NSLayoutManager Class Reference

Cocoa > Text & Fonts

¢

2008-12-20



.

[

Apple Inc.

© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Quartz are trademarks of Apple Inc.,
registered in the United States and other
countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

NSLayoutManager Class Reference 9

Overview 9
Text Antialiasing 9
Thread Safety of NSLayoutManager 10
Noncontiguous Layout 10
Adopted Protocols 10
Tasks 11
Initializing 11
Setting the Text Storage 11
Setting Text Containers 11
Setting the Glyph Generator 11
Invalidating Glyphs and Layout 12
Enabling Background Layout 12
Accessing Glyphs 12
Mapping Characters to Glyphs 13
Setting Glyph Attributes 13
Handling Layout for Text Containers 14
Handling Line Fragment Rectangles 14
Laying Out Glyphs 15
Handling Layout for Text Blocks 16
Displaying Special Glyphs 16
Controlling Hyphenation 17
Finding Characters and Glyphs Not Laid Out 17
Using Screen Fonts 17
Handling Rulers 17
Managing the Responder Chain 17
Drawing 18
Accessing the Delegate 18
Accessing the Typesetter 18
Managing Typesetter Compatibility 19
Managing Temporary Attribute Support 19
Managing Noncontiguous Layout 19
Accessing the Font Leading 20
Instance Methods 20

addTemporaryAttribute:value:forCharacterRange:

addTemporaryAttributes:forCharacterRange: 21
addTextContainer: 21
allowsNonContiguousLayout 22
attachmentSizeForGlyphAtindex: 23
attributedString 23
backgroundLayoutEnabled 23

2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

20



CONTENTS

boundingRectForGlyphRange:inTextContainer: 24
boundsRectForTextBlock:atindex:effectiveRange: 24
boundsRectForTextBlock:glyphRange: 25
characterindexForGlyphAtindex: 26
characterRangeForGlyphRange:actualGlyphRange: 26
defaultAttachmentScaling 27
defaultBaselineOffsetForFont: 28
defaultLineHeightForFont: 28

delegate 29

deleteGlyphsinRange: 29
drawBackgroundForGlyphRange:atPoint: 29
drawGlyphsForGlyphRange:atPoint: 30
drawsOutsideLineFragmentForGlyphAtindex: 31

drawStrikethroughForGlyphRange:strikethroughType:baselineOffset:
lineFragmentRect:lineFragmentGlyphRange:containerOrigin: 31

drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin: 32

ensureGlyphsForCharacterRange: 33
ensureGlyphsForGlyphRange: 34
ensureLayoutForBoundingRect:inTextContainer: 34
ensureLayoutForCharacterRange: 34
ensureLayoutForGlyphRange: 35
ensurelLayoutForTextContainer: 35

extraLineFragmentRect 36

extraLineFragmentTextContainer 36
extraLineFragmentUsedRect 36

firstTextView 37

firstUnlaidCharacterindex 37

firstUnlaidGlyphindex 38
fractionOfDistanceThroughGlyphForPoint:inTextContainer: 38
getFirstUnlaidCharacterindex:glyphindex: 38
getGlyphs:range: 39
getGlyphsinRange:glyphs:characterindexes:glyphinscriptions:elasticBits: 39

getGlyphsinRange:glyphs:characterindexes:glyphinscriptions:elasticBits: bidiLevels:

getLineFragmentinsertionPointsForCharacterAtindex:alternatePositions:
inDisplayOrder:positions:characterindexes: 41

glyphAtindex: 42

glyphAtindex:isValidindex: 42

glyphGenerator 43

glyphindexForCharacterAtindex: 43

glyphlndexForPoint:inTextContainer: 44
glyphindexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: 44
glyphRangeForBoundingRect:inTextContainer: 45
glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer: 46
glyphRangeForCharacterRange:actualCharacterRange: 47
glyphRangeForTextContainer: 47

2008-12-20 | © 2008 Apple Inc. All Rights Reserved.

40



CONTENTS

hasNonContiguousLayout 48

hyphenationFactor 48

init 49

insertGlyph:atGlyphindex:characterindex: 49
insertGlyphs:length:forStartingGlyphAtindex:characterindex: 50
insertTextContainer:atindex: 50

intAttribute:forGlyphAtindex: 51

invalidateDisplayForCharacterRange: 52

invalidateDisplayForGlyphRange: 52
invalidateGlyphsForCharacterRange:changelnLength:actualCharacterRange: 52
invalidateGlyphsOnLayoutinvalidationForGlyphRange: 53
invalidateLayoutForCharacterRange:actualCharacterRange: 53
invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: 54
isValidGlyphindex: 55

layoutManagerOwnsFirstResponderinWindow: 55

layoutOptions 55

layoutRectForTextBlock:atindex:effectiveRange: 56
layoutRectForTextBlock:glyphRange: 57
lineFragmentRectForGlyphAtindex:effectiveRange: 57
lineFragmentRectForGlyphAtindex:effectiveRange:withoutAdditionalLayout: 58
lineFragmentUsedRectForGlyphAtindex:effectiveRange: 59
lineFragmentUsedRectForGlyphAtindex:effectiveRange:withoutAdditionalLayout: 59
locationForGlyphAtindex: 60

notShownAttributeForGlyphAtindex: 61

numberOfGlyphs 61

rangeOfNominallySpacedGlyphsContaininglndex: 62
rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer: rectCount: 62
rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: 63
removeTemporaryAttribute:forCharacterRange: 64
removeTlextContainerAtindex: 65

replaceGlyphAtindex:withGlyph: 66

replaceTextStorage: 66
rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled: 67
rulerMarkersForTextView:paragraphStyle:ruler: 68
setAllowsNonContiguousLayout: 68

setAttachmentSize:forGlyphRange: 69

setBackgroundLayoutEnabled: 69

setBoundsRect:forTextBlock:glyphRange: 70
setCharacterindex:forGlyphAtindex: 70

setDefaultAttachmentScaling: 71

setDelegate: 71

setDrawsOQutsideLineFragment:forGlyphAtindex: 72
setExtraLineFragmentRect:usedRect:textContainer: 72

setGlyphGenerator: 73

setHyphenationFactor: 73

setintAttribute:value:forGlyphAtindex: 74

2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



CONTENTS

setLayoutRect:forTextBlock:glyphRange: 75
setLineFragmentRect:forGlyphRange:usedRect: 75
setLocation:forStartOfGlyphRange: 76
setLocations:startingGlyphindexes:count:forGlyphRange: 77
setNotShownAttribute:forGlyphAtindex: 77
setShowsControlCharacters: 78
setShowslnvisibleCharacters: 78
setTemporaryAttributes:forCharacterRange: 79
setTextContainer:forGlyphRange: 79

setTextStorage: 80

setTypesetter: 80

setTypesetterBehavior: 81

setUsesFontLeading: 81

setUsesScreenFonts: 82
showAttachmentCell:inRect:characterindex: 82
showPackedGlyphs:length:glyphRange:atPoint:font:color:printingAdjustment: 83
showsControlCharacters 83

showslnvisibleCharacters 84

strikethroughGlyphRange:strikethroughType:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin: 84

substituteFontForFont: 85
temporaryAttribute:atCharacterindex:effectiveRange: 85
temporaryAttribute:atCharacterindex:longestEffectiveRange:inRange: 86
temporaryAttributesAtCharacterindex:effectiveRange: 87
temporaryAttributesAtCharacterindex:longestEffectiveRange:inRange: 88
textContainerChangedGeometry: 88

textContainerChangedTextView: 89
textContainerForGlyphAtindex:effectiveRange: 89
textContainerForGlyphAtindex:effectiveRange:withoutAdditionalLayout: 90
textContainers 91

textStorage 91
textStorage:edited:range:changelnLength:invalidatedRange: 91
textViewForBeginningOfSelection 92

typesetter 93

typesetterBehavior 93

underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange: containerOrigin:
94

usedRectForTextContainer: 94
usesFontLeading 95
usesScreenFonts 95
Delegate Methods 96
layoutManager:didCompleteLayoutForTextContainer:atEnd: 96

layoutManager:shouldUseTemporaryAttributes:forDrawingToScreen:atCharacterindex:
effectiveRange: 96

layoutManagerDidInvalidateLayout: 97
Constants 97

2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



CONTENTS

Glyph Attributes 97
NSGlyphinscription 98
NSTypesetterBehavior 99

Document Revision History 101

Index 103

2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



CONTENTS

2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



NSLayoutManager Class Reference

Inherits from NSObject
Conforms to NSGlyphStorage
NSCoding
NSObject (NSObject)
Framework /System/Library/Frameworks/AppKit.framework
Availability Available in Mac OS X v10.0 and later.
Declared in NSLayoutManager.h
Companion guides Text System Overview

Text Layout Programming Guide for Cocoa

Related sample code Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus
TextLayoutDemo
Worm
Overview

An NSLayoutManager object coordinates the layout and display of characters held in an NSTextStorage
object. It maps Unicode character codes to glyphs, sets the glyphs in a series of NSTextContainer objects,
and displays them in a series of NSTextView objects. In addition to its core function of laying out text, an
NSLayoutManager object coordinates its NSTextView objects, provides services to those text views to
support NSRulerView instances for editing paragraph styles, and handles the layout and display of text
attributes not inherent in glyphs (such as underline or strikethrough). You can create a subclass of
NSLayoutManager to handle additional text attributes, whether inherent or not.

Text Antialiasing

NSLayoutManager provides the threshold for text antialiasing. It looks at the AppTeAntiAliasingThreshold
default value. If the font size is smaller than or equal to this threshold size, the text is rendered aliased by
NSLayoutManager. You can change the threshold value from the Appearance pane of System Preferences.

Overview 9
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



NSLayoutManager Class Reference

Thread Safety of NSLayoutManager

Generally speaking, a given layout manager (and associated objects) should not be used on more than one
thread at a time. Most layout managers are used on the main thread, since it is the main thread on which
their text views are displayed, and since background layout occurs on the main thread. If it is intended that
a layout manager should be used on a background thread, first make sure that text views associated with
that layout manager (if any) are not displayed while the layout manager is being used on the background
thread, and, second, turn off background layout for that layout manager while it is being used on the
background thread.

Noncontiguous Layout

Noncontiguous layout is an optional layout manager behavior new in Mac OS X v10.5. Previously, both glyph
generation and layout were always performed, in order, from the beginning to the end of the document.
When noncontiguous layout is turned on, however, the layout manager gains the option of performing glyph
generation or layout for one portion of the document without having done so for previous sections. This can
provide significant performance improvements for large documents.

Noncontiguous layout is not turned on automatically because direct clients of NSLayoutManager typically
have relied on the previous behavior—for example, by forcing layout for a given glyph range, and then
assuming that previous glyphs would therefore be laid out. Clients who use NSLayoutManager only
indirectly—for example, those who use NSTextView without directly calling the underlying layout
manager—can usually turn on noncontiguous layout without difficulty. Clients using NSLayoutManager
directly need to examine their usage before turning on noncontiguous layout.

To turn on noncontiguous layout, use setAlTowsNonContiguouslLayout: (page 68).In addition, see the
other methods in “Managing Noncontiguous Layout” (page 19), many of which enable you to ensure that

glyph generation and layout are performed for specified portions of the text. The behavior of a number of
other layout manager methods is affected by the state of noncontiguous layout, as noted in the discussion
sections of those method descriptions.

Adopted Protocols

10

NSCoding
- encodeWithCoder:

- initWithCoder:

NSGlyphStorage
- attributedString

- insertGlyphs:length:forStartingGlyphAtIndex:characterIndex:
- layoutOptions
- setIntAttribute:value:forGlyphAtindex:

Adopted Protocols
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



Tasks

Tasks

NSLayoutManager Class Reference

Initializing

- init (page 49)
Initializes the receiver, a newly created NSLayoutManager object.

Setting the Text Storage

- setTextStorage: (page 80)
Sets the receiver's NSTextStorage object.

- textStorage (page 91)
Returns the receiver’s text storage object.

- attributedString (page 23)
Returns the text storage object from which the NSG1yphGenerator object procures characters for
glyph generation.

- replaceTextStorage: (page 66)
Replaces the NSTextStorage object for the group of text-system objects containing the receiver
with the given text storage object.

Setting Text Containers

- textContainers (page 91)
Returns the receiver’s text containers.

- addTextContainer: (page 21)
Appends the given text container to the series of text containers where the receiver arranges text.

- insertTextContainer:atIndex: (page 50)
Inserts the given text container into the series of text containers at the given index.

- removeTextContainerAtIndex: (page 65)
Removes the text container at the given index and invalidates the layout as needed.

Setting the Glyph Generator

- setGlyphGenerator: (page 73)
Sets the glyph generator used by this layout manager.
- glyphGenerator (page 43)
Returns the glyph generator used by this layout manager.

n
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



12

NSLayoutManager Class Reference

Invalidating Glyphs and Layout

- invalidateGlyphsForCharacterRange:changelnlLength:actualCharacterRange: (page 52)
Invalidates the cached glyphs for the characters in the given character range, adjusts the character
indices of all the subsequent glyphs by the change in length, and invalidates the new character range.

- invalidateGlyphsOnlLayoutInvalidationForGlyphRange: (page 53)

Specifies explicitly when portions of the glyph stream depend on layout.

- invalidatelayoutForCharacterRange:isSoft:actualCharacterRange: (page 54)
Invalidates the layout information for the glyphs mapped to the given range of characters.

- invalidatelayoutForCharacterRange:actualCharacterRange: (page 53)
Invalidates the layout information for the glyphs mapped to the given range of characters.

- invalidateDisplayForCharacterRange: (page 52)
Invalidates display for the given character range.

- invalidateDisplayForGlyphRange: (page 52)
Marks the glyphs in the given glyph range as needing display, as well as the appropriate regions of
the NSTextView objects that display those glyphs (using the NSV1iew method
setNeedsDisplayInRect:).

- layoutManagerDidInvalidatelayout: (page 97)
Informs the delegate that the given layout manager has invalidated layout information (not glyph
information).

- textContainerChangedGeometry: (page 88)
Invalidates the layout information, and possibly glyphs, for the given text container and all subsequent
NSTextContainer objects.

- textContainerChangedTextView: (page 89)
Updates information needed to manage NSTextView objects in the given text container.

- textStorage:edited:range:changelnlength:invalidatedRange: (page 91)
Invalidates glyph and layout information for a portion of the text in the given text storage object.

Enabling Background Layout

- setBackgroundlLayoutEnabled: (page 69)
Specifies whether the receiver generates glyphs and lays them out when the application’s run loop
is idle.

- backgroundlLayoutEnabled (page 23)

Indicates whether the receiver generates glyphs and lays out text when the application’s run loop is
idle.

Accessing Glyphs

- insertGlyph:atGlyphIndex:characterIndex: (page 49)
Inserts a single glyph into the glyph stream at the given index and maps it to the character at the
given character index.

- insertGlyphs:length:forStartingGlyphAtIndex:characterIndex: (page 50)

Inserts the given glyphs into the glyph cache at the given index and maps them to characters beginning
at the given character index.

Tasks
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



NSLayoutManager Class Reference

- isValidGlyphIndex: (page 55)

Indicates whether the specified index refers to a valid glyph, otherwise NO.
- glyphAtIndex: (page 42)

Returns the glyph at g7yphIndex.
- glyphAtIndex:isValidIndex: (page 42)

If the given index is valid, returns the glyph at that location and optionally returns a flag indicating
whether the requested index is in range.

- replaceGlyphAtIndex:withGlyph: (page 66)

Replaces the glyph at the given index with a new glyph.
- getGlyphs:range: (page 39)

Fills the passed-in buffer with a sequence of glyphs

- getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: (page 39)
Returns the glyphs and information needed to perform layout for the given glyph range.

- getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:bidilevels: (page
40)
Returns the glyphs and information needed to perform layout for the given glyph range.

- deleteGlyphsInRange: (page 29)
Deletes the glyphs in the given range from the receiver’s glyph store.

- numberO0fGlyphs (page 61)
Returns the number of glyphs in the receiver.

Mapping Characters to Glyphs

- setCharacterIndex:forGlyphAtIndex: (page 70)
Sets the index of the character corresponding to the glyph at the given glyph index.

- characterIndexForGlyphAtIndex: (page 26)
Returns the index in the text storage for the first character associated with the given glyph.

- glyphIndexForCharacterAtIndex: (page 43)
Returns the index of the first glyph associated with the character at the specified index.
- characterRangeForGlyphRange:actualGlyphRange: (page 26)
Returns the range of characters that generated the glyphs in the given glyph range.
- glyphRangeForCharacterRange:actualCharacterRange: (page 47)
Returns the range of glyphs that are generated from the characters in the given character range.

Setting Glyph Attributes

- intAttribute:forGlyphAtIndex: (page 51)
Returns the value of the attribute identified by the given attribute tag for the glyph at the given index.
- setIntAttribute:value:forGlyphAtIndex: (page 74)
Sets a custom attribute value for a given glyph.
- setAttachmentSize:forGlyphRange: (page 69)
Sets the size at which the given glyph (assumed to be an attachment) is asked to draw in the given
glyph range.

Tasks 13
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



14

NSLayoutManager Class Reference

- attachmentSizeForGlyphAtIndex: (page 23)
For a glyph corresponding to an attachment, returns the size for the attachment cell to occupy.

- setDefaultAttachmentScaling: (page 71)
Sets the default scaling behavior to the given scaling if an attachment image is too large to fit in a
text container.

- defaultAttachmentScaling (page 27)
Returns the default behavior desired if an attachment image is too large to fit in a text container.

- showAttachmentCell:inRect:characterIndex: (page 82)
Draws an attachment cell.

Handling Layout for Text Containers

- setTextContainer:forGlyphRange: (page 79)
Sets text container where the glyphs in the given range are laid out.

- glyphRangeForTextContainer: (page 47)
Returns the range of glyphs laid out within the given text container.

- textContainerForGlyphAtIndex:effectiveRange: (page 89)

Returns the container in which the given glyph is laid out and (optionally) by reference the whole
range of glyphs that are in that container.

- textContainerForGlyphAtIndex:effectiveRange:withoutAdditionallayout: (page 90)
Returns the container in which the given glyph is laid out and (optionally) by reference the whole
range of glyphs that are in that container.

- usedRectForTextContainer: (page 94)

Returns the bounding rectangle for the glyphs laid out in the given text container.

- layoutManager:didCompletelayoutForTextContainer:atkEnd: (page 96)
Informs the delegate that the given layout manager has finished laying out text in the given text
container.

Handling Line Fragment Rectangles

- setlineFragmentRect:forGlyphRange:usedRect: (page 75)
Associates the given line fragment bounds with the given range of glyphs.

- lineFragmentRectForGlyphAtIindex:effectiveRange: (page 57)
Returns the rectangle for the line fragment in which the given glyph is laid out and (optionally), by
reference, the whole range of glyphs that are in that fragment.

- lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionallayout: (page 58)
Returns the line fragment rectangle containing the glyph at the given glyph index.

- lineFragmentUsedRectForGlyphAtIndex:effectiveRange: (page 59)
Returns the usage rectangle for the line fragment in which the given glyph is laid and (optionally) by
reference the whole range of glyphs that are in that fragment.

- lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionallayout: (page
59)

Returns the usage rectangle for the line fragment in which the given glyph is laid and (optionally) by
reference the whole range of glyphs that are in that fragment.

Tasks
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



NSLayoutManager Class Reference

- setExtralineFragmentRect:usedRect:textContainer: (page 72)
Sets the bounds and container for the extra line fragment.

- extralineFragmentRect (page 36)
Returns the rectangle defining the extra line fragment for the insertion point at the end of a text
(either in an empty text or after a final paragraph separator).

- extralineFragmentUsedRect (page 36)
Returns the rectangle enclosing the insertion point drawn in the extra line fragment rectangle.

- extralineFragmentTextContainer (page 36)
Returns the text container that contains the extra line fragment rectangle.

- setDrawsQutsidelineFragment:forGlyphAtindex: (page 72)
Specifies whether the given glyph exceeds the bounds of the line fragment where it’s laid out.

- drawsOutsidelineFragmentForGlyphAtIndex: (page 31)
Indicates whether the glyph draws outside of its line fragment rectangle.

Laying Out Glyphs

- setlocation:forStartOfGlyphRange: (page 76)
Sets the location for the first glyph of the given range.

- setlocations:startingGlyphIndexes:count:forGlyphRange: (page 77)
Sets locations for many glyph ranges at once.

- locationForGlyphAtIndex: (page 60)
Returns the location for the given glyph within its line fragment.

- rangeOfNominallySpacedGlyphsContainingIndex: (page 62)
Returns the range for the glyphs around the given glyph that can be displayed using only their
advancements from the font, without pairwise kerning or other adjustments to spacing.
- getlineFragmentInsertionPointsForCharacterAtindex:alternatePositions: inDisplayOrder:positions:characterIndexes: (oage
41)
Returns insertion points in bulk for a given line fragment.

- rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:rectCount: (page
62)
Returns an array of rectangles and, by reference, the number of such rectangles, that define the region
in the given container enclosing the given character range.

- rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: (page
63)
Returns an array of rectangles and, by reference, the number of such rectangles, that define the region
in the given container enclosing the given glyph range.

- boundingRectForGlyphRange:inTextContainer: (page 24)
Returns a single bounding rectangle (in container coordinates) enclosing all glyphs and other marks
drawn in the given text container for the given glyph range, including glyphs that draw outside their
line fragment rectangles and text attributes such as underlining.

- glyphRangeForBoundingRect:inTextContainer: (page 45)
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within the given
rectangle in the given text container.

- glyphRangeForBoundingRectWithoutAdditionallayout:inTextContainer: (page 46)

Returns the smallest contiguous range for glyphs that are laid out wholly or partially within the given
rectangle in the given text container.

Tasks 15
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



16

NSLayoutManager Class Reference

- glyphIndexForPoint:inTextContainer:fraction0fDistanceThroughGlyph: (page 44)
Returns the index of the glyph falling under the given point, expressed in the given container's
coordinate system.

- fractionOfDistanceThroughGlyphForPoint:inTextContainer: (page 38)

This method is a primitive for
glyphIndexForPoint:inTextContainer:fraction0fDistanceThroughGlyph: (page 44).
You should always call the main method, not the primitives.

- glyphIndexForPoint:inTextContainer: (page 44)

This method is a primitive for
glyphIndexForPoint:inTextContainer:fraction0fDistanceThroughGlyph: (page 44).
You should always call the main method, not the primitives.

Handling Layout for Text Blocks

- setlayoutRect:forTextBlock:glyphRange: (page 75)
Sets the layout rectangle enclosing the given text block containing the given glyph range.

- layoutRectForTextBlock:glyphRange: (page 57)
Returns the layout rectangle within which the given text block containing the given glyph range is
to be laid out.

- setBoundsRect:forTextBlock:glyphRange: (page 70)
Sets the bounding rectangle enclosing a given text block containing the given glyph range.

- boundsRectForTextBlock:glyphRange: (page 25)
Returns the bounding rectangle enclosing the given text block containing the given glyph range.

- TayoutRectForTextBlock:atIndex:effectiveRange: (page 56)
Returns the layout rectangle within which the given text block containing the glyph at the given
index is to be laid out.

- boundsRectForTextBlock:atIndex:effectiveRange: (page 24)

Returns the bounding rectangle within which the given text block containing the glyph at the given
index is to be laid out.

Displaying Special Glyphs

- setNotShownAttribute:forGlyphAtindex: (page 77)
Sets the glyph at the given index to be one that isn’t shown.

- notShownAttributeForGlyphAtIindex: (page 61)
Indicates whether the glyph at the given index is one that isn’t shown.

- setShowsInvisibleCharacters: (page 78)
Specifies whether to substitute visible glyphs for whitespace and other typically invisible characters
in layout.

- showsInvisibleCharacters (page 84)
Indicates whether the receiver substitutes visible glyphs for whitespace and other typically invisible
characters in layout.

- setShowsControlCharacters: (page 78)
Specifies whether to substitute visible glyphs for control characters in layout.

Tasks
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



NSLayoutManager Class Reference

- showsControlCharacters (page 83)
Indicates whether the receiver substitutes visible glyphs for control characters.

- layoutOptions (page 55)
Returns the layout manager’s current layout options.

Controlling Hyphenation

- setHyphenationFactor: (page 73)
Sets the threshold controlling when hyphenation is done.

- hyphenationFactor (page 48)
Returns the current hyphenation threshold.

Finding Characters and Glyphs Not Laid Out

- getFirstUnlaidCharacterIndex:glyphIndex: (page 38)
Returns the indexes for the first character and glyph that have invalid layout information.

- firstUnlaidCharacterIndex (page 37)
Returns the index for the first character in the layout manager that has not been laid out.

- firstUnlaidGlyphIndex (page 38)
Returns the index for the first glyph in the layout manager that has not been laid out.

Using Screen Fonts

- setUsesScreenFonts: (page 82)
Controls using screen fonts to calculate layout and display text.

- usesScreenfonts (page 95)
Indicates whether the receiver uses screen fonts to calculate layout and display text.

- substituteFontForFont: (page 85)
Returns a screen font suitable for use in place of the given font, if one is available.

Handling Rulers

- rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled: (page 67)
Returns the the accessory view that the text system uses for its ruler.

- rulerMarkersForTextView:paragraphStyle:ruler: (page 68)
Returns an array of text ruler objects for the current selection.

Managing the Responder Chain

- layoutManagerOwnsFirstResponderInWindow: (page 55)
Indicates whether the first responder in the given window is a text view associated with the receiver.

Tasks 17
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



18

NSLayoutManager Class Reference

- firstTextView (page 37)
Returns the first text view in the receiver’s series of text views.

- textViewForBeginningOfSelection (page 92)
Returns the text view containing the first glyph in the selection.

Drawing

- drawBackgroundForGlyphRange:atPoint: (page 29)
Draws background marks for the given glyph range, which must lie completely within a single text
container.
- drawGlyphsForGlyphRange:atPoint: (page 30)
Draws the glyphs in the given glyph range, which must lie completely within a single text container.
- drawnder1ineForGlyphRange:underTineType:baselineOffset: TineFragmentRect : 1ineFragmentGlyphRange: containerOrigin: (pege
32)
Draws underlining for the glyphs in a given range.
- underlineGlyphRange:underlineType:1ineFragmentRect:1ineFragmentGlyphRange:containerOrigin: (page
94)
Calculates subranges to be underlined for the glyphs in a given range and draws the underlining as
appropriate.
- showPackedGlyphs:Tength:glyphRange:atPoint:font:color:printingAdjustment: (page
83)
Draws a range of glyphs.
- drawStrikethroughForGlyphRange: strikethroughType:basel ine0f fset : 1ineFragmentRect : TineFragmentGlyphRange: containerOrigin: fege
31)
Draws a strikethrough for the glyphs in a given range.
- strikethroughGlyphRange:strikethroughType:1ineFragmentRect:1ineFragmentGlyphRange:containerOrigin: (page
84)
Calculates and draws strikethrough for the glyphs in the given range.

Accessing the Delegate

- setDelegate: (page 71)
Sets the receiver’s delegate.

- delegate (page 29)
Returns the receiver’s delegate.

Accessing the Typesetter

- setTypesetter: (page 80)
Sets the current typesetter.
- typesetter (page 93)
Returns the receiver’s typesetter.

Tasks
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



NSLayoutManager Class Reference

Managing Typesetter Compatibility

- setTypesetterBehavior: (page 81)
Sets the default typesetter behavior.

- typesetterBehavior (page 93)
Returns the current typesetter behavior.

- defaultlineHeightForFont: (page 28)
Returns the default line height for a line of text drawn using a given font.

- defaultBaselineOffsetForFont: (page 28)

Returns the default baseline offset specified by the layout manager's typesetter behavior for the given
font.

Managing Temporary Attribute Support

- addTemporaryAttributes:forCharacterRange: (page 21)
Appends one or more temporary attributes to the attributes dictionary of the specified character
range.

- addTemporaryAttribute:value:forCharacterRange: (page 20)
Adds a temporary attribute with the given name and value to the characters in the specified range.

- setTemporaryAttributes:forCharacterRange: (page 79)
Sets one or more temporary attributes for the specified character range.

- removeTemporaryAttribute:forCharacterRange: (page 64)
Removes a temporary attribute from the list of attributes for the specified character range.

- temporaryAttribute:atCharacterIndex:effectiveRange: (page 85)

Returns the value for the temporary attribute with a given name of the character at a given index,
and by reference the range over which the attribute applies.

- temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange: (page 86)
Returns the value for the temporary attribute with a given name of the character at a given index,
and by reference the maximum range over which the attribute applies.

- temporaryAttributesAtCharacterIndex:effectiveRange: (page 87)

Returns the dictionary of temporary attributes for the character range specified in
effectiveCharRange at character index charIndex.

- temporaryAttributesAtCharacterIndex:longestEffectiveRange:inRange: (page 88)
Returns the temporary attributes for the character at a given index, and by reference the maximum
range over which the attributes apply.

- layoutManager:shouldUseTemporaryAttributes:forDrawingToScreen:atCharacterIndex:effectiveRange: (page

96)

Sent when the layout manager is drawing and needs to decide whether or not to use temporary
attributes.

Managing Noncontiguous Layout

- setAllowsNonContiguouslayout: (page 68)
Enables or disables noncontiguous layout.

Tasks 19
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



NSLayoutManager Class Reference

- allowsNonContiguouslLayout (page 22)
Indicates whether noncontiguous layout is enabled or disabled.

- hasNonContiguouslayout (page 48)
Indicates whether the layout manager currently has any areas of noncontiguous layout.

- ensureGlyphsForCharacterRange: (page 33)

Forces the receiver to generate glyphs for the specified character range, if it has not already done so.

- ensureGlyphsForGlyphRange: (page 34)

Forces the receiver to generate glyphs for the specified glyph range, if it has not already done so.
- ensurelayoutForCharacterRange: (page 34)

Forces the receiver to perform layout for the specified character range, if it has not already done so.
- ensurelayoutForGlyphRange: (page 35)

Forces the receiver to perform layout for the specified glyph range, if it has not already done so.
- ensurelayoutForTextContainer: (page 35)

Forces the receiver to perform layout for the specified text container, if it has not already done so.
- ensurelayoutForBoundingRect:inTextContainer: (page 34)

Forces the receiver to perform layout for the specified area in the specified text container, if it has
not already done so.

Accessing the Font Leading

- usesFontleading (page 95)
Indicates whether the receiver uses the leading provided in the font.
- setUsesFontlLeading: (page 81)
Specifies whether or not the receiver uses the leading provided in the font.

Instance Methods

20

addTemporaryAttribute:value:forCharacterRange:

Adds a temporary attribute with the given name and value to the characters in the specified range.

- (void)addTemporaryAttribute: (NSString *)attrName value:(id)value
forCharacterRange: (NSRange)charRange

Parameters
attrName
The name of a temporary attribute.
value
The temporary attribute value associated with attriame.
charRange
The range of characters to which the specified attribute-value pair applies.

Discussion
Raises an NSInvalidArgumentExceptionif attrNameor valueisnil.

Instance Methods
2008-12-20 | © 2008 Apple Inc. All Rights Reserved.



NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
- addTemporaryAttributes:forChar