
NSInputServiceProvider Protocol Reference
Cocoa > Events & Other Input

2007-04-02

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSInputServiceProvider Protocol Reference 5

Overview 5
Tasks 5

Getting Input Service Provider Information 5
Handling Events 5

Instance Methods 6
activeConversationChanged:toNewConversation: 6
activeConversationWillChange:fromOldConversation: 7
canBeDisabled 7
doCommandBySelector:client: 7
inputClientBecomeActive: 8
inputClientDisabled: 8
inputClientEnabled: 9
inputClientResignActive: 9
insertText:client: 9
markedTextAbandoned: 10
markedTextSelectionChanged:client: 10
terminate: 10
wantsToDelayTextChangeNotifications 11
wantsToHandleMouseEvents 11
wantsToInterpretAllKeystrokes 12

Document Revision History 13

Index 15

3
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

4
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Adopted by NSInputServer

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Text Input Management

Declared in NSInputServer.h

Overview

The NSInputServiceProvider protocol embodies most of the functionality of NSInputServer.

There are two ways you might use this protocol:

 ■ You can subclass NSInputServer and create an instance of your subclass. Your subclass must override
most or all of the NSInputServiceProvider protocol methods.

 ■ You can create an NSInputServer object and designate a delegate. The delegate must implement the
NSInputServiceProvider protocol.

All messages in this protocol are sent by the client text view except insertText:client: (page 9) and
doCommandBySelector:client: (page 7), which are sent by "NSInputManager".

Tasks

Getting Input Service Provider Information

– canBeDisabled (page 7)
Returns YES if the receiver can be disabled when the sender is not a text view, NO

Handling Events

– wantsToDelayTextChangeNotifications (page 11)
A YES return value tells the client that only a call to its insertText:client: (page 9) method
constitutes a modification to its text storage.

Overview 5
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

NSInputServiceProvider Protocol Reference

– wantsToHandleMouseEvents (page 11)
Returns YES if the client should forward all mouse events within the text view to the input server.

– wantsToInterpretAllKeystrokes (page 12)
Returns YES if the server wants all keystrokes to be sent to it as characters.

– doCommandBySelector:client: (page 7)
Handle the command identified by aSelector.

– insertText:client: (page 9)
Interpret the characters in aString, which is actually always an NSString.

– activeConversationChanged:toNewConversation: (page 6)
Keyboard focus just switched from another text view to this one.

– activeConversationWillChange:fromOldConversation: (page 7)
Keyboard focus is about to move away from this text view.

– inputClientBecomeActive: (page 8)
The client, sender, has become active.

– inputClientEnabled: (page 9)
A text view in the client, sender, has become the key-receiving first responder.

– inputClientDisabled: (page 8)
A text view in the client, sender, has ceased to be the key-receiving first responder.

– inputClientResignActive: (page 9)
The client, sender, is about to become inactive.

– markedTextAbandoned: (page 10)
Abandon any marked text state that may be in process.

– markedTextSelectionChanged:client: (page 10)

– terminate: (page 10)
The client application is quitting.

Instance Methods

activeConversationChanged:toNewConversation:
Keyboard focus just switched from another text view to this one.

- (void)activeConversationChanged:(id)sender
toNewConversation:(NSInteger)newConversation

Discussion
This is called only when switching within the same application. sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– activeConversationWillChange:fromOldConversation: (page 7)
– conversationIdentifier (NSTextInput)

6 Instance Methods
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

NSInputServiceProvider Protocol Reference

Declared In
NSInputServer.h

activeConversationWillChange:fromOldConversation:
Keyboard focus is about to move away from this text view.

- (void)activeConversationWillChange:(id)sender
fromOldConversation:(NSInteger)oldConversation

Discussion
This is called only when switching within the same application. sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– activeConversationChanged:toNewConversation: (page 6)
– conversationIdentifier (NSTextInput)

Declared In
NSInputServer.h

canBeDisabled
Returns YES if the receiver can be disabled when the sender is not a text view, NO

- (BOOL)canBeDisabled

Discussion
otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSInputServer.h

doCommandBySelector:client:
Handle the command identified by aSelector.

- (void)doCommandBySelector:(SEL)aSelector client:(id)sender

Discussion
The command can be from the set of NSResponder action methods or from the set of selector values in the
DefaultKeyBindings dictionary referenced in the input server’s “Info” file. sender can be cast to NSTextInput.

If you are subclassing NSInputServer, there is no need to override this method in the subclass. All you have
to do is implement in the subclass the command methods you want to handle. If you do need to override
this method, then you must call super for commands not handled.

Instance Methods 7
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

NSInputServiceProvider Protocol Reference

If your NSInputServer uses a delegate, the delegate’s implementation of this method must call [sender
doCommandBySelector:aSelector] for commands it does not handle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doCommandBySelector: (NSTextInput)

Declared In
NSInputServer.h

inputClientBecomeActive:
The client, sender, has become active.

- (void)inputClientBecomeActive:(id)sender

Discussion
This is called when the client application starts up and whenever it becomes active after being inactive.
sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– inputClientEnabled: (page 9)
– inputClientResignActive: (page 9)

Declared In
NSInputServer.h

inputClientDisabled:
A text view in the client, sender, has ceased to be the key-receiving first responder.

- (void)inputClientDisabled:(id)sender

Discussion
inputClientResignActive: (page 9) may also be called just after this is called. sender can be cast to
NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– inputClientEnabled: (page 9)
– inputClientResignActive: (page 9)

Declared In
NSInputServer.h

8 Instance Methods
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

NSInputServiceProvider Protocol Reference

inputClientEnabled:
A text view in the client, sender, has become the key-receiving first responder.

- (void)inputClientEnabled:(id)sender

Discussion
This is called the first time any text view becomes enabled after client application activation and again
whenever focus switches to a text view. inputClientBecomeActive: (page 8) may have been called
just before this is called. sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– inputClientBecomeActive: (page 8)
– inputClientDisabled: (page 8)

Declared In
NSInputServer.h

inputClientResignActive:
The client, sender, is about to become inactive.

- (void)inputClientResignActive:(id)sender

Discussion
This is called when the client application quits and whenever it is deactivated. sender can be cast to
NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– inputClientBecomeActive: (page 8)
– inputClientDisabled: (page 8)
– terminate: (page 10)

Declared In
NSInputServer.h

insertText:client:
Interpret the characters in aString, which is actually always an NSString.

- (void)insertText:(id)aString client:(id)sender

Discussion
Here is where you do the interpreting of keyboard input. If your server’s interpretation is disabled or the
characters in aString are not of interest to the server, you can simply pass aString along to the sender’s
insertText: method. sender can be cast to NSTextInput.

Instance Methods 9
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

NSInputServiceProvider Protocol Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertText: (NSTextInput)

Declared In
NSInputServer.h

markedTextAbandoned:
Abandon any marked text state that may be in process.

- (void)markedTextAbandoned:(id)sender

Discussion
This can happen if the user clicks the mouse outside of the marked text area or if the window containing the
text view closes. The client can do what it wants with the marked text. NSTextView leaves it as inserted text.
sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– markedTextSelectionChanged:client: (page 10)
– markedTextAbandoned: (NSInputManager)

Declared In
NSInputServer.h

markedTextSelectionChanged:client:
- (void)markedTextSelectionChanged:(NSRange)newSelection client:(id)sender

Discussion
The user selected a portion of the marked text or clicked at the beginning or end of marked text or somewhere
in between. sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– markedTextAbandoned: (page 10)
– markedTextSelectionChanged:client: (NSInputManager)

Declared In
NSInputServer.h

terminate:
The client application is quitting.

10 Instance Methods
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

NSInputServiceProvider Protocol Reference

- (void)terminate:(id)sender

Discussion
This is called after inputClientResignActive: (page 9). sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– inputClientResignActive: (page 9)

Declared In
NSInputServer.h

wantsToDelayTextChangeNotifications
A YES return value tells the client that only a call to its insertText:client: (page 9) method constitutes
a modification to its text storage.

- (BOOL)wantsToDelayTextChangeNotifications

Discussion
A NO return value tells the client that all text given to it, whether marked text or not, should constitute a
modification to its text storage. A YES return value tells the client that only unmarked text given to it should
constitute a modification to its text storage. The client may for example want to filter all text that is part of
a modification but leave marked text unfiltered.

Availability
Available in Mac OS X v10.0 and later.

See Also
– wantsToDelayTextChangeNotifications (NSInputManager)

Declared In
NSInputServer.h

wantsToHandleMouseEvents
Returns YES if the client should forward all mouse events within the text view to the input server.

- (BOOL)wantsToHandleMouseEvents

Discussion
If the server needs to implement the NSInputServerMouseTracker protocol, return YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– wantsToHandleMouseEvents (NSInputManager)

Declared In
NSInputServer.h

Instance Methods 11
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

NSInputServiceProvider Protocol Reference

wantsToInterpretAllKeystrokes
Returns YES if the server wants all keystrokes to be sent to it as characters.

- (BOOL)wantsToInterpretAllKeystrokes

Discussion
If this method returns NO, control key combinations and function keys (the arrow keys, PageDown, F5, and
so on) are delivered to the input server via the key binding mechanism and
doCommandBySelector:client: (page 7).

The Unicode values for the characters representing keyboard function keys (the arrow keys, PageDown, F5,
and so on) names like NSUpArrowFunctionKey, and are documented in NSEvent. Control-key combinations
are the usual ASCII control character codes.

For more information on key bindings, see “About Key Bindings”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– wantsToInterpretAllKeystrokes (NSInputManager)

Declared In
NSInputServer.h

12 Instance Methods
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

NSInputServiceProvider Protocol Reference

This table describes the changes to NSInputServiceProvider Protocol Reference.

NotesDate

Made editorial improvements.2007-04-02

First publication of this content as a separate document.2006-05-23

13
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

14
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

activeConversationChanged:toNewConversation:
protocol instance method 6

activeConversationWillChange:fromOldConversation:
protocol instance method 7

C

canBeDisabled protocol instance method 7

D

doCommandBySelector:client: protocol instance
method 7

I

inputClientBecomeActive:protocol instance method
8

inputClientDisabled: protocol instance method 8
inputClientEnabled: protocol instance method 9
inputClientResignActive:protocol instance method

9
insertText:client: protocol instance method 9

M

markedTextAbandoned: protocol instance method 10
markedTextSelectionChanged:client: protocol

instance method 10

T

terminate: protocol instance method 10

W

wantsToDelayTextChangeNotifications protocol
instance method 11

wantsToHandleMouseEventsprotocol instance method
11

wantsToInterpretAllKeystrokes protocol instance
method 12

15
2007-04-02 | © 2007 Apple Inc. All Rights Reserved.

Index

	NSInputServiceProvider Protocol Reference
	Contents
	NSInputServiceProvider Protocol Reference
	Overview
	Tasks
	Getting Input Service Provider Information
	Handling Events

	Instance Methods
	activeConversationChanged:toNewConversation:
	activeConversationWillChange:fromOldConversation:
	canBeDisabled
	doCommandBySelector:client:
	inputClientBecomeActive:
	inputClientDisabled:
	inputClientEnabled:
	inputClientResignActive:
	insertText:client:
	markedTextAbandoned:
	markedTextSelectionChanged:client:
	terminate:
	wantsToDelayTextChangeNotifications
	wantsToHandleMouseEvents
	wantsToInterpretAllKeystrokes

	Revision History
	Index
	A
	C
	D
	I
	M
	T
	W

