
Core Animation Reference Collection
Graphics & Imaging > Quartz

2008-06-26

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Objective-C, Quartz, and QuickTime are
trademarks of Apple Inc., registered in the
United States and other countries.

iPhone is a trademark of Apple Inc.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,

EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Core Animation Reference Collection 11

Part I Classes 13

Chapter 1 CAAnimation Class Reference 15

Overview 15
Tasks 15
Properties 16
Class Methods 17
Instance Methods 18
Delegate Methods 19

Chapter 2 CAAnimationGroup Class Reference 21

Overview 21
Tasks 22
Properties 22

Chapter 3 CABasicAnimation Class Reference 23

Overview 23
Tasks 24
Properties 24

Chapter 4 CAConstraint Class Reference 27

Overview 27
Tasks 28
Class Methods 28
Instance Methods 30
Constants 31

Chapter 5 CAConstraintLayoutManager Class Reference 33

Overview 33
Tasks 34
Class Methods 34

3
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Chapter 6 CAKeyframeAnimation Class Reference 35

Overview 35
Tasks 35
Properties 36
Constants 38

Chapter 7 CALayer Class Reference 41

Overview 41
Tasks 41
Properties 47
Class Methods 62
Instance Methods 63
Delegate Methods 80
Constants 81

Chapter 8 CAMediaTimingFunction Class Reference 89

Overview 89
Tasks 89
Class Methods 90
Instance Methods 91
Constants 92

Chapter 9 CAOpenGLLayer Class Reference 95

Overview 95
Tasks 95
Properties 96
Instance Methods 97

Chapter 10 CAPropertyAnimation Class Reference 101

Overview 101
Tasks 101
Properties 102
Class Methods 103
Instance Methods 103

Chapter 11 CARenderer Class Reference 105

Overview 105
Tasks 105
Properties 106
Class Methods 107

4
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 107

Chapter 12 CAScrollLayer Class Reference 111

Overview 111
Tasks 111
Properties 112
Instance Methods 112
Constants 113

Chapter 13 CATextLayer Class Reference 115

Overview 115
Tasks 115
Properties 116
Instance Methods 119
Constants 119

Chapter 14 CATransaction Class Reference 121

Overview 121
Tasks 121
Class Methods 122
Constants 124

Chapter 15 CATransition Class Reference 125

Overview 125
Tasks 125
Properties 126
Constants 128

Chapter 16 CIFilter Core Animation Additions 131

Overview 131
Tasks 131
Properties 132
Instance Methods 132

Chapter 17 NSValue Core Animation Additions 133

Overview 133
Tasks 133
Class Methods 133
Instance Methods 134

5
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 18 QCCompositionLayer Class Reference 135

Overview 135
Tasks 136
Class Methods 136
Instance Methods 137

Part II Protocols 139

Chapter 19 CAAction Protocol Reference 141

Overview 141
Tasks 141
Instance Methods 141

Chapter 20 CALayoutManager Protocol Reference 143

Overview 143
Tasks 143
Instance Methods 143

Chapter 21 CAMediaTiming Protocol Reference 147

Overview 147
Tasks 147
Properties 148
Constants 151

Part III Other References 153

Chapter 22 Core Animation Function Reference 155

Overview 155
Functions by Task 155
Functions 156

Drawing 161

Drawing Layer Content With Application Kit Classes 161

What Is Core Animation? 163

Core Animation Classes 163

6
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Timing 169

Using a Single Timing Function For a Keyframe Animation 169

Core Animation Rendering Architecture 171

Layer Geometry and Transforms 173

Layer Coordinate System 173
Specifying a Layer’s Geometry 173
Transforming a Layer’s Geometry 176

Layer-Tree Hierarchy 181

What Is a Layer-Tree Hierarchy? 181
Displaying Layers in Views 181
Adding and Removing Layers from a Hierarchy 182
Repositioning and Resizing Layers 182
Clipping Sublayers 184

Animation 185

Animation Classes and Timing 185
Implicit Animation 185
Explicit Animation 186
Starting and Stopping Explicit Animations 187

Actions 189

What are Actions? 189
Action Object Search Pattern 189
CAAction Protocol 190
Overriding an Implied Animation 190
Temporarily Disabling Actions 191

Transactions 193

Implicit transactions 193
Explicit Transactions 193

Laying Out Core Animation Layers 197

Constraints Layout Manager 197

7
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Core Animation Extensions To Key-Value Coding 201

Key-Value Coding Compliant Container Classes 201
Default Value Support 201
Wrapping Conventions 202
Key Path Support for Structure Fields 202

Layer Style Properties 205

Geometry Properties 205
Background Properties 206
Layer Content 207
Sublayers Content 207
Border Attributes 208
Filters Property 209
Shadow Properties 209
Opacity Property 210
Composite Property 211
Mask Properties 211

Example: Core Animation Menu Application 213

The User Interface 213
The Code 216

Document Revision History 223

Index 225

8
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Drawing 161

Listing 1 Drawing into a layer using Application Kit classes 161

What Is Core Animation? 163

Figure 1 Core Animation class hierarchy 164

Timing 169

Listing 1 Using a single timing function for a keyframe animation 169

Core Animation Rendering Architecture 171

Figure 1 Core Animation Rendering Architecture 171

Layer Geometry and Transforms 173

Figure 1 CALayer geometry properties 174
Figure 2 Three anchorPoint values 175
Figure 3 Layer Origin of (0.5,0.5) 175
Figure 4 Layer Origin of (0.0,0.0) 176
Table 1 CATransform3D transform functions for translation, rotation, and scaling 177
Table 2 CATransform3D transform functions for CGAffineTransform conversion 178
Table 3 CATransform3D transform functions for testing equality 178
Table 4 CATransform3D key paths 179
Listing 1 CATransform3D structure 178
Listing 2 Modifying the CATransform3D data structure directly 178

Layer-Tree Hierarchy 181

Figure 1 Layer autoresizing mask constants 184
Figure 2 Example Values of the masksToBounds property 184
Table 1 Layer-tree management methods. 182
Table 2 Autoresizing mask values and descriptions 183
Listing 1 Inserting a layer into a view 181

Animation 185

Listing 1 Implicitly animating a layer’s position property 186
Listing 2 Implicitly animating multiple properties of multiple layers 186
Listing 3 Explicit animation 186

9
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Listing 4 Continuous explicit animation example 187

Actions 189

Table 1 Action triggers and their corresponding identifiers 189
Listing 1 runActionForKey:object:arguments: implementation that initiates an animation

190
Listing 2 Implied animation for the contents property 190
Listing 3 Implied animation for the sublayers property 191

Transactions 193

Listing 1 Animation using an implicit transaction 193
Listing 2 Temporarily disabling a layer’s actions 194
Listing 3 Overriding the animation duration 194
Listing 4 Nesting explicit transactions 194

Laying Out Core Animation Layers 197

Figure 1 Constraint layout manager attributes 197
Figure 2 Example constraints based layout 198
Listing 1 Configuring a layer’s constraints 198

Core Animation Extensions To Key-Value Coding 201

Listing 1 Example implementation of defaultValueForKey: 201

Layer Style Properties 205

Figure 1 Layer geometry 205
Figure 2 Layer with background color 206
Figure 3 Layer displaying a content image 207
Figure 4 Layer displaying the sublayers content 208
Figure 5 Layer displaying the border attributes content 208
Figure 6 Layer displaying the filters properties 209
Figure 7 Layer displaying the shadow properties 210
Figure 8 Layer including the opacity property 210
Figure 9 Layer composited using the compositingFilter property 211
Figure 10 Layer composited with the mask property 212

Example: Core Animation Menu Application 213

Figure 1 Core Animation Menu Interface 214
Listing 1 MenuView.h listing 216

10
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Framework /System/Library/Frameworks/QuartzCore.frameworks

Header file directories /System/Library/Frameworks/QuartzCore.frameworks/Headers

Companion guide Core Animation Programming Guide

Declared in CAAnimation.h
CABase.h
CACIFilterAdditions.h
CAConstraintLayoutManager.h
CALayer.h
CAMediaTiming.h
CAMediaTimingFunction.h
CAOpenGLLayer.h
CARenderer.h
CAScrollLayer.h
CATextLayer.h
CATransaction.h
CATransform3D.h
QCCompositionLayer.h

This collection of documents provides the API reference for Core Animation. Core Animation provides
animation and display hierarchy capabilities to applications. For more details, see Core Animation Programming
Guide.

11
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Core Animation Reference Collection

12
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Core Animation Reference Collection

13
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

PART I

Classes

14
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Conforms to NSCoding
NSCopying
CAAction
CAMediaTiming
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAAnimation is an abstract animation class. It provides the basic support for the CAMediaTiming and
CAAction protocols.

Tasks

Archiving Properties

– shouldArchiveValueForKey: (page 19)
Specifies whether the value of the property for a given key is archived.

Providing Default Values for Properties

+ defaultValueForKey: (page 18)
Specifies the default value of the property with the specified key.

Overview 15
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

Creating an Animation

+ animation (page 17)
Creates and returns a new CAAnimation instance.

Animation Attributes

 removedOnCompletion (page 17) property
Determines if the animation is removed from the target layer’s animations upon completion.

– isRemovedOnCompletion (page 18)
A synthesized accessor for the removedOnCompletion (page 17) property.

 timingFunction (page 17) property
An optional timing function defining the pacing of the animation.

Getting and Setting the Delegate

 delegate (page 16) property
Specifies the receiver’s delegate object.

Animation Progress

– animationDidStart: (page 19) delegate method
Called when the animation begins its active duration.

– animationDidStop:finished: (page 19) delegate method
Called when the animation completes its active duration or is removed from the object it is attached
to.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

delegate
Specifies the receiver’s delegate object.

@property(retain) id delegate

Discussion
Defaults to nil.

16 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

Important: The delegate object is retained by the receiver. This is a rare exception to the memory
management rules described in Memory Management Programming Guide for Cocoa.

An instance of CAAnimation should not be set as a delegate of itself. Doing so (outside of a garbage-collected
environment) will cause retain cycles.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

removedOnCompletion
Determines if the animation is removed from the target layer’s animations upon completion.

@property BOOL removedOnCompletion

Discussion
When YES, the animation is removed from the target layer’s animations once its active duration has passed.
Defaults to YES.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

timingFunction
An optional timing function defining the pacing of the animation.

@property(retain) CAMediaTimingFunction *timingFunction

Discussion
Defaults to nil, indicating linear pacing.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Class Methods

animation
Creates and returns a new CAAnimation instance.

Class Methods 17
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

+ (id)animation

Return Value
An CAAnimation object whose input values are initialized.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

defaultValueForKey:
Specifies the default value of the property with the specified key.

+ (id)defaultValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

Return Value
The default value for the named property. Returns nil if no default value has been set.

Discussion
If this method returns nil a suitable “zero” default value for the property is provided, based on the declared
type of the key. For example, if key is a CGSize object, a size of (0.0,0.0) is returned. For a CGRect an empty
rectangle is returned. For CGAffineTransform and CATransform3D, the appropriate identity matrix is
returned.

Special Considerations

If key is not a known for property of the class, the result of the method is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Instance Methods

isRemovedOnCompletion
A synthesized accessor for the removedOnCompletion (page 17) property.

- (BOOL)isRemovedOnCompletion

See Also
 @property removedOnCompletion (page 17)

18 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

shouldArchiveValueForKey:
Specifies whether the value of the property for a given key is archived.

- (BOOL)shouldArchiveValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

Return Value
YES if the specified property should be archived, otherwise NO.

Discussion
Called by the object's implementation of encodeWithCoder:. The object must implement keyed archiving.

The default implementation returns YES.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Delegate Methods

animationDidStart:
Called when the animation begins its active duration.

- (void)animationDidStart:(CAAnimation *)theAnimation

Parameters
theAnimation

The CAAnimation instance that started animating.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

animationDidStop:finished:
Called when the animation completes its active duration or is removed from the object it is attached to.

- (void)animationDidStop:(CAAnimation *)theAnimation
finished:(BOOL)flag

Parameters
theAnimation

The CAAnimation instance that stopped animating.

Delegate Methods 19
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

flag
If YES, the animation reached the end of its active duration without being removed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

20 Delegate Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

CAAnimation Class Reference

Inherits from CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAAnimationGroup allows multiple animations to be grouped and run concurrently. The grouped animations
run in the time space specified by the CAAnimationGroup instance.

The duration of the grouped animations are not scaled to the duration of their CAAnimationGroup. Instead,
the animations are clipped to the duration of the animation group. For example, a 10 second animation
grouped within an animation group with a duration of 5 seconds will only display the first 5 seconds of the
animation.

Overview 21
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CAAnimationGroup Class Reference

Important: The delegate and removedOnCompletion properties of animations in the animations (page
22) array are currently ignored. The CAAnimationGroup delegate does receive these messages.

Note: The delegate and removedOnCompletion properties of animations in the animations (page 22)
property are currently ignored.

Tasks

Grouped Animations

 animations (page 22) property
An array of CAAnimation objects to be evaluated in the time space of the receiver.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

animations
An array of CAAnimation objects to be evaluated in the time space of the receiver.

@property(copy) NSArray *animations

Discussion
The animations run concurrently in the receiver’s time space.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

22 Tasks
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

CAAnimationGroup Class Reference

Inherits from CAPropertyAnimation : CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CABasicAnimation provides basic, single-keyframe animation capabilities for a layer property. You create
an instance of CABasicAnimation using the inherited animationWithKeyPath: (page 103) method,
specifying the key path of the property to be animated in the render tree.

Setting Interpolation Values

The fromValue (page 24), byValue (page 24) and toValue (page 25) properties define the values being
interpolated between. All are optional, and no more than two should be non-nil. The object type should
match the type of the property being animated.

The interpolation values are used as follows:

 ■ Both fromValue (page 24) and toValue (page 25) are non-nil. Interpolates between fromValue (page
24) and toValue (page 25).

 ■ fromValue (page 24) and byValue (page 24) are non-nil. Interpolates between fromValue (page
24) and (fromValue (page 24) + byValue (page 24)).

 ■ byValue (page 24) and toValue (page 25) are non-nil. Interpolates between (toValue (page 25) -
byValue (page 24)) and toValue (page 25).

 ■ fromValue (page 24) is non-nil. Interpolates between fromValue (page 24) and the current
presentation value of the property.

Overview 23
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

 ■ toValue (page 25) is non-nil. Interpolates between the current value of keyPath in the target layer’s
presentation layer and toValue (page 25).

 ■ byValue (page 24) is non-nil. Interpolates between the current value of keyPath in the target layer’s
presentation layer and that value plus byValue (page 24).

 ■ All properties are nil. Interpolates between the previous value of keyPath in the target layer’s
presentation layer and the current value of keyPath in the target layer’s presentation layer.

Tasks

Interpolation Values

 fromValue (page 24) property
Defines the value the receiver uses to start interpolation.

 toValue (page 25) property
Defines the value the receiver uses to end interpolation.

 byValue (page 24) property
Defines the value the receiver uses to perform relative interpolation.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

byValue
Defines the value the receiver uses to perform relative interpolation.

@property(retain) id byValue

Discussion
See “Setting Interpolation Values” (page 23) for details on how byValue interacts with the other interpolation
values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

fromValue
Defines the value the receiver uses to start interpolation.

24 Tasks
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

@property(retain) id fromValue

Discussion
See “Setting Interpolation Values” (page 23) for details on how fromValue interacts with the other
interpolation values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

toValue
Defines the value the receiver uses to end interpolation.

@property(retain) id toValue

Discussion
See “Setting Interpolation Values” (page 23) for details on how toValue interacts with the other interpolation
values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Properties 25
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

26 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

CABasicAnimation Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAConstraint represents a single layout constraint between two layers. Each CAConstraint instance
encapsulates one geometry relationship between two layers on the same axis.

Sibling layers are referenced by name, using the name property of each layer. The special name superlayer
is used to refer to the layer's superlayer.

For example, to specify that a layer should be horizontally centered in its superview you would use the
following:

theConstraint=[CAConstraint constraintWithAttribute:kCAConstraintMidX
 relativeTo:@"superlayer"
 attribute:kCAConstraintMidX];

A maximum of two relationships must be specified per axis. If you specify constraints for the left and right
edges of a layer, the width will vary. If you specify constraints for the left edge and the width, the right edge
of the layer will move relative to the superlayer’s frame. Often you’ll specify only a single edge constraint,
the layer’s size in the same axis will be used as the second relationship.

Overview 27
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

Important: It is possible to create constraints that result in circular references to the same attributes. In cases
where the layout is unable to be computed the behavior is undefined.

Tasks

Create a New Constraint

+ constraintWithAttribute:relativeTo:attribute:scale:offset: (page 29)
Creates and returns an CAConstraint object with the specified parameters.

+ constraintWithAttribute:relativeTo:attribute:offset: (page 29)
Creates and returns an CAConstraint object with the specified parameters.

+ constraintWithAttribute:relativeTo:attribute: (page 28)
Creates and returns an CAConstraint object with the specified parameters.

– initWithAttribute:relativeTo:attribute:scale:offset: (page 30)
Returns an CAConstraint object with the specified parameters. Designated initializer.

Class Methods

constraintWithAttribute:relativeTo:attribute:
Creates and returns an CAConstraint object with the specified parameters.

+ (id)constraintWithAttribute:(CAConstraintAttribute)attr
relativeTo:(NSString *)srcLayer
attribute:(CAConstraintAttribute)srcAttr

Parameters
attr

The attribute of the layer for which to create a new constraint.

srcLayer
The name of the layer that this constraint is calculated relative to.

srcAttr
The attribute of srcLayer the constraint is calculated relative to.

Return Value
A new CAConstraint object with the specified parameters. The scale of the constraint is set to 1.0. The
offset of the constraint is set to 0.0.

Discussion
The value for the constraint is calculated is srcAttr.

Availability
Available in Mac OS X v10.5 and later.

28 Tasks
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

Declared In
CAConstraintLayoutManager.h

constraintWithAttribute:relativeTo:attribute:offset:
Creates and returns an CAConstraint object with the specified parameters.

+ (id)constraintWithAttribute:(CAConstraintAttribute)attr
relativeTo:(NSString *)srcLayer
attribute:(CAConstraintAttribute)srcAttr
offset:(CGFloat)offset

Parameters
attr

The attribute of the layer for which to create a new constraint.

srcLayer
The name of the layer that this constraint is calculated relative to.

srcAttr
The attribute of srcLayer the constraint is calculated relative to.

offset
The offset added to the value of srcAttr.

Return Value
A new CAConstraint object with the specified parameters. The scale of the constraint is set to 1.0.

Discussion
The value for the constraint is calculated as (srcAttr + offset).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAConstraintLayoutManager.h

constraintWithAttribute:relativeTo:attribute:scale:offset:
Creates and returns an CAConstraint object with the specified parameters.

+ (id)constraintWithAttribute:(CAConstraintAttribute)attr
relativeTo:(NSString *)srcLayer
attribute:(CAConstraintAttribute)srcAttr
scale:(CGFloat)scale
offset:(CGFloat)offset

Parameters
attr

The attribute of the layer for which to create a new constraint.

srcLayer
The name of the layer that this constraint is calculated relative to.

srcAttr
The attribute of srcLayer the constraint is calculated relative to.

Class Methods 29
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

scale
The amount to scale the value of srcAttr.

offset
The offset from the srcAttr.

Return Value
A new CAConstraint object with the specified parameters.

Discussion
The value for the constraint is calculated as (srcAttr * scale) + offset).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAConstraintLayoutManager.h

Instance Methods

initWithAttribute:relativeTo:attribute:scale:offset:
Returns an CAConstraint object with the specified parameters. Designated initializer.

- (id)initWithAttribute:(CAConstraintAttribute)attr
relativeTo:(NSString *)srcLayer
attribute:(CAConstraintAttribute)srcAttr
scale:(CGFloat)scale
offset:(CGFloat)offset

Parameters
attr

The attribute of the layer for which to create a new constraint.

srcLayer
The name of the layer that this constraint is calculated relative to.

srcAttr
The attribute of srcLayer the constraint is calculated relative to.

scale
The amount to scale the value of srcAttr.

offset
The offset added to the value of srcAttr.

Return Value
An initialized constraint object using the specified parameters.

Discussion
The value for the constraint is calculated as (srcAttr * scale) + offset).

Availability
Available in Mac OS X v10.5 and later.

30 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

Declared In
CAConstraintLayoutManager.h

Constants

CAConstraintAttribute
These constants represent the geometric edge or axis of a constraint.

enum _CAConstraintAttribute
{
 kCAConstraintMinX,
 kCAConstraintMidX,
 kCAConstraintMaxX,
 kCAConstraintWidth,
 kCAConstraintMinY,
 kCAConstraintMidY,
 kCAConstraintMaxY,
 kCAConstraintHeight,
};

Constants
kCAConstraintMinX

The left edge of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintMidX
The horizontal location of the center of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintMaxX
The right edge of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintWidth
The width of a layer.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintMinY
The bottom edge of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintMidY
The vertical location of the center of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

Constants 31
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

kCAConstraintMaxY
The top edge of a layer’s frame.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

kCAConstraintHeight
The height of a layer.

Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h.

Declared In
CAConstraint.h

Constraint Attribute Type
The constraint attribute type.

typedef int CAConstraintAttribute;

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAConstraintLayoutManager.h

32 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

CAConstraint Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Related sample code Core Animation QuickTime Layer

Overview

CAConstraintLayoutManager provides a constraint-based layout manager.

Constraint-based layout allows you to describe the position and size of a layer by specifying relationships
between a layer and its sibling layers or its superlayer. The relationships are represented by instances of the
CAConstraint class that are stored in an array in the layer’s constraints property. You add constraints
for a layer using its addConstraint: (page 65) method. Each CAConstraint instance encapsulates one
geometry relationship between two layers. Layout is then performed by fetching the constraints of each
sublayer and solving the resulting system of constraints for the frame of each sublayer starting from the
bounds of the containing layer.

Sibling layers are referenced by name, using the name property of each layer. The special name superlayer
is used to refer to the layer's superlayer.

Overview 33
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CAConstraintLayoutManager Class Reference

Important: It is possible to specify a set of constraints for a layer (for example, circular attribute dependencies)
that will cause layout to fail. In that case the behavior is undefined.

Tasks

Creating the Layout Manager

+ layoutManager (page 34)
Creates and returns a new CAConstraintLayoutManager instance.

Class Methods

layoutManager
Creates and returns a new CAConstraintLayoutManager instance.

+ (id)layoutManager

Return Value
A new CAConstraintLayoutManager instance.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Core Animation QuickTime Layer

Declared In
CAConstraintLayoutManager.h

34 Tasks
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

CAConstraintLayoutManager Class Reference

Inherits from CAPropertyAnimation : CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAKeyframeAnimation provides generic keyframe animation capabilities for a layer property in the render
tree. You create an CAKeyframeAnimation instance using the inherited animationWithKeyPath: (page
103) method, specifying the key path of the property updated in the render tree during the animation. The
animation provides a series of keyframe values, either as an array or a series of points in a CGPathRef. While
animating, it updates the value of the property in the render tree with values calculated using the specified
interpolation calculation mode.

Tasks

Providing Keyframe Values

 path (page 37) property
An optional CGPathRef that provides the keyframe values for the receiver.

 values (page 38) property
An array of objects that provide the keyframe values for the receiver.

Overview 35
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

Keyframe Timing

 keyTimes (page 36) property
An optional array of NSNumber objects that define the duration of each keyframe segment.

 timingFunctions (page 38) property
An optional array of CAMediaTimingFunction instances that defines the pacing of the each keyframe
segment.

 calculationMode (page 36) property
Specifies how intermediate keyframe values are calculated by the receiver.

Rotation Mode

 rotationMode (page 37) property
Determines whether objects animating along the path rotate to match the path tangent.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

calculationMode
Specifies how intermediate keyframe values are calculated by the receiver.

@property(copy) NSString *calculationMode

Discussion
The possible values are described in “Value calculation modes” (page 39). The default is
kCAAnimationLinear (page 39).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

keyTimes
An optional array of NSNumber objects that define the duration of each keyframe segment.

@property(copy) NSArray *keyTimes

Discussion
Each value in the array is a floating point number between 0.0 and 1.0 and corresponds to one element in
the values array. Each element in the keyTimes array defines the duration of the corresponding keyframe
value as a fraction of the total duration of the animation. Each element value must be greater than, or equal
to, the previous value.

36 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

The appropriate values in the keyTimes array are dependent on the calculationMode (page 36) property.

 ■ If the calculationMode is set to kCAAnimationLinear, the first value in the array must be 0.0 and the
last value must be 1.0. Values are interpolated between the specified keytimes.

 ■ If the calculationMode is set to kCAAnimationDiscrete, the first value in the array must be 0.0.

 ■ If the calculationMode is set to kCAAnimationPaced, the keyTimes array is ignored.

If the values in the keyTimes array are invalid or inappropriate for the calculationMode, the keyTimes
array is ignored.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

path
An optional CGPathRef that provides the keyframe values for the receiver.

@property CGPathRef path;

Discussion
Defaults to nil. Specifying a path overrides the values (page 38) property. Each point in the path, except
for moveto points, defines a single keyframe segment for the purpose of timing and interpolation. For constant
velocity animation along the path, calculationMode (page 36) should be set to kCAAnimationPaced (page
39).

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property rotationMode (page 37)

Declared In
CAAnimation.h

rotationMode
Determines whether objects animating along the path rotate to match the path tangent.

@property(copy) NSString *rotationMode

Discussion
Possible values are described in “Rotation Mode Values” (page 38). The default is nil, which indicates
that objects should not rotate to follow the path.

The effect of setting this property to a non-nil value when no path object is supplied is undefined.

Availability
Available in Mac OS X v10.5 and later.

Properties 37
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

See Also
 @property path (page 37)

Declared In
CAAnimation.h

timingFunctions
An optional array of CAMediaTimingFunction instances that defines the pacing of the each keyframe
segment.

@property(copy) NSArray *timingFunctions

Discussion
If the receiver defines n keyframes, there must be n-1 objects in the timingFunctions array. Each timing
function describes the pacing of one keyframe to keyframe segment.

Special Considerations

The inherited timingFunction value is always ignored.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

values
An array of objects that provide the keyframe values for the receiver.

@property(copy) NSArray *values

Discussion
The values property is ignored when the path (page 37) property is used.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Constants

Rotation Mode Values
These constants are used by the rotationMode (page 37) property.

38 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

NSString * const kCAAnimationRotateAuto
NSString * const kCAAnimationRotateAutoReverse

Constants
kCAAnimationRotateAuto

The objects travel on a tangent to the path.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCAAnimationRotateAutoReverse
The objects travel at a 180 degree tangent to the path.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

Declared In
CAAnimation.h

Value calculation modes
These constants are used by the calculationMode (page 36) property.

NSString * const kCAAnimationLinear;
NSString * const kCAAnimationDiscrete;
NSString * const kCAAnimationPaced;

Constants
kCAAnimationLinear

Simple linear calculation between keyframe values.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCAAnimationDiscrete
Each keyframe value is used in turn, no interpolated values are calculated.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCAAnimationPaced
Keyframe values are interpolated to produce an even pace throughout the animation. This mode is
not currently implemented

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

Declared In
CAAnimation.h

Constants 39
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

40 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

CAKeyframeAnimation Class Reference

Inherits from NSObject

Conforms to NSCoding
CAMediaTiming
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAConstraintLayoutManager.h
CALayer.h
CAScrollLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Related sample code CALayerEssentials
Core Animation QuickTime Layer

Overview

CALayer is the model class for layer-tree objects. It encapsulates the position, size, and transform of a layer,
which defines its coordinate system. It also encapsulates the duration and pacing of a layer and its animations
by adopting the CAMediaTiming protocol, which defines a layer’s time space.

Tasks

Creating a Layer

+ layer (page 63)
Creates and returns an instance of CALayer.

– init (page 70)
Returns an initialized CALayer object.

– initWithLayer: (page 71)
Override to copy or initialize custom fields of the specified layer.

Overview 41
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Accessing the Presentation Layer

– presentationLayer (page 74)
Returns a copy of the layer containing all properties as they were at the start of the current transaction,
with any active animations applied.

– modelLayer (page 74)
Returns the model layer of the receiver, if it represents a current presentation layer.

Modifying the Layer Geometry

 frame (page 54) property
Specifies receiver’s frame rectangle in the super-layer’s coordinate space.

 bounds (page 50) property
Specifies the bounds rectangle of the receiver. Animatable.

 position (page 58) property
Specifies the receiver’s position in the superlayer’s coordinate system. Animatable.

 zPosition (page 61) property
Specifies the receiver’s position on the z axis. Animatable.

 anchorPoint (page 47) property
Defines the anchor point of the layer's bounds rectangle. Animatable.

– affineTransform (page 65)
Convenience method for getting the transform (page 61) property as an affine transform.

– setAffineTransform: (page 78)
Convenience method for setting the transform (page 61) property as an affine transform.

 transform (page 61) property
Specifies the transform applied to the receiver, relative to the center of its bounds. Animatable.

 sublayerTransform (page 60) property
Specifies a transform applied to each sublayer when rendering. Animatable.

Providing Layer Content

 contents (page 51) property
An object that provides the contents of the layer. Animatable.

 contentsRect (page 52) property
A rectangle, in the unit coordinate space, defining the subrectangle of contents (page 51) that
the receiver should draw. Animatable.

– display (page 69)
Reload the content of this layer.

– displayLayer: (page 80) delegate method
Allows the delegate to override the display (page 69) implementation.

– drawInContext: (page 70)
Draws the receiver’s content in the specified graphics context.

– drawLayer:inContext: (page 81) delegate method
Allows the delegate to override the layer’s drawInContext: implementation.

42 Tasks
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

 opaque (page 57) property
Specifies a hint marking that the pixel data provided by the contents (page 51) property is
completely opaque.

– isOpaque (page 73)
A synthesized accessor for the opaque (page 57) property.

 edgeAntialiasingMask (page 53) property
A bitmask defining how the edges of the receiver are rasterized.

 minificationFilter (page 56) property
The filter used when reducing the size of the content.

 magnificationFilter (page 55) property
The filter used when increasing the size of the content.

Style Attributes

 contentsGravity (page 51) property
Determines how the receiver's contents are positioned within its bounds.

 opacity (page 57) property
Determines the opacity of the receiver. Animatable.

 hidden (page 54) property
Determines whether the receiver is displayed. Animatable.

– isHidden (page 73)
A synthesized accessor for the hidden (page 54) property.

 masksToBounds (page 56) property
Determines if the sublayers are clipped to the receiver’s bounds. Animatable.

 doubleSided (page 53) property
Determines whether the receiver is displayed when facing away from the viewer. Animatable.

– isDoubleSided (page 73)
A synthesized accessor for the doubleSided (page 53) property.

 mask (page 55) property
An optional layer whose alpha channel is used as a mask to select between the layer's background
and the result of compositing the layer's contents with its filtered background.

 cornerRadius (page 52) property
Specifies a radius used to draw the rounded corners of the receiver’s background. Animatable.

 borderWidth (page 49) property
Specifies the width of the receiver’s border. Animatable.

 borderColor (page 49) property
The color of the receiver’s border. Animatable.

 backgroundColor (page 48) property
Specifies the background color of the receiver. Animatable.

 backgroundFilters (page 48) property
An optional array of CoreImage filters that are applied to the receiver’s background. Animatable.

 shadowOpacity (page 59) property
Specifies the opacity of the receiver’s shadow. Animatable.

Tasks 43
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

 shadowRadius (page 59) property
Specifies the blur radius used to render the receiver’s shadow. Animatable.

 shadowOffset (page 59) property
Specifies the offset of the receiver’s shadow. Animatable.

 shadowColor (page 58) property
Specifies the color of the receiver’s shadow. Animatable.

 filters (page 53) property
An array of CoreImage filters that are applied to the contents of the receiver and its sublayers.
Animatable.

 compositingFilter (page 50) property
A CoreImage filter used to composite the receiver’s contents with the background. Animatable.

 style (page 59) property
An optional dictionary referenced to find property values that aren't explicitly defined by the receiver.

Managing the Layer Hierarchy

 sublayers (page 60) property
An array containing the receiver's sublayers.

 superlayer (page 61) property
Specifies receiver's superlayer. (read-only)

– addSublayer: (page 65)
Appends the layer to the receiver’s sublayers (page 60) array.

– removeFromSuperlayer (page 75)
Removes the layer from the sublayers (page 60) array or mask (page 55) property of the
receiver’s superlayer (page 61).

– insertSublayer:atIndex: (page 72)
Inserts the layer as a sublayer of the receiver at the specified index.

– insertSublayer:below: (page 72)
Inserts the layer into the receiver’s sublayers array, below the specified sublayer.

– insertSublayer:above: (page 71)
Inserts the layer into the receiver’s sublayers array, above the specified sublayer.

– replaceSublayer:with: (page 76)
Replaces the layer in the receiver’s sublayers array with the specified new layer.

Updating Layer Display

– setNeedsDisplay (page 78)
Marks the receiver as needing display before the content is next committed.

 needsDisplayOnBoundsChange (page 57) property
Returns whether the receiver must be redisplayed when the bounds rectangle is updated.

– setNeedsDisplayInRect: (page 79)
Marks the region of the receiver within the specified rectangle as needing display.

44 Tasks
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Layer Animations

– addAnimation:forKey: (page 64)
Add an animation object to the receiver’s render tree for the specified key.

– animationForKey: (page 66)
Returns the animation added to the receiver with the specified identifier.

– removeAllAnimations (page 75)
Remove all animations attached to the receiver.

– removeAnimationForKey: (page 75)
Remove the animation attached to the receiver with the specified key.

Managing Layer Resizing and Layout

 layoutManager (page 55) property
Specifies the layout manager responsible for laying out the receiver’s sublayers.

– setNeedsLayout (page 79)
Called when the preferred size of the receiver may have changed.

 constraints (page 51) property
Specifies the constraints used to layout the receiver’s sublayers when using an CAConstraintManager
instance as the layout manager.

– addConstraint: (page 65)
Adds the constraint to the receiver's array of constraint objects.

 name (page 56) property
The name of the receiver.

 autoresizingMask (page 48) property
A bitmask defining how the layer is resized when the bounds of its superlayer changes.

– resizeWithOldSuperlayerSize: (page 77)
Informs the receiver that the bounds size of its superview has changed.

– resizeSublayersWithOldSize: (page 77)
Informs the receiver’s sublayers that the receiver’s bounds rectangle size has changed.

– preferredFrameSize (page 74)
Returns the preferred frame size of the layer in the coordinate space of the superlayer.

– layoutIfNeeded (page 73)
Recalculate the receiver’s layout, if required.

– layoutSublayers (page 73)
Called when the layer requires layout.

Actions

 actions (page 47) property
A dictionary mapping keys to objects that implement the CAAction protocol.

+ defaultActionForKey: (page 62)
Returns an object that implements the default action for the specified identifier.

Tasks 45
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

– actionForKey: (page 63)
Returns an object that implements the action for the specified identifier.

– actionForLayer:forKey: (page 80) delegate method
Allows the delegate to customize the action for a layer.

Mapping Between Coordinate and Time Spaces

– convertPoint:fromLayer: (page 67)
Converts the point from the specified layer’s coordinate system to the receiver’s coordinate system.

– convertPoint:toLayer: (page 67)
Converts the point from the receiver’s coordinate system to the specified layer’s coordinate system.

– convertRect:fromLayer: (page 67)
Converts the rectangle from the specified layer’s coordinate system to the receiver’s coordinate system.

– convertRect:toLayer: (page 68)
Converts the rectangle from the receiver’s coordinate system to the specified layer’s coordinate system.

– convertTime:fromLayer: (page 68)
Converts the time interval from the specified layer’s time space to the receiver’s time space.

– convertTime:toLayer: (page 69)
Converts the time interval from the receiver’s time space to the specified layer’s time space

Hit Testing

– hitTest: (page 70)
Returns the farthest descendant of the receiver in the layer hierarchy (including itself) that contains
a specified point.

– containsPoint: (page 66)
Returns whether the receiver contains a specified point.

Rendering

– renderInContext: (page 76)
Renders the receiver and its sublayers into the specified context.

Scrolling

 visibleRect (page 61) property
Returns the visible region of the receiver, in its own coordinate space. (read-only)

– scrollPoint: (page 77)
Scrolls the receiver’s closest ancestor CAScrollLayer so that the specified point lies at the origin of
the layer.

– scrollRectToVisible: (page 78)
Scrolls the receiver’s closest ancestor CAScrollLayer the minimum distance needed so that the
specified rectangle becomes visible.

46 Tasks
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Modifying the Delegate

 delegate (page 52) property
Specifies the receiver’s delegate object.

Key-Value Coding Extensions

– shouldArchiveValueForKey: (page 79)
Specifies whether the value of the property for a given key is archived.

+ defaultValueForKey: (page 62)
Specifies the default value of the property with the specified key.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

actions
A dictionary mapping keys to objects that implement the CAAction protocol.

@property(copy) NSDictionary *actions

Discussion
The default value is nil. See actionForKey: (page 63) for a description of the action search pattern.

Availability
Available in Mac OS X v10.5 and later.

See Also
– actionForKey: (page 63)
– actionForLayer:forKey: (page 80)
+ defaultActionForKey: (page 62)
 @property style (page 59)

Declared In
CALayer.h

anchorPoint
Defines the anchor point of the layer's bounds rectangle. Animatable.

@property CGPoint anchorPoint

Discussion
Described in the unit coordinate space. Defaults to (0.5, 0.5), the center of the bounds rectangle.

Properties 47
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

See Layer Geometry and Transforms (page 173) in Core Animation Programming Guide for more information
on the relationship between the bounds (page 50), anchorPoint (page 47) and position (page 58)
properties.

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property position (page 58)

Declared In
CALayer.h

autoresizingMask
A bitmask defining how the layer is resized when the bounds of its superlayer changes.

@property unsigned int autoresizingMask

Discussion
See “Autoresizing Mask” (page 81) for possible values. Default value is kCALayerNotSizable (page
82).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

backgroundColor
Specifies the background color of the receiver. Animatable.

@property CGColorRef backgroundColor

Discussion
The default is nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

backgroundFilters
An optional array of CoreImage filters that are applied to the receiver’s background. Animatable.

48 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property(copy) NSArray *backgroundFilters

Discussion
Once an array of filters is set properties should be modified by invoking setValue:forKeyPath: using the
appropriate key path. This requires that you set the name of the background filter to be modified. For example:

CIFilter *filter = ...;
CALayer *layer = ...;

filter.name = @"myFilter";
layer.filters = [NSArray arrayWithObject:filter];
[layer setValue:[NSNumber numberWithInt:1]
forKeyPath:@"filters.myFilter.inputScale"];

If the inputs of a background filter are directly modified after the filter is attached to a layer, the behavior is
undefined.

Special Considerations

While the CALayer class exposes this property, Core Image is not available in iPhone OS. Currently the filters
available for this property are undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

borderColor
The color of the receiver’s border. Animatable.

@property CGColorRef borderColor

Discussion
Defaults to opaque black.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

borderWidth
Specifies the width of the receiver’s border. Animatable.

@property CGFloat borderWidth

Discussion
The border is drawn inset from the receiver’s bounds by borderWidth. It is composited above the receiver’s
contents (page 51) and sublayers (page 60) and includes the effects of the cornerRadius (page 52)
property. The default is 0.0.

Properties 49
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

bounds
Specifies the bounds rectangle of the receiver. Animatable.

@property CGRect bounds

Discussion
The default is an empty rectangle.

See Layer Geometry and Transforms (page 173) in Core Animation Programming Guide for more information
on the relationship between the bounds (page 50), anchorPoint (page 47) and position (page 58)
properties.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

compositingFilter
A CoreImage filter used to composite the receiver’s contents with the background. Animatable.

@property(retain) CIFilter *compositingFilter

Discussion
If nil, the contents are composited using source-over. The default value is nil.

Once a filter is set its properties should be modified by invoking setValue:forKeyPath: using the
appropriate key path. For example:

CIFilter *filter = ...;
CALayer *layer = ...;

layer.compositingFilter = filter;
[layer setValue:[NSNumber numberWithInt:1]
forKeyPath:@"compositingFilter.inputScale"];

If the inputs of the filter are modified directly after the filter is attached to a layer, the behavior is undefined.

Special Considerations

While the CALayer class exposes this property, Core Image is not available in iPhone OS. Currently the filters
available for this property are undefined.

Availability
Available in Mac OS X v10.5 and later.

50 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

See Also
 @property backgroundFilters (page 48)

Declared In
CALayer.h

constraints
Specifies the constraints used to layout the receiver’s sublayers when using an CAConstraintManager
instance as the layout manager.

@property NSArray *constraints

Discussion
See CAConstraintLayoutManager Class Reference (page 33) for more information.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAConstraintLayoutManager.h

contents
An object that provides the contents of the layer. Animatable.

@property(retain) id contents

Discussion
A layer can set this property to a CGImageRef to display the image as its contents. The default value is nil.

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property contentsRect (page 52)

Declared In
CALayer.h

contentsGravity
Determines how the receiver's contents are positioned within its bounds.

@property(copy) NSString *contentsGravity

Discussion
The possible values for contentsGravity are shown in “Contents Gravity Values” (page 84). The
default value is kCAGravityResize (page 85).

Availability
Available in Mac OS X v10.5 and later.

Properties 51
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Declared In
CALayer.h

contentsRect
A rectangle, in the unit coordinate space, defining the subrectangle of contents (page 51) that the receiver
should draw. Animatable.

@property CGRect contentsRect

Discussion
Defaults to the unit rectangle (0.0,0.0,1.0,1.0).

If pixels outside the unit rectangles are requested, the edge pixels of the contents image will be extended
outwards.

If an empty rectangle is provided, the results are undefined.

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property contents (page 51)

Declared In
CALayer.h

cornerRadius
Specifies a radius used to draw the rounded corners of the receiver’s background. Animatable.

@property CGFloat cornerRadius

Discussion
If the radius is greater than 0 the background is drawn with rounded corners. The default value is 0.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

delegate
Specifies the receiver’s delegate object.

@property(assign) id delegate

Availability
Available in Mac OS X v10.5 and later.

52 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

doubleSided
Determines whether the receiver is displayed when facing away from the viewer. Animatable.

@property BOOL doubleSided

Discussion
If NO, the layer is hidden when facing away from the viewer. Defaults to YES.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isDoubleSided (page 73)

Declared In
CALayer.h

edgeAntialiasingMask
A bitmask defining how the edges of the receiver are rasterized.

@property unsigned int edgeAntialiasingMask

Discussion
For each of the four edges (left, right, bottom, top) if the corresponding bit is set the edge will be antialiased.

Typically, this property is used to disable antialiasing for edges that abut edges of other layers, to eliminate
the seams that would otherwise occur.

The mask values are defined in “Edge Antialiasing Mask” (page 83).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

filters
An array of CoreImage filters that are applied to the contents of the receiver and its sublayers. Animatable.

Properties 53
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property(copy) NSArray *filters

Discussion
Defaults to nil. Filter properties should be modified by calling setValue:forKeyPath: on each layer that
the filter is attached to. If the inputs of the filter are modified directly after the filter is attached to a layer,
the behavior is undefined.

Special Considerations

While the CALayer class exposes this property, Core Image is not available in iPhone OS. Currently the filters
available for this property are undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

frame
Specifies receiver’s frame rectangle in the super-layer’s coordinate space.

@property CGRect frame

Discussion
The value of frame is derived from the bounds (page 50), anchorPoint (page 47) and position (page
58) properties. When the frame is set, the receiver’s position (page 58) and the size of the receiver’s
bounds (page 50) are changed to match the new frame rectangle.

See Layer Geometry and Transforms (page 173) in Core Animation Programming Guide for more information
on the relationship between the bounds (page 50), anchorPoint (page 47) and position (page 58)
properties.

Note: The frame property is not directly animatable. Instead you should animate the appropriate combination
of the bounds (page 50), anchorPoint (page 47) and position (page 58) properties to achieve the
desired result.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

hidden
Determines whether the receiver is displayed. Animatable.

54 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property BOOL hidden

Discussion
The default is NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isHidden (page 73)

Declared In
CALayer.h

layoutManager
Specifies the layout manager responsible for laying out the receiver’s sublayers.

@property(retain) id layoutManager

Discussion
The layoutManager must implement the CALayoutManager informal protocol. The default value is nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

magnificationFilter
The filter used when increasing the size of the content.

@property(copy) NSString *magnificationFilter

Discussion
The possible values for magnificationFilter are shown in “Scaling Filters” (page 86). The default
value is kCAFilterLinear (page 86).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

mask
An optional layer whose alpha channel is used as a mask to select between the layer's background and the
result of compositing the layer's contents with its filtered background.

Properties 55
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property(retain) CALayer *mask

Discussion
Defaults to nil.

Special Considerations

When setting the mask to a new layer, the new layer’s superlayer must first be set to nil, otherwise the
behavior is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

masksToBounds
Determines if the sublayers are clipped to the receiver’s bounds. Animatable.

@property BOOL masksToBounds

Discussion
If YES, an implicit mask matching the layer bounds is applied to the layer, including the effects of the
cornerRadius (page 52) property. If YES and a mask (page 55) property is specified, the two masks are
multiplied to get the actual mask values. Defaults to NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

minificationFilter
The filter used when reducing the size of the content.

@property(copy) NSString *minificationFilter

Discussion
The possible values for minifcationFilter are shown in “Scaling Filters” (page 86). The default
value is kCAFilterLinear (page 86).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

name
The name of the receiver.

56 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property(copy) NSString *name

Discussion
The layer name is used by some layout managers to identify a layer. Defaults to nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

needsDisplayOnBoundsChange
Returns whether the receiver must be redisplayed when the bounds rectangle is updated.

@property BOOL needsDisplayOnBoundsChange

Discussion
When YES, setNeedsDisplay (page 78) is automatically invoked when the receiver’s bounds (page 50) is
changed. Default value is NO.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

opacity
Determines the opacity of the receiver. Animatable.

@property float opacity

Discussion
Possible values are between 0.0 (transparent) and 1.0 (opaque). The default is 1.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

opaque
Specifies a hint marking that the pixel data provided by the contents (page 51) property is completely
opaque.

Properties 57
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property BOOL opaque

Discussion
Defaults to NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isOpaque (page 73)

Declared In
CALayer.h

position
Specifies the receiver’s position in the superlayer’s coordinate system. Animatable.

@property CGPoint position

Discussion
The position is relative to anchorPoint (page 47). The default is (0.0,0.0).

See Layer Geometry and Transforms (page 173) in Core Animation Programming Guide for more information
on the relationship between the bounds (page 50), anchorPoint (page 47) and position (page 58)
properties.

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property anchorPoint (page 47)

Declared In
CALayer.h

shadowColor
Specifies the color of the receiver’s shadow. Animatable.

@property CGColorRef shadowColor

Discussion
The default is opaque black.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

58 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

shadowOffset
Specifies the offset of the receiver’s shadow. Animatable.

@property CGSize shadowOffset

Discussion
The default is (0.0,-3.0).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

shadowOpacity
Specifies the opacity of the receiver’s shadow. Animatable.

@property float shadowOpacity

Discussion
The default is 0.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

shadowRadius
Specifies the blur radius used to render the receiver’s shadow. Animatable.

@property CGFloat shadowRadius

Discussion
The default value is 3.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

style
An optional dictionary referenced to find property values that aren't explicitly defined by the receiver.

Properties 59
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property(copy) NSDictionary *style

Discussion
This dictionary may in turn have a style key, forming a hierarchy of default values. In the case of hierarchical
style dictionaries the shallowest value for a property is used. For example, the value for “style.someValue”
takes precedence over “style.style.someValue”.

If the style dictionary doesn't define a value for an attribute, the receiver’s defaultValueForKey: method
is called. Defaults to nil.

The style dictionary is not consulted for the following keys: bounds, frame.

Warning: If the style dictionary or any of its ancestors are modified, the values of the layer's properties
are undefined until the style property is reset.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

sublayers
An array containing the receiver's sublayers.

@property(copy) NSArray *sublayers

Discussion
The layers are listed in back to front order. Defaults to nil.

Special Considerations

When setting the sublayers property to an array populated with layer objects you must ensure that the
layers have had their superlayer (page 61) set to nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

sublayerTransform
Specifies a transform applied to each sublayer when rendering. Animatable.

@property CATransform3D sublayerTransform

Discussion
This property is typically used as the projection matrix to add perspective and other viewing effects to the
receiver. Defaults to the identity transform.

Availability
Available in Mac OS X v10.5 and later.

60 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

superlayer
Specifies receiver's superlayer. (read-only)

@property(readonly) CALayer *superlayer

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

transform
Specifies the transform applied to the receiver, relative to the center of its bounds. Animatable.

@property CATransform3D transform

Discussion
Defaults to the identity transform.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

visibleRect
Returns the visible region of the receiver, in its own coordinate space. (read-only)

@property(readonly) CGRect visibleRect

Discussion
The visible region is the area not clipped by the containing scroll layer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAScrollLayer.h

zPosition
Specifies the receiver’s position on the z axis. Animatable.

Properties 61
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

@property CGFloat zPosition

Discussion
Defaults to 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Class Methods

defaultActionForKey:
Returns an object that implements the default action for the specified identifier.

+ (id<CAAction>)defaultActionForKey:(NSString *)aKey

Parameters
aKey

The identifier of the action.

Return Value
Returns the object that provides the action for aKey. The object must implement the CAAction protocol.

Discussion
See actionForKey: (page 63) for a description of the action search pattern.

Availability
Available in Mac OS X v10.5 and later.

See Also
– actionForKey: (page 63)
– actionForLayer:forKey: (page 80)
 @property actions (page 47)
 @property style (page 59)

Declared In
CALayer.h

defaultValueForKey:
Specifies the default value of the property with the specified key.

+ (id)defaultValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

62 Class Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Return Value
The default value for the named property. Returns nil if no default value has been set.

Discussion
If this method returns nil a suitable “zero” default value for the property is provided, based on the declared
type of the key. For example, if key is a CGSize object, a size of (0.0,0.0) is returned. For a CGRect an empty
rectangle is returned. For CGAffineTransform and CATransform3D, the appropriate identity matrix is
returned.

Special Considerations

If key is not a known for property of the class, the result of the method is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

layer
Creates and returns an instance of CALayer.

+ (id)layer

Return Value
The initialized CALayer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials
Core Animation QuickTime Layer

Declared In
CALayer.h

Instance Methods

actionForKey:
Returns an object that implements the action for the specified identifier.

- (id<CAAction>)actionForKey:(NSString *)aKey

Parameters
aKey

The identifier of the action.

Return Value
Returns the object that provides the action for aKey. The object must implement the CAAction protocol.

Instance Methods 63
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Discussion
There are three types of actions: property changes, externally-defined events, and layer-defined events.
Whenever a layer property is modified, the event with the same name as the property is triggered. External
events are defined by the owner of the layer calling actionForKey: to lookup the action associated with
the identifier and directly messaging the returned object (if non-nil.)

The default implementation searches for an action object as follows:

 ■ If defined, return the object provided by the receiver’s delegate method
actionForLayer:forKey: (page 80).

 ■ Return the object that corresponds to the identifier in the receiver’s actions (page 47) dictionary
property.

 ■ Search the style (page 59) dictionary recursively for an actions dictionary that contains the identifier.

 ■ Call the receiver’s defaultActionForKey: (page 62) method and return the result.

If any of these steps results in a non-nil action object, the remaining steps are ignored and the action is
returned. If a step returns an NSNull object, the remaining steps are ignored and nil is returned.

When an action object is invoked it receives three parameters: the name of the event, the object on which
the event happened (the layer), and a dictionary of named arguments specific to each event kind.

Availability
Available in Mac OS X v10.5 and later.

See Also
– actionForLayer:forKey: (page 80)
 @property actions (page 47)
+ defaultActionForKey: (page 62)
 @property style (page 59)

Declared In
CALayer.h

addAnimation:forKey:
Add an animation object to the receiver’s render tree for the specified key.

- (void)addAnimation:(CAAnimation *)anim
forKey:(NSString *)key

Parameters
anim

The animation to be added to the render tree. Note that the object is copied by the render tree, not
referenced. Any subsequent modifications to the object will not be propagated into the render tree.

key
A string that specifies an identifier for the animation. Only one animation per unique key is added to
the layer. The special key kCATransition (page 83) is automatically used for transition animations.
The nil pointer is also a valid key.

64 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Discussion
Typically this is implicitly invoked through an action that is an CAAnimation object. If the duration property
of the animation is zero or negative it is given the default duration, either the current value of the
kCATransactionAnimationDuration transaction property, otherwise .25 seconds

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

addConstraint:
Adds the constraint to the receiver's array of constraint objects.

- (void)addConstraint:(CAConstraint *)aConstraint

Parameters
aConstraint

The constraint object to add to the receiver’s array of constraint objects.

Discussion
See CAConstraintLayoutManager Class Reference (page 33) for more information.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAConstraintLayoutManager.h

addSublayer:
Appends the layer to the receiver’s sublayers (page 60) array.

- (void)addSublayer:(CALayer *)aLayer

Parameters
aLayer

The layer to be added to the receiver’s sublayers (page 60) array.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

affineTransform
Convenience method for getting the transform (page 61) property as an affine transform.

Instance Methods 65
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

- (CGAffineTransform)affineTransform

Return Value
A CGAffineTransform instance that best represents the receiver’s transform (page 61) property.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

animationForKey:
Returns the animation added to the receiver with the specified identifier.

- (CAAnimation *)animationForKey:(NSString *)key

Parameters
key

A string that specifies the identifier of the animation.

Return Value
The animation object matching the identifier, or nil if no such animation exists.

Discussion
Attempting to modify any properties of the returned object will result in undefined behavior.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

containsPoint:
Returns whether the receiver contains a specified point.

- (BOOL)containsPoint:(CGPoint)thePoint

Parameters
thePoint

A point in the receiver’s coordinate system.

Return Value
YES if the bounds of the layer contains the point.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

66 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

convertPoint:fromLayer:
Converts the point from the specified layer’s coordinate system to the receiver’s coordinate system.

- (CGPoint)convertPoint:(CGPoint)aPoint
fromLayer:(CALayer *)layer

Parameters
aPoint

A point specifying a location in the coordinate system of layer.

layer
The layer with aPoint in its coordinate system. The receiver and layer and must share a common
parent layer.

Return Value
The point converted to the receiver’s coordinate system.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

convertPoint:toLayer:
Converts the point from the receiver’s coordinate system to the specified layer’s coordinate system.

- (CGPoint)convertPoint:(CGPoint)aPoint
toLayer:(CALayer *)layer

Parameters
aPoint

A point specifying a location in the coordinate system of layer.

layer
The layer into whose coordinate system aPoint is to be converted. The receiver and layer and must
share a common parent layer.

Return Value
The point converted to the coordinate system of layer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

convertRect:fromLayer:
Converts the rectangle from the specified layer’s coordinate system to the receiver’s coordinate system.

- (CGRect)convertRect:(CGRect)aRect
fromLayer:(CALayer *)layer

Instance Methods 67
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Parameters
aRect

A point specifying a location in the coordinate system of layer.

layer
The layer with arect in its coordinate system. The receiver and layer and must share a common
parent layer.

Return Value
The rectangle converted to the receiver’s coordinate system.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

convertRect:toLayer:
Converts the rectangle from the receiver’s coordinate system to the specified layer’s coordinate system.

- (CGRect)convertRect:(CGRect)aRect
toLayer:(CALayer *)layer

Parameters
aRect

A point specifying a location in the coordinate system of layer.

layer
The layer into whose coordinate system aRect is to be converted. The receiver and layer and must
share a common parent layer.

Return Value
The rectangle converted to the coordinate system of layer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

convertTime:fromLayer:
Converts the time interval from the specified layer’s time space to the receiver’s time space.

- (CFTimeInterval)convertTime:(CFTimeInterval)timeInterval
fromLayer:(CALayer *)layer

Parameters
timeInterval

A point specifying a location in the coordinate system of layer.

layer
The layer with timeInterval in its time space. The receiver and layer and must share a common
parent layer.

68 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Return Value
The time interval converted to the receiver’s time space.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

convertTime:toLayer:
Converts the time interval from the receiver’s time space to the specified layer’s time space

- (CFTimeInterval)convertTime:(CFTimeInterval)timeInterval
toLayer:(CALayer *)layer

Parameters
timeInterval

A point specifying a location in the coordinate system of layer.

layer
The layer into whose time space timeInterval is to be converted. The receiver and layer and must
share a common parent layer.

Return Value
The time interval converted to the time space of layer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

display
Reload the content of this layer.

- (void)display

Discussion
Calls the drawInContext: (page 70) method, then updates the receiver’s contents (page 51) property.
You should not call this method directly.

Subclasses can override this method to set the contents (page 51) property to an appropriate CGImageRef.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Instance Methods 69
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

drawInContext:
Draws the receiver’s content in the specified graphics context.

- (void)drawInContext:(CGContextRef)ctx

Parameters
ctx

The graphics context in which to draw the content.

Discussion
Default implementation does nothing. The context may be clipped to protect valid layer content. Subclasses
that wish to find the actual region to draw can call CGContextGetClipBoundingBox. Called by the
display (page 69) method when the contents (page 51) property is being updated.

Subclasses can override this method to draw the receiver’s content.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

hitTest:
Returns the farthest descendant of the receiver in the layer hierarchy (including itself) that contains a specified
point.

- (CALayer *)hitTest:(CGPoint)thePoint

Parameters
thePoint

A point in the coordinate system of the receiver's superlayer.

Return Value
The layer that contains thePoint, or nil if the point lies outside the receiver’s bounds rectangle.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

init
Returns an initialized CALayer object.

- (id)init

Return Value
An initialized CALayer object.

Discussion
This is the designated initializer for CALayer.

70 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
+ layer (page 63)

Declared In
CALayer.h

initWithLayer:
Override to copy or initialize custom fields of the specified layer.

- (id)initWithLayer:(id)layer

Parameters
layer

The layer from which custom fields should be copied.

Return Value
A layer instance with any custom instance variables copied from layer.

Discussion
This initializer is used to create shadow copies of layers, for example, for the presentationLayer method.

Subclasses can optionally copy their instance variables into the new object.

Subclasses should always invoke the superclass implementation

Note: Invoking this method in any other situation will produce undefined behavior. Do not use this method
to initialize a new layer with an existing layer’s content.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

insertSublayer:above:
Inserts the layer into the receiver’s sublayers array, above the specified sublayer.

- (void)insertSublayer:(CALayer *)aLayer
above:(CALayer *)siblingLayer

Parameters
aLayer

The layer to be inserted to the receiver’s sublayer array.

sublayer
An existing sublayer in the receiver to insert aLayer above.

Instance Methods 71
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Special Considerations

If sublayer is not in the receiver’s sublayers (page 60) array, an exception is raised.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

insertSublayer:atIndex:
Inserts the layer as a sublayer of the receiver at the specified index.

- (void)insertSublayer:(CALayer *)aLayer
atIndex:(unsigned)index

Parameters
aLayer

The layer to be inserted to the receiver’s sublayer array.

index
The index in the receiver at which to insert aLayer. This value must not be greater than the count
of elements in the sublayer array.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Core Animation QuickTime Layer

Declared In
CALayer.h

insertSublayer:below:
Inserts the layer into the receiver’s sublayers array, below the specified sublayer.

- (void)insertSublayer:(CALayer *)aLayer
below:(CALayer *)sublayer

Parameters
aLayer

The layer to be inserted to the receiver’s sublayer array.

sublayer
An existing sublayer in the receiver to insert aLayer after.

Discussion
If sublayer is not in the receiver’s sublayers (page 60) array, an exception is raised.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

72 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

isDoubleSided
A synthesized accessor for the doubleSided (page 53) property.

- (BOOL)isDoubleSided

See Also
 @property doubleSided (page 53)

isHidden
A synthesized accessor for the hidden (page 54) property.

- (BOOL)isHidden

See Also
 @property hidden (page 54)

isOpaque
A synthesized accessor for the opaque (page 57) property.

- (BOOL)isOpaque

See Also
 @property opaque (page 57)

layoutIfNeeded
Recalculate the receiver’s layout, if required.

- (void)layoutIfNeeded

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

layoutSublayers
Called when the layer requires layout.

- (void)layoutSublayers

Discussion
The default implementation invokes the layout manager method layoutSublayersOfLayer: (page 144),
if a layout manager is specied and it implements that method. Subclasses can override this method to provide
their own layout algorithm, which must set the frame of each sublayer.

Instance Methods 73
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

modelLayer
Returns the model layer of the receiver, if it represents a current presentation layer.

- (id)presentationLayer

Return Value
A layer instance representing the underlying model layer.

Discussion
The result of calling this method after the transaction that produced the presentation layer has completed
is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

preferredFrameSize
Returns the preferred frame size of the layer in the coordinate space of the superlayer.

- (CGSize)preferredFrameSize

Return Value
Returns the receiver’s preferred frame size.

Discussion
The default implementation calls the layout manager, if one exists and it implements the
preferredSizeOfLayer:method. Otherwise, it returns the size of the receiver’s bounds (page 50) rectangle
mapped into coordinate space of the receiver’s superlayer (page 61).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

presentationLayer
Returns a copy of the layer containing all properties as they were at the start of the current transaction, with
any active animations applied.

- (id)presentationLayer

74 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Return Value
A layer instance representing the current presentation layer.

Discussion
This method provides a close approximation to the version of the layer that is currently being displayed. The
sublayers (page 60), mask (page 55), and superlayer (page 61) properties of the returned layer return
the presentation versions of these properties. This pattern carries through to the read-only layer methods.
For example, sending a hitTest: (page 70) message to the presentationLayerwill query the presentation
values of the layer tree.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

removeAllAnimations
Remove all animations attached to the receiver.

- (void)removeAllAnimations

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

removeAnimationForKey:
Remove the animation attached to the receiver with the specified key.

- (void)removeAnimationForKey:(NSString *)key

Parameters
key

The identifier of the animation to remove.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

removeFromSuperlayer
Removes the layer from the sublayers (page 60) array or mask (page 55) property of the receiver’s
superlayer (page 61).

- (void)removeFromSuperlayer

Instance Methods 75
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

renderInContext:
Renders the receiver and its sublayers into the specified context.

- (void)renderInContext:(CGContextRef)ctx

Parameters
ctx

The graphics context that the content is rendered in to.

Discussion
This method renders directly from the layer tree, ignoring any animations added to the render tree. Renders
in the coordinate space of the layer.

Important: The Mac OS X v10.5 implementation of this method does not support the entire Core Animation
composition model. QCCompositionLayer, CAOpenGLLayer, and QTMovieLayer layers are not rendered.
Additionally, layers that use 3D transforms are not rendered, nor are layers that specify
backgroundFilters (page 48), filters (page 53), compositingFilter (page 50), or a mask (page
55) values. Future versions of Mac OS X may add support for rendering these layers and properties.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

replaceSublayer:with:
Replaces the layer in the receiver’s sublayers array with the specified new layer.

- (void)replaceSublayer:(CALayer *)oldLayer
with:(CALayer *)newLayer

Parameters
oldLayer

The layer to be replaced to the receiver’s sublayer array.

newLayer
The layer with which to replace oldLayer in the receiver’s sublayer array.

Discussion
If the receiver is not the superlayer of oldLayer the behavior is undefined.

Availability
Available in Mac OS X v10.5 and later.

76 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Declared In
CALayer.h

resizeSublayersWithOldSize:
Informs the receiver’s sublayers that the receiver’s bounds rectangle size has changed.

- (void)resizeSublayersWithOldSize:(CGSize)size

Parameters
size

The previous size of the receiver's bounds rectangle.

Discussion
This method is used when the autoresizingmask property is used for resizing. It is called when the receiver’s
bounds property is altered. It calls resizeSublayersWithOldSize: on each sublayer to resize the sublayer's
frame to match the new superlayer bounds based on the sublayer's autoresizing mask.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

resizeWithOldSuperlayerSize:
Informs the receiver that the bounds size of its superview has changed.

- (void)resizeWithOldSuperlayerSize:(CGSize)size

Parameters
size

The previous size of the superlayer’s bounds rectangle

Discussion
This method is used when the autoresizingmask property is used for resizing. It is called when the receiver’s
bounds property is altered. It calls resizeWithOldSuperlayerSize: on each sublayer to resize the
sublayer's frame to match the new superlayer bounds based on the sublayer's autoresizing mask.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

scrollPoint:
Scrolls the receiver’s closest ancestor CAScrollLayer so that the specified point lies at the origin of the
layer.

- (void)scrollPoint:(CGPoint)thePoint

Instance Methods 77
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Parameters
thePoint

The point in the receiver to scroll to.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAScrollLayer.h

scrollRectToVisible:
Scrolls the receiver’s closest ancestor CAScrollLayer the minimum distance needed so that the specified
rectangle becomes visible.

- (void)scrollRectToVisible:(CGRect)theRect

Parameters
theRect

The rectangle to be made visible.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAScrollLayer.h

setAffineTransform:
Convenience method for setting the transform (page 61) property as an affine transform.

- (void)setAffineTransform:(CGAffineTransform)m

Parameters
m

The affine transform to set as the transform (page 61) property.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

setNeedsDisplay
Marks the receiver as needing display before the content is next committed.

- (void)setNeedsDisplay

Discussion
Calling this method will cause the receiver to recache its content. This will result in the layer receiving a
drawInContext: (page 70) which may result in the delegate receiving either a displayLayer: (page 80)
or drawLayer:inContext: (page 81) message.

78 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CALayer.h

setNeedsDisplayInRect:
Marks the region of the receiver within the specified rectangle as needing display.

- (void)setNeedsDisplayInRect:(CGRect)theRect

Parameters
theRect

The rectangular region of the receiver to mark as invalid; it should be specified in the coordinate
system of the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

setNeedsLayout
Called when the preferred size of the receiver may have changed.

- (void)setNeedsLayout

Discussion
This method is typically called when the receiver’s sublayers have changed. It marks that the receiver sublayers
must update their layout (by invoking layoutSublayers (page 73) on the receiver and all its superlayers).
If the receiver's layout manager implements the invalidateLayoutOfLayer: (page 143) method it is called.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

shouldArchiveValueForKey:
Specifies whether the value of the property for a given key is archived.

- (BOOL)shouldArchiveValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver’s properties.

Instance Methods 79
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Return Value
YES if the specified property should be archived, otherwise NO.

Discussion
The default implementation returns YES. Called by the object's implementation of encodeWithCoder:.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Delegate Methods

actionForLayer:forKey:
Allows the delegate to customize the action for a layer.

- (id<CAAction>)actionForLayer:(CALayer *)layer
 forKey
:(NSString *)key

Parameters
layer

The layer that is the target of the action.

key
The identifier of the action.

Return Value
Returns an object implementing the CAAction protocol. May return nil if the delegate doesn't specify a
behavior for key.

Discussion
See actionForKey: (page 63) for a description of the action search pattern.

Availability
Available in Mac OS X v10.5 and later.

See Also
– actionForLayer:forKey: (page 80)
 @property actions (page 47)
+ defaultActionForKey: (page 62)
 @property style (page 59)

Declared In
CALayer.h

displayLayer:
Allows the delegate to override the display (page 69) implementation.

80 Delegate Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

- (void)displayLayer:(CALayer *)layer

Parameters
layer

The layer to display.

Discussion
If defined, called by the default implementation of display, in which case it should set the layer’s contents
property.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

drawLayer:inContext:
Allows the delegate to override the layer’s drawInContext: implementation.

- (void)drawLayer:(CALayer *)layer
inContext:(CGContextRef)ctx

Parameters
layer

The layer to draw the content of.

ctx
The graphics context to draw in to.

Discussion
If defined, called by the default implementation of drawInContext: (page 70).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Constants

Autoresizing Mask
These constants are used by the autoresizingMask (page 48) property.

Constants 81
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

enum CAAutoresizingMask
{
 kCALayerNotSizable = 0,
 kCALayerMinXMargin = 1U << 0,
 kCALayerWidthSizable = 1U << 1,
 kCALayerMaxXMargin = 1U << 2,
 kCALayerMinYMargin = 1U << 3,
 kCALayerHeightSizable = 1U << 4,
 kCALayerMaxYMargin = 1U << 5
};

Constants
kCALayerNotSizable

The receiver cannot be resized.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerMinXMargin
The left margin between the receiver and its superview is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerWidthSizable
The receiver’s width is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerMaxXMargin
The right margin between the receiver and its superview is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerMinYMargin
The bottom margin between the receiver and its superview is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerHeightSizable
The receiver’s height is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerMaxYMargin
The top margin between the receiver and its superview is flexible.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

Declared In
CALayer.h

82 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Action Identifiers
These constants are the predefined action identifiers used by actionForKey: (page 63),
addAnimation:forKey: (page 64),defaultActionForKey: (page 62),removeAnimationForKey: (page
75), actionForLayer:forKey: (page 80), and the CAAction protocol method
runActionForKey:object:arguments: (page 141).

NSString * const kCAOnOrderIn;
NSString * const kCAOnOrderOut;
NSString * const kCATransition;

Constants
kCAOnOrderIn

The identifier that represents the action taken when a layer becomes visible, either as a result being
inserted into the visible layer hierarchy or the layer is no longer set as hidden.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAOnOrderOut
The identifier that represents the action taken when the layer is removed from the layer hierarchy or
is hidden.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCATransition
The identifier that represents a transition animation.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Edge Antialiasing Mask
This mask is used by the edgeAntialiasingMask (page 53) property.

enum CAEdgeAntialiasingMask
{
 kCALayerLeftEdge = 1U << 0,
 kCALayerRightEdge = 1U << 1,
 kCALayerBottomEdge = 1U << 2,
 kCALayerTopEdge = 1U << 3,
};

Constants
kCALayerLeftEdge

Specifies that the left edge of the receiver’s content should be antialiased.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

Constants 83
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

kCALayerRightEdge
Specifies that the right edge of the receiver’s content should be antialiased.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerBottomEdge
Specifies that the bottom edge of the receiver’s content should be antialiased.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCALayerTopEdge
Specifies that the top edge of the receiver’s content should be antialiased.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Contents Gravity Values
The contents gravity constants specify the position of the content object when the layer bounds is larger
than the bounds of the content object. The are used by the contentsGravity (page 51) property.

NSString * const kCAGravityCenter;
NSString * const kCAGravityTop;
NSString * const kCAGravityBottom;
NSString * const kCAGravityLeft;
NSString * const kCAGravityRight;
NSString * const kCAGravityTopLeft;
NSString * const kCAGravityTopRight;
NSString * const kCAGravityBottomLeft;
NSString * const kCAGravityBottomRight;
NSString * const kCAGravityResize;
NSString * const kCAGravityResizeAspect;
NSString * const kCAGravityResizeAspectFill;

Constants
kCAGravityCenter

The content is horizontally and verticallycentered in the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityTop
The content is horizontally centered at the top-edge of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityBottom
The content is horizontally centered at the bottom-edge of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

84 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

kCAGravityLeft
The content is vertically centered at the left-edge of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityRight
The content is vertically centered at the right-edge of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityTopLeft
The content is positioned in the top-left corner of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityTopRight
The content is positioned in the top-right corner of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityBottomLeft
The content is positioned in the bottom-left corner of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityBottomRight
The content is positioned in the bottom-right corner of the bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityResize
The content is resized to fit the entire bounds rectangle.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityResizeAspect
The content is resized to fit the bounds rectangle, preserving the aspect of the content. If the content
does not completely fill the bounds rectangle, the content is centered in the partial axis.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAGravityResizeAspectFill
The content is resized to completely fill the bounds rectangle, while still preserving the aspect of the
content. The content is centered in the axis it exceeds.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Constants 85
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Identity Transform
Defines the identity transform matrix used by Core Animation.

const CATransform3D CATransform3DIdentity

Constants
CATransform3DIdentity

The identity transform: [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1].

Available in Mac OS X v10.5 and later.

Declared in CATransform3D.h.

Declared In
CATransform3D.h

Scaling Filters
These constants specify the scaling filters used by magnificationFilter (page 55) and
minificationFilter (page 56).

NSString * const kCAFilterLinear;
NSString * const kCAFilterNearest;

Constants
kCAFilterLinear

Linear interpolation filter.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

kCAFilterNearest
Nearest neighbor interpolation filter.

Available in Mac OS X v10.5 and later.

Declared in CALayer.h.

Declared In
CALayer.h

Transform
Defines the standard transform matrix used throughout Core Animation.

struct CATransform3D
{
 CGFloat m11, m12, m13, m14;
 CGFloat m21, m22, m23, m24;
 CGFloat m31, m32, m33, m34;
 CGFloat m41, m42, m43, m44;
};
typedef struct CATransform3D CATransform3D;

Fields
m11

The entry at position 1,1 in the matrix.

86 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

m12
The entry at position 1,2 in the matrix.

m13
The entry at position 1,3 in the matrix.

m14
The entry at position 1,4 in the matrix.

m21
The entry at position 2,1 in the matrix.

m22
The entry at position 2,2 in the matrix.

m23
The entry at position 2,3 in the matrix.

m24
The entry at position 2,4 in the matrix.

m31
The entry at position 3,1 in the matrix.

m32
The entry at position 3,2 in the matrix.

m33
The entry at position 3,3 in the matrix.

m34
The entry at position 3,4 in the matrix.

m41
The entry at position 4,1 in the matrix.

m42
The entry at position 4,2 in the matrix.

m43
The entry at position 4,3 in the matrix.

m44
The entry at position 4,4 in the matrix.

Discussion
The transform matrix is used to rotate, scale, translate, skew, and project the layer content. Functions are
provided for creating, concatenating, and modifying CATransform3D data.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

Constants 87
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

88 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

CALayer Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAMediaTimingFunction.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAMediaTimingFunction represents one segment of a function that defines the pacing of an animation
as a timing curve. The function maps an input time normalized to the range [0,1] to an output time also in
the range [0,1].

Tasks

Creating Timing Functions

+ functionWithName: (page 90)
Creates and returns a new instance of CAMediaTimingFunction configured with the predefined
timing function specified by name.

+ functionWithControlPoints:::: (page 90)
Creates and returns a new instance of CAMediaTimingFunction timing function modeled as a cubic
bezier curve using the specified control points.

– initWithControlPoints:::: (page 91)
Returns an initialized timing function modeled as a cubic bezier curve using the specified control
points.

Overview 89
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

Accessing the Control Points

– getControlPointAtIndex:values: (page 91)
Returns the control point for the specified index.

Class Methods

functionWithControlPoints::::
Creates and returns a new instance of CAMediaTimingFunction timing function modeled as a cubic bezier
curve using the specified control points.

+ (id)functionWithControlPoints:(float)c1x
:(float)c1y
:(float)c2x
:(float)c2y

Parameters
c1x

A floating point number representing the x position of the c1 control point.

c1y
A floating point number representing the y position of the c1 control point.

c2x
A floating point number representing the x position of the c2 control point.

c2y
A floating point number representing the y position of the c2 control point.

Return Value
A new instance of CAMediaTimingFunction with the timing function specified by the provided control
points.

Discussion
The end points of the bezier curve are automatically set to (0.0,0.0) and (1.0,1.0). The control points defining
the bezier curve are: [(0.0,0.0), (c1x,c1y), (c2x,c2y), (1.0,1.0)].

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTimingFunction.h

functionWithName:
Creates and returns a new instance of CAMediaTimingFunction configured with the predefined timing
function specified by name.

+ (id)functionWithName:(NSString *)name

90 Class Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

Parameters
name

The timing function to use as specified in “Predefined timing functions” (page 92).

Return Value
A new instance of CAMediaTimingFunction with the timing function specified by name.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTimingFunction.h

Instance Methods

getControlPointAtIndex:values:
Returns the control point for the specified index.

- (void)getControlPointAtIndex:(size_t)index
values:(float[2])ptr

Parameters
index

An integer specifying the index of the control point to return.

ptr
A pointer to an array that, upon return, will contain the x and y values of the specified point.

Discussion
The value of index must between 0 and 3.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTimingFunction.h

initWithControlPoints::::
Returns an initialized timing function modeled as a cubic bezier curve using the specified control points.

- (id)initWithControlPoints:(float)c1x
:(float)c1y
:(float)c2x
:(float)c2y

Parameters
c1x

A floating point number representing the x position of the c1 control point.

c1y
A floating point number representing the y position of the c1 control point.

Instance Methods 91
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

c2x
A floating point number representing the x position of the c2 control point.

c2y
A floating point number representing the y position of the c2 control point.

Return Value
An instance of CAMediaTimingFunctionwith the timing function specified by the provided control points.

Discussion
The end points of the bezier curve are automatically set to (0.0,0.0) and (1.0,1.0). The control points defining
the bezier curve are: [(0.0,0.0), (c1x,c1y), (c2x,c2y), (1.0,1.0)].

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTimingFunction.h

Constants

Predefined timing functions
These constants are used to specify one of the predefined timing functions used by
functionWithName: (page 90).

NSString * const kCAMediaTimingFunctionLinear;
NSString * const kCAMediaTimingFunctionEaseIn;
NSString * const kCAMediaTimingFunctionEaseOut;
NSString * const kCAMediaTimingFunctionEaseInEaseOut;

Constants
kCAMediaTimingFunctionLinear

Specifies linear pacing. A linear pacing causes an animation to occur evenly over its duration.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTimingFunction.h.

kCAMediaTimingFunctionEaseIn
Specifies ease-in pacing. Ease-in pacing causes the animation to begin slowly, and then speed up as
it progresses.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTimingFunction.h.

kCAMediaTimingFunctionEaseOut
Specifies ease-out pacing. An ease-out pacing causes the animation to begin quickly, and then slow
as it completes.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTimingFunction.h.

92 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

kCAMediaTimingFunctionEaseInEaseOut
Specifies ease-in ease-out pacing. An ease-in ease-out animation begins slowly, accelerates through
the middle of its duration, and then slows again before completing.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTimingFunction.h.

Declared In
CAMediaTimingFunction.h

Constants 93
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

94 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

CAMediaTimingFunction Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAOpenGLLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Related sample code CALayerEssentials

Overview

CAOpenGLLayer provides a layer suitable for rendering OpenGL content.

To provide OpenGL content you subclass CAOpenGLLayer and override
drawInCGLContext:pixelFormat:forLayerTime:displayTime: (page 98). You can specify that the
OpenGL content is static by setting the asynchronous (page 96) property to NO.

Tasks

Drawing the Content

 asynchronous (page 96) property
Determines when the contents of the layer are updated.

– isAsynchronous (page 99)
A synthesized accessor for the asynchronous (page 96) property.

– canDrawInCGLContext:pixelFormat:forLayerTime:displayTime: (page 97)
Returns whether the receiver should draw OpenGL content for the specified time.

– drawInCGLContext:pixelFormat:forLayerTime:displayTime: (page 98)
Draws the OpenGL content for the specified time.

Overview 95
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

Managing the Pixel Format

– copyCGLPixelFormatForDisplayMask: (page 98)
Returns the OpenGL pixel format suitable for rendering to the set of displays specified by the display
mask.

– releaseCGLPixelFormat: (page 99)
Releases the specified OpenGL pixel format object.

Managing the Rendering Context

– copyCGLContextForPixelFormat: (page 97)
Returns the rendering context the receiver requires for the specified pixel format.

– releaseCGLContext: (page 99)
Releases the specified rendering context.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

asynchronous
Determines when the contents of the layer are updated.

@property BOOL asynchronous

Discussion
If NO, the contents of the layer are updated only in response to receiving a setNeedsDisplay (page 78)
message. When YES, the receiver’s
canDrawInCGLContext:pixelFormat:forLayerTime:displayTime: (page 97) is called periodically
to determine if the OpenGL content should be updated.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isAsynchronous (page 99)

Related Sample Code
CALayerEssentials

Declared In
CAOpenGLLayer.h

96 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

Instance Methods

canDrawInCGLContext:pixelFormat:forLayerTime:displayTime:
Returns whether the receiver should draw OpenGL content for the specified time.

- (BOOL)canDrawInCGLContext:(CGLContextObj)glContext
pixelFormat:(CGLPixelFormatObj)pixelFormat
forLayerTime:(CFTimeInterval)timeInterval
displayTime:(const CVTimeStamp *)timeStamp

Parameters
glContext

The CGLContextObj in to which the OpenGL content would be drawn.

pixelFormat
The pixel format used when the glContext was created.

timeInterval
The current layer time.

timeStamp
The display timestamp associated with timeInterval. Can be null.

Return Value
YES if the receiver should render OpenGL content, NO otherwise.

Discussion
This method is called before attempting to render the frame for the layer time specified by timeInterval.
If the method returns NO, the frame is skipped. The default implementation always returns YES.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

copyCGLContextForPixelFormat:
Returns the rendering context the receiver requires for the specified pixel format.

- (CGLContextObj)copyCGLContextForPixelFormat:(CGLPixelFormatObj)pixelFormat

Parameters
pixelFormat

The pixel format for the rendering context.

Return Value
A new CGLContext with renderers for pixelFormat.

Discussion
This method is called when a rendering context is needed by the receiver. The default implementation
allocates a new context with a null share context.

You should not call this method directly, it is intended to be overridden by subclasses.

Instance Methods 97
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

copyCGLPixelFormatForDisplayMask:
Returns the OpenGL pixel format suitable for rendering to the set of displays specified by the display mask.

- (CGLPixelFormatObj)copyCGLPixelFormatForDisplayMask:(uint32_t)mask

Parameters
mask

The display mask the OpenGL content will be rendered on.

Discussion
This method is called when a pixel format object is needed for the receiver. The default implementation
returns a 32bpp fixed point pixelf format, with the NoRecovery and Accelerated flags set.

You should not call this method directly, it is intended to be overridden by subclasses.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

drawInCGLContext:pixelFormat:forLayerTime:displayTime:
Draws the OpenGL content for the specified time.

- (void)drawInCGLContext:(CGLContextObj)glContext
pixelFormat:(CGLPixelFormatObj)pixelFormat
forLayerTime:(CFTimeInterval)timeInterval
displayTime:(const CVTimeStamp *)timeStamp

Parameters
glContext

The rendering context in to which the OpenGL content should be rendered.

pixelFormat
The pixel format used when the glContext was created.

timeInterval
The current layer time.

timeStamp
The display timestamp associated with timeInterval. Can be null.

Discussion
This method is called when a new frame needs to be generated for the layer time specified by timeInterval.
The viewport of glContext is set correctly for the size of the layer. No other state is defined. If the method
enables OpenGL features, it should disable them before returning.

98 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

The default implementation of the method flushes the context.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

isAsynchronous
A synthesized accessor for the asynchronous (page 96) property.

- (BOOL)isAsynchronous

See Also
 @property asynchronous (page 96)

releaseCGLContext:
Releases the specified rendering context.

- (void)releaseCGLContext:(CGLContextObj)glContext

Parameters
glContext

The rendering context to release.

Discussion
This method is called when the OpenGL context that was previously returned by
copyCGLContextForPixelFormat: (page 97) is no longer needed.

You should not call this method directly, it is intended to be overridden by subclasses.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

releaseCGLPixelFormat:
Releases the specified OpenGL pixel format object.

- (void)releaseCGLPixelFormat:(CGLPixelFormatObj)pixelFormat

Parameters
pixelFormat

The pixel format object to release.

Discussion
This method is called when the OpenGL pixel format that was previously returned by
copyCGLContextForPixelFormat: (page 97).

Instance Methods 99
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

You should not call this method directly, it is intended to be overridden by subclasses.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAOpenGLLayer.h

100 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

CAOpenGLLayer Class Reference

Inherits from CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CAPropertyAnimation is an abstract subclass of CAAnimation for creating animations that manipulate
the value of layer properties. The property is specified using a key path that is relative to the layer using the
animation.

Tasks

Animated Key Path

 keyPath (page 103) property
Specifies the key path the receiver animates.

Property Value Calculation Behavior

 cumulative (page 102) property
Determines if the value of the property is the value at the end of the previous repeat cycle, plus the
value of the current repeat cycle.

– isCumulative (page 104)
A synthesized accessor for the cumulative (page 102) property.

Overview 101
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

CAPropertyAnimation Class Reference

 additive (page 102) property
Determines if the value specified by the animation is added to the current render tree value to produce
the new render tree value.

– isAdditive (page 103)
A synthesized accessor for the additive (page 102) property.

Creating an Animation

+ animationWithKeyPath: (page 103)
Creates and returns an CAPropertyAnimation instance for the specified key path.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

additive
Determines if the value specified by the animation is added to the current render tree value to produce the
new render tree value.

@property BOOL additive

Discussion
If YES, the value specified by the animation will be added to the current render tree value of the property
to produce the new render tree value. The addition function is type-dependent, e.g. for affine transforms the
two matrices are concatenated. The default is NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

cumulative
Determines if the value of the property is the value at the end of the previous repeat cycle, plus the value of
the current repeat cycle.

@property BOOL cumulative

Discussion
If YES, then the value of the property is the value at the end of the previous repeat cycle, plus the value of
the current repeat cycle. If NO, the value of the property is simply the value calculated for the current repeat
cycle. The default is NO.

Availability
Available in Mac OS X v10.5 and later.

102 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

CAPropertyAnimation Class Reference

Declared In
CAAnimation.h

keyPath
Specifies the key path the receiver animates.

@property(copy) NSString *keyPath

Discussion
The key path is relative to the layer the receiver is attached to.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Class Methods

animationWithKeyPath:
Creates and returns an CAPropertyAnimation instance for the specified key path.

+ (id)animationWithKeyPath:(NSString *)keyPath

Parameters
keyPath

The key path of the property to be animated.

Return Value
A new instance of CAPropertyAnimation with the key path set to keyPath.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Instance Methods

isAdditive
A synthesized accessor for the additive (page 102) property.

- (BOOL)isAdditive

Class Methods 103
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

CAPropertyAnimation Class Reference

See Also
 @property additive (page 102)

isCumulative
A synthesized accessor for the cumulative (page 102) property.

- (BOOL)isCumulative

See Also
 @property cumulative (page 102)

104 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

CAPropertyAnimation Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CARenderer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CARenderer allows an application to render a layer tree into a CGL context. For real-time output you should
use an instance of NSView to host the layer-tree.

Tasks

Rendered Layer

 layer (page 106) property
The root layer of the layer-tree the receiver should render.

Renderer Geometry

 bounds (page 106) property
The bounds of the receiver.

Create a New Renderer

+ rendererWithCGLContext:options: (page 107)
Creates and returns a CARenderer instance with the render target specified by the Core OpenGL
context.

Overview 105
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

Render a Frame

– beginFrameAtTime:timeStamp: (page 107)
Begin rendering a frame at the specified time.

– updateBounds (page 109)
Returns the bounds of the update region that contains all pixels that will be rendered by the current
frame.

– addUpdateRect: (page 107)
Adds the rectangle to the update region of the current frame.

– render (page 108)
Render the update region of the current frame to the target context.

– nextFrameTime (page 108)
Returns the time at which the next update should happen.

– endFrame (page 108)
Release any data associated with the current frame.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

bounds
The bounds of the receiver.

@property CGRect bounds

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

layer
The root layer of the layer-tree the receiver should render.

@property(retain) CALayer *layer

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

106 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

Class Methods

rendererWithCGLContext:options:
Creates and returns a CARenderer instance with the render target specified by the Core OpenGL context.

+ (CARenderer *)rendererWithCGLContext:(void *)ctx
options:(NSDictionary *)dict

Parameters
ctx

A Core OpenGL render context that is used as the render target.

dict
A dictionary of optional parameters.

Return Value
A new instance of CARenderer that will use ctx as the render target.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

Instance Methods

addUpdateRect:
Adds the rectangle to the update region of the current frame.

- (void)addUpdateRect:(CGRect)aRect

Parameters
aRect

A rectangle defining the region to be added to the update region.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

beginFrameAtTime:timeStamp:
Begin rendering a frame at the specified time.

- (void)beginFrameAtTime:(CFTimeInterval)timeInterval
timeStamp:(CVTimeStamp *)timeStamp

Class Methods 107
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

Parameters
timeInterval

The layer time.

timeStamp
The display timestamp associated with timeInterval. Can be null.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

endFrame
Release any data associated with the current frame.

- (void)endFrame

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

nextFrameTime
Returns the time at which the next update should happen.

- (CFTimeInterval)nextFrameTime

Return Value
The time at which the next update should happen.

Discussion
If infinite, no update needs to be scheduled yet. If nextFrameTime is the current frame time, a continuous
animation is running and an update should be scheduled after an appropriate delay.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

render
Render the update region of the current frame to the target context.

- (void)render

Availability
Available in Mac OS X v10.5 and later.

108 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

Declared In
CARenderer.h

updateBounds
Returns the bounds of the update region that contains all pixels that will be rendered by the current frame.

- (CGRect)updateBounds

Return Value
The bounds of the update region..

Discussion
Initially updateBounds will include all differences between the current frame and the previously rendered
frame.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CARenderer.h

Instance Methods 109
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

110 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

CARenderer Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAScrollLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Related sample code CALayerEssentials

Overview

The CAScrollLayer class is a subclass of CALayer that simplifies displaying a portion of a layer. The extent
of the scrollable area of the CAScrollLayer is defined by the layout of its sublayers. The visible portion of
the layer content is set by specifying the origin as a point or a rectangular area of the contents to be displayed.
CAScrollLayer does not provide keyboard or mouse event-handling, nor does it provide visible scrollers.

Tasks

Scrolling Constraints

 scrollMode (page 112) property
Defines the axes in which the layer may be scrolled.

Scrolling the Layer

– scrollToPoint: (page 112)
Changes the origin of the receiver to the specified point.

– scrollToRect: (page 112)
Scroll the contents of the receiver to ensure that the rectangle is visible.

Overview 111
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

CAScrollLayer Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

scrollMode
Defines the axes in which the layer may be scrolled.

@property(copy) NSString *scrollMode

Discussion
The possible values are described in “Scroll Modes” (page 113). The default is kCAScrollBoth.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAScrollLayer.h

Instance Methods

scrollToPoint:
Changes the origin of the receiver to the specified point.

- (void)scrollToPoint:(CGPoint)thePoint

Parameters
thePoint

The new origin.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAScrollLayer.h

scrollToRect:
Scroll the contents of the receiver to ensure that the rectangle is visible.

- (void)scrollToRect:(CGRect)theRect

Parameters
theRect

The rectangle that should be visible.

Availability
Available in Mac OS X v10.5 and later.

112 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

CAScrollLayer Class Reference

Related Sample Code
CALayerEssentials

Declared In
CAScrollLayer.h

Constants

Scroll Modes
These constants describe the supported scroll modes used by the scrollMode (page 112) property.

NSString * const kCAScrollNone;
NSString * const kCAScrollVertically;
NSString * const kCAScrollHorizontally;
NSString * const kCAScrollBoth;

Constants
kCAScrollNone

The receiver is unable to scroll.

Available in Mac OS X v10.5 and later.

Declared in CAScrollLayer.h.

kCAScrollVertically
The receiver is able to scroll vertically.

Available in Mac OS X v10.5 and later.

Declared in CAScrollLayer.h.

kCAScrollHorizontally
The receiver is able to scroll horizontally.

Available in Mac OS X v10.5 and later.

Declared in CAScrollLayer.h.

kCAScrollBoth
The receiver is able to scroll both horizontally and vertically.

Available in Mac OS X v10.5 and later.

Declared in CAScrollLayer.h.

Declared In
CAScrollLayer.h

Constants 113
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

CAScrollLayer Class Reference

114 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

CAScrollLayer Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Related sample code CALayerEssentials

Overview

The CATextLayer provides simple text layout and rendering of plain or attributed strings. The first line is
aligned to the top of the layer.

Note: CATextLayer disabled sub-pixel antialiasing when rendering text. Text can only be drawn using sub-pixel
antialiasing when it is composited into an existing opaque background at the same time that it's rasterized.
There is no way to draw subpixel-antialiased text by itself, whether into an image or a layer, separately in
advance of having the background pixels to weave the text pixels into. Setting the opacity property of the
layer to YES does not change the rendering mode.

Note: When a CATextLayer instance is positioned using the CAConstraintLayoutManager Class Reference
the bounds of the layer is resized to fit the text content.

Tasks

Getting and Setting the Text

 string (page 118) property
The text to be rendered by the receiver.

Overview 115
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

Text Visual Properties

 font (page 116) property
The font used to render the receiver’s text.

 fontSize (page 117) property
The font size used to render the receiver’s text.

 foregroundColor (page 117) property
The color used to render the receiver’s text.

Text Alignment and Truncation

 wrapped (page 118) property
Determines whether the text is wrapped to fit within the receiver’s bounds.

– isWrapped (page 119)
A synthesized accessor for the wrapped (page 118) property.

 alignmentMode (page 116) property
Determines how individual lines of text are horizontally aligned within the receiver’s bounds.

 truncationMode (page 118) property
Determines how the text is truncated to fit within the receiver’s bounds.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

alignmentMode
Determines how individual lines of text are horizontally aligned within the receiver’s bounds.

@property(copy) NSString *alignmentMode

Discussion
The possible values are described in “Horizontal alignment modes” (page 120). Defaults to
kCAAlignmentNatural (page 120).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATextLayer.h

font
The font used to render the receiver’s text.

116 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

@property CFTypeRef font

Discussion
May be either a CTFontRef, a CGFontRef, an instance of NSFont, or a string naming the font. Defaults to
Helvetica.

The font property is only used when the string (page 118) property is not an NSAttributedString.

Note: If the font property specifies a font size (if it is a CTFontRef, a CGFontRef, an instance of NSFont)
the font size is ignored.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATextLayer.h

fontSize
The font size used to render the receiver’s text.

@property CGFloat fontSize

Discussion
Defaults to 36.0.

The font property is only used when the string (page 118) property is not an NSAttributedString.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATextLayer.h

foregroundColor
The color used to render the receiver’s text.

@property CGColorRef foregroundColor

Discussion
Defaults to opaque white.

The font property is only used when the string (page 118) property is not an NSAttributedString.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CATextLayer.h

Properties 117
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

string
The text to be rendered by the receiver.

@property(copy) id string

Discussion
The text must be an instance of NSString or NSAttributedString. Defaults to nil.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials

Declared In
CATextLayer.h

truncationMode
Determines how the text is truncated to fit within the receiver’s bounds.

@property(copy) NSString *truncationMode

Discussion
The possible values are described in“Truncation modes” (page 119). Defaults tokCATruncationNone (page
119).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATextLayer.h

wrapped
Determines whether the text is wrapped to fit within the receiver’s bounds.

@property BOOL wrapped

Discussion
Defaults to NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isWrapped (page 119)

Declared In
CATextLayer.h

118 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

Instance Methods

isWrapped
A synthesized accessor for the wrapped (page 118) property.

- (BOOL)isWrapped

See Also
 @property wrapped (page 118)

Constants

Truncation modes
These constants are used by the truncationMode (page 118) property.

NSString * const kCATruncationNone;
NSString * const kCATruncationStart;
NSString * const kCATruncationEnd;
NSString * const kCATruncationMiddle;

Constants
kCATruncationNone

If the wrapped (page 118) property is YES, the text is wrapped to the receiver’s bounds, otherwise
the text is clipped to the receiver’s bounds.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCATruncationStart
Each line is displayed so that the end fits in the container and the missing text is indicated by some
kind of ellipsis glyph.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCATruncationEnd
Each line is displayed so that the beginning fits in the container and the missing text is indicated by
some kind of ellipsis glyph.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCATruncationMiddle
Each line is displayed so that the beginning and end fit in the container and the missing text is
indicated by some kind of ellipsis glyph in the middle.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

Declared In
CATextLayer.h

Instance Methods 119
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

Horizontal alignment modes
These constants are used by the alignmentMode (page 116) property.

NSString * const kCAAlignmentNatural;
NSString * const kCAAlignmentLeft;
NSString * const kCAAlignmentRight;
NSString * const kCAAlignmentCenter;
NSString * const kCAAlignmentJustified;

Constants
kCAAlignmentNatural

Use the natural alignment of the text’s script.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCAAlignmentLeft
Text is visually left aligned.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCAAlignmentRight
Text is visually right aligned.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCAAlignmentCenter
Text is visually center aligned.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

kCAAlignmentJustified
Text is justified.

Available in Mac OS X v10.5 and later.

Declared in CATextLayer.h.

Declared In
CATextLayer.h

120 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

CATextLayer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CATransaction.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CATransaction is the Core Animation mechanism for batching multiple layer-tree operations into atomic
updates to the render tree. Every modification to a layer tree must be part of a transaction Nested transactions
are supported.

Core Animation supports two types of transactions: implicit transactions and explicit transactions. Implicit
transactions are created automatically when the layer tree is modified by a thread without an active transaction
and are committed automatically when the thread's run-loop next iterates. Explicit transactions occur when
the the application sends the CATransaction class a begin (page 122) message before modifying the layer
tree, and a commit (page 122) message afterwards.

In some circumstances (for example, if there is no run-loop, or the run-loop is blocked) it may be necessary
to use explicit transactions to get timely render tree updates.

Tasks

Creating and Committing Transactions

+ begin (page 122)
Begin a new transaction for the current thread.

+ commit (page 122)
Commit all changes made during the current transaction.

+ flush (page 122)
Flushes any extant implicit transaction.

Overview 121
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

CATransaction Class Reference

Getting and Setting Transaction Properties

+ valueForKey: (page 123)
Returns the arbitrary keyed-data specified by the given key.

+ setValue:forKey: (page 123)
Sets the arbitrary keyed-data for the specified key.

Class Methods

begin
Begin a new transaction for the current thread.

+ (void)begin

Discussion
The transaction is nested within the thread’s current transaction, if there is one.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransaction.h

commit
Commit all changes made during the current transaction.

+ (void)commit

Special Considerations

Raises an exception if no current transaction exists.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransaction.h

flush
Flushes any extant implicit transaction.

+ (void)flush

Discussion
Delays the commit until any nested explicit transactions have completed.

122 Class Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

CATransaction Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransaction.h

setValue:forKey:
Sets the arbitrary keyed-data for the specified key.

+ (void)setValue:(id)anObject
forKey:(NSString *)key

Parameters
anObject

The value for the key identified by key.

key
The name of one of the receiver's properties.

Discussion
Nested transactions have nested data scope; setting a key always sets it in the innermost scope.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransaction.h

valueForKey:
Returns the arbitrary keyed-data specified by the given key.

+ (id)valueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Return Value
The value for the data specified by the key.

Discussion
Nested transactions have nested data scope. Requesting a value for a key first searches the innermost scope,
then the enclosing transactions.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransaction.h

Class Methods 123
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

CATransaction Class Reference

Constants

Transaction properties
These constants define the property keys used by valueForKey: (page 123) and setValue:forKey: (page
123).

NSString * const kCATransactionAnimationDuration;
NSString * const kCATransactionDisableActions;

Constants
kCATransactionAnimationDuration

Default duration, in seconds, for animations added to layers. The value for this key must be an instance
of NSNumber.

Available in Mac OS X v10.5 and later.

Declared in CATransaction.h.

kCATransactionDisableActions
If YES, implicit actions for property changes are suppressed. The value for this key must be an instance
of NSNumber.

Available in Mac OS X v10.5 and later.

Declared in CATransaction.h.

Declared In
CATransaction.h

124 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

CATransaction Class Reference

Inherits from CAAnimation : NSObject

Conforms to NSCoding (CAAnimation)
NSCopying (CAAnimation)
CAAction (CAAnimation)
CAMediaTiming (CAAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CATransition class implements transition animations for a layer. You can specify the transition effect
from a set of predefined transitions or by providing a custom CIFilter instance.

Tasks

Transition Start and End Point

 startProgress (page 127) property
Indicates the start point of the receiver as a fraction of the entire transition.

 endProgress (page 126) property
Indicates the end point of the receiver as a fraction of the entire transition.

Transition Properties

 type (page 127) property
Specifies the predefined transition type.

 subtype (page 127) property
Specifies an optional subtype that indicates the direction for the predefined motion-based transitions.

Overview 125
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

CATransition Class Reference

Custom Transition Filter

 filter (page 126) property
An optional CoreImage filter object that provides the transition.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

endProgress
Indicates the end point of the receiver as a fraction of the entire transition.

@property float endProgress

Discussion
The value must be greater than or equal to startProgress (page 127), and not greater than 1.0. If
endProgress is less than startProgress (page 127) the behavior is undefined. The default value is 1.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

filter
An optional CoreImage filter object that provides the transition.

@property(retain) CIFilter *filter

Discussion
If specified, the filter must support both kCIInputImageKey and kCIInputTargetImageKey input keys,
and the kCIOutputImageKey output key. The filter may optionally support the kCIInputExtentKey input
key, which is set to a rectangle describing the region in which the transition should run. If filter does not
support the required input and output keys the behavior is undefined.

Defaults to nil. When a transition filter is specified the type (page 127) and subtype (page 127) properties
are ignored.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

126 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

CATransition Class Reference

startProgress
Indicates the start point of the receiver as a fraction of the entire transition.

@property float startProgress

Discussion
Legal values are numbers between 0.0 and 1.0. For example, to start the transition half way through its
progress set startProgress to 0.5. The default value is 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

subtype
Specifies an optional subtype that indicates the direction for the predefined motion-based transitions.

@property(copy) NSString *subtype

Discussion
The possible values are shown in “Common Transition Subtypes” (page 128). The default is nil.

This property is ignored if a custom transition is specified in the filter (page 126) property.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

type
Specifies the predefined transition type.

@property(copy) NSString *type

Discussion
The possible values are shown in “Common Transition Types” (page 128). This property is ignored if a
custom transition is specified in the filter (page 126) property. The default is kCATransitionFade (page
128).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAAnimation.h

Properties 127
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

CATransition Class Reference

Constants

Common Transition Types
These constants specify the transition types that can be used with the type (page 127) property.

NSString * const kCATransitionFade;
NSString * const kCATransitionMoveIn;
NSString * const kCATransitionPush;
NSString * const kCATransitionReveal;

Constants
kCATransitionFade

The layer’s content fades as it becomes visible or hidden.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionMoveIn
The layer’s content slides into place over any existing content. The “Common Transition
Subtypes” (page 128) are used with this transition.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionPush
The layer’s content pushes any existing content as it slides into place. The “Common Transition
Subtypes” (page 128) are used with this transition.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionReveal
The layer’s content is revealed gradually in the direction specified by the transition subtype. The
“Common Transition Subtypes” (page 128) are used with this transition.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

Declared In
CATransition.h

Common Transition Subtypes
These constants specify the direction of motion-based transitions. They are used with the subtype (page
127) property.

128 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

CATransition Class Reference

NSString * const kCATransitionFromRight;
NSString * const kCATransitionFromLeft;
NSString * const kCATransitionFromTop;
NSString * const kCATransitionFromBottom;

Constants
kCATransitionFromRight

The transition begins at the right side of the layer.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionFromLeft
The transition begins at the left side of the layer.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionFromTop
The transition begins at the top of the layer.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

kCATransitionFromBottom
The transition begins at the bottom of the layer.

Available in Mac OS X v10.5 and later.

Declared in CAAnimation.h.

Declared In
CATransition.h

Constants 129
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

CATransition Class Reference

130 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

CATransition Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Declared in CACIFilterAdditions.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook
Core Image Programming Guide

Overview

Core Animation adds two additional properties to the CIFilter class. These properties are accessible through
key-value coding as well as the properties declared below.

Tasks

Naming Filter Instances

 name (page 132) property
The name of the receiver.

Enabling Filter Instances

 enabled (page 132) property
Determines if the receiver is enabled. Animatable.

– isEnabled (page 132)
A synthesized accessor for the enabled (page 132) property.

Overview 131
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

CIFilter Core Animation Additions

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

enabled
Determines if the receiver is enabled. Animatable.

@property BOOL enabled

Discussion
The receiver is applied to its input when this property is set to YES. Default is YES.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CACIFilterAdditions.h

name
The name of the receiver.

@property(copy) NSString *name

Discussion
Default is nil. Each CIFilter instance can have an assigned name. The name is used to construct key paths
to the filter’s attributes. For example, if a CIFilter instance has the name “myExposureFilter”, you refer
to attributes of the filter using a key path such as “filters.myExposureFilter.inputEV”. Layer animations
may also access filter attributes via these key paths.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CACIFilterAdditions.h

Instance Methods

isEnabled
A synthesized accessor for the enabled (page 132) property.

- (BOOL)isEnabled

See Also
 @property enabled (page 132)

132 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

CIFilter Core Animation Additions

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/QuartzCore.framework

Declared in QuartzCore/CATransform3D.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

Core Animation adds two methods to the Foundation framework’s NSValue class to support CATransform3D
structure values.

Tasks

Creating an NSValue

+ valueWithCATransform3D: (page 133)
Creates and returns an NSValue object that contains a given CATransform3D structure.

Accessing Data

– CATransform3DValue (page 134)
Returns an CATransform3D structure representation of the receiver.

Class Methods

valueWithCATransform3D:
Creates and returns an NSValue object that contains a given CATransform3D structure.

Overview 133
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSValue Core Animation Additions

+ (NSValue *)valueWithCATransform3D:(CATransform3D)aTransform

Parameters
aTransform

The value for the new object.

Return Value
A new NSValue object that contains the value of aTransform.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

Instance Methods

CATransform3DValue
Returns an CATransform3D structure representation of the receiver.

- (CATransform3D)CATransform3DValue

Return Value
An CATransform3D structure representation of the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

134 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSValue Core Animation Additions

Inherits from CAOpenGLLayer : CALayer : NSObject

Conforms to QCCompositionRenderer
NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Availability Available in Mac OS X v10.5 and later.

Declared in QuartzComposer/QCCompositionLayer.h

Companion guides Core Animation Programming Guide
Quartz Composer Programming Guide

Related sample code CALayerEssentials

Overview

The QCCompositionLayer class loads, plays, and controls Quartz Composer compositions in a Core Animation
layer hierarchy. The composition tracks the Core Animation layer time and is rendered directly at the current
dimensions of the QCCompositionLayer object.

An archived QCCompositionLayer object saves the composition that’s loaded at the time the layer is
archived. It detects layer usage and pauses or resumes the composition appropriately. AQCCompositionLayer
object starts rendering the composition automatically when the layer is placed in a visible layer hierarchy.
The layer stops rendering when it is hidden or removed from the visible layer hierarchy.

You can pass data to the input ports, or retrieve data from the output ports, of the root patch of a composition
by accessing the patch attribute of the QCCompositionLayer instance using methods provided by the
QCCompositionRenderer protocol.

Overview 135
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

QCCompositionLayer Class Reference

Note: You must not modify the asynchronous property of the superclass CAOpenGLLayer.

Tasks

Creating the Layer

+ compositionLayerWithFile: (page 137)
Creates and returns an instance of a composition layer using the Quartz Composer composition in
the specified file.

+ compositionLayerWithComposition: (page 136)
Creates and returns an instance of a composition layer using the provided Quartz Composer
composition.

– initWithFile: (page 138)
Initializes and returns a composition layer using the Quartz Composer composition in the specified
file.

– initWithComposition: (page 137)
Initializes and returns a composition layer using the provided Quartz Composer composition.

Getting the Composition

– composition (page 137)
Returns the composition associated with the layer.

Class Methods

compositionLayerWithComposition:
Creates and returns an instance of a composition layer using the provided Quartz Composer composition.

+ (QCCompositionLayer*)compositionLayerWithComposition:(QCComposition*)composition

Parameters
composition

The Quartz Composer composition to use as content.

Return Value
An autoreleased, initialized QCCompositionLayer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ compositionLayerWithFile: (page 137)

136 Tasks
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

QCCompositionLayer Class Reference

Declared In
QCCompositionLayer.h

compositionLayerWithFile:
Creates and returns an instance of a composition layer using the Quartz Composer composition in the
specified file.

+ (QCCompositionLayer*)compositionLayerWithFile:(NSString*)path

Parameters
path

A string that specifies the location of a Quartz Composer composition.

Return Value
An autoreleased, initialized QCCompositionLayer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ compositionLayerWithComposition: (page 136)

Related Sample Code
CALayerEssentials

Declared In
QCCompositionLayer.h

Instance Methods

composition
Returns the composition associated with the layer.

- (QCComposition*) composition

Return Value
The composition object associated with the layer or nil if there is none.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCCompositionLayer.h

initWithComposition:
Initializes and returns a composition layer using the provided Quartz Composer composition.

Instance Methods 137
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

QCCompositionLayer Class Reference

- (id)initWithComposition:(QCComposition*)composition

Parameters
composition

The Quartz Composer composition to use as content.

Return Value
The initialized QCCompositionLayer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithFile: (page 138)

Declared In
QCCompositionLayer.h

initWithFile:
Initializes and returns a composition layer using the Quartz Composer composition in the specified file.

- (id)initWithFile:(NSString*)path

Parameters
path

A string that specifies the location of a Quartz Composer composition.

Return Value
The initialized QCCompositionLayer object or nil if initialization is not successful.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithComposition: (page 137)

Declared In
QCCompositionLayer.h

138 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

QCCompositionLayer Class Reference

139
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

PART II

Protocols

140
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

PART II

Protocols

Adopted by CAAnimation

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CALayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CAAction protocol provides an interface that allows an object to respond to an action triggered by an
CALayer. When queried with an action identifier (a key path, an external action name, or a predefined action
identifier) the layer returns the appropriate action object–which must implement the CAAction protocol–and
sends it a runActionForKey:object:arguments: (page 141) message.

Tasks

Responding to an Action

– runActionForKey:object:arguments: (page 141)
Called to trigger the action specified by the identifier.

Instance Methods

runActionForKey:object:arguments:
Called to trigger the action specified by the identifier.

- (void)runActionForKey:(NSString *)key
object:(id)anObject
arguments:(NSDictionary *)dict

Overview 141
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CAAction Protocol Reference

Parameters
key

The identifier of the action. The identifier may be a key or key path relative to anObject, an arbitrary
external action, or one of the action identifiers defined in CALayer Class Reference.

anObject
The layer on which the action should occur.

dict
A dictionary containing parameters associated with this event. May be nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

142 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

CAAction Protocol Reference

Framework /System/Library/Frameworks/QuartzCore.framework

Declared in CALayer.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

CALayoutManager is an informal protocol implemented by Core Animation layout managers. If a layer’s
sublayers require custom layout you create a class that implements this protocol and set it as the layer’s
layout manager using the CALayer method setLayoutManager:. Your custom layout manager is then
used when the layer invokes setNeedsLayout (page 79) or layoutSublayers (page 73).

Tasks

Layout Layers

– invalidateLayoutOfLayer: (page 143)
Invalidates the layout of the specified layer.

– layoutSublayersOfLayer: (page 144)
Layout each of the sublayers in the specified layer.

Calculate Layer Size

– preferredSizeOfLayer: (page 144)
Returns the preferred size of the specified layer in its coordinate system.

Instance Methods

invalidateLayoutOfLayer:
Invalidates the layout of the specified layer.

Overview 143
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

CALayoutManager Protocol Reference

- (void)invalidateLayoutOfLayer:(CALayer *)layer

Parameters
layer

The layer that requires layout.

Discussion
This method is called when the preferred size of the specified layer may have changed. The receiver should
invalidate any cached state.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

layoutSublayersOfLayer:
Layout each of the sublayers in the specified layer.

- (void)layoutSublayersOfLayer:(CALayer *)layer

Parameters
layer

The layer that requires layout of its sublayers.

Discussion
This method is called when the sublayers of the layer may need rearranging, and is typically called when
a sublayer has changed its size. The receiver is responsible for changing the frame of each sublayer that
requires layout.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

preferredSizeOfLayer:
Returns the preferred size of the specified layer in its coordinate system.

- (CGSize)preferredSizeOfLayer:(CALayer *)layer

Parameters
layer

The layer that requires layout.

Return Value
The preferred size of the layer in the coordinate space of layer.

Discussion
This method is called when the preferred size of the specified layer may have changed. The receiver is
responsible for recomputing the preferred size and returning it. If this method is not implemented the
preferred size is assumed to be the size of the bounds of layer.

144 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

CALayoutManager Protocol Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CALayer.h

Instance Methods 145
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

CALayoutManager Protocol Reference

146 Instance Methods
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

CALayoutManager Protocol Reference

Adopted by CAAnimation
CALayer

Framework /System/Library/Frameworks/QuartzCore.framework

Availability Available in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h

Companion guides Core Animation Programming Guide
Core Animation Cookbook

Overview

The CAMediaTiming protocol models a hierarchical timing system, with each object describing the mapping
of time values from the object's parent to local time.

Absolute time is defined as mach time converted to seconds. The CACurrentMediaTime (page 156) function
is provided as a convenience for getting the current absolute time.

The conversion from parent time to local time has two stages:

1. Conversion to “active local time”. This includes the point at which the object appears in the parent
object's timeline and how fast it plays relative to the parent.

2. Conversion from “active local time” to “basic local time”. The timing model allows for objects to repeat
their basic duration multiple times and, optionally, to play backwards before repeating.

Tasks

Animation Start Time

 beginTime (page 148) property
Specifies the begin time of the receiver in relation to its parent object, if applicable.

 timeOffset (page 150) property
Specifies an additional time offset in active local time.

Overview 147
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CAMediaTiming Protocol Reference

Repeating Animations

 repeatCount (page 149) property
Determines the number of times the animation will repeat.

 repeatDuration (page 150) property
Determines how many seconds the animation will repeat for.

Duration and Speed

 duration (page 149) property
Specifies the basic duration of the animation, in seconds.

 speed (page 150) property
Specifies how time is mapped to receiver’s time space from the parent time space.

Playback Modes

 autoreverses (page 148) property
Determines if the receiver plays in the reverse upon completion.

 fillMode (page 149) property
Determines if the receiver’s presentation is frozen or removed once its active duration has completed.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

autoreverses
Determines if the receiver plays in the reverse upon completion.

@property BOOL autoreverses

Discussion
When YES, the receiver plays backwards after playing forwards. Defaults to NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

beginTime
Specifies the begin time of the receiver in relation to its parent object, if applicable.

148 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CAMediaTiming Protocol Reference

@property CFTimeInterval beginTime

Discussion
Defaults to 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

duration
Specifies the basic duration of the animation, in seconds.

@property CFTimeInterval duration

Discussion
Defaults to 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

fillMode
Determines if the receiver’s presentation is frozen or removed once its active duration has completed.

@property(copy) NSString *fillMode

Discussion
The possible values are described in “Fill Modes” (page 151). The default is kCAFillModeRemoved (page
151).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

repeatCount
Determines the number of times the animation will repeat.

@property float repeatCount

Discussion
May be fractional. If the repeatCount is 0, it is ignored. Defaults to 0. If both repeatDuration (page 150)
and repeatCount (page 149) are specified the behavior is undefined.

Properties 149
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CAMediaTiming Protocol Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

repeatDuration
Determines how many seconds the animation will repeat for.

@property CFTimeInterval repeatDuration

Discussion
Defaults to 0. If the repeatDuration is 0, it is ignored. If both repeatDuration (page 150) and
repeatCount (page 149) are specified the behavior is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

speed
Specifies how time is mapped to receiver’s time space from the parent time space.

@property float speed

Discussion
For example, if speed is 2.0 local time progresses twice as fast as parent time. Defaults to 1.0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

timeOffset
Specifies an additional time offset in active local time.

@property CFTimeInterval timeOffset

Discussion
Defaults to 0. .

Availability
Available in Mac OS X v10.5 and later.

Declared In
CAMediaTiming.h

150 Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CAMediaTiming Protocol Reference

Constants

Fill Modes
These constants determine how the timed object behaves once its active duration has completed. They are
used with the fillMode (page 149) property.

NSString * const kCAFillModeRemoved;
NSString * const kCAFillModeForwards;
NSString * const kCAFillModeBackwards;
NSString * const kCAFillModeBoth;
NSString * const kCAFillModeFrozen;

Constants
kCAFillModeRemoved

The receiver is removed from the presentation when the animation is completed.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h.

kCAFillModeForwards
The receiver remains visible in its final state when the animation is completed.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h.

kCAFillModeBackwards
The receiver clamps values before zero to zero when the animation is completed.

Available in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h.

kCAFillModeBoth
The receiver clamps values at both ends of the object’s time space

Available in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h.

kCAFillModeFrozen
The mode was deprecated before Mac OS X v10.5 shipped.

Deprecated in Mac OS X v10.5 and later.

Declared in CAMediaTiming.h.

Declared In
CAMediaTiming.h

Constants 151
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CAMediaTiming Protocol Reference

152 Constants
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

CAMediaTiming Protocol Reference

153
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

PART III

Other References

154
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

PART III

Other References

Framework: QuartzCore/QuartzCore.h

Declared in CABase.h
CATransform3D.h

Overview

Functions by Task

Timing Functions

CACurrentMediaTime (page 156)
Returns the current absolute time, in seconds.

Transform Functions

CATransform3DIsIdentity (page 157)
Returns a Boolean value that indicates whether the transform is the identity transform.

CATransform3DEqualToTransform (page 156)
Returns a Boolean value that indicates whether the two transforms are exactly equal.

CATransform3DMakeTranslation (page 159)
Returns a transform that translates by '(tx, ty, tz)'. t' = [1 0 0 0; 0 1 0 0; 0 0 1 0; tx ty tz 1].

CATransform3DMakeScale (page 158)
Returns a transform that scales by `(sx, sy, sz)': * t' = [sx 0 0 0; 0 sy 0 0; 0 0 sz 0; 0 0 0 1].

CATransform3DMakeRotation (page 158)
Returns a transform that rotates by 'angle' radians about the vector '(x, y, z)'. If the vector has length
zero the identity transform is returned.

CATransform3DTranslate (page 159)
Translate 't' by '(tx, ty, tz)' and return the result: * t' = translate(tx, ty, tz) * t.

CATransform3DScale (page 159)
Scale 't' by '(sx, sy, sz)' and return the result: * t' = scale(sx, sy, sz) * t.

CATransform3DRotate (page 159)
Rotate 't' by 'angle' radians about the vector '(x, y, z)' and return the result. If the vector has zero length
the behavior is undefined: t' = rotation(angle, x, y, z) * t.

Overview 155
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

Core Animation Function Reference

CATransform3DConcat (page 156)
Concatenate 'b' to 'a' and return the result: t' = a * b.

CATransform3DInvert (page 157)
Invert 't' and return the result. Returns the original matrix if 't' has no inverse.

CATransform3DMakeAffineTransform (page 158)
Return a transform with the same effect as affine transform 'm'.

CATransform3DIsAffine (page 157)
Returns true if 't' can be exactly represented by an affine transform.

CATransform3DGetAffineTransform (page 157)
Returns the affine transform represented by 't'. If 't' can not be exactly represented as an affine
transform the returned value is undefined.

Functions

CACurrentMediaTime
Returns the current absolute time, in seconds.

CFTimeInterval CACurrentMediaTime (void);

Return Value
A CFTimeInterval derived by calling mach_absolute_time() and converting the result to seconds.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CABase.h

CATransform3DConcat
Concatenate 'b' to 'a' and return the result: t' = a * b.

CATransform3D CATransform3DConcat (CATransform3D a, CATransform3D b);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DEqualToTransform
Returns a Boolean value that indicates whether the two transforms are exactly equal.

156 Functions
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

Core Animation Function Reference

bool CATransform3DEqualToTransform (CATransform3D a, CATransform3D b);

Return Value
YES if a and b are exactly equal, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DGetAffineTransform
Returns the affine transform represented by 't'. If 't' can not be exactly represented as an affine transform the
returned value is undefined.

CGAffineTransform CATransform3DGetAffineTransform (CATransform3D t);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DInvert
Invert 't' and return the result. Returns the original matrix if 't' has no inverse.

CATransform3D CATransform3DInvert (CATransform3D t);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DIsAffine
Returns true if 't' can be exactly represented by an affine transform.

bool CATransform3DIsAffine (CATransform3D t);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DIsIdentity
Returns a Boolean value that indicates whether the transform is the identity transform.

Functions 157
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

Core Animation Function Reference

bool CATransform3DIsIdentity (CATransform3D t);

Return Value
YES if t is the identity transform, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DMakeAffineTransform
Return a transform with the same effect as affine transform 'm'.

CATransform3D CATransform3DMakeAffineTransform (CGAffineTransform m)

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DMakeRotation
Returns a transform that rotates by 'angle' radians about the vector '(x, y, z)'. If the vector has length zero the
identity transform is returned.

CATransform3D CATransform3DMakeRotation (CGFloat angle, CGFloat x, CGFloat y,
CGFloat z);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DMakeScale
Returns a transform that scales by `(sx, sy, sz)': * t' = [sx 0 0 0; 0 sy 0 0; 0 0 sz 0; 0 0 0 1].

CATransform3D CATransform3DMakeScale (CGFloat sx, CGFloat sy,
 CGFloat sz);

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials
Core Animation QuickTime Layer

Declared In
CATransform3D.h

158 Functions
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

Core Animation Function Reference

CATransform3DMakeTranslation
Returns a transform that translates by '(tx, ty, tz)'. t' = [1 0 0 0; 0 1 0 0; 0 0 1 0; tx ty tz 1].

CATransform3D CATransform3DMakeTranslation (CGFloat tx, CGFloat ty, CGFloat tz)

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DRotate
Rotate 't' by 'angle' radians about the vector '(x, y, z)' and return the result. If the vector has zero length the
behavior is undefined: t' = rotation(angle, x, y, z) * t.

CATransform3D CATransform3DRotate (CATransform3D t, CGFloat angle, CGFloat x,
CGFloat y, CGFloat z)

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DScale
Scale 't' by '(sx, sy, sz)' and return the result: * t' = scale(sx, sy, sz) * t.

CATransform3D CATransform3DScale (CATransform3D t, CGFloat sx, CGFloat sy, CGFloat
 sz)

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

CATransform3DTranslate
Translate 't' by '(tx, ty, tz)' and return the result: * t' = translate(tx, ty, tz) * t.

CATransform3D CATransform3DTranslate (CATransform3D t, CGFloat tx, CGFloat ty,
CGFloat tz);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CATransform3D.h

Functions 159
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

Core Animation Function Reference

160 Functions
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

Core Animation Function Reference

This chapter discusses drawing issues when using Core Animation and other technologies.

Drawing Layer Content With Application Kit Classes

Core Animation CALayer class defines a delegate method, drawLayer:inContext:, that you can implement
and draw your layer content using Quartz 2D drawing functions. However, Cocoa developers who have
complete and working drawing solutions based on the Application Kit drawing classes may wish to continue
using that code.

Listing 1 shows an implementation of the CALayer delegate method drawLayer:inContext: that creates
an NSGraphicsContext from the CGContextRef passed as the inContext: parameter. Layer delegates
can use this technique to display content created using NSBezierPath, NSColor, NSImage and other
Application Kit classes.

Listing 1 Drawing into a layer using Application Kit classes

- (void)drawLayer:(CALayer *)layer inContext:(CGContextRef)ctx
{
 NSGraphicsContext *nsGraphicsContext;
 nsGraphicsContext = [NSGraphicsContext graphicsContextWithGraphicsPort:ctx
 flipped:NO];
 [NSGraphicsContext saveGraphicsState];
 [NSGraphicsContext setCurrentContext:nsGraphicsContext];

 // ...Draw content using NS APIs...
 NSRect aRect=NSMakeRect(10.0,10.0,30.0,30.0);
 NSBezierPath *thePath=[NSBezierPath bezierPathWithRect:aRect];
 [[NSColor redColor] set];
 [thePath fill];

 [NSGraphicsContext restoreGraphicsState];
}

Drawing Layer Content With Application Kit Classes 161
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Drawing

162 Drawing Layer Content With Application Kit Classes
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Drawing

Core Animation is a collection of Objective-C classes for graphics rendering, projection, and animation. It
provides fluid animations using advanced compositing effects while retaining a hierarchical layer abstraction
that is familiar to developers using the Application Kit and Cocoa Touch view architectures.

Dynamic, animated user interfaces are hard to create, but Core Animation makes creating these interfaces
easier by providing:

 ■ High performance compositing with a simple approachable programming model.

 ■ A familiar view-like abstraction that allows you to create complex user interfaces using a hierarchy of
layer objects.

 ■ A lightweight data structure. You can display and animate hundreds of layers simultaneously.

 ■ An abstract animation interface that allows animations to run on a separate thread, independent of your
application's run loop. Once an animation is configured and starts, Core Animation assumes full
responsibility for running it at frame rate.

 ■ Improved application performance. Applications need only redraw content when it changes. Minimal
application interaction is required for resizing and providing layout services layers. Core Animation also
eliminates application code that runs at the animation frame-rate.

 ■ A flexible layout manager model, including a manager that allows the position and size of a layer to be
set relative to attributes of sibling layers.

Using Core Animation, developers can create dynamic user interfaces for their applications without having
to use low-level graphics APIs such as OpenGL to get respectable animation performance.

Core Animation Classes

Core Animation classes can be grouped into several categories:

 ■ Layer classes that provide content for display

 ■ Animation and timing classes

 ■ Layout and constraint classes

 ■ A transaction class that groups multiple layer changes into an atomic update

The basic Core Animation classes are contained in the Quartz Core framework, although additional layer
classes can be defined in other frameworks. “Core Animation Classes” shows the class hierarchy of Core
Animation.

Core Animation Classes 163
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

Figure 1 Core Animation class hierarchy

QuartzCore.framework
NSObject

CABasicAnimation

CAKeyframeAnimation

CAAnimationGroup

CAPropertyAnimation

CATransition

CAScrollLayer

CAEAGLLayer *

CATiledLayer

CAConstraintLayoutManager

CAConstraint

CAMediaTimingFunction

CARenderer

CATransaction

QuartzComposer.framework

CATextLayer

QTKit.framework

CAOpenGLLayer

QTCaptureLayer

QTMovieLayer

CAAnimation
<CAAction, CAMediaTiming>

CALayer
<CAMediaTiming>

QCCompositionLayer

* iPhone OS only

Layer Classes

The layer classes are the foundation of Core Animation and provide an abstraction that should be familiar
to developers who have used NSView or UIView. Basic layer functionality is provided by the CALayer class,
which is the parent class for all types of Core Animation layers.

As with an instance of a view class, a CALayer instance has a single parent layer (the superlayer) and a
collection of sublayers, creating a hierarchy of layers that is referred to as the layer tree. Layers are drawn
from back to front just like views and specify their geometry relative to their superlayer, creating a local
coordinate system. However, layers allow a more complex visual display by incorporating transform matrices
that allow you to rotate, skew, scale, and project the layer content. “Layer Geometry and Transforms” (page
173) discusses layer geometry and transforms in more detail.

CALayer diverges from the Application Kit and Cocoa Touch view classes in that it is not necessary to subclass
CALayer in order to display content. The content displayed by a CALayer instance can be provided by:

 ■ Setting the layer’s content property to a Core Graphics image representation directly, or through
delegation.

 ■ Providing a delegate that draws directly into a Core Graphics image context.

 ■ Setting any of the number of visual style properties that all layer types have in common, for example,
background colors, opacity, and masking. Mac OS X applications also have access to visual properties
that make use of Core Image filters.

164 Core Animation Classes
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

 ■ Subclassing CALayer and implementing any of the above techniques in a more encapsulated manner.

“Providing Layer Content” describes the available techniques for providing the content for a layer. The visual
style properties and the order in which they are applied to the content of a layer is discussed in “Layer Style
Properties” (page 205).

In addition to the CALayer class, the Core Animation class collection provides additional classes that allow
applications to display other types of content. The available classes differ slightly between Mac OS X and
iPhone OS. The following classes are available on both Mac OS X and iPhone OS:

 ■ CAScrollLayer class is a subclass of CALayer that simplifies displaying a portion of a layer. The extent
of the scrollable area of a CAScrollLayer object is defined by the layout of its sublayers. CAScrollLayer
does not provide keyboard or mouse event-handling, nor does it provide visible scrollers.

 ■ CATiledLayer allows the display of large and complex images in incremental stages.

Mac OS X provides these additional classes:

 ■ CATextLayer is a convenience class that creates a layer's content from a string or attributed string.

 ■ CAOpenGLLayer provides an OpenGL rendering environment. You must subclass this class to provide
content using OpenGL. The content can be static or can be updated over time.

 ■ QCCompositionLayer (provided by the Quartz Composer framework) animates a Quartz Composer
composition as its content.

 ■ QTMovieLayer andQTCaptureLayer (provided by the QTKit framework) provides playback of QuickTime
movies and live video.

iPhone OS adds the following class:

 ■ CAEAGLLayer provides an OpenGLES rendering environment.

The CALayer class introduces the concept of a key-value coding compliant container class–that is, a class
that can store arbitrary values, using key-value coding compliant methods, without having to create a subclass.
CALayer also extends the NSKeyValueCoding informal protocol, adding support for default key values and
automatic object wrapping for the additional structure types (CGPoint, CGSize, CGRect,
CGAffineTransform and CATransform3D) and provides access to many of the fields of those structures
by key path.

CALayer also manages the animations and actions that are associated with a layer. Layers receive action
triggers in response to layers being inserted and removed from the layer tree, modifications being made to
layer properties, or explicit developer requests. These actions typically result in an animation occurring. See
“Animation” (page 185) and “Actions” (page 189) for more information.

Animation and Timing Classes

Many of the visual properties of a layer are implicitly animatable. By simply changing the value of an animatable
property the layer will automatically animate from the current value to the new value. For example, setting
a layer's hidden property to YES triggers an animation that causes the layer to gradually fade away. Most
animatable properties have an associated default animation which you can easily customize and replace. A
complete list of the animatable properties and their default animations are listed in “Animatable Properties”.

Core Animation Classes 165
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

Animatable properties can also be explicitly animated. To explicitly animate a property you create an instance
of one of Core Animation’s animation classes and specify the required visual effects. An explicit animation
doesn’t change the value of the property in the layer, it simply animates it in the display.

Core Animation provides animation classes that can animate the entire contents of a layer or selected
attributes using both basic animation and key-frame animation. All Core Animation's animation classes
descend from the abstract class CAAnimation. CAAnimation adopts the CAMediaTiming protocol which
provides the simple duration, speed, and repeat count for an animation. CAAnimation also adopts the
CAAction protocol. This protocol provides a standardized means for starting an animation in response to
an action triggered by a layer.

The animation classes also define a timing function that describes the pacing of the animation as a simple
Bezier curve. For example, a linear timing function specifies that the animation's pace is even across its
duration, while an ease-in timing function causes an animation to slow down as it nears its duration.

Core Animation provides a number of additional abstract and concrete animation classes:

 ■ CATransition provides a transition effect that affects the entire layer's content. It fades, pushes, or
reveals layer content when animating. The stock transition effects can be extended by providing your
own custom Core Image filters.

 ■ CAAnimation allows an array of animation objects to be grouped together and run concurrently.

 ■ CAPropertyAnimation is an abstract subclass that provides support for animating a layer property
specified by a key path.

 ■ CABasicAnimation provides simple interpolation for a layer property.

 ■ CAKeyframeAnimation provides support for key frame animation. You specify the key path of the layer
property to be animated, an array of values that represent the value at each stage of the animation, as
well as arrays of key frame times and timing functions. As the animation runs, each value is set in turn
using the specified interpolation.

These animation classes are used by both Core Animation and Cocoa Animation proxies. “Animation” (page
185) describes the classes as they pertain to Core Animation, Animation Types and Timing Programming Guide
contains a more in-depth exploration of their capabilities.

Layout Manager Classes

Application Kit view classes provide the classic "struts and springs" model of positioning layers relative to
their superlayer. While layers support this model, Core Animation on Mac OS X also provides a more flexible
layout manager mechanism that allows developers to write their own layout managers.

Core Animation’s CAConstraint class is a layout manager that arranges sublayers using a set of constraints
that you specify. Each constraint (encapsulated by instances of the CAConstraint class) describes the
relationship of one geometric attribute of a layer (the left, right, top, or bottom edge or the horizontal or
vertical center) in relation to a geometric attribute of one of its sibling layers or its superlayer.

Layout managers in general, and the constraint layout manager are discussed in “Laying Out Core Animation
Layers” (page 197)

166 Core Animation Classes
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

Transaction Management Classes

Every modification to an animatable property of a layer must be part of a transaction. CATransaction is
the Core Animation class responsible for batching multiple animation operations into atomic updates to the
display. Nested transactions are supported.

Core Animation supports two types of transactions: implicit transactions and explicit transactions. Implicit
transactions are created automatically when an animatable property of a layer is modified by a thread without
an active transaction and are committed automatically when the thread's run-loop next iterates. Explicit
transactions occur when the application sends the CATransaction class a begin message before modifying
the layer, and a commit message afterwards.

Transaction management is discussed in “Transactions” (page 193).

Core Animation Classes 167
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

168 Core Animation Classes
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

This chapter discusses timing issues when using Core Animation.

Using a Single Timing Function For a Keyframe Animation

The CAKeyframeAnimation class provides a powerful means of animating layer properties. However,
CAKeyframeAnimation does not allow you to specify a single animation timing function that is used for
the entire path. Instead you are required to specify the timing using the keyTimes (page 36) property, or
by specifying an array of timing functions in the timingFunctions (page 38) property.

You can provide a single timing function for the animation by grouping the keyframe animation in a
CAAnimationGroup, and setting the group animation’s timing function to the desired
CAMediaTimingFunction. The animation group’s timing function and duration take precedence over the
keyframe animation’s timing properties.

A code fragment that implements this strategy is shown in Listing 1.

Listing 1 Using a single timing function for a keyframe animation

// create the path for the keyframe animation
CGMutablePathRef thePath = CGPathCreateMutable();
CGPathMoveToPoint(thePath,NULL,15.0f,15.f);
CGPathAddCurveToPoint(thePath,NULL,
 15.f,250.0f,
 295.0f,250.0f,
 295.0f,15.0f);

// create an explicit keyframe animation that
// animates the target layer's position property
// and set the animation's path property
CAKeyframeAnimation *theAnimation=[CAKeyframeAnimation

 animationWithKeyPath:@"position"];
theAnimation.path=thePath;

// create an animation group and add the keyframe animation
CAAnimationGroup *theGroup = [CAAnimationGroup animation];
theGroup.animations=[NSArray arrayWithObject:theAnimation];

// set the timing function for the group and the animation duration
theGroup.timingFunction=[CAMediaTimingFunction

 functionWithName:kCAMediaTimingFunctionEaseIn];
theGroup.duration=15.0;
// release the path
CFRelease(thePath);

Using a Single Timing Function For a Keyframe Animation 169
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Timing

// adding the animation to the target layer causes it
// to begin animating
[theLayer addAnimation:theGroup forKey:@"animatePosition"];

170 Using a Single Timing Function For a Keyframe Animation
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Timing

While there are obvious similarities between Core Animation layers and Cocoa views the biggest conceptual
divergence is that layers do not render directly to the screen.

Where NSView and UIView are clearly view objects in the model-view-controller design pattern, Core
Animation layers are actually model objects. They encapsulate geometry, timing and visual properties, and
they provide the content that is displayed, but the actual display is not the layer’s responsibility.

Each visible layer tree is backed by two corresponding trees: a presentation tree and a render tree. Figure 1
shows an example layer-tree using the Core Animation layer classes available in Mac OS X.

Figure 1 Core Animation Rendering Architecture

CALayer CALayer

Layer-Tree Presentation Tree

Object Model Values Presentation Values

Render-Tree (Private)

CATextLayer

CATextLayer

CAOpenGLLayer

CATiledLayer

CALayer

CALayer

CATextLayer

CATextLayer

CAOpenGLLayer

CATiledLayer

CALayer

CALayer

The layer tree contains the object model values for each layer. These are the values you set when you assign
a value to a layer property.

The presentation tree contains the values that are currently being presented to the user as an animation
takes place. For example, setting a new value for the backgroundColor of a layer immediately changes the
value in the layer tree. However, the backgroundColor value in the corresponding layer in the presentation
tree will be updated with the interpolated colors as they are displayed to the user.

The render-tree uses the value in the presentation-tree when rendering the layer. The render-tree is responsible
for performing the compositing operations independent of application activity; rendering is done in a separate
process or thread so that it has minimal impact on the application's run loop.

You can query an instance of CALayer for its corresponding presentation layer while an animation transaction
is in process. This is most useful if you intend to change the current animation and want to begin the new
animation from the currently displayed state.

171
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Rendering Architecture

172
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Rendering Architecture

This chapter describes the components of a layer’s geometry, how they interrelate, and how transform
matrices can produce complex visual effects.

Layer Coordinate System

The layer's location and size are expressed using the same coordinate system that the Quartz graphics
environment uses. By default, the graphics environment origin (0.0,0.0) is located in the lower left, and values
are specified as floating-point numbers that increase up and to the right in coordinate system units. The
coordinate system units, the unit square, is the size of a 1.0 by 1.0 rectangle.

Every layer instance defines and maintains its own coordinate system, and all sublayers are positioned, and
drawing is done, relative to this coordinate system. Methods are provided to convert points, rectangles and
sizes from one layer coordinate system to another. A layer's coordinate system should be considered the
base coordinate system for all the content of the layer, including its sublayers.

iPhone OS Note: The default root layer of a UIView instance uses a flipped coordinate system that matches
the default coordinate system of a UIView instance–the origin is in the top-left and values increase down
and to the right. Layers created by instantiating CALayer directly use the standard Core Animation coordinate
system.

Specifying a Layer’s Geometry

While layers and the layer-tree are analogous to Cocoa views and the view hierarchy in many ways, how a
layer's geometry is specified is different, and often simpler, manner. All of a layer’s geometric properties,
including the layer’s transform matrices, can be implicitly and explicitly animated.

Figure 1 shows the properties used to specify a layer's geometry in context.

Layer Coordinate System 173
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Figure 1 CALayer geometry properties

bounds.width

outerLayer

innerLayer

bounds.height

position

frame

bounds.origin

cornerRadius

The position property is a CGPoint that specifies the position of the layer relative to its superlayer, and is
expressed in the superlayer's coordinate system.

The bounds property is a CGRect that provides the size of the layer (bounds.size) and the origin
(bounds.origin). The bounds origin is used as the origin of the graphics context when you override a layer's
drawing methods.

Layers have an implicit frame that is a function of the position, bounds, anchorPoint, and transform
properties. Setting a new frame rectangle changes the layer's position and bounds properties appropriately,
but the frame itself is not stored. When a new frame rectangle is specified the bounds origin is undisturbed,
while the bounds size is set to the size of the frame. The layer's position is set to the proper location relative
to the anchor point. When you get the frame property value, it is calculated relative to the position,
bounds, and anchorPoint properties.

The anchorPointproperty is a CGPoint that specifies a location within the bounds of a layer that corresponds
with the position coordinate. The anchor point specifies how the bounds are positioned relative to the
position property, as well as serving as the point that transforms are applied around. It is expressed in the
unit coordinate system-the lower left of the layer bounds is 0.0,0.0, and the upper right is 1.0,1.0.

When you specify the frame of a layer, position is set relative to the anchor point. When you specify the
position of the layer, bounds is set relative to the anchor point.

Figure 2 shows three example values for an anchor point.

174 Specifying a Layer’s Geometry
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Figure 2 Three anchorPoint values

(1.0,1.0)

(0.0,0.0)

(1.0,0.0)

B A

C

(0.0,0.5) (0.5,0.5)

The default value for anchorPoint is (0.5,0.5) which corresponds to the center of the layer's bounds (shown
as point A in Figure 2.) Point B shows the position of an anchor point set to (0.0,0.5). Finally, point C (1.0,0.0)
causes specifies that the layer’s position is set to the bottom right corner of the frame.

The relationship of the frame, bounds, position, and anchorPoint properties is shown in Figure 3.

Figure 3 Layer Origin of (0.5,0.5)

bounds = (0.0,0.0, 120.0,80.0)
frame = (40.0,60.0, 120.0,80.0)
anchorPoint = (0.5,0.5)
position = (100.0, 100.0)

frame
anchorPoint

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

rotation applied

original
frame

rotated
frame

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

scale applied

original
frame

scaled
frame

In this example the anchorPoint is set to the default value of (0.5,0.5), which corresponds to the center of
the layer. The position of the layer is set to (100.0,100.0), and the bounds is set to the rectangle (0.0, 0.0,
120.0, 80.0). This causes the frame property to be calculated as (40.0, 60.0, 120.0, 80.0).

If you created a new layer, and set only the layer’s frame property to (40.0, 60.0, 120.0, 80.0), the position
property would be automatically set to (100.0,100.0), and the bounds property to (0.0, 0.0, 120.0, 80.0).

Specifying a Layer’s Geometry 175
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Figure 4 shows a layer with the same frame rectangle as the layer in Figure 3. However, in this case the
anchorPoint of the layer is set to (0.0,0.0), which corresponds with the bottom left corner of the layer.

Figure 4 Layer Origin of (0.0,0.0)

anchorPoint = (0.0,0.0)
position = (40.0, 60.0)
bounds = (0.0,0.0, 120.0,80.0)
frame = (40.0,60.0, 120.0,80.0)

frame

anchorPoint

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

rotation applied

original
frame

rotated
frame

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

scale applied

original
frame

scaled
frame

With the frame set to (40.0, 60.0, 120.0, 80.0), the value of the bounds property is the same, but the value of
the position property has changed.

Another aspect of layer geometry that differs from Cocoa views is that you can specify a radius that is used
to round the corners of the layer. The cornerRadius property specifies a radius the layer uses when drawing
content, clipping sublayers, and drawing the border and shadow.

The zPosition property specifies the z-axis component of the layer's position. The zPosition is intended
to be used to set the visual position of the layer relative to its sibling layers. It should not be used to specify
the order of layer siblings, instead reorder the layer in the sublayer array.

Transforming a Layer’s Geometry

Once established, you can transform a layer's geometry using matrix transformations. The Transform (page
86) data structure defines a homogenous three-dimensional transform (a 4 by 4 matrix of CGFloat values)
that is used to rotate, scale, offset, skew, and apply perspective transformations to a layer.

Two layer properties specify transform matrices: transform and sublayerTransform. The matrix specified
by the transform property is applied to the layer and its sublayers relative to the layer's anchorPoint.
Figure 3 shows how rotation and scaling transforms affect a layer when using an anchorPoint of (0.5,0.5), the
default value. Figure 4 shows how the same transform matrices affect a layer when an anchorPoint of (0.0,0.0).
The matrix specified by the sublayerTransform property is applied only to the layer’s sublayers, rather
than to the layer itself.

You create and modify CATransform3D data structures in one of the following ways:

 ■ using the CATransform3D functions

 ■ modifying the data structure members directly

 ■ using key-value coding and key paths.

176 Transforming a Layer’s Geometry
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

The constant CATransform3DIdentity is the identity matrix, a matrix that has no scale, rotation, skewing,
or perspective applied. Applying the identity matrix to a layer causes it to be displayed with its default
geometry.

Transform Functions

The transform functions available in Core Animation operate on matrices. You can use these functions (shown
in Table 1) to construct a matrix that you later apply to a layer or its sublayers by modifying the transform
or sublayerTransform properties respectively. The transform functions either operate on, or return, a
CATransform3D data structure. This enables you to construct simple or complex transforms that you can
readily reuse.

Table 1 CATransform3D transform functions for translation, rotation, and scaling

UseFunction

Returns a transform that translates by '(tx, ty, tz)'. t' = [1 0 0
0; 0 1 0 0; 0 0 1 0; tx ty tz 1].

CATransform3DMakeTranslation (page
159)

Translate 't' by '(tx, ty, tz)' and return the result: * t' =
translate(tx, ty, tz) * t.

CATransform3DTranslate (page 159)

Returns a transform that scales by `(sx, sy, sz)': * t' = [sx 0 0 0;
0 sy 0 0; 0 0 sz 0; 0 0 0 1].

CATransform3DMakeScale (page 158)

Scale 't' by '(sx, sy, sz)' and return the result: * t' = scale(sx, sy,
sz) * t.

CATransform3DScale (page 159)

Returns a transform that rotates by 'angle' radians about the
vector '(x, y, z)'. If the vector has length zero the identity
transform is returned.

CATransform3DMakeRotation (page 158)

Rotate 't' by 'angle' radians about the vector '(x, y, z)' and
return the result. t' = rotation(angle, x, y, z) * t.

CATransform3DRotate (page 159)

The angles of rotation is specified in radians rather than degrees. The following functions allow you to convert
between radians and degrees.

CGFloat DegreesToRadians(CGFloat degrees) {return degrees * M_PI / 180;};
CGFloat RadiansToDegrees(CGFloat radians) {return radians * 180 / M_PI;};

Core Animation provides a transform function that inverts a matrix, CATransform3DInvert. Inversion is
generally used to provide reverse transformation of points within transformed objects. Inversion can be
useful when you need to recover a value that has been transformed by a matrix: invert the matrix, and multiply
the value by the inverted matrix, and the result is the original value.

Functions are also provided that allow you to convert a CATransform3D matrix to a CGAffineTransform
matrix, if the CATransform3D matrix can be expressed as such.

Transforming a Layer’s Geometry 177
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Table 2 CATransform3D transform functions for CGAffineTransform conversion

UseFunction

Returns a CATransform3D with the same effect as the
passed affine transform.

CATransform3DMakeAffineTransform (page
158)

Returns YES if the passed CATransform3D can be
exactly represented an affine transform.

CATransform3DIsAffine (page 157)

Returns the affine transform represented by the passed
CATransform3D.

CATransform3DGetAffineTransform (page
157)

Functions are provided for comparing transform matrices for equality with the identity matrix, or another
transform matrix.

Table 3 CATransform3D transform functions for testing equality

UseFunction

Returns YES if the transform is the identity transform.CATransform3DIsIdentity (page 157)

Returns YES if the two transforms are exactly equal..CATransform3DEqualToTransform (page 156)

Modifying the Transform Data Structure

You can modify the value of any of the CATransform3D data structure members as you would any other
data structure. Listing 1 contains the definition of the CATransform3D data structure, the structure members
are shown in their corresponding matrix positions.

Listing 1 CATransform3D structure

struct CATransform3D
{
 CGFloat m11, m12, m13, m14;
 CGFloat m21, m22, m23, m24;
 CGFloat m31, m32, m33, m34;
 CGFloat m41, m42, m43, m44;
};

typedef struct CATransform3D CATransform3D;

The example in Listing 2 illustrates how to configure a CATransform3D as a perspective transform.

Listing 2 Modifying the CATransform3D data structure directly

 CATransform3D aTransform = CATransform3DIdentity;
// the value of zDistance affects the sharpness of the transform.
zDistance = 850;
aTransform.m34 = 1.0 / -zDistance;

178 Transforming a Layer’s Geometry
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Modifying a Transform Using Key Paths

Core Animation extends the key-value coding protocol to allow getting and setting of the commonly values
of a layer's CATransform3D matrix through key paths. Table 4 describes the key paths for which a layer’s
transform and sublayerTransform properties are key-value coding and observing compliant.

Table 4 CATransform3D key paths

DescriptionField Key Path

The rotation, in radians, in the x axis.rotation.x

The rotation, in radians, in the y axis.rotation.y

The rotation, in radians, in the z axis.rotation.z

The rotation, in radians, in the z axis. This is identical to setting the rotation.z field.rotation

Scale factor for the x axis.scale.x

Scale factor for the y axis.scale.y

Scale factor for the z axis.scale.z

Average of all three scale factors.scale

Translate in the x axis.translation.x

Translate in the y axis.translation.y

Translate in the z axis.translation.z

Translate in the x and y axis. Value is an NSSize or CGSize.translation

You can not specify a structure field key path using Objective-C 2.0 properties. This will not work:

myLayer.transform.rotation.x=0;

Instead you must use setValue:forKeyPath: or valueForKeyPath: as shown below:

[myLayer setValue:[NSNumber numberWithInt:0] forKeyPath:@"transform.rotation.x"];

Transforming a Layer’s Geometry 179
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

180 Transforming a Layer’s Geometry
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Along with their own direct responsibilities for providing visual content and managing animations, layers
also act as containers for other layers, creating a layer hierarchy.

This chapter describes the layer hierarchy and how you manipulate layers within that hierarchy.

What Is a Layer-Tree Hierarchy?

The layer-tree is the Core Animation equivalent of the Cocoa view hierarchy. Just as an instance of NSView
or UIView has superview and subviews, a Core Animation layer has a superlayer and sublayers. The layer-tree
provides many of the same benefits as the view hierarchy:

 ■ Complex interfaces can be assembled using simpler layers, avoiding monolithic and complex subclassing.
Layers are well suited to this type of ‘stacking’ due to their complex compositing capabilities.

 ■ Each layer declares its own coordinate system relative to its superlayer's coordinate system. When a layer
is transformed, its sublayers are transformed within it.

 ■ A layer-tree is dynamic. It can be reconfigured as an application runs. Layers can be created, added as a
sublayer first of one layer, then of another, and removed from the layer-tree.

Displaying Layers in Views

Core Animation doesn't provide a means for actually displaying layers in a window, they must be hosted by
a view. When paired with a view, the view must provide event-handling for the underlying layers, while the
layers provide display of the content.

The view system in iPhone OS is built directly on top of Core Animation layers. Every instance of UIView
automatically creates an instance of a CALayer class and sets it as the value of the view’s layer property.
To display custom layer content in a UIView instance you simply add the layers as sublayers of the view’s
layer.

On Mac OS X you must configure an NSView instance in such a way that it can host a layer. To display the
root layer of a layer tree, you set a view's layer and then configure the view to use layers as shown in Table
2.

Listing 1 Inserting a layer into a view

// theView is an existing view in a window
// theRootLayer is the root layer of a layer tree

[theView setLayer: theRootLayer];
[theView setWantsLayer:YES];

What Is a Layer-Tree Hierarchy? 181
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer-Tree Hierarchy

Adding and Removing Layers from a Hierarchy

Simply instantiating a layer instance doesn’t insert it into a layer-tree. Instead you add, insert, replace, and
remove layers from the layer-tree using the methods described in .Table 1.

Table 1 Layer-tree management methods.

ResultMethod

Appends the layer to the receiver’s sublayers array.addSublayer:

Inserts the layer as a sublayer of the receiver at the specified index.insertSublayer: atIndex:

Inserts the layer into the receiver’s sublayers array, below the specified
sublayer.

insertSublayer: below:

Inserts the layer into the receiver’s sublayers array, above the specified
sublayer.

insertSublayer: above:

Removes the receiver from the sublayers array or mask property of the
receiver’s superlayer.

removeFromSuperlayer

Replaces the layer in the receiver’s sublayers array with the specified new
layer.

replaceSublayer: with:

You can also set the sublayers of a layer using an array of layers, and setting the intended superlayer’s
sublayers property. When setting the sublayers property to an array populated with layer objects you must
ensure that the layers have had their superlayer set to nil.

By default, inserting and removing layers from a visible layer-tree triggers an animation. When a layer is
added as a sublayer the animation returned by the parent layer for the action identifier kCAOnOrderIn is
triggered. When a layer is removed from a layer’s sublayers the animation returned by the parent layer for
the action identifier kCAOnOrderOut is triggered. Replacing a layer in a sublayer causes the animation
returned by the parent layer for the action identifier kCATransition to be triggered. You can disable
animation while manipulating the layer-tree, or alter the animation used for any of the action identifiers.

Repositioning and Resizing Layers

After a layer has been created, you can move and resize it programmatically simply by changing the value
of the layer’s geometry properties: frame, bounds, position, anchorPoint, or zPosition.

If a layer’s needsDisplayOnBoundsChange property is YES, the layer’s content is recached when the layer’s
bounds changes. By default the needsDisplayOnBoundsChange property is no.

By default, setting the frame, bounds, position, anchorPoint, and zPosition properties causes the
layer to animate the new values.

182 Adding and Removing Layers from a Hierarchy
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer-Tree Hierarchy

Autoresizing Layers

CALayerprovides a mechanism for automatically moving and resizing sublayers in response to their superlayer
being moved or resized. In many cases simply configuring the autoresizing mask for a layer provides the
appropriate behavior for an application.

A layer's autoresizing mask is specified by combining the CAAutoresizingMask constants using the bitwise
OR operator and the layer's autoresizingMask property to the resulting value. Table 2 shows each mask
constant and how it effects the layer's resizing behavior.

Table 2 Autoresizing mask values and descriptions

DescriptionAutoresizing Mask

If set, the layer's height changes proportionally to the change in the
superlayer's height. Otherwise, the layer's height does not change relative
to the superlayer's height.

kCALayerHeightSizable

If set, the layer's width changes proportionally to the change in the
superlayer's width. Otherwise, the layer's width does not change relative to
the superlayer's width.

kCALayerWidthSizable

If set, the layer's left edge is repositioned proportionally to the change in the
superlayer's width. Otherwise, the layer's left edge remains in the same
position relative to the superlayer's left edge.

kCALayerMinXMargin

If set, the layer's right edge is repositioned proportionally to the change in
the superlayer's width. Otherwise, the layer's right edge remains in the same
position relative to the superlayer.

kCALayerMaxXMargin

If set, the layer's top edge is repositioned proportionally to the change in the
superlayer's height. Otherwise, the layer's top edge remains in the same
position relative to the superlayer.

kCALayerMinYMargin

If set, the layer's bottom edge is repositioned proportional to the change in
the superlayer's height. Otherwise, the layer's bottom edge remains in the
same position relative to the superlayer.

kCALayerMaxYMargin

For example, to keep a layer in the lower-left corner of its superlayer, you use the mask kCALayerMaxXMargin
| kCALayerMaxYMargin. When more than one aspect along an axis is made flexible, the resize amount is
distributed evenly among them. Figure 1 provides a graphical representation of the position of the constant
values.

Repositioning and Resizing Layers 183
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer-Tree Hierarchy

Figure 1 Layer autoresizing mask constants

kCALayerWidthSizable

kCALayerMaxXMargin

kCALayerMaxYMargin

kCALayerHeightSizable

Superlayer

Layer

kCALayerMinYMargin

kCALayerMinXMargin

(0.0, 0.0)

When one of these constants is omitted, the layer's layout is fixed in that aspect; when a constant is included
in the mask the layer's layout is flexible in that aspect.

A subclass can override the CALayer methods resizeSublayersWithOldSize: and
resizeWithOldSuperlayerSize: to customize the autoresizing behavior for a layer. A layers
resizeSublayersWithOldSize: method is invoked automatically by a layer whenever bounds property
changes, and sends a resizeWithOldSuperlayerSize:message to each sublayer. Each sublayer compares
the old bounds size to the new size and adjusts its position and size according to its autoresize mask.

Clipping Sublayers

When subviews of a Cocoa view lie outside of the parent view’s bounds, the views are clipped to the parent
view. Layers remove this limitation, allowing sublayers to be displayed in their entirety, regardless of their
position relative to the parent layer.

The value of a layer’s masksToBounds property determines if sublayers are clipped to the parent. The default
value of the masksToBounds property is NO, which prevents sublayers from being clipped to the parent.
Figure 2 shows the results of setting the masksToBounds for layerA and how it will affect the display of
layerB and layerC.

Figure 2 Example Values of the masksToBounds property

layerB

layerC

layerA

Layer-Tree

layerA

layerB layerC

layerA.masksToBounds=NO;

layerC

layerA.masksToBounds=YES;

layerA

layerB

184 Clipping Sublayers
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer-Tree Hierarchy

Animation is a key element of today’s user interfaces. When using Core Animation animation is completely
automatic. There are no animation loops or timers. Your application is not responsible for frame by frame
drawing, or tracking the current state of your animation. The animation occurs automatically in a separate
thread, without further interaction with your application.

This chapter provides an overview of the animation classes, and describes how to create both implicit and
explicit animations.

Animation Classes and Timing

Core Animation provides an expressive set of animation classes you can use in your application:

 ■ CABasicAnimation provides simple interpolation between values for a layer property.

 ■ CAKeyframeAnimation provides support for key frame animation. You specify the key path of the layer
property to be animated, an array of values that represent the value at each stage of the animation, as
well as arrays of key frame times and timing functions. As the animation runs, each value is set in turn
using the specified interpolation.

 ■ CATransition provides a transition effect that affects the entire layer's content. It fades, pushes, or
reveals layer content when animating. The stock transition effects can be extended by providing your
own custom Core Image filters.

 ■ CAAnimationGroup allows an array of animation objects to be grouped together and run concurrently.

In addition to specifying the type of animation to perform, you must also specify the duration of the animation,
the pacing (how the interpolated values are distributed across the duration), if the animation is to repeat
and how many times, whether it should automatically reverse when each cycle is completed, and its visual
state when the animation is completed. The animation classes and the CAMediaTiming protocol provides
all this functionality and more.

CAAnimation and its subclasses and the timing protocols are shared by both Core Animation and the Cocoa
Animation Proxy functionality. The classes are described in detail in Animation Types and Timing Programming
Guide.

Implicit Animation

Core Animation’s implicit animation model assumes that all changes to animatable layer properties should
be gradual and asynchronous. Dynamically animated scenes can be achieved without ever explicitly animating
layers. Changing the value of an animatable layer property causes the layer to implicitly animate the change
from the old value to the new value. While an animation is in-flight, setting a new target value causes the
animation transition to the new target value from its current state.

Animation Classes and Timing 185
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Animation

Listing 1 shows how simple it is to trigger an implicit animation that animates a layer from its current position
to a new position.

Listing 1 Implicitly animating a layer’s position property

// assume that the layer is current positioned at (100.0,100.0)
theLayer.position=CGPointMake(500.0,500.0);

You can implicitly animate a single layer property at a time, or many. You can also implicitly animate several
layers simultaneously. The code in Listing 2 causes four implicit animations to occur simultaneously.

Listing 2 Implicitly animating multiple properties of multiple layers

// animate theLayer's opacity to 0 while moving it
// further away in the layer
theLayer.opacity=0.0;
theLayer.zPosition=-100;

// animate anotherLayer's opacity to 1
// while moving it closer in the layer
anotherLayer.opacity=1.0;
anotherLayer.zPosition=100.0;

Implicit animations use the duration specified in the default animation for the property, unless the duration
has been overridden in an implicit or explicit transaction. See “Overriding the Duration of Implied
Animations” (page 194) for more information.

Explicit Animation

Core Animation also supports an explicit animation model. The explicit animation model requires that you
create an animation object, and set start and end values. An explicit animation won’t start until you apply
the animation to a layer. The code fragment in Listing 3 creates an explicit animation that transitions a layer’s
opacity from fully opaque to fully transparent, and back over a 3 second duration. The animation doesn’t
begin until it is added to the layer.

Listing 3 Explicit animation

CABasicAnimation *theAnimation;

theAnimation=[CABasicAnimation animationWithKeyPath:@"opacity"];
theAnimation.duration=3.0;
theAnimation.repeatCount=2;
theAnimation.autoreverses=YES;
theAnimation.fromValue=[NSNumber numberWithFloat:1.0];
theAnimation.toValue=[NSNumber numberWithFloat:0.0];
[theLayer addAnimation:theAnimation forKey:@"animateOpacity"];

Explicit animations are especially useful when creating animations that run continuously. Listing 4 shows
how to create an explicit animation that applies a CoreImage bloom filter to a layer, animating its intensity.
This causes the “selection layer” to pulse, drawing the user’s attention.

186 Explicit Animation
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Animation

Listing 4 Continuous explicit animation example

// The selection layer will pulse continuously.
// This is accomplished by setting a bloom filter on the layer

// create the filter and set its default values
CIFilter *filter = [CIFilter filterWithName:@"CIBloom"];
[filter setDefaults];
[filter setValue:[NSNumber numberWithFloat:5.0] forKey:@"inputRadius"];

// name the filter so we can use the keypath to animate the inputIntensity
// attribute of the filter
[filter setName:@"pulseFilter"];

// set the filter to the selection layer's filters
[selectionLayer setFilters:[NSArray arrayWithObject:filter]];

// create the animation that will handle the pulsing.
CABasicAnimation* pulseAnimation = [CABasicAnimation animation];

// the attribute we want to animate is the inputIntensity
// of the pulseFilter
pulseAnimation.keyPath = @"filters.pulseFilter.inputIntensity";

// we want it to animate from the value 0 to 1
pulseAnimation.fromValue = [NSNumber numberWithFloat: 0.0];
pulseAnimation.toValue = [NSNumber numberWithFloat: 1.5];

// over a one second duration, and run an infinite
// number of times
pulseAnimation.duration = 1.0;
pulseAnimation.repeatCount = 1e100f;

// we want it to fade on, and fade off, so it needs to
// automatically autoreverse.. this causes the intensity
// input to go from 0 to 1 to 0
pulseAnimation.autoreverses = YES;

// use a timing curve of easy in, easy out..
pulseAnimation.timingFunction = [CAMediaTimingFunction functionWithName:
kCAMediaTimingFunctionEaseInEaseOut];

// add the animation to the selection layer. This causes
// it to begin animating. We'll use pulseAnimation as the
// animation key name
[selectionLayer addAnimation:pulseAnimation forKey:@"pulseAnimation"];

Starting and Stopping Explicit Animations

You start an explicit animation by sending a addAnimation:forKey: message to the target layer, passing
the animation and an identifier as parameters. Once added to the target layer the explicit animation will run
until the animation completes, or it is removed from the layer. The identifier used to add an animation to a
layer is also used to stop it by invoking removeAnimationForKey:. You can stop all animations for a layer
by sending the layer a removeAllAnimations message.

Starting and Stopping Explicit Animations 187
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Animation

188 Starting and Stopping Explicit Animations
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Animation

Layer actions are triggered in response to: layers being inserted and removed from the layer-tree, the value
of layer properties being modified, or explicit application requests. Typically, action triggers result in an
animation being displayed.

What are Actions?

An action object is an object that responds to an action identifier via the CAAction protocol. Action identifiers
are named using standard dot-separated key paths. A layer is responsible for mapping action identifiers to
the appropriate action object. When the action object for the identifier is located that object is sent the
message defined by the CAAction protocol.

The CALayer class provides default action objects–instances of CAAnimation, a CAActionprotocol compliant
class–for all animatable layer properties. CALayer also defines the following action triggers that are not
linked directly to properties, as well as the action identifiers in Table 1.

Table 1 Action triggers and their corresponding identifiers

Action identifierTrigger

The action identifier constant kCAOnOrderIn.A layer is inserted into a visible layer-tree, or the hidden
property is set to NO.

The action identifier constant
kCAOnOrderOut.

A layer is removed from a visible layer-tree, or the hidden
property is set to YES.

The action identifier constant
kCATransition.

A layer replaces an existing layer in a visible layer tree using
replaceSublayer: with:.

Action Object Search Pattern

When an action trigger occurs, the layer’s actionForKey:method is invoked. This method returns an action
object that corresponds to the action identifier passed as the parameter, or nil if no action object exists.

When the CALayer implementation of actionForKey: is invoked for an identifier the following search
pattern is used:

1. If the layer has a delegate, and it implements the method actionForLayer:forKey: it is invoked,
passing the layer, and the action identifier as parameters. The delegate’s actionForLayer:forKey:
implementation should respond as follows:

 ■ Return an action object that corresponds to the action identifier.

What are Actions? 189
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Actions

 ■ Return nil if it doesn’t handle the action identifier.

 ■ Return NSNull if it doesn’t handle the action identifier and the search should be terminated.

2. The layer’s actions dictionary is searched for an object that corresponds to the action identifier.

3. The layer’s style property is searched for an actions dictionary that contains the identifier.

4. The layer’s class is sent a defaultActionForKey:message. It will return an action object corresponding
to the identifier, or nil if not found.

CAAction Protocol

The CAAction protocol defines how action objects are invoked. Classes that implement the CAAction
protocol have a method with the signature runActionForKey:object:arguments:.

When the action object receives the runActionForKey:object:arguments: message it is passed the
action identifier, the layer on which the action should occur, and an optional dictionary of parameters.

Typically, action objects are an instance of a CAAnimation subclass, which implements the CAAction protocol.
You can, however, return an instance of any class that implements the protocol. When that instance receives
the runActionForKey:object:arguments: message it should respond by performing its action.

When an instance of CAAnimation receives the runActionForKey:object:arguments: message it
responds by adding itself to the layer’s animations, causing the animation to run (see Listing 1 (page 190)).

Listing 1 runActionForKey:object:arguments: implementation that initiates an animation

- (void)runActionForKey:(NSString *)key
 object:(id)anObject
 arguments:(NSDictionary *)dict
{
 [(CALayer *)anObject addAnimation:self forKey:key];
}

Overriding an Implied Animation

You can provide a different implied animation for an action identifier by inserting an instance of CAAnimation
into the actions dictionary, into an actions dictionary in the style dictionary, by implementing the delegate
method actionForLayer:forKey:, or subclassing a layer class, overriding defaultActionForKey: and
returning the appropriate action object.

The example in Listing 2 replaces the default implied animation for the contents property using delegation.

Listing 2 Implied animation for the contents property

- (id<CAAction>)actionForLayer:(CALayer *)theLayer

190 CAAction Protocol
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Actions

 forKey:(NSString *)theKey
{
 CATransition *theAnimation=nil;

 if ([theKey isEqualToString:@"contents"])
 {

 theAnimation = [[CATransition alloc] init];
 theAnimation.duration = 1.0;
 theAnimation.timingFunction = [CAMediaTimingFunction
functionWithName:kCAMediaTimingFunctionEaseIn];
 theAnimation.type = kCATransitionPush;
 theAnimation.subtype = kCATransitionFromRight;
 }

 return theAnimation;
}

The example in Listing 3 (page 191) disables the default animation for the sublayers property using the
actions dictionary pattern.

Listing 3 Implied animation for the sublayers property

// get a mutable version of the current actions dictionary
NSMutableDictionary *customActions=[NSMutableDictionary
dictionaryWithDictionary:[theLayer actions]];

// add the new action for sublayers
[customActions setObject:[NSNull null] forKey:@"sublayers"];

// set theLayer actions to the updated dictionary
theLayer.actions=customActions;

Temporarily Disabling Actions

You can temporarily disable actions when modifying layer properties by using transactions. See “Temporarily
Disabling Layer Actions” (page 193) for more information.

Temporarily Disabling Actions 191
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Actions

192 Temporarily Disabling Actions
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Actions

Every modification to a layer is part of a transaction. CATransaction is the Core Animation class responsible
for batching multiple layer-tree modifications into atomic updates to the render tree.

This chapter describes the two types of transactions Core Animation supports: implicit transactions and
explicit transactions.

Implicit transactions

Implicit transactions are created automatically when the layer tree is modified by a thread without an active
transaction, and are committed automatically when the thread's run-loop next iterates.

The example in Listing 1 modifies a layer’s opacity, zPosition, and position properties, relying on the
implicit transaction to ensure that the resulting animations occur at the same time.

Listing 1 Animation using an implicit transaction

theLayer.opacity=0.0;
theLayer.zPosition=-200;
thelayer.position=CGPointMake(0.0,0.0);

Important: When modifying layer properties from threads that don’t have a runloop, you must use explicit
transactions.

Explicit Transactions

You create an explicit transaction by sending the CATransaction class a begin message before modifying
the layer tree, and a commit message afterwards. Explicit transactions are particularly useful when setting
the properties of many layers at the same time (for example, while laying out multiple layer), temporarily
disabling layer actions, or temporarily changing the duration of resulting implied animations.

Temporarily Disabling Layer Actions

You can temporarily disable layer actions when changing layer property values by setting the value of the
transaction’s kCATransactionDisableActions to true. Any changes made during the scope of that
transaction will not resulting in an animation occuring. Listing 2 shows an example that disables the fade
animation that occurs when removing aLayer from a visible layer-tree.

Implicit transactions 193
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Transactions

Listing 2 Temporarily disabling a layer’s actions

[CATransaction begin];
[CATransaction setValue:(id)kCFBooleanTrue
 forKey:kCATransactionDisableActions];
[aLayer removeFromSuperlayer];
[CATransaction commit];

Overriding the Duration of Implied Animations

You can temporarily alter the duration of animations that run in response to changing layer property values
by setting the value of the transaction’s kCATransactionAnimationDuration key to a new duration. Any
resulting animations in that transaction scope will use that duration rather than their own. Listing 3 shows
an example that causes an animation to occur over 10 seconds rather than the duration specified by the
zPosition and opacity animations..

Listing 3 Overriding the animation duration

[CATransaction begin];
[CATransaction setValue:[NSNumber numberWithFloat:10.0f]
 forKey:kCATransactionAnimationDuration];
theLayer.zPosition=200.0;
theLayer.opacity=0.0;
[CATransaction commit];

Although the above example shows the duration bracketed by an explicit transaction begin and commit,
you could omit those and use the implicit transaction instead.

Nesting Transactions

Explicit transactions can be nested, allowing you to disable actions for one part of an animation, or using
different durations for the implicit animations of properties that are modified. Only when the outer-most
transaction is committed will the animations occur.

Listing 4 shows an example of nesting two transactions. The outer transaction sets the implied animation
duration to 2 seconds and sets the layer’s position property. The inner transaction sets the implied animation
duration to 5 seconds and changes the layer’s opacity and zPosition.

Listing 4 Nesting explicit transactions

[CATransaction begin]; // outer transaction

// change the animation duration to 2 seconds
[CATransaction setValue:[NSNumber numberWithFloat:2.0f]
 forKey:kCATransactionAnimationDuration];
// move the layer to a new position
theLayer.position = CGPointMake(0.0,0.0);

[CATransaction begin]; // inner transaction
// change the animation duration to 5 seconds
[CATransaction setValue:[NSNumber numberWithFloat:5.0f]
 forKey:kCATransactionAnimationDuration];

194 Explicit Transactions
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Transactions

// change the zPosition and opacity
theLayer.zPosition=200.0;
theLayer.opacity=0.0;

[CATransaction commit]; // inner transaction

[CATransaction commit]; // outer transaction

Explicit Transactions 195
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Transactions

196 Explicit Transactions
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Transactions

NSView provides the classic "struts and springs" model of repositioning views relative to their superlayer
when it resizes. While layers support this model, Core Animation on Mac OS X provides a more general layout
manager mechanism that allows developers to write their own layout managers. A custom layout manager
(which implements the CALayoutManager protocol) can be specified for a layer, which then assumes
responsibility for providing layout of the layer's sublayers.

This chapter describes the constraints layout manager and how to configure a set of constraints.

iPhone OS Note: The CALayer class in iPhone OS only supports the “struts and springs” positioning model,
it does not provide custom layout managers.

Constraints Layout Manager

Constraint-based layout allows you to specify the position and size of a layer using relationships between
itself its sibling layers or its superlayer. The relationships are represented by instances of the CAConstraint
class that are stored in an array in the sublayers’ constraints property.

Figure 1 shows the layout attributes you can use when specifying relationships.

Figure 1 Constraint layout manager attributes

kCAConstraintMaxY

kCAConstraintMinY

kCAConstraintMidY

kCAConstraintMinX

kCAConstraintMaxXkCAConstraintMidX

kCAConstraintWidth

kCAConstraintHeight

Constraints Layout Manager 197
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Laying Out Core Animation Layers

When using constraints layout you first create an instance of CAConstraintsLayoutManager and set it as
the parent layer’s layout manager. You then create constraints for the the sublayers by instantiating
CAConstraint objects and adding them to the sublayer’s constraints using addConstraint:. Each
CAConstraint instance encapsulates one geometry relationship between two layers on the same axis.

Sibling layers are referenced by name, using the name property of a layer. The special name superlayer is
used to refer to the layer's superlayer.

A maximum of two relationships must be specified per axis. If you specify constraints for the left and right
edges of a layer, the width will vary. If you specify constraints for the left edge and the width, the right edge
of the layer will move relative to the superlayer’s frame. Often you’ll specify only a single edge constraint,
the layer’s size in the same axis will be used as the second relationship.

The example code in Listing 1 creates a layer, and then adds sublayers that are positioned using constraints.
Figure 2 shows the resulting layout.

Figure 2 Example constraints based layout

theLayer

layerA

layerB

Listing 1 Configuring a layer’s constraints

// create and set a constraint layout manager for theLayer
theLayer.layoutManager=[CAConstraintLayoutManager layoutManager];

CALayer *layerA = [CALayer layer];
layerA.name = @"layerA";

layerA.bounds = CGRectMake(0.0,0.0,100.0,25.0);
layerA.borderWidth = 2.0;

[layerA addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintMidY
 relativeTo:@"superlayer"
 attribute:kCAConstraintMidY]];

[layerA addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintMidX
 relativeTo:@"superlayer"
 attribute:kCAConstraintMidX]];

[theLayer addSublayer:layerA];

198 Constraints Layout Manager
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Laying Out Core Animation Layers

CALayer *layerB = [CALayer layer];
layerB.name = @"layerB";
layerB.borderWidth = 2.0;

[layerB addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintWidth
 relativeTo:@"layerA"
 attribute:kCAConstraintWidth]];

[layerB addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintMidX
 relativeTo:@"layerA"
 attribute:kCAConstraintMidX]];

[layerB addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintMaxY
 relativeTo:@"layerA"
 attribute:kCAConstraintMinY
 offset:-10.0]];

[layerB addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintMinY
 relativeTo:@"superlayer"
 attribute:kCAConstraintMinY
 offset:+10.0]];

[theLayer addSublayer:layerB];

Here’s what the code does:

1. Creates an instance of CAConstraintsLayoutManager and sets it as the layoutManager property
of theLayer.

2. Creates an instance of CALayer (layerA) and sets the layer’s name property to “layerA”.

3. The bounds of layerA is set to a (0.0,0.0,100.0,25.0).

4. Creates a CAConstraint object, and adds it as a constraint of layerA.

This constraint aligns the horizontal center of layerA with the horizontal center of the superlayer.

5. Creates a second CAConstraint object, and adds it as a constraint of layerA.

This constraint aligns the vertical center of layerA with the vertical center of the superlayer.

6. Adds layerA as a sublayer of theLayer.

7. Creates an instance of CALayer (layerB) and sets the layer’s name property to “layerB”.

8. Creates a CAConstraint object, and adds it as a constraint of layerA.

This constraint sets the width of layerB to the width of layerA.

9. Creates a second CAConstraint object, and adds it as a constraint of layerB.

This constraint sets the horizontal center of layerB to be the same as the horizontal center of layerA.

10. Creates a third CAConstraint object, and adds it as a constraint of layerB.

This constraint sets the top edge of layerB 10 points below the bottom edge of layerA.

Constraints Layout Manager 199
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Laying Out Core Animation Layers

11. Creates a fourth CAConstraint object, and adds it as a constraint of layerB.

This constraint sets the bottom edge of layerB 10 points above the bottom edge of the superlayer.

Warning: It is possible to create constraints that result in circular references to the same attributes. In
cases where the layout is unable to be computed, the behavior is undefined.

200 Constraints Layout Manager
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Laying Out Core Animation Layers

The CAAnimation and CALayer classes extend the NSKeyValueCoding protocol adding default values for
keys, expanded wrapping conventions, and key path support for CGPoint, CGRect, CGSize, and
CATransform3D.

Key-Value Coding Compliant Container Classes

Both CALayer and CAAnimation are key-value coding compliant container classes, allowing you to set
values for arbitrary keys. That is, while the key “foo” is not a declared property of the CALayer class, however
you can still set a value for the key “foo” as follows:

[theLayer setValue:[NSNumber numberWithInteger:50] forKey:@"foo"];

You retrieve the value for the key “foo” using the following code:

fooValue=[theLayer valueForKey:@"foo"];

Mac OS X Note: On Mac OS X, the CALayer and CAAnimation classes support the NSCoding protocol and
will automatically archive any additional keys that you set for an instance of those classes.

Default Value Support

Core Animation adds a new convention to key value coding that allows a class to provide a default value
that is used when a class has no value set for that key. Both CALayer or CAAnimation support this convention
using the class method defaultValueForKey:.

To provide a default value for a key you create a subclass of the class and override defaultValueForKey:.
The subclass implementation examines the key parameter and then returns the appropriate default value.
Listing 1 shows an example implementation of defaultValueForKey: that provides a new default value
for the layer property masksToBounds.

Listing 1 Example implementation of defaultValueForKey:

+ (id)defaultValueForKey:(NSString *)key
{
 if ([key isEqualToString:@"masksToBounds"])
 return [NSNumber numberWithBool:YES];

 return [super defaultValueForKey:key];
}

Key-Value Coding Compliant Container Classes 201
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Extensions To Key-Value
Coding

Wrapping Conventions

When using the key-value coding methods to access properties whose values are not objects the standard
key-value coding wrapping conventions support, the following wrapping conventions are used:

ClassC Type

NSValueCGPoint

NSValueCGSize

NSValueCGRect

NSAffineTransformCGAffineTransform

NSValueCATransform3D

Key Path Support for Structure Fields

CAAnimation provides support for accessing the fields of selected structures using key paths. This is useful
for specifying these structure fields as the key paths for animations, as well as setting and getting values
using setValue:forKeyPath: and valueForKeyPath:.

CATransform3D exposes the following fields:

DescriptionStructure Field

The rotation, in radians, in the x axis.rotation.x

The rotation, in radians, in the y axis.rotation.y

The rotation, in radians, in the z axis.rotation.z

The rotation, in radians, in the z axis. This is identical to setting the rotation.z field.rotation

Scale factor for the x axis.scale.x

Scale factor for the y axis.scale.y

Scale factor for the z axis.scale.z

Average of all three scale factors.scale

Translate in the x axis.translation.x

Translate in the y axis.translation.y

Translate in the z axis.translation.z

Translate in the x and y axis. Value is an NSSize or CGSize.translation

202 Wrapping Conventions
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Extensions To Key-Value Coding

CGPoint exposes the following fields:

DescriptionStructure Field

The x component of the point.x

The y component of the point.y

CGSize exposes the following fields:

DescriptionStructure Field

The width component of the size.width

The height component of the size.height

CGRect exposes the following fields:

DescriptionStructure Field

The origin of the rectangle as a CGPoint.origin

The x component of the rectangle origin.origin.x

The y component of the rectangle origin.origin.y

The size of the rectangle as a CGSize.size

The width component of the rectangle size.size.width

The height component of the rectangle size.size.height

You can not specify a structure field key path using Objective-C 2.0 properties. This will not work:

 myLayer.transform.rotation.x=0;

Instead you must use setValue:forKeyPath: or valueForKeyPath: as shown below:

 [myLayer setValue:[NSNumber numberWithInt:0]
forKeyPath:@"transform.rotation.x"];

Key Path Support for Structure Fields 203
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Extensions To Key-Value Coding

204 Key Path Support for Structure Fields
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Extensions To Key-Value Coding

Regardless of the type of media a layer displays, a layer’s style properties are applied by the render-tree as
it composites layers.

This chapter describes the layer style properties and provides examples of their effect on an example layer.

Note: The layer style properties available on Mac OS X and iPhone OS differ and are noted below.

Geometry Properties

A layer’s geometry properties specify how it is displayed relative to its parent layer. The geometry also specifies
the radius used to round the layer corners (available only on Mac OS X) and a transform that is applied to
the layer and its sublayers.

Figure 1 shows the geometry of the example layer.

Figure 1 Layer geometry

The following CALayer properties specify a layer’s geometry:

 ■ frame (page 54)

 ■ bounds (page 50)

 ■ position (page 58)

 ■ anchorPoint (page 47)

 ■ cornerRadius (page 52)

Geometry Properties 205
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

 ■ transform (page 61)

 ■ zPosition

iPhone OS Note: iPhone OS does not support the cornerRadius property. To simulate the visual effect of
a corner radius you can draw the content using the appropriate clipping regions. You can override the hit
testing behavior of a layer and exclude touches as appropriate to emulate a geometry with a corner radius,
although this is rarely necessary in a touch-based user interface.

Background Properties

Next, the layer renders its background. You can define a color for the background as well as a Core Image
filter.

Figure 2 illustrates the sample layer with its backgroundColor set.

Figure 2 Layer with background color

The background filter is applied to the content behind the layer. For example, you may wish to apply a blur
filter as a background filter to make the layer content stand out better.

The following CALayer properties affect the display of a layer’s background:

 ■ backgroundColor (page 48)

 ■ backgroundFilters (page 48)

206 Background Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

iPhone OS Note: While the CALayer class in iPhone OS exposes the backgroundFilters property, Core
Image is not available. The filters available for this property are currently undefined.

Layer Content

Next, if set, the content of the layer is rendered. The layer content can be created using the Quartz graphics
environment, OpenGL, QuickTime, or Quartz Composer.

Figure 4 shows the example layer with its content composited.

Figure 3 Layer displaying a content image

By default, the content of a layer is not clipped to its bounds and corner radius. The masksToBounds property
can be set to true to clip the layer content to those values.

The following CALayer properties affect the display of a layer’s content:

 ■ contents (page 51)

 ■ contentsGravity (page 51)

Sublayers Content

It is typical that a layer will have a hierarchy of child layers, its sublayers. These sublayers are rendered
recursively, relative to the parent layer's geometry. The parent layer’s sublayerTransform is applied to
each sublayer, relative to the parent layer’s anchor point.

Layer Content 207
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

Figure 4 Layer displaying the sublayers content

By default, a layer’s sublayers are not clipped to the layer’s bounds and corner radius. The masksToBounds
property can be set to true to clip the layer content to those values. The example layer’s maskToBounds
property is false; notice that the sublayer displaying the monitor and test pattern is partially outside of its
parent layer’s bounds.

The following CALayer properties affect the display of a layer’s sublayers:

 ■ sublayers (page 60)

 ■ masksToBounds (page 56)

 ■ sublayerTransform (page 60)

Border Attributes

A layer can display an optional border using a specified color and width. Figure 5 shows the example layer
after applying a border.

Figure 5 Layer displaying the border attributes content

208 Border Attributes
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

The following CALayer properties affect the display of a layer’s borders:

 ■ borderColor (page 49)

 ■ borderWidth (page 49)

iPhone OS Note: As a performance consideration, iPhone OS does not support the borderColor and
borderWidth properties. Drawing a border for layer content is the responsibility of the developer.

Filters Property

An array of Core Image filters can be applied to the layer. These filters affect the layer's border, content, and
background. Figure 6 shows the example layer with the Core Image posterize filter applied.

Figure 6 Layer displaying the filters properties

The following CALayer property specifies a layers content filters:

 ■ filters (page 53)

iPhone OS Note: While the CALayer class in iPhone OS exposes the filters property, Core Image is not
available. Currently the filters available for this property are undefined.

Shadow Properties

Optionally, a layer can display a shadow, specifying its opacity, color, offset, and blur radius. Figure 7 shows
the example layer with a red shadow applied.

Filters Property 209
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

Figure 7 Layer displaying the shadow properties

The following CALayer properties affect the display of a layer’s shadow:

 ■ shadowColor (page 58)

 ■ shadowOffset (page 59)

 ■ shadowOpacity (page 59)

 ■ shadowRadius (page 59)

iPhone OS Note: As a performance consideration, iPhone OS does not support the shadowColor,
shadowOffset, shadowOpacity, and shadowRadius properties.

Opacity Property

By setting the opacity of a layer, you can control the layer’s transparency. Figure 8 shows the example layer
with an opacity of 0.5.

Figure 8 Layer including the opacity property

210 Opacity Property
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

The following CALayer property specifies the opacity of a layer:

 ■ opacity (page 57)

Composite Property

A layer’s compositing filter is used to combine the layer content with the layers behind it. By default, a layer
is composited using source-over. Figure 9 shows the example layer with a compositing filter applied.

Figure 9 Layer composited using the compositingFilter property

The following CALayer property specifies the composting filter for a layer:

 ■ compositingFilter (page 50)

iPhone OS Note: While the CALayer class in iPhone OS exposes the compositingFilter property, Core
Image is not available. Currently the filters available for this property are undefined.

Mask Properties

Finally, you can specify a layer that will serve as a mask, further modifying how the rendered layer appears.
The opacity of the mask layer determines masking when the layer is composited. Figure 10 shows the example
layer composited with a mask layer.

Composite Property 211
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

Figure 10 Layer composited with the mask property

The following CALayer property specifies the mask for a layer:

 ■ mask (page 55)

iPhone OS Note: As a performance consideration, iPhone OS does not support the mask property.

212 Mask Properties
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

The Core Animation Menu example displays a simple selection example using Core Animation layers to
generate and animate the user interface. In less than 100 lines of code, it demonstrates the following
capabilities and design patterns:

 ■ Hosting the root-layer of a layer hierarchy in a view.

 ■ Creating and inserting layers into a layer hierarchy.

 ■ Using a QCCompositionLayer to display Quartz Composer compositions as layer content.

 ■ Using an explicit animation that runs continuously.

 ■ Animating Core Image Filter inputs.

 ■ Implicitly animating the position of the selection item.

 ■ Handling key events through the MenuView instance that hosts the view.

This application makes heavy use of Core Image filters and Quartz Composer compositions and, as a result,
runs only on Mac OS X. The techniques illustrated for managing the layer hierarchy, implicit and explicit
animation, and event handling are common to both platforms.

The User Interface

The Core Animation Menu application provides a very basic user interface; the user can select a single item
in a menu. The user navigates the menu using the up and down arrows on the keyboard. As the selection
changes the selection indicator (the rounded white rectangle) animates smoothly to its new location. A
continuously animating bloom filter is set for the selection indicator causing it to subtly catch your attention.
The background is a Quartz Composer animation that runs continuously. Figure 1 shows the application’s
interface.

The User Interface 213
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

Figure 1 Core Animation Menu Interface

Examining the Nib File

Menu.nib is very straightforward. An instance of CustomView is dragged from the Interface Builder palette
and positioned in the window. It is resized such that it fills the entire window. The MenuView.h file is imported
into Interface Builder by dragging it to the Menu.nib window. The CustomView is then selected, and the
object type is changed to MenuView.

214 The User Interface
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

No other connections need to be made. When the nib file is loaded the window is unarchived and the
MenuView is as well. The MenuView class gets an awakeFromNib message and the layers are configured
there.

The Layer Hierarchy

The layer hierarchy, also referred to as the layer tree, of the Menu application is shown below.

Item1 (CATextLayer)

Item2 (CATextLayer)

Item3 (CATextLayer)

Item4 (CATextLayer)

Item5 (CATextLayer)

menuLayer (CALayer)

selectionLayer (CALayer)

rootLayer (QCComposerLayer)

The rootLayer is an instance of QCComposerLayer. As the root-layer this layer is the same size as the
MenuView instance, and remains that way as the window is resized.

The User Interface 215
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

The menusLayer is a sublayer of the rootLayer. It is an empty layer; it does not have anything set as its
contents property and none of its style properties are set. The menusLayer is simply used as a container
for the menu item layers. This approach allows the application to easily access a menu item sublayer by its
position in the menusLayers.sublayers array. The menusLayer is the same size as, and overlaps, the
rootLayer. This was done intentionally so that there was no need to convert between coordinate systems
when positioning the selectionLayer relative to the current menu item.

The Code

Having looked at the application's nib file and the overall design, you can now begin examining the
implementation of the MenuView class..

Examining MenuView.h

The MenuView class is a subclass of NSView and it declares four instance variables:

NSIndex selectedIndex — tracks the index that is currently selected.
CALayer *menusLayer —the Core Animation layer that contains the menus items as its sublayers.
CALayer *selectionLayer — the Core Animation layer that displays the selection indicator
NSArray *name — an array of names displayed as menu items

Note: Notice that Quartz/CoreAnimation.h is imported. The QuartzCore.framework must be added
to any project that uses Core Animation. Because this example uses Quartz Composer the MenuView
implementation also imports Quartz/Quartz.h, and the Quartz.framework is added to the project.

Listing 1 MenuView.h listing

#import <Cocoa/Cocoa.h>
#import <QuartzCore/CoreAnimation.h>

// the MenuView class is the view subclass that is inserted into
// the window. It hosts the rootLayer, and responds to events
@interface MenuView : NSView {

 // contains the selected menu item index
 NSInteger selectedIndex;

 // the layer that contains the menu item layers
 CALayer *menusLayer;

 // the layer that is used for the selection display
 CALayer *selectionLayer;

 // the array of menu item names
 NSArray *names;

}

216 The Code
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

-(void)awakeFromNib;
-(void)setupLayers;
-(void)changeSelectedIndex:(NSInteger)theSelectedIndex;
-(void)moveUp:(id)sender;
-(void)moveDown:(id)sender;
-(void)dealloc;

Examining MenuView.m

The MenuView class is the workhorse of this application. It responds when the view is loaded by the nib, sets
up the layers to be displayed, creates the animations, and handles the keys that move the selection.

The examination of the MenuView.m is split as follows:

 ■ Setting Up the MenuView

 ■ Setting Up the Layers

 ■ Animating the Selection Layer Movement

 ■ Responding to Key Events

 ■ Cleaning Up

Setting Up the MenuView

The awakeFromNib method is called when Menu.nib is loaded and unarchived. The view is expected to
complete its setup in awakeFromNib.

The MenuView implementation of awakeFromNib creates an array of strings, names, that are used to display
the menu items. It then calls the setupLayers method to setup the layers for the view.

- (void)awakeFromNib
{
 names=[[NSArray arrayWithObjects:@"Item 1",@"Item 2",
 @"Item 3",@"Item 4",@"Item 5",
 nil] retain];

 [self setupLayers];
}

Setting Up the Layers

The majority of the code in the Menu example resides in the setupLayersmethod. This method is responsible
for the following:

 ■ Creating and initializing rootLayer

 ■ Setting rootLayer as the hosted layer of the view

 ■ Creating and initializing the menusLayer

 ■ Creating and initializing the menu item layers

 ■ Adding the menu item positioning constraints

The Code 217
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

 ■ Layout the menusLayer

 ■ Creating the selectionLayer

 ■ Configuring the continuous animation of selectionLayer

 ■ Adding it to the layer tree of rootLayer

 ■ Setting the initial value of selectedIndex

First, the constants used to position and space the layers are defined.

-(void)setupLayers;
{
 CGFloat width=400.0;
 CGFloat height=50.0;
 CGFloat spacing=20.0;
 CGFloat fontSize=32.0;
 CGFloat initialOffset=100.0;

The view must be set as the first responder to allow it to initially handle the up and down arrow events.

[[self window] makeFirstResponder:self];

Create the rootLayer, The rootlayer is an instance of QCCompositionLayer that displays the
Background.qtz file which is located within the application bundle.

QCCompositionLayer* rootLayer;
rootLayer=[QCCompositionLayer compositionLayerWithFile:
 [[NSBundle mainBundle] pathForResource:@"Background"
 ofType:@"qtz"]];

The instance of MenuView is set as the layer-hosting view of rootLayer. The order of these two calls is
important. By first setting the layer to rootLayer and then setting setWantsLayer: to YES our layer is
used rather than the one that the view would create. This is the key difference between layer-hosting views
and layer-backed views.

[self setLayer:rootLayer];
[self setWantsLayer:YES];

Create the menusLayer, and set its bounds to those of rootLayer. Again, this is done to allow us to use
the same coordinate system for both the menusLayer sublayers and the selectedLayer. The menusLayer
is also retained, MenuView requires it when positioning the selectedLayer.

menusLayer=[[CALayer layer] retain];
menusLayer.frame=rootLayer.frame;

Specify that the sublayers of menusLayer will be laid out using the CAConstraintLayoutManager.
Constraints layout allows you to specify the location and size of layers relative to their sibling layers and
superlayer. The superlayer is configured to use the constraints manager, and individual CAContraint
instances are created and attached to each of the sublayers.

menusLayer.layoutManager=[CAConstraintLayoutManager layoutManager];

Add the menusLayer as a sublayer of the rootLayer.

[rootLayer addSublayer:menusLayer];

218 The Code
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

The next code fragment iterates over the items in the names array, creating a new CATextLayer for each
name and defines its position using constraints.

NSInteger i;
for (i=0;i<[names count];i++) {

Get the name at the index of the current iteration.

NSString *name=[names objectAtIndex:i];

Create a new CATextLayer instance called menuItemLayer. Set its string to the name of the menu item,
and specify that it should be displayed in white 32 point Lucida-Grande.

CATextLayer *menuItemLayer=[CATextLayer layer];
menuItemLayer.string=name;
menuItemLayer.font=@"Lucida-Grande";
menuItemLayer.fontSize=fontSize;
menuItemLayer.foregroundColor=CGColorCreateGenericRGB(1.0,1.0,1.0,1.0);

Note that the bounds of the menuItemLayer is never specified. When using CATextLayer instances the
constraints manager takes responsibility for setting the bounds and height of the layer.

The next step is to specify the constraints for the layout. First the vertical constraint is set relative to the top
edge of the superlayer. The top edge of menuItemLayer is offset by the initialOffset (defined earlier)
and by the spacing between items (also specified earlier) and the height (again specified earlier) is multiplied
by the index of the name. The final value is inverted because the layer coordinate system uses the bottom
left as its origin.

[menuItemLayer addConstraint:[CAConstraint
 constraintWithAttribute:kCAConstraintMaxY
 relativeTo:@"superlayer"
 attribute:kCAConstraintMaxY
 offset:-(i*height+spacing+initialOffset)]];

The second constraint simply causes the menuItemLayer object to be centered horizontally, relative to the
center of its superlayer.

[menuItemLayer addConstraint:[CAConstraint
 constraintWithAttribute:kCAConstraintMidX
 relativeTo:@"superlayer"
 attribute:kCAConstraintMidX]];

Each menuItemLayer is added to the menusLayer layer as a sublayer.

[menusLayer addSublayer:menuItemLayer];
} // end of for loop

Having configured all the menu item layers you must now force them to be laid out immediately. This is
necessary to ensure that the first placement of the selectionLayer is correct.

[menusLayer layoutIfNeeded];

Now the CALayer that is used as the selectionlayer is created and configured. The bounds is set to be
the width and height defined earlier. The layer is retained because we rely on it being available to MenuView
after the layer is added to the layer tree.

The Code 219
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

selectionLayer=[[CALayer layer] retain];
selectionLayer.bounds=CGRectMake(0.0,0.0,width,height);

The selectionLayer depends on the borderWidth, borderColor, and cornerRadius style properties
to provide its visual components. They are set to 2 points wide, a color of white, and a corner radius that
ensures that the ends of the selectionLayer are rounded completely.

selectionLayer.borderWidth=2.0;
selectionLayer.borderColor=CGColorCreateGenericRGB(1.0f,1.0f,1.0f,1.0f);
selectionLayer.cornerRadius=height/2;

As the selectionLayer is displayed it softly pulses every second. This is done using a CIBloom filter and
animating its inputIntensity between 0 (no intensity) and 1.5 (somewhat intense).

Create the filter, set its default values, and then specify the inputRadius is 5.0.

CIFilter *filter = [CIFilter filterWithName:@"CIBloom"];
[filter setDefaults];
[filter setValue:[NSNumber numberWithFloat:5.0] forKey:@"inputRadius"];

Core Animation extends the CIFilter class by adding the name property. The name property allows the
inputs of filters in the layer's filters array to be animated using a key path.

[filter setName:@"pulseFilter"];

Set the selectionLayer filters array so that it contains filter.

[selectionLayer setFilters:[NSArray arrayWithObject:filter]];

The pulse animation is an explicit animation that runs continuously. It is a subclass of CABasicAnimation
and, as such, must specify values for a keyPath, toValue, and fromValue.

CABasicAnimation* pulseAnimation = [CABasicAnimation animation];

Set the key path to be animated to filters.pulseFilter.inputIntensity. This is where the filter's
name property is used.

pulseAnimation.keyPath = @"filters.pulseFilter.inputIntensity";

Set the fromValue and toValue to 0 and 1.0 respectively. This gives a nice pulse effect.

pulseAnimation.fromValue = [NSNumber numberWithFloat: 0.0];
pulseAnimation.toValue = [NSNumber numberWithFloat: 1.0];

The animation is 1 second long, and it repeats indefinitely. When the animation reaches 1.5, it cycles back
to 0, and so on. The following code sets that up.

pulseAnimation.duration = 1.0;
pulseAnimation.repeatCount = 1e100f;
pulseAnimation.autoreverses = YES;

The timingFunction of an animation controls how the animation values are distributed over the course
of the animation duration. In this case we'll use an easeIn-easeOut animation. This causes the animation to
begin slowly, ramp up to speed, and then slow again before completing.

pulseAnimation.timingFunction = [CAMediaTimingFunction functionWithName:
 kCAMediaTimingFunctionEaseInEaseOut];

220 The Code
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

For an explicit animation to begin you must add it to the layer's animation collection. This is done using
addAnimation:forKey:. The key itself is used as an identifier for removing the animation later, if necessary.

[selectionLayer addAnimation:pulseAnimation forKey:@"pulseAnimation"];

Finally, now that setup is complete add the selectionLayer to the rootLayer.

[rootLayer addSublayer:selectionLayer];

Set the initial position of the selectionLayer and the initial selectedIndex to 0.

[self changeSelectedIndex:0];
// end of setupLayers

The setupLayers method is by far the longest and most complex in this application. However, by breaking
it down into the setup for each layer, it becomes much easier to understand.

Animating the Selection Layer Movement

The method changeSelectedIndex: is responsible for: setting selectedIndex to the new value, ensuring
that the new value of selectedIndex is within the range of the number of items in the menu items, and
positioning the selection layer relative to the menusLayer sublayer at the selectedIndex. This causes the
selection layer to animate to show that the new item is selected.

-(void)changeSelectedIndex:(NSInteger)theSelectedIndex
{
 selectedIndex=theSelectedIndex;

 if (selectedIndex == [names count]) selectedIndex=[names count]-1;
 if (selectedIndex < 0) selectedIndex=0;

 CALayer *theSelectedLayer=[[menusLayer sublayers]
objectAtIndex:selectedIndex];
 selectionLayer.position=theSelectedLayer.position;
};

Notice that all that is required to animate the selectionLayer is to simply assign a new value to its position
property. This is an example of implicit animation

Responding to Key Events

Because layers do not take part in the responder chain, or accept events, the MenuView that acts as the
layer-host for the layer tree must assume that role. The moveUp: and moveDown: messages are provided by
NSResponder, of which MenuView is a descendent. The moveUp: and moveDown: messages are invoked
when the up arrow and down arrows are pressed respectively. Using these methods allows the application
to respect any remapped arrow key functionally specified by the user. (And it's easier than implementing
keyDown:).

When the up arrow is pressed the selectedIndex value is de-incremented and updated by calling
changeSelectedIndex:.

-(void)moveUp:(id)sender
{
 [self changeSelectedIndex:selectedIndex-1];
}

The Code 221
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

When the down arrow is pressed the selectedIndex value is incremented and updated by calling
changeSelectedIndex:.

-(void)moveDown:(id)sender
{
 [self changeSelectedIndex:selectedIndex+1];

}

Cleaning Up

When the MenuView is released, we are responsible for cleaning up our instance variables. The menusLayer,
selectionLayer, and names are autoreleased in the dealloc implementation.

-(void)dealloc
{
 [menusLayer autorelease];
 [selectionLayer autorelease];
 [names autorelease];
 [super dealloc];
}

222 The Code
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

This table describes the changes to Core Animation Reference Collection.

NotesDate

Updated for iPhone OS.2008-06-26

Reordered companion guides to indicate prerequisites.2007-10-31

New document that describes the Objective-C API for Core Animation .2007-07-24

223
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

224
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

Action Identifiers 83
actionForKey: instance method 63
actionForLayer:forKey: <NSObject> delegate

method 80
actions instance property 47
addAnimation:forKey: instance method 64
addConstraint: instance method 65
additive instance property 102
addSublayer: instance method 65
addUpdateRect: instance method 107
affineTransform instance method 65
alignmentMode instance property 116
anchorPoint instance property 47
animation class method 17
animationDidStart: <NSObject> delegate method

19
animationDidStop:finished: <NSObject> delegate

method 19
animationForKey: instance method 66
animations instance property 22
animationWithKeyPath: class method 103
asynchronous instance property 96
Autoresizing Mask 81
autoresizingMask instance property 48
autoreverses protocol property 148

B

backgroundColor instance property 48
backgroundFilters instance property 48
begin class method 122
beginFrameAtTime:timeStamp: instance method 107
beginTime protocol property 148
borderColor instance property 49
borderWidth instance property 49
bounds instance property 50, 106
byValue instance property 24

C

CAConstraintAttribute 31
CACurrentMediaTime function 156
calculationMode instance property 36
canDrawInCGLContext:pixelFormat:forLayerTime:

displayTime: instance method 97
CATransform3DConcat function 156
CATransform3DEqualToTransform function 156
CATransform3DGetAffineTransform function 157
CATransform3DIdentity constant 86
CATransform3DInvert function 157
CATransform3DIsAffine function 157
CATransform3DIsIdentity function 157
CATransform3DMakeAffineTransform function 158
CATransform3DMakeRotation function 158
CATransform3DMakeScale function 158
CATransform3DMakeTranslation function 159
CATransform3DRotate function 159
CATransform3DScale function 159
CATransform3DTranslate function 159
CATransform3DValue instance method 134
commit class method 122
Common Transition Subtypes 128
Common Transition Types 128
compositingFilter instance property 50
composition instance method 137
compositionLayerWithComposition: class method

136
compositionLayerWithFile: class method 137
Constraint Attribute Type data type 32
constraints instance property 51
constraintWithAttribute:relativeTo:attribute:

class method 28
constraintWithAttribute:relativeTo:attribute:

offset: class method 29
constraintWithAttribute:relativeTo:attribute:

scale:offset: class method 29
containsPoint: instance method 66
Contents Gravity Values 84
contents instance property 51
contentsGravity instance property 51

225
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

Index

contentsRect instance property 52
convertPoint:fromLayer: instance method 67
convertPoint:toLayer: instance method 67
convertRect:fromLayer: instance method 67
convertRect:toLayer: instance method 68
convertTime:fromLayer: instance method 68
convertTime:toLayer: instance method 69
copyCGLContextForPixelFormat: instance method

97
copyCGLPixelFormatForDisplayMask: instance

method 98
cornerRadius instance property 52
cumulative instance property 102

D

defaultActionForKey: class method 62
defaultValueForKey: class method 18, 62
delegate instance property 16, 52
display instance method 69
displayLayer: <NSObject> delegate method 80
doubleSided instance property 53
drawInCGLContext:pixelFormat:forLayerTime:

displayTime: instance method 98
drawInContext: instance method 70
drawLayer:inContext:<NSObject> delegate method

81
duration protocol property 149

E

Edge Antialiasing Mask 83
edgeAntialiasingMask instance property 53
enabled instance property 132
endFrame instance method 108
endProgress instance property 126

F

Fill Modes 151
fillMode protocol property 149
filter instance property 126
filters instance property 53
flush class method 122
font instance property 116
fontSize instance property 117
foregroundColor instance property 117
frame instance property 54
fromValue instance property 24

functionWithControlPoints:::: class method 90
functionWithName: class method 90

G

getControlPointAtIndex:values: instance method
91

H

hidden instance property 54
hitTest: instance method 70
Horizontal alignment modes 120

I

Identity Transform 86
init instance method 70
initWithAttribute:relativeTo:attribute:scale:

offset: instance method 30
initWithComposition: instance method 137
initWithControlPoints:::: instance method 91
initWithFile: instance method 138
initWithLayer: instance method 71
insertSublayer:above: instance method 71
insertSublayer:atIndex: instance method 72
insertSublayer:below: instance method 72
invalidateLayoutOfLayer: <NSObject> instance

method 143
isAdditive instance method 103
isAsynchronous instance method 99
isCumulative instance method 104
isDoubleSided instance method 73
isEnabled instance method 132
isHidden instance method 73
isOpaque instance method 73
isRemovedOnCompletion instance method 18
isWrapped instance method 119

K

kCAAlignmentCenter constant 120
kCAAlignmentJustified constant 120
kCAAlignmentLeft constant 120
kCAAlignmentNatural constant 120
kCAAlignmentRight constant 120
kCAAnimationDiscrete constant 39

226
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

INDEX

kCAAnimationLinear constant 39
kCAAnimationPaced constant 39
kCAAnimationRotateAuto constant 39
kCAAnimationRotateAutoReverse constant 39
kCAConstraintHeight constant 32
kCAConstraintMaxX constant 31
kCAConstraintMaxY constant 32
kCAConstraintMidX constant 31
kCAConstraintMidY constant 31
kCAConstraintMinX constant 31
kCAConstraintMinY constant 31
kCAConstraintWidth constant 31
kCAFillModeBackwards constant 151
kCAFillModeBoth constant 151
kCAFillModeForwards constant 151
kCAFillModeFrozen constant (Deprecated in Mac OS X

v10.5 and later) 151
kCAFillModeRemoved constant 151
kCAFilterLinear constant 86
kCAFilterNearest constant 86
kCAGravityBottom constant 84
kCAGravityBottomLeft constant 85
kCAGravityBottomRight constant 85
kCAGravityCenter constant 84
kCAGravityLeft constant 85
kCAGravityResize constant 85
kCAGravityResizeAspect constant 85
kCAGravityResizeAspectFill constant 85
kCAGravityRight constant 85
kCAGravityTop constant 84
kCAGravityTopLeft constant 85
kCAGravityTopRight constant 85
kCALayerBottomEdge constant 84
kCALayerHeightSizable constant 82
kCALayerLeftEdge constant 83
kCALayerMaxXMargin constant 82
kCALayerMaxYMargin constant 82
kCALayerMinXMargin constant 82
kCALayerMinYMargin constant 82
kCALayerNotSizable constant 82
kCALayerRightEdge constant 84
kCALayerTopEdge constant 84
kCALayerWidthSizable constant 82
kCAMediaTimingFunctionEaseIn constant 92
kCAMediaTimingFunctionEaseInEaseOut constant

93
kCAMediaTimingFunctionEaseOut constant 92
kCAMediaTimingFunctionLinear constant 92
kCAOnOrderIn constant 83
kCAOnOrderOut constant 83
kCAScrollBoth constant 113
kCAScrollHorizontally constant 113
kCAScrollNone constant 113

kCAScrollVertically constant 113
kCATransactionAnimationDuration constant 124
kCATransactionDisableActions constant 124
kCATransition constant 83
kCATransitionFade constant 128
kCATransitionFromBottom constant 129
kCATransitionFromLeft constant 129
kCATransitionFromRight constant 129
kCATransitionFromTop constant 129
kCATransitionMoveIn constant 128
kCATransitionPush constant 128
kCATransitionReveal constant 128
kCATruncationEnd constant 119
kCATruncationMiddle constant 119
kCATruncationNone constant 119
kCATruncationStart constant 119
keyPath instance property 103
keyTimes instance property 36

L

layer class method 63
layer instance property 106
layoutIfNeeded instance method 73
layoutManager class method 34
layoutManager instance property 55
layoutSublayers instance method 73
layoutSublayersOfLayer: <NSObject> instance

method 144

M

magnificationFilter instance property 55
mask instance property 55
masksToBounds instance property 56
minificationFilter instance property 56
modelLayer instance method 74

N

name instance property 56, 132
needsDisplayOnBoundsChange instance property 57
nextFrameTime instance method 108

O

opacity instance property 57

227
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

INDEX

opaque instance property 57

P

path instance property 37
position instance property 58
Predefined timing functions 92
preferredFrameSize instance method 74
preferredSizeOfLayer:<NSObject> instance method

144
presentationLayer instance method 74

R

releaseCGLContext: instance method 99
releaseCGLPixelFormat: instance method 99
removeAllAnimations instance method 75
removeAnimationForKey: instance method 75
removedOnCompletion instance property 17
removeFromSuperlayer instance method 75
render instance method 108
rendererWithCGLContext:options: class method

107
renderInContext: instance method 76
repeatCount protocol property 149
repeatDuration protocol property 150
replaceSublayer:with: instance method 76
resizeSublayersWithOldSize: instance method 77
resizeWithOldSuperlayerSize: instance method 77
Rotation Mode Values 38
rotationMode instance property 37
runActionForKey:object:arguments: protocol

instance method 141

S

Scaling Filters 86
Scroll Modes 113
scrollMode instance property 112
scrollPoint: instance method 77
scrollRectToVisible: instance method 78
scrollToPoint: instance method 112
scrollToRect: instance method 112
setAffineTransform: instance method 78
setNeedsDisplay instance method 78
setNeedsDisplayInRect: instance method 79
setNeedsLayout instance method 79
setValue:forKey: class method 123
shadowColor instance property 58

shadowOffset instance property 59
shadowOpacity instance property 59
shadowRadius instance property 59
shouldArchiveValueForKey: instance method 19, 79
speed protocol property 150
startProgress instance property 127
string instance property 118
style instance property 59
sublayers instance property 60
sublayerTransform instance property 60
subtype instance property 127
superlayer instance property 61

T

timeOffset protocol property 150
timingFunction instance property 17
timingFunctions instance property 38
toValue instance property 25
Transaction properties 124
transform instance property 61
Transform structure 86
Truncation modes 119
truncationMode instance property 118
type instance property 127

U

updateBounds instance method 109

V

Value calculation modes 39
valueForKey: class method 123
values instance property 38
valueWithCATransform3D: class method 133
visibleRect instance property 61

W

wrapped instance property 118

Z

zPosition instance property 61

228
2008-06-26 | © 2008 Apple Inc. All Rights Reserved.

INDEX

	Core Animation Reference Collection
	Contents
	Figures, Tables, and Listings
	Introduction
	Part I: Classes
	CAAnimation Class Reference
	Overview
	Tasks
	Archiving Properties
	Providing Default Values for Properties
	Creating an Animation
	Animation Attributes
	Getting and Setting the Delegate
	Animation Progress

	Properties
	delegate
	removedOnCompletion
	timingFunction

	Class Methods
	animation
	defaultValueForKey:

	Instance Methods
	isRemovedOnCompletion
	shouldArchiveValueForKey:

	Delegate Methods
	animationDidStart:
	animationDidStop:finished:

	CAAnimationGroup Class Reference
	Overview
	Tasks
	Grouped Animations

	Properties
	animations

	CABasicAnimation Class Reference
	Overview
	Setting Interpolation Values

	Tasks
	Interpolation Values

	Properties
	byValue
	fromValue
	toValue

	CAConstraint Class Reference
	Overview
	Tasks
	Create a New Constraint

	Class Methods
	constraintWithAttribute:relativeTo:attribute:
	constraintWithAttribute:relativeTo:attribute:offset:
	constraintWithAttribute:relativeTo:attribute:scale:offset:

	Instance Methods
	initWithAttribute:relativeTo:attribute:scale:offset:

	Constants
	CAConstraintAttribute
	Constraint Attribute Type

	CAConstraintLayoutManager Class Reference
	Overview
	Tasks
	Creating the Layout Manager

	Class Methods
	layoutManager

	CAKeyframeAnimation Class Reference
	Overview
	Tasks
	Providing Keyframe Values
	Keyframe Timing
	Rotation Mode

	Properties
	calculationMode
	keyTimes
	path
	rotationMode
	timingFunctions
	values

	Constants
	Rotation Mode Values
	Value calculation modes

	CALayer Class Reference
	Overview
	Tasks
	Creating a Layer
	Accessing the Presentation Layer
	Modifying the Layer Geometry
	Providing Layer Content
	Style Attributes
	Managing the Layer Hierarchy
	Updating Layer Display
	Layer Animations
	Managing Layer Resizing and Layout
	Actions
	Mapping Between Coordinate and Time Spaces
	Hit Testing
	Rendering
	Scrolling
	Modifying the Delegate
	Key-Value Coding Extensions

	Properties
	actions
	anchorPoint
	autoresizingMask
	backgroundColor
	backgroundFilters
	borderColor
	borderWidth
	bounds
	compositingFilter
	constraints
	contents
	contentsGravity
	contentsRect
	cornerRadius
	delegate
	doubleSided
	edgeAntialiasingMask
	filters
	frame
	hidden
	layoutManager
	magnificationFilter
	mask
	masksToBounds
	minificationFilter
	name
	needsDisplayOnBoundsChange
	opacity
	opaque
	position
	shadowColor
	shadowOffset
	shadowOpacity
	shadowRadius
	style
	sublayers
	sublayerTransform
	superlayer
	transform
	visibleRect
	zPosition

	Class Methods
	defaultActionForKey:
	defaultValueForKey:
	layer

	Instance Methods
	actionForKey:
	addAnimation:forKey:
	addConstraint:
	addSublayer:
	affineTransform
	animationForKey:
	containsPoint:
	convertPoint:fromLayer:
	convertPoint:toLayer:
	convertRect:fromLayer:
	convertRect:toLayer:
	convertTime:fromLayer:
	convertTime:toLayer:
	display
	drawInContext:
	hitTest:
	init
	initWithLayer:
	insertSublayer:above:
	insertSublayer:atIndex:
	insertSublayer:below:
	isDoubleSided
	isHidden
	isOpaque
	layoutIfNeeded
	layoutSublayers
	modelLayer
	preferredFrameSize
	presentationLayer
	removeAllAnimations
	removeAnimationForKey:
	removeFromSuperlayer
	renderInContext:
	replaceSublayer:with:
	resizeSublayersWithOldSize:
	resizeWithOldSuperlayerSize:
	scrollPoint:
	scrollRectToVisible:
	setAffineTransform:
	setNeedsDisplay
	setNeedsDisplayInRect:
	setNeedsLayout
	shouldArchiveValueForKey:

	Delegate Methods
	actionForLayer:forKey:
	displayLayer:
	drawLayer:inContext:

	Constants
	Autoresizing Mask
	Action Identifiers
	Edge Antialiasing Mask
	Contents Gravity Values
	Identity Transform
	Scaling Filters
	Transform

	CAMediaTimingFunction Class Reference
	Overview
	Tasks
	Creating Timing Functions
	Accessing the Control Points

	Class Methods
	functionWithControlPoints::::
	functionWithName:

	Instance Methods
	getControlPointAtIndex:values:
	initWithControlPoints::::

	Constants
	Predefined timing functions

	CAOpenGLLayer Class Reference
	Overview
	Tasks
	Drawing the Content
	Managing the Pixel Format
	Managing the Rendering Context

	Properties
	asynchronous

	Instance Methods
	canDrawInCGLContext:pixelFormat:forLayerTime:displayTime:
	copyCGLContextForPixelFormat:
	copyCGLPixelFormatForDisplayMask:
	drawInCGLContext:pixelFormat:forLayerTime:displayTime:
	isAsynchronous
	releaseCGLContext:
	releaseCGLPixelFormat:

	CAPropertyAnimation Class Reference
	Overview
	Tasks
	Animated Key Path
	Property Value Calculation Behavior
	Creating an Animation

	Properties
	additive
	cumulative
	keyPath

	Class Methods
	animationWithKeyPath:

	Instance Methods
	isAdditive
	isCumulative

	CARenderer Class Reference
	Overview
	Tasks
	Rendered Layer
	Renderer Geometry
	Create a New Renderer
	Render a Frame

	Properties
	bounds
	layer

	Class Methods
	rendererWithCGLContext:options:

	Instance Methods
	addUpdateRect:
	beginFrameAtTime:timeStamp:
	endFrame
	nextFrameTime
	render
	updateBounds

	CAScrollLayer Class Reference
	Overview
	Tasks
	Scrolling Constraints
	Scrolling the Layer

	Properties
	scrollMode

	Instance Methods
	scrollToPoint:
	scrollToRect:

	Constants
	Scroll Modes

	CATextLayer Class Reference
	Overview
	Tasks
	Getting and Setting the Text
	Text Visual Properties
	Text Alignment and Truncation

	Properties
	alignmentMode
	font
	fontSize
	foregroundColor
	string
	truncationMode
	wrapped

	Instance Methods
	isWrapped

	Constants
	Truncation modes
	Horizontal alignment modes

	CATransaction Class Reference
	Overview
	Tasks
	Creating and Committing Transactions
	Getting and Setting Transaction Properties

	Class Methods
	begin
	commit
	flush
	setValue:forKey:
	valueForKey:

	Constants
	Transaction properties

	CATransition Class Reference
	Overview
	Tasks
	Transition Start and End Point
	Transition Properties
	Custom Transition Filter

	Properties
	endProgress
	filter
	startProgress
	subtype
	type

	Constants
	Common Transition Types
	Common Transition Subtypes

	CIFilter Core Animation Additions
	Overview
	Tasks
	Naming Filter Instances
	Enabling Filter Instances

	Properties
	enabled
	name

	Instance Methods
	isEnabled

	NSValue Core Animation Additions
	Overview
	Tasks
	Creating an NSValue
	Accessing Data

	Class Methods
	valueWithCATransform3D:

	Instance Methods
	CATransform3DValue

	QCCompositionLayer Class Reference
	Overview
	Tasks
	Creating the Layer
	Getting the Composition

	Class Methods
	compositionLayerWithComposition:
	compositionLayerWithFile:

	Instance Methods
	composition
	initWithComposition:
	initWithFile:

	Part II: Protocols
	CAAction Protocol Reference
	Overview
	Tasks
	Responding to an Action

	Instance Methods
	runActionForKey:object:arguments:

	CALayoutManager Protocol Reference
	Overview
	Tasks
	Layout Layers
	Calculate Layer Size

	Instance Methods
	invalidateLayoutOfLayer:
	layoutSublayersOfLayer:
	preferredSizeOfLayer:

	CAMediaTiming Protocol Reference
	Overview
	Tasks
	Animation Start Time
	Repeating Animations
	Duration and Speed
	Playback Modes

	Properties
	autoreverses
	beginTime
	duration
	fillMode
	repeatCount
	repeatDuration
	speed
	timeOffset

	Constants
	Fill Modes

	Part III: Other References
	Core Animation Function Reference
	Overview
	Functions by Task
	Timing Functions
	Transform Functions

	Functions
	CACurrentMediaTime
	CATransform3DConcat
	CATransform3DEqualToTransform
	CATransform3DGetAffineTransform
	CATransform3DInvert
	CATransform3DIsAffine
	CATransform3DIsIdentity
	CATransform3DMakeAffineTransform
	CATransform3DMakeRotation
	CATransform3DMakeScale
	CATransform3DMakeTranslation
	CATransform3DRotate
	CATransform3DScale
	CATransform3DTranslate

	Drawing
	Drawing Layer Content With Application Kit Classes

	What Is Core Animation?
	Core Animation Classes
	Layer Classes
	Animation and Timing Classes
	Layout Manager Classes
	Transaction Management Classes

	Timing
	Using a Single Timing Function For a Keyframe Animation

	Core Animation Rendering Architecture
	Layer Geometry and Transforms
	Layer Coordinate System
	Specifying a Layer’s Geometry
	Transforming a Layer’s Geometry
	Transform Functions
	Modifying the Transform Data Structure
	Modifying a Transform Using Key Paths

	Layer-Tree Hierarchy
	What Is a Layer-Tree Hierarchy?
	Displaying Layers in Views
	Adding and Removing Layers from a Hierarchy
	Repositioning and Resizing Layers
	Autoresizing Layers

	Clipping Sublayers

	Animation
	Animation Classes and Timing
	Implicit Animation
	Explicit Animation
	Starting and Stopping Explicit Animations

	Actions
	What are Actions?
	Action Object Search Pattern
	CAAction Protocol
	Overriding an Implied Animation
	Temporarily Disabling Actions

	Transactions
	Implicit transactions
	Explicit Transactions
	Temporarily Disabling Layer Actions
	Overriding the Duration of Implied Animations
	Nesting Transactions

	Laying Out Core Animation Layers
	Constraints Layout Manager

	Core Animation Extensions To Key-Value Coding
	Key-Value Coding Compliant Container Classes
	Default Value Support
	Wrapping Conventions
	Key Path Support for Structure Fields

	Layer Style Properties
	Geometry Properties
	Background Properties
	Layer Content
	Sublayers Content
	Border Attributes
	Filters Property
	Shadow Properties
	Opacity Property
	Composite Property
	Mask Properties

	Example: Core Animation Menu Application
	The User Interface
	Examining the Nib File
	The Layer Hierarchy

	The Code
	Examining MenuView.h
	Examining MenuView.m
	Setting Up the MenuView
	Setting Up the Layers
	Animating the Selection Layer Movement
	Responding to Key Events
	Cleaning Up

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

