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Adopted by NSInputServer

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Text Input Management

Declared in NSInputServer.h

Overview

The NSInputServiceProvider protocol embodies most of the functionality of NSInputServer.

There are two ways you might use this protocol:

 ■ You can subclass NSInputServer and create an instance of your subclass. Your subclass must override
most or all of the NSInputServiceProvider protocol methods.

 ■ You can create an NSInputServer object and designate a delegate. The delegate must implement the
NSInputServiceProvider protocol.

All messages in this protocol are sent by the client text view except insertText:client: (page 9) and
doCommandBySelector:client: (page 7), which are sent by "NSInputManager".

Tasks

Getting Input Service Provider Information

– canBeDisabled (page 7)
Returns YES if the receiver can be disabled when the sender is not a text view, NO

Handling Events

– wantsToDelayTextChangeNotifications (page 11)
A YES return value tells the client that only a call to its insertText:client: (page 9) method
constitutes a modification to its text storage.

Overview 5
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– wantsToHandleMouseEvents (page 11)
Returns YES if the client should forward all mouse events within the text view to the input server.

– wantsToInterpretAllKeystrokes (page 12)
Returns YES if the server wants all keystrokes to be sent to it as characters.

– doCommandBySelector:client: (page 7)
Handle the command identified by aSelector.

– insertText:client: (page 9)
Interpret the characters in aString, which is actually always an NSString.

– activeConversationChanged:toNewConversation: (page 6)
Keyboard focus just switched from another text view to this one.

– activeConversationWillChange:fromOldConversation: (page 7)
Keyboard focus is about to move away from this text view.

– inputClientBecomeActive: (page 8)
The client, sender, has become active.

– inputClientEnabled: (page 9)
A text view in the client, sender, has become the key-receiving first responder.

– inputClientDisabled: (page 8)
A text view in the client, sender, has ceased to be the key-receiving first responder.

– inputClientResignActive: (page 9)
The client, sender, is about to become inactive.

– markedTextAbandoned: (page 10)
Abandon any marked text state that may be in process.

– markedTextSelectionChanged:client: (page 10)
 

– terminate: (page 10)
The client application is quitting.

Instance Methods

activeConversationChanged:toNewConversation:
Keyboard focus just switched from another text view to this one.

- (void)activeConversationChanged:(id)sender
toNewConversation:(NSInteger)newConversation

Discussion
This is called only when switching within the same application. sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– activeConversationWillChange:fromOldConversation: (page 7)
– conversationIdentifier (NSTextInput)

6 Instance Methods
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Declared In
NSInputServer.h

activeConversationWillChange:fromOldConversation:
Keyboard focus is about to move away from this text view.

- (void)activeConversationWillChange:(id)sender
fromOldConversation:(NSInteger)oldConversation

Discussion
This is called only when switching within the same application. sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– activeConversationChanged:toNewConversation: (page 6)
– conversationIdentifier (NSTextInput)

Declared In
NSInputServer.h

canBeDisabled
Returns YES if the receiver can be disabled when the sender is not a text view, NO

- (BOOL)canBeDisabled

Discussion
otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSInputServer.h

doCommandBySelector:client:
Handle the command identified by aSelector.

- (void)doCommandBySelector:(SEL)aSelector client:(id)sender

Discussion
The command can be from the set of NSResponder action methods or from the set of selector values in the
DefaultKeyBindings dictionary referenced in the input server’s “Info” file. sender can be cast to NSTextInput.

If you are subclassing NSInputServer, there is no need to override this method in the subclass. All you have
to do is implement in the subclass the command methods you want to handle. If you do need to override
this method, then you must call super for commands not handled.

Instance Methods 7
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If your NSInputServer uses a delegate, the delegate’s implementation of this method must call [sender
doCommandBySelector:aSelector] for commands it does not handle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doCommandBySelector: (NSTextInput)

Declared In
NSInputServer.h

inputClientBecomeActive:
The client, sender, has become active.

- (void)inputClientBecomeActive:(id)sender

Discussion
This is called when the client application starts up and whenever it becomes active after being inactive.
sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– inputClientEnabled: (page 9)
– inputClientResignActive: (page 9)

Declared In
NSInputServer.h

inputClientDisabled:
A text view in the client, sender, has ceased to be the key-receiving first responder.

- (void)inputClientDisabled:(id)sender

Discussion
inputClientResignActive: (page 9) may also be called just after this is called. sender can be cast to
NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– inputClientEnabled: (page 9)
– inputClientResignActive: (page 9)

Declared In
NSInputServer.h

8 Instance Methods
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inputClientEnabled:
A text view in the client, sender, has become the key-receiving first responder.

- (void)inputClientEnabled:(id)sender

Discussion
This is called the first time any text view becomes enabled after client application activation and again
whenever focus switches to a text view. inputClientBecomeActive: (page 8) may have been called
just before this is called. sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– inputClientBecomeActive: (page 8)
– inputClientDisabled: (page 8)

Declared In
NSInputServer.h

inputClientResignActive:
The client, sender, is about to become inactive.

- (void)inputClientResignActive:(id)sender

Discussion
This is called when the client application quits and whenever it is deactivated. sender can be cast to
NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– inputClientBecomeActive: (page 8)
– inputClientDisabled: (page 8)
– terminate: (page 10)

Declared In
NSInputServer.h

insertText:client:
Interpret the characters in aString, which is actually always an NSString.

- (void)insertText:(id)aString client:(id)sender

Discussion
Here is where you do the interpreting of keyboard input. If your server’s interpretation is disabled or the
characters in aString are not of interest to the server, you can simply pass aString along to the sender’s
insertText: method. sender can be cast to NSTextInput.

Instance Methods 9
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Availability
Available in Mac OS X v10.0 and later.

See Also
– insertText: (NSTextInput)

Declared In
NSInputServer.h

markedTextAbandoned:
Abandon any marked text state that may be in process.

- (void)markedTextAbandoned:(id)sender

Discussion
This can happen if the user clicks the mouse outside of the marked text area or if the window containing the
text view closes. The client can do what it wants with the marked text. NSTextView leaves it as inserted text.
sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– markedTextSelectionChanged:client: (page 10)
– markedTextAbandoned: (NSInputManager)

Declared In
NSInputServer.h

markedTextSelectionChanged:client:
- (void)markedTextSelectionChanged:(NSRange)newSelection client:(id)sender

Discussion
The user selected a portion of the marked text or clicked at the beginning or end of marked text or somewhere
in between. sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– markedTextAbandoned: (page 10)
– markedTextSelectionChanged:client: (NSInputManager)

Declared In
NSInputServer.h

terminate:
The client application is quitting.

10 Instance Methods
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- (void)terminate:(id)sender

Discussion
This is called after inputClientResignActive: (page 9). sender can be cast to NSTextInput.

Availability
Available in Mac OS X v10.0 and later.

See Also
– inputClientResignActive: (page 9)

Declared In
NSInputServer.h

wantsToDelayTextChangeNotifications
A YES return value tells the client that only a call to its insertText:client: (page 9) method constitutes
a modification to its text storage.

- (BOOL)wantsToDelayTextChangeNotifications

Discussion
A NO return value tells the client that all text given to it, whether marked text or not, should constitute a
modification to its text storage. A YES return value tells the client that only unmarked text given to it should
constitute a modification to its text storage. The client may for example want to filter all text that is part of
a modification but leave marked text unfiltered.

Availability
Available in Mac OS X v10.0 and later.

See Also
– wantsToDelayTextChangeNotifications (NSInputManager)

Declared In
NSInputServer.h

wantsToHandleMouseEvents
Returns YES if the client should forward all mouse events within the text view to the input server.

- (BOOL)wantsToHandleMouseEvents

Discussion
If the server needs to implement the NSInputServerMouseTracker protocol, return YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– wantsToHandleMouseEvents (NSInputManager)

Declared In
NSInputServer.h
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wantsToInterpretAllKeystrokes
Returns YES if the server wants all keystrokes to be sent to it as characters.

- (BOOL)wantsToInterpretAllKeystrokes

Discussion
If this method returns NO, control key combinations and function keys (the arrow keys, PageDown, F5, and
so on) are delivered to the input server via the key binding mechanism and
doCommandBySelector:client: (page 7).

The Unicode values for the characters representing keyboard function keys (the arrow keys, PageDown, F5,
and so on) names like NSUpArrowFunctionKey, and are documented in NSEvent. Control-key combinations
are the usual ASCII control character codes.

For more information on key bindings, see “About Key Bindings”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– wantsToInterpretAllKeystrokes (NSInputManager)

Declared In
NSInputServer.h
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This table describes the changes to NSInputServiceProvider Protocol Reference.

NotesDate

Made editorial improvements.2007-04-02

First publication of this content as a separate document.2006-05-23
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