
NSWindow Class Reference
Cocoa > User Experience

2009-03-04

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa,
ColorSync, Mac, Mac OS, and Quartz are
trademarks of Apple Inc., registered in the
United States and other countries.

Aperture is a trademark of Apple Inc.

NeXT and NeXTSTEP are trademarks of NeXT
Software, Inc., registered in the United States
and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSWindow Class Reference 13

Overview 13
Tasks 14

Creating Windows 14
Configuring Windows 14
Accessing Window Information 15
Getting Layout Information 16
Managing Windows 17
Managing Sheets 17
Sizing 17
Sizing Content 19
Managing Window Layers 19
Managing Window Frames in User Defaults 20
Managing Key Status 20
Managing Main Status 21
Managing Toolbars 21
Managing Attached Windows 22
Managing Window Buffers 22
Managing Default Buttons 22
Managing Field Editors 23
Managing the Window Menu 23
Managing Cursor Rectangles 23
Managing Title Bars 24
Managing Tooltips 24
Handling Events 24
Managing Responders 25
Managing the Key View Loop 25
Handling Keyboard Events 25
Handling Mouse Events 25
Bracketing Drawing Operations 26
Drawing Windows 26
Updating Windows 27
Exposing Windows 27
Dragging 27
Converting Coordinates 27
Getting the Undo Manager 27
Accessing Edited Status 28
Managing Titles 28
Accessing Screen Information 28
Moving 29
Closing Windows 29

3
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Minimizing Windows 29
Getting the Dock Tile 30
Printing 30
Providing Services 30
Working with Carbon 30

Class Methods 31
contentRectForFrameRect:styleMask: 31
defaultDepthLimit 31
frameRectForContentRect:styleMask: 32
menuChanged: 32
minFrameWidthWithTitle:styleMask: 33
removeFrameUsingName: 33
standardWindowButton:forStyleMask: 33

Instance Methods 34
acceptsMouseMovedEvents 34
addChildWindow:ordered: 34
allowsToolTipsWhenApplicationIsInactive 35
alphaValue 36
animationResizeTime: 36
areCursorRectsEnabled 37
aspectRatio 37
attachedSheet 37
autorecalculatesContentBorderThicknessForEdge: 38
autorecalculatesKeyViewLoop 38
backgroundColor 39
backingLocation 39
backingType 39
becomeKeyWindow 40
becomeMainWindow 40
cacheImageInRect: 40
canBecomeKeyWindow 41
canBecomeMainWindow 42
canBecomeVisibleWithoutLogin 42
canHide 42
canStoreColor 43
cascadeTopLeftFromPoint: 43
center 44
childWindows 44
close 45
collectionBehavior 45
constrainFrameRect:toScreen: 46
contentAspectRatio 46
contentBorderThicknessForEdge: 47
contentMaxSize 47
contentMinSize 48
contentRectForFrameRect: 48

4
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

contentResizeIncrements 48
contentView 49
convertBaseToScreen: 49
convertScreenToBase: 50
currentEvent 50
dataWithEPSInsideRect: 50
dataWithPDFInsideRect: 51
deepestScreen 51
defaultButtonCell 52
delegate 52
deminiaturize: 53
depthLimit 53
deviceDescription 54
disableCursorRects 54
disableFlushWindow 55
disableKeyEquivalentForDefaultButtonCell 55
disableScreenUpdatesUntilFlush 55
discardCachedImage 56
discardCursorRects 56
discardEventsMatchingMask:beforeEvent: 56
display 57
displayIfNeeded 57
displaysWhenScreenProfileChanges 58
dockTile 58
dragImage:at:offset:event:pasteboard:source:slideBack: 59
drawers 59
enableCursorRects 60
enableFlushWindow 60
enableKeyEquivalentForDefaultButtonCell 60
endEditingFor: 61
fieldEditor:forObject: 61
firstResponder 62
flushWindow 63
flushWindowIfNeeded 64
frame 64
frameAutosaveName 64
frameRectForContentRect: 65
graphicsContext 65
gState 66
hasDynamicDepthLimit 66
hasShadow 66
hidesOnDeactivate 67
ignoresMouseEvents 67
initialFirstResponder 68
initWithContentRect:styleMask:backing:defer: 68
initWithContentRect:styleMask:backing:defer:screen: 69

5
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

initWithWindowRef: 70
invalidateCursorRectsForView: 71
invalidateShadow 71
isAutodisplay 71
isDocumentEdited 72
isExcludedFromWindowsMenu 72
isFlushWindowDisabled 73
isKeyWindow 73
isMainWindow 73
isMiniaturized 74
isMovableByWindowBackground 74
isOneShot 74
isOpaque 75
isReleasedWhenClosed 75
isSheet 76
isVisible 76
isZoomed 76
keyDown: 77
keyViewSelectionDirection 77
level 78
makeFirstResponder: 78
makeKeyAndOrderFront: 79
makeKeyWindow 80
makeMainWindow 80
maxSize 80
miniaturize: 81
miniwindowImage 81
miniwindowTitle 82
minSize 82
mouseLocationOutsideOfEventStream 82
nextEventMatchingMask: 83
nextEventMatchingMask:untilDate:inMode:dequeue: 83
orderBack: 84
orderFront: 85
orderFrontRegardless 85
orderOut: 86
orderWindow:relativeTo: 86
parentWindow 87
performClose: 88
performMiniaturize: 88
performZoom: 89
postEvent:atStart: 89
preferredBackingLocation 90
preservesContentDuringLiveResize 90
print: 90
recalculateKeyViewLoop 91

6
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

registerForDraggedTypes: 91
removeChildWindow: 92
representedFilename 92
representedURL 93
resetCursorRects 93
resignKeyWindow 94
resignMainWindow 94
resizeFlags 95
resizeIncrements 95
restoreCachedImage 95
runToolbarCustomizationPalette: 96
saveFrameUsingName: 96
screen 97
selectKeyViewFollowingView: 97
selectKeyViewPrecedingView: 98
selectNextKeyView: 98
selectPreviousKeyView: 99
sendEvent: 99
setAcceptsMouseMovedEvents: 100
setAllowsToolTipsWhenApplicationIsInactive: 100
setAlphaValue: 100
setAspectRatio: 101
setAutodisplay: 101
setAutorecalculatesContentBorderThickness:forEdge: 102
setAutorecalculatesKeyViewLoop: 103
setBackgroundColor: 103
setBackingType: 103
setCanBecomeVisibleWithoutLogin: 104
setCanHide: 104
setCollectionBehavior: 105
setContentAspectRatio: 105
setContentBorderThickness:forEdge: 106
setContentMaxSize: 106
setContentMinSize: 106
setContentResizeIncrements: 107
setContentSize: 107
setContentView: 108
setDefaultButtonCell: 109
setDelegate: 109
setDepthLimit: 110
setDisplaysWhenScreenProfileChanges: 110
setDocumentEdited: 111
setDynamicDepthLimit: 111
setExcludedFromWindowsMenu: 112
setFrame:display: 112
setFrame:display:animate: 113

7
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

setFrameAutosaveName: 113
setFrameFromString: 114
setFrameOrigin: 115
setFrameTopLeftPoint: 115
setFrameUsingName: 116
setFrameUsingName:force: 116
setHasShadow: 117
setHidesOnDeactivate: 117
setIgnoresMouseEvents: 118
setInitialFirstResponder: 118
setLevel: 118
setMaxSize: 119
setMiniwindowImage: 120
setMiniwindowTitle: 120
setMinSize: 121
setMovableByWindowBackground: 121
setOneShot: 122
setOpaque: 122
setParentWindow: 123
setPreferredBackingLocation: 123
setPreservesContentDuringLiveResize: 124
setReleasedWhenClosed: 124
setRepresentedFilename: 125
setRepresentedURL: 125
setResizeIncrements: 126
setSharingType: 126
setShowsResizeIndicator: 126
setShowsToolbarButton: 127
setTitle: 127
setTitleWithRepresentedFilename: 128
setToolbar: 128
setViewsNeedDisplay: 129
setWindowController: 129
sharingType 130
showsResizeIndicator 130
showsToolbarButton 130
standardWindowButton: 131
stringWithSavedFrame 131
styleMask 132
title 132
toggleToolbarShown: 132
toolbar 133
tryToPerform:with: 133
unregisterDraggedTypes 134
update 134
useOptimizedDrawing: 135

8
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

userSpaceScaleFactor 135
validRequestorForSendType:returnType: 135
viewsNeedDisplay 136
windowController 136
windowNumber 137
windowRef 137
worksWhenModal 138
zoom: 138

Delegate Methods 139
window:shouldDragDocumentWithEvent:from:withPasteboard: 139
window:shouldPopUpDocumentPathMenu: 140
window:willPositionSheet:usingRect: 141
windowDidBecomeKey: 141
windowDidBecomeMain: 142
windowDidChangeScreen: 142
windowDidChangeScreenProfile: 142
windowDidDeminiaturize: 143
windowDidEndSheet: 143
windowDidExpose: 144
windowDidMiniaturize: 144
windowDidMove: 144
windowDidResignKey: 145
windowDidResignMain: 145
windowDidResize: 145
windowDidUpdate: 146
windowShouldClose: 146
windowShouldZoom:toFrame: 147
windowWillBeginSheet: 147
windowWillClose: 147
windowWillMiniaturize: 148
windowWillMove: 148
windowWillResize:toSize: 148
windowWillReturnFieldEditor:toObject: 149
windowWillReturnUndoManager: 150
windowWillUseStandardFrame:defaultFrame: 150

Constants 151
Window Style Masks 151
Window Levels 152
Display Device—Descriptions 153
Managing Scaling Factors 154
Controlling the Look of a Window and Its Toolbar 154
NSSelectionDirection—Direction of Key View Change 155
NSWindowButton—Accessing Standard Title Bar Buttons 155
NSRunLoop—Ordering Modes for NSWindow 156
NSWindowDepth—Window Depth 157
NSBackingStoreType—Buffered Window Drawing 157

9
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

NSWindowOrderingMode 158
NSWindowAuxiliaryOpaque 159
NSWindowSharingType 159
NSWindowBackingLocation 160
Managing Window Collections 161

Notifications 161
NSWindowDidBecomeKeyNotification 161
NSWindowDidBecomeMainNotification 162
NSWindowDidChangeScreenNotification 162
NSWindowDidChangeScreenProfileNotification 162
NSWindowDidDeminiaturizeNotification 163
NSWindowDidEndSheetNotification 163
NSWindowDidExposeNotification 163
NSWindowDidMiniaturizeNotification 163
NSWindowDidMoveNotification 164
NSWindowDidResignKeyNotification 164
NSWindowDidResignMainNotification 164
NSWindowDidResizeNotification 164
NSWindowDidUpdateNotification 165
NSWindowWillBeginSheetNotification 165
NSWindowWillCloseNotification 165
NSWindowWillMiniaturizeNotification 165
NSWindowWillMoveNotification 166

Appendix A Deprecated NSWindow Methods 167

Deprecated in Mac OS X v10.5 167
canBeVisibleOnAllSpaces 167
setCanBeVisibleOnAllSpaces: 167

Document Revision History 169

Index 171

10
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tables

NSWindow Class Reference 13

Table 1 Title bar document icon display 93

11
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

12
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

TABLES

Inherits from NSResponder : NSObject

Conforms to NSUserInterfaceValidations
NSAnimatablePropertyContainer
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Window Programming Guide for Cocoa

Declared in NSDrawer.h
NSGraphics.h
NSWindow.h

Related sample code CoreRecipes
ImageClient
MyPhoto
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Overview

The NSWindow class defines objects (known as windows) that manage and coordinate the windows an
application displays on the screen. A single NSWindow object corresponds to at most one onscreen window.
The two principal functions of a window are to provide an area in which views can be placed and to accept
and distribute, to the appropriate views, events the user instigates through actions with the mouse and
keyboard.

Overview 13
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Note: Although the NSWindow class inherits the NSCoding protocol from NSResponder, the class does not
support coding. Legacy support for archivers exists but its use is deprecated and may not work. Any attempt
to archive or unarchive an NSWindow object using a keyed coding object raises an
NSInvalidArgumentException exception.

Tasks

Creating Windows

– initWithContentRect:styleMask:backing:defer: (page 68)
Initializes the window with the specified values.

– initWithContentRect:styleMask:backing:defer:screen: (page 69)
Initializes an allocated window with the specified values.

Configuring Windows

– styleMask (page 132)
Returns the window’s style mask, indicating what kinds of control items it displays.

– worksWhenModal (page 138)
Indicates whether the window is able to receive keyboard and mouse events even when some other
window is being run modally.

– alphaValue (page 36)
Returns the window’s alpha value.

– setAlphaValue: (page 100)
Applies a given alpha value to the entire window.

– backgroundColor (page 39)
Returns the color of the window’s background.

– setBackgroundColor: (page 103)
Sets the window’s background color to the given color.

– contentView (page 49)
Returns the window’s content view, the highest accessible NSView object in the window’s view
hierarchy.

– setContentView: (page 108)
Makes a given view the window’s content view.

– canHide (page 42)
Indicates whether the window can be hidden when its application becomes hidden (during execution
of the NSApplication hide: method).

– setCanHide: (page 104)
Specifies whether the window can be hidden when its application becomes hidden (during execution
of the NSApplication hide: method).

– hidesOnDeactivate (page 67)
Indicates whether the window is removed from the screen when its application becomes inactive.

14 Tasks
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– setHidesOnDeactivate: (page 117)
Specifies whether the window is removed from the screen when the application is inactive.

– collectionBehavior (page 45)
Identifies the window’s behavior in window collections.

– setCollectionBehavior: (page 105)
Specifies the window’s behavior in window collections.

– isOpaque (page 75)
Indicates whether the window is opaque.

– setOpaque: (page 122)
Specifies whether the window is opaque.

– hasShadow (page 66)
Indicates whether the window has a shadow.

– setHasShadow: (page 117)
Specifies whether the window has a shadow.

– invalidateShadow (page 71)
Invalidates the window shadow so that it is recomputed based on the current window shape.

– autorecalculatesContentBorderThicknessForEdge: (page 38)
Indicates whether the window calculates the thickness of a given border automatically.

– setAutorecalculatesContentBorderThickness:forEdge: (page 102)
Specifies whether the window calculates the thickness of a given border automatically.

– contentBorderThicknessForEdge: (page 47)
Indicates the thickness of a given border of the window.

– setContentBorderThickness:forEdge: (page 106)
Specifies the thickness of a given border of the window.

– delegate (page 52)
Returns the window’s delegate.

– setDelegate: (page 109)
Sets the window’s delegate to a given object or removes an existing delegate.

– canBeVisibleOnAllSpaces (page 167) Deprecated in Mac OS X v10.5
Indicates whether the window can be visible on all spaces or on only one space at a time.

– setCanBeVisibleOnAllSpaces: (page 167) Deprecated in Mac OS X v10.5
Specifies whether the window can be visible on all spaces or on only one space at a time.

Accessing Window Information

+ defaultDepthLimit (page 31)
Returns the default depth limit for instances of NSWindow.

– windowNumber (page 137)
Provides the window number of the window’s window device.

– gState (page 66)
Returns the window’s graphics state object.

– canStoreColor (page 43)
Indicates whether the window has a depth limit that allows it to store color values.

Tasks 15
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– deviceDescription (page 54)
Returns a dictionary containing information about the window’s resolution.

– canBecomeVisibleWithoutLogin (page 42)
Indicates whether the window can be displayed at the log-in window. Default: NO.

– setCanBecomeVisibleWithoutLogin: (page 104)
Specifies whether the window can be displayed at the login window.

– sharingType (page 130)
Indicates the level of access other processes have to the window’s content.

– setSharingType: (page 126)
Specifies the level of access other processes have to the window’s content.

– backingType (page 39)
Returns the window’s backing store type.

– setBackingType: (page 103)
Sets the window’s backing store type to a given type.

– backingLocation (page 39)
Indicates the window’s backing store location.

– preferredBackingLocation (page 90)
Indicates the preferred location for the window’s backing store.

– setPreferredBackingLocation: (page 123)
Specifies the preferred location for the window’s backing store.

– isOneShot (page 74)
Indicates whether the window device the window manages is freed when it’s removed from the
screen list.

– setOneShot: (page 122)
Sets whether the window device that the window manages should be freed when it’s removed from
the screen list.

– depthLimit (page 53)
Returns the depth limit of the window.

– setDepthLimit: (page 110)
Sets the depth limit of the window to a given limit.

– hasDynamicDepthLimit (page 66)
Indicates whether the window’s depth limit can change to match the depth of the screen it’s on.

– setDynamicDepthLimit: (page 111)
Sets whether the window changes its depth to match the depth of the screen it’s on, or the depth of
the deepest screen when it spans multiple screens.

Getting Layout Information

+ contentRectForFrameRect:styleMask: (page 31)
Returns the content rectangle used by a window with a given frame rectangle and window style.

+ frameRectForContentRect:styleMask: (page 32)
Returns the frame rectangle used by a window with a given content rectangle and window style.

16 Tasks
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

+ minFrameWidthWithTitle:styleMask: (page 33)
Returns the minimum width a window’s frame rectangle must have for it to display a title, with a
given window style.

– contentRectForFrameRect: (page 48)
Returns the window’s content rectangle with a given frame rectangle.

– frameRectForContentRect: (page 65)
Returns the window’s frame rectangle with a given content rectangle.

Managing Windows

– drawers (page 59)
Returns the collection of drawers associated with the window.

– windowController (page 136)
Returns the window’s window controller.

– setWindowController: (page 129)
Sets the window’s window controller.

Managing Sheets

– attachedSheet (page 37)
Returns the sheet attached to the window.

– isSheet (page 76)
Indicates whether the window has ever run as a modal sheet.

– window:willPositionSheet:usingRect: (page 141) delegate method
Sent to the delegate just before the animation of a sheet, giving it the opportunity to return a custom
location for the attachment of a sheet to a window.

– windowWillBeginSheet: (page 147) delegate method
Sent by the default notification center immediately before an NSWindow object opens a sheet.

– windowDidEndSheet: (page 143) delegate method
Sent by the default notification center immediately after an NSWindow object closes a sheet.

Sizing

– frame (page 64)
Returns the window’s frame rectangle.

– setFrameOrigin: (page 115)
Positions the bottom-left corner of the window’s frame rectangle at a given point in screen coordinates.

– setFrameTopLeftPoint: (page 115)
Positions the top-left corner of the window’s frame rectangle at a given point in screen coordinates.

– constrainFrameRect:toScreen: (page 46)
Modifies and returns a frame rectangle so that its top edge lies on a specific screen.

– cascadeTopLeftFromPoint: (page 43)
Positions the window's top left to a given point.

Tasks 17
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– setFrame:display: (page 112)
Sets the origin and size of the window’s frame rectangle according to a given frame rectangle, thereby
setting its position and size onscreen.

– setFrame:display:animate: (page 113)
Sets the origin and size of the window’s frame rectangle, with optional animation, according to a
given frame rectangle, thereby setting its position and size onscreen.

– animationResizeTime: (page 36)
Specifies the duration of a smooth frame-size change.

– windowWillUseStandardFrame:defaultFrame: (page 150) delegate method
Invoked by the zoom: (page 138) method while determining a frame an NSWindow object may be
zoomed to.

– aspectRatio (page 37)
Returns the window’s aspect ratio, which constrains the size of its frame rectangle to integral multiples
of this ratio when the user resizes it.

– setAspectRatio: (page 101)
Sets the window’s aspect ratio, which constrains the size of its frame rectangle to integral multiples
of this ratio when the user resizes it.

– minSize (page 82)
Returns the minimum size to which the window’s frame (including its title bar) can be sized.

– setMinSize: (page 121)
Sets the minimum size to which the window’s frame (including its title bar) can be sized to aSize.

– maxSize (page 80)
Returns the maximum size to which the window’s frame (including its title bar) can be sized.

– setMaxSize: (page 119)
Sets the maximum size to which the window’s frame (including its title bar) can be sized.

– isZoomed (page 76)
Returns a Boolean value that indicates whether the window is in a zoomed state.

– performZoom: (page 89)
This action method simulates the user clicking the zoom box by momentarily highlighting the button
and then zooming the window.

– zoom: (page 138)
This action method toggles the size and location of the window between its standard state (provided
by the application as the “best” size to display the window’s data) and its user state (a new size and
location the user may have set by moving or resizing the window).

– windowShouldZoom:toFrame: (page 147) delegate method
Sent just before sender is zoomed to allow or disallow the operation.

– resizeFlags (page 95)
Returns the flags field of the event record for the mouse-down event that initiated the resizing session.

– showsResizeIndicator (page 130)
Returns a Boolean value that indicates whether the window’s resize indicator is visible.

– setShowsResizeIndicator: (page 126)
Specifies whether the window’s resize indicator is visible

– resizeIncrements (page 95)
Returns the window’s resizing increments.

18 Tasks
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– setResizeIncrements: (page 126)
Restricts the user’s ability to resize the window so the width and height change by multiples of width
and height increments.

– preservesContentDuringLiveResize (page 90)
Returns a Boolean value that indicates whether the window tries to optimize live resize operations
by preserving the content of views that have not changed.

– setPreservesContentDuringLiveResize: (page 124)
Specifies whether the window tries to optimize live resize operations by preserving the content of
views that have not changed.

– windowWillResize:toSize: (page 148) delegate method
Invoked when a window is being resized (whether by the user or through one of the setFrame...
methods other than setFrame:display: (page 112)).

– windowDidResize: (page 145) delegate method
Sent by the default notification center immediately after a window has been resized.

Sizing Content

– contentAspectRatio (page 46)
Returns the window’s content aspect ratio.

– setContentAspectRatio: (page 105)
Sets the aspect ratio (height in relation to width) of the window’s content view, constraining the
dimensions of its content rectangle to integral multiples of that ratio when the user resizes it.

– contentMinSize (page 48)
Returns the minimum size of the window’s content view.

– setContentMinSize: (page 106)
Sets the minimum size of the window’s content view in the window’s base coordinate system.

– setContentSize: (page 107)
Sets the size of the window’s content view to a given size, which is expressed in the window’s base
coordinate system.

– contentMaxSize (page 47)
Returns the maximum size of the window’s content view.

– setContentMaxSize: (page 106)
Sets the maximum size of the window’s content view in the window’s base coordinate system.

– contentResizeIncrements (page 48)
Returns the window’s content-view resizing increments.

– setContentResizeIncrements: (page 107)
Restricts the user’s ability to resize the window so the width and height of its content view change
by multiples of width and height increments.

Managing Window Layers

– isVisible (page 76)
Indicates whether the window is visible onscreen (even when It’s obscured by other windows).

Tasks 19
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– orderOut: (page 86)
Removes the window from the screen list, which hides the window.

– orderBack: (page 84)
Moves the window to the back of its level in the screen list, without changing either the key window
or the main window.

– orderFront: (page 85)
Moves the window to the front of its level in the screen list, without changing either the key window
or the main window.

– orderFrontRegardless (page 85)
Moves the window to the front of its level, even if its application isn’t active, without changing either
the key window or the main window.

– orderWindow:relativeTo: (page 86)
Repositions the window’s window device in the window server’s screen list.

– level (page 78)
Returns the window level of the window.

– setLevel: (page 118)
Sets the window’s window level to a given level.

Managing Window Frames in User Defaults

+ removeFrameUsingName: (page 33)
Removes the frame data stored under a given name from the application’s user defaults.

– setFrameUsingName: (page 116)
Sets the window’s frame rectangle by reading the rectangle data stored under a given name from
the defaults system.

– setFrameUsingName:force: (page 116)
Sets the window’s frame rectangle by reading the rectangle data stored under a given name from
the defaults system. Can operate on nonresizable windows.

– saveFrameUsingName: (page 96)
Saves the window’s frame rectangle in the user defaults system under a given name.

– frameAutosaveName (page 64)
Returns the name used to automatically save the window’s frame rectangle data in the defaults system,
as set through setFrameAutosaveName: (page 113).

– setFrameAutosaveName: (page 113)
Sets the name used to automatically save the window’s frame rectangle in the defaults system to a
given name.

– stringWithSavedFrame (page 131)
Returns a string representation of the window’s frame rectangle.

– setFrameFromString: (page 114)
Sets the window’s frame rectangle from a given string representation.

Managing Key Status

– isKeyWindow (page 73)
Indicates whether the window is the key window for the application.

20 Tasks
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– canBecomeKeyWindow (page 41)
Indicates whether the window can become the key window.

– makeKeyWindow (page 80)
Makes the window the key window.

– makeKeyAndOrderFront: (page 79)
Moves the window to the front of the screen list, within its level, and makes it the key window; that
is, it shows the window.

– becomeKeyWindow (page 40)
Invoked automatically to inform the window that it has become the key window; never invoke this
method directly.

– windowDidBecomeKey: (page 141) delegate method
Sent by the default notification center immediately after an NSWindow object has become key.

– resignKeyWindow (page 94)
Invoked automatically when the window resigns key window status; never invoke this method directly.

– windowDidResignKey: (page 145) delegate method
Sent by the default notification center immediately after an NSWindow object has resigned its status
as key window.

Managing Main Status

– isMainWindow (page 73)
Indicates whether the window is the application’s main window.

– canBecomeMainWindow (page 42)
Indicates whether the window can become the application’s main window.

– makeMainWindow (page 80)
Makes the window the main window.

– becomeMainWindow (page 40)
Invoked automatically to inform the window that it has become the main window; never invoke this
method directly.

– windowDidBecomeMain: (page 142) delegate method
Sent by the default notification center immediately after an NSWindow object has become main.

– resignMainWindow (page 94)
Invoked automatically when the window resigns main window status; never invoke this method
directly.

– windowDidResignMain: (page 145) delegate method
Sent by the default notification center immediately after an NSWindow object has resigned its status
as main window.

Managing Toolbars

– toolbar (page 133)
Returns the window’s toolbar.

– setToolbar: (page 128)
Sets the window’s toolbar.

Tasks 21
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– toggleToolbarShown: (page 132)
The action method for the “Hide Toolbar” menu item (which alternates with “Show Toolbar”).

– runToolbarCustomizationPalette: (page 96)
The action method for the “Customize Toolbar…” menu item.

Managing Attached Windows

– childWindows (page 44)
Returns an array of the window’s attached child windows.

– addChildWindow:ordered: (page 34)
Adds a given window as a child window of the window.

– removeChildWindow: (page 92)
Detaches a given child window from the window.

– parentWindow (page 87)
Returns the parent window to which the window is attached as a child.

– setParentWindow: (page 123)
Adds the window as a child of a given window. For use by subclasses when setting the parent window
in the window.

Managing Window Buffers

– isFlushWindowDisabled (page 73)
Indicates whether the window’s flushing ability is disabled.

– enableFlushWindow (page 60)
Reenables the flushWindow (page 63) method for the window after it was disabled through a
previous disableFlushWindow (page 55) message.

– disableFlushWindow (page 55)
Disables the flushWindow (page 63) method for the window.

– flushWindow (page 63)
Flushes the window’s offscreen buffer to the screen if the window is buffered and flushing is enabled.

– flushWindowIfNeeded (page 64)
Flushes the window’s offscreen buffer to the screen if flushing is enabled and if the last
flushWindow (page 63) message had no effect because flushing was disabled.

Managing Default Buttons

– defaultButtonCell (page 52)
Returns the button cell that performs as if clicked when the window receives a Return (or Enter) key
event.

– setDefaultButtonCell: (page 109)
Makes the key equivalent of button cell the Return (or Enter) key, so when the user presses Return
that button performs as if clicked.

22 Tasks
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– enableKeyEquivalentForDefaultButtonCell (page 60)
Reenables the default button cell’s key equivalent, so it performs a click when the user presses Return
(or Enter).

– disableKeyEquivalentForDefaultButtonCell (page 55)
Disables the default button cell’s key equivalent, so it doesn’t perform a click when the user presses
Return (or Enter).

Managing Field Editors

– fieldEditor:forObject: (page 61)
Returns the window’s field editor, creating it if requested.

– windowWillReturnFieldEditor:toObject: (page 149) delegate method
Invoked when the field editor for a text-displaying object is requested.

– endEditingFor: (page 61)
Forces the field editor to give up its first responder status and prepares it for its next assignment.

Managing the Window Menu

– isExcludedFromWindowsMenu (page 72)
Indicates whether the window is excluded from the application’s Windows menu.

– setExcludedFromWindowsMenu: (page 112)
Specifies whether the window’s title is omitted from the application’s Windows menu.

Managing Cursor Rectangles

– areCursorRectsEnabled (page 37)
Indicates whether the window’s cursor rectangles are enabled.

– enableCursorRects (page 60)
Reenables cursor rectangle management within the window after a disableCursorRects (page
54) message.

– disableCursorRects (page 54)
Disables all cursor rectangle management within the window.

– discardCursorRects (page 56)
Invalidates all cursor rectangles in the window.

– invalidateCursorRectsForView: (page 71)
Marks as invalid the cursor rectangles of a given NSView object in the window’s view hierarchy, so
they’ll be set up again when the window becomes key (or immediately if the window is key).

– resetCursorRects (page 93)
Clears the window’s cursor rectangles and the cursor rectangles of the NSView objects in its view
hierarchy.

Tasks 23
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Managing Title Bars

+ standardWindowButton:forStyleMask: (page 33)
Returns a new instance of a given standard window button, sized appropriately for a given window
style.

– standardWindowButton: (page 131)
Returns the window button of a given window button kind in the window’s view hierarchy.

– showsToolbarButton (page 130)
Indicates whether the toolbar control button is currently displayed.

– setShowsToolbarButton: (page 127)
Specifies whether the window shows the toolbar control button.

Managing Tooltips

– allowsToolTipsWhenApplicationIsInactive (page 35)
Indicates whether the window can display tooltips even when the application is in the background.

– setAllowsToolTipsWhenApplicationIsInactive: (page 100)
Specifies whether the window can display tooltips even when the application is in the background.

Handling Events

+ menuChanged: (page 32)
This method does nothing; it is here for backward compatibility.

– currentEvent (page 50)
Returns the event currently being processed by the application, by invoking NSApplication’s
currentEvent method.

– nextEventMatchingMask: (page 83)
Returns the next event matching a given mask.

– nextEventMatchingMask:untilDate:inMode:dequeue: (page 83)
Forwards the message to the global NSApplication object, NSApp.

– discardEventsMatchingMask:beforeEvent: (page 56)
Forwards the message to the NSApplication object, NSApp.

– postEvent:atStart: (page 89)
Forwards the message to the global NSApplication object, NSApp.

– sendEvent: (page 99)
This action method dispatches mouse and keyboard events sent to the window by the NSApplication
object.

– tryToPerform:with: (page 133)
Dispatches action messages with a given argument.

24 Tasks
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Managing Responders

– initialFirstResponder (page 68)
Returns view that’s made first responder the first time the window is placed onscreen.

– firstResponder (page 62)
Returns the window’s first responder.

– setInitialFirstResponder: (page 118)
Sets a given view as the one that’s made first responder (also called the key view) the first time the
window is placed onscreen.

– makeFirstResponder: (page 78)
Attempts to make a given responder the first responder for the window.

Managing the Key View Loop

– selectKeyViewPrecedingView: (page 98)
Makes key the view that precedes the given view.

– selectKeyViewFollowingView: (page 97)
Makes key the view that follows the given view.

– selectPreviousKeyView: (page 99)
This action method searches for a candidate previous key view and, if it finds one, invokes
makeFirstResponder: (page 78) to establish it as the first responder.

– selectNextKeyView: (page 98)
This action method searches for a candidate next key view and, if it finds one, invokes
makeFirstResponder: (page 78) to establish it as the first responder.

– keyViewSelectionDirection (page 77)
Returns the direction the window is currently using to change the key view.

– autorecalculatesKeyViewLoop (page 38)
Indicates whether the window automatically recalculates the key view loop when views are added.

– recalculateKeyViewLoop (page 91)
Marks the key view loop as dirty and in need of recalculation.

– setAutorecalculatesKeyViewLoop: (page 103)
Specifies whether to recalculate the key view loop automatically when views are added or removed.

Handling Keyboard Events

– keyDown: (page 77)
Handles a given keyboard event that may need to be interpreted as changing the key view or triggering
a keyboard equivalent.

Handling Mouse Events

– acceptsMouseMovedEvents (page 34)
Indicates whether the window accepts mouse-moved events.

Tasks 25
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– ignoresMouseEvents (page 67)
Indicates whether the window is transparent to mouse events.

– setIgnoresMouseEvents: (page 118)
Specifies whether the window is transparent to mouse clicks and other mouse events, allowing overlay
windows.

– mouseLocationOutsideOfEventStream (page 82)
Returns the current location of the pointer reckoned in the window’s base coordinate system.

– setAcceptsMouseMovedEvents: (page 100)
Specifies whether the window is to accept mouse-moved events.

Bracketing Drawing Operations

– cacheImageInRect: (page 40)
Stores the window’s raster image from a given rectangle expressed in the window’s base coordinate
system.

– restoreCachedImage (page 95)
Splices the window’s cached image rectangles, if any, back into its raster image (and buffer if it has
one), undoing the effect of any drawing performed within those areas since they were established
using cacheImageInRect: (page 40).

– discardCachedImage (page 56)
Discards all of the window’s cached image rectangles.

Drawing Windows

– display (page 57)
Passes a display message down the window’s view hierarchy, thus redrawing all views within the
window, including the frame view that draws the border, title bar, and other peripheral elements.

– displayIfNeeded (page 57)
Passes a displayIfNeeded message down the window’s view hierarchy, thus redrawing all views
that need to be displayed, including the frame view that draws the border, title bar, and other
peripheral elements.

– viewsNeedDisplay (page 136)
Indicates whether any of the window’s views need to be displayed.

– setViewsNeedDisplay: (page 129)
Specifies whether the window’s views need to be displayed..

– isAutodisplay (page 71)
Indicates whether the window automatically displays views that need to be displayed.

– setAutodisplay: (page 101)
Specifies whether the window is to automatically display the views that are marked as needing it.

– useOptimizedDrawing: (page 135)
Specifies whether the window is to optimize focusing and drawing when displaying its views.

– graphicsContext (page 65)
Provides the graphics context associated with the window for the current thread.

26 Tasks
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Updating Windows

– disableScreenUpdatesUntilFlush (page 55)
Disables the window’s screen updates until the window is flushed.

– update (page 134)
Updates the window.

– windowDidUpdate: (page 146) delegate method
Sent by the default notification center immediately after an NSWindow object receives an update (page
134) message.

Exposing Windows

– windowDidExpose: (page 144) delegate method
Sent by the default notification center immediately after an NSWindow object has been exposed.

Dragging

– dragImage:at:offset:event:pasteboard:source:slideBack: (page 59)
Begins a dragging session.

– registerForDraggedTypes: (page 91)
Registers a give set of pasteboard types as the pasteboard types the window will accept as the
destination of an image-dragging session.

– unregisterDraggedTypes (page 134)
Unregisters the window as a possible destination for dragging operations.

– window:shouldDragDocumentWithEvent:from:withPasteboard: (page 139) delegate method
Determines whether the sender allows the user to drag the sender’s represented file’s icon from the
sender’s title bar.

Converting Coordinates

– convertBaseToScreen: (page 49)
Converts a given point from the window’s base coordinate system to the screen coordinate system.

– convertScreenToBase: (page 50)
Converts a given point from the screen coordinate system to the window’s base coordinate system.

– userSpaceScaleFactor (page 135)
Returns the scale factor applied to the window.

Getting the Undo Manager

– windowWillReturnUndoManager: (page 150) delegate method
Invoked when the undo manager for a window is requested. Returns the appropriate undo manager
for the window.

Tasks 27
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Accessing Edited Status

– isDocumentEdited (page 72)
Indicates whether the window’s document has been edited.

– setDocumentEdited: (page 111)
Specifies whether the window’s document has been edited.

Managing Titles

– title (page 132)
Returns either the string that appears in the title bar of the window, or the path to the represented
file.

– setTitle: (page 127)
Sets the string that appears in the window’s title bar (if it has one) to a given string and displays the
title.

– setTitleWithRepresentedFilename: (page 128)
Sets a given path as the window’s title, formatting it as a file-system path, and records this path as
the window’s associated filename using setRepresentedFilename: (page 125).

– representedFilename (page 92)
Returns the pathname of the file the window represents.

– setRepresentedFilename: (page 125)
Sets the pathname of the file the window represents.

– representedURL (page 93)
Provides the URL of the file the window represents.

– setRepresentedURL: (page 125)
Specifies the URL of the file the window represents.

– window:shouldPopUpDocumentPathMenu: (page 140) delegate method
Determines whether the sender displays the title pop-up menu in response to a Command-click on
the sender’s title.

Accessing Screen Information

– screen (page 97)
Returns the screen the window is on.

– deepestScreen (page 51)
Returns the deepest screen the window is on (it may be split over several screens).

– displaysWhenScreenProfileChanges (page 58)
Indicates whether the window context should be updated when the screen profile changes or when
the window moves to a different screen.

– setDisplaysWhenScreenProfileChanges: (page 110)
Specifies whether the window context should be updated when the screen profile changes.

28 Tasks
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Moving

– isMovableByWindowBackground (page 74)
Indicates whether the window is movable by clicking and dragging anywhere in its background.

– setMovableByWindowBackground: (page 121)
Sets whether the window is movable by clicking and dragging anywhere in its background.

– center (page 44)
Sets the window’s location to the center of the screen.

– windowWillMove: (page 148) delegate method
Sent by the default notification center immediately before an NSWindow object is moved.

– windowDidMove: (page 144) delegate method
Sent by the default notification center immediately after an NSWindow object has been moved.

– windowDidChangeScreen: (page 142) delegate method
Sent by the default notification center immediately after an NSWindow object has changed screens.

– windowDidChangeScreenProfile: (page 142) delegate method
Sent by the default notification center immediately after an NSWindow object has changed screen
display profiles.

Closing Windows

– performClose: (page 88)
This action method simulates the user clicking the close button by momentarily highlighting the
button and then closing the window.

– close (page 45)
Removes the window from the screen.

– windowShouldClose: (page 146) delegate method
Invoked when the user attempts to close a window or a window receives a performClose: (page
88) message.

– windowWillClose: (page 147) delegate method
Sent by the default notification center immediately before an NSWindow object closes.

– isReleasedWhenClosed (page 75)
Indicates whether the window is released when it receives the close message.

– setReleasedWhenClosed: (page 124)
Specifies whether the window is released when it receives the close message.

Minimizing Windows

– isMiniaturized (page 74)
Indicates whether the window is minimized.

– performMiniaturize: (page 88)
Simulates the user clicking the minimize button by momentarily highlighting the button, then
minimizing the window.

– miniaturize: (page 81)
Removes the window from the screen list and displays the minimized window in the Dock.

Tasks 29
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– windowWillMiniaturize: (page 148) delegate method
Sent by the default notification center immediately before an NSWindow object is minimized.

– windowDidMiniaturize: (page 144) delegate method
Sent by the default notification center immediately after an NSWindow object has been minimized.

– deminiaturize: (page 53)
Deminimizes the window.

– windowDidDeminiaturize: (page 143) delegate method
Sent by the default notification center immediately after an NSWindow object has been deminimized.

– miniwindowImage (page 81)
Returns the custom miniaturized window image of the window.

– setMiniwindowImage: (page 120)
Sets the window’s custom minimized window image to a given image.

– miniwindowTitle (page 82)
Returns the title displayed in the window’s minimized window.

– setMiniwindowTitle: (page 120)
Sets the title of the window’s miniaturized counterpart to a given string and redisplays it.

Getting the Dock Tile

– dockTile (page 58)
Provides the application’s Dock tile.

Printing

– print: (page 90)
This action method runs the Print panel, and if the user chooses an option other than canceling, prints
the window (its frame view and all subviews).

– dataWithEPSInsideRect: (page 50)
Returns EPS data that draws the region of the window within a given rectangle.

– dataWithPDFInsideRect: (page 51)
Returns PDF data that draws the region of the window within a given rectangle.

Providing Services

– validRequestorForSendType:returnType: (page 135)
Searches for an object that responds to a Services request.

Working with Carbon

– initWithWindowRef: (page 70)
Returns a Cocoa window created from a Carbon window.

– windowRef (page 137)
Returns the Carbon WindowRef associated with the window, creating one if necessary.

30 Tasks
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Class Methods

contentRectForFrameRect:styleMask:
Returns the content rectangle used by a window with a given frame rectangle and window style.

+ (NSRect)contentRectForFrameRect:(NSRect)windowFrame
styleMask:(NSUInteger)windowStyle

Parameters
windowFrame

The frame rectangle for the window expressed in screen coordinates.

windowStyle
The window style for the window. See “Constants” (page 151) for a list of style mask values.

Return Value
The content rectangle, expressed in screen coordinates, used by the window with windowFrame and
windowStyle.

Discussion
When a NSWindow instance is available, you should use contentRectForFrameRect: (page 48) instead
of this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ frameRectForContentRect:styleMask: (page 32)

Declared In
NSWindow.h

defaultDepthLimit
Returns the default depth limit for instances of NSWindow.

+ (NSWindowDepth)defaultDepthLimit

Return Value
The default depth limit for instances of NSWindow, determined by the depth of the deepest screen level
available to the window server.

Discussion
The value returned can be examined with the Application Kit functions NSPlanarFromDepth,
NSColorSpaceFromDepth, NSBitsPerSampleFromDepth, and NSBitsPerPixelFromDepth.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDepthLimit: (page 110)
– setDynamicDepthLimit: (page 111)

Class Methods 31
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– canStoreColor (page 43)

Declared In
NSWindow.h

frameRectForContentRect:styleMask:
Returns the frame rectangle used by a window with a given content rectangle and window style.

+ (NSRect)frameRectForContentRect:(NSRect)windowContentRect
styleMask:(NSUInteger)windowStyle

Parameters
windowContentRect

The content rectangle for a window expressed in screen coordinates.

windowStyle
The window style for the window. See “Constants” (page 151) for a list of style mask values.

Return Value
The frame rectangle, expressed in screen coordinates, used by the window with windowContentRect and
windowStyle.

Discussion
When a NSWindow instance is available, you should use frameRectForContentRect: (page 65) instead
of this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ contentRectForFrameRect:styleMask: (page 31)

Related Sample Code
CocoaDragAndDrop

Declared In
NSWindow.h

menuChanged:
This method does nothing; it is here for backward compatibility.

+ (void)menuChanged:(NSMenu *)menu

Parameters
menu

The menu object that changed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– menu (NSResponder)

32 Class Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

minFrameWidthWithTitle:styleMask:
Returns the minimum width a window’s frame rectangle must have for it to display a title, with a given
window style.

+ (CGFloat)minFrameWidthWithTitle:(NSString *)windowTitle
styleMask:(NSUInteger)windowStyle

Parameters
windowTitle

The title for the window.

windowStyle
The window style for the window. See “Constants” (page 151) for a list of style mask values.

Return Value
The minimum width of the window’s frame, using windowStyle, in order to display windowTitle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

removeFrameUsingName:
Removes the frame data stored under a given name from the application’s user defaults.

+ (void)removeFrameUsingName:(NSString *)frameName

Parameters
frameName

The name of the frame to remove.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameUsingName: (page 116)
– setFrameAutosaveName: (page 113)

Declared In
NSWindow.h

standardWindowButton:forStyleMask:
Returns a new instance of a given standard window button, sized appropriately for a given window style.

+ (NSButton *)standardWindowButton:(NSWindowButton)windowButtonKind
forStyleMask:(NSUInteger)windowStyle

Class Methods 33
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
windowButtonKind

The kind of standard window button to return.

windowStyle
The window style for which windowButtonKind is to be sized. See “Window Style Masks” (page 151)
for the list of allowable values.

Return Value
The new window button of the kind identified by windowButtonKind; nilwhen no such button kind exists.

Discussion
The caller is responsible for adding the button to the view hierarchy and for setting the target to be the
window.

Availability
Available in Mac OS X v10.2 and later.

See Also
– standardWindowButton: (page 131)

Declared In
NSWindow.h

Instance Methods

acceptsMouseMovedEvents
Indicates whether the window accepts mouse-moved events.

- (BOOL)acceptsMouseMovedEvents

Return Value
YES when the window accepts (and distributes) mouse-moved events; NO otherwise.

Discussion
The NSWindow default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAcceptsMouseMovedEvents: (page 100)

Declared In
NSWindow.h

addChildWindow:ordered:
Adds a given window as a child window of the window.

34 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

- (void)addChildWindow:(NSWindow *)childWindow
ordered:(NSWindowOrderingMode)orderingMode

Parameters
childWindow

The child window to order.

orderingMode
NSWindowAbove: childWindow is ordered immediately in front of the window.
NSWindowBelow: childWindow is ordered immediately behind the window.

Discussion
After the childWindow is added as a child of the window, it is maintained in relative position indicated by
orderingMode for subsequent ordering operations involving either window. While this attachment is active,
moving childWindow will not cause the window to move (as in sliding a drawer in or out), but moving the
window will cause childWindow to move.

Note that you should not create cycles between parent and child windows. For example, you should not add
window B as child of window A, then add window A as a child of window B.

Availability
Available in Mac OS X v10.2 and later.

See Also
– removeChildWindow: (page 92)
– childWindows (page 44)
– parentWindow (page 87)
– setParentWindow: (page 123)

Related Sample Code
GLChildWindowDemo
TrackBall

Declared In
NSWindow.h

allowsToolTipsWhenApplicationIsInactive
Indicates whether the window can display tooltips even when the application is in the background.

- (BOOL)allowsToolTipsWhenApplicationIsInactive

Return Value
YES if the window can display tooltips even when the application is in the background; NO otherwise.

Discussion
The default is NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAllowsToolTipsWhenApplicationIsInactive: (page 100)

Instance Methods 35
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

alphaValue
Returns the window’s alpha value.

- (CGFloat)alphaValue

Return Value
The window’s alpha value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlphaValue: (page 100)

Related Sample Code
FunkyOverlayWindow

Declared In
NSWindow.h

animationResizeTime:
Specifies the duration of a smooth frame-size change.

- (NSTimeInterval)animationResizeTime:(NSRect)newWindowFrame

Parameters
newWindowFrame

The frame rectangle specified in setFrame:display:animate: (page 113).

Return Value
The duration of the frame size change.

Discussion
Subclasses can override this method to control the total time for the frame change.

The NSWindow implementation uses the value from the NSWindowResizeTime user default as the time in
seconds to resize by 150 pixels. If this value is unspecified, NSWindowResizeTime is 0.20 seconds (this default
value may be differ in different releases of Mac OS X).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

36 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

areCursorRectsEnabled
Indicates whether the window’s cursor rectangles are enabled.

- (BOOL)areCursorRectsEnabled

Return Value
YES when cursor rectangles are enabled, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableCursorRects (page 60)
– addCursorRect:cursor: (NSView)

Declared In
NSWindow.h

aspectRatio
Returns the window’s aspect ratio, which constrains the size of its frame rectangle to integral multiples of
this ratio when the user resizes it.

- (NSSize)aspectRatio

Return Value
The window’s aspect ratio.

Discussion
The size of the window’s frame rectangle is constrained to integral multiples of this ratio when the user
resizes it. You can set an NSWindow object’s size to any ratio programmatically.

Availability
Available in Mac OS X v10.0 and later.

See Also
– resizeIncrements (page 95)
– setAspectRatio: (page 101)
– setFrame:display: (page 112)

Declared In
NSWindow.h

attachedSheet
Returns the sheet attached to the window.

- (NSWindow *)attachedSheet

Return Value
The sheet attached to the window; nil when the window doesn’t have a sheet attached.

Instance Methods 37
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSWindow.h

autorecalculatesContentBorderThicknessForEdge:
Indicates whether the window calculates the thickness of a given border automatically.

- (BOOL)autorecalculatesContentBorderThicknessForEdge:(NSRectEdge)edge

Parameters
edge

Border whose thickness autorecalculation status to set:

 ■ NSMaxYEdge: Top border.

 ■ NSMinYEdge: Bottom border.

Return Value
YES when the window autorecalculates the given border’s thickness; NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAutorecalculatesContentBorderThickness:forEdge: (page 102)

Declared In
NSWindow.h

autorecalculatesKeyViewLoop
Indicates whether the window automatically recalculates the key view loop when views are added.

- (BOOL)autorecalculatesKeyViewLoop

Return Value
YES if the window automatically recalculates the key view loop when views are added; NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– recalculateKeyViewLoop (page 91)
– setAutorecalculatesKeyViewLoop: (page 103)

Declared In
NSWindow.h

38 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

backgroundColor
Returns the color of the window’s background.

- (NSColor *)backgroundColor

Return Value
The window’s background color.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundColor: (page 103)

Declared In
NSWindow.h

backingLocation
Indicates the window’s backing store location.

- (NSWindowBackingLocation)backingLocation

Return Value
The location of the window’s backing store. See “Constants” (page 151) for possible values.

Availability
Available in Mac OS X v10.5 and later.

See Also
– preferredBackingLocation (page 90)

Declared In
NSWindow.h

backingType
Returns the window’s backing store type.

- (NSBackingStoreType)backingType

Return Value
The backing store type.

Discussion
The possible return values are described in “Constants” (page 151).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackingType: (page 103)

Instance Methods 39
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

becomeKeyWindow
Invoked automatically to inform the window that it has become the key window; never invoke this method
directly.

- (void)becomeKeyWindow

Discussion
This method reestablishes the window’s first responder, sends the becomeKeyWindowmessage to that object
if it responds, and posts an NSWindowDidBecomeKeyNotification (page 161) to the default notification
center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeKeyWindow (page 80)
– makeKeyAndOrderFront: (page 79)
– becomeMainWindow (page 40)

Declared In
NSWindow.h

becomeMainWindow
Invoked automatically to inform the window that it has become the main window; never invoke this method
directly.

- (void)becomeMainWindow

Discussion
This method posts an NSWindowDidBecomeMainNotification (page 162) to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeMainWindow (page 80)
– becomeKeyWindow (page 40)

Declared In
NSWindow.h

cacheImageInRect:
Stores the window’s raster image from a given rectangle expressed in the window’s base coordinate system.

- (void)cacheImageInRect:(NSRect)rectangle

40 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
rectangle

The rectangle representing the image to cache.

Discussion
This method allows the window to perform temporary drawing, such as a band around the selection as the
user drags the mouse, and to quickly restore the previous image by invoking restoreCachedImage (page
95) and flushWindowIfNeeded (page 64). The next time the window displays, it discards its cached image
rectangles. You can also explicitly use discardCachedImage (page 56) to free the memory occupied by
cached image rectangles. aRect is made integral before caching the image to avoid antialiasing artifacts.

Only the last cached rectangle is remembered and can be restored.

Availability
Available in Mac OS X v10.0 and later.

See Also
– display (page 57)

Declared In
NSWindow.h

canBecomeKeyWindow
Indicates whether the window can become the key window.

- (BOOL)canBecomeKeyWindow

Return Value
YES if the window can become the key window, NO otherwise.

Discussion
Attempts to make the window the key window are abandoned if this method returns NO. The NSWindow (page
13) implementation returns YES if the window has a title bar or a resize bar, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isKeyWindow (page 73)
– makeKeyWindow (page 80)

Related Sample Code
CIAnnotation
FancyAbout
FunkyOverlayWindow
RoundTransparentWindow
TrackBall

Declared In
NSWindow.h

Instance Methods 41
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

canBecomeMainWindow
Indicates whether the window can become the application’s main window.

- (BOOL)canBecomeMainWindow

Return Value
YES when the window can become the main window; NO otherwise.

Discussion
Attempts to make the window the main window are abandoned if this method returns NO. The NSWindow
implementation returns YES if the window is visible, is not an NSPanel object, and has a title bar or a resize
mechanism. Otherwise it returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isMainWindow (page 73)
– makeMainWindow (page 80)

Related Sample Code
FancyAbout

Declared In
NSWindow.h

canBecomeVisibleWithoutLogin
Indicates whether the window can be displayed at the log-in window. Default: NO.

- (BOOL)canBecomeVisibleWithoutLogin

Return Value
YES when the window can be displayed at the log-in window; NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setCanBecomeVisibleWithoutLogin: (page 104)

Declared In
NSWindow.h

canHide
Indicates whether the window can be hidden when its application becomes hidden (during execution of the
NSApplication hide: method).

- (BOOL)canHide

Return Value
YES if the window can be hidden when its application becomes hidden; NO otherwise.

42 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCanHide: (page 104)

Declared In
NSWindow.h

canStoreColor
Indicates whether the window has a depth limit that allows it to store color values.

- (BOOL)canStoreColor

Return Value
YES when the window’s depth limit allows it to store color values; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– depthLimit (page 53)
– shouldDrawColor (NSView)

Declared In
NSWindow.h

cascadeTopLeftFromPoint:
Positions the window's top left to a given point.

- (NSPoint)cascadeTopLeftFromPoint:(NSPoint)topLeft

Parameters
topLeft

The new top-left point, in screen coordinates, for the window. When NSZeroPoint, the window is
not moved, except as needed to constrain to the visible screen

Return Value
The point shifted from top left of the window in screen coordinates.

Discussion
The returned point can be passed to a subsequent invocation of cascadeTopLeftFromPoint: to position
the next window so the title bars of both windows are fully visible.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameTopLeftPoint: (page 115)

Instance Methods 43
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

center
Sets the window’s location to the center of the screen.

- (void)center

Discussion
The window is placed exactly in the center horizontally and somewhat above center vertically. Such a
placement carries a certain visual immediacy and importance. This method doesn’t put the window onscreen,
however; use makeKeyAndOrderFront: (page 79) to do that.

You typically use this method to place a window—most likely an alert dialog—where the user can’t miss it.
This method is invoked automatically when a panel is placed on the screen by the runModalForWindow:
method of the NSApplication class.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaVideoFrameToGWorld
VertexPerformanceTest

Declared In
NSWindow.h

childWindows
Returns an array of the window’s attached child windows.

- (NSArray *)childWindows

Return Value
An array containing the window’s child windows.

Availability
Available in Mac OS X v10.2 and later.

See Also
– removeChildWindow: (page 92)
– addChildWindow:ordered: (page 34)
– parentWindow (page 87)
– setParentWindow: (page 123)

Declared In
NSWindow.h

44 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

close
Removes the window from the screen.

- (void)close

Discussion
If the window is set to be released when closed, a release message is sent to the object after the current
event is completed. For an NSWindow object, the default is to be released on closing, while for an NSPanel
object, the default is not to be released. You can use the setReleasedWhenClosed: (page 124) method to
change the default behavior.

A window doesn’t have to be visible to receive the close message. For example, when the application
terminates, it sends the close message to all windows in its window list, even those that are not currently
visible.

The close method posts an NSWindowWillCloseNotification (page 165) notification to the default
notification center.

The close method differs in two important ways from the performClose: (page 88) method:

 ■ It does not attempt to send a windowShouldClose: (page 146) message to the window or its delegate.

 ■ It does not simulate the user clicking the close button by momentarily highlighting the button.

Use performClose: (page 88) if you need these features.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderOut: (page 86)

Related Sample Code
ExtractMovieAudioToAIFF
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
SillyFrequencyLevels
UIElementInspector

Declared In
NSWindow.h

collectionBehavior
Identifies the window’s behavior in window collections.

- (NSWindowCollectionBehavior)collectionBehavior;

Return Value
The collection behavior identifier.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 45
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

See Also
– setCollectionBehavior: (page 105)

Declared In
NSWindow.h

constrainFrameRect:toScreen:
Modifies and returns a frame rectangle so that its top edge lies on a specific screen.

- (NSRect)constrainFrameRect:(NSRect)frameRect toScreen:(NSScreen *)screen

Parameters
frameRect

The proposed frame rectangle to adjust.

screen
The screen on which the top edge of the window’s frame is to lie.

Return Value
The adjusted frame rectangle.

Discussion
If the window is resizable and the window’s height is greater than the screen height, the rectangle’s height
is adjusted to fit within the screen as well. The rectangle’s width and horizontal location are unaffected. You
shouldn’t need to invoke this method yourself; it’s invoked automatically (and the modified frame is used to
locate and set the size of the window) whenever a titled NSWindow object is placed onscreen and whenever
its size is changed.

Subclasses can override this method to prevent their instances from being constrained or to constrain them
differently.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend

Declared In
NSWindow.h

contentAspectRatio
Returns the window’s content aspect ratio.

- (NSSize)contentAspectRatio

Return Value
The window’s content aspect ratio.

Discussion
The default content aspect ratio is (0, 0).

46 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– setContentAspectRatio: (page 105)

Declared In
NSWindow.h

contentBorderThicknessForEdge:
Indicates the thickness of a given border of the window.

- (CGFloat)contentBorderThicknessForEdge:(NSRectEdge)edge

Parameters
edge

Border whose thickness to get:

 ■ NSMaxYEdge: Top border.

 ■ NSMinYEdge: Bottom border.

Return Value
Thickness of the given border, in points.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setContentBorderThickness:forEdge: (page 106)

Declared In
NSWindow.h

contentMaxSize
Returns the maximum size of the window’s content view.

- (NSSize)contentMaxSize

Return Value
The maximum size of the window’s content view.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setContentMaxSize: (page 106)
– contentMinSize (page 48)

Declared In
NSWindow.h

Instance Methods 47
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

contentMinSize
Returns the minimum size of the window’s content view.

- (NSSize)contentMinSize

Return Value
The minimum size of the window’s content view.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setContentMinSize: (page 106)
– contentMaxSize (page 47)

Declared In
NSWindow.h

contentRectForFrameRect:
Returns the window’s content rectangle with a given frame rectangle.

- (NSRect)contentRectForFrameRect:(NSRect)windowFrame

Parameters
windowFrame

The frame rectangle for the window expressed in screen coordinates.

Return Value
The window’s content rectangle, expressed in screen coordinates, with windowFrame.

Discussion
The window uses its current style mask in computing the content rectangle. See “Constants” (page 151) for
a list of style mask values. The main advantage of this instance-method counterpart to
contentRectForFrameRect:styleMask: (page 31) is that it allows you to take toolbars into account
when converting between content and frame rectangles. (The toolbar is not included in the content rectangle.)

Availability
Available in Mac OS X v10.3 and later.

See Also
– frameRectForContentRect: (page 65)
+ contentRectForFrameRect:styleMask: (page 31)

Declared In
NSWindow.h

contentResizeIncrements
Returns the window’s content-view resizing increments.

- (NSSize)contentResizeIncrements

48 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Return Value
The window’s content-view resizing increments.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setContentResizeIncrements: (page 107)

Declared In
NSWindow.h

contentView
Returns the window’s content view, the highest accessible NSView object in the window’s view hierarchy.

- (id)contentView

Return Value
The content view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContentView: (page 108)

Related Sample Code
CocoaDVDPlayer
FunkyOverlayWindow
LiveVideoMixer2
VideoViewer
WhackedTV

Declared In
NSWindow.h

convertBaseToScreen:
Converts a given point from the window’s base coordinate system to the screen coordinate system.

- (NSPoint)convertBaseToScreen:(NSPoint)point

Parameters
point

The point expressed in the window’s base coordinate system.

Return Value
point expressed in screen coordinates.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 49
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

See Also
– convertScreenToBase: (page 50)
– convertPoint:toView: (NSView)

Declared In
NSWindow.h

convertScreenToBase:
Converts a given point from the screen coordinate system to the window’s base coordinate system.

- (NSPoint)convertScreenToBase:(NSPoint)aPoint

Parameters
point

The point expressed in screen coordinates.

Return Value
point expressed in the window’s base coordinate system.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertBaseToScreen: (page 49)
– convertRect:fromView: (NSView)

Declared In
NSWindow.h

currentEvent
Returns the event currently being processed by the application, by invoking NSApplication’s currentEvent
method.

- (NSEvent *)currentEvent

Return Value
The event being processed by the application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

dataWithEPSInsideRect:
Returns EPS data that draws the region of the window within a given rectangle.

- (NSData *)dataWithEPSInsideRect:(NSRect)rect

50 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
rect

A rectangle (expressed in the window’s coordinate system) that identifies the region to be expressed
as EPS data.

Return Value
The region in the window (identified by rect) as EPS data.

Discussion
This data can be placed on a pasteboard, written to a file, or used to create an NSImage object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataWithEPSInsideRect: (NSView)
– writeEPSInsideRect:toPasteboard: (NSView)

Declared In
NSWindow.h

dataWithPDFInsideRect:
Returns PDF data that draws the region of the window within a given rectangle.

- (NSData *)dataWithPDFInsideRect:(NSRect)rect

Parameters
rect

A rectangle (expressed in the window’s coordinate system) that identifies the region to be expressed
as PDF data.

Return Value
The region in the window (identified by rect) as PDF data.

Discussion
This data can be placed on a pasteboard, written to a file, or used to create an NSImage object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataWithPDFInsideRect: (NSView)
– writePDFInsideRect:toPasteboard: (NSView)

Declared In
NSWindow.h

deepestScreen
Returns the deepest screen the window is on (it may be split over several screens).

- (NSScreen *)deepestScreen

Instance Methods 51
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Return Value
The deepest screen the window is on; nil when the window is offscreen.

Availability
Available in Mac OS X v10.0 and later.

See Also
– screen (page 97)
+ deepestScreen (NSScreen)

Declared In
NSWindow.h

defaultButtonCell
Returns the button cell that performs as if clicked when the window receives a Return (or Enter) key event.

- (NSButtonCell *)defaultButtonCell

Return Value
The button cell.

Discussion
This cell draws itself as the focal element for keyboard interface control, unless another button cell is focused
on, in which case the default button cell temporarily draws itself as normal and disables its key equivalent.

The window receives a Return key event if no responder in its responder chain claims it, or if the user presses
the Control key along with the Return key.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDefaultButtonCell: (page 109)
– disableKeyEquivalentForDefaultButtonCell (page 55)
– enableKeyEquivalentForDefaultButtonCell (page 60)

Declared In
NSWindow.h

delegate
Returns the window’s delegate.

- (id)delegate

Return Value
The window’s delegate, or nil if it doesn’t have a delegate.

Availability
Available in Mac OS X v10.0 and later.

52 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

See Also
– setDelegate: (page 109)

Related Sample Code
FancyAbout
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSWindow.h

deminiaturize:
Deminimizes the window.

- (void)deminiaturize:(id)sender

Parameters
sender

The message’s sender.

Discussion
Invoke this method to programmatically deminimize a minimized window in the Dock.

Availability
Available in Mac OS X v10.0 and later.

See Also
– miniaturize: (page 81)
– styleMask (page 132)

Declared In
NSWindow.h

depthLimit
Returns the depth limit of the window.

- (NSWindowDepth)depthLimit

Return Value
Depth limit of the window.

Discussion
The value returned can be examined with the Application Kit functions NSPlanarFromDepth,
NSColorSpaceFromDepth, NSBitsPerSampleFromDepth, and NSBitsPerPixelFromDepth.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultDepthLimit (page 31)
– setDepthLimit: (page 110)

Instance Methods 53
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– setDynamicDepthLimit: (page 111)

Declared In
NSWindow.h

deviceDescription
Returns a dictionary containing information about the window’s resolution.

- (NSDictionary *)deviceDescription

Return Value
A dictionary containing resolution information about the window, such as color, depth, and so on.

Discussion
This information is useful for tuning images and colors to the window’s display capabilities. The contents of
the dictionary are described in “Display Device—Descriptions” (page 153).

Availability
Available in Mac OS X v10.0 and later.

See Also
– deviceDescription (NSScreen)
– bestRepresentationForDevice: (NSImage)
– colorUsingColorSpaceName: (NSColor)

Related Sample Code
CocoaDVDPlayer

Declared In
NSWindow.h

disableCursorRects
Disables all cursor rectangle management within the window.

- (void)disableCursorRects

Discussion
Use this method when you need to do some special cursor manipulation and you don’t want the Application
Kit interfering.

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableCursorRects (page 60)

Declared In
NSWindow.h

54 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

disableFlushWindow
Disables the flushWindow (page 63) method for the window.

- (void)disableFlushWindow

Discussion
If the window is buffered, disabling flushWindow (page 63) prevents drawing from being automatically
flushed by the NSView display... methods from the window’s backing store to the screen. This method
permits several views to be drawn before the results are shown to the user.

Flushing should be disabled only temporarily, while the window’s display is being updated. Each
disableFlushWindowmessage must be paired with a subsequent enableFlushWindow (page 60) message.
Invocations of these methods can be nested; flushing isn’t reenabled until the last (unnested)
enableFlushWindow (page 60) message is sent.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaDVDPlayer

Declared In
NSWindow.h

disableKeyEquivalentForDefaultButtonCell
Disables the default button cell’s key equivalent, so it doesn’t perform a click when the user presses Return
(or Enter).

- (void)disableKeyEquivalentForDefaultButtonCell

Availability
Available in Mac OS X v10.0 and later.

See Also
– defaultButtonCell (page 52)
– enableKeyEquivalentForDefaultButtonCell (page 60)

Declared In
NSWindow.h

disableScreenUpdatesUntilFlush
Disables the window’s screen updates until the window is flushed.

- (void)disableScreenUpdatesUntilFlush

Discussion
This method can be invoked to synchronize hardware surface flushes with the window’s flushes. The window
immediately disables screen updates using the NSDisableScreenUpdates function and reenables screen
updates when the window flushes. Sending this message multiple times during a window update cycle has
no effect.

Instance Methods 55
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
GLSLShowpiece

Declared In
NSWindow.h

discardCachedImage
Discards all of the window’s cached image rectangles.

- (void)discardCachedImage

Discussion
An NSWindow object automatically discards its cached image rectangles when it displays.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cacheImageInRect: (page 40)
– restoreCachedImage (page 95)
– display (page 57)

Declared In
NSWindow.h

discardCursorRects
Invalidates all cursor rectangles in the window.

- (void)discardCursorRects

Discussion
This method is invoked by resetCursorRects (page 93) to clear out existing cursor rectangles before
resetting them. You shouldn’t invoke it in the code you write, but you might want to override it to change
its behavior.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

discardEventsMatchingMask:beforeEvent:
Forwards the message to the NSApplication object, NSApp.

- (void)discardEventsMatchingMask:(NSUInteger)eventMask beforeEvent:(NSEvent
*)lastEvent

56 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
eventMask

The mask of the events to discard.

lastEvent
The event up to which queued events are discarded from the queue.

Availability
Available in Mac OS X v10.0 and later.

See Also
– discardEventsMatchingMask:beforeEvent: (NSApplication)

Declared In
NSWindow.h

display
Passes a display message down the window’s view hierarchy, thus redrawing all views within the window,
including the frame view that draws the border, title bar, and other peripheral elements.

- (void)display

Discussion
You rarely need to invoke this method. NSWindow objects normally record which of their views need display
and display them automatically on each pass through the event loop.

Availability
Available in Mac OS X v10.0 and later.

See Also
– display (NSView)
– displayIfNeeded (page 57)
– isAutodisplay (page 71)

Related Sample Code
GLChildWindowDemo

Declared In
NSWindow.h

displayIfNeeded
Passes a displayIfNeeded message down the window’s view hierarchy, thus redrawing all views that need
to be displayed, including the frame view that draws the border, title bar, and other peripheral elements.

- (void)displayIfNeeded

Discussion
This method is useful when you want to modify some number of views and then display only the ones that
were modified.

Instance Methods 57
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

You rarely need to invoke this method. NSWindow objects normally record which of their views need display
and display them automatically on each pass through the event loop.

Availability
Available in Mac OS X v10.0 and later.

See Also
– display (page 57)
– displayIfNeeded (NSView)
– setNeedsDisplay: (NSView)
– isAutodisplay (page 71)

Declared In
NSWindow.h

displaysWhenScreenProfileChanges
Indicates whether the window context should be updated when the screen profile changes or when the
window moves to a different screen.

- (BOOL)displaysWhenScreenProfileChanges

Return Value
YES when the window context should be updated when the screen profile changes or when the window
moves to a different screen; NO otherwise.

Discussion
The default value is NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDisplaysWhenScreenProfileChanges: (page 110)

Related Sample Code
VideoViewer

Declared In
NSWindow.h

dockTile
Provides the application’s Dock tile.

- (NSDockTile *)dockTile

Return Value
The application’s Dock tile.

Availability
Available in Mac OS X v10.5 and later.

58 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

dragImage:at:offset:event:pasteboard:source:slideBack:
Begins a dragging session.

- (void)dragImage:(NSImage *)image at:(NSPoint)imageLocation
offset:(NSSize)pointerOffset event:(NSEvent *)event pasteboard:(NSPasteboard
*)pasteboard source:(id)sourceObject slideBack:(BOOL)slideBack

Parameters
image

The object to be dragged.

imageLocation
Location of the image’s bottom-left corner in the window’s coordinate system. It determines the
placement of the dragged image under the pointer.

initialOffset
The pointer’s location relative to the mouse-down location. Not used in Mac OS X v10.4 and later.

event
The left-mouse down event that triggered the dragging operation.

pasteboard
The pasteboard that holds the data to be transfered to the destination.

sourceObject
The object serving as the controller of the dragging operation. It must conform to the
NSDraggingSource informal protocol.

slideBack
Specifies whether the drag image should slide back to imageLocation if it's rejected by the drag
destination. Pass YES to specify slideback behavior, NO to specify otherwise.

Discussion
This method should be invoked only from within a view’s implementation of the mouseDown: or
mouseDragged: methods (which overrides the version defined in NSResponder class). Essentially the same
as the NSView method of the same name, except that imageLocation is given in the NSWindow object’s
base coordinate system.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dragImage:at:offset:event:pasteboard:source:slideBack: (NSView)

Declared In
NSWindow.h

drawers
Returns the collection of drawers associated with the window.

- (NSArray *)drawers

Instance Methods 59
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Return Value
The collection of drawers associated with the window.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDrawer.h

enableCursorRects
Reenables cursor rectangle management within the window after a disableCursorRects (page 54)
message.

- (void)enableCursorRects

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

enableFlushWindow
Reenables the flushWindow (page 63) method for the window after it was disabled through a previous
disableFlushWindow (page 55) message.

- (void)enableFlushWindow

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaDVDPlayer

Declared In
NSWindow.h

enableKeyEquivalentForDefaultButtonCell
Reenables the default button cell’s key equivalent, so it performs a click when the user presses Return (or
Enter).

- (void)enableKeyEquivalentForDefaultButtonCell

Availability
Available in Mac OS X v10.0 and later.

See Also
– defaultButtonCell (page 52)
– disableKeyEquivalentForDefaultButtonCell (page 55)

60 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

endEditingFor:
Forces the field editor to give up its first responder status and prepares it for its next assignment.

- (void)endEditingFor:(id)object

Parameters
object

The object that is using the window’s field editor.

Discussion
If the field editor is the first responder, it’s made to resign that status even if its resignFirstResponder
method returns NO. This registration forces the field editor to send a textDidEndEditing: message to its
delegate. The field editor is then removed from the view hierarchy, its delegate is set to nil, and it’s emptied
of any text it may contain.

This method is typically invoked by the object using the field editor when it’s finished. Other objects normally
change the first responder by simply using makeFirstResponder: (page 78), which allows a field editor
or other object to retain its first responder status if, for example, the user has entered an invalid value. The
endEditingFor: (page 61) method should be used only as a last resort if the field editor refuses to resign
first responder status. Even in this case, you should always allow the field editor a chance to validate its text
and take whatever other action it needs first. You can do this by first trying to make the NSWindow object
the first responder:

if ([myWindow makeFirstResponder:myWindow]) {
 /* All fields are now valid; it’s safe to use fieldEditor:forObject:
 to claim the field editor. */
}
else {
 /* Force first responder to resign. */
 [myWindow endEditingFor:nil];
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– fieldEditor:forObject: (page 61)
– windowWillReturnFieldEditor:toObject: (page 149)

Declared In
NSWindow.h

fieldEditor:forObject:
Returns the window’s field editor, creating it if requested.

- (NSText *)fieldEditor:(BOOL)createWhenNeeded forObject:(id)anObject

Instance Methods 61
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
createWhenNeeded

If YES, creates a field editor if one doesn’t exist; if NO, does not create a field editor.

A freshly created NSWindow object doesn’t have a field editor. After a field editor has been created
for a window, the createWhenNeeded argument is ignored. By passing NO for createWhenNeeded
and testing the return value, however, you can predicate an action on the existence of the field editor.

anObject
A text-displaying object for which the delegate (in
windowWillReturnFieldEditor:toObject: (page 149)) assigns a custom field editor. Pass nil
to get the default field editor, which can be the NSWindow field editor or a custom field editor returned
by the delegate.

Return Value
Returns the field editor for the designated object (anObject) or, if anObject is nil, the default field editor.
Returns nil if createFlag is NO and if the field editor doesn’t exist.

Discussion
The field editor is a single NSTextView object that is shared among all the controls in a window for light
text-editing needs. It is automatically instantiated when needed, and it can be used however your application
sees fit. Typically, the field editor is used by simple text-bearing objects—for example, an NSTextField
object uses its window’s field editor to display and manipulate text. The field editor can be shared by any
number of objects, and so its state may be constantly changing. Therefore, it shouldn’t be used to display
text that demands sophisticated layout (for this you should create a dedicated NSTextView object).

The field editor may be in use by some view object, so be sure to properly dissociate it from that object
before actually using it yourself (the appropriate way to do this is illustrated in the description of
endEditingFor: (page 61)). Once you retrieve the field editor, you can insert it in the view hierarchy, set
a delegate to interpret text events, and have it perform whatever editing is needed. Then, when it sends a
textDidEndEditing:message to the delegate, you can get its text to display or store and remove the field
editor using endEditingFor: (page 61).

The window’s delegate can substitute a custom field editor in place of the window’s field editor by
implementing windowWillReturnFieldEditor:toObject: (page 149). The custom field editor can
become the default editor (common to all text-displaying objects) or specific to a particular text-displaying
object (anObject). The window sends this message to its delegate with itself and anObject as the arguments;
if the delegate returns a non-nil value, the window returns that object instead of its field editor in
fieldEditor:forObject:. However, note the following:

 ■ If the window’s delegate is identical to anObject, windowWillReturnFieldEditor:toObject: (page
149) isn’t sent to the delegate.

 ■ The object returned by the delegate method, though it may become first responder, does not become
the window's default field editor. Other objects continue to use the window's default field editor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

firstResponder
Returns the window’s first responder.

62 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

- (NSResponder *)firstResponder

Return Value
The first responder.

Discussion
The first responder is usually the first object in a responder chain to receive an event or action message. In
most cases, the first responder is a view object in that the user selects or activates with the mouse or keyboard.

You can use the firstResponder method in custom subclasses of responder classes (NSWindow,
NSApplication, NSView, and subclasses) to determine if an instance of the subclass is currently the first
responder. You can also use it to help locate a text field that currently has first-responder status. For more
on this subject, see “Event Handling Basics.“

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeFirstResponder: (page 78)
– acceptsFirstResponder (NSResponder)

Declared In
NSWindow.h

flushWindow
Flushes the window’s offscreen buffer to the screen if the window is buffered and flushing is enabled.

- (void)flushWindow

Discussion
Does nothing for other display devices, such as a printer. This method is automatically invoked by the
NSWindow display (page 57) and displayIfNeeded (page 57) methods and the corresponding NSView
display and displayIfNeeded methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
– flushWindowIfNeeded (page 64)
– disableFlushWindow (page 55)
– enableFlushWindow (page 60)

Related Sample Code
GLChildWindowDemo

Declared In
NSWindow.h

Instance Methods 63
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

flushWindowIfNeeded
Flushes the window’s offscreen buffer to the screen if flushing is enabled and if the last flushWindow (page
63) message had no effect because flushing was disabled.

- (void)flushWindowIfNeeded

Discussion
To avoid unnecessary flushing, use this method rather than flushWindow (page 63) to flush an NSWindow
object after flushing has been reenabled.

Availability
Available in Mac OS X v10.0 and later.

See Also
– disableFlushWindow (page 55)
– enableFlushWindow (page 60)

Declared In
NSWindow.h

frame
Returns the window’s frame rectangle.

- (NSRect)frame

Return Value
The frame rectangle of the window in screen coordinates.

Availability
Available in Mac OS X v10.0 and later.

See Also
– screen (page 97)
– deepestScreen (page 51)

Related Sample Code
BasicCocoaAnimations
FunkyOverlayWindow
iSpend
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSWindow.h

frameAutosaveName
Returns the name used to automatically save the window’s frame rectangle data in the defaults system, as
set through setFrameAutosaveName: (page 113).

64 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

- (NSString *)frameAutosaveName

Return Value
The name used to save the window’s frame rectangle automatically in the defaults system.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameUsingName: (page 116)

Declared In
NSWindow.h

frameRectForContentRect:
Returns the window’s frame rectangle with a given content rectangle.

- (NSRect)frameRectForContentRect:(NSRect)windowContent

Parameters
windowContent

The content rectangle for the window expressed in screen coordinates.

Return Value
The window’s frame rectangle, expressed in screen coordinates, with windowContent.

Discussion
The window uses its current style mask in computing the frame rectangle. See “Constants” (page 151) for a
list of style mask values. The major advantage of this instance-method counterpart to
frameRectForContentRect:styleMask: (page 32) is that it allows you to take toolbars into account
when converting between content and frame rectangles. (The toolbar is included in the frame rectangle but
not the content rectangle.)

Availability
Available in Mac OS X v10.3 and later.

See Also
– contentRectForFrameRect: (page 48)
+ frameRectForContentRect:styleMask: (page 32)

Related Sample Code
BasicCocoaAnimations

Declared In
NSWindow.h

graphicsContext
Provides the graphics context associated with the window for the current thread.

- (NSGraphicsContext *)graphicsContext

Instance Methods 65
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Return Value
The graphics context associated with the window for the current thread.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSWindow.h

gState
Returns the window’s graphics state object.

- (NSInteger)gState

Return Value
The graphics state object associated with the window.

Discussion
This graphics state is used by default for all NSView objects in the window’s view hierarchy, but individual
views can be made to use their own with the NSView method allocateGState.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

hasDynamicDepthLimit
Indicates whether the window’s depth limit can change to match the depth of the screen it’s on.

- (BOOL)hasDynamicDepthLimit

Return Value
YES when the window has a dynamic depth limit; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDynamicDepthLimit: (page 111)

Declared In
NSWindow.h

hasShadow
Indicates whether the window has a shadow.

- (BOOL)hasShadow

66 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Return Value
YES when the window has a shadow; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHasShadow: (page 117)
– invalidateShadow (page 71)

Declared In
NSWindow.h

hidesOnDeactivate
Indicates whether the window is removed from the screen when its application becomes inactive.

- (BOOL)hidesOnDeactivate

Return Value
YES if the window is removed from the screen when its application is deactivated; NO if it remains onscreen.

Discussion
The default for NSWindow is NO; the default for NSPanel is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHidesOnDeactivate: (page 117)

Declared In
NSWindow.h

ignoresMouseEvents
Indicates whether the window is transparent to mouse events.

- (BOOL)ignoresMouseEvents

Return Value
YES when the window is transparent to mouse events; NO otherwise.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setIgnoresMouseEvents: (page 118)

Declared In
NSWindow.h

Instance Methods 67
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

initialFirstResponder
Returns view that’s made first responder the first time the window is placed onscreen.

- (NSView *)initialFirstResponder

Return Value
The view that’s made first responder the first time the window is placed onscreen.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setInitialFirstResponder: (page 118)
– setNextKeyView: (NSView)

Declared In
NSWindow.h

initWithContentRect:styleMask:backing:defer:
Initializes the window with the specified values.

- (id)initWithContentRect:(NSRect)contentRect styleMask:(NSUInteger)windowStyle
backing:(NSBackingStoreType)bufferingType defer:(BOOL)deferCreation

Parameters
contentRect

Location and size of the window’s content area in screen coordinates. Note that the window server
limits window position coordinates to ±16,000 and sizes to 10,000.

windowStyle
The window’s style. Either it can be NSBorderlessWindowMask, or it can contain any of the options
described in “Constants” (page 151), combined using the C bitwise OR operator. Borderless windows
display none of the usual peripheral elements and are generally useful only for display or caching
purposes; you should normally not need to create them. Also, note that a window’s style mask should
include NSTitledWindowMask if it includes any of the others.

bufferingType
Specifies how the drawing done in the window is buffered by the window device, and possible values
are described in “Constants” (page 151).

deferCreation
Specifies whether the window server creates a window device for the window immediately. When
YES, the window server defers creating the window device until the window is moved onscreen. All
display messages sent to the window or its views are postponed until the window is created, just
before it’s moved onscreen.

Return Value
The initialized window.

Discussion
This method is the designated initializer for the NSWindow class.

Deferring the creation of the window improves launch time and minimizes the virtual memory load on the
window server.

68 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

The new window creates a view to be its default content view. You can replace it with your own object by
using the setContentView: (page 108) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 85)
– setTitle: (page 127)
– setOneShot: (page 122)
– initWithContentRect:styleMask:backing:defer:screen: (page 69)

Related Sample Code
CIAnnotation
FancyAbout
FunkyOverlayWindow
TrackBall
UIElementInspector

Declared In
NSWindow.h

initWithContentRect:styleMask:backing:defer:screen:
Initializes an allocated window with the specified values.

- (id)initWithContentRect:(NSRect)contentRect styleMask:(NSUInteger)windowStyle
backing:(NSBackingStoreType)bufferingType defer:(BOOL)deferCreation
screen:(NSScreen *)screen

Parameters
contentRect

Location and size of the window’s content area in screen coordinates. Note that the window server
limits window position coordinates to ±16,000 and sizes to 10,000.

windowStyle
The window’s style. It can be either NSBorderlessWindowMask, or it can contain any of the options
described in “Constants” (page 151), combined using the C bitwise OR operator. Borderless windows
display none of the usual peripheral elements and are generally useful only for display or caching
purposes; you should normally not need to create them. Also, note that a window’s style mask should
include NSTitledWindowMask if it includes any of the others.

bufferingType
Specifies how the drawing done in the window is buffered by the window device; possible values are
described in “Constants” (page 151).

deferCreation
Specifies whether the window server creates a window device for the window immediately. When
YES, the window server defers creating the window device until the window is moved onscreen. All
display messages sent to the window or its views are postponed until the window is created, just
before it’s moved onscreen.

Instance Methods 69
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

screen
Specifies where the window’s content rectangle is drawn if the window is to be drawn in a screen
other than the main screen. The content rectangle is drawn relative to the bottom-left corner of
screen. When nil, the content rectangle is drawn on the main screen.

Return Value
The initialized window.

Discussion
The main screen is the one that contains the current key window or, if there is no key window, the one that
contains the main menu. If there’s neither a key window nor a main menu (if there’s no active application),
the main screen is the one where the origin of the screen coordinate system is located.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 85)
– setTitle: (page 127)
– setOneShot: (page 122)

Declared In
NSWindow.h

initWithWindowRef:
Returns a Cocoa window created from a Carbon window.

- (NSWindow *)initWithWindowRef:(void *)carbonWindowRef

Parameters
carbonWindowRef

The Carbon WindowRef object to use to create the Cocoa window.

Return Value
A Cocoa window created from carbonWindowRef.

Discussion
For more information on Carbon-Cocoa integration, see Using a Carbon User Interface in a Cocoa Application
in Carbon-Cocoa Integration Guide.

Special Considerations

For historical reasons, contrary to normal memory management policy initWithWindowRef: does not
retain windowRef. It is therefore recommended that you make sure you retain windowRef before calling
this method. If windowRef is still valid when the Cocoa window is deallocated, the Cocoa window will release
it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowRef (page 137)

70 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Related Sample Code
CarbonInCocoa

Declared In
NSWindow.h

invalidateCursorRectsForView:
Marks as invalid the cursor rectangles of a given NSView object in the window’s view hierarchy, so they’ll be
set up again when the window becomes key (or immediately if the window is key).

- (void)invalidateCursorRectsForView:(NSView *)view

Parameters
view

The view in the window’s view hierarchy.

Availability
Available in Mac OS X v10.0 and later.

See Also
– resetCursorRects (page 93)
– resetCursorRects (NSView)

Declared In
NSWindow.h

invalidateShadow
Invalidates the window shadow so that it is recomputed based on the current window shape.

- (void)invalidateShadow

Availability
Available in Mac OS X v10.2 and later.

See Also
– hasShadow (page 66)
– setHasShadow: (page 117)

Declared In
NSWindow.h

isAutodisplay
Indicates whether the window automatically displays views that need to be displayed.

- (BOOL)isAutodisplay

Return Value
YES when the window automatically displays views that need to be displayed; NO otherwise.

Instance Methods 71
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
Automatic display typically occurs on each pass through the event loop.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutodisplay: (page 101)
– displayIfNeeded (page 57)
– setNeedsDisplay: (NSView)

Declared In
NSWindow.h

isDocumentEdited
Indicates whether the window’s document has been edited.

- (BOOL)isDocumentEdited

Return Value
YES when the window’s document has been edited; NO otherwise.

Discussion
Initially, by default, NSWindow objects are in the “not edited” state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

isExcludedFromWindowsMenu
Indicates whether the window is excluded from the application’s Windows menu.

- (BOOL)isExcludedFromWindowsMenu

Return Value
YES when the window is excluded from the Windows menu; NO otherwise.

Discussion
The default initial setting is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setExcludedFromWindowsMenu: (page 112)

Declared In
NSWindow.h

72 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

isFlushWindowDisabled
Indicates whether the window’s flushing ability is disabled.

- (BOOL)isFlushWindowDisabled

Return Value
YES when the window’s flushing ability has been disabled; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– disableFlushWindow (page 55)
– enableFlushWindow (page 60)

Declared In
NSWindow.h

isKeyWindow
Indicates whether the window is the key window for the application.

- (BOOL)isKeyWindow

Return Value
YES if the window is the key window for the application; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isMainWindow (page 73)
– makeKeyWindow (page 80)

Declared In
NSWindow.h

isMainWindow
Indicates whether the window is the application’s main window.

- (BOOL)isMainWindow

Return Value
YES when the window is the main window for the application, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isKeyWindow (page 73)
– makeMainWindow (page 80)

Instance Methods 73
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

isMiniaturized
Indicates whether the window is minimized.

- (BOOL)isMiniaturized

Return Value
YES if the window is minimized, otherwise NO.

Discussion
A minimized window is removed from the screen and replaced by a image, icon, or button that represents
it, called the counterpart.

Availability
Available in Mac OS X v10.0 and later.

See Also
– miniaturize: (page 81)

Declared In
NSWindow.h

isMovableByWindowBackground
Indicates whether the window is movable by clicking and dragging anywhere in its background.

- (BOOL)isMovableByWindowBackground

Return Value
YES when the window is movable by clicking and dragging anywhere in its background; NO otherwise.

Discussion
A window with a style mask of NSTexturedBackgroundWindowMask is movable by background by default.
Sheets and drawers cannot be movable by window background.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setMovableByWindowBackground: (page 121)

Declared In
NSWindow.h

isOneShot
Indicates whether the window device the window manages is freed when it’s removed from the screen list.

- (BOOL)isOneShot

74 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Return Value
YES when the window’s window device is freed when it’s removed from the screen list; NO otherwise.

Discussion
The default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOneShot: (page 122)

Declared In
NSWindow.h

isOpaque
Indicates whether the window is opaque.

- (BOOL)isOpaque

Return Value
YES when the window is opaque; NO otherwise.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOpaque: (page 122)

Declared In
NSWindow.h

isReleasedWhenClosed
Indicates whether the window is released when it receives the close message.

- (BOOL)isReleasedWhenClosed

Return Value
YES if the window is automatically released after being closed; NO if it’s simply removed from the screen.

Discussion
The default for NSWindow is YES; the default for NSPanel is NO. Release when closed, however, is ignored
for windows owned by window controllers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setReleasedWhenClosed: (page 124)

Instance Methods 75
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

isSheet
Indicates whether the window has ever run as a modal sheet.

- (BOOL)isSheet

Return Value
YES if the window has ever run as a modal sheet, otherwise NO.

Discussion
Sheets are created using the NSPanel subclass.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSWindow.h

isVisible
Indicates whether the window is visible onscreen (even when It’s obscured by other windows).

- (BOOL)isVisible

Return Value
YES when the window is onscreen (even if it’s obscured by other windows); NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– visibleRect (NSView)

Related Sample Code
GLChildWindowDemo
SimpleCocoaJavaMovie
SimpleCocoaJavaMovieCocoa

Declared In
NSWindow.h

isZoomed
Returns a Boolean value that indicates whether the window is in a zoomed state.

- (BOOL)isZoomed

Return Value
YES if the window is in a zoomed state, otherwise NO.

76 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
The zoomed state of the window is determined using the following steps:

1. If the delegate or the window class implements windowWillUseStandardFrame:defaultFrame: (page 150),
it is invoked to obtain the zoomed frame of the window. The result of isZoomed is then determined by
whether or not the current window frame is equal to the zoomed frame.

2. If the neither the delegate nor the window class implements
windowWillUseStandardFrame:defaultFrame: (page 150), a default frame that nearly fits the screen is
chosen. If the delegate or window class implements windowWillResize:toSize: (page 148), it is invoked
to validate the proposed zoomed frame. Once the zoomed frame is validated, the result of isZoomed
is determined by whether or not the current window frame is equal to the zoomed frame.

Availability
Available in Mac OS X v10.0 and later.

See Also
– zoom: (page 138)

Declared In
NSWindow.h

keyDown:
Handles a given keyboard event that may need to be interpreted as changing the key view or triggering a
keyboard equivalent.

- (void)keyDown:(NSEvent *)event

Parameters
event

The keyboard event to process.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectNextKeyView: (page 98)
– nextKeyView (NSView)
– performMnemonic: (NSView)

Declared In
NSWindow.h

keyViewSelectionDirection
Returns the direction the window is currently using to change the key view.

- (NSSelectionDirection)keyViewSelectionDirection

Return Value
The direction the window is using to change the key view.

Instance Methods 77
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
This direction can be one of the values described in “Constants” (page 151).

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectNextKeyView: (page 98)
– selectPreviousKeyView: (page 99)

Declared In
NSWindow.h

level
Returns the window level of the window.

- (NSInteger)level

Return Value
The window level.

Discussion
See “Constants” (page 151) for a list of possible values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLevel: (page 118)

Declared In
NSWindow.h

makeFirstResponder:
Attempts to make a given responder the first responder for the window.

- (BOOL)makeFirstResponder:(NSResponder *)responder

Parameters
responder

The responder to set as the window’s first responder. nil makes the window its first responder.

Return Value
YES when the operation is successful; NO otherwise.

Discussion
If responder isn’t already the first responder, this method first sends a resignFirstResponder message
to the object that is the first responder. If that object refuses to resign, it remains the first responder, and
this method immediately returns NO. If the current first responder resigns, this method sends a

78 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

becomeFirstResponder message to responder. If responder does not accept first responder status, the
NSWindow object becomes first responder; in this case, the method returns YES even if responder refuses
first responder status.

If responder is nil, this method still sends resignFirstResponder to the current first responder. If the
current first responder refuses to resign, it remains the first responder and this method immediately returns
NO. If the current first responder returns YES from resignFirstResponder, the window is made its own
first responder and this method returns YES.

The Application Kit framework uses this method to alter the first responder in response to mouse-down
events; you can also use it to explicitly set the first responder from within your program. The responder
object is typically an NSView object in the window’s view hierarchy. If this method is called explicitly, first
send acceptsFirstResponder to responder, and do not call makeFirstResponder: if
acceptsFirstResponder returns NO.

Use setInitialFirstResponder: (page 118) to the set the first responder to be used when the window
is brought onscreen for the first time.

Availability
Available in Mac OS X v10.0 and later.

See Also
– becomeFirstResponder (NSResponder)
– resignFirstResponder (NSResponder)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CustomSave
Sketch-112
WhackedTV

Declared In
NSWindow.h

makeKeyAndOrderFront:
Moves the window to the front of the screen list, within its level, and makes it the key window; that is, it
shows the window.

- (void)makeKeyAndOrderFront:(id)sender

Parameters
sender

The message’s sender.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 85)
– orderBack: (page 84)
– orderOut: (page 86)
– orderWindow:relativeTo: (page 86)

Instance Methods 79
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– setLevel: (page 118)

Related Sample Code
GridCalendar
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
WhackedTV

Declared In
NSWindow.h

makeKeyWindow
Makes the window the key window.

- (void)makeKeyWindow

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeMainWindow (page 80)
– becomeKeyWindow (page 40)
– isKeyWindow (page 73)

Declared In
NSWindow.h

makeMainWindow
Makes the window the main window.

- (void)makeMainWindow

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeKeyWindow (page 80)
– becomeMainWindow (page 40)
– isMainWindow (page 73)

Declared In
NSWindow.h

maxSize
Returns the maximum size to which the window’s frame (including its title bar) can be sized.

80 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

- (NSSize)maxSize

Return Value
The maximum size to which the window’s frame (including its title bar) can be sized either by the user or by
the setFrame... methods other than setFrame:display: (page 112).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaxSize: (page 119)
– minSize (page 82)
– aspectRatio (page 37)
– resizeIncrements (page 95)

Declared In
NSWindow.h

miniaturize:
Removes the window from the screen list and displays the minimized window in the Dock.

- (void)miniaturize:(id)sender

Parameters
sender

The message’s sender.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deminiaturize: (page 53)

Declared In
NSWindow.h

miniwindowImage
Returns the custom miniaturized window image of the window.

- (NSImage *)miniwindowImage

Return Value
The custom miniaturized window image.

Discussion
The miniaturized window image is the image displayed in the Dock when the window is minimized. If you
did not assign a custom image to the window, this method returns nil.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 81
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

See Also
– setMiniwindowImage: (page 120)
– miniwindowTitle (page 82)

Declared In
NSWindow.h

miniwindowTitle
Returns the title displayed in the window’s minimized window.

- (NSString *)miniwindowTitle

Return Value
The title displayed in the window’s minimized window.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMiniwindowTitle: (page 120)
– miniwindowImage (page 81)

Declared In
NSWindow.h

minSize
Returns the minimum size to which the window’s frame (including its title bar) can be sized.

- (NSSize)minSize

Return Value
The minimum size to which the window’s frame (including its title bar) can be sized either by the user or by
the setFrame... methods other than setFrame:display: (page 112).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMinSize: (page 121)
– maxSize (page 80)
– aspectRatio (page 37)
– resizeIncrements (page 95)

Declared In
NSWindow.h

mouseLocationOutsideOfEventStream
Returns the current location of the pointer reckoned in the window’s base coordinate system.

82 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

- (NSPoint)mouseLocationOutsideOfEventStream

Return Value
The current location of the pointer reckoned in the window’s base coordinate system, regardless of the
current event being handled or of any events pending.

Discussion
For the same information in screen coordinates, use NSEvent's mouseLocation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentEvent (NSApplication)

Declared In
NSWindow.h

nextEventMatchingMask:
Returns the next event matching a given mask.

- (NSEvent *)nextEventMatchingMask:(NSUInteger)eventMask

Parameters
eventMask

The mask that the event to return must match. Events with nonmatching masks are removed from
the queue. See discardEventsMatchingMask:beforeEvent: in NSApplication for the list of
mask values.

Return Value
The next event whose mask matches eventMask; nil when no matching event was found.

Discussion
This method sends the message nextEventMatchingMask:eventMask untilDate:[NSDate
distantFuture] inMode:NSEventTrackingRunLoopMode dequeue:YES to the application (NSApp).

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextEventMatchingMask:untilDate:inMode:dequeue: (NSApplication)

Related Sample Code
Sketch-112

Declared In
NSWindow.h

nextEventMatchingMask:untilDate:inMode:dequeue:
Forwards the message to the global NSApplication object, NSApp.

Instance Methods 83
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

- (NSEvent *)nextEventMatchingMask:(NSUInteger)eventMask untilDate:(NSDate
*)expirationDate inMode:(NSString *)runLoopMode dequeue:(BOOL)dequeue

Parameters
eventMask

The mask that the event to return must match.

expirationDate
The date until which to wait for events.

runLoopMode
The run loop mode to use while waiting for events

dequeue
YES to remove the returned event from the event queue; NO to leave the returned event in the queue.

Return Value
The next event whose mask matches eventMask; nil when no matching event was found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextEventMatchingMask:untilDate:inMode:dequeue: (NSApplication)

Related Sample Code
CIAnnotation
LiveVideoMixer2
LiveVideoMixer3
ThreadsExportMovie

Declared In
NSWindow.h

orderBack:
Moves the window to the back of its level in the screen list, without changing either the key window or the
main window.

- (void)orderBack:(id)sender

Parameters
sender

Message originator.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 85)
– orderOut: (page 86)
– orderWindow:relativeTo: (page 86)
– makeKeyAndOrderFront: (page 79)
– level (page 78)

84 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

orderFront:
Moves the window to the front of its level in the screen list, without changing either the key window or the
main window.

- (void)orderFront:(id)sender

Parameters
sender

The message’s sender.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderBack: (page 84)
– orderOut: (page 86)
– orderWindow:relativeTo: (page 86)
– makeKeyAndOrderFront: (page 79)
– level (page 78)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CocoaDVDPlayer
FunkyOverlayWindow
TrackBall
UIElementInspector

Declared In
NSWindow.h

orderFrontRegardless
Moves the window to the front of its level, even if its application isn’t active, without changing either the
key window or the main window.

- (void)orderFrontRegardless

Parameters
sender

The message’s sender.

Discussion
Normally an NSWindow object can’t be moved in front of the key window unless it and the key window are
in the same application. You should rarely need to invoke this method; it’s designed to be used when
applications are cooperating in such a way that an active application (with the key window) is using another
application to display data.

Instance Methods 85
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 85)
– level (page 78)

Declared In
NSWindow.h

orderOut:
Removes the window from the screen list, which hides the window.

- (void)orderOut:(id)sender

Parameters
sender

The message’s sender.

Discussion
If the window is the key or main window, the NSWindow object immediately behind it is made key or main
in its place. Calling the orderOut: (page 86) method causes the window to be removed from the screen,
but does not cause it to be released. See the close (page 45) method for information on when a window
is released.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 85)
– orderBack: (page 84)
– orderWindow:relativeTo: (page 86)
– setReleasedWhenClosed: (page 124)

Related Sample Code
EnhancedDataBurn
GridCalendar
ImageClient
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSWindow.h

orderWindow:relativeTo:
Repositions the window’s window device in the window server’s screen list.

- (void)orderWindow:(NSWindowOrderingMode)orderingMode
relativeTo:(NSInteger)otherWindowNumber

86 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
orderingMode

NSWindowOut: The window is removed from the screen list and otherWindowNumber is ignored.
NSWindowAbove: The window is ordered immediately in front of the window whose window number
is otherWindowNumber
NSWindowBelow: The window is placed immediately behind the window represented by
otherWindowNumber.

otherWindowNumber
The number of the window the window is to be placed in front of or behind. Pass 0 to place the
window in front of (when orderingMode is NSWindowAbove) or behind (when orderingMode is
NSWindowBelow) all other windows in its level.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 85)
– orderBack: (page 84)
– orderOut: (page 86)
– makeKeyAndOrderFront: (page 79)
– level (page 78)
– windowNumber (page 137)

Declared In
NSWindow.h

parentWindow
Returns the parent window to which the window is attached as a child.

- (NSWindow *)parentWindow

Return Value
The window to which the window is attached as a child.

Availability
Available in Mac OS X v10.2 and later.

See Also
– removeChildWindow: (page 92)
– childWindows (page 44)
– addChildWindow:ordered: (page 34)
– setParentWindow: (page 123)

Related Sample Code
FunkyOverlayWindow
GLChildWindowDemo

Declared In
NSWindow.h

Instance Methods 87
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

performClose:
This action method simulates the user clicking the close button by momentarily highlighting the button and
then closing the window.

- (void)performClose:(id)sender

Parameters
sender

The message’s sender.

Discussion
If the window’s delegate or the window itself implements windowShouldClose: (page 146), that message
is sent with the window as the argument. (Only one such message is sent; if both the delegate and the
NSWindow object implement the method, only the delegate receives the message.) If the
windowShouldClose: (page 146) method returns NO, the window isn’t closed. If it returns YES, or if it isn’t
implemented, performClose: (page 88) invokes the close (page 45) method to close the window.

If the window doesn’t have a close button or can’t be closed (for example, if the delegate replies NO to a
windowShouldClose: (page 146) message), the system emits the alert sound.

Availability
Available in Mac OS X v10.0 and later.

See Also
– styleMask (page 132)
– performMiniaturize: (page 88)

Related Sample Code
QTMetadataEditor

Declared In
NSWindow.h

performMiniaturize:
Simulates the user clicking the minimize button by momentarily highlighting the button, then minimizing
the window.

- (void)performMiniaturize:(id)sender

Parameters
sender

The message’s sender.

Discussion
If the window doesn’t have a minimize button or can’t be minimized for some reason, the system emits the
alert sound.

Availability
Available in Mac OS X v10.0 and later.

See Also
– close (page 45)
– styleMask (page 132)

88 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– performClose: (page 88)

Declared In
NSWindow.h

performZoom:
This action method simulates the user clicking the zoom box by momentarily highlighting the button and
then zooming the window.

- (void)performZoom:(id)sender

Parameters
sender

The object sending the message.

Discussion
If the window doesn’t have a zoom box or can’t be zoomed for some reason, the computer beeps.

Availability
Available in Mac OS X v10.0 and later.

See Also
– styleMask (page 132)
– zoom: (page 138)

Declared In
NSWindow.h

postEvent:atStart:
Forwards the message to the global NSApplication object, NSApp.

- (void)postEvent:(NSEvent *)event atStart:(BOOL)atStart

Parameters
event

The event to add to the window’s event queue.

atStart
YES to place the event in the front of the queue; NO to place it in the back.

Availability
Available in Mac OS X v10.0 and later.

See Also
– postEvent:atStart:

Declared In
NSWindow.h

Instance Methods 89
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

preferredBackingLocation
Indicates the preferred location for the window’s backing store.

- (NSWindowBackingLocation)preferredBackingLocation

Return Value
The preferred location for the window’s backing store. See “Constants” (page 151) for possible values.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setPreferredBackingLocation: (page 123)
– backingLocation (page 39)

Declared In
NSWindow.h

preservesContentDuringLiveResize
Returns a Boolean value that indicates whether the window tries to optimize live resize operations by
preserving the content of views that have not changed.

- (BOOL)preservesContentDuringLiveResize

Return Value
YES if the window tries to optimize live resize operations by preserving the content of views that have not
moved; NO otherwise.

Discussion
When live-resize optimization is active, the window redraws only those views that moved (or do not support
this optimization) during a live resize operation.

See preservesContentDuringLiveResize in NSView for additional information on how to support this
optimization.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPreservesContentDuringLiveResize: (page 124)
– preservesContentDuringLiveResize (NSView)

Declared In
NSWindow.h

print:
This action method runs the Print panel, and if the user chooses an option other than canceling, prints the
window (its frame view and all subviews).

- (void)print:(id)sender

90 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
sender

The message’s sender.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

recalculateKeyViewLoop
Marks the key view loop as dirty and in need of recalculation.

- (void)recalculateKeyViewLoop

Discussion
The key view loop is actually recalculated the next time someone requests the next or previous key view of
the window. The recalculated loop is based on the geometric order of the views in the window.

If you do not want to maintain the key view loop of your window manually, you can use this method to do
it for you. When it is first loaded, NSWindow calls this method automatically if your window does not have a
key view loop already established. If you add or remove views later, you can call this method manually to
update the window’s key view loop. You can also call setAutorecalculatesKeyViewLoop: (page 103) to
have the window recalculate the loop automatically.

Availability
Available in Mac OS X v10.4 and later.

See Also
– selectKeyViewFollowingView: (page 97)
– selectKeyViewPrecedingView: (page 98)
– setAutorecalculatesKeyViewLoop: (page 103)

Declared In
NSWindow.h

registerForDraggedTypes:
Registers a give set of pasteboard types as the pasteboard types the window will accept as the destination
of an image-dragging session.

- (void)registerForDraggedTypes:(NSArray *)pasteboardTypes

Parameters
pasteboardTypes

An array of the pasteboard types the window will accept as the destination of an image-dragging
session.

Discussion
Registering an NSWindow object for dragged types automatically makes it a candidate destination object for
a dragging session. NSWindow has a default implementation for many of the methods in the
NSDraggingDestination informal protocol. The default implementation forwards each message to the

Instance Methods 91
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

delegate if the delegate responds to the selector of the message. The messages forwarded this way are
draggingEntered:, draggingUpdated:, draggingExited:, prepareForDragOperation:,
performDragOperation:, and concludeDragOperation:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– unregisterDraggedTypes (page 134)

Declared In
NSWindow.h

removeChildWindow:
Detaches a given child window from the window.

- (void)removeChildWindow:(NSWindow *)childWindow

Parameters
childWindow

The child window to detach.

Availability
Available in Mac OS X v10.2 and later.

See Also
– addChildWindow:ordered: (page 34)
– childWindows (page 44)
– parentWindow (page 87)
– setParentWindow: (page 123)

Declared In
NSWindow.h

representedFilename
Returns the pathname of the file the window represents.

- (NSString *)representedFilename

Return Value
The path to the file of the window’s represented file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRepresentedFilename: (page 125)

Declared In
NSWindow.h

92 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

representedURL
Provides the URL of the file the window represents.

- (NSURL *)representedURL

Return Value
The URL for the file the window represents.

Discussion
When the URL specifies a path, the window shows an icon in its title bar, as described in Table 1.

Table 1 Title bar document icon display

Document iconFilepath

None.Empty

Generic.Specifies a nonexistent file

Specific for the file’s type.Specifies an existent file

You can customize the file icon in the tile bar with the following code:

[[<window> standardWindowButton:NSWindowDocumentIconButton] setImage:<image>]

When the URL identifies an existing file, the window’s title offers a pop-up menu showing the path components
of the URL. (The user displays this menu by Command-clicking the title.) The behavior and contents of this
menu can be controlled with window:shouldPopUpDocumentPathMenu: (page 140).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setRepresentedURL: (page 125)
– window:shouldDragDocumentWithEvent:from:withPasteboard: (page 139)

Declared In
NSWindow.h

resetCursorRects
Clears the window’s cursor rectangles and the cursor rectangles of the NSView objects in its view hierarchy.

- (void)resetCursorRects

Discussion
Invokes discardCursorRects (page 56) to clear the window’s cursor rectangles, then sends
resetCursorRects (page 93) to every NSView object in the window’s view hierarchy.

This method is typically invoked by the NSApplication object when it detects that the key window’s cursor
rectangles are invalid. In program code, it’s more efficient to invoke
invalidateCursorRectsForView: (page 71).

Instance Methods 93
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
TextLinks

Declared In
NSWindow.h

resignKeyWindow
Invoked automatically when the window resigns key window status; never invoke this method directly.

- (void)resignKeyWindow

Discussion
This method sends resignKeyWindow (page 94) to the window’s first responder, sends
windowDidResignKey: (page 145) to the window’s delegate, and posts an
NSWindowDidResignKeyNotification (page 164) to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– becomeKeyWindow (page 40)
– resignMainWindow (page 94)

Declared In
NSWindow.h

resignMainWindow
Invoked automatically when the window resigns main window status; never invoke this method directly.

- (void)resignMainWindow

Discussion
This method sends windowDidResignMain: (page 145) to the window’s delegate and posts an
NSWindowDidResignMainNotification (page 164) to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– becomeMainWindow (page 40)
– resignKeyWindow (page 94)

Declared In
NSWindow.h

94 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

resizeFlags
Returns the flags field of the event record for the mouse-down event that initiated the resizing session.

- (NSInteger)resizeFlags

Return Value
A mask indicating which of the modifier keys was held down when the mouse-down event occurred. The
flags are listed in NSEvent object’s modifierFlags method description.

Discussion
This method is valid only while the window is being resized

You can use this method to constrain the direction or amount of resizing. Because of its limited validity, this
method should only be invoked from within an implementation of the delegate method
windowWillResize:toSize: (page 148).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

resizeIncrements
Returns the window’s resizing increments.

- (NSSize)resizeIncrements

Return Value
The window’s resizing increments.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setResizeIncrements: (page 126)
– setAspectRatio: (page 101)
– setFrame:display: (page 112)

Declared In
NSWindow.h

restoreCachedImage
Splices the window’s cached image rectangles, if any, back into its raster image (and buffer if it has one),
undoing the effect of any drawing performed within those areas since they were established using
cacheImageInRect: (page 40).

- (void)restoreCachedImage

Instance Methods 95
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
You must invoke flushWindow (page 63) after this method to guarantee proper redisplay. An NSWindow
object automatically discards its cached image rectangles when it displays.

Availability
Available in Mac OS X v10.0 and later.

See Also
– discardCachedImage (page 56)
– display (page 57)

Declared In
NSWindow.h

runToolbarCustomizationPalette:
The action method for the “Customize Toolbar…” menu item.

- (void)runToolbarCustomizationPalette:(id)sender

Parameters
sender

The message’s sender.

Discussion
See the NSToolbar class description for additional information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

saveFrameUsingName:
Saves the window’s frame rectangle in the user defaults system under a given name.

- (void)saveFrameUsingName:(NSString *)frameName

Parameters
frameName

The name under which the frame is to be saved.

Discussion
With the companion method setFrameUsingName: (page 116), you can save and reset an NSWindow object’s
frame over various launches of an application. The default is owned by the application and stored under the
name "NSWindow Frame frameName". See NSUserDefaults for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringWithSavedFrame (page 131)

96 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

screen
Returns the screen the window is on.

- (NSScreen *)screen

Return Value
The screen where most of the window is on; nil when the window is offscreen.

Discussion
When the window is partly on one screen and partly on another, the screen where most of it lies is returned.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deepestScreen (page 51)

Related Sample Code
CocoaDVDPlayer
iSpend
QTQuartzPlayer

Declared In
NSWindow.h

selectKeyViewFollowingView:
Makes key the view that follows the given view.

- (void)selectKeyViewFollowingView:(NSView *)referenceView

Parameters
referenceView

The view whose following view in the key view loop is sought.

Discussion
Sends the nextValidKeyViewmessage to referenceView and, if that message returns an NSView object,
invokes makeFirstResponder: (page 78) with the returned object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectKeyViewPrecedingView: (page 98)

Declared In
NSWindow.h

Instance Methods 97
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

selectKeyViewPrecedingView:
Makes key the view that precedes the given view.

- (void)selectKeyViewPrecedingView:(NSView *)referenceView

Parameters
referenceView

The view whose preceding view in the key view loop is sought.

Discussion
Sends the previousValidKeyView message to referenceView and, if that message returns an NSView
object, invokes makeFirstResponder: (page 78) with the returned object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectKeyViewFollowingView: (page 97)

Declared In
NSWindow.h

selectNextKeyView:
This action method searches for a candidate next key view and, if it finds one, invokes
makeFirstResponder: (page 78) to establish it as the first responder.

- (void)selectNextKeyView:(id)sender

Parameters
sender

The message’s sender.

Discussion
The candidate is one of the following (searched for in this order):

 ■ The current first responder’s next valid key view, as returned by the nextValidKeyView method of
NSView

 ■ The object designated as the window’s initial first responder (using setInitialFirstResponder: (page
118)) if it returns YES to an acceptsFirstResponder message

 ■ Otherwise, the initial first responder’s next valid key view, which may end up being nil

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectPreviousKeyView: (page 99)
– selectKeyViewFollowingView: (page 97)

Declared In
NSWindow.h

98 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

selectPreviousKeyView:
This action method searches for a candidate previous key view and, if it finds one, invokes
makeFirstResponder: (page 78) to establish it as the first responder.

- (void)selectPreviousKeyView:(id)sender

Parameters
sender

The message’s sender.

Discussion
The candidate is one of the following (searched for in this order):

 ■ The current first responder’s previous valid key view, as returned by the previousValidKeyView
method of NSView

 ■ The object designated as the window’s initial first responder (using setInitialFirstResponder: (page
118)) if it returns YES to an acceptsFirstResponder message

 ■ Otherwise, the initial first responder’s previous valid key view, which may end up being nil

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectNextKeyView: (page 98)
– selectKeyViewPrecedingView: (page 98)

Declared In
NSWindow.h

sendEvent:
This action method dispatches mouse and keyboard events sent to the window by the NSApplication
object.

- (void)sendEvent:(NSEvent *)event

Parameters
event

The mouse or keyboard event to process.

Discussion
Never invoke this method directly. A right mouse-down event in a window of an inactive application is not
delivered to the corresponding NSWindow object. It is instead delivered to the NSApplication object
through a sendEvent: message with a window number of 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

Instance Methods 99
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

setAcceptsMouseMovedEvents:
Specifies whether the window is to accept mouse-moved events.

- (void)setAcceptsMouseMovedEvents:(BOOL)acceptMouseMovedEvents

Parameters
acceptMouseMovedEvents

YES to have the window accept mouse-moved events (and to distribute them to its responders); NO
to not accept such events.

Availability
Available in Mac OS X v10.0 and later.

See Also
– acceptsMouseMovedEvents (page 34)

Declared In
NSWindow.h

setAllowsToolTipsWhenApplicationIsInactive:
Specifies whether the window can display tooltips even when the application is in the background.

- (void)setAllowsToolTipsWhenApplicationIsInactive:(BOOL)allowTooltipsWhenAppInactive

Parameters
allowTooltipsWhenAppInactive

YES to have the window display tooltips even when its application is inactive; NO to suppress tooltip
display when inactive.

Discussion
The message does not take effect until the window changes to an active state.

Note: Enabling tooltips in an inactive application will cause the application to do work any time the pointer
passes over the window, thus degrading system performance.

Availability
Available in Mac OS X v10.3 and later.

See Also
– allowsToolTipsWhenApplicationIsInactive (page 35)

Declared In
NSWindow.h

setAlphaValue:
Applies a given alpha value to the entire window.

- (void)setAlphaValue:(CGFloat)windowAlpha

100 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
windowAlpha

The alpha value to apply.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alphaValue (page 36)

Related Sample Code
FunkyOverlayWindow
JavaSplashScreen
RoundTransparentWindow
UIElementInspector

Declared In
NSWindow.h

setAspectRatio:
Sets the window’s aspect ratio, which constrains the size of its frame rectangle to integral multiples of this
ratio when the user resizes it.

- (void)setAspectRatio:(NSSize)aspectRatio

Parameters
aspectRatio

The aspect ratio to be maintained during resizing actions.

Discussion
An NSWindow object’s aspect ratio and its resize increments are mutually exclusive attributes. In fact, setting
one attribute cancels the setting of the other. For example, to cancel an established aspect ratio setting for
an NSWindow object, you send it a setResizeIncrements: (page 126) message with the width and height
set to 1.0:

[myWindow setResizeIncrements:NSMakeSize(1.0,1.0)];

The setContentAspectRatio: (page 105) method takes precedence over this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– aspectRatio (page 37)
– setFrame:display: (page 112)

Declared In
NSWindow.h

setAutodisplay:
Specifies whether the window is to automatically display the views that are marked as needing it.

Instance Methods 101
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

- (void)setAutodisplay:(BOOL)autodisplay

Parameters
autodisplay

YES to have the window automatically display views that need to be displayed; NO to specify otherwise.

Discussion
If autodisplay is NO, the window or its views must be explicitly displayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isAutodisplay (page 71)
– displayIfNeeded (page 57)
– displayIfNeeded (NSView)

Declared In
NSWindow.h

setAutorecalculatesContentBorderThickness:forEdge:
Specifies whether the window calculates the thickness of a given border automatically.

-
(void)setAutorecalculatesContentBorderThickness:(BOOL)autorecalculateContentBorderThickness
 forEdge:(NSRectEdge)edge

Parameters
autorecalculateContentBorderThickness

YES to have the window calculate the thickness of edge automatically; NO otherwise.

edge
Border whose thickness autorecalculation status to set:

 ■ NSMaxYEdge: Top border.

 ■ NSMinYEdge: Bottom border.

Special Considerations

Turning off a border’s autorecalculation status sets its border thickness to 0.0.

Availability
Available in Mac OS X v10.5 and later.

See Also
– autorecalculatesContentBorderThicknessForEdge: (page 38)
– contentBorderThicknessForEdge: (page 47)

Declared In
NSWindow.h

102 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

setAutorecalculatesKeyViewLoop:
Specifies whether to recalculate the key view loop automatically when views are added or removed.

- (void)setAutorecalculatesKeyViewLoop:(BOOL)autorecalculateKeyViewLoop

Parameters
autorecalculateKeyViewLoop

YES to recalculate the key view loop automatically; NO otherwise.

Discussion
If autorecalculateKeyViewLoop is NO, the client code must update the key view loop manually or call
recalculateKeyViewLoop (page 91) to have the window recalculate it.

Availability
Available in Mac OS X v10.4 and later.

See Also
– autorecalculatesKeyViewLoop (page 38)
– recalculateKeyViewLoop (page 91)

Declared In
NSWindow.h

setBackgroundColor:
Sets the window’s background color to the given color.

- (void)setBackgroundColor:(NSColor *)color

Parameters
color

Color to set as the window’s background color.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 39)

Related Sample Code
JavaSplashScreen
RoundTransparentWindow
UIElementInspector

Declared In
NSWindow.h

setBackingType:
Sets the window’s backing store type to a given type.

- (void)setBackingType:(NSBackingStoreType)backingType

Instance Methods 103
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
backingType

The backing store type to set.

Discussion
The valid backing store types are described in “Constants” (page 151).

This method can be used only to switch a buffered window to retained or vice versa; you can’t change the
backing type to or from nonretained after initializing an NSWindow object (an error is generated if you attempt
to do so).

Availability
Available in Mac OS X v10.0 and later.

See Also
– backingType (page 39)
– initWithContentRect:styleMask:backing:defer: (page 68)
– initWithContentRect:styleMask:backing:defer:screen: (page 69)

Declared In
NSWindow.h

setCanBecomeVisibleWithoutLogin:
Specifies whether the window can be displayed at the login window.

- (void)setCanBecomeVisibleWithoutLogin:(BOOL)canBecomeVisibleWithoutLogin

Parameters
canBecomeVisibleWithoutLogin

YES to allow the window to be displayed at the login window; NO to prevent this behavior.

Availability
Available in Mac OS X v10.5 and later.

See Also
– canBecomeVisibleWithoutLogin (page 42)

Declared In
NSWindow.h

setCanHide:
Specifies whether the window can be hidden when its application becomes hidden (during execution of the
NSApplication hide: method).

- (void)setCanHide:(BOOL)canHide

Parameters
canHide

YES specifies that the window can be hidden when its application becomes hidden; NO specifies
otherwise.

104 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– canHide (page 42)

Declared In
NSWindow.h

setCollectionBehavior:
Specifies the window’s behavior in window collections.

- (void)setCollectionBehavior:(NSWindowCollectionBehavior)collectionBehavior;

Parameters
collectionBehavior

The collection behavior identifier to set.

Availability
Available in Mac OS X v10.5 and later.

See Also
– collectionBehavior (page 45)

Declared In
NSWindow.h

setContentAspectRatio:
Sets the aspect ratio (height in relation to width) of the window’s content view, constraining the dimensions
of its content rectangle to integral multiples of that ratio when the user resizes it.

- (void)setContentAspectRatio:(NSSize)contentAspectRatio

Parameters
contentAspectRatio

The aspect ratio of the window’s content view.

Discussion
You can set a window’s content view to any size programmatically, regardless of its aspect ratio. This method
takes precedence over setAspectRatio: (page 101).

Availability
Available in Mac OS X v10.3 and later.

See Also
– contentAspectRatio (page 46)

Declared In
NSWindow.h

Instance Methods 105
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

setContentBorderThickness:forEdge:
Specifies the thickness of a given border of the window.

- (void)setContentBorderThickness:(CGFloat)borderThickness forEdge:(NSRectEdge)edge

Parameters
borderThickness

Thickness for edge, in points.

edge
Border whose thickness to set:

 ■ NSMaxYEdge: Top border.

 ■ NSMinYEdge: Bottom border.

Availability
Available in Mac OS X v10.5 and later.

See Also
– contentBorderThicknessForEdge: (page 47)

Declared In
NSWindow.h

setContentMaxSize:
Sets the maximum size of the window’s content view in the window’s base coordinate system.

- (void)setContentMaxSize:(NSSize)contentMaxSize

Parameters
contentMaxSize

The maximum size of the window’s content view in the window’s base coordinate system.

Discussion
The maximum size constraint is enforced for resizing by the user as well as for the setContentSize: (page
107) method and the setFrame...methods other than setFrame:display: (page 112). This method takes
precedence over setMaxSize: (page 119).

Availability
Available in Mac OS X v10.3 and later.

See Also
– contentMaxSize (page 47)
– setContentMinSize: (page 106)

Declared In
NSWindow.h

setContentMinSize:
Sets the minimum size of the window’s content view in the window’s base coordinate system.

106 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

- (void)setContentMinSize:(NSSize)contentMinSize

Parameters
contentMinSize

The minimum size of the window’s content view in the window’s base coordinate system.

Discussion
The minimum size constraint is enforced for resizing by the user as well as for the setContentSize: (page
107) method and the setFrame...methods other than setFrame:display: (page 112). This method takes
precedence over setMinSize: (page 121).

Availability
Available in Mac OS X v10.3 and later.

See Also
– contentMinSize (page 48)
– setContentMaxSize: (page 106)

Declared In
NSWindow.h

setContentResizeIncrements:
Restricts the user’s ability to resize the window so the width and height of its content view change by multiples
of width and height increments.

- (void)setContentResizeIncrements:(NSSize)contentResizeIncrements

Parameters
contentResizeIncrements

The content-view resizing increments to set.

Discussion
As the user resizer the window, the size of its content view changes by integral multiples of
contentResizeIncrements.width and contentResizeIncrements.height. However, you can set a
window’s size to any width and height programmatically. This method takes precedence over
setResizeIncrements: (page 126).

Availability
Available in Mac OS X v10.3 and later.

See Also
– contentResizeIncrements (page 48)

Declared In
NSWindow.h

setContentSize:
Sets the size of the window’s content view to a given size, which is expressed in the window’s base coordinate
system.

- (void)setContentSize:(NSSize)size

Instance Methods 107
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
size

The new size of the window’s content view in the window’s base coordinate system.

Discussion
This size in turn alters the size of the NSWindow object itself. Note that the window server limits window sizes
to 10,000; if necessary, be sure to limit aSize relative to the frame rectangle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrame:display: (page 112)
+ contentRectForFrameRect:styleMask: (page 31)
+ frameRectForContentRect:styleMask: (page 32)

Related Sample Code
CocoaDVDPlayer
CocoaVideoFrameToGWorld
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
VideoViewer

Declared In
NSWindow.h

setContentView:
Makes a given view the window’s content view.

- (void)setContentView:(NSView *)view

Parameters
view

View that is to become the window’s content view.

Discussion
The window retains the new content view and owns it thereafter. The view object is resized to fit precisely
within the content area of the window. You can modify the content view’s coordinate system through its
bounds rectangle, but can’t alter its frame rectangle (that is, its size or location) directly.

This method causes the old content view to be released; if you plan to reuse it, be sure to retain it before
sending this message and to release it as appropriate when adding it to another NSWindow object or NSView.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentView (page 49)
– setContentSize: (page 107)

Related Sample Code
CustomSave

108 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

FunkyOverlayWindow
GLChildWindowDemo

Declared In
NSWindow.h

setDefaultButtonCell:
Makes the key equivalent of button cell the Return (or Enter) key, so when the user presses Return that button
performs as if clicked.

- (void)setDefaultButtonCell:(NSButtonCell *)defaultButtonCell

Parameters
defaultButtonCell

The button cell to perform as if clicked when the window receives a Return (or Enter) key event.

Availability
Available in Mac OS X v10.0 and later.

See Also
– defaultButtonCell (page 52)
– disableKeyEquivalentForDefaultButtonCell (page 55)
– enableKeyEquivalentForDefaultButtonCell (page 60)

Declared In
NSWindow.h

setDelegate:
Sets the window’s delegate to a given object or removes an existing delegate.

- (void)setDelegate:(id)delegate

Parameters
delegate

The delegate for the window. Pass nil to remove an existing delegate.

Discussion
An NSWindow object’s delegate is inserted in the responder chain after the window itself and is informed of
various actions by the window through delegation messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 52)
– tryToPerform:with: (page 133)
– sendAction:to:from: (NSApplication)

Related Sample Code
AudioBurn

Instance Methods 109
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

DataBurn
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
Verification

Declared In
NSWindow.h

setDepthLimit:
Sets the depth limit of the window to a given limit.

- (void)setDepthLimit:(NSWindowDepth)depthLimit

Parameters
depthLimit

The depth limit to set.

Discussion
The NSBestDepth function provides the best depth limit based on a set of parameters.

Passing a value of 0 for depthLimit sets the depth limit to the window’s default depth limit. A depth limit
of 0 can be useful for reverting an NSWindow object to its initial depth.

Availability
Available in Mac OS X v10.0 and later.

See Also
– depthLimit (page 53)
+ defaultDepthLimit (page 31)
– setDynamicDepthLimit: (page 111)

Declared In
NSWindow.h

setDisplaysWhenScreenProfileChanges:
Specifies whether the window context should be updated when the screen profile changes.

- (void)setDisplaysWhenScreenProfileChanges:(BOOL)displaysWhenScreenProfileChanges

Parameters
displaysWhenScreenProfileChanges

 ■ YES specifies that the window context should be changed in these situations:

 ❏ A majority of the window is moved to a different screen whose profile is different than the
previous screen.

 ❏ The ColorSync profile of the current screen changes.

 ■ NO specifies that the screen profile information for the window context doesn’t change.

110 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
After the window context is updated, the window is told to display itself. If you need to update offscreen
caches for the window, you should register to receive the
NSWindowDidChangeScreenProfileNotification (page 162) notification.

Availability
Available in Mac OS X v10.4 and later.

See Also
– displaysWhenScreenProfileChanges (page 58)

Declared In
NSWindow.h

setDocumentEdited:
Specifies whether the window’s document has been edited.

- (void)setDocumentEdited:(BOOL)documentEdited

Parameters
documentEdited

YES to specify that the window’s document has been edited; NO to specify otherwise.

Discussion
You should send setDocumentEdited:YES to an NSWindow object every time the window’s document
changes in such a way that it needs to be saved. Conversely, when the document is saved, you should send
setDocumentEdited:NO. Then, before closing the window you can use isDocumentEdited (page 72) to
determine whether to allow the user a chance to save the document.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

setDynamicDepthLimit:
Sets whether the window changes its depth to match the depth of the screen it’s on, or the depth of the
deepest screen when it spans multiple screens.

- (void)setDynamicDepthLimit:(BOOL)dynamicDepthLimit

Parameters
dynamicDepthLimit

YES specifies a dynamic depth limit; NO specifies otherwise.

Discussion
When dynamicDepthLimit is NO, the window uses either its preset depth limit or the default depth limit.
A different, and nondynamic, depth limit can be set with the setDepthLimit: (page 110) method.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 111
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

See Also
– hasDynamicDepthLimit (page 66)
+ defaultDepthLimit (page 31)

Declared In
NSWindow.h

setExcludedFromWindowsMenu:
Specifies whether the window’s title is omitted from the application’s Windows menu.

- (void)setExcludedFromWindowsMenu:(BOOL)excludedFromWindowsMenu

Parameters
excludedFromWindowsMenu

YES to specify that the window is to be omitted from the application’s Windows menu; NO to specify
otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isExcludedFromWindowsMenu (page 72)

Related Sample Code
VertexPerformanceTest

Declared In
NSWindow.h

setFrame:display:
Sets the origin and size of the window’s frame rectangle according to a given frame rectangle, thereby setting
its position and size onscreen.

- (void)setFrame:(NSRect)windowFrame display:(BOOL)displayViews

Parameters
windowFrame

The frame rectangle for the window.

displayViews
Specifies whether the window redraws the views that need to be displayed. When YES the window
sends a displayIfNeeded (page 57) message down its view hierarchy, thus redrawing all views.

Discussion
Note that the window server limits window position coordinates to ±16,000 and sizes to 10,000.

Availability
Available in Mac OS X v10.0 and later.

See Also
– frame (page 64)
– setFrameFromString: (page 114)

112 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

– setFrameOrigin: (page 115)
– setFrameTopLeftPoint: (page 115)
– setFrameUsingName: (page 116)

Related Sample Code
ColorMatching
FunkyOverlayWindow
SimpleCocoaMovie
SimpleCocoaMovieQT

Declared In
NSWindow.h

setFrame:display:animate:
Sets the origin and size of the window’s frame rectangle, with optional animation, according to a given frame
rectangle, thereby setting its position and size onscreen.

- (void)setFrame:(NSRect)windowFrame display:(BOOL)displayViews
animate:(BOOL)performAnimation

Parameters
windowFrame

The frame rectangle for the window.

displayViews
Specifies whether the window redraws the views that need to be displayed. When YES the window
sends a displayIfNeeded (page 57) message down its view hierarchy, thus redrawing all views.

performAnimation
Specifies whether the window performs a smooth resize. YES to perform the animation, whose duration
is specified by animationResizeTime: (page 36).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend
QTQuartzPlayer

Declared In
NSWindow.h

setFrameAutosaveName:
Sets the name used to automatically save the window’s frame rectangle in the defaults system to a given
name.

- (BOOL)setFrameAutosaveName:(NSString *)frameName

Instance Methods 113
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
frameName

The name under which the frame is to be saved.

Return Value
YES when the frame name is set successfully; NO when frameName is being used as an autosave name by
another NSWindow object in the application (in which case the window’s old name remains in effect).

Discussion
If frameName isn’t the empty string (@""), the window’s frame is saved as a user default (as described in
saveFrameUsingName: (page 96)) each time the frame changes.

When the window has an autosave name, its frame data is written whenever the frame rectangle changes.

If there is a frame rectangle previously stored for frameName in the user defaults, the window’s frame is set
to this frame rectangle. That is, when you call this method with a previously used frameName, the window
picks up the previously saved setting. For example, if you call setFrameAutosaveName: for a window that
is already onscreen, this method could cause the window to move to a different screen location. For this
reason, it is generally better to call this method before the window is visible on screen.

Keep in mind that a window controller may change the window’s position when it displays it if window
cascading is turned on. To preclude the window controller from changing a window’s position from the one
saved in the defaults system, you must send setShouldCascadeWindows:NO to the window controller.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ removeFrameUsingName: (page 33)
– stringWithSavedFrame (page 131)
– setFrameFromString: (page 114)

Declared In
NSWindow.h

setFrameFromString:
Sets the window’s frame rectangle from a given string representation.

- (void)setFrameFromString:(NSString *)frameString

Parameters
frameString

A string representation of a frame rectangle, previously creating using stringWithSavedFrame (page
131).

Discussion
The frame is constrained according to the window’s minimum and maximum size settings. This method
causes a windowWillResize:toSize: (page 148) message to be sent to the delegate.

Availability
Available in Mac OS X v10.0 and later.

114 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

setFrameOrigin:
Positions the bottom-left corner of the window’s frame rectangle at a given point in screen coordinates.

- (void)setFrameOrigin:(NSPoint)point

Parameters
point

The new position of the window’s bottom-left corner in screen coordinates.

Discussion
Note that the window server limits window position coordinates to ±16,000.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrame:display: (page 112)
– setFrameTopLeftPoint: (page 115)

Related Sample Code
FunkyOverlayWindow

Declared In
NSWindow.h

setFrameTopLeftPoint:
Positions the top-left corner of the window’s frame rectangle at a given point in screen coordinates.

- (void)setFrameTopLeftPoint:(NSPoint)point

Parameters
point

The new position of the window’s top-left corner in screen coordinates.

Discussion
Note that the window server limits window position coordinates to ±16,000; if necessary, adjust aPoint
relative to the window’s lower-left corner to account for this limit.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cascadeTopLeftFromPoint: (page 43)
– setFrame:display: (page 112)
– setFrameOrigin: (page 115)

Related Sample Code
CocoaDVDPlayer

Instance Methods 115
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSWindow.h

setFrameUsingName:
Sets the window’s frame rectangle by reading the rectangle data stored under a given name from the defaults
system.

- (BOOL)setFrameUsingName:(NSString *)frameName

Parameters
frameName

The name of the frame to read.

Return Value
YES when frameName is read and the frame is set successfully; NO otherwise.

Discussion
The frame is constrained according to the window’s minimum and maximum size settings. This method
causes a windowWillResize:toSize: (page 148) message to be sent to the delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameAutosaveName: (page 113)
+ removeFrameUsingName: (page 33)
– stringWithSavedFrame (page 131)
– setFrameFromString: (page 114)

Declared In
NSWindow.h

setFrameUsingName:force:
Sets the window’s frame rectangle by reading the rectangle data stored under a given name from the defaults
system. Can operate on nonresizable windows.

- (BOOL)setFrameUsingName:(NSString *)frameName force:(BOOL)force

Parameters
frameName

The name of the frame to read.

force
YES to use setFrameUsingName: (page 116) on a nonresizable window; NO to fail on a nonresizable
window.

Return Value
YES when frameName is read and the frame is set successfully; NO otherwise.

116 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

setHasShadow:
Specifies whether the window has a shadow.

- (void)setHasShadow:(BOOL)hasShadow

Parameters
hasShadow

YES specifies that the window has a shadow; NO specifies otherwise.

Discussion
If the shadow setting changes, the window shadow is invalidated, forcing the window shadow to be
recomputed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasShadow (page 66)
– invalidateShadow (page 71)

Related Sample Code
FunkyOverlayWindow
JavaSplashScreen
RoundTransparentWindow

Declared In
NSWindow.h

setHidesOnDeactivate:
Specifies whether the window is removed from the screen when the application is inactive.

- (void)setHidesOnDeactivate:(BOOL)hideOnDeactivate

Parameters
hideOnDeactivate

 ■ YES specifies that the window is to be hidden (taken out of the screen list) when the application
stops being the active application

 ■ NO specifies that the window is to remain onscreen when the application becomes inactive.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hidesOnDeactivate (page 67)

Instance Methods 117
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

setIgnoresMouseEvents:
Specifies whether the window is transparent to mouse clicks and other mouse events, allowing overlay
windows.

- (void)setIgnoresMouseEvents:(BOOL)ignoreMouseEvents

Parameters
ignoreMouseEvents

YES to have the window ignore mouse events; NO to specify otherwise.

Availability
Available in Mac OS X v10.2 and later.

See Also
– ignoresMouseEvents (page 67)

Related Sample Code
FunkyOverlayWindow

Declared In
NSWindow.h

setInitialFirstResponder:
Sets a given view as the one that’s made first responder (also called the key view) the first time the window
is placed onscreen.

- (void)setInitialFirstResponder:(NSView *)view

Parameters
view

The view to make first responder the first time the window is placed onscreen.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initialFirstResponder (page 68)

Declared In
NSWindow.h

setLevel:
Sets the window’s window level to a given level.

- (void)setLevel:(NSInteger)windowLevel

118 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
windowLevel

The window level to set.

Discussion
Some useful predefined values, ordered from lowest to highest, are described in “Constants” (page 151).

Each level in the list groups windows within it in front of those in all preceding groups. Floating windows,
for example, appear in front of all normal-level windows. When a window enters a new level, it’s ordered in
front of all its peers in that level.

The constant NSTornOffMenuWindowLevel is preferable to its synonym, NSSubmenuWindowLevel.

Availability
Available in Mac OS X v10.0 and later.

See Also
– level (page 78)
– orderWindow:relativeTo: (page 86)
– orderFront: (page 85)
– orderBack: (page 84)

Related Sample Code
FunkyOverlayWindow
JavaSplashScreen
RoundTransparentWindow
UIElementInspector

Declared In
NSWindow.h

setMaxSize:
Sets the maximum size to which the window’s frame (including its title bar) can be sized.

- (void)setMaxSize:(NSSize)maxFrameSize

Parameters
maxFrameSize

The maximum size of the window’s frame.

Discussion
The maximum size constraint is enforced for resizing by the user as well as for the setFrame... methods
other than setFrame:display: (page 112). Note that the window server limits window sizes to 10,000.

The default maximum size of a window is {FLT_MAX, FLT_MAX} (FLT_MAX is defined in
/usr/include/float.h). Once the maximum size of a window has been set, there is no way to reset it
other than specifying this default maximum size.

The setContentMaxSize: (page 106) method takes precedence over this method.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 119
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

See Also
– maxSize (page 80)
– setMinSize: (page 121)
– setAspectRatio: (page 101)
– setResizeIncrements: (page 126)

Declared In
NSWindow.h

setMiniwindowImage:
Sets the window’s custom minimized window image to a given image.

- (void)setMiniwindowImage:(NSImage *)miniwindowImage

Parameters
miniwindowImage

Image to set as the window’s minimized window image.

Discussion
When the user minimizes the window, the Dock displays miniwindowImage in the corresponding Dock tile,
scaling it as needed to fit in the tile. If you do not specify a custom image using this method, the Dock creates
one for you automatically.

You can also call this method as needed to change the minimized window image. Typically, you would specify
a custom image immediately prior to a window being minimized—when the system posts an
NSWindowWillMiniaturizeNotification (page 165). You can call this method while the window is
minimized to update the current image in the Dock. However, this method is not recommended for creating
complex animations in the Dock.

Support for custom images is disabled by default. To enable support, set the AppleDockIconEnabled key
to YES when first registering your application’s user defaults. You must set this key prior to calling the init
method of NSApplication, which reads the current value of the key.

Availability
Available in Mac OS X v10.0 and later.

See Also
– miniwindowImage (page 81)
– isMiniaturized (page 74)

Declared In
NSWindow.h

setMiniwindowTitle:
Sets the title of the window’s miniaturized counterpart to a given string and redisplays it.

- (void)setMiniwindowTitle:(NSString *)miniwindowTitle

120 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
miniwindowTitle

The string to set as the title of the minimized window.

Discussion
A minimized window’s title normally reflects that of its full-size counterpart, abbreviated to fit if necessary.
Although this method allows you to set the minimized window’s title explicitly, changing the full-size
NSWindow object’s title (through setTitle: (page 127) or setTitleWithRepresentedFilename: (page
128)) automatically changes the minimized window’s title as well.

Availability
Available in Mac OS X v10.0 and later.

See Also
– miniwindowTitle (page 82)

Declared In
NSWindow.h

setMinSize:
Sets the minimum size to which the window’s frame (including its title bar) can be sized to aSize.

- (void)setMinSize:(NSSize)minFrameSize

Parameters
minFrameSize

The minimum size of the window’s frame.

Discussion
The minimum size constraint is enforced for resizing by the user as well as for the setFrame... methods
other than setFrame:display: (page 112).

The setContentMinSize: (page 106) method takes precedence over this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minSize (page 82)
– setMaxSize: (page 119)
– setAspectRatio: (page 101)
– setResizeIncrements: (page 126)

Declared In
NSWindow.h

setMovableByWindowBackground:
Sets whether the window is movable by clicking and dragging anywhere in its background.

- (void)setMovableByWindowBackground:(BOOL)movableByWindowBackground

Instance Methods 121
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
movableByWindowBackground

YES to specify that the window is movable by background, NO to specify that the window is not
movable by background.

Availability
Available in Mac OS X v10.2 and later.

See Also
– isMovableByWindowBackground (page 74)

Declared In
NSWindow.h

setOneShot:
Sets whether the window device that the window manages should be freed when it’s removed from the
screen list.

- (void)setOneShot:(BOOL)oneShot

Parameters
oneShot

YES to free the window’s window device when it’s removed from the screen list (hidden) and to create
another one when it’s returned to the screen; NO to reuse the window device.

Discussion
Freeing the window device when it’s removed from the screen list can result in memory savings and
performance improvement for NSWindow objects that don’t take long to display. It’s particularly appropriate
for NSWindow objects the user might use once or twice but not display continually.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isOneShot (page 74)

Related Sample Code
VideoViewer

Declared In
NSWindow.h

setOpaque:
Specifies whether the window is opaque.

- (void)setOpaque:(BOOL)opaque

Parameters
opaque

YES specifies that the window is opaque; NO specifies otherwise.

122 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– isOpaque (page 75)

Related Sample Code
FunkyOverlayWindow
JavaSplashScreen
RoundTransparentWindow
UIElementInspector

Declared In
NSWindow.h

setParentWindow:
Adds the window as a child of a given window. For use by subclasses when setting the parent window in
the window.

- (void)setParentWindow:(NSWindow *)parentWindow

Parameters
parentWindow

The window to be a child of the given window.

Discussion
You should call super if overriding.

Availability
Available in Mac OS X v10.2 and later.

See Also
– removeChildWindow: (page 92)
– childWindows (page 44)
– parentWindow (page 87)
– addChildWindow:ordered: (page 34)

Declared In
NSWindow.h

setPreferredBackingLocation:
Specifies the preferred location for the window’s backing store.

- (void)setPreferredBackingLocation:(NSWindowBackingLocation)preferredBackingLocation

Parameters
preferredBackingLocation

The preferred location for the window’s backing store. See “Constants” (page 151) for possible values.

Instance Methods 123
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
Use only when optimizing for performance.

Availability
Available in Mac OS X v10.5 and later.

See Also
– preferredBackingLocation (page 90)

Declared In
NSWindow.h

setPreservesContentDuringLiveResize:
Specifies whether the window tries to optimize live resize operations by preserving the content of views that
have not changed.

- (void)setPreservesContentDuringLiveResize:(BOOL)preservesContentDuringLiveResize

Parameters
preservesContentDuringLiveResize

YES turns on live-resize optimization; NO turns it off for the window and all of its contained views.

Discussion
By default, live-resize optimization is turned on.

You might consider disabling this optimization for the window if none of the window’s contained views can
take advantage of it. Disabling the optimization for the window prevents it from checking each view to see
if the optimization is supported.

Availability
Available in Mac OS X v10.4 and later.

See Also
– preservesContentDuringLiveResize (page 90)

Declared In
NSWindow.h

setReleasedWhenClosed:
Specifies whether the window is released when it receives the close message.

- (void)setReleasedWhenClosed:(BOOL)releasedWhenClosed

Parameters
releasedWhenClosed

YES to specify that the window is to be hidden and released when it receives a close message; NO to
specify that the window is only hidden, not released.

Discussion
Another strategy for releasing an NSWindow object is to have its delegate autorelease it on receiving a
windowShouldClose: (page 146) message.

124 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– close (page 45)
– isReleasedWhenClosed (page 75)

Related Sample Code
Fiendishthngs
UIElementInspector
WhackedTV

Declared In
NSWindow.h

setRepresentedFilename:
Sets the pathname of the file the window represents.

- (void)setRepresentedFilename:(NSString *)filePath

Parameters
filePath

The path to the file to set as the window’s represented file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representedFilename (page 92)
– setTitleWithRepresentedFilename: (page 128)

Declared In
NSWindow.h

setRepresentedURL:
Specifies the URL of the file the window represents.

- (void)setRepresentedURL:(NSURL *)representedURL

Parameters
representedURL

The URL of the file the window is to represent.

Availability
Available in Mac OS X v10.5 and later.

See Also
– representedURL (page 93)

Declared In
NSWindow.h

Instance Methods 125
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

setResizeIncrements:
Restricts the user’s ability to resize the window so the width and height change by multiples of width and
height increments.

- (void)setResizeIncrements:(NSSize)resizeIncrements

Parameters
resizeIncrements

The resizing increments to set.

Discussion
As the user resizer the window, its size changes by multiples ofincrements.width andincrements.height,
which should be whole numbers, 1.0 or greater. Whatever the current resizing increments, you can set an
NSWindow object’s size to any height and width programmatically.

Resize increments and aspect ratio are mutually exclusive attributes. For more information, see
setAspectRatio: (page 101).

The setContentResizeIncrements: (page 107) method takes precedence over this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– resizeIncrements (page 95)
– setFrame:display: (page 112)

Declared In
NSWindow.h

setSharingType:
Specifies the level of access other processes have to the window’s content.

- (void)setSharingType:(NSWindowSharingType)sharingType

Parameters
sharingType

The sharing level of the window’s content. See “Constants” (page 151) for possible values.

Availability
Available in Mac OS X v10.5 and later.

See Also
– sharingType (page 130)

Declared In
NSWindow.h

setShowsResizeIndicator:
Specifies whether the window’s resize indicator is visible

126 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

- (void)setShowsResizeIndicator:(BOOL)showResizeIndicator

Parameters
showResizeIndicator

Specifies the resize indicator state. YES to show it, NO to hide it.

Discussion
This method does not affect whether the window is resizable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– showsResizeIndicator (page 130)

Declared In
NSWindow.h

setShowsToolbarButton:
Specifies whether the window shows the toolbar control button.

- (void)setShowsToolbarButton:(BOOL)showsToolbarButton

Parameters
showsToolbarButton

YES to display the toolbar control button; NO to hide the button.

Discussion
If the window does not have a toolbar, this method has no effect.

Availability
Available in Mac OS X v10.4 and later.

See Also
– showsToolbarButton (page 130)

Declared In
NSWindow.h

setTitle:
Sets the string that appears in the window’s title bar (if it has one) to a given string and displays the title.

- (void)setTitle:(NSString *)title

Parameters
title

The string to set as the window’s title.

Discussion
Also sets the title of the window’s miniaturized window.

Instance Methods 127
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 132)
– setTitleWithRepresentedFilename: (page 128)
– setMiniwindowTitle: (page 120)

Related Sample Code
QTCoreVideo102
QTCoreVideo201
QTCoreVideo301
VertexPerformanceTest
WhackedTV

Declared In
NSWindow.h

setTitleWithRepresentedFilename:
Sets a given path as the window’s title, formatting it as a file-system path, and records this path as the
window’s associated filename using setRepresentedFilename: (page 125).

- (void)setTitleWithRepresentedFilename:(NSString *)filePath

Parameters
filePath

The file path to set as the window’s title.

Discussion
The filename—not the pathname—is displayed in the window’s title bar.

This method also sets the title bar of the window’s minimized window.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 132)
– setTitle: (page 127)
– setMiniwindowTitle: (page 120)

Declared In
NSWindow.h

setToolbar:
Sets the window’s toolbar.

- (void)setToolbar:(NSToolbar *)toolbar

128 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
toolbar

The toolbar for the window.

Discussion
See the NSToolbar class description for additional information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– toolbar (page 133)

Related Sample Code
iSpend
PDFKitLinker2

Declared In
NSWindow.h

setViewsNeedDisplay:
Specifies whether the window’s views need to be displayed..

- (void)setViewsNeedDisplay:(BOOL)viewsNeedDisplay

Parameters
viewsNeedDisplay

YES to specify that the window’s views need to be displayed; NO to specify otherwise.

Discussion
You should rarely need to invoke this method; the NSViewmethod setNeedsDisplay: and similar methods
invoke it automatically.

Availability
Available in Mac OS X v10.0 and later.

See Also
– viewsNeedDisplay (page 136)

Declared In
NSWindow.h

setWindowController:
Sets the window’s window controller.

- (void)setWindowController:(NSWindowController *)windowController

Parameters
windowController

Window controller to set.

Instance Methods 129
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowController (page 136)

Declared In
NSWindow.h

sharingType
Indicates the level of access other processes have to the window’s content.

- (NSWindowSharingType)sharingType

Return Value
The sharing level of the window’s content. See “Constants” (page 151) for possible values.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setSharingType: (page 126)

Declared In
NSWindow.h

showsResizeIndicator
Returns a Boolean value that indicates whether the window’s resize indicator is visible.

- (BOOL)showsResizeIndicator

Return Value
YES when the window’s resize indicator is visible, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShowsResizeIndicator: (page 126)

Declared In
NSWindow.h

showsToolbarButton
Indicates whether the toolbar control button is currently displayed.

- (BOOL)showsToolbarButton

130 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Return Value
YES if the standard toolbar button is currently displayed; NO otherwise.

Discussion
When clicked, the toolbar control button shows or hides a window’s toolbar. The toolbar control button
appears in a window’s title bar.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setShowsToolbarButton: (page 127)

Declared In
NSWindow.h

standardWindowButton:
Returns the window button of a given window button kind in the window’s view hierarchy.

- (NSButton *)standardWindowButton:(NSWindowButton)windowButtonKind

Parameters
windowButtonKind

The kind of standard window button to return.

Return Value
Window button in the window’s view hierarchy of the kind identified by windowButtonKind; nil when
such button is not in the window’s view hierarchy.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ standardWindowButton:forStyleMask: (page 33)

Declared In
NSWindow.h

stringWithSavedFrame
Returns a string representation of the window’s frame rectangle.

- (NSString *)stringWithSavedFrame

Return Value
A string representation of the window’s frame rectangle in a format that can be used with a later
setFrameFromString: (page 114) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

Instance Methods 131
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

styleMask
Returns the window’s style mask, indicating what kinds of control items it displays.

- (NSUInteger)styleMask

Return Value
The window’s style mask.

Discussion
See the information about the style mask in “Constants” (page 151). A window’s style is set when the object
is initialized. Once set, it can’t be changed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaDragAndDrop
GLChildWindowDemo
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSWindow.h

title
Returns either the string that appears in the title bar of the window, or the path to the represented file.

- (NSString *)title

Return Value
The window’s title or the path to the represented file.

Discussion
If the title has been set using setTitleWithRepresentedFilename: (page 128), this method returns the
file’s path.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 127)

Related Sample Code
UIElementInspector

Declared In
NSWindow.h

toggleToolbarShown:
The action method for the “Hide Toolbar” menu item (which alternates with “Show Toolbar”).

132 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

- (void)toggleToolbarShown:(id)sender

Parameters
sender

The message’s sender.

Discussion
See the NSToolbar class description for additional information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

toolbar
Returns the window’s toolbar.

- (NSToolbar *)toolbar

Return Value
The window’s toolbar.

Discussion
See the NSToolbar class description for additional information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setToolbar: (page 128)

Declared In
NSWindow.h

tryToPerform:with:
Dispatches action messages with a given argument.

- (BOOL)tryToPerform:(SEL)selector with:(id)object

Parameters
selector

The selector to attempt to execute.

object
The message’s argument.

Return Value
YES when the window or its delegate perform selector with object; NO otherwise.

Instance Methods 133
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
The window tries to perform the method selector using its inherited NSResponder method
tryToPerform:with:. If the window doesn’t perform selector, the delegate is given the opportunity to
perform it using its inherited NSObject method performSelector:withObject:.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

unregisterDraggedTypes
Unregisters the window as a possible destination for dragging operations.

- (void)unregisterDraggedTypes

Availability
Available in Mac OS X v10.0 and later.

See Also
– registerForDraggedTypes: (page 91)

Declared In
NSWindow.h

update
Updates the window.

- (void)update

Discussion
The NSWindow implementation of this method does nothing more than post an
NSWindowDidUpdateNotification (page 165) notification to the default notification center. A subclass
can override this method to perform specialized operations, but it should send an update message to super
just before returning. For example, the NSMenu class implements this method to disable and enable menu
commands.

An NSWindow object is automatically sent an update message on every pass through the event loop and
before it’s displayed onscreen. You can manually cause an updatemessage to be sent to all visible NSWindow
objects through the NSApplication updateWindows method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWindowsNeedUpdate: (NSApplication)

Declared In
NSWindow.h

134 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

useOptimizedDrawing:
Specifies whether the window is to optimize focusing and drawing when displaying its views.

- (void)useOptimizedDrawing:(BOOL)optimizedDrawing

Parameters
optimizedDrawing

YES to have the window optimize focusing and drawing for its views; NO to specify otherwise, in
which case, the window does not preserve the Z-ordering of overlapping views when an object
explicitly sends lockFocus to a view and draws directly to it, instead of using the AppKit standard
display mechanism.

Discussion
The optimizations may prevent sibling subviews from being displayed in the correct order—which matters
only if the subviews overlap. You should always set optimizedDrawing to YESwhen there are no overlapping
subviews within the window. The default is NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

userSpaceScaleFactor
Returns the scale factor applied to the window.

- (CGFloat)userSpaceScaleFactor

Return Value
The scale factor applied to the window.

Discussion
Clients can multiply view coordinates by the returned scale factor to get a set of new coordinates that are
scaled to the resolution of the target screen. For example, if the scale factor is 1.25 and the view frame size
is 80 x 80, the actual size of the view frame is 100 x 100 pixels on the target screen.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSWindow.h

validRequestorForSendType:returnType:
Searches for an object that responds to a Services request.

- (id)validRequestorForSendType:(NSString *)sendType returnType:(NSString
*)returnType

Parameters
sendType

The input type of the Services request.

Instance Methods 135
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

returnType
The return type of the Services request.

Return Value
The object that responds to the services request; nil when none is found.

Discussion
Messages to perform this method are initiated by the Services menu. It’s part of the mechanism that passes
validRequestorForSendType:returnType: messages up the responder chain.

This method works by forwarding the message to the window’s delegate if it responds (and provided it isn’t
an NSResponder object with its own next responder). If the delegate doesn’t respond to the message or
returns nil when sent it, this method forwards the message to the NSApplication object. If the
NSApplication object returns nil, this method also returns nil. Otherwise this method returns the object
returned by the delegate or the NSApplication object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– validRequestorForSendType:returnType: (NSResponder)
– validRequestorForSendType:returnType: (NSApplication)

Declared In
NSWindow.h

viewsNeedDisplay
Indicates whether any of the window’s views need to be displayed.

- (BOOL)viewsNeedDisplay

Return Value
YES when any of the window’s views need to be displayed; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setViewsNeedDisplay: (page 129)

Declared In
NSWindow.h

windowController
Returns the window’s window controller.

- (id)windowController

Return Value
The window’s window controller.

136 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWindowController: (page 129)

Related Sample Code
Sketch-112

Declared In
NSWindow.h

windowNumber
Provides the window number of the window’s window device.

- (NSInteger)windowNumber

Return Value
The window number of the window’s window device.

Discussion
Each window device in an application is given a unique window number—note that this isn’t the same as
the global window number assigned by the window server. This number can be used to identify the window
device with the orderWindow:relativeTo: (page 86) method and in the Application Kit function
NSWindowList. .

If the window doesn’t have a window device, the value returned will be equal to or less than 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithContentRect:styleMask:backing:defer: (page 68)
– setOneShot: (page 122)

Related Sample Code
CocoaDVDPlayer
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSWindow.h

windowRef
Returns the Carbon WindowRef associated with the window, creating one if necessary.

- (void *)windowRef

Instance Methods 137
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
This method can be used to create a WindowRef for a window containing a Carbon control. Subsequent calls
to this method return the existing WindowRef. You use a WindowRef to create a Carbon window reference
for a Cocoa window; this assists the integration of Carbon and Cocoa code and objects.

For more information see MacWindows.h. For more information on Carbon-Cocoa integration, see
Carbon-Cocoa Integration Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithWindowRef: (page 70)

Declared In
NSWindow.h

worksWhenModal
Indicates whether the window is able to receive keyboard and mouse events even when some other window
is being run modally.

- (BOOL)worksWhenModal

Return Value
YES if the window is able to receive keyboard and mouse events even when some other window is being
run modally; NO otherwise.

Discussion
The NSWindow implementation of this method returns NO. Only subclasses of NSPanel should override this
default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWorksWhenModal: (NSPanel)

Declared In
NSWindow.h

zoom:
This action method toggles the size and location of the window between its standard state (provided by the
application as the “best” size to display the window’s data) and its user state (a new size and location the
user may have set by moving or resizing the window).

- (void)zoom:(id)sender

Parameters
sender

The object sending the message.

138 Instance Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
For more information on the standard and user states, see
windowWillUseStandardFrame:defaultFrame: (page 150).

The zoom: method is typically invoked after a user clicks the window’s zoom box but may also be invoked
programmatically from the performZoom: (page 89) method. It performs the following steps:

1. Invokes the windowWillUseStandardFrame:defaultFrame: (page 150) method, if the delegate or
the window class implements it, to obtain a “best fit” frame for the window. If neither the delegate nor
the window class implements the method, uses a default frame that nearly fills the current screen, which
is defined to be the screen containing the largest part of the window’s current frame.

2. Adjusts the resulting frame, if necessary, to fit on the current screen.

3. Compares the resulting frame to the current frame to determine whether the window’s standard frame
is currently displayed. If the current frame is within a few pixels of the standard frame in size and location,
it is considered a match.

4. Determines a new frame. If the window is currently in the standard state, the new frame represents the
user state, saved during a previous zoom. If the window is currently in the user state, the new frame
represents the standard state, computed in step 1 above. If there is no saved user state because there
has been no previous zoom, the size and location of the window do not change.

5. Determines whether the window currently allows zooming. By default, zooming is allowed. If the window’s
delegate implements the windowShouldZoom:toFrame: (page 147) method, zoom: invokes that
method. If the delegate doesn’t implement the method but the window does, zoom: invokes the window’s
version. windowShouldZoom:toFrame: returns NO if zooming is not currently allowed.

6. If the window currently allows zooming, sets the new frame.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isZoomed (page 76)

Declared In
NSWindow.h

Delegate Methods

window:shouldDragDocumentWithEvent:from:withPasteboard:
Determines whether the sender allows the user to drag the sender’s represented file’s icon from the sender’s
title bar.

- (BOOL)window:(NSWindow *)sender shouldDragDocumentWithEvent:(NSEvent *)mouseEvent
 from:(NSPoint)startPoint withPasteboard:(NSPasteboard *)pasteboard

Delegate Methods 139
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
sender

The window whose represented file’s icon the user wants to drag.

mouseEvent
The left-mouse down event that triggered the dragging operation.

startPoint
The location at which the user started the dragging operation.

pasteboard
The pasteboard containing the contents of the represented file, which the delegate can modify.

Return Value
YES to allow the drag to proceed, NO to prevent it.

Discussion
To implement its own dragging process, the delegate can perform the dragging operation and return NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– representedURL (page 93)

Declared In
NSWindow.h

window:shouldPopUpDocumentPathMenu:
Determines whether the sender displays the title pop-up menu in response to a Command-click on the
sender’s title.

- (BOOL)window:(NSWindow *)sender shouldPopUpDocumentPathMenu:(NSMenu *)titleMenu

Parameters
sender

The window whose title the user Command-clicked.

titleMenu
The menu the sender displays, if allowed. By default its items are the path components of the file
represented by sender.

Return Value
YES to allow the display of the title pop-up menu, NO to prevent it.

Availability
Available in Mac OS X v10.5 and later.

See Also
– representedURL (page 93)

Declared In
NSWindow.h

140 Delegate Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

window:willPositionSheet:usingRect:
Sent to the delegate just before the animation of a sheet, giving it the opportunity to return a custom location
for the attachment of a sheet to a window.

- (NSRect)window:(NSWindow *)window willPositionSheet:(NSWindow *)sheet
usingRect:(NSRect)defaultSheetRect

Parameters
window

The window containing the sheet to be animated.

sheet
The sheet to be animated.

defaultSheetRect
The default sheet location, just under the title bar of the window, aligned with the left and right edges
of the window.

Return Value
A custom location for the attachment of sheet to window.

Discussion
This method is also invoked whenever the user resizes window while sheet is attached.

This method is useful in many situations. If your window has a toolbar, for example, you can specify a location
for the sheet that is just below it. If you want the sheet associated with a certain control or view, you could
position the sheet so that it appears to originate from the object (through animation) or is positioned next
to it.

Neither the defaultSheetRect parameter nor the returned NSRect value define the boundary of the sheet.
They indicate where the top-left edge of the sheet is attached to the window. The origin is expressed in
window coordinates; the default origin.y value is the height of the content view and the default origin.x
value is zero. The size.width value indicates the width and behavior of the initial animation; if size.width
is narrower than the sheet, the sheet genies out from the specified location, and if size.width is wider than
the sheet, the sheet slides out. You cannot affect the size of the sheet through the size.width and
size.height fields. It is recommended that you specify zero for the size.height value as this field may
have additional meaning in a future release.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSWindow.h

windowDidBecomeKey:
Sent by the default notification center immediately after an NSWindow object has become key.

- (void)windowDidBecomeKey:(NSNotification *)notification

Parameters
notification

NSWindowDidBecomeKeyNotification (page 161).

Delegate Methods 141
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowDidBecomeMain:
Sent by the default notification center immediately after an NSWindow object has become main.

- (void)windowDidBecomeMain:(NSNotification *)notification

Parameters
notification

NSWindowDidBecomeMainNotification (page 162).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowDidChangeScreen:
Sent by the default notification center immediately after an NSWindow object has changed screens.

- (void)windowDidChangeScreen:(NSNotification *)notification

Parameters
notification

NSWindowDidChangeScreenNotification (page 162).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowDidChangeScreenProfile:
Sent by the default notification center immediately after an NSWindow object has changed screen display
profiles.

- (void)windowDidChangeScreenProfile:(NSNotification *)notification

142 Delegate Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
notification

NSWindowDidChangeScreenProfileNotification (page 162).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSWindow.h

windowDidDeminiaturize:
Sent by the default notification center immediately after an NSWindow object has been deminimized.

- (void)windowDidDeminiaturize:(NSNotification *)notification

Parameters
notification

NSWindowDidDeminiaturizeNotification (page 163).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowDidEndSheet:
Sent by the default notification center immediately after an NSWindow object closes a sheet.

- (void)windowDidEndSheet:(NSNotification *)notification

Parameters
notification

NSWindowDidEndSheetNotification (page 163).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSWindow.h

Delegate Methods 143
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

windowDidExpose:
Sent by the default notification center immediately after an NSWindow object has been exposed.

- (void)windowDidExpose:(NSNotification *)notification

Parameters
notification

NSWindowDidExposeNotification (page 163).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowDidMiniaturize:
Sent by the default notification center immediately after an NSWindow object has been minimized.

- (void)windowDidMiniaturize:(NSNotification *)notification

Parameters
notification

NSWindowDidMiniaturizeNotification (page 163).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowDidMove:
Sent by the default notification center immediately after an NSWindow object has been moved.

- (void)windowDidMove:(NSNotification *)notification

Parameters
notification

NSWindowDidMoveNotification (page 164).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

144 Delegate Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

windowDidResignKey:
Sent by the default notification center immediately after an NSWindow object has resigned its status as key
window.

- (void)windowDidResignKey:(NSNotification *)notification

Parameters
notification

NSWindowDidResignKeyNotification (page 164).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowDidResignMain:
Sent by the default notification center immediately after an NSWindow object has resigned its status as main
window.

- (void)windowDidResignMain:(NSNotification *)notification

Parameters
notification

NSWindowDidResignMainNotification (page 164).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowDidResize:
Sent by the default notification center immediately after a window has been resized.

- (void)windowDidResize:(NSNotification *)notification

Parameters
notification

NSWindowDidResizeNotification (page 164).

Delegate Methods 145
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowDidUpdate:
Sent by the default notification center immediately after an NSWindow object receives an update (page 134)
message.

- (void)windowDidUpdate:(NSNotification *)notification

Parameters
notification

NSWindowDidUpdateNotification (page 165).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowShouldClose:
Invoked when the user attempts to close a window or a window receives a performClose: (page 88)
message.

- (BOOL)windowShouldClose:(id)window

Parameters
window

The window being closed.

Return Value
YES to allow window to be closed, otherwise NO.

Discussion
This method may not always be called during window closing. Specifically, this method is not called when
a user quits an application. You can find additional information on application termination in Graceful
Application Termination.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

146 Delegate Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

windowShouldZoom:toFrame:
Sent just before sender is zoomed to allow or disallow the operation.

- (BOOL)windowShouldZoom:(NSWindow *)window toFrame:(NSRect)proposedFrame

Parameters
window

The window being zoomed.

proposedFrame
The rectangle to which window is being zoomed.

Return Value
YES to allow the window frame to become proposedFrame; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowWillUseStandardFrame:defaultFrame: (page 150)

Declared In
NSWindow.h

windowWillBeginSheet:
Sent by the default notification center immediately before an NSWindow object opens a sheet.

- (void)windowWillBeginSheet:(NSNotification *)notification

Parameters
notification

NSWindowWillBeginSheetNotification (page 165).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSWindow.h

windowWillClose:
Sent by the default notification center immediately before an NSWindow object closes.

- (void)windowWillClose:(NSNotification *)notification

Parameters
notification

NSWindowWillCloseNotification (page 165).

Delegate Methods 147
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowWillMiniaturize:
Sent by the default notification center immediately before an NSWindow object is minimized.

- (void)windowWillMiniaturize:(NSNotification *)notification

Parameters
notification

NSWindowWillMiniaturizeNotification (page 165).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowWillMove:
Sent by the default notification center immediately before an NSWindow object is moved.

- (void)windowWillMove:(NSNotification *)notification

Parameters
notification

NSWindowWillMoveNotification (page 166).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowWillResize:toSize:
Invoked when a window is being resized (whether by the user or through one of the setFrame... methods
other than setFrame:display: (page 112)).

- (NSSize)windowWillResize:(NSWindow *)window toSize:(NSSize)proposedFrameSize

148 Delegate Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Parameters
window

The window being resized.

proposedFrameSize
The size to which window is being resized.

Discussion
The proposedFrameSize contains the size (in screen coordinates) the sender will be resized to. To resize
to a different size, simply return the desired size from this method; to avoid resizing, return the current size.
The NSWindow object’s minimum and maximum size constraints have already been applied when this method
is invoked.

While the user is resizing a window, the delegate is sent a series of windowWillResize:toSize: messages
as the window’s outline is dragged. The window’s outline is displayed at the constrained size as set by this
method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowWillReturnFieldEditor:toObject:
Invoked when the field editor for a text-displaying object is requested.

- (id)windowWillReturnFieldEditor:(NSWindow *)window toObject:(id)anObject

Parameters
window

The window that is requesting the field editor from the delegate.

anObject
A text-displaying object to be associated with the field editor. If nil, the requested field editor is the
default.

Return Value
The field editor for anObject; returns nil when the delegate has no field editor to assign.

Discussion
This method may be called multiple times while a control is first responder. Therefore, you must return the
same field editor object for the control while the control is being edited.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fieldEditor:forObject: (page 61)

Declared In
NSWindow.h

Delegate Methods 149
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

windowWillReturnUndoManager:
Invoked when the undo manager for a window is requested. Returns the appropriate undo manager for the
window.

- (NSUndoManager *)windowWillReturnUndoManager:(NSWindow *)window

Parameters
window

The window whose undo manager is being requested.

Return Value
The appropriate undo manager for window.

Discussion
If this method is not implemented by the delegate, the NSWindow object creates an NSUndoManager object
for window.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

windowWillUseStandardFrame:defaultFrame:
Invoked by the zoom: (page 138) method while determining a frame an NSWindow object may be zoomed
to.

- (NSRect)windowWillUseStandardFrame:(NSWindow *)window
defaultFrame:(NSRect)defaultFrame

Parameters
window

The window whose frame size is being determined.

defaultFrame
The size of the current screen, which is the screen containing the largest part of the window’s current
frame, possibly reduced on the top, bottom, left, or right, depending on the current interface style.
The frame is reduced on the top to leave room for the menu bar.

Return Value
The standard frame for window.

Discussion
The standard frame for a window should supply the size and location that are “best” for the type of information
shown in the window, taking into account the available display or displays. For example, the best width for
a window that displays a word-processing document is the width of a page or the width of the display,
whichever is smaller. The best height can be determined similarly. On return from this method, the zoom: (page
138) method modifies the returned standard frame, if necessary, to fit on the current screen.

To customize the standard state, implement windowWillUseStandardFrame:defaultFrame: in the class
of the window’s delegate or, if necessary, in a window subclass. Your version should return a suitable standard
frame, based on the currently displayed data or other factors.

150 Delegate Methods
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowShouldZoom:toFrame: (page 147)

Declared In
NSWindow.h

Constants

Window Style Masks
These constants specify the presence of a title and various buttons in a window’s border. It can be
NSBorderlessWindowMask, or it can contain any of the following options, combined using the C bitwise
OR operator:

enum {
 NSBorderlessWindowMask = 0,
 NSTitledWindowMask = 1 << 0,
 NSClosableWindowMask = 1 << 1,
 NSMiniaturizableWindowMask = 1 << 2,
 NSResizableWindowMask = 1 << 3,
 NSTexturedBackgroundWindowMask = 1 << 8
};

Constants
NSBorderlessWindowMask

The window displays none of the usual peripheral elements. Useful only for display or caching purposes.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSTitledWindowMask
The window displays a title bar.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSClosableWindowMask
The window displays a close button.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSMiniaturizableWindowMask
The window displays a minimize button.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSResizableWindowMask
The window displays a resize control.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

Constants 151
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

NSTexturedBackgroundWindowMask
The window displays with a metal-textured background. Additionally, the window may be moved by
clicking and dragging anywhere in the window background. A bordered window with this mask gets
rounded bottom corners.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

Declared In
NSWindow.h

Window Levels
These constants specify the window’s level. The stacking of levels takes precedence over the stacking of
windows within each level. That is, even the bottom window in a level will obscure the top window of the
next level down. Levels are listed in order from lowest to highest. These constants are mapped (using #define
statements) to corresponding elements in the Window Level Keys in Core Graphics.

#define NSNormalWindowLevel kCGNormalWindowLevel
#define NSFloatingWindowLevel kCGFloatingWindowLevel
#define NSSubmenuWindowLevel kCGTornOffMenuWindowLevel
#define NSTornOffMenuWindowLevel kCGTornOffMenuWindowLevel
#define NSMainMenuWindowLevel kCGMainMenuWindowLevel
#define NSStatusWindowLevel kCGStatusWindowLevel
#define NSModalPanelWindowLevel kCGModalPanelWindowLevel
#define NSPopUpMenuWindowLevel kCGPopUpMenuWindowLevel
#define NSScreenSaverWindowLevel kCGScreenSaverWindowLevel

Constants
NSNormalWindowLevel

The default level for NSWindow objects.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSFloatingWindowLevel
Useful for floating palettes.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSSubmenuWindowLevel
Reserved for submenus. Synonymous with NSTornOffMenuWindowLevel, which is preferred.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSTornOffMenuWindowLevel
The level for a torn-off menu. Synonymous with NSSubmenuWindowLevel.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSModalPanelWindowLevel
The level for a modal panel.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

152 Constants
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

NSMainMenuWindowLevel
Reserved for the application’s main menu.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSStatusWindowLevel
The level for a status window.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSPopUpMenuWindowLevel
The level for a pop-up menu.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSScreenSaverWindowLevel
The level for a screen saver.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

Declared In
NSWindow.h

Display Device—Descriptions
These constants are the keys for device description dictionaries used by deviceDescription (page 54).

NSString *NSDeviceResolution;
NSString *NSDeviceColorSpaceName;
NSString *NSDeviceBitsPerSample;
NSString *NSDeviceIsScreen;
NSString *NSDeviceIsPrinter;
NSString *NSDeviceSize;

Constants
NSDeviceResolution

The corresponding value is an NSValue object containing a value of type NSSize that describes the
window’s raster resolution in dots per inch (dpi).

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSDeviceColorSpaceName
The corresponding value is an NSString object giving the name of the window’s color space.

See “Color Space Names” in Application Kit Constants Reference for a list of possible values.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSDeviceBitsPerSample
The corresponding value is an NSNumber object containing an integer that gives the bit depth of the
window’s raster image (2-bit, 8-bit, and so forth).

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

Constants 153
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

NSDeviceIsScreen
If there is a corresponding value, this indicates that the display device is a screen.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSDeviceIsPrinter
If there is a corresponding value, this indicates that the display device is a printer.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSDeviceSize
The corresponding value is an NSValue object containing a value of type NSSize that gives the size
of the window’s frame rectangle.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

Declared In
NSGraphics.h

Managing Scaling Factors
This constant provides a way to manage scaling factors:

enum {
 NSUnscaledWindowMask = 1 << 11
};

Constants
NSUnscaledWindowMask

Specifies that the window is created without any scaling factors applied.

The client is responsible for all scaling operations in the window. Such a window returns 1.0 from
its userSpaceScaleFactor method.

Currently restricted to borderless windows (NSBorderlessWindowMask).

Available in Mac OS X v10.4 and later.

Declared in NSWindow.h.

Declared In
NSWindow.h

Controlling the Look of a Window and Its Toolbar
This constant controls the look of a window and its toolbar.

154 Constants
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

enum {
 NSUnifiedTitleAndToolbarWindowMask = 1 << 12
};

Constants
NSUnifiedTitleAndToolbarWindowMask

Specifies a window whose toolbar and title bar are rendered on a single continuous background.

Available in Mac OS X v10.4 and later.

Declared in NSWindow.h.

Declared In
NSWindow.h

NSSelectionDirection—Direction of Key View Change
These constants specify the direction a window is currently using to change the key view. They’re used by
keyViewSelectionDirection (page 77).

typedef enum _NSSelectionDirection {
 NSDirectSelection = 0,
 NSSelectingNext,
 NSSelectingPrevious
} NSSelectionDirection;

Constants
NSDirectSelection

The window isn’t traversing the key view loop.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSSelectingNext
The window is proceeding to the next valid key view.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSSelectingPrevious
The window is proceeding to the previous valid key view.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowButton—Accessing Standard Title Bar Buttons
These constants provide a way to access standard title bar buttons:

Constants 155
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

typedef enum {
 NSWindowCloseButton,
 NSWindowMiniaturizeButton,
 NSWindowZoomButton,
 NSWindowToolbarButton,
 NSWindowDocumentIconButton
} NSWindowButton;

Constants
NSWindowCloseButton

The close button.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

NSWindowMiniaturizeButton
The minimize button.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

NSWindowZoomButton
The zoom button.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

NSWindowToolbarButton
The toolbar button.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

NSWindowDocumentIconButton
The document icon button.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSWindow.h

NSRunLoop—Ordering Modes for NSWindow
These constants are passed to NSRunLoop's performSelector:target:argument:order:modes:.

156 Constants
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

enum {
 NSDisplayWindowRunLoopOrdering,
 NSResetCursorRectsRunLoopOrdering
};

Constants
NSDisplayWindowRunLoopOrdering

The priority at which windows are displayed.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSResetCursorRectsRunLoopOrdering
The priority at which cursor rects are reset.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

Declared In
NSWindow.h

NSWindowDepth—Window Depth
This type represents the depth, or amount of memory, devoted to a single pixel in a window or screen. A
depth of 0 indicates default depth. Window depths should not be made persistent as they will not be the
same across systems.

typedef int NSWindowDepth;

Discussion
Use the functions NSColorSpaceFromDepth, NSBitsPerPixelFromDepth, and NSPlanarFromDepth to
extract info from an NSWindowDepth value. Use NSBestDepth to compute window depths. NSBestDepth
tries to accommodate all the parameters (match or better); if there are multiple matches, it gives the closest,
with matching color space first, then bps, then planar, then bpp. bpp is “bits per pixel”; 0 indicates default
(same as the number of bits per plane, either bps or bps * NSNumberOfColorComponents); other values
maybe used as hints to provide backing stores of different configuration: for instance, 8-bit color.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSBackingStoreType—Buffered Window Drawing
These constants specify how the drawing done in a window is buffered by the window device.

Constants 157
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

typedef enum _NSBackingStoreType {
 NSBackingStoreRetained = 0,
 NSBackingStoreNonretained = 1,
 NSBackingStoreBuffered = 2
} NSBackingStoreType;

Constants
NSBackingStoreRetained

The window uses a buffer, but draws directly to the screen where possible and to the buffer for
obscured portions.

You should not use this mode. It combines the limitations of NSBackingStoreNonretained with
the memory use of NSBackingStoreBuffered. The original NeXTSTEP implementation was an
interesting compromise that worked well with fast memory mapped framebuffers on the CPU
bus—something that hasn't been in general use since around 1994. These tend to have performance
problems.

In Mac OS X 10.5 and later, requests for retained windows will result in the window system creating
a buffered window, as that better matches actual use.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSBackingStoreNonretained
The window draws directly to the screen without using any buffer.

You should not use this mode. It exists primarily for use in the original Classic Blue Box. It does not
support Quartz drawing, alpha blending, or opacity. Moreover, it does not support hardware
acceleration, and interferes with system-wide display acceleration. If you use this mode, your application
must manage visibility region clipping itself, and manage repainting on visibility changes.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSBackingStoreBuffered
The window renders all drawing into a display buffer and then flushes it to the screen.

You should use this mode. It supports hardware acceleration, Quartz drawing, and takes advantage
of the GPU when possible. It also supports alpha channel drawing, opacity controls, using the
compositor.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSWindowOrderingMode
These constants let you specify how a window is ordered relative to another window. For more information,
see orderWindow:relativeTo: (page 86).

158 Constants
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

typedef enum _NSWindowOrderingMode {
 NSWindowAbove = 1,
 NSWindowBelow = -1,
 NSWindowOut = 0
} NSWindowOrderingMode;

Constants
NSWindowAbove

Moves the window above the indicated window.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSWindowBelow
Moves the window below the indicated window.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSWindowOut
Moves the window off the screen.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSWindowAuxiliaryOpaque
A private data structure used internally by NSWindow.

typedef struct NSWindowAuxiliary NSWindowAuxiliaryOpaque;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
NSWindow.h

NSWindowSharingType
These constants and data type represent the access levels other processes can have to a window’s content.

Constants 159
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

typedef enum {
 NSWindowSharingNone = 0,
 NSWindowSharingReadOnly = 1,
 NSWindowSharingReadWrite = 2
};
typedef NSUInteger NSWindowSharingType;

Constants
NSWindowSharingNone

The window’s contents cannot be read by another process.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowSharingReadOnly
The window’s contents can be read but not modified by another process.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowSharingReadWrite
The window’s contents can be read and modified by another process.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSWindow.h

NSWindowBackingLocation
These constants and data type represent a window’s possible backing locations.

enum {
 NSWindowBackingLocationDefault = 0,
 NSWindowBackingLocationVideoMemory = 1,
 NSWindowBackingLocationMainMemory = 2
};
typedef NSUInteger NSWindowBackingLocation;

Constants
NSWindowBackingLocationDefault

Determined by the operating system.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowBackingLocationVideoMemory
Video memory.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

160 Constants
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

NSWindowBackingLocationMainMemory
Physical memory.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSWindow.h

Managing Window Collections
These constants and data type identify window behavior in relation to window browsers and organizers,
such as Spaces.

enum {
 NSWindowCollectionBehaviorDefault = 0,
 NSWindowCollectionBehaviorCanJoinAllSpaces = 1 << 0,
 NSWindowCollectionBehaviorMoveToActiveSpace = 1 << 1
};
typedef NSUInteger NSWindowCollectionBehavior;

Constants
NSWindowCollectionBehaviorDefault

The window can be associated to one space at a time.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowCollectionBehaviorCanJoinAllSpaces
The window appears in all spaces. The menu bar behaves this way.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowCollectionBehaviorMoveToActiveSpace
Making the window active does not cause a space switch; the window switches to the active space.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSWindow.h

Notifications

NSWindowDidBecomeKeyNotification
Posted whenever an NSWindow object becomes the key window.

Notifications 161
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

The notification object is the NSWindow object that has become key. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidBecomeMainNotification
Posted whenever an NSWindow object becomes the main window.

The notification object is the NSWindow object that has become main. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidChangeScreenNotification
Posted whenever a portion of an NSWindow object’s frame moves onto or off of a screen.

The notification object is the NSWindow object that has changed screens. This notification does not contain
a userInfo dictionary.

This notification is not sent in Mac OS X versions earlier than 10.4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidChangeScreenProfileNotification
Posted whenever the display profile for the screen containing the window changes.

This notification is sent only if the window returns YES from displaysWhenScreenProfileChanges (page
58). This notification may be sent when a majority of the window is moved to a different screen (whose
profile is also different from the previous screen) or when the ColorSync profile for the current screen changes.

The notification object is the NSWindow object whose profile changed. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSWindow.h

162 Notifications
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

NSWindowDidDeminiaturizeNotification
Posted whenever an NSWindow object is deminimized.

The notification object is the NSWindow object that has been deminimized. This notification does not contain
a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidEndSheetNotification
Posted whenever an NSWindow object closes an attached sheet.

The notification object is the NSWindow object that contained the sheet. This notification does not contain
a userInfo dictionary.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSWindow.h

NSWindowDidExposeNotification
Posted whenever a portion of a nonretained NSWindow object is exposed, whether by being ordered in front
of other windows or by other windows being removed from in front of it.

The notification object is the NSWindow object that has been exposed. The userInfo dictionary contains
the following information:

ValueKey

The rectangle that has been exposed (an NSValue
object containing an NSRect).

@"NSExposedRect"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidMiniaturizeNotification
Posted whenever an NSWindow object is minimized.

The notification object is the NSWindow object that has been minimized. This notification does not contain
a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Notifications 163
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

NSWindowDidMoveNotification
Posted whenever an NSWindow object is moved.

The notification object is the NSWindow object that has moved. This notification does not contain a userInfo
dictionary.

Note: This notification is sent when the window that moved didn’t also change size. See
NSWindowDidResizeNotification (page 164) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidResignKeyNotification
Posted whenever an NSWindow object resigns its status as key window.

The notification object is the NSWindow object that has resigned its key window status. This notification does
not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidResignMainNotification
Posted whenever an NSWindow object resigns its status as main window.

The notification object is the NSWindow object that has resigned its main window status. This notification
does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidResizeNotification
Posted whenever an NSWindow object’s size changes.

The notification object is the NSWindow object whose size has changed. This notification does not contain
a userInfo dictionary.

164 Notifications
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidUpdateNotification
Posted whenever an NSWindow object receives an update (page 134) message.

The notification object is the NSWindow object that received the update (page 134) message. This notification
does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowWillBeginSheetNotification
Posted whenever an NSWindow object is about to open a sheet.

The notification object is the NSWindow object that is about to open the sheet. This notification does not
contain a userInfo dictionary.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSWindow.h

NSWindowWillCloseNotification
Posted whenever an NSWindow object is about to close.

The notification object is the NSWindow object that is about to close. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowWillMiniaturizeNotification
Posted whenever an NSWindow object is about to be minimized.

The notification object is the NSWindow object that is about to be minimized. This notification does not
contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Notifications 165
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

Declared In
NSWindow.h

NSWindowWillMoveNotification
Posted whenever an NSWindow object is about to move.

The notification object is the NSWindow object that is about to move. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

166 Notifications
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

NSWindow Class Reference

A method identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.5

canBeVisibleOnAllSpaces
Indicates whether the window can be visible on all spaces or on only one space at a time. (Deprecated in
Mac OS X v10.5.)

- (BOOL)canBeVisibleOnAllSpaces

Return Value
YES when the window can be visible on all spaces; NO when it can be visible on only one space at a time.

Discussion
The default is NO.

Availability
Available in Mac OS X v10.5 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSWindow.h

setCanBeVisibleOnAllSpaces:
Specifies whether the window can be visible on all spaces or on only one space at a time. (Deprecated in
Mac OS X v10.5.)

- (void)setCanBeVisibleOnAllSpaces:(BOOL)flag

Parameters
flag

YES specifies that the window can be visible on all spaces; NO specifies that the window can be visible
on only one space at a time.

Availability
Available in Mac OS X v10.5 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSWindow.h

Deprecated in Mac OS X v10.5 167
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated NSWindow Methods

168 Deprecated in Mac OS X v10.5
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated NSWindow Methods

This table describes the changes to NSWindow Class Reference.

NotesDate

Fixed several typographical errors, added information to
setFrameAutosaveName:, and documented several undocumented symbols.

2009-03-04

Enhanced discussion of NSBackingStoreType constants.2008-10-15

Corrected typographical errors.2007-10-31

Noted memory management policy exception for initWithWindowRef:.2007-09-04

Updated for Mac OS X v10.5.2007-05-30

Added usage details to contentRectForFrameRect:styleMask: (page 31)
andframeRectForContentRect:styleMask: (page 32).

Clarified and expanded descriptions of firstResponder (page 62),
windowRef (page 137), and fieldEditor:forObject: (page 61).

Clarified use of the contentRectForFrameRect:styleMask: (page 31) and
frameRectForContentRect:styleMask: (page 32) methods.

Reorganized “Tasks” section.

Clarified descriptions of fieldEditor:forObject:, firstResponder, and windowRef.2006-11-07

Made minor changes to adhere to reference consistency guidelines; enhanced
the discussion of isZoomed.

2006-06-28

Clarified the return value of contentAspectRatio.2006-05-23

First publication of this content as a separate document.

169
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

170
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

acceptsMouseMovedEvents instance method 34
addChildWindow:ordered: instance method 34
allowsToolTipsWhenApplicationIsInactive

instance method 35
alphaValue instance method 36
animationResizeTime: instance method 36
areCursorRectsEnabled instance method 37
aspectRatio instance method 37
attachedSheet instance method 37
autorecalculatesContentBorderThicknessForEdge:

instance method 38
autorecalculatesKeyViewLoop instance method 38

B

backgroundColor instance method 39
backingLocation instance method 39
backingType instance method 39
becomeKeyWindow instance method 40
becomeMainWindow instance method 40

C

cacheImageInRect: instance method 40
canBecomeKeyWindow instance method 41
canBecomeMainWindow instance method 42
canBecomeVisibleWithoutLogin instance method 42
canBeVisibleOnAllSpaces instance method 167
canHide instance method 42
canStoreColor instance method 43
cascadeTopLeftFromPoint: instance method 43
center instance method 44
childWindows instance method 44
close instance method 45
collectionBehavior instance method 45
constrainFrameRect:toScreen: instance method 46

contentAspectRatio instance method 46
contentBorderThicknessForEdge: instance method

47
contentMaxSize instance method 47
contentMinSize instance method 48
contentRectForFrameRect: instance method 48
contentRectForFrameRect:styleMask: class method

31
contentResizeIncrements instance method 48
contentView instance method 49
Controlling the Look of a Window and Its Toolbar 154
convertBaseToScreen: instance method 49
convertScreenToBase: instance method 50
currentEvent instance method 50

D

dataWithEPSInsideRect: instance method 50
dataWithPDFInsideRect: instance method 51
deepestScreen instance method 51
defaultButtonCell instance method 52
defaultDepthLimit class method 31
delegate instance method 52
deminiaturize: instance method 53
depthLimit instance method 53
deviceDescription instance method 54
disableCursorRects instance method 54
disableFlushWindow instance method 55
disableKeyEquivalentForDefaultButtonCell

instance method 55
disableScreenUpdatesUntilFlush instance method

55
discardCachedImage instance method 56
discardCursorRects instance method 56
discardEventsMatchingMask:beforeEvent: instance

method 56
Display Device—Descriptions 153
display instance method 57
displayIfNeeded instance method 57
displaysWhenScreenProfileChanges instance

method 58

171
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Index

dockTile instance method 58
dragImage:at:offset:event:pasteboard:source:

slideBack: instance method 59
drawers instance method 59

E

enableCursorRects instance method 60
enableFlushWindow instance method 60
enableKeyEquivalentForDefaultButtonCell

instance method 60
endEditingFor: instance method 61

F

fieldEditor:forObject: instance method 61
firstResponder instance method 62
flushWindow instance method 63
flushWindowIfNeeded instance method 64
frame instance method 64
frameAutosaveName instance method 64
frameRectForContentRect: instance method 65
frameRectForContentRect:styleMask: class method

32

G

graphicsContext instance method 65
gState instance method 66

H

hasDynamicDepthLimit instance method 66
hasShadow instance method 66
hidesOnDeactivate instance method 67

I

ignoresMouseEvents instance method 67
initialFirstResponder instance method 68
initWithContentRect:styleMask:backing:defer:

instance method 68
initWithContentRect:styleMask:backing:defer:

screen: instance method 69
initWithWindowRef: instance method 70

invalidateCursorRectsForView: instance method
71

invalidateShadow instance method 71
isAutodisplay instance method 71
isDocumentEdited instance method 72
isExcludedFromWindowsMenu instance method 72
isFlushWindowDisabled instance method 73
isKeyWindow instance method 73
isMainWindow instance method 73
isMiniaturized instance method 74
isMovableByWindowBackground instance method 74
isOneShot instance method 74
isOpaque instance method 75
isReleasedWhenClosed instance method 75
isSheet instance method 76
isVisible instance method 76
isZoomed instance method 76

K

keyDown: instance method 77
keyViewSelectionDirection instance method 77

L

level instance method 78

M

makeFirstResponder: instance method 78
makeKeyAndOrderFront: instance method 79
makeKeyWindow instance method 80
makeMainWindow instance method 80
Managing Scaling Factors 154
Managing Window Collections data type 161
maxSize instance method 80
menuChanged: class method 32
minFrameWidthWithTitle:styleMask: class method

33
miniaturize: instance method 81
miniwindowImage instance method 81
miniwindowTitle instance method 82
minSize instance method 82
mouseLocationOutsideOfEventStream instance

method 82

172
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

INDEX

N

nextEventMatchingMask: instance method 83
nextEventMatchingMask:untilDate:inMode:dequeue:

instance method 83
NSBackingStoreBuffered constant 158
NSBackingStoreNonretained constant 158
NSBackingStoreRetained constant 158
NSBackingStoreType—Buffered Window Drawing

data type 157
NSBorderlessWindowMask constant 151
NSClosableWindowMask constant 151
NSDeviceBitsPerSample constant 153
NSDeviceColorSpaceName constant 153
NSDeviceIsPrinter constant 154
NSDeviceIsScreen constant 154
NSDeviceResolution constant 153
NSDeviceSize constant 154
NSDirectSelection constant 155
NSDisplayWindowRunLoopOrdering constant 157
NSFloatingWindowLevel constant 152
NSMainMenuWindowLevel constant 153
NSMiniaturizableWindowMask constant 151
NSModalPanelWindowLevel constant 152
NSNormalWindowLevel constant 152
NSPopUpMenuWindowLevel constant 153
NSResetCursorRectsRunLoopOrdering constant 157
NSResizableWindowMask constant 151
NSRunLoop—Ordering Modes for NSWindow 156
NSScreenSaverWindowLevel constant 153
NSSelectingNext constant 155
NSSelectingPrevious constant 155
NSSelectionDirection—Direction of Key View

Change data type 155
NSStatusWindowLevel constant 153
NSSubmenuWindowLevel constant 152
NSTexturedBackgroundWindowMask constant 152
NSTitledWindowMask constant 151
NSTornOffMenuWindowLevel constant 152
NSUnifiedTitleAndToolbarWindowMask constant

155
NSUnscaledWindowMask constant 154
NSWindowAbove constant 159
NSWindowAuxiliaryOpaque data type 159
NSWindowBackingLocation data type 160
NSWindowBackingLocationDefault constant 160
NSWindowBackingLocationMainMemory constant 161
NSWindowBackingLocationVideoMemory constant

160
NSWindowBelow constant 159
NSWindowButton—Accessing Standard Title Bar

Buttons data type 155
NSWindowCloseButton constant 156

NSWindowCollectionBehaviorCanJoinAllSpaces
constant 161

NSWindowCollectionBehaviorDefault constant 161
NSWindowCollectionBehaviorMoveToActiveSpace

constant 161
NSWindowDepth—Window Depth data type 157
NSWindowDidBecomeKeyNotification notification

161
NSWindowDidBecomeMainNotification notification

162
NSWindowDidChangeScreenNotificationnotification

162
NSWindowDidChangeScreenProfileNotification

notification 162
NSWindowDidDeminiaturizeNotification

notification 163
NSWindowDidEndSheetNotification notification 163
NSWindowDidExposeNotification notification 163
NSWindowDidMiniaturizeNotification notification

163
NSWindowDidMoveNotification notification 164
NSWindowDidResignKeyNotification notification

164
NSWindowDidResignMainNotification notification

164
NSWindowDidResizeNotification notification 164
NSWindowDidUpdateNotification notification 165
NSWindowDocumentIconButton constant 156
NSWindowMiniaturizeButton constant 156
NSWindowOrderingMode data type 158
NSWindowOut constant 159
NSWindowSharingNone constant 160
NSWindowSharingReadOnly constant 160
NSWindowSharingReadWrite constant 160
NSWindowSharingType data type 159
NSWindowToolbarButton constant 156
NSWindowWillBeginSheetNotification notification

165
NSWindowWillCloseNotification notification 165
NSWindowWillMiniaturizeNotificationnotification

165
NSWindowWillMoveNotification notification 166
NSWindowZoomButton constant 156

O

orderBack: instance method 84
orderFront: instance method 85
orderFrontRegardless instance method 85
orderOut: instance method 86
orderWindow:relativeTo: instance method 86

173
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

INDEX

P

parentWindow instance method 87
performClose: instance method 88
performMiniaturize: instance method 88
performZoom: instance method 89
postEvent:atStart: instance method 89
preferredBackingLocation instance method 90
preservesContentDuringLiveResize instance

method 90
print: instance method 90

R

recalculateKeyViewLoop instance method 91
registerForDraggedTypes: instance method 91
removeChildWindow: instance method 92
removeFrameUsingName: class method 33
representedFilename instance method 92
representedURL instance method 93
resetCursorRects instance method 93
resignKeyWindow instance method 94
resignMainWindow instance method 94
resizeFlags instance method 95
resizeIncrements instance method 95
restoreCachedImage instance method 95
runToolbarCustomizationPalette: instance method

96

S

saveFrameUsingName: instance method 96
screen instance method 97
selectKeyViewFollowingView: instance method 97
selectKeyViewPrecedingView: instance method 98
selectNextKeyView: instance method 98
selectPreviousKeyView: instance method 99
sendEvent: instance method 99
setAcceptsMouseMovedEvents: instance method 100
setAllowsToolTipsWhenApplicationIsInactive:

instance method 100
setAlphaValue: instance method 100
setAspectRatio: instance method 101
setAutodisplay: instance method 101
setAutorecalculatesContentBorderThickness:forEdge:

instance method 102
setAutorecalculatesKeyViewLoop: instance method

103
setBackgroundColor: instance method 103
setBackingType: instance method 103

setCanBecomeVisibleWithoutLogin: instance
method 104

setCanBeVisibleOnAllSpaces: instance method 167
setCanHide: instance method 104
setCollectionBehavior: instance method 105
setContentAspectRatio: instance method 105
setContentBorderThickness:forEdge: instance

method 106
setContentMaxSize: instance method 106
setContentMinSize: instance method 106
setContentResizeIncrements: instance method 107
setContentSize: instance method 107
setContentView: instance method 108
setDefaultButtonCell: instance method 109
setDelegate: instance method 109
setDepthLimit: instance method 110
setDisplaysWhenScreenProfileChanges: instance

method 110
setDocumentEdited: instance method 111
setDynamicDepthLimit: instance method 111
setExcludedFromWindowsMenu: instance method 112
setFrameAutosaveName: instance method 113
setFrame:display: instance method 112
setFrame:display:animate: instance method 113
setFrameFromString: instance method 114
setFrameOrigin: instance method 115
setFrameTopLeftPoint: instance method 115
setFrameUsingName: instance method 116
setFrameUsingName:force: instance method 116
setHasShadow: instance method 117
setHidesOnDeactivate: instance method 117
setIgnoresMouseEvents: instance method 118
setInitialFirstResponder: instance method 118
setLevel: instance method 118
setMaxSize: instance method 119
setMiniwindowImage: instance method 120
setMiniwindowTitle: instance method 120
setMinSize: instance method 121
setMovableByWindowBackground: instance method

121
setOneShot: instance method 122
setOpaque: instance method 122
setParentWindow: instance method 123
setPreferredBackingLocation: instance method

123
setPreservesContentDuringLiveResize: instance

method 124
setReleasedWhenClosed: instance method 124
setRepresentedFilename: instance method 125
setRepresentedURL: instance method 125
setResizeIncrements: instance method 126
setSharingType: instance method 126
setShowsResizeIndicator: instance method 126

174
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

INDEX

setShowsToolbarButton: instance method 127
setTitle: instance method 127
setTitleWithRepresentedFilename: instance

method 128
setToolbar: instance method 128
setViewsNeedDisplay: instance method 129
setWindowController: instance method 129
sharingType instance method 130
showsResizeIndicator instance method 130
showsToolbarButton instance method 130
standardWindowButton: instance method 131
standardWindowButton:forStyleMask: class method

33
stringWithSavedFrame instance method 131
styleMask instance method 132

T

title instance method 132
toggleToolbarShown: instance method 132
toolbar instance method 133
tryToPerform:with: instance method 133

U

unregisterDraggedTypes instance method 134
update instance method 134
useOptimizedDrawing: instance method 135
userSpaceScaleFactor instance method 135

V

validRequestorForSendType:returnType: instance
method 135

viewsNeedDisplay instance method 136

W

Window Levels 152
Window Style Masks 151
window:shouldDragDocumentWithEvent:from:

withPasteboard: <NSObject> delegate method
139

window:shouldPopUpDocumentPathMenu:<NSObject>
delegate method 140

window:willPositionSheet:usingRect:<NSObject>
delegate method 141

windowController instance method 136
windowDidBecomeKey: <NSObject> delegate method

141
windowDidBecomeMain:<NSObject> delegate method

142
windowDidChangeScreen: <NSObject> delegate

method 142
windowDidChangeScreenProfile: <NSObject>

delegate method 142
windowDidDeminiaturize: <NSObject> delegate

method 143
windowDidEndSheet: <NSObject> delegate method

143
windowDidExpose: <NSObject> delegate method 144
windowDidMiniaturize:<NSObject> delegate method

144
windowDidMove: <NSObject> delegate method 144
windowDidResignKey: <NSObject> delegate method

145
windowDidResignMain:<NSObject> delegate method

145
windowDidResize: <NSObject> delegate method 145
windowDidUpdate: <NSObject> delegate method 146
windowNumber instance method 137
windowRef instance method 137
windowShouldClose: <NSObject> delegate method

146
windowShouldZoom:toFrame: <NSObject> delegate

method 147
windowWillBeginSheet:<NSObject> delegate method

147
windowWillClose: <NSObject> delegate method 147
windowWillMiniaturize: <NSObject> delegate

method 148
windowWillMove: <NSObject> delegate method 148
windowWillResize:toSize: <NSObject> delegate

method 148
windowWillReturnFieldEditor:toObject:

<NSObject> delegate method 149
windowWillReturnUndoManager:<NSObject> delegate

method 150
windowWillUseStandardFrame:defaultFrame:

<NSObject> delegate method 150
worksWhenModal instance method 138

Z

zoom: instance method 138

175
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

INDEX

	NSWindow Class Reference
	Contents
	Tables
	NSWindow Class Reference
	Overview
	Tasks
	Creating Windows
	Configuring Windows
	Accessing Window Information
	Getting Layout Information
	Managing Windows
	Managing Sheets
	Sizing
	Sizing Content
	Managing Window Layers
	Managing Window Frames in User Defaults
	Managing Key Status
	Managing Main Status
	Managing Toolbars
	Managing Attached Windows
	Managing Window Buffers
	Managing Default Buttons
	Managing Field Editors
	Managing the Window Menu
	Managing Cursor Rectangles
	Managing Title Bars
	Managing Tooltips
	Handling Events
	Managing Responders
	Managing the Key View Loop
	Handling Keyboard Events
	Handling Mouse Events
	Bracketing Drawing Operations
	Drawing Windows
	Updating Windows
	Exposing Windows
	Dragging
	Converting Coordinates
	Getting the Undo Manager
	Accessing Edited Status
	Managing Titles
	Accessing Screen Information
	Moving
	Closing Windows
	Minimizing Windows
	Getting the Dock Tile
	Printing
	Providing Services
	Working with Carbon

	Class Methods
	contentRectForFrameRect:styleMask:
	defaultDepthLimit
	frameRectForContentRect:styleMask:
	menuChanged:
	minFrameWidthWithTitle:styleMask:
	removeFrameUsingName:
	standardWindowButton:forStyleMask:

	Instance Methods
	acceptsMouseMovedEvents
	addChildWindow:ordered:
	allowsToolTipsWhenApplicationIsInactive
	alphaValue
	animationResizeTime:
	areCursorRectsEnabled
	aspectRatio
	attachedSheet
	autorecalculatesContentBorderThicknessForEdge:
	autorecalculatesKeyViewLoop
	backgroundColor
	backingLocation
	backingType
	becomeKeyWindow
	becomeMainWindow
	cacheImageInRect:
	canBecomeKeyWindow
	canBecomeMainWindow
	canBecomeVisibleWithoutLogin
	canHide
	canStoreColor
	cascadeTopLeftFromPoint:
	center
	childWindows
	close
	collectionBehavior
	constrainFrameRect:toScreen:
	contentAspectRatio
	contentBorderThicknessForEdge:
	contentMaxSize
	contentMinSize
	contentRectForFrameRect:
	contentResizeIncrements
	contentView
	convertBaseToScreen:
	convertScreenToBase:
	currentEvent
	dataWithEPSInsideRect:
	dataWithPDFInsideRect:
	deepestScreen
	defaultButtonCell
	delegate
	deminiaturize:
	depthLimit
	deviceDescription
	disableCursorRects
	disableFlushWindow
	disableKeyEquivalentForDefaultButtonCell
	disableScreenUpdatesUntilFlush
	discardCachedImage
	discardCursorRects
	discardEventsMatchingMask:beforeEvent:
	display
	displayIfNeeded
	displaysWhenScreenProfileChanges
	dockTile
	dragImage:at:offset:event:pasteboard:source:slideBack:
	drawers
	enableCursorRects
	enableFlushWindow
	enableKeyEquivalentForDefaultButtonCell
	endEditingFor:
	fieldEditor:forObject:
	firstResponder
	flushWindow
	flushWindowIfNeeded
	frame
	frameAutosaveName
	frameRectForContentRect:
	graphicsContext
	gState
	hasDynamicDepthLimit
	hasShadow
	hidesOnDeactivate
	ignoresMouseEvents
	initialFirstResponder
	initWithContentRect:styleMask:backing:defer:
	initWithContentRect:styleMask:backing:defer:screen:
	initWithWindowRef:
	invalidateCursorRectsForView:
	invalidateShadow
	isAutodisplay
	isDocumentEdited
	isExcludedFromWindowsMenu
	isFlushWindowDisabled
	isKeyWindow
	isMainWindow
	isMiniaturized
	isMovableByWindowBackground
	isOneShot
	isOpaque
	isReleasedWhenClosed
	isSheet
	isVisible
	isZoomed
	keyDown:
	keyViewSelectionDirection
	level
	makeFirstResponder:
	makeKeyAndOrderFront:
	makeKeyWindow
	makeMainWindow
	maxSize
	miniaturize:
	miniwindowImage
	miniwindowTitle
	minSize
	mouseLocationOutsideOfEventStream
	nextEventMatchingMask:
	nextEventMatchingMask:untilDate:inMode:dequeue:
	orderBack:
	orderFront:
	orderFrontRegardless
	orderOut:
	orderWindow:relativeTo:
	parentWindow
	performClose:
	performMiniaturize:
	performZoom:
	postEvent:atStart:
	preferredBackingLocation
	preservesContentDuringLiveResize
	print:
	recalculateKeyViewLoop
	registerForDraggedTypes:
	removeChildWindow:
	representedFilename
	representedURL
	resetCursorRects
	resignKeyWindow
	resignMainWindow
	resizeFlags
	resizeIncrements
	restoreCachedImage
	runToolbarCustomizationPalette:
	saveFrameUsingName:
	screen
	selectKeyViewFollowingView:
	selectKeyViewPrecedingView:
	selectNextKeyView:
	selectPreviousKeyView:
	sendEvent:
	setAcceptsMouseMovedEvents:
	setAllowsToolTipsWhenApplicationIsInactive:
	setAlphaValue:
	setAspectRatio:
	setAutodisplay:
	setAutorecalculatesContentBorderThickness:forEdge:
	setAutorecalculatesKeyViewLoop:
	setBackgroundColor:
	setBackingType:
	setCanBecomeVisibleWithoutLogin:
	setCanHide:
	setCollectionBehavior:
	setContentAspectRatio:
	setContentBorderThickness:forEdge:
	setContentMaxSize:
	setContentMinSize:
	setContentResizeIncrements:
	setContentSize:
	setContentView:
	setDefaultButtonCell:
	setDelegate:
	setDepthLimit:
	setDisplaysWhenScreenProfileChanges:
	setDocumentEdited:
	setDynamicDepthLimit:
	setExcludedFromWindowsMenu:
	setFrame:display:
	setFrame:display:animate:
	setFrameAutosaveName:
	setFrameFromString:
	setFrameOrigin:
	setFrameTopLeftPoint:
	setFrameUsingName:
	setFrameUsingName:force:
	setHasShadow:
	setHidesOnDeactivate:
	setIgnoresMouseEvents:
	setInitialFirstResponder:
	setLevel:
	setMaxSize:
	setMiniwindowImage:
	setMiniwindowTitle:
	setMinSize:
	setMovableByWindowBackground:
	setOneShot:
	setOpaque:
	setParentWindow:
	setPreferredBackingLocation:
	setPreservesContentDuringLiveResize:
	setReleasedWhenClosed:
	setRepresentedFilename:
	setRepresentedURL:
	setResizeIncrements:
	setSharingType:
	setShowsResizeIndicator:
	setShowsToolbarButton:
	setTitle:
	setTitleWithRepresentedFilename:
	setToolbar:
	setViewsNeedDisplay:
	setWindowController:
	sharingType
	showsResizeIndicator
	showsToolbarButton
	standardWindowButton:
	stringWithSavedFrame
	styleMask
	title
	toggleToolbarShown:
	toolbar
	tryToPerform:with:
	unregisterDraggedTypes
	update
	useOptimizedDrawing:
	userSpaceScaleFactor
	validRequestorForSendType:returnType:
	viewsNeedDisplay
	windowController
	windowNumber
	windowRef
	worksWhenModal
	zoom:

	Delegate Methods
	window:shouldDragDocumentWithEvent:from:withPasteboard:
	window:shouldPopUpDocumentPathMenu:
	window:willPositionSheet:usingRect:
	windowDidBecomeKey:
	windowDidBecomeMain:
	windowDidChangeScreen:
	windowDidChangeScreenProfile:
	windowDidDeminiaturize:
	windowDidEndSheet:
	windowDidExpose:
	windowDidMiniaturize:
	windowDidMove:
	windowDidResignKey:
	windowDidResignMain:
	windowDidResize:
	windowDidUpdate:
	windowShouldClose:
	windowShouldZoom:toFrame:
	windowWillBeginSheet:
	windowWillClose:
	windowWillMiniaturize:
	windowWillMove:
	windowWillResize:toSize:
	windowWillReturnFieldEditor:toObject:
	windowWillReturnUndoManager:
	windowWillUseStandardFrame:defaultFrame:

	Constants
	Window Style Masks
	Window Levels
	Display Device—Descriptions
	Managing Scaling Factors
	Controlling the Look of a Window and Its Toolbar
	NSSelectionDirection—Direction of Key View Change
	NSWindowButton—Accessing Standard Title Bar Buttons
	NSRunLoop—Ordering Modes for NSWindow
	NSWindowDepth—Window Depth
	NSBackingStoreType—Buffered Window Drawing
	NSWindowOrderingMode
	NSWindowAuxiliaryOpaque
	NSWindowSharingType
	NSWindowBackingLocation
	Managing Window Collections

	Notifications
	NSWindowDidBecomeKeyNotification
	NSWindowDidBecomeMainNotification
	NSWindowDidChangeScreenNotification
	NSWindowDidChangeScreenProfileNotification
	NSWindowDidDeminiaturizeNotification
	NSWindowDidEndSheetNotification
	NSWindowDidExposeNotification
	NSWindowDidMiniaturizeNotification
	NSWindowDidMoveNotification
	NSWindowDidResignKeyNotification
	NSWindowDidResignMainNotification
	NSWindowDidResizeNotification
	NSWindowDidUpdateNotification
	NSWindowWillBeginSheetNotification
	NSWindowWillCloseNotification
	NSWindowWillMiniaturizeNotification
	NSWindowWillMoveNotification

	Appendix A: Deprecated NSWindow Methods
	Deprecated in Mac OS X v10.5
	canBeVisibleOnAllSpaces
	setCanBeVisibleOnAllSpaces:

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

