
NSMatrix Class Reference
Cocoa > User Experience

2008-10-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Quartz are trademarks of Apple Inc.,
registered in the United States and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSMatrix Class Reference 7

Overview 7
Tasks 8

Initializing an NSMatrix Object 8
Configuring the Matrix Object 8
Managing the Cell Class 8
Laying Out the Cells of the Matrix 8
Finding Matrix Coordinates 10
Managing Attributes of Individual Cells 10
Selecting and Deselecting Cells 10
Finding Cells 10
Modifying Graphics Attributes 11
Editing Text in Cells 11
Setting Tab Key Behavior 12
Managing the Delegate 12
Resizing the Matrix and Its Cells 12
Scrolling Cells in the Matrix 12
Displaying and Highlighting Cells 13
Managing and Sending Action Messages 13
Handling Event and Action Messages 13
Managing the Cursor 13

Instance Methods 13
acceptsFirstMouse: 13
addColumn 14
addColumnWithCells: 14
addRow 15
addRowWithCells: 16
allowsEmptySelection 16
autosizesCells 16
backgroundColor 17
cellAtRow:column: 17
cellBackgroundColor 18
cellClass 18
cellFrameAtRow:column: 19
cells 19
cellSize 19
cellWithTag: 20
delegate 20
deselectAllCells 21
deselectSelectedCell 21
doubleAction 21

3
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

drawCellAtRow:column: 22
drawsBackground 22
drawsCellBackground 23
getNumberOfRows:columns: 23
getRow:column:forPoint: 24
getRow:column:ofCell: 24
highlightCell:atRow:column: 25
initWithFrame: 25
initWithFrame:mode:cellClass:numberOfRows:numberOfColumns: 25
initWithFrame:mode:prototype:numberOfRows:numberOfColumns: 26
insertColumn: 27
insertColumn:withCells: 27
insertRow: 28
insertRow:withCells: 28
intercellSpacing 29
isAutoscroll 29
isSelectionByRect 30
keyCell 30
makeCellAtRow:column: 31
mode 31
mouseDown: 32
mouseDownFlags 32
numberOfColumns 33
numberOfRows 33
performKeyEquivalent: 33
prototype 34
putCell:atRow:column: 34
removeColumn: 35
removeRow: 35
renewRows:columns: 36
resetCursorRects 36
scrollCellToVisibleAtRow:column: 37
selectAll: 37
selectCellAtRow:column: 37
selectCellWithTag: 38
selectedCell 38
selectedCells 39
selectedColumn 39
selectedRow 40
selectText: 40
selectTextAtRow:column: 40
sendAction 41
sendAction:to:forAllCells: 41
sendDoubleAction 42
setAllowsEmptySelection: 42
setAutoscroll: 43

4
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

setAutosizesCells: 43
setBackgroundColor: 43
setCellBackgroundColor: 44
setCellClass: 44
setCellSize: 45
setDelegate: 45
setDoubleAction: 46
setDrawsBackground: 46
setDrawsCellBackground: 47
setIntercellSpacing: 47
setKeyCell: 48
setMode: 48
setPrototype: 48
setScrollable: 49
setSelectionByRect: 49
setSelectionFrom:to:anchor:highlight: 50
setState:atRow:column: 50
setTabKeyTraversesCells: 51
setToolTip:forCell: 52
setValidateSize: 52
sizeToCells 52
sortUsingFunction:context: 53
sortUsingSelector: 53
tabKeyTraversesCells 54
textDidBeginEditing: 54
textDidChange: 54
textDidEndEditing: 55
textShouldBeginEditing: 56
textShouldEndEditing: 56
toolTipForCell: 57

Constants 57
NSMatrixMode 57

Document Revision History 59

Index 61

5
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

6
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Matrix Programming Guide for Cocoa

Declared in NSMatrix.h

Related sample code DatePicker
OpenGLCompositorLab
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Overview

NSMatrix is a class used for creating groups of NSCell objects that work together in various ways.

The cells in an NSMatrix object are numbered by row and column, each starting with 0; for example, the
top left NSCell would be at (0, 0), and the NSCell that’s second down and third across would be at (1, 2).
The NSMatrix class has the notion of a single selected cell, which is the cell that was most recently clicked
or that was so designated by a selectCellAtRow:column: (page 37) or selectCellWithTag: (page
38) message. The selected cell is the cell chosen for action messages except for performClick: (NSCell),
which is assigned to the key cell. (The key cell is generally identical to the selected cell, but can be given click
focus while leaving the selected cell unchanged.) If the user has selected multiple cells, the selected cell is
the one lowest and furthest to the right in the matrix of cells.

Overview 7
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Tasks

Initializing an NSMatrix Object

– initWithFrame: (page 25)
Initializes a newly allocated matrix with the specified frame.

– initWithFrame:mode:cellClass:numberOfRows:numberOfColumns: (page 25)
Initializes and returns a newly allocated matrix of the specified size using cells of the given class.

– initWithFrame:mode:prototype:numberOfRows:numberOfColumns: (page 26)
Initializes and returns a newly allocated matrix of the specified size using the given cell as a prototype.

Configuring the Matrix Object

– setMode: (page 48)
Sets the selection mode of the receiver.

– mode (page 31)
Returns the selection mode of the matrix.

– setAllowsEmptySelection: (page 42)
Sets whether a radio-mode matrix allows an empty selection.

– allowsEmptySelection (page 16)
Returns a Boolean value indicating whether a radio-mode matrix supports an empty selection.

– setSelectionByRect: (page 49)
Sets whether the user can select a rectangle of cells in the receiver by dragging the cursor.

– isSelectionByRect (page 30)
Returns a Boolean value indicating whether the user can drag the cursor to select a rectangle of cells
in the matrix.

Managing the Cell Class

– setCellClass: (page 44)
Configures the receiver to use instances of the specified class when creating new cells.

– cellClass (page 18)
Returns the class that the matrix uses to create new cells.

– setPrototype: (page 48)
Sets the prototype cell that’s copied whenever the matrix creates a new cell.

– prototype (page 34)
Returns the prototype cell that’s copied when a new cell is created.,

Laying Out the Cells of the Matrix

– addColumn (page 14)
Adds a new column of cells to the right of the last column.

8 Tasks
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

– addColumnWithCells: (page 14)
Adds a new column of cells to the right of the last column, using the given cells.

– addRow (page 15)
Adds a new row of cells below the last row.

– addRowWithCells: (page 16)
Adds a new row of cells below the last row, using the specified cells.

– cellFrameAtRow:column: (page 19)
Returns the frame rectangle of the cell that would be drawn at the specified location.

– cellSize (page 19)
Returns the size of each cell in the matrix.

– getNumberOfRows:columns: (page 23)
Obtains the number of rows and columns in the receiver.

– insertColumn: (page 27)
Inserts a new column of cells at the specified location. .

– insertColumn:withCells: (page 27)
Inserts a new column of cells before the specified column, using the given cells.

– insertRow: (page 28)
Inserts a new row of cells before the specified row.

– insertRow:withCells: (page 28)
Inserts a new row of cells before the specified row, using the given cells.

– intercellSpacing (page 29)
Returns the spacing between cells in the matrix.

– makeCellAtRow:column: (page 31)
Creates a new cell at the location specified by the given row and column in the receiver.

– numberOfColumns (page 33)
Returns the number of columns in the receiver.

– numberOfRows (page 33)
Returns the number of rows in the receiver.

– putCell:atRow:column: (page 34)
Replaces the cell at the specified row and column with the new cell.

– removeColumn: (page 35)
Removes the specified column at from the receiver.

– removeRow: (page 35)
Removes the specified row from the receiver.

– renewRows:columns: (page 36)
Changes the number of rows and columns in the receiver.

– setCellSize: (page 45)
Sets the width and height of each of the cells in the matrix.

– setIntercellSpacing: (page 47)
Sets the spacing between cells in the matrix.

– sortUsingFunction:context: (page 53)
Sorts the receiver’s cells in ascending order as defined by the specified comparison function.

– sortUsingSelector: (page 53)
Sorts the receiver’s cells in ascending order as defined by the comparison method.

Tasks 9
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Finding Matrix Coordinates

– getRow:column:forPoint: (page 24)
Indicates whether the specified point lies within one of the cells of the matrix and returns the location
of the cell within which the point lies.

– getRow:column:ofCell: (page 24)
Searches the receiver for the specified cell and returns the row and column of the cell

Managing Attributes of Individual Cells

– setState:atRow:column: (page 50)
Sets the state of the cell at specified location.

– setToolTip:forCell: (page 52)
Sets the tooltip for the cell.

– toolTipForCell: (page 57)
Returns the tooltip for the specified cell.

Selecting and Deselecting Cells

– selectCellAtRow:column: (page 37)
Selects the cell at the specified row and column within the receiver.

– selectCellWithTag: (page 38)
Selects the last cell with the given tag.

– selectAll: (page 37)
Selects and highlights all cells in the receiver.

– setKeyCell: (page 48)
Sets the cell that will be clicked when the user presses the Space bar.

– keyCell (page 30)
Returns the cell that will be clicked when the user presses the Space bar.

– setSelectionFrom:to:anchor:highlight: (page 50)
Programmatically selects a range of cells.

– deselectAllCells (page 21)
Deselects all cells in the receiver and, if necessary, redisplays the receiver.

– deselectSelectedCell (page 21)
Deselects the selected cell or cells.

Finding Cells

– selectedCell (page 38)
Returns the most recently selected cell.

– selectedCells (page 39)
Returns the receiver's selected and highlighted cells.

10 Tasks
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

– selectedColumn (page 39)
Returns the column of the selected cell.

– selectedRow (page 40)
Returns the row of the selected cell.

– cellAtRow:column: (page 17)
Returns the cell at the specified row and column.

– cellWithTag: (page 20)
Searches the receiver and returns the last cell matching the specified tag.

– cells (page 19)
Returns the cells of the matrix.

Modifying Graphics Attributes

– backgroundColor (page 17)
Returns the background color of the matrix.

– cellBackgroundColor (page 18)
Returns the background color of the matrix's cells.

– drawsBackground (page 22)
Returns a Boolean value indicating whether the matrix draws its background.

– drawsCellBackground (page 23)
Returns whether the matrix draws the background within each of its cells.

– setBackgroundColor: (page 43)
Sets the background color for the receiver and redraws the receiver.

– setCellBackgroundColor: (page 44)
Sets the background color for the cells in the receiver

– setDrawsBackground: (page 46)
Sets whether the receiver draws its background.

– setDrawsCellBackground: (page 47)
Sets whether the receiver draws the background within each of its cells.

Editing Text in Cells

– selectText: (page 40)
Selects text in the currently selected cell or in the key cell.

– selectTextAtRow:column: (page 40)
Selects the text in the cell at the specified location and returns the cell.

– textShouldBeginEditing: (page 56)
Requests permission to begin editing text.

– textDidBeginEditing: (page 54)
Invoked when there’s a change in the text after the receiver gains first responder status.

– textDidChange: (page 54)
Invoked when a key-down event or paste operation occurs that changes the receiver’s contents.

Tasks 11
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

– textShouldEndEditing: (page 56)
Requests permission to end editing.

– textDidEndEditing: (page 55)
Invoked when text editing ends.

Setting Tab Key Behavior

– setTabKeyTraversesCells: (page 51)
Sets whether pressing the Tab key advances the key cell to the next selectable cell.

– tabKeyTraversesCells (page 54)
Returns a Boolean value indicating whether pressing the Tab key advances the key cell to the next
selectable cell.

Managing the Delegate

– delegate (page 20)
Returns the delegate for messages from the field editor.

– setDelegate: (page 45)
Sets the delegate for messages from the field editor.

Resizing the Matrix and Its Cells

– setAutosizesCells: (page 43)
Sets whether the cell sizes change when the receiver is resized.

– autosizesCells (page 16)
Returns a Boolean value indicating whether the matrix automatically resizes it cells.

– setValidateSize: (page 52)
Specifies whether the receiver's size information is validated.

– sizeToCells (page 52)
Changes the width and the height of the receiver’s frame so it exactly contains the cells.

Scrolling Cells in the Matrix

– setAutoscroll: (page 43)
Sets whether the receiver is automatically scrolled.

– isAutoscroll (page 29)
Returns a Boolean value indicating whether the receiver is automatically scrolled.

– setScrollable: (page 49)
Specifies whether the cells in the matrix are scrollable.

– scrollCellToVisibleAtRow:column: (page 37)
Scrolls the receiver so the specified cell is visible.

12 Tasks
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Displaying and Highlighting Cells

– drawCellAtRow:column: (page 22)
Displays the cell at the specified row and column.

– highlightCell:atRow:column: (page 25)
Highlights or unhighlights the cell at the specified row and column location.

Managing and Sending Action Messages

– sendAction (page 41)
If the selected cell has both an action and a target, sends its action to its target.

– sendAction:to:forAllCells: (page 41)
Iterates through the cells in the receiver, sending the specified selector to an object for each cell.

– setDoubleAction: (page 46)
Sets the action sent to the target of the receiver when the user double-clicks a cell.

– doubleAction (page 21)
Returns the matrix's double-click action method.

– sendDoubleAction (page 42)
Sends the double-click action message to the target of the receiver.

Handling Event and Action Messages

– acceptsFirstMouse: (page 13)
Returns a Boolean value indicating whether the receiver accepts the first mouse.

– mouseDown: (page 32)
Responds to a mouse-down event.

– mouseDownFlags (page 32)
Returns the flags in effect at the mouse-down event that started the current tracking session.

– performKeyEquivalent: (page 33)
Looks for a cell that has the given key equivalent and, if found, makes that cell respond as if clicked.

Managing the Cursor

– resetCursorRects (page 36)
Resets cursor rectangles so the cursor becomes an I-beam over text cells.

Instance Methods

acceptsFirstMouse:
Returns a Boolean value indicating whether the receiver accepts the first mouse.

Instance Methods 13
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

- (BOOL)acceptsFirstMouse:(NSEvent *)theEvent

Parameters
theEvent

This parameter is ignored.

Return Value
NO if the selection mode of the receiver is NSListModeMatrix, YES if the receiver is in any other selection
mode. The receiver does not accept first mouse in NSListModeMatrix to prevent the loss of multiple
selections.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mode (page 31)

Declared In
NSMatrix.h

addColumn
Adds a new column of cells to the right of the last column.

- (void)addColumn

Discussion
This method raises an NSRangeException if there are 0 rows or 0 columns. This method creates new cells
as needed with makeCellAtRow:column: (page 31). Use renewRows:columns: (page 36) to add new
cells to an empty matrix.

If the number of rows or columns in the receiver has been changed with renewRows:columns: (page 36),
new cells are created only if they are needed. This fact allows you to grow and shrink an NSMatrix without
repeatedly creating and freeing the cells.

This method redraws the receiver. Your code may need to send sizeToCells (page 52) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellClass (page 18)
– insertColumn: (page 27)
– prototype (page 34)
– addRow (page 15)

Declared In
NSMatrix.h

addColumnWithCells:
Adds a new column of cells to the right of the last column, using the given cells.

14 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

- (void)addColumnWithCells:(NSArray *)newCells

Parameters
newCells

An array of objects to use when filling the new column starting with the object at index 0. Each object
in should be an instance of NSCell or one of its subclasses (usually NSActionCell). The array should
have a sufficient number of cells to fill the entire column. Extra cells are ignored, unless the matrix is
empty. In that case, a matrix is created with one column and enough rows for all the elements of
newCells.

Discussion
This method redraws the receiver. Your code may need to send sizeToCells (page 52) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertColumn:withCells: (page 27)
– addRowWithCells: (page 16)

Declared In
NSMatrix.h

addRow
Adds a new row of cells below the last row.

- (void)addRow

Discussion
New cells are created as needed with makeCellAtRow:column: (page 31). This method raises an
NSRangeException if there are 0 rows or 0 columns. Use renewRows:columns: (page 36) to add new
cells to an empty matrix.

If the number of rows or columns in the receiver has been changed with renewRows:columns: (page 36),
then new cells are created only if they are needed. This fact allows you to grow and shrink an NSMatrix
without repeatedly creating and freeing the cells.

This method redraws the receiver. Your code may need to send sizeToCells (page 52) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellClass (page 18)
– insertRow: (page 28)
– prototype (page 34)
– addColumn (page 14)

Declared In
NSMatrix.h

Instance Methods 15
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

addRowWithCells:
Adds a new row of cells below the last row, using the specified cells.

- (void)addRowWithCells:(NSArray *)newCells

Parameters
newCells

An array of objects to use to fill the new row, starting with the object at index 0. Each object should
be an instance of NSCell or one of its subclasses (usually NSActionCell). The array should contain
a sufficient number of cells to fill the entire row. Extra cells are ignored, unless the matrix is empty.
In that case, a matrix is created with one row and enough columns for all the elements of newCells.

Discussion
This method redraws the receiver. Your code may need to send sizeToCells (page 52) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertRow:withCells: (page 28)
– addColumnWithCells: (page 14)

Declared In
NSMatrix.h

allowsEmptySelection
Returns a Boolean value indicating whether a radio-mode matrix supports an empty selection.

- (BOOL)allowsEmptySelection

Return Value
YES if it is possible to have no cells selected in a radio-mode matrix; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mode (page 31)
– setAllowsEmptySelection: (page 42)

Declared In
NSMatrix.h

autosizesCells
Returns a Boolean value indicating whether the matrix automatically resizes it cells.

- (BOOL)autosizesCells

16 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Return Value
YES if cells are resized proportionally to the receiver when its size changes (and intercell spacing is kept
constant). NO if the cell size and intercell spacing remain constant.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutosizesCells: (page 43)

Declared In
NSMatrix.h

backgroundColor
Returns the background color of the matrix.

- (NSColor *)backgroundColor

Return Value
The color used to draw the background of the receiver (the space between the cells).

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellBackgroundColor (page 18)
– drawsBackground (page 22)
– setBackgroundColor: (page 43)

Declared In
NSMatrix.h

cellAtRow:column:
Returns the cell at the specified row and column.

- (id)cellAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The number of the row containing the cell to return.

column
The number of the column containing the cell to return.

Return Value
The NSCell object at the specified row and column location specified, or nil if either row or column is
outside the bounds of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 17
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

See Also
– getRow:column:ofCell: (page 24)

Related Sample Code
NewsReader

Declared In
NSMatrix.h

cellBackgroundColor
Returns the background color of the matrix's cells.

- (NSColor *)cellBackgroundColor

Return Value
The color used to fill the background of the receiver's cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 17)
– drawsCellBackground (page 23)
– setCellBackgroundColor: (page 44)

Declared In
NSMatrix.h

cellClass
Returns the class that the matrix uses to create new cells.

- (Class)cellClass

Return Value
The subclass of NSCell that the receiver uses when creating new (empty) cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– prototype (page 34)
– makeCellAtRow:column: (page 31)
– setCellClass: (page 44)

Declared In
NSMatrix.h

18 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

cellFrameAtRow:column:
Returns the frame rectangle of the cell that would be drawn at the specified location.

- (NSRect)cellFrameAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row of the cell.

column
The column of the cell.

Return Value
The frame rectangle of the cell (whether or not the specified cell actually exists).

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellSize (page 19)

Declared In
NSMatrix.h

cells
Returns the cells of the matrix.

- (NSArray *)cells

Return Value
An array containing the cells of the receiver.

Discussion
The cells in the array are row-ordered; that is, the first row of cells appears first in the array, followed by the
second row, and so forth.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellAtRow:column: (page 17)

Declared In
NSMatrix.h

cellSize
Returns the size of each cell in the matrix.

- (NSSize)cellSize

Return Value
The width and height of each cell in the receiver (all cells in an NSMatrix are the same size).

Instance Methods 19
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellFrameAtRow:column: (page 19)
– intercellSpacing (page 29)
– setCellSize: (page 45)

Declared In
NSMatrix.h

cellWithTag:
Searches the receiver and returns the last cell matching the specified tag.

- (id)cellWithTag:(NSInteger)anInt

Parameters
anInt

The tag of the cell to return.

Return Value
The last (when viewing the matrix as a row-ordered array) NSCell object that has a tag matching anInt, or
nil if no such cell exists

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectCellWithTag: (page 38)
– setTag: (NSActionCell)

Declared In
NSMatrix.h

delegate
Returns the delegate for messages from the field editor.

- (id)delegate

Return Value
The delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textShouldBeginEditing: (page 56)
– textShouldEndEditing: (page 56)
– setDelegate: (page 45)

20 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Declared In
NSMatrix.h

deselectAllCells
Deselects all cells in the receiver and, if necessary, redisplays the receiver.

- (void)deselectAllCells

Discussion
If the selection mode is NSRadioModeMatrix and empty selection is not allowed, this method does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 16)
– mode (page 31)
– selectAll: (page 37)

Declared In
NSMatrix.h

deselectSelectedCell
Deselects the selected cell or cells.

- (void)deselectSelectedCell

Discussion
If the selection mode is NSRadioModeMatrix and empty selection is not allowed, or if nothing is currently
selected, this method does nothing. This method doesn’t redisplay the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 16)
– mode (page 31)
– selectCellAtRow:column: (page 37)

Declared In
NSMatrix.h

doubleAction
Returns the matrix's double-click action method.

- (SEL)doubleAction

Instance Methods 21
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Return Value
The action method sent by the receiver to its target when the user double-clicks an entry or NULL if there’s
no double-click action.

Discussion
The double-click action of an NSMatrix is sent after the appropriate single-click action (for the NSCell
clicked or for the NSMatrix if the NSCell doesn’t have its own action). If there is no double-click action and
the NSMatrix doesn’t ignore multiple clicks, the single-click action is sent twice.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (NSControl)
– target (NSControl)
– ignoresMultiClick (NSControl)
– sendDoubleAction (page 42)
– setDoubleAction: (page 46)

Declared In
NSMatrix.h

drawCellAtRow:column:
Displays the cell at the specified row and column.

- (void)drawCellAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row containing the cell to draw.

column
The column containing the cell to draw.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawCell: (NSControl)
– drawCellInside: (NSControl)

Declared In
NSMatrix.h

drawsBackground
Returns a Boolean value indicating whether the matrix draws its background.

- (BOOL)drawsBackground

Return Value
YES if the receiver draws its background (the space between the cells); otherwise NO.

22 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 17)
– drawsCellBackground (page 23)
– setDrawsBackground: (page 46)

Declared In
NSMatrix.h

drawsCellBackground
Returns whether the matrix draws the background within each of its cells.

- (BOOL)drawsCellBackground

Return Value
YES if the receiver draws the cell background; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellBackgroundColor (page 18)
– drawsBackground (page 22)
– setDrawsCellBackground: (page 47)

Declared In
NSMatrix.h

getNumberOfRows:columns:
Obtains the number of rows and columns in the receiver.

- (void)getNumberOfRows:(NSInteger *)rowCount columns:(NSInteger *)columnCount

Parameters
rowCount

On return, the number of rows in the matrix.

columnCount
On return, the number of columns in the matrix.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfColumns (page 33)
– numberOfRows (page 33)

Declared In
NSMatrix.h

Instance Methods 23
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

getRow:column:forPoint:
Indicates whether the specified point lies within one of the cells of the matrix and returns the location of the
cell within which the point lies.

- (BOOL)getRow:(NSInteger *)row column:(NSInteger *)column forPoint:(NSPoint)aPoint

Parameters
row

On return, the row of the cell containing the specified point.

column
On return, the column of the cell containing the specified point.

aPoint
The point to locate; this point should be in the coordinate system of the receiver.

Return Value
YES if the point lies within one of the cells in the receiver; NO if the point falls outside the bounds of the
receiver or lies within an intercell spacing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getRow:column:ofCell: (page 24)

Declared In
NSMatrix.h

getRow:column:ofCell:
Searches the receiver for the specified cell and returns the row and column of the cell

- (BOOL)getRow:(NSInteger *)row column:(NSInteger *)column ofCell:(NSCell *)aCell

Parameters
row

On return, the row in which the cell is located.

column
On return, the column in which the cell is located.

aCell
The cell to locate within the matrix.

Return Value
YES if the cell is one of the cells in the receiver, NO otherwise.

Discussion
.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getRow:column:forPoint: (page 24)

24 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Declared In
NSMatrix.h

highlightCell:atRow:column:
Highlights or unhighlights the cell at the specified row and column location.

- (void)highlightCell:(BOOL)flag atRow:(NSInteger)row column:(NSInteger)column

Parameters
flag

YES to highlight the cell; NO to unhighlight the cell.

row
The row containing the cell.

column
The column containing the cell.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

initWithFrame:
Initializes a newly allocated matrix with the specified frame.

- (id)initWithFrame:(NSRect)frameRect

Parameters
frameRect

The frame with which to initialize the matrix.

Return Value
The NSMatrix, initialized with default parameters. The new NSMatrix contains no rows or columns. The
default mode is NSRadioModeMatrix. The default cell class is NSActionCell.

Discussion
.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:
Initializes and returns a newly allocated matrix of the specified size using cells of the given class.

- (id)initWithFrame:(NSRect)frameRect mode:(NSInteger)aMode cellClass:(Class)classId
numberOfRows:(NSInteger)numRows numberOfColumns:(NSInteger)numColumns

Instance Methods 25
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Parameters
frameRect

The matrix's frame.

aMode
The tracking mode for the matrix; this can be one of the modes described in NSMatrixMode (page
57).

classId
The class to use for any cells that the matrix creates and uses. This can be obtained by sending a
class message to the desired subclass of NSCell.

numRows
The number of rows in the matrix.

numColumns
The number of columns in the matrix.

Return Value
The initialized instance of NSMatrix.

Discussion
This method is the designated initializer for matrices that add cells by creating instances of an NSCell
subclass.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

initWithFrame:mode:prototype:numberOfRows:numberOfColumns:
Initializes and returns a newly allocated matrix of the specified size using the given cell as a prototype.

- (id)initWithFrame:(NSRect)frameRect mode:(NSInteger)aMode prototype:(NSCell
*)aCell numberOfRows:(NSInteger)numRows numberOfColumns:(NSInteger)numColumns

Parameters
frameRect

The matrix's frame.

aMode
The tracking mode for the matrix; this can be one of the modes described in NSMatrixMode (page
57).

aCell
An instance of a subclass of NSCell, which the new matrix copies when it creates new cells.

numRows
The number of rows in the matrix.

numColumns
The number of columns in the matrix.

Discussion
This method is the designated initializer for matrices that add cells by copying an instance of an NSCell
subclass.

26 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

insertColumn:
Inserts a new column of cells at the specified location. .

- (void)insertColumn:(NSInteger)column

Parameters
column

The number of the column before which the new column is inserted. If column is greater than the
number of columns in the receiver, enough columns are created to expand the receiver to be column
columns wide.

Discussion
New cells are created if needed with makeCellAtRow:column: (page 31). This method redraws the receiver.
Your code may need to send sizeToCells (page 52) after sending this method to resize the receiver to fit
the newly added cells.

If the number of rows or columns in the receiver has been changed with renewRows:columns: (page 36),
new cells are created only if they’re needed. This fact allows you to grow and shrink an NSMatrix without
repeatedly creating and freeing the cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addColumn (page 14)
– insertRow: (page 28)

Declared In
NSMatrix.h

insertColumn:withCells:
Inserts a new column of cells before the specified column, using the given cells.

- (void)insertColumn:(NSInteger)column withCells:(NSArray *)newCells

Parameters
column

The column at which to insert the new cells.

newCells
An array of objects to use to fill the new column, starting with the object at index 0. Each object
should be an instance of NSCell or one of its subclasses (usually NSActionCell).

Instance Methods 27
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Discussion
If column is greater than the number of columns in the receiver, enough columns are created to expand the
receiver to be column columns wide. newCells should either be empty or contain a sufficient number of
cells to fill each new column. If newCells is nil or an array with no elements, the call is equivalent to calling
insertColumn: (page 27). Extra cells are ignored, unless the matrix is empty. In that case, a matrix is created
with one column and enough rows for all the elements of newCells.

This method redraws the receiver. Your code may need to send sizeToCells (page 52) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addColumnWithCells: (page 14)
– insertRow:withCells: (page 28)

Declared In
NSMatrix.h

insertRow:
Inserts a new row of cells before the specified row.

- (void)insertRow:(NSInteger)row

Parameters
row

The location at which to insert the new row. If this is greater than the number of rows in the receiver,
enough rows are created to expand the receiver to be row rows high.

Discussion
New cells are created if needed with makeCellAtRow:column: (page 31). This method redraws the receiver.
Your code may need to send sizeToCells (page 52) after sending this method to resize the receiver to fit
the newly added cells.

If the number of rows or columns in the receiver has been changed with renewRows:columns: (page 36),
then new cells are created only if they’re needed. This fact allows you to grow and shrink an NSMatrix
without repeatedly creating and freeing the cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addRow (page 15)
– insertColumn: (page 27)

Declared In
NSMatrix.h

insertRow:withCells:
Inserts a new row of cells before the specified row, using the given cells.

28 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

- (void)insertRow:(NSInteger)row withCells:(NSArray *)newCells

Parameters
row

The location at which to insert the new row.

newCells
An array of objects to use when filling the new row, starting with the object at index 0. Each object
in newCells should be an instance of NSCell or one of its subclasses (usually NSActionCell).

Discussion
If row is greater than the number of rows in the receiver, enough rows are created to expand the receiver
to be row rows high. newCells should either be empty or contain a sufficient number of cells to fill each
new row. If newCells is nil or an array with no elements, the call is equivalent to calling insertRow: (page
28). Extra cells are ignored, unless the matrix is empty. In that case, a matrix is created with one row and
enough columns for all the elements of newCells.

This method redraws the receiver. Your code may need to send sizeToCells (page 52) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addRowWithCells: (page 16)
– insertColumn:withCells: (page 27)

Declared In
NSMatrix.h

intercellSpacing
Returns the spacing between cells in the matrix.

- (NSSize)intercellSpacing

Return Value
The vertical and horizontal spacing between cells in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellSize (page 19)
– setIntercellSpacing: (page 47)

Declared In
NSMatrix.h

isAutoscroll
Returns a Boolean value indicating whether the receiver is automatically scrolled.

- (BOOL)isAutoscroll

Instance Methods 29
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Return Value
YES if the receiver will be automatically scrolled whenever the cursor is dragged outside the receiver after a
mouse-down event within its bounds; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollCellToVisibleAtRow:column: (page 37)
– setScrollable: (page 49)

Declared In
NSMatrix.h

isSelectionByRect
Returns a Boolean value indicating whether the user can drag the cursor to select a rectangle of cells in the
matrix.

- (BOOL)isSelectionByRect

Return Value
YES if the user can select a rectangle of cells in the receiver by dragging the cursor, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectionFrom:to:anchor:highlight: (page 50)

Declared In
NSMatrix.h

keyCell
Returns the cell that will be clicked when the user presses the Space bar.

- (id)keyCell

Return Value
The cell that will be clicked when the user presses the Space bar.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tabKeyTraversesCells (page 54)
– setKeyCell: (page 48)

Declared In
NSMatrix.h

30 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

makeCellAtRow:column:
Creates a new cell at the location specified by the given row and column in the receiver.

- (NSCell *)makeCellAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row in which to create the new cell.

column
The column in which to create the new cell.

Return Value
The newly created cell.

Discussion
If the receiver has a prototype cell, it’s copied to create the new cell. If not, and if the receiver has a cell class
set, it allocates and initializes (with init) an instance of that class. If the receiver hasn’t had either a prototype
cell or a cell class set, makeCellAtRow:column: creates an NSActionCell.

Your code should never invoke this method directly; it’s used by addRow (page 15) and other methods when
a cell must be created. It may be overridden to provide more specific initialization of cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addColumn (page 14)
– addRow (page 15)
– insertColumn: (page 27)
– insertRow: (page 28)
– setCellClass: (page 44)
– setPrototype: (page 48)

Declared In
NSMatrix.h

mode
Returns the selection mode of the matrix.

- (NSMatrixMode)mode

Return Value
The selection mode of the receiver. Possible return values are defined in NSMatrixMode (page 57).

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFrame:mode:cellClass:numberOfRows:numberOfColumns: (page 25)
– initWithFrame:mode:prototype:numberOfRows:numberOfColumns: (page 26)
– setMode: (page 48)

Instance Methods 31
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Declared In
NSMatrix.h

mouseDown:
Responds to a mouse-down event.

- (void)mouseDown:(NSEvent *)theEvent

Parameters
theEvent

The mouse-down event.

Discussion
A mouse-down event in a text cell initiates editing mode. A double click in any cell type except a text cell
sends the double-click action of the receiver (if there is one) in addition to the single-click action.

Your code should never invoke this method, but you may override it to implement different mouse tracking
than NSMatrix does. The response of the receiver depends on its selection mode, as explained in the class
description.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendAction (page 41)
– sendDoubleAction (page 42)

Declared In
NSMatrix.h

mouseDownFlags
Returns the flags in effect at the mouse-down event that started the current tracking session.

- (NSInteger)mouseDownFlags

Return Value
The flags in effect when the mouse-down event is generated.

Discussion
The NSMatrix mouseDown: (page 32) method obtains these flags by sending a modifierFlags message
to the event passed into mouseDown: (page 32). Use this method if you want to access these flags. This
method is valid only during tracking; it isn’t useful if the target of the receiver initiates another tracking loop
as part of its action method (as a cell that pops up a pop-up list does, for example).

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendActionOn: (NSCell)

32 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Declared In
NSMatrix.h

numberOfColumns
Returns the number of columns in the receiver.

- (NSInteger)numberOfColumns

Return Value
The number of columns in the matrix.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getNumberOfRows:columns: (page 23)

Declared In
NSMatrix.h

numberOfRows
Returns the number of rows in the receiver.

- (NSInteger)numberOfRows

Return Value
The number of rows in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getNumberOfRows:columns: (page 23)

Declared In
NSMatrix.h

performKeyEquivalent:
Looks for a cell that has the given key equivalent and, if found, makes that cell respond as if clicked.

- (BOOL)performKeyEquivalent:(NSEvent *)theEvent

Parameters
theEvent

The event containing the character for which to find a key equivalent.

Return Value
YES if a cell in the receiver responds to the key equivalent in theEvent, NO if no cell responds.

Instance Methods 33
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Discussion
If there’s a cell in the receiver that has a key equivalent equal to the character in [theEvent
charactersIgnoringModifiers] (taking into account any key modifier flags) and that cell is enabled,
that cell is made to react as if the user had clicked it: by highlighting, changing its state as appropriate,
sending its action if it has one, and then unhighlighting.

Your code should never send this message—it is sent when the receiver or one of its superviews is the first
responder and the user presses a key. You may want to override this method to change the way key equivalents
are performed or displayed or to disable them in your subclass.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

prototype
Returns the prototype cell that’s copied when a new cell is created.,

- (id)prototype

Return Value
The cell that the matrix copies whenever it creates a new cell, or nil if there is none.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFrame:mode:prototype:numberOfRows:numberOfColumns: (page 26)
– makeCellAtRow:column: (page 31)
– setPrototype: (page 48)

Declared In
NSMatrix.h

putCell:atRow:column:
Replaces the cell at the specified row and column with the new cell.

- (void)putCell:(NSCell *)newCell atRow:(NSInteger)row column:(NSInteger)column

Parameters
newCell

The cell to insert into the matrix.

row
The row in which to place the new cell.

column
The column in which to place the new cell.

Availability
Available in Mac OS X v10.0 and later.

34 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Declared In
NSMatrix.h

removeColumn:
Removes the specified column at from the receiver.

- (void)removeColumn:(NSInteger)column

Parameters
column

The column to remove.

Discussion
The column's cells are autoreleased. This method redraws the receiver. Your code should normally send
sizeToCells (page 52) after invoking this method to resize the receiver so it fits the reduced cell count.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeRow: (page 35)
– addColumn (page 14)
– insertColumn: (page 27)

Declared In
NSMatrix.h

removeRow:
Removes the specified row from the receiver.

- (void)removeRow:(NSInteger)row

Parameters
row

The row to remove.

Discussion
The row's cells are autoreleased. This method redraws the receiver. Your code should normally send
sizeToCells (page 52) after invoking this method to resize the receiver so it fits the reduced cell count.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeColumn: (page 35)
– addRow (page 15)
– insertRow: (page 28)

Declared In
NSMatrix.h

Instance Methods 35
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

renewRows:columns:
Changes the number of rows and columns in the receiver.

- (void)renewRows:(NSInteger)newRows columns:(NSInteger)newCols

Parameters
newRows

The new number of rows in the matrix.

newCols
The new number of columns in the matrix.

Discussion
This method uses the same cells as before, creating new cells only if the new size is larger; it never frees cells.
It doesn’t redisplay the receiver. Your code should normally send sizeToCells (page 52) after invoking
this method to resize the receiver so it fits the changed cell arrangement. This method deselects all cells in
the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addColumn (page 14)
– addRow (page 15)
– removeColumn: (page 35)
– removeRow: (page 35)

Related Sample Code
NewsReader

Declared In
NSMatrix.h

resetCursorRects
Resets cursor rectangles so the cursor becomes an I-beam over text cells.

- (void)resetCursorRects

Discussion
This method resets the cursor rectangles by sending resetCursorRect:inView: to each cell in the receiver.
Any cell that has a cursor rectangle to set up should then send addCursorRect:cursor: back to the
receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– resetCursorRect:inView: (NSCell)
– addCursorRect:cursor: (NSView)

Declared In
NSMatrix.h

36 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

scrollCellToVisibleAtRow:column:
Scrolls the receiver so the specified cell is visible.

- (void)scrollCellToVisibleAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row of the cell to make visible.

column
The column of the cell to make visible.

Discussion
This method scrolls if the receiver is in a scrolling view and row and column represent a valid cell within the
receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollRectToVisible: (NSView)

Declared In
NSMatrix.h

selectAll:
Selects and highlights all cells in the receiver.

- (void)selectAll:(id)sender

Parameters
sender

This argument is ignored.

Discussion
Editable text cells and disabled cells are not selected. The receiver is redisplayed.

If the selection mode is not NSListModeMatrix (page 58), this method does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectCell: (NSControl)

Declared In
NSMatrix.h

selectCellAtRow:column:
Selects the cell at the specified row and column within the receiver.

- (void)selectCellAtRow:(NSInteger)row column:(NSInteger)column

Instance Methods 37
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Parameters
row

The row of the cell to select.

column
The column of the cell to select.

Discussion
If the specified cell is an editable text cell, its text is selected. If either row or column is –1, then the current
selection is cleared (unless the receiver is an NSRadioModeMatrix and doesn’t allow empty selection). This
method redraws the affected cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 16)
– mode (page 31)
– selectCell: (NSControl)

Declared In
NSMatrix.h

selectCellWithTag:
Selects the last cell with the given tag.

- (BOOL)selectCellWithTag:(NSInteger)anInt

Parameters
anInt

The tag of the cell to select.

Return Value
YES if the receiver contains a cell whose tag matches anInt, or NO if no such cell exists

Discussion
If the matrix has at least one cell whose tag is equal to anInt, the last cell (when viewing the matrix as a
row-ordered array) is selected. If the specified cell is an editable text cell, its text is selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellWithTag: (page 20)
– selectCell: (NSControl)

Declared In
NSMatrix.h

selectedCell
Returns the most recently selected cell.

38 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

- (id)selectedCell

Return Value
The most recently selected cell or nil if no cell is selected. If more than one cell is selected, this method
returns the cell that is lowest and farthest to the right in the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

selectedCells
Returns the receiver's selected and highlighted cells.

- (NSArray *)selectedCells

Return Value
An array containing all of the receiver’s highlighted cells plus its selected cell.

Discussion
See the class description for a discussion of the selected cell.

As an alternative to using setSelectionFrom:to:anchor:highlight: (page 50) for programmatically
making discontiguous selections of cells in a matrix, you could first set the single selected cell and then set
subsequent cells to be highlighted; afterwards you can call selectedCells (page 39) to obtain the selection
of cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHighlighted: (NSCell)
– selectedCell (page 38)

Declared In
NSMatrix.h

selectedColumn
Returns the column of the selected cell.

- (NSInteger)selectedColumn

Return Value
The column number of the selected cell or –1 if no cells are selected. If cells in multiple columns are selected,
this method returns the number of the last (rightmost) column containing a selected cell.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

Instance Methods 39
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

selectedRow
Returns the row of the selected cell.

- (NSInteger)selectedRow

Return Value
the row number of the selected cell, or –1 if no cells are selected. If cells in multiple rows are selected, this
method returns the number of the last row containing a selected cell.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

selectText:
Selects text in the currently selected cell or in the key cell.

- (void)selectText:(id)sender

Discussion
If the currently selected cell is editable and enabled, its text is selected. Otherwise, the key cell is selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyCell (page 30)
– selectText: (NSTextField)

Declared In
NSMatrix.h

selectTextAtRow:column:
Selects the text in the cell at the specified location and returns the cell.

- (id)selectTextAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row containing the text to select.

column
The column containing the text to select.

Return Value
If it is both editable and selectable, the cell at the specified row and column. If the cell at the specified location,
is either not editable or not selectable, this method does nothing and returns nil. If row and column indicate
a cell that is outside the receiver, this method does nothing and returns the receiver.

Availability
Available in Mac OS X v10.0 and later.

40 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

See Also
– selectText: (page 40)

Declared In
NSMatrix.h

sendAction
If the selected cell has both an action and a target, sends its action to its target.

- (BOOL)sendAction

Return Value
YES if an action was successfully sent to a target. If the selected cell is disabled, this method does nothing
and returns NO.

Discussion
If the cell has an action but no target, its action is sent to the target of the receiver. If the cell doesn’t have
an action, or if there is no selected cell, the receiver sends its own action to its target.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendDoubleAction (page 42)
– action (NSCell)
– target (NSCell)

Declared In
NSMatrix.h

sendAction:to:forAllCells:
Iterates through the cells in the receiver, sending the specified selector to an object for each cell.

- (void)sendAction:(SEL)aSelector to:(id)anObject forAllCells:(BOOL)flag

Parameters
aSelector

The selector to send to the object for each cell. This must represent a method that takes a single
argument: the id of the current cell in the iteration. aSelector’s return value must be a BOOL. If
aSelector returns NO for any cell, sendAction:to:forAllCells: terminates immediately, without
sending the message for the remaining cells. If it returns YES, sendAction:to:forAllCells:
proceeds to the next cell.

anObject
The object that is sent the selector for each cell in the matrix.

flag
YES if the method should iterate through all cells in the matrix; NO if it should iterate through just the
selected cells in the matrix.

Instance Methods 41
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Discussion
Iteration begins with the cell in the upper-left corner of the receiver, proceeding through the appropriate
entries in the first row, then on to the next.

This method is not invoked to send action messages to target objects in response to mouse-down events in
the receiver. Instead, you can invoke it if you want to have multiple cells in an NSMatrix interact with an
object. For example, you could use it to verify the titles in a list of items or to enable a series of radio buttons
based on their purpose in relation to anObject.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

sendDoubleAction
Sends the double-click action message to the target of the receiver.

- (void)sendDoubleAction

Discussion
If the receiver doesn't have a double-click action, the double-click action message of the selected cell (as
returned by selectedCell (page 38)) is sent to the selected cell’s target. Finally, if the selected cell also
has no action, then the single-click action of the receiver is sent to the target of the receiver.

If the selected cell is disabled, this method does nothing.

Your code shouldn’t invoke this method; it’s sent in response to a double-click event in the NSMatrix.
Override it if you need to change the search order for an action to send.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendAction (page 41)
– ignoresMultiClick (NSControl)

Declared In
NSMatrix.h

setAllowsEmptySelection:
Sets whether a radio-mode matrix allows an empty selection.

- (void)setAllowsEmptySelection:(BOOL)flag

Parameters
flag

YES to make the receiver allow one or zero cells to be selected. NO if the receiver should allow one
and only one cell (not zero cells) to be selected. This setting has effect only in the NSRadioModeMatrix
selection mode.

42 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 16)

Declared In
NSMatrix.h

setAutoscroll:
Sets whether the receiver is automatically scrolled.

- (void)setAutoscroll:(BOOL)flag

Parameters
flag

YES to indicate that the receiver, if it is in a scrolling view, should be automatically scrolled whenever
the cursor is dragged outside the receiver after a mouse-down event within the bounds of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

setAutosizesCells:
Sets whether the cell sizes change when the receiver is resized.

- (void)setAutosizesCells:(BOOL)flag

Parameters
flag

YES to specify that, whenever the receiver is resized, the sizes of the cells change in proportion,
keeping the intercell space constant; further, this method verifies that the cell sizes and intercell
spacing add up to the exact size of the receiver, adjusting the size of the cells and updating the
receiver if they don’t. If flag is NO, then the intercell spacing and cell size remain constant.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autosizesCells (page 16)

Declared In
NSMatrix.h

setBackgroundColor:
Sets the background color for the receiver and redraws the receiver.

Instance Methods 43
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

- (void)setBackgroundColor:(NSColor *)aColor

Parameters
aColor

The background color used to fill the space between cells or the space behind any non-opaque cells.
The default background color is the color returned by the NSColor method controlColor.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsBackground (page 22)
– setCellBackgroundColor: (page 44)
– backgroundColor (page 17)

Declared In
NSMatrix.h

setCellBackgroundColor:
Sets the background color for the cells in the receiver

- (void)setCellBackgroundColor:(NSColor *)aColor

Parameters
aColor

The background color used to fill the space behind non-opaque cells. The default cell background
color is the color returned by the NSColor method controlColor

Discussion
.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsCellBackground (page 23)
– setBackgroundColor: (page 43)
– cellBackgroundColor (page 18)

Declared In
NSMatrix.h

setCellClass:
Configures the receiver to use instances of the specified class when creating new cells.

- (void)setCellClass:(Class)aClass

44 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Parameters
aClass

The class to use when creating new cells. This should be the id of a subclass of NSCell, which can
be obtained by sending the class message to either the NSCell subclass object or to an instance
of that subclass. The default cell class is that set with the class method setCellClass:, or
NSActionCell if no other default cell class has been specified.

Discussion
You need to use this method only with matrices initialized with initWithFrame: (page 25), because the
other initializers allow you to specify an instance-specific cell class or cell prototype.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addColumn (page 14)
– addRow (page 15)
– insertColumn: (page 27)
– insertRow: (page 28)
– makeCellAtRow:column: (page 31)
– setPrototype: (page 48)
– cellClass (page 18)

Declared In
NSMatrix.h

setCellSize:
Sets the width and height of each of the cells in the matrix.

- (void)setCellSize:(NSSize)aSize

Parameters
aSize

The new width and height of cells in the receiver.

Discussion
This method may change the size of the receiver. It does not redraw the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– calcSize (NSControl)
– cellSize (page 19)

Declared In
NSMatrix.h

setDelegate:
Sets the delegate for messages from the field editor.

Instance Methods 45
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

- (void)setDelegate:(id)anObject

Parameters
anObject

The delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textShouldBeginEditing: (page 56)
– textShouldEndEditing: (page 56)
– delegate (page 20)

Declared In
NSMatrix.h

setDoubleAction:
Sets the action sent to the target of the receiver when the user double-clicks a cell.

- (void)setDoubleAction:(SEL)aSelector

Parameters
aSelector

The selector to make the double-click action of the receiver.

Discussion
A double-click action is always sent after the appropriate single-click action, which is the cell’s single-click
action, if it has one, or the receiver single-click action, otherwise. If aSelector is a non-NULL selector, this
method also sets the ignoresMultiClick flag to NO; otherwise, it leaves the flag unchanged.

If an NSMatrix has no double-click action set, then by default a double click is treated as a single click.

For the method to have any effect, the receiver’s action and target must be set to the class in which the
selector is declared. See Action Messages for additional information on action messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendDoubleAction (page 42)
– setAction: (NSControl)
– setTarget: (NSControl)
– doubleAction (page 21)

Declared In
NSMatrix.h

setDrawsBackground:
Sets whether the receiver draws its background.

46 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

- (void)setDrawsBackground:(BOOL)flag

Parameters
flag

YES if the receiver should draw its background (the space between the cells); NO if it should not.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 17)
– setDrawsCellBackground: (page 47)
– drawsBackground (page 22)

Declared In
NSMatrix.h

setDrawsCellBackground:
Sets whether the receiver draws the background within each of its cells.

- (void)setDrawsCellBackground:(BOOL)flag

Parameters
flag

YES if the receiver should draw the background in its cells; NO if it should not.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellBackgroundColor (page 18)
– setDrawsBackground: (page 46)
– drawsCellBackground (page 23)

Declared In
NSMatrix.h

setIntercellSpacing:
Sets the spacing between cells in the matrix.

- (void)setIntercellSpacing:(NSSize)aSize

Parameters
aSize

The vertical and horizontal spacing to use between cells in the receiver. By default, both values are
1.0 in the receiver’s coordinate system.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 47
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

See Also
– cellSize (page 19)
– intercellSpacing (page 29)

Declared In
NSMatrix.h

setKeyCell:
Sets the cell that will be clicked when the user presses the Space bar.

- (void)setKeyCell:(NSCell *)aCell

Parameters
aCell

The cell to set as the key cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTabKeyTraversesCells: (page 51)
– keyCell (page 30)

Declared In
NSMatrix.h

setMode:
Sets the selection mode of the receiver.

- (void)setMode:(NSMatrixMode)aMode

Parameters
aMode

The selection mode of the matrix. Possible values are listed in NSMatrixMode (page 57).

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFrame:mode:cellClass:numberOfRows:numberOfColumns: (page 25)
– initWithFrame:mode:prototype:numberOfRows:numberOfColumns: (page 26)
– mode (page 31)

Declared In
NSMatrix.h

setPrototype:
Sets the prototype cell that’s copied whenever the matrix creates a new cell.

48 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

- (void)setPrototype:(NSCell *)aCell

Parameters
aCell

The cell to copy when creating new cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFrame:mode:prototype:numberOfRows:numberOfColumns: (page 26)
– makeCellAtRow:column: (page 31)
– prototype (page 34)

Declared In
NSMatrix.h

setScrollable:
Specifies whether the cells in the matrix are scrollable.

- (void)setScrollable:(BOOL)flag

Parameters
flag

YES to make all the cells in the receiver scrollable, so the text they contain scrolls to remain in view
if the user types past the edge of the cell. If flag is NO, all cells are made nonscrolling. The prototype
cell, if there is one, is also set accordingly

Availability
Available in Mac OS X v10.0 and later.

See Also
– prototype (page 34)
– setScrollable: (NSCell)

Declared In
NSMatrix.h

setSelectionByRect:
Sets whether the user can select a rectangle of cells in the receiver by dragging the cursor.

- (void)setSelectionByRect:(BOOL)flag

Parameters
flag

YES if the matrix should allow the user to select a rectangle of cells by dragging. NO if selection in the
matrix should be on a row-by-row basis. The default is YES.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 49
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

See Also
– setSelectionFrom:to:anchor:highlight: (page 50)

Declared In
NSMatrix.h

setSelectionFrom:to:anchor:highlight:
Programmatically selects a range of cells.

- (void)setSelectionFrom:(NSInteger)startPos to:(NSInteger)endPos
anchor:(NSInteger)anchorPos highlight:(BOOL)lit

Parameters
startPos

The position of the cell that marks where the user would have pressed the mouse button.

endPos
The position of the cell that marks where the user would have released the mouse button.

anchorPos
The position of the cell to treat as the last cell the user would have selected. To simulate Shift-dragging
(continuous selection) anchorPos should be the endPos used in the last method call. To simulate
Command-dragging (discontinuous selection), anchorPos should be the same as this method call’s
startPos.

lit
YES if cells selected by this method should be highlighted.

Discussion
startPos, endPos, and anchorPos are cell positions, counting from 0 at the upper left cell of the receiver,
in row order. For example, the third cell in the top row would be number 2.

To simulate dragging without a modifier key, deselecting anything that was selected before, call
deselectAllCells (page 21) before calling this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isSelectionByRect (page 30)
– selectedCells (page 39)

Declared In
NSMatrix.h

setState:atRow:column:
Sets the state of the cell at specified location.

- (void)setState:(NSInteger)value atRow:(NSInteger)row column:(NSInteger)column

50 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Parameters
value

The value to assign to the cell.

row
The row in which the cell is located.

column
The column in which the cell is located.

Discussion
For radio-mode matrices, if value is nonzero the specified cell is selected before its state is set to value. If
value is 0 and the receiver is a radio-mode matrix, the currently selected cell is deselected (providing that
empty selection is allowed).

This method redraws the affected cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 16)
– setState: (NSCell)
– selectCellAtRow:column: (page 37)

Declared In
NSMatrix.h

setTabKeyTraversesCells:
Sets whether pressing the Tab key advances the key cell to the next selectable cell.

- (void)setTabKeyTraversesCells:(BOOL)flag

Parameters
flag

YES if pressing the Tab key should advance the key cell to the next selectable cell in the receiver. If
this is NO or if there aren't any selectable cells after the current one, the next view in the window
becomes key when the user presses the Tab key.

Discussion
Pressing Shift-Tab causes the key cell to advance in the opposite direction (if flag is NO, or if there aren’t
any selectable cells before the current one, the previous view in the window becomes key).

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectKeyViewFollowingView: (NSWindow)
– selectNextKeyView: (NSWindow)
– setKeyCell: (page 48)
– tabKeyTraversesCells (page 54)

Declared In
NSMatrix.h

Instance Methods 51
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

setToolTip:forCell:
Sets the tooltip for the cell.

- (void)setToolTip:(NSString *)toolTipString forCell:(NSCell *)cell

Parameters
toolTipString

The string to use as the cell's tooltip (or help tag).

cell
The cell to which to assign the tooltip.

Availability
Available in Mac OS X v10.0 and later.

See Also
– toolTipForCell: (page 57)

Declared In
NSMatrix.h

setValidateSize:
Specifies whether the receiver's size information is validated.

- (void)setValidateSize:(BOOL)flag

Parameters
flag

YES to assume that the size information in the receiver is correct. If flag is NO, the NSControlmethod
calcSize will be invoked before any further drawing is done.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

sizeToCells
Changes the width and the height of the receiver’s frame so it exactly contains the cells.

- (void)sizeToCells

Discussion
This method does not redraw the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameSize: (NSView)
– sizeToFit (NSControl)

52 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Declared In
NSMatrix.h

sortUsingFunction:context:
Sorts the receiver’s cells in ascending order as defined by the specified comparison function.

- (void)sortUsingFunction:(int (*)(id, id, void *))comparator context:(void *)context

Parameters
comparator

The function to use when comparing cells. The comparison function is used to compare two elements
at a time and should return NSOrderedAscending if the first element is smaller than the second,
NSOrderedDescending if the first element is larger than the second, and NSOrderedSame if the
elements are equal.

context
Context passed to the comparison function as its third argument, each time its called. This allows the
comparison to be based on some outside parameter, such as whether character sorting is case-sensitive
or case-insensitive.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sortUsingFunction:context: (NSMutableArray)

Declared In
NSMatrix.h

sortUsingSelector:
Sorts the receiver’s cells in ascending order as defined by the comparison method.

- (void)sortUsingSelector:(SEL)comparator

Parameters
comparator

The comparison method.

Discussion
The comparator message is sent to each object in the matrix and has as its single argument another object
in the array. The comparison method is used to compare two elements at a time and should return
NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending if the receiver
is larger than the argument, and NSOrderedSame if they are equal.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sortUsingSelector: (NSMutableArray)

Declared In
NSMatrix.h

Instance Methods 53
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

tabKeyTraversesCells
Returns a Boolean value indicating whether pressing the Tab key advances the key cell to the next selectable
cell.

- (BOOL)tabKeyTraversesCells

Return Value
YES if pressing the Tab key advances the key cell to the next selectable cell in the receiver; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyCell (page 30)
– setTabKeyTraversesCells: (page 51)

Declared In
NSMatrix.h

textDidBeginEditing:
Invoked when there’s a change in the text after the receiver gains first responder status.

- (void)textDidBeginEditing:(NSNotification *)notification

Parameters
notification

The NSControlTextDidBeginEditingNotification notification.

Discussion
This method’s default behavior is to post an NSControlTextDidBeginEditingNotification along with
the receiving object to the default notification center. The posted notification’s user info contains the contents
of notification’s user info dictionary, plus an additional key-value pair. The additional key is “NSFieldEditor”;
the value for this key is the text object that began editing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textDidChange: (page 54)
– textDidEndEditing: (page 55)
– textShouldEndEditing: (page 56)

Declared In
NSMatrix.h

textDidChange:
Invoked when a key-down event or paste operation occurs that changes the receiver’s contents.

- (void)textDidChange:(NSNotification *)notification

54 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Parameters
notification

The NSControlTextDidChangeNotification notification.

Discussion
This method’s default behavior is to pass this message on to the selected cell (if the selected cell responds
to textDidChange:) and then to post an NSControlTextDidChangeNotification along with the
receiving object to the default notification center. The posted notification’s user info contains the contents
of notification’s user info dictionary, plus an additional key-value pair. The additional key is “NSFieldEditor”;
the value for this key is the text object that changed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textDidBeginEditing: (page 54)
– textDidEndEditing: (page 55)

Declared In
NSMatrix.h

textDidEndEditing:
Invoked when text editing ends.

- (void)textDidEndEditing:(NSNotification *)notification

Parameters
notification

The NSControlTextDidEndEditingNotification notification.

Discussion
This method’s default behavior is to post an NSControlTextDidEndEditingNotification along with
the receiving object to the default notification center. The posted notification’s user info contains the contents
of notification’s user info dictionary, plus an additional key-value pair. The additional key is “NSFieldEditor”;
the value for this key is the text object that began editing. After posting the notification,
textDidEndEditing: sends an endEditing: message to the selected cell, draws and makes the selected
cell key, and then takes the appropriate action based on which key was used to end editing (Return, Tab, or
Back-Tab).

Availability
Available in Mac OS X v10.0 and later.

See Also
– textDidBeginEditing: (page 54)
– textDidChange: (page 54)
– textShouldEndEditing: (page 56)

Declared In
NSMatrix.h

Instance Methods 55
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

textShouldBeginEditing:
Requests permission to begin editing text.

- (BOOL)textShouldBeginEditing:(NSText *)textObject

Parameters
textObject

The text object requesting permission to begin editing.

Return Value
YES if the text object should proceed to make changes. If the delegate returns NO, the text object abandons
the editing operation.

The default behavior of this method is to return the value obtained from
control:textShouldBeginEditing:, unless the delegate doesn’t respond to that method, in which case
it returns YES, thereby allowing text editing to proceed.

Discussion
This method is invoked to let the NSTextField respond to impending changes to its text. This method’s
default behavior is to send control:textShouldBeginEditing: to the receiver’s delegate (passing the
receiver and textObject as parameters).

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 20)

Declared In
NSMatrix.h

textShouldEndEditing:
Requests permission to end editing.

- (BOOL)textShouldEndEditing:(NSText *)textObject

Parameters
textObject

The text object requesting permission to end editing.

Return Value
YES if the text object should proceed to finish editing and resign first responder status. If the delegate returns
NO, the text object selects all of its text and remains the first responder.

The textShouldEndEditing: method returns NO if the text field contains invalid contents; otherwise it
returns the value passed back from control:textShouldEndEditing:.

Discussion
This method is invoked to let the NSTextField respond to impending loss of first-responder status. This
method’s default behavior checks the text field for validity; providing that the field contents are deemed
valid, and providing that the delegate responds, control:textShouldEndEditing: is sent to the receiver’s
delegate (passing the receiver and textObject as parameters).

56 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 20)

Declared In
NSMatrix.h

toolTipForCell:
Returns the tooltip for the specified cell.

- (NSString *)toolTipForCell:(NSCell *)cell

Parameters
cell

The cell for which to return the tooltip.

Return Value
The string used as the cell's tooltip.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setToolTip:forCell: (page 52)

Declared In
NSMatrix.h

Constants

NSMatrixMode
These constants determine how NSCell objects behave when an NSMatrix object is tracking the mouse.

typedef enum _NSMatrixMode {
 NSRadioModeMatrix = 0,
 NSHighlightModeMatrix = 1,
 NSListModeMatrix = 2,
 NSTrackModeMatrix = 3
} NSMatrixMode;

Constants
NSTrackModeMatrix

The NSCell objects are asked to track the mouse with
trackMouse:inRect:ofView:untilMouseUp: whenever the cursor is inside their bounds. No
highlighting is performed.

Available in Mac OS X v10.0 and later.

Declared in NSMatrix.h.

Constants 57
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

NSHighlightModeMatrix
An NSCell is highlighted before it’s asked to track the mouse, then unhighlighted when it’s done
tracking.

Available in Mac OS X v10.0 and later.

Declared in NSMatrix.h.

NSRadioModeMatrix
Selects no more than one NSCell at a time.

Any time an NSCell is selected, the previously selected NSCell is unselected.

Available in Mac OS X v10.0 and later.

Declared in NSMatrix.h.

NSListModeMatrix
NSCell objects are highlighted, but don’t track the mouse.

Available in Mac OS X v10.0 and later.

Declared in NSMatrix.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

58 Constants
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSMatrix Class Reference

This table describes the changes to NSMatrix Class Reference.

NotesDate

Clarified usage of selectAll:.2008-10-15

Fixed minor bugs and revised task headings.2007-03-02

Removed mention of error action message from textShouldEndEditing.
Corrected typo in -cellSize description.

First publication of this content as a separate document.2006-05-23

59
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

60
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

acceptsFirstMouse: instance method 13
addColumn instance method 14
addColumnWithCells: instance method 14
addRow instance method 15
addRowWithCells: instance method 16
allowsEmptySelection instance method 16
autosizesCells instance method 16

B

backgroundColor instance method 17

C

cellAtRow:column: instance method 17
cellBackgroundColor instance method 18
cellClass instance method 18
cellFrameAtRow:column: instance method 19
cells instance method 19
cellSize instance method 19
cellWithTag: instance method 20

D

delegate instance method 20
deselectAllCells instance method 21
deselectSelectedCell instance method 21
doubleAction instance method 21
drawCellAtRow:column: instance method 22
drawsBackground instance method 22
drawsCellBackground instance method 23

G

getNumberOfRows:columns: instance method 23
getRow:column:forPoint: instance method 24
getRow:column:ofCell: instance method 24

H

highlightCell:atRow:column: instance method 25

I

initWithFrame: instance method 25
initWithFrame:mode:cellClass:numberOfRows:

numberOfColumns: instance method 25
initWithFrame:mode:prototype:numberOfRows:

numberOfColumns: instance method 26
insertColumn: instance method 27
insertColumn:withCells: instance method 27
insertRow: instance method 28
insertRow:withCells: instance method 28
intercellSpacing instance method 29
isAutoscroll instance method 29
isSelectionByRect instance method 30

K

keyCell instance method 30

M

makeCellAtRow:column: instance method 31
mode instance method 31
mouseDown: instance method 32
mouseDownFlags instance method 32

61
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Index

N

NSHighlightModeMatrix constant 58
NSListModeMatrix constant 58
NSMatrixMode data type 57
NSRadioModeMatrix constant 58
NSTrackModeMatrix constant 57
numberOfColumns instance method 33
numberOfRows instance method 33

P

performKeyEquivalent: instance method 33
prototype instance method 34
putCell:atRow:column: instance method 34

R

removeColumn: instance method 35
removeRow: instance method 35
renewRows:columns: instance method 36
resetCursorRects instance method 36

S

scrollCellToVisibleAtRow:column: instance
method 37

selectAll: instance method 37
selectCellAtRow:column: instance method 37
selectCellWithTag: instance method 38
selectedCell instance method 38
selectedCells instance method 39
selectedColumn instance method 39
selectedRow instance method 40
selectTextAtRow:column: instance method 40
selectText: instance method 40
sendAction instance method 41
sendAction:to:forAllCells: instance method 41
sendDoubleAction instance method 42
setAllowsEmptySelection: instance method 42
setAutoscroll: instance method 43
setAutosizesCells: instance method 43
setBackgroundColor: instance method 43
setCellBackgroundColor: instance method 44
setCellClass: instance method 44
setCellSize: instance method 45
setDelegate: instance method 45
setDoubleAction: instance method 46

setDrawsBackground: instance method 46
setDrawsCellBackground: instance method 47
setIntercellSpacing: instance method 47
setKeyCell: instance method 48
setMode: instance method 48
setPrototype: instance method 48
setScrollable: instance method 49
setSelectionByRect: instance method 49
setSelectionFrom:to:anchor:highlight: instance

method 50
setState:atRow:column: instance method 50
setTabKeyTraversesCells: instance method 51
setToolTip:forCell: instance method 52
setValidateSize: instance method 52
sizeToCells instance method 52
sortUsingFunction:context: instance method 53
sortUsingSelector: instance method 53

T

tabKeyTraversesCells instance method 54
textDidBeginEditing: instance method 54
textDidChange: instance method 54
textDidEndEditing: instance method 55
textShouldBeginEditing: instance method 56
textShouldEndEditing: instance method 56
toolTipForCell: instance method 57

62
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

INDEX

	NSMatrix Class Reference
	Contents
	NSMatrix Class Reference
	Overview
	Tasks
	Initializing an NSMatrix Object
	Configuring the Matrix Object
	Managing the Cell Class
	Laying Out the Cells of the Matrix
	Finding Matrix Coordinates
	Managing Attributes of Individual Cells
	Selecting and Deselecting Cells
	Finding Cells
	Modifying Graphics Attributes
	Editing Text in Cells
	Setting Tab Key Behavior
	Managing the Delegate
	Resizing the Matrix and Its Cells
	Scrolling Cells in the Matrix
	Displaying and Highlighting Cells
	Managing and Sending Action Messages
	Handling Event and Action Messages
	Managing the Cursor

	Instance Methods
	acceptsFirstMouse:
	addColumn
	addColumnWithCells:
	addRow
	addRowWithCells:
	allowsEmptySelection
	autosizesCells
	backgroundColor
	cellAtRow:column:
	cellBackgroundColor
	cellClass
	cellFrameAtRow:column:
	cells
	cellSize
	cellWithTag:
	delegate
	deselectAllCells
	deselectSelectedCell
	doubleAction
	drawCellAtRow:column:
	drawsBackground
	drawsCellBackground
	getNumberOfRows:columns:
	getRow:column:forPoint:
	getRow:column:ofCell:
	highlightCell:atRow:column:
	initWithFrame:
	initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:
	initWithFrame:mode:prototype:numberOfRows:numberOfColumns:
	insertColumn:
	insertColumn:withCells:
	insertRow:
	insertRow:withCells:
	intercellSpacing
	isAutoscroll
	isSelectionByRect
	keyCell
	makeCellAtRow:column:
	mode
	mouseDown:
	mouseDownFlags
	numberOfColumns
	numberOfRows
	performKeyEquivalent:
	prototype
	putCell:atRow:column:
	removeColumn:
	removeRow:
	renewRows:columns:
	resetCursorRects
	scrollCellToVisibleAtRow:column:
	selectAll:
	selectCellAtRow:column:
	selectCellWithTag:
	selectedCell
	selectedCells
	selectedColumn
	selectedRow
	selectText:
	selectTextAtRow:column:
	sendAction
	sendAction:to:forAllCells:
	sendDoubleAction
	setAllowsEmptySelection:
	setAutoscroll:
	setAutosizesCells:
	setBackgroundColor:
	setCellBackgroundColor:
	setCellClass:
	setCellSize:
	setDelegate:
	setDoubleAction:
	setDrawsBackground:
	setDrawsCellBackground:
	setIntercellSpacing:
	setKeyCell:
	setMode:
	setPrototype:
	setScrollable:
	setSelectionByRect:
	setSelectionFrom:to:anchor:highlight:
	setState:atRow:column:
	setTabKeyTraversesCells:
	setToolTip:forCell:
	setValidateSize:
	sizeToCells
	sortUsingFunction:context:
	sortUsingSelector:
	tabKeyTraversesCells
	textDidBeginEditing:
	textDidChange:
	textDidEndEditing:
	textShouldBeginEditing:
	textShouldEndEditing:
	toolTipForCell:

	Constants
	NSMatrixMode

	Revision History
	Index
	A
	B
	C
	D
	G
	H
	I
	K
	M
	N
	P
	R
	S
	T

