
Application Kit Functions Reference
Cocoa > Objective-C Language

2008-11-19

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Aqua, Carbon, Cocoa,
Mac, Mac OS, Macintosh, Objective-C, Quartz,
and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

Aperture and Spotlight are trademarks of Apple
Inc.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Application Kit Functions Reference 7

Overview 7
Functions by Task 7

Accessibility 7
Applications 8
Events 8
Fonts 8
Graphics 8
Graphics-Window Depth 10
Interface Styles 11
Key Value Bindings 11
OpenGL 11
Panels 11
Pasteboards 12
System Beep 12

Functions 12
NSAccessibilityActionDescription 12
NSAccessibilityPostNotification 13
NSAccessibilityRaiseBadArgumentException 13
NSAccessibilityRoleDescription 13
NSAccessibilityRoleDescriptionForUIElement 14
NSAccessibilityUnignoredAncestor 14
NSAccessibilityUnignoredChildren 15
NSAccessibilityUnignoredChildrenForOnlyChild 15
NSAccessibilityUnignoredDescendant 16
NSApplicationLoad 16
NSApplicationMain 17
NSAvailableWindowDepths 17
NSBeep 18
NSBeginAlertSheet 18
NSBeginCriticalAlertSheet 20
NSBeginInformationalAlertSheet 20
NSBestDepth 21
NSBitsPerPixelFromDepth 22
NSBitsPerSampleFromDepth 22
NSColorSpaceFromDepth 22
NSConvertGlyphsToPackedGlyphs 23
NSCopyBits 23
NSCountWindows 23
NSCountWindowsForContext 24
NSCreateFileContentsPboardType 24

3
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSCreateFilenamePboardType 25
NSDisableScreenUpdates 25
NSDottedFrameRect 25
NSDrawBitmap 26
NSDrawButton 27
NSDrawColorTiledRects 28
NSDrawDarkBezel 28
NSDrawGrayBezel 29
NSDrawGroove 29
NSDrawLightBezel 30
NSDrawNinePartImage 30
NSDrawThreePartImage 32
NSDrawTiledRects 33
NSDrawWhiteBezel 35
NSDrawWindowBackground 35
NSEnableScreenUpdates 36
NSEraseRect 36
NSEventMaskFromType 36
NSFrameRect 37
NSFrameRectWithWidth 38
NSFrameRectWithWidthUsingOperation 38
NSGetAlertPanel 39
NSGetCriticalAlertPanel 40
NSGetFileType 40
NSGetFileTypes 40
NSGetInformationalAlertPanel 41
NSGetWindowServerMemory 41
NSHighlightRect 42
NSInterfaceStyleForKey 43
NSIsControllerMarker 43
NSNumberOfColorComponents 44
NSOpenGLGetOption 44
NSOpenGLGetVersion 45
NSOpenGLSetOption 45
NSPerformService 45
NSPlanarFromDepth 46
NSReadPixel 46
NSRectClip 47
NSRectClipList 48
NSRectFill 48
NSRectFillList 49
NSRectFillListUsingOperation 49
NSRectFillListWithColors 50
NSRectFillListWithColorsUsingOperation 50
NSRectFillListWithGrays 51
NSRectFillUsingOperation 52

4
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

NSRegisterServicesProvider 52
NSReleaseAlertPanel 53
NSRunAlertPanel 53
NSRunCriticalAlertPanel 54
NSRunInformationalAlertPanel 55
NSSetFocusRingStyle 56
NSSetShowsServicesMenuItem 56
NSShowAnimationEffect 56
NSShowsServicesMenuItem 57
NSUnregisterServicesProvider 58
NSUpdateDynamicServices 58
NSWindowList 58
NSWindowListForContext 59

Document Revision History 61

Index 63

5
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

6
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Framework: AppKit/AppKit.h

Declared in NSAccessibility.h
NSApplication.h
NSCell.h
NSEvent.h
NSFont.h
NSGraphics.h
NSInterfaceStyle.h
NSKeyValueBinding.h
NSOpenGL.h
NSPanel.h
NSPasteboard.h

Overview

This document describes functions and function-like macros defined in the Application Kit framework.

Functions by Task

Accessibility
Additional information on accessibility can be found in NSAccessibility.

NSAccessibilityActionDescription (page 12)
Returns a standard description for an action.

NSAccessibilityPostNotification (page 13)
Sends a notification to any observing assistive applications.

NSAccessibilityRaiseBadArgumentException (page 13)
Raises an error if the parameter is the wrong type or has an illegal value

NSAccessibilityRoleDescription (page 13)
Returns a standard description for a role and subrole.

NSAccessibilityRoleDescriptionForUIElement (page 14)
Returns a standard role description for a user interface element.

NSAccessibilityUnignoredChildren (page 15)
Returns a list of unignored accessibility objects, descending the hierarchy if necessary.

Overview 7
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSAccessibilityUnignoredChildrenForOnlyChild (page 15)
Returns a list of unignored accessibility objects, descending the hierarchy if necessary.

NSAccessibilityUnignoredDescendant (page 16)
Returns an unignored accessibility object, descending the hierarchy if necessary.

NSAccessibilityUnignoredAncestor (page 14)
Returns an unignored accessibility object, ascending the hierarchy if necessary.

Applications
Additional information on NSApplication can be found in NSApplication Class Reference.

NSApplicationLoad (page 16)
Startup function to call when running Cocoa code from a Carbon application.

NSApplicationMain (page 17)
Called by the main function to create and run the application.

NSPerformService (page 45)
Programmatically invokes a Services menu service.

NSRegisterServicesProvider (page 52)
Registers a service provider.

NSSetShowsServicesMenuItem (page 56)
Specifies whether an item should be included in Services menus.

NSShowsServicesMenuItem (page 57)
Specifies whether a Services menu item is currently enabled.

NSUnregisterServicesProvider (page 58)
Unregisters a service provider.

NSUpdateDynamicServices (page 58)
Causes the services information for the system to be updated.

Events

NSEventMaskFromType (page 36)
Returns the event mask for the specified type.

Fonts

NSConvertGlyphsToPackedGlyphs (page 23)
Prepares a set of glyphs for processing by character-based routines.

Graphics

NSCopyBits (page 23)
Copies a bitmap image to the location specified by a destination point.

8 Functions by Task
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSCountWindows (page 23)
Counts the number of onscreen windows.

NSCountWindowsForContext (page 24)
Counts the number of onscreen windows belonging to a particular application.

NSDisableScreenUpdates (page 25)
Disables screen updates.

NSEnableScreenUpdates (page 36)
Enables screen updates

NSDottedFrameRect (page 25)
Draws a bordered rectangle.

NSDrawBitmap (page 26)
Draws a bitmap image.

NSDrawButton (page 27)
Draws a gray-filled rectangle representing a user-interface button.

NSDrawDarkBezel (page 28)
Draws a dark gray-filled rectangle with a bezel border.

NSDrawGrayBezel (page 29)
Draws a gray-filled rectangle with a bezel border.

NSDrawGroove (page 29)
Draws a gray-filled rectangle with a groove border.

NSDrawLightBezel (page 30)
Draws a white-filled rectangle with a bezel border.

NSDrawThreePartImage (page 32)
Draws a three-part tiled image.

NSDrawNinePartImage (page 30)
Draws a nine-part tiled image.

NSDrawTiledRects (page 33)
Draws rectangles with borders.

NSDrawColorTiledRects (page 28)
Draws a colored bordered rectangle.

NSDrawWhiteBezel (page 35)
Draws a white-filled rectangle with a bezel border.

NSDrawWindowBackground (page 35)
Draws the window’s default background pattern into the specified rectangle of the currently focused
view.

NSEraseRect (page 36)
Erases the specified rect by filling it with white.

NSFrameRect (page 37)
Draw a bordered rectangle.

NSFrameRectWithWidth (page 38)
Draw a bordered rectangle.

NSFrameRectWithWidthUsingOperation (page 38)
Draw a bordered rectangle using the specified compositing operation.

Functions by Task 9
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSGetWindowServerMemory (page 41)
Returns the amount of memory being used by a context.

NSHighlightRect (page 42)
Highlights the specified rect by filling it with white.

NSReadPixel (page 46)
Reads the color of the pixel at the specified location.

NSRectClip (page 47)
Modifies the current clipping path by intersecting it with the passed rect.

NSRectClipList (page 48)
Modifies the current clipping path by intersecting it with the passed rect.

NSRectFill (page 48)
Fills the passed rectangle with the current color.

NSRectFillList (page 49)
Fills the rectangles in the passed list with the current fill color.

NSRectFillListWithColors (page 50)
Fills the rectangles in the passed list with the passed list of colors.

NSRectFillListWithGrays (page 51)
Fills the rectangles in the passed list with the passed list of grays.

NSRectFillListUsingOperation (page 49)
Fills the rectangles in a list using the current fill color and specified compositing operation.

NSRectFillListWithColorsUsingOperation (page 50)
Fills the rectangles in a list using the specified colors and compositing operation.

NSRectFillUsingOperation (page 52)
Fills a rectangle using the current fill color and the specified compositing operation.

NSSetFocusRingStyle (page 56)
Specifies how a focus ring will be drawn.

NSShowAnimationEffect (page 56)
Runs a system animation effect.

NSWindowList (page 58)
Gets information about onscreen windows.

NSWindowListForContext (page 59)
Gets information about an application’s onscreen windows.

Graphics-Window Depth

NSAvailableWindowDepths (page 17)
Returns the available window depth values.

NSBestDepth (page 21)
Attempts to return a window depth adequate for the specified parameters.

NSBitsPerPixelFromDepth (page 22)
Returns the bits per pixel for the specified window depth.

NSBitsPerSampleFromDepth (page 22)
Returns the bits per sample for the specified window depth.

10 Functions by Task
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSColorSpaceFromDepth (page 22)
Returns the name of the color space corresponding to the passed window depth.

NSNumberOfColorComponents (page 44)
Returns the number of color components in the specified color space.

NSPlanarFromDepth (page 46)
Returns whether the specified window depth is planar.

Interface Styles

NSInterfaceStyleForKey (page 43)
Returns an interface style value for the specified key and responder.

Key Value Bindings

NSIsControllerMarker (page 43)
Tests whether a given object is special marker object used for indicating the state of a selection in
relation to a key.

OpenGL

NSOpenGLGetOption (page 44)
Returns global OpenGL options.

NSOpenGLGetVersion (page 45)
Returns the NSOpenGL version numbers.

NSOpenGLSetOption (page 45)
Sets global OpenGL options.

Panels

NSBeginAlertSheet (page 18)
Creates and runs an alert sheet.

NSBeginCriticalAlertSheet (page 20)
Creates and runs a critical alert sheet.

NSBeginInformationalAlertSheet (page 20)
Creates and runs an informational alert sheet.

NSGetAlertPanel (page 39)
Returns an alert panel.

NSGetCriticalAlertPanel (page 40)
Returns an alert panel to display a critical message.

NSGetInformationalAlertPanel (page 41)
Returns an alert panel to display an informational message.

NSReleaseAlertPanel (page 53)
Releases an alert panel.

Functions by Task 11
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSRunAlertPanel (page 53)
Creates an alert panel.

NSRunCriticalAlertPanel (page 54)
Creates and runs a critical alert panel.

NSRunInformationalAlertPanel (page 55)
Creates and runs an informational alert panel.

Pasteboards

NSCreateFileContentsPboardType (page 24)
Returns a pasteboard type based on the passed file type.

NSCreateFilenamePboardType (page 25)
Returns a pasteboard type based on the passed file type.

NSGetFileType (page 40)
Returns a file type based on the passed pasteboard type.

NSGetFileTypes (page 40)
Returns an array of file types based on the passed pasteboard types.

System Beep
Additional information on sounds can be found in NSSound.

NSBeep (page 18)
Plays the system beep.

Functions

NSAccessibilityActionDescription
Returns a standard description for an action.

NSString * NSAccessibilityActionDescription (
 NSString *action
);

Discussion
This function returns a standard description for action.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Dicey
ImageMapExample

Declared In
NSAccessibility.h

12 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSAccessibilityPostNotification
Sends a notification to any observing assistive applications.

void NSAccessibilityPostNotification (
 id element,
 NSString *notification
);

Discussion
Sends notification to any assistive applications that have registered to receive the notification from the
user interface object element in your application. Accessibility notifications require special handling, so they
cannot be posted using NSNotificationCenter.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Dicey
TrackBall

Declared In
NSAccessibility.h

NSAccessibilityRaiseBadArgumentException
Raises an error if the parameter is the wrong type or has an illegal value

void NSAccessibilityRaiseBadArgumentException (
 id element,
 NSString *attribute,
 id value
);

Discussion
Raises an error if a parameter is the wrong type or has an illegal value. This function can also be used to raise
an error if an attempt is made to set an attribute's value with the wrong type or an illegal value.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAccessibility.h

NSAccessibilityRoleDescription
Returns a standard description for a role and subrole.

Functions 13
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSString * NSAccessibilityRoleDescription (
 NSString *role,
 NSString *subrole
);

Discussion
You should pass nil to this function if there is no subrole. This function returns a description of a standard
role. For example, if you implement a button widget that does not inherit from NSButton, you should use
this function to return a localized role description matching that returned by a standard button.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Dicey
ImageMapExample
TrackBall

Declared In
NSAccessibility.h

NSAccessibilityRoleDescriptionForUIElement
Returns a standard role description for a user interface element.

NSString * NSAccessibilityRoleDescriptionForUIElement (
 id element
);

Discussion
This function is like the NSAccessibilityRoleDescription (page 13) function, except that it queries
element to get the role and subrole. The NSAccessibilityRoleDescription function is more efficient,
but this function is useful for accessorizing base classes so that they properly handle derived classes, which
may override the subrole or even the role.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
ImageMapExample

Declared In
NSAccessibility.h

NSAccessibilityUnignoredAncestor
Returns an unignored accessibility object, ascending the hierarchy if necessary.

14 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

id NSAccessibilityUnignoredAncestor (
 id element
);

Discussion
Tests whether element is an ignored object, returning either element, if it is not ignored, or the first
unignored ancestor of element.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Dicey
ImageMapExample
TrackBall

Declared In
NSAccessibility.h

NSAccessibilityUnignoredChildren
Returns a list of unignored accessibility objects, descending the hierarchy if necessary.

NSArray * NSAccessibilityUnignoredChildren (
 NSArray *originalChildren
);

Discussion
Returns a copy of originalChildren with any ignored objects in the array replaced by their unignored
descendants.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Dicey
ImageMapExample

Declared In
NSAccessibility.h

NSAccessibilityUnignoredChildrenForOnlyChild
Returns a list of unignored accessibility objects, descending the hierarchy if necessary.

NSArray * NSAccessibilityUnignoredChildrenForOnlyChild (
 id originalChild
);

Discussion
Tests whether originalChild is an ignored object and returns an array containing either originalChild,
if it is not ignored, or its unignored descendants.

Functions 15
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAccessibility.h

NSAccessibilityUnignoredDescendant
Returns an unignored accessibility object, descending the hierarchy if necessary.

id NSAccessibilityUnignoredDescendant (
 id element
);

Discussion
Tests whether element is an ignored object, returning either element, if it is not ignored, or the first
unignored descendant of element. Use this function only if you know there is a linear, one-to-one, hierarchy
below element. Otherwise, if element has either no unignored children or multiple unignored children,
this function fails and returns nil.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
ImageMapExample

Declared In
NSAccessibility.h

NSApplicationLoad
Startup function to call when running Cocoa code from a Carbon application.

BOOL NSApplicationLoad (void);

Return Value
YES if the NSApplication object was successfully initialized and can now be used from your Carbon
application or NO if there was an error during initialization.

Discussion
You typically call this function before calling other Cocoa code in a plug-in loaded into a primarily Carbon
application. If the shared NSApplication object is not already initialized, this function initializes it and sets
up the necessary event handlers for Cocoa.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CarbonCocoaCoreImageTab
CarbonQuartzComposer_TV
CocoaInCarbon
CrossEvents
HIView-NSView

16 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Declared In
NSApplication.h

NSApplicationMain
Called by the main function to create and run the application.

int NSApplicationMain (
 int argc,
 const char *argv[]
);

Parameters
argc

The number of arguments in the argv parameter.

argv
An array of pointers containing the arguments that were passed to the application at startup.

Return Value
This method never returns a result code. Instead, it calls the exit function to exit the application and terminate
the process. If you want to determine why the application exited, you should look at the result code from
the exit function instead.

Discussion
Creates the application, loads the main nib file from the application’s main bundle, and runs the application.
You must call this function from the main thread of your application, and you typically call it only once from
your application’s main function, which is usually generated automatically by Xcode.

Special Considerations

NSApplicationMain itself ignores the argc and argv arguments. Instead, Cocoa gets its arguments
indirectly via _NSGetArgv, _NSGetArgc, and _NSGetEnviron (see <crt_externs.h>).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
Dicey
ImageClient
MyPhoto
Quartz EB

Declared In
NSApplication.h

NSAvailableWindowDepths
Returns the available window depth values.

Functions 17
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

const NSWindowDepth * NSAvailableWindowDepths (void);

Discussion
Returns a null-terminated array of NSWindowDepthâ Window Depth values that specify which window
depths are currently available. Window depth values are converted to specific display properties using the
functions NSBitsPerPixelFromDepth (page 22), NSBitsPerSampleFromDepth (page 22),
NSColorSpaceFromDepth (page 22), and NSPlanarFromDepth (page 46).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSBeep
Plays the system beep.

void NSBeep (void);

Discussion
Plays the system beep. Users can select a sound to be played as the system beep. On a Macintosh computer,
for example, you can change sounds with the Sound pane of System Preferences.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GridCalendar
NewsReader
PDFKitLinker2
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSGraphics.h

NSBeginAlertSheet
Creates and runs an alert sheet.

18 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

void NSBeginAlertSheet (
 NSString *title,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 NSWindow *docWindow,
 id modalDelegate,
 SEL didEndSelector,
 SEL didDismissSelector,
 void *contextInfo,
 NSString *msg,
 ...
);

Discussion
Creates and runs an alert sheet on docWindow, with the title of title, the text of msg, and buttons with
titles of defaultButton, alternateButton, and otherButton.

The buttons are laid out on the lower-right corner of the sheet, with defaultButton on the right,
alternateButton on the left, and otherButton in the middle. If title is nil or an empty string, a default
localized title is used (“Alert” in English). If defaultButton is nil or an empty string, a default localized
button title (“OK” in English) is used. For the remaining buttons, this function creates them only if their
corresponding button title is non-nil.

A Command-D key equivalent for the “Don’t Save” button is provided, if one is found. The button titles are
searched for the localized value for “Don’t Save.” If a match is found, that button is assigned a Command-D
key equivalent, provided it is not the default button.

If you create a modal panel using runModalForWindow: or
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo:, you can assign the
key equivalent yourself, using setKeyEquivalent: and setKeyEquivalentModifierMask:.

The msg argument is the message that’s displayed in the panel. It can use printf-style formatting characters;
any necessary arguments should be listed at the end of the function’s argument list (after the msg argument).
For more information on formatting characters, see the man page for printf.

When the modal session is ended, and before the sheet is dismissed, the didEndSelector is invoked on
the modalDelegate. passing contextInfo. After the sheet is dismissed, the didDismissSelector is
invoked on the modalDelegate, passing contextInfo. Typically, you will want to implement the
didEndSelector but you may pass NULL for the didDismissSelector. The two selectors should be
defined as follows:

sheetDidEnd:(NSWindow *)sheet returnCode:(int)returnCode contextInfo:(void
*)contextInfo;
sheetDidDismiss:(NSWindow *)sheet returnCode:(int)returnCode contextInfo:(void
 *)contextInfo;

where sheet is the alert sheet, returnCode specifies which button the user pressed, and contextInfo is
the same contextInfo passed into NSBeginAlertSheet. returnCode can be one of the following:

 ■ NSAlertDefaultReturn means the user pressed the default button.

 ■ NSAlertAlternateReturn means the user pressed the alternate button.

 ■ NSAlertOtherReturn means the user pressed the other button.

 ■ NSAlertErrorReturn means an error occurred while running the alert panel.

Functions 19
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageClient
PrefsPane
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSPanel.h

NSBeginCriticalAlertSheet
Creates and runs a critical alert sheet.

void NSBeginCriticalAlertSheet (
 NSString *title,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 NSWindow *docWindow,
 id modalDelegate,
 SEL didEndSelector,
 SEL didDismissSelector,
 void *contextInfo,
 NSString *msg,
 ...
);

Discussion
Creates and runs a critical alert sheet on docWindow, with the title of title, the text of msg, and buttons
with titles of defaultButton, alternateButton, and otherButton.

See the description of NSBeginAlertSheet (page 18) for information on layout, default parameters, and
the selectors.

The sheet presented to the user is badged with a caution icon. Critical alerts should be used only as specified
in the "Alerts” section of the Windows chapter of Apple Human Interface Guidelines.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPanel.h

NSBeginInformationalAlertSheet
Creates and runs an informational alert sheet.

20 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

void NSBeginInformationalAlertSheet (
 NSString *title,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 NSWindow *docWindow,
 id modalDelegate,
 SEL didEndSelector,
 SEL didDismissSelector,
 void *contextInfo,
 NSString *msg,
 ...
);

Discussion
Creates and runs an informational alert sheet on docWindow, with the title of title, the text of msg, and
buttons with titles of defaultButton, alternateButton, and otherButton.

See the description of NSBeginAlertSheet (page 18) for information on layout, default parameters, and
the selectors.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AutoSample
InstallerPluginSample

Declared In
NSPanel.h

NSBestDepth
Attempts to return a window depth adequate for the specified parameters.

NSWindowDepth NSBestDepth (
 NSString *colorSpace,
 NSInteger bps,
 NSInteger bpp,
 BOOL planar,
 BOOL *exactMatch
);

Discussion
Returns a window depth deep enough for the given number of colors in colorSpace, bits per sample
specified by bps, bits per pixel specified by bpp, and whether planar as specified by planar. Upon return,
the variable pointed to by exactMatch is YES if the window depth can accommodate all of the values
specified by the parameters, NO if it can’t.

Use this function to compute window depths. This function tries to accommodate all the parameters (match
or better); if there are multiple matches, it gives the closest, with matching colorSpace first, then bps, then
planar, then bpp. bpp is “bits per pixel”; 0 indicates default (same as the number of bits per plane, either
bps or bps * NSNumberOfColorComponents (page 44)); other values may be used as hints to provide
backing stores of different configuration; for instance, 8-bit color. The exactMatch parameter is optional
and indicates whether all the parameters matched exactly.

Functions 21
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSBitsPerPixelFromDepth
Returns the bits per pixel for the specified window depth.

NSInteger NSBitsPerPixelFromDepth (
 NSWindowDepth depth
);

Discussion
Returns the number of bits per pixel for the window depth specified by depth.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSBitsPerSampleFromDepth
Returns the bits per sample for the specified window depth.

NSInteger NSBitsPerSampleFromDepth (
 NSWindowDepth depth
);

Discussion
Returns the number of bits per sample (bits per pixel in each color component) for the window depth specified
by depth.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSColorSpaceFromDepth
Returns the name of the color space corresponding to the passed window depth.

NSString * NSColorSpaceFromDepth (
 NSWindowDepth depth
);

Discussion
Returns the color space name for the specified depth. For example, the returned color space name can be
NSCalibratedRGBColorSpace, or NSDeviceCMYKColorSpace.

22 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSConvertGlyphsToPackedGlyphs
Prepares a set of glyphs for processing by character-based routines.

NSInteger NSConvertGlyphsToPackedGlyphs (
 NSGlyph *glBuf,
 NSInteger count,
 NSMultibyteGlyphPacking packing,
 char *packedGlyphs
);

Discussion
Takes a buffer of glyphs, specified in the glBuf parameter, and packs them into a condensed character array.
The character array is returned in the packedGlyphs parameter, which should have enough space for at
least ((4 * count) + 1) bytes to guarantee that the packed glyphs fit. count specifies the number of glyphs
in glBuf. packing specifies how the glyphs are currently packed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFont.h

NSCopyBits
Copies a bitmap image to the location specified by a destination point.

void NSCopyBits (
 NSInteger srcGState,
 NSRect srcRect,
 NSPoint destPoint
);

Discussion
Copies the pixels in the rectangle specified by srcRect to the location specified by destPoint. The source
rectangle is defined in the graphics state designated by srcGState. If srcGState is NSNullObject, the
current graphics state is assumed. The destPoint destination is defined in the current graphics state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSCountWindows
Counts the number of onscreen windows.

Functions 23
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

void NSCountWindows (
 NSInteger *count
);

Parameters
count

On output, this parameter contains the number of onscreen windows.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSCountWindowsForContext
Counts the number of onscreen windows belonging to a particular application.

void NSCountWindowsForContext (
 NSInteger context,
 NSInteger *count
);

Discussion
Counts the number of onscreen windows belonging to a particular application, identified by context, which
is a window server connection ID. The function returns the number by reference in count.

Use of this function is discouraged as it may be deprecated in a future release.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSCreateFileContentsPboardType
Returns a pasteboard type based on the passed file type.

NSString * NSCreateFileContentsPboardType (
 NSString *fileType
);

Discussion
Returns an NSString to a pasteboard type representing a file’s contents based on the supplied string fileType.
fileType should generally be the extension part of a filename. The conversion from a named file type to a
pasteboard type is simple; no mapping to standard pasteboard types is attempted.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

24 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSCreateFilenamePboardType
Returns a pasteboard type based on the passed file type.

NSString * NSCreateFilenamePboardType (
 NSString *fileType
);

Discussion
Returns an NSString to a pasteboard type representing a filename based on the supplied string fileType.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

NSDisableScreenUpdates
Disables screen updates.

void NSDisableScreenUpdates (void);

Discussion
Prevents drawing operations from being flushed to the screen for all windows belonging to the calling
process. When you re-enable screen updates (with NSEnableScreenUpdates (page 36)) screen flushing
for all windows belonging to the calling process appears to be simultaneous. You typically call this function
so that operations on multiple windows appear atomic to the user. This is a technique particularly useful for
synchronizing parent and child windows. Make sure that the period after calling this function and before
reenabling updates is short; the system only allow updating to be disabled for a limited time (currently one
second) before automatically reenabling updates. Successive calls to this function are placed on a stack and
must be popped off that stack by matching NSEnableScreenUpdates calls.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGraphics.h

NSDottedFrameRect
Draws a bordered rectangle.

void NSDottedFrameRect (
 NSRect aRect
);

Discussion
Deprecated. Use a dashed NSBezierPath instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 33)

Functions 25
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Declared In
NSGraphics.h

NSDrawBitmap
Draws a bitmap image.

void NSDrawBitmap (
 NSRect rect,
 NSInteger width,
 NSInteger height,
 NSInteger bps,
 NSInteger spp,
 NSInteger bpp,
 NSInteger bpr,
 BOOL isPlanar,
 BOOL hasAlpha,
 NSString *colorSpaceName,
 const unsigned char *const data[5]
);

Discussion
This function is marginally obsolete. Most applications are better served using the NSBitmapImageRep class
to read and display bitmap images.

This function renders an image from a bitmap, binary data that describes the pixel values for the image.

This function renders a bitmap image using an appropriate display operator. It puts the image in the
rectangular area specified by its first argument, rect; the rectangle is specified in the current coordinate
system and is located in the current window. The next two arguments, pixelsWide and pixelsHigh, give
the width and height of the image in pixels. If either of these dimensions is larger or smaller than the
corresponding dimension of the destination rectangle, the image will be scaled to fit.

The remaining arguments describe the bitmap data, as explained in the following paragraphs.

The bitsPerSample argument is the number of bits per sample for each pixel and samplesPerPixel is
the number of samples per pixel. bitsPerPixel is based on samplesPerPixel and the configuration of
the bitmap: if the configuration is planar, then the value of bitsPerPixel should equal the value of
bitsPerSample; if the configuration isn’t planar (is meshed instead), bitsPerPixel should equal
bitsPerSample * samplesPerPixel.

The bytesPerRow argument is calculated in one of two ways, depending on the configuration of the image
data (data configuration is described below). If the data is planar, bytesPerRow is (7 + (pixelsWide
* bitsPerSample)) / 8. If the data is meshed,bytesPerRow is (7 + (pixelsWide * bitsPerSample
* samplesPerPixel)) / 8.

A sample is data that describes one component of a pixel. In an RGB color system, the red, green, and blue
components of a color are specified as separate samples, as are the cyan, magenta, yellow, and black
components in a CMYK system. Color values in a grayscale are a single sample. Alpha values that determine
transparency and opaqueness are specified as a coverage sample separate from color. In bitmap images with
alpha, the color (or gray) components have to be premultiplied with the alpha. This is the way images with
alpha are displayed, this is the way they are read back, and this is the way they are stored in TIFFs.

26 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

The isPlanar argument refers to the way data is configured in the bitmap. This flag should be set to YES
if a separate data channel is used for each sample. The function provides for up to five channels, data1,
data2, data3, data4, and data5. It should be set NO if sample values are interwoven in a single channel
(meshed); all values for one pixel are specified before values for the next pixel.

Grayscale windows store pixel data in planar configuration; color windows store it in meshed configuration.
NSDrawBitmap can render meshed data in a planar window, or planar data in a meshed window. However,
it’s more efficient if the image has a depth (bitsPerSample) and configuration (isPlanar) that match the
window.

The hasAlpha argument indicates whether the image contains alpha. If it does, the number of samples
should be 1 greater than the number of color components in the model (for example, 4 for RGB).

The colorSpace argument can be NSCustomColorSpace, indicating that the image data is to be interpreted
according to the current color space in the graphics state. This allows for imaging using custom color spaces.
The image parameters supplied as the other arguments should match what the color space is expecting.

If the image data is planar, data[0] through data[samplesPerPixel–1] point to the planes; if the data is
meshed, only data[0] needs to be set.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSDrawButton
Draws a gray-filled rectangle representing a user-interface button.

void NSDrawButton (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Discussion
Draws a gray-filled rectangle, used to signify a user-interface button. Since this function is often used to draw
the border of a view, the aRect parameter typically contains the view’s bounds rectangle. For an Aqua button,
use an NSButton object instead.

This function fills the specified rectangle with light gray. This function is designed for rectangles that are
defined in unscaled, unrotated coordinate systems (that is, where the y axis is vertical, the x axis is horizontal,
and a unit along either axis is equal to 1 screen pixel). The coordinate system can be either flipped or unflipped.
The sides of the rectangle should lie on pixel boundaries.

Availability
Available in Mac OS X v10.0 and later.

Functions 27
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Declared In
NSGraphics.h

NSDrawColorTiledRects
Draws a colored bordered rectangle.

NSRect NSDrawColorTiledRects (
 NSRect boundsRect,
 NSRect clipRect,
 const NSRectEdge *sides,
 NSColor **colors,
 NSInteger count
);

Parameters
boundsRect

The bounding rectangle (in the current coordinate system) in which to draw. Since this function is
often used to draw the border of a view, this rectangle will typically be that view’s bounds rectangle.
Only those parts of boundsRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

sides
The sides of the rectangle for which you want to specify custom colors. Each side must have a
corresponding entry in the colors parameter.

colors
The colors to draw for each of the edges listed in the sides parameter.

count
The number of 1.0-unit-wide slices to draw on the specified sides.

Return Value
The rectangle that lies within the resulting border.

Discussion
Behaves the same as NSDrawTiledRects (page 33) except it draws its border using colors from the colors
array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSDrawDarkBezel
Draws a dark gray-filled rectangle with a bezel border.

28 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

void NSDrawDarkBezel (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 33)

Related Sample Code
BindingsJoystick

Declared In
NSGraphics.h

NSDrawGrayBezel
Draws a gray-filled rectangle with a bezel border.

void NSDrawGrayBezel (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 33)

Declared In
NSGraphics.h

NSDrawGroove
Draws a gray-filled rectangle with a groove border.

Functions 29
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

void NSDrawGroove (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 33)

Declared In
NSGraphics.h

NSDrawLightBezel
Draws a white-filled rectangle with a bezel border.

void NSDrawLightBezel (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 33)

Related Sample Code
BindingsJoystick

Declared In
NSGraphics.h

NSDrawNinePartImage
Draws a nine-part tiled image.

30 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

void NSDrawNinePartImage(NSRect frame,
 NSImage *topLeftCorner,
 NSImage *topEdgeFill,
 NSImage *topRightCorner,
 NSImage *leftEdgeFill,
 NSImage *centerFill,
 NSImage *rightEdgeFill,
 NSImage *bottomLeftCorner,
 NSImage *bottomEdgeFill,
 NSImage *bottomRightCorner,
 NSCompositingOperation op,
 CGFloat alphaFraction,
 BOOL flipped
);

Parameters
frame

The rectangle (specified in the current coordinate system) in which to draw the images.

topLeftCorner
The image to display in the top-left corner.

topEdgeFill
The image used to tile the space between the topLeftCorner and topRightCorner images.

topRightCorner
The image to display in the top-right corner.

leftEdgeFill
The image used to tile the space between the topLeftCorner and bottomLeftCorner images.

centerFill
The image used to tile the center area between the other eight images.

rightEdgeFill
The image used to tile the space between the topRightCorner and bottomRightCorner images.

bottomLeftCorner
The image to display in the bottom-left corner.

bottomEdgeFill
The image used to tile the space between the bottomLeftCorner and bottomRightCorner images.

bottomRightCorner
The image to display in the bottom-right corner.

op
The compositing operation to use when rendering the images.

alphaFraction
The alpha value to apply to the rendered image. This value can range between 0.0 and 1.0, with 0.0
being fully transparent and 1.0 being fully opaque.

flipped
Specify YES if you are drawing the images in a flipped coordinate system; otherwise, specify NO.

Discussion
This function is typically used to draw custom cells that are capable of being resized both vertically and
horizontally. Cells of this type are comprised of four fixed-size corner images along and a set of edge and
center images that are used to fill the gaps between the corners. These cells allow you to create sophisticated
looking controls that can grow and shrink in any direction without distorting the control’s overall appearance.

Functions 31
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

You should prefer the use of this function over your own custom code for handling multi-part images whose
size can change. This function correctly manages the subtle behaviors needed to handle resolution
independence issues and to avoid visual artifacts caused by tiling the various images.

This function uses the top-left and bottom-right corner images to determine the widths and heights of the
edge areas that need to be filled. If the width or height of the bottom-left and top-right images are not sized
appropriately, they may be scaled to fill their corner area. Edge areas between the corners are tiled using the
corresponding image. Similarly, the center area is tiled using the specified center image.

The flipped parameter lets you reorient the contents of each image when drawing in a flipped coordinate
system. By default, images use an internal coordinate system that is not flipped. Rendering such an image
in a flipped coordinate system would therefore cause the image to appear upside down. Passing YES for the
flipped parameter adjusts the image’s internal coordinate system to draw it correctly in a flipped
environment.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCell.h

NSDrawThreePartImage
Draws a three-part tiled image.

void NSDrawThreePartImage(NSRect frame,
 NSImage *startCap,
 NSImage *centerFill,
 NSImage *endCap,
 BOOL vertical,
 NSCompositingOperation op,
 CGFloat alphaFraction,
 BOOL flipped
);

Parameters
frame

The rectangle (specified in the current coordinate system) in which to draw the images.

startCap
For a horizontal three-part image, this is the image located at the left edge of the frame rectangle.
For a vertical three-part image, this image appears at the top of the screen in an unflipped coordinate
system and at the bottom of the screen in a flipped coordinate system.

centerFill
The image used to tile the space between the startCap and endCap images.

endCap
For a horizontal three-part image, this is the image located at the right edge of the frame rectangle.
For a vertical three-part image, this image appears at the bottom of the screen in an unflipped
coordinate system and at the top of the screen in a flipped coordinate system.

vertical
Specify YES if the images should be stacked on top of one another to create a vertically oriented
element. Specify NO if the images should be laid out side-by-side to create a horizontally oriented
element.

32 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

op
The compositing operation to use when rendering the images.

alphaFraction
The alpha value to apply to the rendered image. This value can range between 0.0 and 1.0, with 0.0
being fully transparent and 1.0 being fully opaque.

flipped
Specify YES if you are drawing the images in a flipped coordinate system; otherwise, specify NO.

Discussion
This function is typically used to draw custom cells (such as the backgrounds for push button and slider
controls) that are capable of being resized along a single axis only. Cells of this type are comprised of fixed-size
end cap images and a center area that is filled by tiling the specified center image as many times as needed
to fill the gap. These cells allow you to create sophisticated looking controls that can grow and shrink without
distorting the control’s overall appearance.

You should prefer the use of this function over your own custom code for handling multi-part images whose
size can change. This function correctly manages the subtle behaviors needed to handle resolution
independence issues and to avoid visual artifacts caused by tiling the various images.

When drawing a horizontally oriented control, the images in the startCap, centerFill, and endCap
parameters should all have the same height, and that height should match the height of the frame rectangle.
If an image’s height does not match the height of the frame rectangle, it is scaled until it does match, which
might yield less desirable results. For vertically oriented controls, the image widths are scaled instead of the
heights.

The flipped parameter lets you reorient the contents of each image when drawing in a flipped coordinate
system. By default, images use an internal coordinate system that is not flipped. Rendering such an image
in a flipped coordinate system would therefore cause the image to appear upside down. Passing YES for the
flipped parameter adjusts the image’s internal coordinate system to draw it correctly in a flipped
environment.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCell.h

NSDrawTiledRects
Draws rectangles with borders.

Functions 33
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSRect NSDrawTiledRects (
 NSRect boundsRect,
 NSRect clipRect,
 const NSRectEdge *sides,
 const CGFloat *grays,
 NSInteger count
);

Parameters
boundsRect

The bounding rectangle (in the current coordinate system) in which to draw. Since this function is
often used to draw the border of a view, this rectangle will typically be that view’s bounds rectangle.
Only those parts of boundsRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

sides
The sides of the rectangle for which you want to specify custom gray levels. Each side must have a
corresponding entry in the grays parameter.

grays
The gray levels to draw for each of the edges listed in the sides parameter.

count
The number of 1.0-unit-wide slices to draw on the specified sides.

Return Value
The rectangle that lies within the resulting border.

Discussion
This is a generic function that can be used to draw different types of borders inside a given rectangle. These
borders can be used to outline an area or to give rectangles the effect of being recessed from or elevated
above the surface of the screen.

The sides, grays, and count parameters determine how thick the border is and what gray levels are used
to form it. This function uses the NSDivideRect function to take successive 1.0-unit-wide slices from the
sides of the rectangle specified by the sides parameter. Each slice is drawn using the corresponding gray
level from the grays parameter. This function makes and draws these slices count number of times. If you
specify the same side more than once, the second slice is drawn inside the first.

The following example uses this function to draw a bezeled border consisting of a 1.0–unit-wide white line
at the top and on the left side and a 1.0-unit-wide dark-gray line inside a 1.0–unit-wide black line on the
other two sides. The resulting rectangle inside this border is then filled in using light gray.

NSRectEdge mySides[] = {NSMinYEdge, NSMaxXEdge, NSMaxYEdge, NSMinXEdge,
 NSMinYEdge, NSMaxXEdge};
float myGrays[] = {NSBlack, NSBlack, NSWhite, NSWhite,
 NSDarkGray, NSDarkGray};
NSRect aRect, clipRect; // Assume exists

aRect = NSDrawTiledRects(aRect, clipRect, mySides, myGrays, 6);
[[NSColor grayColor] set];
NSRectFill(aRect);

In the preceding example, mySides is an array that specifies sides of a rectangle; for example, NSMinYEdge
selects the side parallel to the x axis with the smallest y coordinate value. myGrays is an array that specifies
the successive gray levels to be used in drawing parts of the border.

34 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSDrawWhiteBezel
Draws a white-filled rectangle with a bezel border.

void NSDrawWhiteBezel (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 33)

Related Sample Code
Sketch-112

Declared In
NSGraphics.h

NSDrawWindowBackground
Draws the window’s default background pattern into the specified rectangle of the currently focused view.

void NSDrawWindowBackground (
 NSRect aRect
);

Parameters
aRect

The rectangle (in the current coordinate system) in which to draw the window’s background pattern.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

Functions 35
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSEnableScreenUpdates
Enables screen updates

void NSEnableScreenUpdates (void);

Discussion
Reenables, for all windows of a process, the flushing of drawing operations to the screen that was previously
disabled by NSDisableScreenUpdates (page 25). Successive calls to NSDisableScreenUpdates are
placed on a stack and must be popped off that stack by matching calls to this function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGraphics.h

NSEraseRect
Erases the specified rect by filling it with white.

void NSEraseRect (
 NSRect aRect
);

Parameters
aRect

The rectangle (in the current coordinate system) defining the area to erase.

Discussion
This function fills the specified rectangle with white. It does not alter the current color.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz EB

Declared In
NSGraphics.h

NSEventMaskFromType
Returns the event mask for the specified type.

static NSUInteger NSEventMaskFromType (
 NSEventType type
);

Parameters
type

The event type whose mask you want to get.

36 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Return Value
The event mask corresponding to the specified type. The returned mask is equivalent to the number 1
left-shifted by type bits.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer Matrix

Declared In
NSEvent.h

NSFrameRect
Draw a bordered rectangle.

void NSFrameRect (
 NSRect aRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw.

Discussion
Draws a frame around the inside of aRect in the current color and using the NSCompositeCopy compositing
operation. The width is equal to 1.0 in the current coordinate system. Since the frame is drawn inside the
rectangle, it will be visible even if drawing is clipped to the rectangle.

Because this function does not draw directly on the line, but rather inside it, it uses the current fill color (not
stroke color) when drawing.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 33)

Related Sample Code
Cropped Image
Dicey
FilterDemo
PDF Calendar
Sketch-112

Declared In
NSGraphics.h

Functions 37
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSFrameRectWithWidth
Draw a bordered rectangle.

void NSFrameRectWithWidth (
 NSRect aRect,
 CGFloat frameWidth
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw.

frameWidth
The width of the frame, specified in points.

Discussion
Draws a frame around the inside of aRect in the current color and using the NSCompositeCopy compositing
operation. The width is equal to frameWidth in the current coordinate system. Since the frame is drawn
inside the rectangle, it will be visible even if drawing is clipped to the rectangle.

Because this function does not draw directly on the line, but rather inside it, it uses the current fill color (not
stroke color) when drawing.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 33)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSGraphics.h

NSFrameRectWithWidthUsingOperation
Draw a bordered rectangle using the specified compositing operation.

void NSFrameRectWithWidthUsingOperation (
 NSRect aRect,
 CGFloat frameWidth,
 NSCompositingOperation op
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw.

frameWidth
The width of the frame, specified in points.

38 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

op
The compositing operation to use when drawing the frame.

Discussion
Draws a frame around the inside of aRect in the current color, using the compositing operation op. The
width is equal to frameWidth in the current coordinate system. Since the frame is drawn inside the rectangle,
it will be visible even if drawing is clipped to the rectangle.

Because this function does not draw directly on the line, but rather inside it, it uses the current fill color (not
stroke color) when drawing.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedAudioBurn
PDF Annotation Editor

Declared In
NSGraphics.h

NSGetAlertPanel
Returns an alert panel.

id NSGetAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Returns an NSPanel that can be used to set up a modal session. A modal session is useful for allowing the
user to interrupt the program. During a modal session, you can perform activities while the panel is displayed
and check at various points in your program whether the user has clicked one of the panel’s buttons. The
arguments for this function are the same as those for NSRunAlertPanel (page 53), but unlike that function,
no button is displayed if defaultButton is nil.

To set up a modal session, send the Application object beginModalSessionForWindow: with the panel
returned by NSGetAlertPanel as its argument. When you want to check if the user has clicked one of the
panel’s buttons, use runModalSession:. To end the modal session, use endModalSession:. When you’re
finished with the panel created by NSGetAlertPanel, you must free it by passing it to
NSReleaseAlertPanel (page 53).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPanel.h

Functions 39
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSGetCriticalAlertPanel
Returns an alert panel to display a critical message.

id NSGetCriticalAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Returns an NSPanel that can be used to set up a modal session. No button is displayed if defaultButton
is nil. When you’re finished with the panel created by this function, you must free it by passing it to
NSReleaseAlertPanel (page 53).

The arguments for this function are the same as those for the NSGetAlertPanel (page 39). For more
information on using a panel in a modal session, see NSGetAlertPanel.

The panel presented to the user is badged with a caution icon. Critical alerts should be used only as specified
in the "Alerts” section of the Windows chapter of Apple Human Interface Guidelines.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPanel.h

NSGetFileType
Returns a file type based on the passed pasteboard type.

NSString * NSGetFileType (
 NSString *pboardType
);

Discussion
This function is the inverse of both NSCreateFileContentsPboardType (page 24) and
NSCreateFilenamePboardType (page 25). When passed a pasteboard type as returned by those functions,
it returns the extension or filename from which the type was derived. It returns nil if pboardType isn’t a
pasteboard type created by those functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

NSGetFileTypes
Returns an array of file types based on the passed pasteboard types.

40 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSArray * NSGetFileTypes (
 NSArray *pboardTypes
);

Discussion
Accepts a null-terminated array of pointers to pasteboard types and returns a null-terminated array of the
unique extensions and filenames from the file content and filename types found in the input array. It returns
nil if the input array contains no file content or filename types. The returned array is allocated and must be
freed by the caller. The pointers in the return array point into strings passed in the input array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

NSGetInformationalAlertPanel
Returns an alert panel to display an informational message.

id NSGetInformationalAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Returns an NSPanel that can be used to set up a modal session. No button is displayed if defaultButton
is nil. When you’re finished with the panel created by this function, you must free it by passing it to
NSReleaseAlertPanel (page 53).

The arguments for this function are the same as those for the NSRunAlertPanel (page 53) function. For
more information on using a panel in a modal session, see NSGetAlertPanel (page 39).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPanel.h

NSGetWindowServerMemory
Returns the amount of memory being used by a context.

Functions 41
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSInteger NSGetWindowServerMemory (
 NSInteger context,
 NSInteger *virtualMemory,
 NSInteger *windowBackingMemory,
 NSString **windowDumpString
);

Discussion
Calculates the amount of memory being used at the moment by the given context. If NULL is passed for
context, the current context is used. The amount of virtual memory used by the current context is returned
in the int pointed to by virtualMemory; the amount of window backing store used by windows owned by
the current context is returned in the int pointed to by windowBackingMemory. The sum of these two
numbers is the amount of the memory that this context is responsible for.

Calculating these numbers takes some time to execute; thus, calling this function in normal operation is not
recommended.

If nil is not passed in for windowDumpStream, the information returned is echoed to the specified stream.
This fact can be useful for finding out more about which windows are using up your storage.

Normally, NSGetWindowServerMemory returns 0. If NULL is passed for context and there’s no current
display context, this function returns –1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSHighlightRect
Highlights the specified rect by filling it with white.

void NSHighlightRect (
 NSRect aRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw.

Discussion
Highlights the rectangle referred to by aRect. Light gray becomes white, and white becomes light gray. This
function must be called twice, once to highlight the rectangle and once to unhighlight it; the rectangle
should not be left in its highlighted state. When not drawing on the screen, the compositing operation is
replaced by one that fills the rectangle with light gray.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

42 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSInterfaceStyleForKey
Returns an interface style value for the specified key and responder.

NSInterfaceStyle NSInterfaceStyleForKey (
 NSString *key,
 NSResponder *responder
);

Discussion
Used to determine an interface style based on a key and a responder, either of which may be nil. An
NSInterfaceStyle value specifies the style in which an interface item, such as a button or a scroll bar,
should be drawn. For example, a value of NSMacintoshInterfaceStyle indicates an item should be drawn
in the Macintosh style. The values defined for NSInterfaceStyle are NSNoInterfaceStyle,
NSNextStepInterfaceStyle, NSWindows95InterfaceStyle, and NSMacintoshInterfaceStyle.
Note that this function never returns NSNoInterfaceStyle.

The interface style value returned by this function depends on several factors. If responder is not nil and if
responder specifies an interface style other than NSNoInterfaceStyle, this function returns the responder’s
style, and key is ignored.

Otherwise, if key is not nil and there is an interface style for key specified by the defaults system, this
function returns the interface style for key from the defaults system.

Finally, if key is nil, or if there is no interface style for key specified by the defaults system, this function
returns the global interface style specified by the defaults system.

The defaults system allows an application to customize its behavior to match a user’s preferences. You can
read about the defaults system in the documentation for NSUserDefaults.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSInterfaceStyle.h

NSIsControllerMarker
Tests whether a given object is special marker object used for indicating the state of a selection in relation
to a key.

BOOL NSIsControllerMarker (
 id object
);

Parameters
Term

Specify the object you want to check. This parameter can be nil.

Return Value
YES if the object is one of the designated controller markers or NO if it is not.

Functions 43
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Discussion
This function helps you to create bindings between user interface elements and controller objects. The
Application Kit predefines several special marker objects used as values for indicating selection state; currently
these are NSMultipleValuesMarker, NSNoSelectionMarker, and NSNotApplicableMarker. These
markers are typed as id and only exist for the purpose of indicating a state; they are never archived and
cannot be used as object values in controls. You use this function to test whether a given object value is a
marker, in which case it is not directly assignable to the object that is bound. This check is important, especially
since additional markers may be added in the future.

See the NSKeyValueBinding.h header file for further details.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CoreRecipes

Declared In
NSKeyValueBinding.h

NSNumberOfColorComponents
Returns the number of color components in the specified color space.

NSInteger NSNumberOfColorComponents (
 NSString *colorSpaceName
);

Discussion
Returns the number of color components in the color space whose name is provided by colorSpaceName.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSOpenGLGetOption
Returns global OpenGL options.

void NSOpenGLGetOption (
 NSOpenGLGlobalOption pname,
 GLint *param
);

Discussion
Returns in param the value of the global OpenGL parameter pname. The available options are enumerated
by the NSOpenGLGlobalOption type.

Availability
Available in Mac OS X v10.0 and later.

44 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Declared In
NSOpenGL.h

NSOpenGLGetVersion
Returns the NSOpenGL version numbers.

void NSOpenGLGetVersion (
 GLint *major,
 GLint *minor
);

Discussion
Returns by reference the major and minor version numbers of the NSOpenGL implementation. This function
is not the same as the OpenGL version.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

NSOpenGLSetOption
Sets global OpenGL options.

void NSOpenGLSetOption (
 NSOpenGLGlobalOption pname,
 GLint param
);

Discussion
Sets the value of the global OpenGL parameter pname to param. The available options are enumerated by
the NSOpenGLGlobalOption type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

NSPerformService
Programmatically invokes a Services menu service.

Functions 45
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

BOOL NSPerformService (
 NSString *itemName,
 NSPasteboard *pboard
);

Parameters
itemName

Specifies a Services menu item, in any language. If the requested service is from a submenu of the
Services menu, the value must contain a slash (for example, “Mail/Selection”).

pboard
The pasteboard containing the data required by the service. This data must be present for the service
to succeed. On output, this pasteboard contains the data returned by the service provider.

Return Value
YES if the service was successfully performed or NO if it was not.

Discussion
Use this function to programmatically invoke a service found in the application’s Services menu.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSPlanarFromDepth
Returns whether the specified window depth is planar.

BOOL NSPlanarFromDepth (
 NSWindowDepth depth
);

Discussion
Returns YES if the specified window depth is planar and NO if it is not.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSReadPixel
Reads the color of the pixel at the specified location.

NSColor * NSReadPixel (
 NSPoint passedPoint
);

Parameters
passedPoint

The pixel location to read, specified in the current coordinate system.

46 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Return Value
The color of the pixel at the specified location.

Discussion
Because the passedPoint parameter is relative to the current coordinate system, if you wish to read a pixel
from a specific view, you must convert points in the view’s coordinate system to the current coordinate
system before calling this function. Alternatively, you can lock focus on the view and then specify the pixel
coordinate in the view’s coordinate system.

When mapping the specified point to pixel boundaries, this method rounds to the nearest pixel. For more
information on how coordinate points map to the underlying pixels, see Coordinate Systems and Transforms
in Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Color Sampler
Monochrome Image

Declared In
NSGraphics.h

NSRectClip
Modifies the current clipping path by intersecting it with the passed rect.

void NSRectClip (
 NSRect aRect
);

Parameters
aRect

The rectangle to intersect with the current clipping rectangle.

Discussion
This function modifies the clipping path permanently. If you need to undo this modification later, you should
save the current graphics state before calling this function and restore it once you are done.

A side effect of this function is that it clears the current Quartz 2D drawing path information. If you used
Quartz 2D functions to create a drawing path in the current context, and you want to save that path
information and use it later, you should transfer it to a CGPathRef opaque type before calling this function.
If you are using only Cocoa to do your drawing, this behavior should not affect you.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Aperture Edit Plugin - Borders & Titles

Declared In
NSGraphics.h

Functions 47
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSRectClipList
Modifies the current clipping path by intersecting it with the passed rect.

void NSRectClipList (
 const NSRect *rects,
 NSInteger count
);

Parameters
rects

A pointer to an array of NSRect structures, which are combined and intersected with the current
clipping path.

count
The number of rectangles in rects.

Discussion
This function modifies the clipping path permanently by generating a graphical union of the specified
rectangles and then intersecting that union with the current clipping path. If you need to undo this
modification later, you should save the current graphics state before calling this function and restore it once
you are done.

A side effect of this function is that it clears the current Quartz 2D drawing path information. If you used
Quartz 2D functions to create a drawing path in the current context, and you want to save that path
information and use it later, you should transfer it to a CGPathRef opaque type before calling this function.
If you are using only Cocoa to do your drawing, this behavior should not affect you.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSRectFill
Fills the passed rectangle with the current color.

void NSRectFill (
 NSRect aRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw.

Discussion
Fills aRect with the current color using the compositing mode NSCompositeCopy, which fills with the
current color by copying the RGBA values. Use NSRectFillUsingOperation (page 52) to fill specifying a
compositing mode.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

48 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Related Sample Code
Dicey
FilterDemo
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSGraphics.h

NSRectFillList
Fills the rectangles in the passed list with the current fill color.

void NSRectFillList (
 const NSRect *rects,
 NSInteger count
);

Parameters
rects

A pointer to an array of NSRect structures representing the rectangles to fill.

count
The number of rectangles in rects.

Discussion
Fills the specified rectangles with the current fill color using the compositing mode NSCompositeCopy.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSRectFillListUsingOperation
Fills the rectangles in a list using the current fill color and specified compositing operation.

void NSRectFillListUsingOperation (
 const NSRect *rects,
 NSInteger count,
 NSCompositingOperation op
);

Parameters
rects

A pointer to an array of NSRect structures representing the rectangles to fill.

count
The number of rectangles in the rects parameter.

Functions 49
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

op
The compositing operation to use when filling the rectangles.

Discussion
Fills a list of count rectangles with the current fill color, using the compositing operation op. For example,
specifying NSCompositeSourceOver will blend with what's already been drawn.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSRectFillListWithColors
Fills the rectangles in the passed list with the passed list of colors.

void NSRectFillListWithColors (
 const NSRect *rects,
 NSColor **colors,
 NSInteger num
);

Parameters
rects

A pointer to an array of NSRect structures representing the rectangles to fill.

colors
A pointer to an array of NSColor objects. The number of color objects in this parameter must equal
the number of rectangles in the rects parameter.

num
The number of rectangles in the rects parameter.

Discussion
Takes a list of num rectangles and a matching list of color objects. The first rectangle is filled with the first
color, the second rectangle with the second color, and so on. There must be an equal number of rectangles
and color values. The rectangles are composited using the NSCompositeCopy operator and the order in
which the rectangles are filled cannot be guaranteed; therefore, overlapping rectangles may not draw as
expected. This function alters the current color of the current graphics state, setting it unpredictably to one
of the values passed in colors.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSRectFillListWithColorsUsingOperation
Fills the rectangles in a list using the specified colors and compositing operation.

50 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

void NSRectFillListWithColorsUsingOperation (
 const NSRect *rects,
 NSColor **colors,
 NSInteger num,
 NSCompositingOperation op
);

Parameters
rects

A pointer to an array of NSRect structures representing the rectangles to fill.

colors
A pointer to an array of NSColor objects. The number of color objects in this parameter must equal
the number of rectangles in the rects parameter.

num
The number of rectangles in the rects parameter.

op
The compositing operation to use when filling the rectangles.

Discussion
Takes a list of num rectangles and a matching list of color values. The first rectangle is filled with the first
color, the second rectangle with the second color, and so on. There must be an equal number of rectangles
and color values. Each fill operation is performed using the compositing operation op. The rectangles should
not overlap; the order in which they are filled cannot be guaranteed. This function alters the current color
of the current graphics state, setting it unpredictably to one of the values passed in colors.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSRectFillListWithGrays
Fills the rectangles in the passed list with the passed list of grays.

void NSRectFillListWithGrays (
 const NSRect *rects,
 const CGFloat *grays,
 NSInteger num
);

Parameters
rects

A pointer to an array of NSRect structures representing the rectangles to fill.

grays
A pointer to an array of floating-point values in the range 0.0 to 1.0, where 0.0 represents absolute
black and 1.0 represents absolute white and numbers in between are varying levels of gray. Values
outside this range are clamped to 0.0 or 1.0.

num
The number of rectangles in the rects parameter.

Functions 51
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Discussion
Takes a list of num rectangles and a matching list of gray values. The first rectangle is filled with the first gray,
the second rectangle with the second gray, and so on. There must be an equal number of rectangles and
gray values. The rectangles are composited using the NSCompositeCopy operator and the order in which
the rectangles are filled cannot be guaranteed; therefore, overlapping rectangles may not draw as expected.
This function alters the current color of the current graphics state, setting it unpredictably to one of the
values passed in grays.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSRectFillUsingOperation
Fills a rectangle using the current fill color and the specified compositing operation.

void NSRectFillUsingOperation (
 NSRect aRect,
 NSCompositingOperation op
);

Parameters
aRect

The rectangle to fill with the current fill color.

op
The compositing operation to use when filling the rectangle.

Discussion
For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cropped Image
GLChildWindowDemo
RGB Image
RGB ValueTransformers
Tinted Image

Declared In
NSGraphics.h

NSRegisterServicesProvider
Registers a service provider.

52 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

void NSRegisterServicesProvider (
 id provider,
 NSString *name
);

Parameters
provider

The object providing the service you want to register.

name
The unique name to associate with the service. This string is used to advertise the service to interested
clients.

Discussion
Use this function to register custom services not directly related to your application.

You should not use this function to register the services provided by your application. For your application’s
services, you should use the setServicesProvider: method of NSApplication, passing a non-nil
argument.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSReleaseAlertPanel
Releases an alert panel.

void NSReleaseAlertPanel (
 id panel
);

Discussion
When you’re finished with a panel created by a function such as NSGetAlertPanel (page 39),
NSGetCriticalAlertPanel (page 40), or NSGetInformationalAlertPanel (page 41), you must free
it by passing it to this function.

Note that the alert panel may not be deallocated immediately because it may have internal references that
are released in a deferred way. You should not make the assumption that the alert panel is immediately
removed from the application window list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPanel.h

NSRunAlertPanel
Creates an alert panel.

Functions 53
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSInteger NSRunAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Creates and runs an alert panel (or dialog) with the title of title, the text of msg, and buttons with titles of
defaultButton, alternateButton, and otherButton. See the description of NSBeginAlertSheet (page
18) for information on layout of buttons, default parameters, and possible return values. NSRunAlertPanel
runs the panel in a modal event loop.

A Command-D key equivalent for the “Don’t Save” button is provided, if one is found. The button titles are
searched for the localized value for “Don’t Save.” If a match is found, that button is assigned a Command-D
key equivalent, provided it is not the default button.

If you create a modal panel using runModalForWindow: or
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo:, you can assign the
key equivalent yourself, using setKeyEquivalent: and setKeyEquivalentModifierMask:.

This function not only creates the panel; it also puts the panel onscreen and runs it using the
runModalForWindow: method defined in the NSApplication class. This method sets up a modal event
loop that causes the panel to remain onscreen until the user clicks one of its buttons. This function then
removes the panel from the screen list and returns a value that indicates which of the three buttons the user
clicked. For efficiency, this function creates the panel the first time it’s called and reuses it on subsequent
calls, reconfiguring it if necessary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaSpeechSynthesisExample
Quartz Composer WWDC 2005 TextEdit
SimpleCocoaApp
TextEditPlus
WhackedTV

Declared In
NSPanel.h

NSRunCriticalAlertPanel
Creates and runs a critical alert panel.

54 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSInteger NSRunCriticalAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Creates a critical alert panel that warns the user of some critical consequence of a requested action; the panel
lets the user cancel the action and may allow the user to modify the action. It then runs the panel in a modal
event loop.

The panel presented to the user is badged with a caution icon. Critical alerts should be used only as specified
in the "Alerts” section of the Windows chapter of Apple Human Interface Guidelines.

The arguments for this function are the same as those for NSRunAlertPanel (page 53).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIAnnotation
NewsReader
SimplePlayThru

Declared In
NSPanel.h

NSRunInformationalAlertPanel
Creates and runs an informational alert panel.

NSInteger NSRunInformationalAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Creates an informational alert panel that provides information related to a requested action. It then runs the
panel in a modal event loop.

The arguments for this function are the same as those for NSRunAlertPanel (page 53).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPanel.h

Functions 55
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

NSSetFocusRingStyle
Specifies how a focus ring will be drawn.

void NSSetFocusRingStyle (
 NSFocusRingPlacement placement
);

Parameters
placement

Specifies how you want the focus ring to be drawn.

Discussion
Use NSFocusRingAbove to draw the focus ring over an image, use NSFocusRingBelow to draw the focus
ring under text, and use NSFocusRingOnly if you don’t have an image or text. For the NSFocusRingOnly
case, fills a shape to add the focus ring around the shape.

Note that the focus ring may actually be drawn outside the view but will be clipped to any clipping superview
or the window content view.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
Clock Control
Dicey
TrackBall

Declared In
NSGraphics.h

NSSetShowsServicesMenuItem
Specifies whether an item should be included in Services menus.

NSInteger NSSetShowsServicesMenuItem (
 NSString *itemName,
 BOOL enabled
);

Discussion
Deprecated. This function simply returns 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSShowAnimationEffect
Runs a system animation effect.

56 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

void NSShowAnimationEffect (
 NSAnimationEffect animationEffect,
 NSPoint centerLocation,
 NSSize size,
 id animationDelegate,
 SEL didEndSelector,
 void *contextInfo
);

Parameters
animationEffect

The type of animation you want to apply.

centerLocation
The location at which to show the animated image, specified in screen coordinates. The animation
is centered on the point you specify.

size
The desired size of the animated image. Specify NSZeroSize to perform the animation at the default
size.

animationDelegate
The object to notify when the animation completes. Specify nil if you do not need to be notified
when the animation completes.

didEndSelector
The selector of animationDelegate to call when the animation completes. Specify nil if you do
not need to be notified when the animation completes. If you specify a selector, the corresponding
method should have the following signature:

 - (void)animationEffectDidEnd:(void *)contextInfo;

contextInfo
A pointer to any optional information you want passed as a parameter to the selector in the
didEndSelector parameter.

Discussion
This function runs one of the standard system animation effects, which includes display and sound. For
example, you can use this function to display the puff of smoke effect. For a complete list of animation effects,
see NSAnimationEffect.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGraphics.h

NSShowsServicesMenuItem
Specifies whether a Services menu item is currently enabled.

BOOL NSShowsServicesMenuItem (
 NSString *itemName
);

Discussion
Deprecated. This function simply returns YES.

Functions 57
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSUnregisterServicesProvider
Unregisters a service provider.

void NSUnregisterServicesProvider(NSString *name);

Parameters
name

The name of the service you want to unregister.

Discussion
Use this function to unregister custom services not directly related to your application.

You should not use this function to unregister the services provided by your application. For your application’s
services, you should use the setServicesProvider:method of NSApplication, passing a nil argument.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSUpdateDynamicServices
Causes the services information for the system to be updated.

void NSUpdateDynamicServices (void);

Discussion
Used by a service-providing application to reregister the services it is willing to provide. To do this, you create
a bundle with the extension “.service” and place it in the application’s path or ~/Library/Services.
The content of the bundle is identical to a normal service bundle. You then call this function.

It is only necessary to call this function if your program adds dynamic services to the system.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SpotlightFortunes

Declared In
NSApplication.h

NSWindowList
Gets information about onscreen windows.

58 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

void NSWindowList (
 NSInteger size,
 NSInteger list[]
);

Discussion
Provides an ordered list of all onscreen windows. It fills list with up to size window numbers; the order
of windows in the array is the same as their order in the window server’s screen list (their front-to-back order
on the screen). Use the count obtained by NSCountWindows (page 23) to specify the size of the array for
this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSWindowListForContext
Gets information about an application’s onscreen windows.

void NSWindowListForContext (
 NSInteger context,
 NSInteger size,
 NSInteger list[]
);

Discussion
Provides an ordered list of onscreen windows for a particular application, identified by context, which is a
window server connection ID. It fills list with up to size window numbers; the order of windows in the
array is the same as their order in the window server’s screen list (their front-to-back order on the screen).
Use the count obtained by the NSCountWindowsForContext (page 24) function to specify the size of the
array for this function.

Use of this function is discouraged as it may be deprecated in a future release.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

Functions 59
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

60 Functions
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Application Kit Functions Reference

This table describes the changes to Application Kit Functions Reference.

NotesDate

Added descriptions for the NSDrawThreePartImage and NSDrawNinePartImage
functions.

2008-11-19

Augmented description of NSApplicationMain.2008-10-15

Updated thread safety information for the NSApplicationMain function.2008-02-08

Made minor enhancements throughout. Added description of NSAccessibility
function NSAccessibilityUnignoredAncestor.

2007-12-11

Removed descriptions of deprecated functions no longer appearing in public
header files.

2007-07-16

First publication of this content as a separate document.2006-05-23

61
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

62
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

N

NSAccessibilityActionDescription function 12
NSAccessibilityPostNotification function 13
NSAccessibilityRaiseBadArgumentException

function 13
NSAccessibilityRoleDescription function 13
NSAccessibilityRoleDescriptionForUIElement

function 14
NSAccessibilityUnignoredAncestor function 14
NSAccessibilityUnignoredChildren function 15
NSAccessibilityUnignoredChildrenForOnlyChild

function 15
NSAccessibilityUnignoredDescendant function 16
NSApplicationLoad function 16
NSApplicationMain function 17
NSAvailableWindowDepths function 17
NSBeep function 18
NSBeginAlertSheet function 18
NSBeginCriticalAlertSheet function 20
NSBeginInformationalAlertSheet function 20
NSBestDepth function 21
NSBitsPerPixelFromDepth function 22
NSBitsPerSampleFromDepth function 22
NSColorSpaceFromDepth function 22
NSConvertGlyphsToPackedGlyphs function 23
NSCopyBits function 23
NSCountWindows function 23
NSCountWindowsForContext function 24
NSCreateFileContentsPboardType function 24
NSCreateFilenamePboardType function 25
NSDisableScreenUpdates function 25
NSDottedFrameRect function 25
NSDrawBitmap function 26
NSDrawButton function 27
NSDrawColorTiledRects function 28
NSDrawDarkBezel function 28
NSDrawGrayBezel function 29
NSDrawGroove function 29
NSDrawLightBezel function 30
NSDrawNinePartImage function 30

NSDrawThreePartImage function 32
NSDrawTiledRects function 33
NSDrawWhiteBezel function 35
NSDrawWindowBackground function 35
NSEnableScreenUpdates function 36
NSEraseRect function 36
NSEventMaskFromType function 36
NSFrameRect function 37
NSFrameRectWithWidth function 38
NSFrameRectWithWidthUsingOperation function 38
NSGetAlertPanel function 39
NSGetCriticalAlertPanel function 40
NSGetFileType function 40
NSGetFileTypes function 40
NSGetInformationalAlertPanel function 41
NSGetWindowServerMemory function 41
NSHighlightRect function 42
NSInterfaceStyleForKey function 43
NSIsControllerMarker function 43
NSNumberOfColorComponents function 44
NSOpenGLGetOption function 44
NSOpenGLGetVersion function 45
NSOpenGLSetOption function 45
NSPerformService function 45
NSPlanarFromDepth function 46
NSReadPixel function 46
NSRectClip function 47
NSRectClipList function 48
NSRectFill function 48
NSRectFillList function 49
NSRectFillListUsingOperation function 49
NSRectFillListWithColors function 50
NSRectFillListWithColorsUsingOperation function

50
NSRectFillListWithGrays function 51
NSRectFillUsingOperation function 52
NSRegisterServicesProvider function 52
NSReleaseAlertPanel function 53
NSRunAlertPanel function 53
NSRunCriticalAlertPanel function 54
NSRunInformationalAlertPanel function 55
NSSetFocusRingStyle function 56

63
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Index

NSSetShowsServicesMenuItem function 56
NSShowAnimationEffect function 56
NSShowsServicesMenuItem function 57
NSUnregisterServicesProvider function 58
NSUpdateDynamicServices function 58
NSWindowList function 58
NSWindowListForContext function 59

64
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

INDEX

	Application Kit Functions Reference
	Contents
	Application Kit Functions Reference
	Overview
	Functions by Task
	Accessibility
	Applications
	Events
	Fonts
	Graphics
	Graphics-Window Depth
	Interface Styles
	Key Value Bindings
	OpenGL
	Panels
	Pasteboards
	System Beep

	Functions
	NSAccessibilityActionDescription
	NSAccessibilityPostNotification
	NSAccessibilityRaiseBadArgumentException
	NSAccessibilityRoleDescription
	NSAccessibilityRoleDescriptionForUIElement
	NSAccessibilityUnignoredAncestor
	NSAccessibilityUnignoredChildren
	NSAccessibilityUnignoredChildrenForOnlyChild
	NSAccessibilityUnignoredDescendant
	NSApplicationLoad
	NSApplicationMain
	NSAvailableWindowDepths
	NSBeep
	NSBeginAlertSheet
	NSBeginCriticalAlertSheet
	NSBeginInformationalAlertSheet
	NSBestDepth
	NSBitsPerPixelFromDepth
	NSBitsPerSampleFromDepth
	NSColorSpaceFromDepth
	NSConvertGlyphsToPackedGlyphs
	NSCopyBits
	NSCountWindows
	NSCountWindowsForContext
	NSCreateFileContentsPboardType
	NSCreateFilenamePboardType
	NSDisableScreenUpdates
	NSDottedFrameRect
	NSDrawBitmap
	NSDrawButton
	NSDrawColorTiledRects
	NSDrawDarkBezel
	NSDrawGrayBezel
	NSDrawGroove
	NSDrawLightBezel
	NSDrawNinePartImage
	NSDrawThreePartImage
	NSDrawTiledRects
	NSDrawWhiteBezel
	NSDrawWindowBackground
	NSEnableScreenUpdates
	NSEraseRect
	NSEventMaskFromType
	NSFrameRect
	NSFrameRectWithWidth
	NSFrameRectWithWidthUsingOperation
	NSGetAlertPanel
	NSGetCriticalAlertPanel
	NSGetFileType
	NSGetFileTypes
	NSGetInformationalAlertPanel
	NSGetWindowServerMemory
	NSHighlightRect
	NSInterfaceStyleForKey
	NSIsControllerMarker
	NSNumberOfColorComponents
	NSOpenGLGetOption
	NSOpenGLGetVersion
	NSOpenGLSetOption
	NSPerformService
	NSPlanarFromDepth
	NSReadPixel
	NSRectClip
	NSRectClipList
	NSRectFill
	NSRectFillList
	NSRectFillListUsingOperation
	NSRectFillListWithColors
	NSRectFillListWithColorsUsingOperation
	NSRectFillListWithGrays
	NSRectFillUsingOperation
	NSRegisterServicesProvider
	NSReleaseAlertPanel
	NSRunAlertPanel
	NSRunCriticalAlertPanel
	NSRunInformationalAlertPanel
	NSSetFocusRingStyle
	NSSetShowsServicesMenuItem
	NSShowAnimationEffect
	NSShowsServicesMenuItem
	NSUnregisterServicesProvider
	NSUpdateDynamicServices
	NSWindowList
	NSWindowListForContext

	Revision History
	Index
	N

