:
Returns the index in the text storage for the first character associated with the given glyph.

- (NSUInteger)characterIndexForGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

The index of the glyph for which to return the associated character.

Return Value
The index of the first character associated with the glyph at the specified index.

Discussion
If noncontiguous layout is not enabled, this method causes generation of all glyphs up to and including
glyphIndex. This method accepts an index beyond the last glyph, returning an index extrapolated from
the last actual glyph index.

In many cases it’s better to use the range-mapping methods,
characterRangeForGlyphRange:actualGlyphRange: (page 26) and
glyphRangeForCharacterRange:actualCharacterRange: (page 47), which provide more comprehensive
information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphIndexForCharacterAtIndex: (page 43)

Related Sample Code
LayoutManagerDemo

Declared In
NSLayoutManager.h

characterRangeForGlyphRange:actualGlyphRange:
Returns the range of characters that generated the glyphs in the given glyph range.

- (NSRange)characterRangeForGlyphRange:(NSRange)glyphRange
actualGlyphRange:(NSRangePointer)actualGlyphRange

Parameters
glyphRange

The glyph range for which to return the character range.

26 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

actualGlyphRange
If not NULL, on output, points to the full range of glyphs generated by the character range returned.
This range may be identical or slightly larger than the requested glyph range. For example, if the text
storage contains the character “Ö” and the glyph cache contains the two atomic glyphs “O” and “¨”,
and if glyphRange encloses only the first or second glyph, then actualGlyphRange is set to enclose
both glyphs.

Return Value
The range of characters that generated the glyphs in glyphRange.

Discussion
If the length of glyphRange is 0, the resulting character range is a zero-length range just after the character(s)
corresponding to the preceding glyph, and actualGlyphRange is also zero-length. If glyphRange extends
beyond the text length, the method truncates the result to the number of characters in the text.

If noncontiguous layout is not enabled, this method forces the generation of glyphs for all characters up to
and including the end of the returned range.

Availability
Available in Mac OS X v10.0 and later.

See Also
– characterIndexForGlyphAtIndex: (page 26)
– glyphRangeForCharacterRange:actualCharacterRange: (page 47)

Related Sample Code
LayoutManagerDemo
TipWrapper

Declared In
NSLayoutManager.h

defaultAttachmentScaling
Returns the default behavior desired if an attachment image is too large to fit in a text container.

- (NSImageScaling)defaultAttachmentScaling

Discussion
Attachment cells control their own size and drawing, so this setting is only advisory to them, but Application
Kit–supplied attachment cells respect it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDefaultAttachmentScaling: (page 71)

Declared In
NSLayoutManager.h

Instance Methods 27
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

defaultBaselineOffsetForFont:
Returns the default baseline offset specified by the layout manager's typesetter behavior for the given font.

- (CGFloat)defaultBaselineOffsetForFont:(NSFont *)theFont

Parameters
theFont

The font for which to return the default baseline offset.

Return Value
The default baseline offset for a line of text drawn using theFont.

Discussion
The value returned may vary according to the layout manager’s typesetter behavior.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setTypesetterBehavior: (page 81)
– defaultLineHeightForFont: (page 28)

Declared In
NSLayoutManager.h

defaultLineHeightForFont:
Returns the default line height for a line of text drawn using a given font.

- (CGFloat)defaultLineHeightForFont:(NSFont *)theFont

Parameters
theFont

The font for which to determine the default line height.

Return Value
The default line height for a line of text drawn using theFont.

Discussion
The value returned may vary according to the layout manager’s typesetter behavior.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setTypesetterBehavior: (page 81)
– defaultBaselineOffsetForFont: (page 28)

Declared In
NSLayoutManager.h

28 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 71)

Declared In
NSLayoutManager.h

deleteGlyphsInRange:
Deletes the glyphs in the given range from the receiver’s glyph store.

- (void)deleteGlyphsInRange:(NSRange)glyphRange

Parameters
glyphRange

The range of glyphs to delete.

Discussion
This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. This method should be invoked only during glyph generation and typesetting, in
almost all cases only by the glyph generator or typesetter. For example, a custom glyph generator or typesetter
might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertGlyph:atGlyphIndex:characterIndex: (page 49)

Declared In
NSLayoutManager.h

drawBackgroundForGlyphRange:atPoint:
Draws background marks for the given glyph range, which must lie completely within a single text container.

- (void)drawBackgroundForGlyphRange:(NSRange)glyphsToShow atPoint:(NSPoint)origin

Parameters
glyphsToShow

The range of glyphs for which the background is drawn.

Instance Methods 29
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

origin
The position of the text container in the coordinate system of the currently focused view.

Discussion
This method is called by NSTextView for drawing. You can override it to perform additional drawing, or to
replace text drawing entirely, but not to change layout. You can call this method directly, but focus must
already be locked on the destination view or image.

Background marks are such things as selection highlighting, text background color, and any background for
marked text, along with block decoration such as table backgrounds and borders.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawGlyphsForGlyphRange:atPoint: (page 30)
– glyphRangeForTextContainer: (page 47)
– textContainerOrigin (NSTextView)

Related Sample Code
Sketch-112

Declared In
NSLayoutManager.h

drawGlyphsForGlyphRange:atPoint:
Draws the glyphs in the given glyph range, which must lie completely within a single text container.

- (void)drawGlyphsForGlyphRange:(NSRange)glyphsToShow atPoint:(NSPoint)origin

Parameters
glyphsToShow

The range of glyphs that are drawn.

origin
The position of the text container in the coordinate system of the currently focused view.

Discussion
This method is called by NSTextView for drawing. You can override it to perform additional drawing, or to
replace text drawing entirely, but not to change layout. You can call this method directly, but focus must
already be locked on the destination view or image. This method expects the coordinate system of the view
to be flipped.

This method draws the actual glyphs, including attachments, as well as any underlines or strikethoughs.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawBackgroundForGlyphRange:atPoint: (page 29)

30 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

– glyphRangeForTextContainer: (page 47)
– textContainerOrigin (NSTextView)

Related Sample Code
DockTile
Sketch-112
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSLayoutManager.h

drawsOutsideLineFragmentForGlyphAtIndex:
Indicates whether the glyph draws outside of its line fragment rectangle.

- (BOOL)drawsOutsideLineFragmentForGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

Index of the glyph.

Return Value
YES if the glyph at glyphIndex exceeds the bounds of the line fragment where it’s laid out, NO otherwise.

Discussion
Exceeding bounds can happen when text is set at a fixed line height. For example, if the user specifies a fixed
line height of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment.

Glyphs that draw outside their line fragment rectangles aren’t considered when calculating enclosing
rectangles with the
rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:
rectCount: (page 62) and
rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: (page 63)
methods. They are, however, considered by boundingRectForGlyphRange:inTextContainer: (page
24).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

drawStrikethroughForGlyphRange:strikethroughType:baselineOffset:
lineFragmentRect:lineFragmentGlyphRange:containerOrigin:
Draws a strikethrough for the glyphs in a given range.

Instance Methods 31
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

- (void)drawStrikethroughForGlyphRange:(NSRange)glyphRange
strikethroughType:(NSInteger)strikethroughVal
baselineOffset:(CGFloat)baselineOffset lineFragmentRect:(NSRect)lineRect
lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin:(NSPoint)containerOrigin

Parameters
glyphRange

The range of glyphs for which to draw a strikethrough. The range must belong to a single line fragment
rectangle (as returned by lineFragmentRectForGlyphAtIndex:effectiveRange: (page 57)).

strikethroughVal
The style of strikethrough to draw. This value is a mask derived from the value for
NSUnderlineStyleAttributeName—for example, (NSUnderlinePatternDash |
NSUnderlineStyleThick). Subclasses can define custom strikethrough styles.

baselineOffset
Indicates how far above the text baseline the underline should be drawn.

lineRect
The line fragment rectangle containing the glyphs to draw strikethrough for.

lineGlyphRange
The range of all glyphs within lineRect.

containerOrigin
The origin of the line fragment rectangle’s NSTextContainer in its NSTextView.

Discussion
This method is invoked automatically by
strikethroughGlyphRange:strikethroughType:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin: (page 84); you should rarely need to invoke it directly.
This method’s strikethroughVal parameter does not take account of any setting
forNSUnderlineByWordMask because that's taken care of by
underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:
containerOrigin: (page 94).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSLayoutManager.h

drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin:
Draws underlining for the glyphs in a given range.

- (void)drawUnderlineForGlyphRange:(NSRange)glyphRange
underlineType:(NSInteger)underlineVal baselineOffset:(CGFloat)baselineOffset
lineFragmentRect:(NSRect)lineRect lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin:(NSPoint)containerOrigin

32 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Parameters
glyphRange

A range of glyphs, which must belong to a single line fragment rectangle (as returned by
lineFragmentRectForGlyphAtIndex:effectiveRange: (page 57)).

underlineVal
The style of underlining to draw. This value is a mask derived from the value for
NSUnderlineStyleAttributeName—for example, (NSUnderlinePatternDash |
NSUnderlineStyleThick). Subclasses can define custom underlining styles.

baselineOffset
Specifies the distance from the bottom of the bounding box of the specified glyphs in the specified
range to their baseline.

lineRect
The line fragment rectangle containing the glyphs to draw underlining for.

lineGlyphRange
The range of all glyphs within lineRect.

containerOrigin
The origin of the lineRect NSTextContainer in its NSTextView.

Discussion
This method is invoked automatically by
underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:
containerOrigin: (page 94); you should rarely need to invoke it directly. This method’s underlineVal
parameter does not take account of any setting forNSUnderlineByWordMask because that's taken care of
by underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:
containerOrigin: (page 94).

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainerForGlyphAtIndex:effectiveRange: (page 89)
– textContainerOrigin (NSTextView)

Declared In
NSLayoutManager.h

ensureGlyphsForCharacterRange:
Forces the receiver to generate glyphs for the specified character range, if it has not already done so.

- (void)ensureGlyphsForCharacterRange:(NSRange)charRange

Parameters
charRange

The character range for which glyphs are generated.

Discussion
The layout manager reserves the right to perform glyph generation for larger ranges. If noncontiguous layout
is disabled, then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 33
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

ensureGlyphsForGlyphRange:
Forces the receiver to generate glyphs for the specified glyph range, if it has not already done so.

- (void)ensureGlyphsForGlyphRange:(NSRange)glyphRange

Parameters
glyphRange

The glyph range for which glyphs are generated.

Discussion
The layout manager reserves the right to perform glyph generation for larger ranges. If noncontiguous layout
is disabled, then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

ensureLayoutForBoundingRect:inTextContainer:
Forces the receiver to perform layout for the specified area in the specified text container, if it has not already
done so.

- (void)ensureLayoutForBoundingRect:(NSRect)bounds inTextContainer:(NSTextContainer
 *)container

Parameters
bounds

The area for which layout is performed.

container
The text container containing the area for which layout is performed.

Discussion
The layout manager reserves the right to perform layout for larger ranges. If noncontiguous layout is disabled,
then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

ensureLayoutForCharacterRange:
Forces the receiver to perform layout for the specified character range, if it has not already done so.

- (void)ensureLayoutForCharacterRange:(NSRange)charRange

34 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Parameters
charRange

The character range for which layout is performed.

Discussion
The layout manager reserves the right to perform layout for larger ranges. If noncontiguous layout is disabled,
then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

ensureLayoutForGlyphRange:
Forces the receiver to perform layout for the specified glyph range, if it has not already done so.

- (void)ensureLayoutForGlyphRange:(NSRange)glyphRange

Parameters
glyphRange

The glyph range for which layout is performed.

Discussion
The layout manager reserves the right to perform layout for larger ranges. If noncontiguous layout is disabled,
then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

ensureLayoutForTextContainer:
Forces the receiver to perform layout for the specified text container, if it has not already done so.

- (void)ensureLayoutForTextContainer:(NSTextContainer *)container

Parameters
container

The text container for which layout is performed.

Discussion
The layout manager reserves the right to perform layout for larger ranges. If noncontiguous layout is disabled,
then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

Instance Methods 35
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

extraLineFragmentRect
Returns the rectangle defining the extra line fragment for the insertion point at the end of a text (either in
an empty text or after a final paragraph separator).

- (NSRect)extraLineFragmentRect

Return Value
The rectangle defining the extra line fragment for the insertion point.

Discussion
The rectangle is defined in the coordinate system of its NSTextContainer. Returns NSZeroRect if there is
no such rectangle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– extraLineFragmentUsedRect (page 36)
– extraLineFragmentTextContainer (page 36)
– setExtraLineFragmentRect:usedRect:textContainer: (page 72)

Declared In
NSLayoutManager.h

extraLineFragmentTextContainer
Returns the text container that contains the extra line fragment rectangle.

- (NSTextContainer *)extraLineFragmentTextContainer

Return Value
The text container that contains the extra line fragment rectangle, or nil if there is no extra line fragment
rectangle.

Discussion
This rectangle is used to display the insertion point at the end of a text (either in an empty text or after a
final paragraph separator).

Availability
Available in Mac OS X v10.0 and later.

See Also
– extraLineFragmentRect (page 36)
– extraLineFragmentUsedRect (page 36)
– setExtraLineFragmentRect:usedRect:textContainer: (page 72)

Declared In
NSLayoutManager.h

extraLineFragmentUsedRect
Returns the rectangle enclosing the insertion point drawn in the extra line fragment rectangle.

36 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

- (NSRect)extraLineFragmentUsedRect

Return Value
The rectangle enclosing the insertion point.

Discussion
The rectangle is defined in the coordinate system of its NSTextContainer. Returns NSZeroRect if there is
no extra line fragment rectangle.

The extra line fragment used rectangle is twice as wide (or tall) as the text container’s line fragment padding,
with the insertion point itself in the middle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– extraLineFragmentRect (page 36)
– extraLineFragmentTextContainer (page 36)
– setExtraLineFragmentRect:usedRect:textContainer: (page 72)

Declared In
NSLayoutManager.h

firstTextView
Returns the first text view in the receiver’s series of text views.

- (NSTextView *)firstTextView

Return Value
The receiver’s first text view.

Discussion
This NSTextView object is the recipient of various NSText and NSTextView notifications.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

firstUnlaidCharacterIndex
Returns the index for the first character in the layout manager that has not been laid out.

- (NSUInteger)firstUnlaidCharacterIndex

Return Value
The character index.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 37
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

firstUnlaidGlyphIndex
Returns the index for the first glyph in the layout manager that has not been laid out.

- (NSUInteger)firstUnlaidGlyphIndex

Return Value
The glyph index.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

fractionOfDistanceThroughGlyphForPoint:inTextContainer:
This method is a primitive for
glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: (page 44). You should
always call the main method, not the primitives.

- (CGFloat)fractionOfDistanceThroughGlyphForPoint:(NSPoint)point
inTextContainer:(NSTextContainer *)container

Discussion
Overriding should be done for the primitive methods. Existing subclasses that do not do this overriding will
not have their implementations available to Java developers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphIndexForPoint:inTextContainer: (page 44)

Declared In
NSLayoutManager.h

getFirstUnlaidCharacterIndex:glyphIndex:
Returns the indexes for the first character and glyph that have invalid layout information.

- (void)getFirstUnlaidCharacterIndex:(NSUInteger *)charIndex glyphIndex:(NSUInteger
 *)glyphIndex

Parameters
charIndex

On return, if not NULL, the index of the first character that has invalid layout information

38 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

glyphIndex
On return, if not NULL, the index of the first glyph that has invalid layout information.

Discussion
Either parameter may be NULL, in which case the receiver simply ignores it.

As part of its implementation, this method calls firstUnlaidCharacterIndex (page 37) and
firstUnlaidGlyphIndex (page 38). To change this method’s behavior, override those two methods
instead of this one.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

getGlyphs:range:
Fills the passed-in buffer with a sequence of glyphs

- (NSUInteger)getGlyphs:(NSGlyph *)glyphArray
range:(NSRange)glyphRange

Parameters
glyphArray

On output, the displayable glyphs from glyphRange, null-terminated. Does not include in the result
any NSNullGlyph or other glyphs that are not shown. The memory passed in should be large enough
for at least glyphRange.length+1 elements.

glyphRange
The range of glyphs from which to return the displayable glyphs.

Return Value
The actual number of glyphs filled into the array is returned (not counting the null-termination).

Discussion
Raises an NSRangeException if the range specified exceeds the bounds of the actual glyph range for the
receiver. Performs glyph generation if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphAtIndex: (page 42)
– glyphAtIndex:isValidIndex: (page 42)
– notShownAttributeForGlyphAtIndex: (page 61)

Declared In
NSLayoutManager.h

getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
Returns the glyphs and information needed to perform layout for the given glyph range.

Instance Methods 39
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

- (NSUInteger)getGlyphsInRange:(NSRange)glyphRange
glyphs:(NSGlyph *)glyphBuffer
characterIndexes:(NSUInteger *)charIndexBuffer
glyphInscriptions:(NSGlyphInscription *)inscribeBuffer
elasticBits:(BOOL *)elasticBuffer

Discussion
This is a convenience method for
getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
bidiLevels: (page 40) that does not return a bidiLevelBuffer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
bidiLevels:
Returns the glyphs and information needed to perform layout for the given glyph range.

- (NSUInteger)getGlyphsInRange:(NSRange)glyphRangeglyphs:(NSGlyph
*)glyphBuffercharacterIndexes:(NSUInteger
*)charIndexBufferglyphInscriptions:(NSGlyphInscription
*)inscribeBufferelasticBits:(BOOL *)elasticBufferbidiLevels:(unsigned char
*)bidiLevelBuffer

Parameters
glyphRange

The range of glyphs to lay out.

glyphBuffer
On output, the sequence of glyphs needed to lay out the given glyph range.

charIndexBuffer
On output, the indexes of the original characters corresponding to the given glyph range. Note that
a glyph at index 1 is not necessarily mapped to the character at index 1, since a glyph may be for a
ligature or accent.

inscribeBuffer
On output, the inscription attributes for each glyph, which are used to lay out characters that are
combined together. The possible values are described in “Constants” (page 97).

elasticBuffer
On output, values indicating whether a glyph is elastic for each glyph. An elastic glyph can be made
longer at the end of a line or when needed for justification.

bidiLevelBuffer
On output, the direction of each glyph for bidirectional text. The values range from 0 to 61 as defined
by Unicode Standard Annex #9. An even value means the glyph goes left-to-right, and an odd value
means the glyph goes right-to-left.

Return Value
The number of glyphs returned in glyphBuffer.

40 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Discussion
This method and
getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: (page 39) are
intended primarily to enable the typesetter to obtain in bulk the glyphs and other information that it needs
to perform layout. These methods return all glyphs in the range, including NSNullGlyph and not-shown
glyphs. They do not null-terminate the results. Each pointer passed in should either be NULL, or else point
to sufficient memory to hold glyphRange.length elements.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSLayoutManager.h

getLineFragmentInsertionPointsForCharacterAtIndex:alternatePositions:
inDisplayOrder:positions:characterIndexes:
Returns insertion points in bulk for a given line fragment.

- (NSUInteger)getLineFragmentInsertionPointsForCharacterAtIndex:(NSUInteger)charIndex
alternatePositions:(BOOL)aFlag inDisplayOrder:(BOOL)dFlag positions:(CGFloat
 *)positions characterIndexes:(NSUInteger *)charIndexes

Parameters
charIndex

The character index of one character within the line fragment.

aFlag
If YES, returns alternate, rather than primary, insertion points.

dFlag
If YES, returns insertion points in display, rather than logical, order.

positions
On output, the positions of the insertion points, in the order specified.

charIndexes
On output, the indexes of the characters corresponding to the returned insertion points.

Return Value
The number of insertion points returned.

Discussion
The method allows clients to obtain all insertion points for a line fragment in one call. Each pointer passed
in should either be NULL or else point to sufficient memory to hold as many elements as there are insertion
points in the line fragment (which cannot be more than the number of characters + 1). The returned positions
indicate a transverse offset relative to the line fragment rectangle's origin. Internal caching is used to ensure
that repeated calls to this method for the same line fragment (possibly with differing values for other
arguments) are not significantly more expensive than a single call.

Availability
Available in Mac OS X v10.5 and later.

See Also
– rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:rectCount: (page
62)

Instance Methods 41
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

– rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: (page
63)

Declared In
NSLayoutManager.h

glyphAtIndex:
Returns the glyph at glyphIndex.

- (NSGlyph)glyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

The index of a glyph in the receiver. This value must not exceed the bounds of the receiver’s glyph
array.

Return Value
The glyph at glyphIndex.

Discussion
Raises an NSRangeException if glyphIndex is out of bounds.

Performs glyph generation if needed. To avoid an exception with glyphAtIndex: you must first check the
glyph index against the number of glyphs, which requires generating all glyphs. Another method,
glyphAtIndex:isValidIndex: (page 42), generates glyphs only up to the one requested, so using it can
be more efficient.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getGlyphs:range: (page 39)

Declared In
NSLayoutManager.h

glyphAtIndex:isValidIndex:
If the given index is valid, returns the glyph at that location and optionally returns a flag indicating whether
the requested index is in range.

- (NSGlyph)glyphAtIndex:(NSUInteger)glyphIndex
isValidIndex:(BOOL *)isValidIndex

Parameters
glyphIndex

The index of the glyph to be returned.

isValidIndex
If not NULL, on output, YES if the requested index is in range; otherwise NO.

42 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Return Value
The glyph at the requested index, or NSNullGlyph if the requested index is out of the range {0,
numberOfGlyphs (page 61)}.

Discussion
If noncontiguous layout is not enabled, this method causes generation of all glyphs up to and including
glyphIndex.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getGlyphs:range: (page 39)
– glyphAtIndex: (page 42)

Declared In
NSLayoutManager.h

glyphGenerator
Returns the glyph generator used by this layout manager.

- (NSGlyphGenerator *)glyphGenerator

Return Value
The glyph generator.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setGlyphGenerator: (page 73)

Declared In
NSLayoutManager.h

glyphIndexForCharacterAtIndex:
Returns the index of the first glyph associated with the character at the specified index.

- (NSUInteger)glyphIndexForCharacterAtIndex:(NSUInteger)charIndex

Parameters
charIndex

The index of the character for which to return the associated glyph.

Return Value
The index of the first glyph associated with the character at the specified index.

Discussion
If noncontiguous layout is not enabled, this method causes generation of all glyphs up to and including
those associated with the specified character. This method accepts an index beyond the last character,
returning an index extrapolated from the last actual character index.

Instance Methods 43
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

In many cases it’s better to use the range-mapping methods,
characterRangeForGlyphRange:actualGlyphRange: (page 26) and
glyphRangeForCharacterRange:actualCharacterRange: (page 47), which provide more comprehensive
information.

Availability
Available in Mac OS X v10.5 and later.

See Also
– characterIndexForGlyphAtIndex: (page 26)

Declared In
NSLayoutManager.h

glyphIndexForPoint:inTextContainer:
This method is a primitive for
glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: (page 44). You should
always call the main method, not the primitives.

- (NSUInteger)glyphIndexForPoint:(NSPoint)point inTextContainer:(NSTextContainer
*)container

Discussion
Overriding should be done for the primitive methods. Existing subclasses that do not do this overriding will
not have their implementations available to Java developers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fractionOfDistanceThroughGlyphForPoint:inTextContainer: (page 38)

Related Sample Code
LayoutManagerDemo

Declared In
NSLayoutManager.h

glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph:
Returns the index of the glyph falling under the given point, expressed in the given container's coordinate
system.

- (NSUInteger)glyphIndexForPoint:(NSPoint)point
inTextContainer:(NSTextContainer *)container
fractionOfDistanceThroughGlyph:(CGFloat *)partialFraction

Parameters
point

The point for which to return the glyph, in coordinates of container.

44 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

container
The container in which the returned glyph is laid out.

partialFraction
If not NULL, on output, the fraction of the distance between the location of the glyph returned and
the location of the next glyph.

Return Value
The index of the glyph falling under the given point, expressed in the given container's coordinate system.

Discussion
If no glyph is under point, the nearest glyph is returned, where nearest is defined according to the
requirements of selection by mouse. Clients who wish to determine whether the the point actually lies within
the bounds of the glyph returned should follow this with a call to
boundingRectForGlyphRange:inTextContainer: (page 24) and test whether the point falls in the
rectangle returned by that method. If partialFraction is non-NULL, it returns by reference the fraction
of the distance between the location of the glyph returned and the location of the next glyph.

For purposes such as dragging out a selection or placing the insertion point, a partial percentage less than
or equal to 0.5 indicates that point should be considered as falling before the glyph index returned; a partial
percentage greater than 0.5 indicates that it should be considered as falling after the glyph index returned.
If the nearest glyph doesn’t lie under point at all (for example, if point is beyond the beginning or end of
a line), this ratio is 0 or 1.

If the glyph stream contains the glyphs “A” and “b”, with the width of “A” being 13 points, and the user clicks
at a location 8 points into “A”, partialFraction is 8/13, or 0.615. In this case, the point given should be
considered as falling between “A” and “b” for purposes such as dragging out a selection or placing the
insertion point.

Performs glyph generation and layout if needed.

As part of its implementation, this method calls
fractionOfDistanceThroughGlyphForPoint:inTextContainer: (page 38) and
glyphIndexForPoint:inTextContainer: (page 44). To change this method’s behavior, override those
two methods instead of this one.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

glyphRangeForBoundingRect:inTextContainer:
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within the given rectangle
in the given text container.

- (NSRange)glyphRangeForBoundingRect:(NSRect)bounds inTextContainer:(NSTextContainer
 *)container

Parameters
bounds

The bounding rectangle for which to return glyphs.

Instance Methods 45
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

container
The text container in which the glyphs are laid out.

Return Value
The range of glyphs that would need to be displayed in order to draw all glyphs that fall (even partially)
within the given bounding rectangle. The range returned can include glyphs that don’t fall inside or intersect
bounds, although the first and last glyphs in the range always do. At most this method returns the glyph
range for the whole container.

Discussion
This method is used to determine which glyphs need to be displayed within a given rectangle.

Performs glyph generation and layout if needed. Bounding rectangles are always in container coordinates.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer: (page 46)

Declared In
NSLayoutManager.h

glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer:
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within the given rectangle
in the given text container.

- (NSRange)glyphRangeForBoundingRectWithoutAdditionalLayout:(NSRect)bounds
inTextContainer:(NSTextContainer *)container

Parameters
bounds

The bounding rectangle for which to return glyphs.

container
The text container in which the glyphs are laid out.

Return Value
The range of glyphs that would need to be displayed in order to draw all glyphs that fall (even partially)
within the given bounding rectangle. The range returned can include glyphs that don’t fall inside or intersect
bounds, although the first and last glyphs in the range always do. At most this method returns the glyph
range for the whole container.

Discussion
Unlike glyphRangeForBoundingRect:inTextContainer: (page 45), this variant of the method doesn’t
perform glyph generation or layout. Its results, though faster, can be incorrect. This method is primarily for
use by NSTextView; you should rarely need to use it yourself.

Bounding rectangles are always in container coordinates.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphRangeForBoundingRect:inTextContainer: (page 45)

46 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

glyphRangeForCharacterRange:actualCharacterRange:
Returns the range of glyphs that are generated from the characters in the given character range.

- (NSRange)glyphRangeForCharacterRange:(NSRange)charRange
actualCharacterRange:(NSRangePointer)actualCharRange

Parameters
charRange

The character range for which to return the generated glyph range.

actualCharRange
If not NULL, on output, points to the actual range of characters that fully define the glyph range
returned. This range may be identical to or slightly larger than the requested character range. For
example, if the text storage contains the characters "O" and "¨“, and the glyph store contains the
single precomposed glyph "¨Ö”, and if charRange encloses only the first or second character, then
actualCharRange is set to enclose both characters.

Return Value
The range of glyphs generated by charRange.

Discussion
If the length of charRange is 0, the resulting glyph range is a zero-length range just after the glyph(s)
corresponding to the preceding character, and actualCharRange will also be zero-length. If charRange
extends beyond the text length, the method truncates the result to the number of glyphs in the text.

If noncontiguous layout is not enabled, this method forces the generation of glyphs for all characters up to
and including the end of the specified range.

Availability
Available in Mac OS X v10.0 and later.

See Also
– characterIndexForGlyphAtIndex: (page 26)

Related Sample Code
TipWrapper

Declared In
NSLayoutManager.h

glyphRangeForTextContainer:
Returns the range of glyphs laid out within the given text container.

- (NSRange)glyphRangeForTextContainer:(NSTextContainer *)aTextContainer

Discussion
This is a less efficient method than the similar textContainerForGlyphAtIndex:effectiveRange: (page
89).

Instance Methods 47
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainerForGlyphAtIndex:effectiveRange: (page 89)

Related Sample Code
DockTile
Sketch-112
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSLayoutManager.h

hasNonContiguousLayout
Indicates whether the layout manager currently has any areas of noncontiguous layout.

- (BOOL)hasNonContiguousLayout

Return Value
YES if noncontiguous layout exists; otherwise, NO.

Discussion
There may be times at which there is no noncontiguous layout, such as when layout is complete; this method
enables the layout manager to report that to clients.

For more information about noncontiguous layout, see “Noncontiguous Layout” (page 10).

Availability
Available in Mac OS X v10.5 and later.

See Also
– allowsNonContiguousLayout (page 22)
– setAllowsNonContiguousLayout: (page 68)

Declared In
NSLayoutManager.h

hyphenationFactor
Returns the current hyphenation threshold.

- (float)hyphenationFactor

Return Value
The hyphenation factor ranging from 0.0 to 1.0. By default, the value is 0.0, meaning hyphenation is off. A
value of 1.0 causes hyphenation to be attempted always.

48 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Discussion
Whenever (width of the real contents of the line) / (the line fragment width) is less than hyphenationFactor,
hyphenation is attempted when laying out the line. Hyphenation slows down text layout and increases
memory usage, so it should be used sparingly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHyphenationFactor: (page 73)

Declared In
NSLayoutManager.h

init
Initializes the receiver, a newly created NSLayoutManager object.

- (id)init

Discussion
This method is the designated initializer for the NSLayoutManager class. Returns an initialized object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addLayoutManager: (NSTextStorage)
– addTextContainer: (page 21)

Declared In
NSLayoutManager.h

insertGlyph:atGlyphIndex:characterIndex:
Inserts a single glyph into the glyph stream at the given index and maps it to the character at the given
character index.

- (void)insertGlyph:(NSGlyph)glyph
atGlyphIndex:(NSUInteger)glyphIndex
characterIndex:(NSUInteger)charIndex

Parameters
glyph

The glyph to insert.

glyphIndex
The index at which to insert the glyph.

charIndex
The index of the character to which the glyph is mapped.

Discussion
If the glyph is mapped to several characters, charIndex should indicate the first character it’s mapped to.

Instance Methods 49
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. This method should be invoked only during glyph generation and typesetting, in
almost all cases only by the glyph generator or typesetter. For example, a custom glyph generator or typesetter
might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deleteGlyphsInRange: (page 29)
– replaceGlyphAtIndex:withGlyph: (page 66)

Declared In
NSLayoutManager.h

insertGlyphs:length:forStartingGlyphAtIndex:characterIndex:
Inserts the given glyphs into the glyph cache at the given index and maps them to characters beginning at
the given character index.

- (void)insertGlyphs:(const NSGlyph *)glyphs length:(NSUInteger)length
forStartingGlyphAtIndex:(NSUInteger)glyphIndex
characterIndex:(NSUInteger)charIndex

Parameters
glyphs

The glyphs to insert.

glyphIndex
The index in the glyph cache to begin inserting glyphs.

length
The number of glyphs to insert.

charIndex
Index of first character to be mapped.

Discussion
This method is part of the NSGlyphStorage protocol, for use by the glyph generator. It enables bulk insertion
of glyphs into the glyph cache.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

insertTextContainer:atIndex:
Inserts the given text container into the series of text containers at the given index.

- (void)insertTextContainer:(NSTextContainer *)aTextContainer
atIndex:(NSUInteger)index

50 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Parameters
aTextContainer

The text container to insert.

index
The index in the series of text containers at which to insert aTextContainer.

Discussion
This method invalidates layout for all subsequentNSTextContainer objects, and invalidates glyph information
as needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTextContainer: (page 21)
– removeTextContainerAtIndex: (page 65)
– textContainers (page 91)

Declared In
NSLayoutManager.h

intAttribute:forGlyphAtIndex:
Returns the value of the attribute identified by the given attribute tag for the glyph at the given index.

- (NSInteger)intAttribute:(NSInteger)attributeTag
forGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
attributeTag

The attribute whose value is returned.

glyphIndex
Index of the glyph whose attribute value is returned.

Return Value
The value of the attribute identified by attributeTag and glyphIndex.

Discussion
Subclasses that define their own custom attributes must override this method to access their own storage
for the attribute values. Nonnegative tags are reserved by Apple; you can define your own attributes with
negative tags and set values using setIntAttribute:value:forGlyphAtIndex: (page 74).

If noncontiguous layout is not enabled, this method causes generation of all glyphs up to and including
glyphIndex. This method is primarily for the use of the glyph generator and typesetter.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIntAttribute:value:forGlyphAtIndex: (page 74)

Declared In
NSLayoutManager.h

Instance Methods 51
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

invalidateDisplayForCharacterRange:
Invalidates display for the given character range.

- (void)invalidateDisplayForCharacterRange:(NSRange)charRange

Parameters
charRange

The character range for which display is invalidated.

Discussion
Parts of the range that are not laid out are remembered and redisplayed later when the layout is available.
Does not actually cause layout.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

invalidateDisplayForGlyphRange:
Marks the glyphs in the given glyph range as needing display, as well as the appropriate regions of the
NSTextView objects that display those glyphs (using the NSView method setNeedsDisplayInRect:).

- (void)invalidateDisplayForGlyphRange:(NSRange)glyphRange

Parameters
glyphRange

The range of glyphs to invalidate.

Discussion
You should rarely need to invoke this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:
Invalidates the cached glyphs for the characters in the given character range, adjusts the character indices
of all the subsequent glyphs by the change in length, and invalidates the new character range.

- (void)invalidateGlyphsForCharacterRange:(NSRange)charRange
changeInLength:(NSInteger)lengthChange
actualCharacterRange:(NSRangePointer)actualCharRange

Parameters
charRange

The range of characters for which to invalidate glyphs.

lengthChange
The number of characters added or removed.

52 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

actualCharRange
If not NULL, on output, the actual range invalidated after any necessary expansion. This range can be
larger than the range of characters given due to the effect of context on glyphs and layout.

Discussion
This method only invalidates glyph information and performs no glyph generation or layout. Because
invalidating glyphs also invalidates layout, after invoking this method you should also invoke
invalidateLayoutForCharacterRange:actualCharacterRange: (page 53), passing charRange as
the first argument.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

invalidateGlyphsOnLayoutInvalidationForGlyphRange:
Specifies explicitly when portions of the glyph stream depend on layout.

- (void)invalidateGlyphsOnLayoutInvalidationForGlyphRange:(NSRange)glyphRange

Parameters
glyphRange

The range of glyphs to invalidate.

Discussion
This method is for the use of the typesetter, to allow it to specify explicitly when portions of the glyph stream
depend on layout, for example, because they have had hyphens inserted. Therefore, the glyphs are invalidated
the next time their layout is invalidated, so that they will be regenerated before being laid out again.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

invalidateLayoutForCharacterRange:actualCharacterRange:
Invalidates the layout information for the glyphs mapped to the given range of characters.

- (void)invalidateLayoutForCharacterRange:(NSRange)charRange
actualCharacterRange:(NSRangePointer)actualCharRange

Parameters
charRange

The range of characters to invalidate.

actualCharRange
If not NULL, on output, the actual range invalidated after any necessary expansion.

Instance Methods 53
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Discussion
This method has the same effect as
invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 54) with flag set
to NO.

This method only invalidates information; it performs no glyph generation or layout. You should rarely need
to invoke this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 52)

Declared In
NSLayoutManager.h

invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:
Invalidates the layout information for the glyphs mapped to the given range of characters.

- (void)invalidateLayoutForCharacterRange:(NSRange)charRange isSoft:(BOOL)flag
actualCharacterRange:(NSRangePointer)actualCharRange

Parameters
charRange

The character range for which glyphs are invalidated.

flag
If YES, invalidates internal caches in the layout manager; if NO, invalidates layout. See the discussion
section.

actualCharRange
If not NULL, on output, the range of characters mapped to the glyphs whose layout information is
invalidated. This range can be larger than the range of characters given due to the effect of context
on glyphs and layout.

Discussion
This method only invalidates information; it performs no glyph generation or layout. You should rarely need
to invoke this method.

For code that needs to work on both Mac OS X v10.5 and previous releases, the following procedures should
be used. For Mac OS X v10.4 and before, invalidation should consist of

1. Calling this method with the flag set to YES, for the range that has actually become invalid.

2. Calling this method with the flag set to NO, for the range (if any) that follows that range, usually extending
to the end of the text, that might need to be moved due to relayout of the invalidated range.

As of Mac OS X v10.5, the semantics of the flag parameter are slightly different. Soft layout holes are obsolete
in Mac OS X v10.5 and later, so the flag is no longer necessary. If the method is called with flag set to NO,
then it has the effect of invalidating layout. If it's called with the flag set to YES, then it does not actually
invalidate layout; it invalidates a number of internal caches, but otherwise has no effect, and in general is
unnecessary.

54 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

This method is superseded by invalidateLayoutForCharacterRange:actualCharacterRange: (page
53) and will be deprecated in a future release.

Availability
Available in Mac OS X v10.0 and later.

See Also
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 52)

Declared In
NSLayoutManager.h

isValidGlyphIndex:
Indicates whether the specified index refers to a valid glyph, otherwise NO.

- (BOOL)isValidGlyphIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

The index of a glyph in the receiver.

Return Value
YES if the specified glyphIndex refers to a valid glyph, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

layoutManagerOwnsFirstResponderInWindow:
Indicates whether the first responder in the given window is a text view associated with the receiver.

- (BOOL)layoutManagerOwnsFirstResponderInWindow:(NSWindow *)window

Parameters
window

The window whose first responder is tested.

Return Value
YES if the first responder in window is a text view associated with the receiver; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

layoutOptions
Returns the layout manager’s current layout options.

Instance Methods 55
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

- (NSUInteger)layoutOptions

Return Value
A bit mask representing the current layout options as defined in Layout_Options in NSGlyphStorage Protocol
Reference.

Discussion
This method is part of the NSGlyphStorage protocol, for use by the glyph generator. It enables the glyph
generator to ask which options the layout manager requests.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

layoutRectForTextBlock:atIndex:effectiveRange:
Returns the layout rectangle within which the given text block containing the glyph at the given index is to
be laid out.

- (NSRect)layoutRectForTextBlock:(NSTextBlock *)block
atIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange

Parameters
block

The text block whose layout rectangle is returned.

glyphIndex
Index of the glyph.

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the text block.

Return Value
The layout rectangle of the text block, or NSZeroRect if no rectangle has been set for the specified block
since the last invalidation.

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLayoutRect:forTextBlock:glyphRange: (page 75)

Declared In
NSLayoutManager.h

56 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

layoutRectForTextBlock:glyphRange:
Returns the layout rectangle within which the given text block containing the given glyph range is to be laid
out.

- (NSRect)layoutRectForTextBlock:(NSTextBlock *)block glyphRange:(NSRange)glyphRange

Return Value
The layout rectangle, or NSZeroRect if no rectangle has been set for the specified block since the last
invalidation.

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLayoutRect:forTextBlock:glyphRange: (page 75)

Declared In
NSLayoutManager.h

lineFragmentRectForGlyphAtIndex:effectiveRange:
Returns the rectangle for the line fragment in which the given glyph is laid out and (optionally), by reference,
the whole range of glyphs that are in that fragment.

- (NSRect)lineFragmentRectForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange

Parameters
glyphIndex

The glyph for which to return the line fragment rectangle.

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the line fragment.

Return Value
The line fragment in which the given glyph is laid out.

Discussion
This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, for all of the text up to and including that line fragment.

Line fragment rectangles are always in container coordinates.

Overriding this method is not recommended. If the the line fragment rectangle needs to be modified, that
should be done at the typesetter level or by calling
setLineFragmentRect:forGlyphRange:usedRect: (page 75).

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 57
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

See Also
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange: (page 59)
– setLineFragmentRect:forGlyphRange:usedRect: (page 75)

Declared In
NSLayoutManager.h

lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
Returns the line fragment rectangle containing the glyph at the given glyph index.

- (NSRect)lineFragmentRectForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange
withoutAdditionalLayout:(BOOL)flag

Parameters
glyphIndex

The glyph for which to return the line fragment rectangle.

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the line fragment.

flag
If YES, glyph generation and layout are not performed, so this option should not be used unless layout
is known to be complete for the range in question, or unless noncontiguous layout is enabled; if NO,
both are performed as needed.

Return Value
The line fragment in which the given glyph is laid out.

Discussion
This method is primarily for use from within NSTypesetter, after layout is complete for the range in question,
but before the layout manager's call to NSTypesetter has returned. In that case glyph and layout holes
have not yet been recalculated, so the layout manager does not yet know that layout is complete for that
range, and this variant must be used.

Overriding this method is not recommended. If the the line fragment rectangle needs to be modified, that
should be done at the typesetter level or by calling
setLineFragmentRect:forGlyphRange:usedRect: (page 75).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLineFragmentRect:forGlyphRange:usedRect: (page 75)
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page
59)

Declared In
NSLayoutManager.h

58 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

lineFragmentUsedRectForGlyphAtIndex:effectiveRange:
Returns the usage rectangle for the line fragment in which the given glyph is laid and (optionally) by reference
the whole range of glyphs that are in that fragment.

- (NSRect)lineFragmentUsedRectForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange

Parameters
glyphIndex

The glyph for which to return the line fragment used rectangle.

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the line fragment.

Return Value
The used rectangle for the line fragment in which the given glyph is laid out.

Discussion
This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment.

Line fragment used rectangles are always in container coordinates.

Overriding this method is not recommended. If the the line fragment used rectangle needs to be modified,
that should be done at the typesetter level or by calling
setLineFragmentRect:forGlyphRange:usedRect: (page 75).

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineFragmentRectForGlyphAtIndex:effectiveRange: (page 57)
– setLineFragmentRect:forGlyphRange:usedRect: (page 75)

Declared In
NSLayoutManager.h

lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
Returns the usage rectangle for the line fragment in which the given glyph is laid and (optionally) by reference
the whole range of glyphs that are in that fragment.

- (NSRect)lineFragmentUsedRectForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange
withoutAdditionalLayout:(BOOL)flag

Parameters
glyphIndex

The glyph for which to return the line fragment used rectangle.

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the line fragment.

Instance Methods 59
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

flag
If YES, glyph generation and layout are not performed, so this option should not be used unless layout
is known to be complete for the range in question, or unless noncontiguous layout is enabled; if NO,
both are performed as needed.

Return Value
The used rectangle for the line fragment in which the given glyph is laid out.

Discussion
This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment.

Line fragment used rectangles are always in container coordinates.

Overriding this method is not recommended. If the the line fragment used rectangle needs to be modified,
that should be done at the typesetter level or by calling
setLineFragmentRect:forGlyphRange:usedRect: (page 75).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLineFragmentRect:forGlyphRange:usedRect: (page 75)
– lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page 58)

Declared In
NSLayoutManager.h

locationForGlyphAtIndex:
Returns the location for the given glyph within its line fragment.

- (NSPoint)locationForGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

The glyph whose location is returned.

Return Value
The location of the given glyph.

Discussion
If the given glyph does not have an explicit location set for it (for example, if it is part of (but not first in) a
sequence of nominally spaced characters), the location is calculated by glyph advancements from the location
of the most recent preceding glyph with a location set.

Glyph locations are relative to their line fragment rectangle's origin. The line fragment rectangle in turn is
defined in the coordinate system of the text container where it resides.

This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment.

Availability
Available in Mac OS X v10.0 and later.

60 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

See Also
– lineFragmentRectForGlyphAtIndex:effectiveRange: (page 57)
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange: (page 59)

Declared In
NSLayoutManager.h

notShownAttributeForGlyphAtIndex:
Indicates whether the glyph at the given index is one that isn’t shown.

- (BOOL)notShownAttributeForGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

Index of the glyph.

Return Value
YES if the glyph at glyphIndex is not shown; otherwise NO.

Discussion
Some glyphs are not shown. For example, a tab, newline, or attachment glyph is not shown; it just affects
the layout of following glyphs or locates the attachment graphic. Space characters, however, typically are
shown as glyphs with a displacement, although they leave no visible marks.

This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment.

Raises an NSRangeException if glyphIndex is out of bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setNotShownAttribute:forGlyphAtIndex: (page 77)

Declared In
NSLayoutManager.h

numberOfGlyphs
Returns the number of glyphs in the receiver.

- (NSUInteger)numberOfGlyphs

Return Value
The number of glyphs.

Discussion
If noncontiguous layout is not enabled, this method forces generation of glyphs for all characters.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 61
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

rangeOfNominallySpacedGlyphsContainingIndex:
Returns the range for the glyphs around the given glyph that can be displayed using only their advancements
from the font, without pairwise kerning or other adjustments to spacing.

- (NSRange)rangeOfNominallySpacedGlyphsContainingIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

Index of the glyph to test.

Return Value
The range of nominally spaced glyphs.

Discussion
The range returned begins with the first glyph, counting back from glyphIndex, that has a location set, and
it continues up to, but does not include, the next glyph that has a location set.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:
rectCount:
Returns an array of rectangles and, by reference, the number of such rectangles, that define the region in
the given container enclosing the given character range.

- (NSRectArray)rectArrayForCharacterRange:(NSRange)charRange
withinSelectedCharacterRange:(NSRange)selCharRange
inTextContainer:(NSTextContainer *)container
rectCount:(NSUInteger *)rectCount

Parameters
charRange

The character range for which to return rectangles.

selCharRange
Selected characters within charRange, which can affect the size of the rectangles; it must be equal
to or contain charRange. If the caller is interested in this more from an enclosing point of view rather
than a selection point of view, pass {NSNotFound, 0} as the selected range.

container
The text container in which the text is laid out.

rectCount
The number of rectangles returned.

62 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Return Value
The array of rectangles enclosing the given range.

Discussion
These rectangles can be used to draw the text background or highlight for the given range of characters. If
a selected range is given in selCharRange, the rectangles returned are correct for drawing the selection.
Selection rectangles are generally more complicated than enclosing rectangles and supplying a selected
range is the clue this method uses to determine whether to go to the trouble of doing this special work.

This method will do the minimum amount of work required to answer the question. The resulting array is
owned by the layout manager and will be reused when this method,
rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: (page 63),
or boundingRectForGlyphRange:inTextContainer: (page 24) is called. One of these methods may
be called indirectly. If you aren't going to use the rectangles right away, you should copy them to another
location. These rectangles are always in container coordinates.

The number of rectangles returned isn’t necessarily the number of lines enclosing the specified range.
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate
enclosing rectangle for each fragment.

These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use
boundingRectForGlyphRange:inTextContainer: (page 24) to determine the area that contains all
drawing performed for a range of glyphs.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphRangeForTextContainer: (page 47)
– characterRangeForGlyphRange:actualGlyphRange: (page 26)
– drawsOutsideLineFragmentForGlyphAtIndex: (page 31)

Declared In
NSLayoutManager.h

rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount:
Returns an array of rectangles and, by reference, the number of such rectangles, that define the region in
the given container enclosing the given glyph range.

- (NSRectArray)rectArrayForGlyphRange:(NSRange)glyphRange
withinSelectedGlyphRange:(NSRange)selGlyphRange
inTextContainer:(NSTextContainer *)container
rectCount:(NSUInteger *)rectCount

Parameters
glyphRange

The glyph range for which to return rectangles.

Instance Methods 63
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

selGlyphRange
Selected glyphs within glyphRange, which can affect the size of the rectangles; it must be equal to
or contain glyphRange. If the caller is interested in this more from an enclosing point of view rather
than a selection point of view, pass {NSNotFound, 0} as the selected range.

container
The text container in which the text is laid out.

rectCount
The number of rectangles returned.

Return Value
The array of rectangles enclosing the given range.

Discussion
These rectangles can be used to draw the text background or highlight for the given range of characters. If
a selected range is given in selGlyphRange, the rectangles returned are correct for drawing the selection.
Selection rectangles are generally more complicated than enclosing rectangles and supplying a selected
range is the clue this method uses to determine whether to go to the trouble of doing this special work.

The number of rectangles returned isn’t necessarily the number of lines enclosing the specified range.
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate
enclosing rectangle for each fragment.

This method will do the minimum amount of work required to answer the question. The resulting array is
owned by the layout manager and will be reused when this method,
rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:
rectCount: (page 62), or boundingRectForGlyphRange:inTextContainer: (page 24) is called. One
of these methods may be called indirectly. If you aren't going to use the rectangles right away, you should
copy them to another location. These rectangles are always in container coordinates.

The purpose of this method is to calculate line rectangles for drawing the text background and highlighting.
These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use
boundingRectForGlyphRange:inTextContainer: (page 24) to determine the area that contains all
drawing performed for a range of glyphs.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphRangeForTextContainer: (page 47)
– glyphRangeForCharacterRange:actualCharacterRange: (page 47)
– drawsOutsideLineFragmentForGlyphAtIndex: (page 31)

Declared In
NSLayoutManager.h

removeTemporaryAttribute:forCharacterRange:
Removes a temporary attribute from the list of attributes for the specified character range.

- (void)removeTemporaryAttribute:(NSString *)attrName
forCharacterRange:(NSRange)charRange

64 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Parameters
attrName

The name of a temporary attribute.

charRange
The range of characters from which to remove the specified temporary attribute.

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView
uses them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes recognized are those that do not affect layout (colors, underlines, and so on).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTemporaryAttributes:forCharacterRange: (page 79)
– addTemporaryAttributes:forCharacterRange: (page 21)
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 87)

Related Sample Code
LayoutManagerDemo

Declared In
NSLayoutManager.h

removeTextContainerAtIndex:
Removes the text container at the given index and invalidates the layout as needed.

- (void)removeTextContainerAtIndex:(NSUInteger)index

Parameters
index

The index of the text container to remove.

Discussion
This method invalidates glyph information as needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTextContainer: (page 21)
– insertTextContainer:atIndex: (page 50)
– textContainers (page 91)
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 52)
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 54)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Instance Methods 65
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

replaceGlyphAtIndex:withGlyph:
Replaces the glyph at the given index with a new glyph.

- (void)replaceGlyphAtIndex:(NSUInteger)glyphIndex
withGlyph:(NSGlyph)newGlyph

Parameters
glyphIndex

Index of the glyph to replace.

newGlyph
The new glyph.

Discussion
Doesn’t alter the glyph-to-character mapping or invalidate layout information. The character index of the
glyph is assumed to remain the same (although it can, of course, be set explicitly if needed).

This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. This method should be invoked only during glyph generation and typesetting, in
almost all cases only by the glyph generator or typesetter. For example, a custom glyph generator or typesetter
might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCharacterIndex:forGlyphAtIndex: (page 70)
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 52)
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 54)

Declared In
NSLayoutManager.h

replaceTextStorage:
Replaces the NSTextStorage object for the group of text-system objects containing the receiver with the
given text storage object.

- (void)replaceTextStorage:(NSTextStorage *)newTextStorage

Parameters
newTextStorage

The text storage object to set.

Discussion
All NSLayoutManager objects sharing the original NSTextStorage object then share the new one. This
method makes all the adjustments necessary to keep these relationships intact, unlike
setTextStorage: (page 80).

66 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
TextLayoutDemo

Declared In
NSLayoutManager.h

rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:
Returns the the accessory view that the text system uses for its ruler.

- (NSView *)rulerAccessoryViewForTextView:(NSTextView *)view
paragraphStyle:(NSParagraphStyle *)style
ruler:(NSRulerView *)ruler
enabled:(BOOL)isEnabled

Parameters
view

The text view using the layout manager.

style
Sets the state of the controls in the accessory view; must not be nil.

ruler
The ruler view whose accessory view is returned.

isEnabled
If YES, the accessory view is enabled and accepts mouse and keyboard events; if NO it’s disabled.

Return Value
The accessory view containing tab wells, text alignment buttons, and so on.

Discussion
If you have turned off automatic ruler updating through the use of setUsesRuler: so that you can do more
complex things, but you still want to display the appropriate accessory view, you can use this method.

This method is invoked automatically by the NSTextView object using the layout manager. You should rarely
need to invoke it, but you can override it to customize ruler support. If you do use this method directly, note
that it neither installs the ruler accessory view nor sets the markers for the NSRulerView object. You must
install the accessory view into the ruler using the NSRulerView method setAccessoryView:. To set the
markers, use rulerMarkersForTextView:paragraphStyle:ruler: (page 68) to get the markers needed,
and then send setMarkers: to the ruler.

Availability
Available in Mac OS X v10.0 and later.

See Also
– horizontalRulerView (NSScrollView)

Declared In
NSLayoutManager.h

Instance Methods 67
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

rulerMarkersForTextView:paragraphStyle:ruler:
Returns an array of text ruler objects for the current selection.

- (NSArray *)rulerMarkersForTextView:(NSTextView *)view
paragraphStyle:(NSParagraphStyle *)style ruler:(NSRulerView *)ruler

Parameters
view

The text view using the layout manager.

style
Sets the state of the controls in the accessory view; must not be nil.

ruler
The ruler view whose ruler markers are returned.

Return Value
An array of NSRulerMarker objects representing such things as left and right margins, first-line indent, and
tab stops.

Discussion
If you have turned off automatic ruler updating through the use of setUsesRuler: so that you can do more
complex things, but you still want to display the appropriate accessory view, you can use this method.

This method is invoked automatically by the NSTextView object using the layout manager. You should rarely
need to invoke it, but you can override it to add new kinds of markers or otherwise customize ruler support.

You can set the returned ruler markers with the NSRulerView method setMarkers:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled: (page 67)

Declared In
NSLayoutManager.h

setAllowsNonContiguousLayout:
Enables or disables noncontiguous layout.

- (void)setAllowsNonContiguousLayout:(BOOL)flag

Parameters
flag

If YES, noncontiguous layout is enabled; if NO, noncontiguous layout is disabled.

Discussion
Passing YES in flag allows but does not require the layout manager to use noncontiguous layout, and the
layout manager may in fact not do so, depending on its configuration.

For more information about noncontiguous layout, see “Noncontiguous Layout” (page 10).

Availability
Available in Mac OS X v10.5 and later.

68 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

See Also
– allowsNonContiguousLayout (page 22)
– hasNonContiguousLayout (page 48)

Declared In
NSLayoutManager.h

setAttachmentSize:forGlyphRange:
Sets the size at which the given glyph (assumed to be an attachment) is asked to draw in the given glyph
range.

- (void)setAttachmentSize:(NSSize)attachmentSize forGlyphRange:(NSRange)glyphRange

Parameters
attachmentSize

The glyph size to set.

glyphRange
The attachment glyph’s position in the glyph stream.

Discussion
For a glyph corresponding to an attachment, this method should be called to set the size for the attachment
cell to occupy. The glyph's value should be NSControlGlyph.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attachmentSizeForGlyphAtIndex: (page 23)
– setDefaultAttachmentScaling: (page 71)

Declared In
NSLayoutManager.h

setBackgroundLayoutEnabled:
Specifies whether the receiver generates glyphs and lays them out when the application’s run loop is idle.

- (void)setBackgroundLayoutEnabled:(BOOL)flag

Parameters
flag

If YES, background layout is enabled; if NO, the receiver performs glyph generation and layout only
when necessary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundLayoutEnabled (page 23)

Instance Methods 69
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

setBoundsRect:forTextBlock:glyphRange:
Sets the bounding rectangle enclosing a given text block containing the given glyph range.

- (void)setBoundsRect:(NSRect)rect forTextBlock:(NSTextBlock *)block
glyphRange:(NSRange)glyphRange

Parameters
rect

The bounding rectangle to set.

block
The text block whose bounding rectangle is set.

glyphRange
The range of glyphs in the text block.

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– boundingRectForGlyphRange:inTextContainer: (page 24)
– boundsRectForTextBlock:atIndex:effectiveRange: (page 24)
– boundsRectForTextBlock:glyphRange: (page 25)

Declared In
NSLayoutManager.h

setCharacterIndex:forGlyphAtIndex:
Sets the index of the character corresponding to the glyph at the given glyph index.

- (void)setCharacterIndex:(NSUInteger)charIndex
forGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
charIndex

The index to set.

glyphIndex
The glyph corresponding to the character whose index is set. The glyph must already be present.

Discussion
This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. This method should be invoked only during glyph generation and typesetting, in
almost all cases only by the glyph generator or typesetter. For example, a custom glyph generator or typesetter
might invoke it.

70 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– characterIndexForGlyphAtIndex: (page 26)
– characterRangeForGlyphRange:actualGlyphRange: (page 26)
– glyphRangeForCharacterRange:actualCharacterRange: (page 47)

Declared In
NSLayoutManager.h

setDefaultAttachmentScaling:
Sets the default scaling behavior to the given scaling if an attachment image is too large to fit in a text
container.

- (void)setDefaultAttachmentScaling:(NSImageScaling)scaling

Parameters
scaling

The scaling behavior to set. See NSImageScaling for possible values. The default is NSScaleNone,
meaning that images clip rather than scaling.

Discussion
Attachment cells control their own size and drawing, so this setting is only advisory to them, but Application
Kit–supplied attachment cells respect it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– defaultAttachmentScaling (page 27)

Declared In
NSLayoutManager.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)anObject

Parameters
anObject

The delegate for the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 29)

Instance Methods 71
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSLayoutManager.h

setDrawsOutsideLineFragment:forGlyphAtIndex:
Specifies whether the given glyph exceeds the bounds of the line fragment where it’s laid out.

- (void)setDrawsOutsideLineFragment:(BOOL)flag
forGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
flag

If YES, sets the given glyph to draw outside its line fragment; if NO, the glyph does not draw outside.

glyphIndex
Index of the glyph to set.

Discussion
This can happen when text is set at a fixed line height. For example, if the user specifies a fixed line height
of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles. This information
is important for determining whether additional lines need to be redrawn as a result of changes to any given
line fragment.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsOutsideLineFragmentForGlyphAtIndex: (page 31)

Declared In
NSLayoutManager.h

setExtraLineFragmentRect:usedRect:textContainer:
Sets the bounds and container for the extra line fragment.

- (void)setExtraLineFragmentRect:(NSRect)aRect usedRect:(NSRect)usedRect
textContainer:(NSTextContainer *)aTextContainer

Parameters
aRect

The rectangle to set.

usedRect
Indicates where the insertion point is drawn.

72 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

aTextContainer
The text container where the rectangle is to be laid out.

Discussion
The extra line fragment is used when the text backing ends with a hard line break or when the text backing
is totally empty, to define the extra line which needs to be displayed at the end of the text. If the text backing
is not empty and does not end with a hard line break, this should be set to NSZeroRect and nil.

Line fragment rectangles and line fragment used rectangles are always in container coordinates.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– extraLineFragmentRect (page 36)
– extraLineFragmentUsedRect (page 36)
– textContainers (page 91)

Declared In
NSLayoutManager.h

setGlyphGenerator:
Sets the glyph generator used by this layout manager.

- (void)setGlyphGenerator:(NSGlyphGenerator *)glyphGenerator

Parameters
glyphGenerator

The new glyph generator to set.

Discussion
Setting the glyph generator invalidates all glyphs and layout in the layout manager.

Availability
Available in Mac OS X v10.4 and later.

See Also
– glyphGenerator (page 43)

Declared In
NSLayoutManager.h

setHyphenationFactor:
Sets the threshold controlling when hyphenation is done.

- (void)setHyphenationFactor:(float)factor

Instance Methods 73
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Parameters
factor

The hyphenation factor, ranging from 0.0 to 1.0. By default, the value is 0.0, meaning hyphenation is
off. A factor of 1.0 causes hyphenation to be attempted always.

Discussion
Whenever (width of the real contents of the line) / (the line fragment width) is below factor, hyphenation
is attempted when laying out the line. Hyphenation slows down text layout and increases memory usage,
so it should be used sparingly.

May be overridden on a per-paragraph basis by the NSParagraphStyle method hyphenationFactor.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hyphenationFactor (page 48)

Declared In
NSLayoutManager.h

setIntAttribute:value:forGlyphAtIndex:
Sets a custom attribute value for a given glyph.

- (void)setIntAttribute:(NSInteger)attributeTag value:(NSInteger)val
forGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
attributeTag

The custom attribute.

val
The new attribute value.

glyphIndex
Index of the glyph whose attribute is set.

Discussion
Custom attributes are glyph attributes such as NSGlyphInscription or attributes defined by subclasses.
Nonnegative tags are reserved by Apple; you can define your own attributes with negative tags and set
values using this method.

This method is part of the NSGlyphStorage protocol, for use by the glyph generator to set attributes. It is
not usually necessary for anyone but the glyph generator (and perhaps the typesetter) to call it. It is provided
as a public method so subclasses can extend it to accept other glyph attributes. To add new glyph attributes
to the text system you must do two things. First, you need to arrange for the glyph generator or typesetter
to generate and interpret it. Second, you need to subclass NSLayoutManager to provide someplace to store
the new attribute, overriding this method and intAttribute:forGlyphAtIndex: (page 51) to recognize
the new attribute tags and respond to them, while passing any other attributes to the superclass
implementation. The NSLayoutManager implementation understands the glyph attributes which it is
prepared to store, as enumerated in “Glyph Attributes” (page 97).

Availability
Available in Mac OS X v10.0 and later.

74 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

See Also
– intAttribute:forGlyphAtIndex: (page 51)

Declared In
NSLayoutManager.h

setLayoutRect:forTextBlock:glyphRange:
Sets the layout rectangle enclosing the given text block containing the given glyph range.

- (void)setLayoutRect:(NSRect)rect forTextBlock:(NSTextBlock *)block
glyphRange:(NSRange)glyphRange

Parameters
rect

The layout rectangle to set.

block
The text block whose layout rectangle is set.

glyphRange
The range of glyphs in the text block.

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– layoutRectForTextBlock:atIndex:effectiveRange: (page 56)
– layoutRectForTextBlock:glyphRange: (page 57)

Declared In
NSLayoutManager.h

setLineFragmentRect:forGlyphRange:usedRect:
Associates the given line fragment bounds with the given range of glyphs.

- (void)setLineFragmentRect:(NSRect)fragmentRect forGlyphRange:(NSRange)glyphRange
usedRect:(NSRect)usedRect

Parameters
fragmentRect

The rectangle of the line fragment.

glyphRange
The range of glyphs to be associated with fragmentRect.

usedRect
The portion of fragmentRect that actually contains glyphs or other marks that are drawn (including
the text container’s line fragment padding. Must be equal to or contained within fragmentRect.

Instance Methods 75
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Discussion
The typesetter must specify the text container first with setTextContainer:forGlyphRange: (page 79),
and it sets the exact positions of the glyphs afterwards with setLocation:forStartOfGlyphRange: (page
76).

In the course of layout, all glyphs should end up being included in a range passed to this method, but only
glyphs that start a new line fragment should be at the start of such ranges.

Line fragment rectangles and line fragment used rectangles are always in container coordinates.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page 58)
– lineFragmentRectForGlyphAtIndex:effectiveRange: (page 57)
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page
59)
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange: (page 59)

Declared In
NSLayoutManager.h

setLocation:forStartOfGlyphRange:
Sets the location for the first glyph of the given range.

- (void)setLocation:(NSPoint)aPoint forStartOfGlyphRange:(NSRange)glyphRange

Parameters
aPoint

The location to which the first glyph is set, relative to the origin of the glyph’s line fragment origin.

glyphRange
The glyphs whose location is set.

Discussion
Setting the location for a glyph range implies that its first glyph is not nominally spaced with respect to the
previous glyph. In the course of layout, all glyphs should end up being included in a range passed to this
method, but only glyphs that start a new nominal range should be at the start of such ranges. The first glyph
in a line fragment should always start a new nominal range. Glyph locations are given relative to their line
fragment rectangle's origin.

Before setting the location for a glyph range, you must specify the text container with
setTextContainer:forGlyphRange: (page 79) and the line fragment rectangle with
setLineFragmentRect:forGlyphRange:usedRect: (page 75).

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

76 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

See Also
– rangeOfNominallySpacedGlyphsContainingIndex: (page 62)

Declared In
NSLayoutManager.h

setLocations:startingGlyphIndexes:count:forGlyphRange:
Sets locations for many glyph ranges at once.

- (void)setLocations:(NSPointArray)locations startingGlyphIndexes:(NSUInteger
*)glyphIndexes count:(NSUInteger)count forGlyphRange:(NSRange)glyphRange

Parameters
locations

The locations to which the first glyph in each range is set, relative to the origin of the glyph’s line
fragment origin.

glyphIndexes
Indexes in glyphRange of the glyphs whose locations are set.

count
The number of glyphs whose locations are set.

glyphRange
The entire glyph range containing all the glyphs whose locations are set.

Discussion
This method enables the typesetter to set locations for glyph ranges in bulk. All of the specified glyph indexes
should lie within the specified glyph range. The first of them should be equal to glyphRange.location,
and the remainder should increase monotonically. Each location is set as the location for the range beginning
at the corresponding glyph index, and continuing until the subsequent glyph index, or until the end of the
glyph range for the last location. Thus this method is equivalent to calling
setLocation:forStartOfGlyphRange: (page 76) for a set of ranges covering all of the glyphs in
glyphRange.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

setNotShownAttribute:forGlyphAtIndex:
Sets the glyph at the given index to be one that isn’t shown.

- (void)setNotShownAttribute:(BOOL)flag forGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
flag

If YES, the glyph is not shown; if NO, it is shown.

Instance Methods 77
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

glyphIndex
Index of the glyph whose attribute is set.

Discussion
The typesetter decides which glyphs are not shown and sets this attribute in the layout manager to ensure
that those glyphs are not displayed. For example, a tab or newline character doesn’t leave any marks; it just
indicates where following glyphs are laid out.

Raises an NSRangeException if glyphIndex is out of bounds.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– notShownAttributeForGlyphAtIndex: (page 61)

Declared In
NSLayoutManager.h

setShowsControlCharacters:
Specifies whether to substitute visible glyphs for control characters in layout.

- (void)setShowsControlCharacters:(BOOL)flag

Parameters
flag

If YES, the receiver substitutes visible glyphs for control characters if the font and script support it; if
NO, it doesn’t. The default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShowsInvisibleCharacters: (page 78)
– showsControlCharacters (page 83)

Declared In
NSLayoutManager.h

setShowsInvisibleCharacters:
Specifies whether to substitute visible glyphs for whitespace and other typically invisible characters in layout.

- (void)setShowsInvisibleCharacters:(BOOL)flag

Parameters
flag

If YES, the receiver substitutes visible glyphs for invisible characters if the font and script support it;
if NO, it doesn’t. The default is NO.

78 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShowsControlCharacters: (page 78)
– showsInvisibleCharacters (page 84)

Declared In
NSLayoutManager.h

setTemporaryAttributes:forCharacterRange:
Sets one or more temporary attributes for the specified character range.

- (void)setTemporaryAttributes:(NSDictionary *)attrs
forCharacterRange:(NSRange)charRange

Parameters
attrs

Attributes dictionary containing the temporary attributes to set.

charRange
The range of characters to which the specified attributes apply.

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView
uses them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes recognized are those that do not affect layout (colors, underlines, and so on).

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTemporaryAttributes:forCharacterRange: (page 21)
– removeTemporaryAttribute:forCharacterRange: (page 64)
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 87)

Declared In
NSLayoutManager.h

setTextContainer:forGlyphRange:
Sets text container where the glyphs in the given range are laid out.

- (void)setTextContainer:(NSTextContainer *)aTextContainer
forGlyphRange:(NSRange)glyphRange

Parameters
aTextContainer

The text container to set.

glyphRange
The range of glyphs to lay out.

Instance Methods 79
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Discussion
The layout within the container is specified with the
setLineFragmentRect:forGlyphRange:usedRect: (page 75) and
setLocation:forStartOfGlyphRange: (page 76) methods.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainerForGlyphAtIndex:effectiveRange: (page 89)

Declared In
NSLayoutManager.h

setTextStorage:
Sets the receiver’s NSTextStorage object.

- (void)setTextStorage:(NSTextStorage *)textStorage

Parameters
textStorage

The text storage object to set.

Discussion
This method is invoked automatically when you add an NSLayoutManager to an NSTextStorage object;
you should never need to invoke it directly, but you might want to override it. If you want to replace the
NSTextStorage object for an established group of text-system objects containing the receiver, use
replaceTextStorage: (page 66).

Availability
Available in Mac OS X v10.0 and later.

See Also
– addLayoutManager: (NSTextStorage)

Declared In
NSLayoutManager.h

setTypesetter:
Sets the current typesetter.

- (void)setTypesetter:(NSTypesetter *)typesetter

Parameters
typesetter

The typesetter for the receiver.

Availability
Available in Mac OS X v10.0 and later.

80 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

See Also
– typesetter (page 93)

Declared In
NSLayoutManager.h

setTypesetterBehavior:
Sets the default typesetter behavior.

- (void)setTypesetterBehavior:(NSTypesetterBehavior)theBehavior

Parameters
theBehavior

An NSTypesetterBehavior (page 99) constant that specifies the behavior for the receiver.

Discussion
The typesetter behavior affects glyph spacing and line height.

If the application was linked on a system prior to Mac OS X v10.2, NSLayoutManager uses
NSTypesetterOriginalBehavior by default.

Availability
Available in Mac OS X v10.2 and later.

See Also
– typesetterBehavior (page 93)

Declared In
NSLayoutManager.h

setUsesFontLeading:
Specifies whether or not the receiver uses the leading provided in the font.

- (void)setUsesFontLeading:(BOOL)flag

Parameters
flag

If YES, the receiver uses the font’s leading; if NO, it does not.

Discussion
By default, a layout manager uses leading as specified by the font. However, this is not appropriate for most
user-interface text, for which a fixed leading is usually specified by user-interface layout guidelines. This
method enables the use of the font's leading to be turned off.

Availability
Available in Mac OS X v10.5 and later.

See Also
– usesFontLeading (page 95)
– setLineSpacing: (NSMutableParagraphStyle)

Instance Methods 81
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

setUsesScreenFonts:
Controls using screen fonts to calculate layout and display text.

- (void)setUsesScreenFonts:(BOOL)flag

Parameters
flag

If YES, the receiver uses screen fonts; if NO, it doesn’t.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesScreenFonts (page 95)
– substituteFontForFont: (page 85)

Related Sample Code
TextLayoutDemo

Declared In
NSLayoutManager.h

showAttachmentCell:inRect:characterIndex:
Draws an attachment cell.

- (void)showAttachmentCell:(NSCell *)cell inRect:(NSRect)rect
characterIndex:(NSUInteger)attachmentIndex

Parameters
cell

The attachment cell to draw.

rect
The rectangle within which to draw cell.

attachmentIndex
The location of the attachment cell.

Discussion
The attachmentIndex parameter is provided for cells that alter their appearance based on their location.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

82 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

showPackedGlyphs:length:glyphRange:atPoint:font:color:printingAdjustment:
Draws a range of glyphs.

- (void)showPackedGlyphs:(char *)glyphs length:(NSUInteger)glyphLen
glyphRange:(NSRange)glyphRange atPoint:(NSPoint)point font:(NSFont *)font
color:(NSColor *)color printingAdjustment:(NSSize)printingAdjustment

Parameters
glyphs

The glyphs to draw; may contain embedded NULL bytes.

glyphLen
The number of bytes pointed at by glyphs; this is twice the number of glyphs contained.

glyphRange
The range of glyphs to draw.

point
The point at which to draw the glyphs.

font
The font of the glyphs to draw.

color
Color of the glyphs to draw.

printingAdjustment
NSZeroSizewhen drawing to the screen, but when printing may contain values by which the nominal
spacing between the characters should be adjusted.

Discussion
The glyphRange, point, font, and color parameters are passed in merely for information purposes. They
are already set in the graphics state. If for any reason you modify the set color or font, you must restore it
before returning from this method.

You should never call this method, but you might override it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

showsControlCharacters
Indicates whether the receiver substitutes visible glyphs for control characters.

- (BOOL)showsControlCharacters

Return Value
YES if the receiver substitutes visible glyphs for control characters if the font and script support it; NO if it
doesn’t.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 83
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

See Also
– showsInvisibleCharacters (page 84)
– setShowsControlCharacters: (page 78)

Declared In
NSLayoutManager.h

showsInvisibleCharacters
Indicates whether the receiver substitutes visible glyphs for whitespace and other typically invisible characters
in layout.

- (BOOL)showsInvisibleCharacters

Return Value
YES if the receiver substitutes visible glyphs for invisible characters if the font and script support it; otherwise
NO. The default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– showsControlCharacters (page 83)
– setShowsInvisibleCharacters: (page 78)

Declared In
NSLayoutManager.h

strikethroughGlyphRange:strikethroughType:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin:
Calculates and draws strikethrough for the glyphs in the given range.

- (void)strikethroughGlyphRange:(NSRange)glyphRange
strikethroughType:(NSInteger)strikethroughVal lineFragmentRect:(NSRect)lineRect
lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin:(NSPoint)containerOrigin

Parameters
glyphRange

The range of glyphs for which to draw a strikethrough. The range must belong to a single line fragment
rectangle (as returned by lineFragmentRectForGlyphAtIndex:effectiveRange: (page 57)).

strikethroughVal
The style of underlining to draw. This value is a mask derived from the value for
NSUnderlineStyleAttributeName—for example, (NSUnderlinePatternDash |
NSUnderlineStyleThick | NSUnderlineByWordMask). Subclasses can define custom underlining
styles.

lineRect
The line fragment rectangle containing the glyphs to draw strikethrough for.

84 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

lineGlyphRange
The range of all glyphs within lineRect.

containerOrigin
The origin of the line fragment rectangle’s NSTextContainer in its NSTextView.

Discussion
This method determines which glyphs actually need to have a strikethrough drawn based on
strikethroughVal. After determining which glyphs to draw strikethrough on, this method invokes
drawStrikethroughForGlyphRange:strikethroughType:baselineOffset:
lineFragmentRect:lineFragmentGlyphRange:containerOrigin: (page 31) for each contiguous
range of glyphs that requires it.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSLayoutManager.h

substituteFontForFont:
Returns a screen font suitable for use in place of the given font, if one is available.

- (NSFont *)substituteFontForFont:(NSFont *)originalFont

Parameters
originalFont

The font to replace.

Return Value
A screen font suitable for use in place of originalFont, or simply originalFont if a screen font can’t be
used or isn’t available.

Discussion
A screen font can be substituted if the receiver is set to use screen fonts and if no NSTextView associated
with the receiver is scaled or rotated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesScreenFonts (page 95)

Declared In
NSLayoutManager.h

temporaryAttribute:atCharacterIndex:effectiveRange:
Returns the value for the temporary attribute with a given name of the character at a given index, and by
reference the range over which the attribute applies.

- (id)temporaryAttribute:(NSString *)attrName atCharacterIndex:(NSUInteger)location
effectiveRange:(NSRangePointer)range

Instance Methods 85
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Parameters
attrName

The name of a temporary attribute.

location
The index for which to return attributes. This value must not exceed the bounds of the receiver.

range
If non-NULL:

 ■ If the named attribute exists at location, on output, contains the range over which the named
attribute’s value applies.

 ■ If the named attribute does not exist at location, on output, contains the range over which the
attribute does not exist.

The range isn’t necessarily the maximum range covered by attrName, and its extent is
implementation-dependent. If you need the maximum range, use
temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange: (page 86). If
you don't need this value, pass NULL.

Return Value
The value for the temporary attribute named attrName of the character at index location, or nil if there
is no such attribute.

Availability
Available in Mac OS X v10.5 and later.

See Also
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 87)
– temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange: (page 86)

Declared In
NSLayoutManager.h

temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange:
Returns the value for the temporary attribute with a given name of the character at a given index, and by
reference the maximum range over which the attribute applies.

- (id)temporaryAttribute:(NSString *)attrName atCharacterIndex:(NSUInteger)location
longestEffectiveRange:(NSRangePointer)range inRange:(NSRange)rangeLimit

Parameters
attrName

The name of a temporary attribute.

location
The index for which to return attributes. This value must not exceed the bounds of the receiver.

86 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

range
If non-NULL:

 ■ If the named attribute exists at location, on output, contains the maximum range over which
the named attribute’s value applies, clipped to rangeLimit.

 ■ If the named attribute does not exist at location, on output, contains the maximum range over
which the attribute does not exist.

If you don't need this value, pass NULL.

rangeLimit
The range over which to search for continuous presence of attrName. This value must not exceed
the bounds of the receiver.

Return Value
The value for the attribute named attrName of the character at location, or nil if there is no such attribute.

Discussion
If you don’t need the longest effective range, it’s far more efficient to use the
temporaryAttribute:atCharacterIndex:effectiveRange: (page 85) method to retrieve the attribute
value.

Availability
Available in Mac OS X v10.5 and later.

See Also
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 87)
– temporaryAttribute:atCharacterIndex:effectiveRange: (page 85)

Declared In
NSLayoutManager.h

temporaryAttributesAtCharacterIndex:effectiveRange:
Returns the dictionary of temporary attributes for the character range specified in effectiveCharRange
at character index charIndex.

- (NSDictionary *)temporaryAttributesAtCharacterIndex:(NSUInteger)charIndex
effectiveRange:(NSRangePointer)effectiveCharRange

Return Value
The dictionary of temporary attributes for the character range specified in effectiveCharRange at character
index charIndex.

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView
uses them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes recognized are those that do not affect layout (colors, underlines, and so on).

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTemporaryAttributes:forCharacterRange: (page 21)
– removeTemporaryAttribute:forCharacterRange: (page 64)

Instance Methods 87
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

– setTemporaryAttributes:forCharacterRange: (page 79)

Declared In
NSLayoutManager.h

temporaryAttributesAtCharacterIndex:longestEffectiveRange:inRange:
Returns the temporary attributes for the character at a given index, and by reference the maximum range
over which the attributes apply.

- (NSDictionary *)temporaryAttributesAtCharacterIndex:(NSUInteger)location
longestEffectiveRange:(NSRangePointer)range inRange:(NSRange)rangeLimit

Parameters
location

The index for which to return attributes. This value must not exceed the bounds of the receiver.

range
If not NULL, on output, contains the maximum range over which the attributes and values are the
same as those at location, clipped to rangeLimit.

rangeLimit
The range over which to search for continuous presence of the attributes at location. This value
must not exceed the bounds of the receiver.

Return Value
The attributes for the character at location.

Discussion
If you don’t need the longest effective range, it’s far more efficient to use the
temporaryAttributesAtCharacterIndex:effectiveRange: (page 87) method to retrieve the attribute
value.

Availability
Available in Mac OS X v10.5 and later.

See Also
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 87)
– temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange: (page 86)

Declared In
NSLayoutManager.h

textContainerChangedGeometry:
Invalidates the layout information, and possibly glyphs, for the given text container and all subsequent
NSTextContainer objects.

- (void)textContainerChangedGeometry:(NSTextContainer *)aTextContainer

Parameters
aTextContainer

The text container whose layout is invalidated.

88 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Discussion
This method is invoked automatically by other components of the text system; you should rarely need to
invoke it directly. Subclasses of NSTextContainer, however, must invoke this method any time their size
of shape changes (a text container that dynamically adjusts its shape to wrap text around placed graphics,
for example, must do so when a graphic is added, moved, or removed).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

textContainerChangedTextView:
Updates information needed to manage NSTextView objects in the given text container.

- (void)textContainerChangedTextView:(NSTextContainer *)aTextContainer

Parameters
aTextContainer

The text container whose text view has changed.

Discussion
This method is called by a text container, whenever its text view changes, to keep notifications synchronized.
You should rarely need to invoke it directly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

textContainerForGlyphAtIndex:effectiveRange:
Returns the container in which the given glyph is laid out and (optionally) by reference the whole range of
glyphs that are in that container.

- (NSTextContainer *)textContainerForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange

Parameters
glyphIndex

Index of a glyph in the returned container.

effectiveGlyphRange
If not NULL, on output, points to the whole range of glyphs that are in the returned container.

Return Value
The text container in which the glyph at glyphIndex is laid out.

Instance Methods 89
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Discussion
This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment. If noncontiguous layout is not
enabled and effectiveGlyphRange is not NULL, this method additionally causes glyph generation and
layout for the entire text container containing the specified glyph.

Overriding this method is not recommended. Any changes to the returned glyph range should be done at
the typesetter level.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextContainer:forGlyphRange: (page 79)

Declared In
NSLayoutManager.h

textContainerForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
Returns the container in which the given glyph is laid out and (optionally) by reference the whole range of
glyphs that are in that container.

- (NSTextContainer *)textContainerForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange
withoutAdditionalLayout:(BOOL)flag

Parameters
glyphIndex

Index of a glyph in the returned container.

effectiveGlyphRange
If not NULL, on output, points to the whole range of glyphs that are in the returned container.

flag
If YES, glyph generation and layout are not performed, so this option should not be used unless layout
is known to be complete for the range in question, or unless noncontiguous layout is enabled; if NO,
both are performed as needed.

Return Value
The text container in which the glyph at glyphIndex is laid out.

Discussion
This method is primarily for use from within NSTypesetter, after layout is complete for the range in question,
but before the layout manager's call to NSTypesetter has returned. In that case glyph and layout holes
have not yet been recalculated, so the layout manager does not yet know that layout is complete for that
range, and this variant must be used.

Overriding this method is not recommended. Any changes to the returned glyph range should be done at
the typesetter level.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTextContainer:forGlyphRange: (page 79)

90 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

textContainers
Returns the receiver’s text containers.

- (NSArray *)textContainers

Return Value
The receiver’s text containers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTextContainer: (page 21)
– insertTextContainer:atIndex: (page 50)
– removeTextContainerAtIndex: (page 65)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSLayoutManager.h

textStorage
Returns the receiver’s text storage object.

- (NSTextStorage *)textStorage

Return Value
The receiver’s text storage.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextStorage: (page 80)
– replaceTextStorage: (page 66)

Declared In
NSLayoutManager.h

textStorage:edited:range:changeInLength:invalidatedRange:
Invalidates glyph and layout information for a portion of the text in the given text storage object.

Instance Methods 91
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

- (void)textStorage:(NSTextStorage *)aTextStorage edited:(NSUInteger)mask
range:(NSRange)newCharRange changeInLength:(NSInteger)delta
invalidatedRange:(NSRange)invalidatedCharRange

Parameters
aTextStorage

The text storage whose information is invalidated.

mask
Specifies the nature of the changes. Its value is made by combining with the C bitwise OR operator
the constants described in “Change notifications” in NSTextStorage
(NSTextStorageEditedAttributes and NSTextStorageEditedCharacters).

newCharRange
Indicates the extent of characters resulting from the edits.

delta
If the NSTextStorageEditedCharacters bit of mask is set, gives the number of characters added
to or removed from the original range (otherwise its value is irrelevant).

invalidatedCharRange
Represents the range of characters affected after attributes have been fixed. Is either equal to
newCharRange or larger. For example, deleting a paragraph separator character invalidates the layout
information for all characters in the paragraphs that precede and follow the separator.

Discussion
This message is sent from theNSTextStorageobject’sprocessEditingmethod to indicate that its characters
or attributes have changed. This method invalidates glyphs and layout for the affected characters.

For example, after replacing “The” with “Several” to produce the string “Several files couldn’t be saved”,
newCharRange is {0, 7} and delta is 4. The receiver uses this information to update its character-to-glyph
mapping and to update the selection range based on the change.

The textStorage:edited:range:changeInLength:invalidatedRange:messages are sent in a series
to each NSLayoutManager object associated with the text storage object, so the layout managers receiving
them shouldn’t edit aTextStoragewhile this method is executing. If one of them does, the newCharRange,
delta, and invalidatedCharRange arguments are incorrect for all following layout managers that receive
the message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 54)

Declared In
NSLayoutManager.h

textViewForBeginningOfSelection
Returns the text view containing the first glyph in the selection.

- (NSTextView *)textViewForBeginningOfSelection

92 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Return Value
The text view containing the first glyph in the selection, or nil if there’s no selection or there isn’t enough
layout information to determine the text view.

Discussion
This method does not cause layout if the beginning of the selected range is not yet laid out.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

typesetter
Returns the receiver’s typesetter.

- (NSTypesetter *)typesetter

Return Value
The receiver’s typesetter.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTypesetter: (page 80)

Declared In
NSLayoutManager.h

typesetterBehavior
Returns the current typesetter behavior.

- (NSTypesetterBehavior)typesetterBehavior

Return Value
The current typesetter behavior value.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setTypesetterBehavior: (page 81)

Declared In
NSLayoutManager.h

Instance Methods 93
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:
containerOrigin:
Calculates subranges to be underlined for the glyphs in a given range and draws the underlining as appropriate.

- (void)underlineGlyphRange:(NSRange)glyphRange underlineType:(NSInteger)underlineVal
lineFragmentRect:(NSRect)lineRect lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin:(NSPoint)containerOrigin

Parameters
glyphRange

A range of glyphs, which must belong to a single line fragment rectangle (as returned by
lineFragmentRectForGlyphAtIndex:effectiveRange: (page 57)).

underlineVal
The style of underlining to draw. This value is a mask derived from the value for
NSUnderlineStyleAttributeName—for example, (NSUnderlinePatternDash |
NSUnderlineStyleThick | NSUnderlineByWordMask). Subclasses can define custom underlining
styles.

lineRect
The line fragment rectangle containing the glyphs to draw underlining for.

lineGlyphRange
The range of all glyphs within that line fragment rectangle.

containerOrigin
The origin of the line fragment rectangle’s NSTextContainer in its NSTextView.

Discussion
This method determines which glyphs actually need to be underlined based on underlineVal. With
NSUnderlineStyleSingle, for example, leading and trailing whitespace isn’t underlined, but whitespace
between visible glyphs is. A potential word-underline style would omit underlining on any whitespace. After
determining which glyphs to draw underlining on, this method invokes
drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin: (page 32) for each contiguous range of glyphs that
requires it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainerForGlyphAtIndex:effectiveRange: (page 89)
– textContainerOrigin (NSTextView)

Declared In
NSLayoutManager.h

usedRectForTextContainer:
Returns the bounding rectangle for the glyphs laid out in the given text container.

- (NSRect)usedRectForTextContainer:(NSTextContainer *)aTextContainer

94 Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Discussion
Returns the text container's currently used area, which determines the size that the view would need to be
in order to display all the glyphs that are currently laid out in the container. This causes neither glyph
generation nor layout.

Used rectangles are always in container coordinates.

Availability
Available in Mac OS X v10.0 and later.

See Also
– containerSize (NSTextContainer)

Related Sample Code
Sketch-112

Declared In
NSLayoutManager.h

usesFontLeading
Indicates whether the receiver uses the leading provided in the font.

- (BOOL)usesFontLeading

Return Value
YES if the receiver uses the font’s leading; otherwise, NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setUsesFontLeading: (page 81)

Declared In
NSLayoutManager.h

usesScreenFonts
Indicates whether the receiver uses screen fonts to calculate layout and display text.

- (BOOL)usesScreenFonts

Return Value
YES if the receiver calculates layout and displays text using screen fonts when possible; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setUsesScreenFonts: (page 82)
– substituteFontForFont: (page 85)

Instance Methods 95
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

Delegate Methods

layoutManager:didCompleteLayoutForTextContainer:atEnd:
Informs the delegate that the given layout manager has finished laying out text in the given text container.

- (void)layoutManager:(NSLayoutManager *)aLayoutManager
didCompleteLayoutForTextContainer:(NSTextContainer *)aTextContainer
atEnd:(BOOL)flag

Parameters
aLayoutManager

The layout manager doing the layout.

aTextContainer
The text container in which layout is complete. If nil, if there aren’t enough containers to hold all
the text; the delegate can use this information as a cue to add another text container.

flag
If YES, aLayoutManager is finished laying out its text—this also means that aTextContainer is the
final text container used by the layout manager. Delegates can use this information to show an
indicator or background or to enable or disable a button that forces immediate layout of text.

Discussion
This message is sent whenever a text container has been filled. This method can be useful for paginating.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

layoutManager:shouldUseTemporaryAttributes:forDrawingToScreen:atCharacterIndex:
effectiveRange:
Sent when the layout manager is drawing and needs to decide whether or not to use temporary attributes.

- (NSDictionary *)layoutManager:(NSLayoutManager *)layoutManager
shouldUseTemporaryAttributes:(NSDictionary *)attrs
forDrawingToScreen:(BOOL)toScreen
atCharacterIndex:(NSUInteger)charIndex
effectiveRange:(NSRangePointer)effectiveCharRange

Parameters
layoutManager

The layout manager sending the message.

attrs
The temporary attributes currently in effect for the given character range.

96 Delegate Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

toScreen
YES if the layout manager is drawing to the screen; otherwise, NO.

charIndex
Index of the first character in the range being drawn.

effectiveCharRange
On input and output, the effective range to which the temporary attributes apply.

Return Value
The temporary attributes for the layout manager to use, or nil if no temporary attributes are to be used.

Discussion
The default behavior, if this method is not implemented, is to use temporary attributes only when drawing
to the screen, so an implementation to match that behavior would return attrs if toScreen is YES and
nil otherwise, without changing effectiveCharRange.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

layoutManagerDidInvalidateLayout:
Informs the delegate that the given layout manager has invalidated layout information (not glyph information).

- (void)layoutManagerDidInvalidateLayout:(NSLayoutManager *)sender

Parameters
sender

The layout manager that invalidated layout.

Discussion
This method is invoked only when layout was complete and then became invalidated for some reason.
Delegates can use this information to show an indicator of background layout or to enable a button that
forces immediate layout of text.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

Constants

Glyph Attributes
These glyph attribute constants are used only inside the glyph generation machinery, but they must be
shared between components.

Constants 97
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

enum {
 NSGlyphAttributeSoft = 0,
 NSGlyphAttributeElastic = 1,
 NSGlyphAttributeBidiLevel = 2,
 NSGlyphAttributeInscribe = 5
};

Constants
NSGlyphAttributeSoft

The glyph is soft.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

NSGlyphAttributeElastic
The glyph is elastic.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

NSGlyphAttributeBidiLevel
The bidirectional level (direction) of the glyph.

Available in Mac OS X v10.2 and later.

Declared in NSLayoutManager.h.

NSGlyphAttributeInscribe
Glyph inscription attribute. See [NSGlyphInscription] for possible values.NSGlyphInscription (page
98)

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

Declared In
NSLayoutManager.h

NSGlyphInscription
These constants specify how a glyph is laid out relative to the previous glyph. The glyph inscription constants
are possible values for the glyph attribute NSGlyphAttributeInscribe. Glyph inscriptions are set during
glyph generation.

typedef enum {
 NSGlyphInscribeBase = 0,
 NSGlyphInscribeBelow = 1,
 NSGlyphInscribeAbove = 2,
 NSGlyphInscribeOverstrike = 3,
 NSGlyphInscribeOverBelow = 4
} NSGlyphInscription;

Constants
NSGlyphInscribeBase

A base glyph; a character that the font can represent with a single glyph.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

98 Constants
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

NSGlyphInscribeBelow
Glyph is rendered below the previous glyph.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

NSGlyphInscribeAbove
Glyph is rendered above the previous glyph.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

NSGlyphInscribeOverstrike
Glyph is rendered on top of the previous glyph.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

NSGlyphInscribeOverBelow
Glyph is rendered on top and below the previous glyph.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

Discussion
The only constants that the text system currently uses are NSGlyphInscribeBase (for most glyphs) and
NSGlyphInscribeOverstrike (for nonbase glyphs). Nonbase glyphs occur when diacritical marks are
applied to a base character, and the font does not have a single glyph to represent the combination. For
example, if a font did not contain a single glyph for ü, but did contain separate glyphs for u and ¨, then it
could be rendered with a base glyph u followed by a nonbase glyph ¨. In that case the nonbase glyph would
have the value NSGlyphInscribeOverstrike for the inscribe attribute.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

NSTypesetterBehavior
These constants define the behavior of NSLayoutManager and NSTypesetter when laying out lines. They
are used by setTypesetterBehavior: (page 81) and typesetterBehavior (page 93) to control the
compatibility level of the typesetter.

Constants 99
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

typedef enum {
 NSTypesetterLatestBehavior = -1,
 NSTypesetterOriginalBehavior = 0,
 NSTypesetterBehavior_10_2_WithCompatibility = 1,
 NSTypesetterBehavior_10_2 = 2,
 NSTypesetterBehavior_10_3 = 3,
 NSTypesetterBehavior_10_4 = 4
} NSTypesetterBehavior;

Constants
NSTypesetterLatestBehavior

The most current typesetter behavior in the current system version. For Mac OS X v10.2, this behavior
is identical to NSTypesetterBehavior_10_2. If you use this behavior setting, you cannot necessarily
rely on line width and height metrics remaining the same across different versions of Mac OS X.

Available in Mac OS X v10.2 and later.

Declared in NSLayoutManager.h.

NSTypesetterOriginalBehavior
The original typesetter behavior, as shipped with Mac OS X v10.1 and earlier.

Available in Mac OS X v10.2 and later.

Declared in NSLayoutManager.h.

NSTypesetterBehavior_10_2_WithCompatibility
Typesetting same as NSTypesetterBehavior_10_2 but using line widths and height metric
calculations that are the same as with NSTypesetterOriginalBehavior.

Available in Mac OS X v10.2 and later.

Declared in NSLayoutManager.h.

NSTypesetterBehavior_10_2
The typesetter behavior introduced in Mac OS X version 10.2. This typesetter behavior provides
enhanced line and character spacing accuracy and supports more languages than the original typesetter
behavior.

Available in Mac OS X v10.2 and later.

Declared in NSLayoutManager.h.

NSTypesetterBehavior_10_3
The typesetter behavior introduced in Mac OS X version 10.3.

Available in Mac OS X v10.3 and later.

Declared in NSLayoutManager.h.

NSTypesetterBehavior_10_4
The typesetter behavior introduced in Mac OS X version 10.4.

Available in Mac OS X v10.4 and later.

Declared in NSLayoutManager.h.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSLayoutManager.h

100 Constants
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

NSLayoutManager Class Reference

This table describes the changes to NSLayoutManager Class Reference.

NotesDate

Added descriptions of NSGlyphStorage protocol methods.2008-12-20

Added note to introduction discussing use of screen fonts. Augmented
information about thread safety.

2008-10-15

Documented methods and constants added in Mac OS X v10.5. Added missing
NSTypesetterBehavior_10_4 enumeration constant. Revised task groupings and
corrected other minor errors.

2007-04-16

Removed references to Postscript commands from description of the
showPackedGlyphs:length:glyphRange:atPoint: font:color:printingAdjustment:
method.

2006-12-05

Made minor changes to conform to reference consistency guidelines.2006-06-28

First publication of this content as a separate document.2006-05-23

101
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

102
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

addTemporaryAttribute:value:forCharacterRange:
instance method 20

addTemporaryAttributes:forCharacterRange:
instance method 21

addTextContainer: instance method 21
allowsNonContiguousLayout instance method 22
attachmentSizeForGlyphAtIndex: instance method

23
attributedString instance method 23

B

backgroundLayoutEnabled instance method 23
boundingRectForGlyphRange:inTextContainer:

instance method 24
boundsRectForTextBlock:atIndex:effectiveRange:

instance method 24
boundsRectForTextBlock:glyphRange: instance

method 25

C

characterIndexForGlyphAtIndex: instance method
26

characterRangeForGlyphRange:actualGlyphRange:
instance method 26

D

defaultAttachmentScaling instance method 27
defaultBaselineOffsetForFont: instance method

28
defaultLineHeightForFont: instance method 28
delegate instance method 29

deleteGlyphsInRange: instance method 29
drawBackgroundForGlyphRange:atPoint: instance

method 29
drawGlyphsForGlyphRange:atPoint: instance

method 30
drawsOutsideLineFragmentForGlyphAtIndex:

instance method 31
drawStrikethroughForGlyphRange:strikethroughType:

baselineOffset:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin:
instance method 31

drawUnderlineForGlyphRange:underlineType:
baselineOffset:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin:
instance method 32

E

ensureGlyphsForCharacterRange: instance method
33

ensureGlyphsForGlyphRange: instance method 34
ensureLayoutForBoundingRect:inTextContainer:

instance method 34
ensureLayoutForCharacterRange: instance method

34
ensureLayoutForGlyphRange: instance method 35
ensureLayoutForTextContainer: instance method

35
extraLineFragmentRect instance method 36
extraLineFragmentTextContainer instance method

36
extraLineFragmentUsedRect instance method 36

F

firstTextView instance method 37
firstUnlaidCharacterIndex instance method 37
firstUnlaidGlyphIndex instance method 38

103
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

Index

fractionOfDistanceThroughGlyphForPoint:
inTextContainer: instance method 38

G

getFirstUnlaidCharacterIndex:glyphIndex:
instance method 38

getGlyphs:range: instance method 39
getGlyphsInRange:glyphs:characterIndexes:

glyphInscriptions:elasticBits: instance
method 39

getGlyphsInRange:glyphs:characterIndexes:
glyphInscriptions:elasticBits:bidiLevels:
instance method 40

getLineFragmentInsertionPointsForCharacterAtIndex:
alternatePositions:inDisplayOrder:positions:
characterIndexes: instance method 41

Glyph Attributes 97
glyphAtIndex: instance method 42
glyphAtIndex:isValidIndex: instance method 42
glyphGenerator instance method 43
glyphIndexForCharacterAtIndex: instance method

43
glyphIndexForPoint:inTextContainer: instance

method 44
glyphIndexForPoint:inTextContainer:

fractionOfDistanceThroughGlyph: instance
method 44

glyphRangeForBoundingRect:inTextContainer:
instance method 45

glyphRangeForBoundingRectWithoutAdditionalLayout:
inTextContainer: instance method 46

glyphRangeForCharacterRange:actualCharacterRange:
instance method 47

glyphRangeForTextContainer: instance method 47

H

hasNonContiguousLayout instance method 48
hyphenationFactor instance method 48

I

init instance method 49
insertGlyph:atGlyphIndex:characterIndex:

instance method 49
insertGlyphs:length:forStartingGlyphAtIndex:

characterIndex: instance method 50
insertTextContainer:atIndex: instance method 50

intAttribute:forGlyphAtIndex: instance method
51

invalidateDisplayForCharacterRange: instance
method 52

invalidateDisplayForGlyphRange: instance method
52

invalidateGlyphsForCharacterRange:changeInLength:
actualCharacterRange: instance method 52

invalidateGlyphsOnLayoutInvalidationForGlyphRange:
instance method 53

invalidateLayoutForCharacterRange:
actualCharacterRange: instance method 53

invalidateLayoutForCharacterRange:isSoft:
actualCharacterRange: instance method 54

isValidGlyphIndex: instance method 55

L

layoutManager:didCompleteLayoutForTextContainer:
atEnd: <NSObject> delegate method 96

layoutManager:shouldUseTemporaryAttributes:
forDrawingToScreen:atCharacterIndex:
effectiveRange: <NSObject> delegate method
96

layoutManagerDidInvalidateLayout: <NSObject>
delegate method 97

layoutManagerOwnsFirstResponderInWindow:
instance method 55

layoutOptions instance method 55
layoutRectForTextBlock:atIndex:effectiveRange:

instance method 56
layoutRectForTextBlock:glyphRange: instance

method 57
lineFragmentRectForGlyphAtIndex:effectiveRange:

instance method 57
lineFragmentRectForGlyphAtIndex:effectiveRange:

withoutAdditionalLayout: instance method 58
lineFragmentUsedRectForGlyphAtIndex:

effectiveRange: instance method 59
lineFragmentUsedRectForGlyphAtIndex:

effectiveRange:withoutAdditionalLayout:
instance method 59

locationForGlyphAtIndex: instance method 60

N

notShownAttributeForGlyphAtIndex: instance
method 61

NSGlyphAttributeBidiLevel constant 98
NSGlyphAttributeElastic constant 98

104
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

INDEX

NSGlyphAttributeInscribe constant 98
NSGlyphAttributeSoft constant 98
NSGlyphInscribeAbove constant 99
NSGlyphInscribeBase constant 98
NSGlyphInscribeBelow constant 99
NSGlyphInscribeOverBelow constant 99
NSGlyphInscribeOverstrike constant 99
NSGlyphInscription data type 98
NSTypesetterBehavior data type 99
NSTypesetterBehavior_10_2 constant 100
NSTypesetterBehavior_10_2_WithCompatibility

constant 100
NSTypesetterBehavior_10_3 constant 100
NSTypesetterBehavior_10_4 constant 100
NSTypesetterLatestBehavior constant 100
NSTypesetterOriginalBehavior constant 100
numberOfGlyphs instance method 61

R

rangeOfNominallySpacedGlyphsContainingIndex:
instance method 62

rectArrayForCharacterRange:
withinSelectedCharacterRange:inTextContainer:
rectCount: instance method 62

rectArrayForGlyphRange:withinSelectedGlyphRange:
inTextContainer:rectCount: instance method
63

removeTemporaryAttribute:forCharacterRange:
instance method 64

removeTextContainerAtIndex: instance method 65
replaceGlyphAtIndex:withGlyph: instance method

66
replaceTextStorage: instance method 66
rulerAccessoryViewForTextView:paragraphStyle:

ruler:enabled: instance method 67
rulerMarkersForTextView:paragraphStyle:ruler:

instance method 68

S

setAllowsNonContiguousLayout: instance method
68

setAttachmentSize:forGlyphRange: instance
method 69

setBackgroundLayoutEnabled: instance method 69
setBoundsRect:forTextBlock:glyphRange: instance

method 70
setCharacterIndex:forGlyphAtIndex: instance

method 70

setDefaultAttachmentScaling: instance method 71
setDelegate: instance method 71
setDrawsOutsideLineFragment:forGlyphAtIndex:

instance method 72
setExtraLineFragmentRect:usedRect:textContainer:

instance method 72
setGlyphGenerator: instance method 73
setHyphenationFactor: instance method 73
setIntAttribute:value:forGlyphAtIndex: instance

method 74
setLayoutRect:forTextBlock:glyphRange: instance

method 75
setLineFragmentRect:forGlyphRange:usedRect:

instance method 75
setLocation:forStartOfGlyphRange: instance

method 76
setLocations:startingGlyphIndexes:count:

forGlyphRange: instance method 77
setNotShownAttribute:forGlyphAtIndex: instance

method 77
setShowsControlCharacters: instance method 78
setShowsInvisibleCharacters: instance method 78
setTemporaryAttributes:forCharacterRange:

instance method 79
setTextContainer:forGlyphRange: instance method

79
setTextStorage: instance method 80
setTypesetterBehavior: instance method 81
setTypesetter: instance method 80
setUsesFontLeading: instance method 81
setUsesScreenFonts: instance method 82
showAttachmentCell:inRect:characterIndex:

instance method 82
showPackedGlyphs:length:glyphRange:atPoint:font:

color:printingAdjustment: instance method
83

showsControlCharacters instance method 83
showsInvisibleCharacters instance method 84
strikethroughGlyphRange:strikethroughType:

lineFragmentRect:lineFragmentGlyphRange:
containerOrigin: instance method 84

substituteFontForFont: instance method 85

T

temporaryAttribute:atCharacterIndex:
effectiveRange: instance method 85

temporaryAttribute:atCharacterIndex:
longestEffectiveRange:inRange: instance
method 86

temporaryAttributesAtCharacterIndex:
effectiveRange: instance method 87

105
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

INDEX

temporaryAttributesAtCharacterIndex:
longestEffectiveRange:inRange: instance
method 88

textContainerChangedGeometry: instance method
88

textContainerChangedTextView: instance method
89

textContainerForGlyphAtIndex:effectiveRange:
instance method 89

textContainerForGlyphAtIndex:effectiveRange:
withoutAdditionalLayout: instance method 90

textContainers instance method 91
textStorage instance method 91
textStorage:edited:range:changeInLength:

invalidatedRange: instance method 91
textViewForBeginningOfSelection instance method

92
typesetter instance method 93
typesetterBehavior instance method 93

U

underlineGlyphRange:underlineType:
lineFragmentRect:lineFragmentGlyphRange:
containerOrigin: instance method 94

usedRectForTextContainer: instance method 94
usesFontLeading instance method 95
usesScreenFonts instance method 95

106
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

INDEX

	NSLayoutManager Class Reference
	Contents
	NSLayoutManager Class Reference
	Overview
	Text Antialiasing
	Thread Safety of NSLayoutManager
	Noncontiguous Layout

	Adopted Protocols
	Tasks
	Initializing
	Setting the Text Storage
	Setting Text Containers
	Setting the Glyph Generator
	Invalidating Glyphs and Layout
	Enabling Background Layout
	Accessing Glyphs
	Mapping Characters to Glyphs
	Setting Glyph Attributes
	Handling Layout for Text Containers
	Handling Line Fragment Rectangles
	Laying Out Glyphs
	Handling Layout for Text Blocks
	Displaying Special Glyphs
	Controlling Hyphenation
	Finding Characters and Glyphs Not Laid Out
	Using Screen Fonts
	Handling Rulers
	Managing the Responder Chain
	Drawing
	Accessing the Delegate
	Accessing the Typesetter
	Managing Typesetter Compatibility
	Managing Temporary Attribute Support
	Managing Noncontiguous Layout
	Accessing the Font Leading

	Instance Methods
	addTemporaryAttribute:value:forCharacterRange:
	addTemporaryAttributes:forCharacterRange:
	addTextContainer:
	allowsNonContiguousLayout
	attachmentSizeForGlyphAtIndex:
	attributedString
	backgroundLayoutEnabled
	boundingRectForGlyphRange:inTextContainer:
	boundsRectForTextBlock:atIndex:effectiveRange:
	boundsRectForTextBlock:glyphRange:
	characterIndexForGlyphAtIndex:
	characterRangeForGlyphRange:actualGlyphRange:
	defaultAttachmentScaling
	defaultBaselineOffsetForFont:
	defaultLineHeightForFont:
	delegate
	deleteGlyphsInRange:
	drawBackgroundForGlyphRange:atPoint:
	drawGlyphsForGlyphRange:atPoint:
	drawsOutsideLineFragmentForGlyphAtIndex:
	drawStrikethroughForGlyphRange:strikethroughType:baselineOffset: lineFragmentRect:lineFragmentGlyphRange:containerOrigin:
	drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect: lineFragmentGlyphRange:containerOrigin:
	ensureGlyphsForCharacterRange:
	ensureGlyphsForGlyphRange:
	ensureLayoutForBoundingRect:inTextContainer:
	ensureLayoutForCharacterRange:
	ensureLayoutForGlyphRange:
	ensureLayoutForTextContainer:
	extraLineFragmentRect
	extraLineFragmentTextContainer
	extraLineFragmentUsedRect
	firstTextView
	firstUnlaidCharacterIndex
	firstUnlaidGlyphIndex
	fractionOfDistanceThroughGlyphForPoint:inTextContainer:
	getFirstUnlaidCharacterIndex:glyphIndex:
	getGlyphs:range:
	getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
	getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: bidiLevels:
	getLineFragmentInsertionPointsForCharacterAtIndex:alternatePositions: inDisplayOrder:positions:characterIndexes:
	glyphAtIndex:
	glyphAtIndex:isValidIndex:
	glyphGenerator
	glyphIndexForCharacterAtIndex:
	glyphIndexForPoint:inTextContainer:
	glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph:
	glyphRangeForBoundingRect:inTextContainer:
	glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer:
	glyphRangeForCharacterRange:actualCharacterRange:
	glyphRangeForTextContainer:
	hasNonContiguousLayout
	hyphenationFactor
	init
	insertGlyph:atGlyphIndex:characterIndex:
	insertGlyphs:length:forStartingGlyphAtIndex:characterIndex:
	insertTextContainer:atIndex:
	intAttribute:forGlyphAtIndex:
	invalidateDisplayForCharacterRange:
	invalidateDisplayForGlyphRange:
	invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:
	invalidateGlyphsOnLayoutInvalidationForGlyphRange:
	invalidateLayoutForCharacterRange:actualCharacterRange:
	invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:
	isValidGlyphIndex:
	layoutManagerOwnsFirstResponderInWindow:
	layoutOptions
	layoutRectForTextBlock:atIndex:effectiveRange:
	layoutRectForTextBlock:glyphRange:
	lineFragmentRectForGlyphAtIndex:effectiveRange:
	lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
	lineFragmentUsedRectForGlyphAtIndex:effectiveRange:
	lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
	locationForGlyphAtIndex:
	notShownAttributeForGlyphAtIndex:
	numberOfGlyphs
	rangeOfNominallySpacedGlyphsContainingIndex:
	rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer: rectCount:
	rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount:
	removeTemporaryAttribute:forCharacterRange:
	removeTextContainerAtIndex:
	replaceGlyphAtIndex:withGlyph:
	replaceTextStorage:
	rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:
	rulerMarkersForTextView:paragraphStyle:ruler:
	setAllowsNonContiguousLayout:
	setAttachmentSize:forGlyphRange:
	setBackgroundLayoutEnabled:
	setBoundsRect:forTextBlock:glyphRange:
	setCharacterIndex:forGlyphAtIndex:
	setDefaultAttachmentScaling:
	setDelegate:
	setDrawsOutsideLineFragment:forGlyphAtIndex:
	setExtraLineFragmentRect:usedRect:textContainer:
	setGlyphGenerator:
	setHyphenationFactor:
	setIntAttribute:value:forGlyphAtIndex:
	setLayoutRect:forTextBlock:glyphRange:
	setLineFragmentRect:forGlyphRange:usedRect:
	setLocation:forStartOfGlyphRange:
	setLocations:startingGlyphIndexes:count:forGlyphRange:
	setNotShownAttribute:forGlyphAtIndex:
	setShowsControlCharacters:
	setShowsInvisibleCharacters:
	setTemporaryAttributes:forCharacterRange:
	setTextContainer:forGlyphRange:
	setTextStorage:
	setTypesetter:
	setTypesetterBehavior:
	setUsesFontLeading:
	setUsesScreenFonts:
	showAttachmentCell:inRect:characterIndex:
	showPackedGlyphs:length:glyphRange:atPoint:font:color:printingAdjustment:
	showsControlCharacters
	showsInvisibleCharacters
	strikethroughGlyphRange:strikethroughType:lineFragmentRect: lineFragmentGlyphRange:containerOrigin:
	substituteFontForFont:
	temporaryAttribute:atCharacterIndex:effectiveRange:
	temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange:
	temporaryAttributesAtCharacterIndex:effectiveRange:
	temporaryAttributesAtCharacterIndex:longestEffectiveRange:inRange:
	textContainerChangedGeometry:
	textContainerChangedTextView:
	textContainerForGlyphAtIndex:effectiveRange:
	textContainerForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
	textContainers
	textStorage
	textStorage:edited:range:changeInLength:invalidatedRange:
	textViewForBeginningOfSelection
	typesetter
	typesetterBehavior
	underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange: containerOrigin:
	usedRectForTextContainer:
	usesFontLeading
	usesScreenFonts

	Delegate Methods
	layoutManager:didCompleteLayoutForTextContainer:atEnd:
	layoutManager:shouldUseTemporaryAttributes:forDrawingToScreen:atCharacterIndex: effectiveRange:
	layoutManagerDidInvalidateLayout:

	Constants
	Glyph Attributes
	NSGlyphInscription
	NSTypesetterBehavior

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	N
	R
	S
	T
	U

