
NSManagedObjectContext Class Reference
Cocoa > Data Management

2008-10-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSManagedObjectContext Class Reference 5

Overview 5
Life-cycle Management 5
Persistent Store Coordinator 6
Subclassing Notes 6

Tasks 6
Registering and Fetching Objects 6
Managed Object Management 6
Merging Changes from Another Context 7
Undo Management 7
Locking 8
Delete Propagation 8
Retaining Registered Objects 8
Managing the Persistent Store Coordinator 8
Managing the Staleness Interval 8
Managing the Merge Policy 9
Supporting NSKeyValueObserving Protocol 9
Supporting NSEditor and NSEditorRegistration Protocols 9

Instance Methods 9
assignObject:toPersistentStore: 9
commitEditing 10
commitEditingWithDelegate:didCommitSelector:contextInfo: 11
countForFetchRequest:error: 12
deletedObjects 12
deleteObject: 13
detectConflictsForObject: 14
discardEditing 14
executeFetchRequest:error: 14
hasChanges 15
insertedObjects 16
insertObject: 16
lock 17
mergeChangesFromContextDidSaveNotification: 17
mergePolicy 18
objectDidBeginEditing: 18
objectDidEndEditing: 19
objectRegisteredForID: 19
objectWithID: 20
observeValueForKeyPath:ofObject:change:context: 20
obtainPermanentIDsForObjects:error: 21
persistentStoreCoordinator 22

3
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

processPendingChanges 22
propagatesDeletesAtEndOfEvent 22
redo 23
refreshObject:mergeChanges: 23
registeredObjects 24
reset 25
retainsRegisteredObjects 25
rollback 25
save: 26
setMergePolicy: 26
setPersistentStoreCoordinator: 27
setPropagatesDeletesAtEndOfEvent: 27
setRetainsRegisteredObjects: 28
setStalenessInterval: 28
setUndoManager: 29
stalenessInterval 29
tryLock 30
undo 30
undoManager 30
unlock 31
updatedObjects 31

Constants 32
NSManagedObjectContext Change Notification User Info Keys 32
Merge Policies 33

Notifications 35
NSManagedObjectContextObjectsDidChangeNotification 35
NSManagedObjectContextDidSaveNotification 35

Document Revision History 37

Index 39

4
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSCoding
NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h

Companion guides Core Data Programming Guide
NSPersistentDocument Core Data Tutorial
Core Data Utility Tutorial
Predicate Programming Guide

Related sample code Core Data HTML Store
CoreRecipes
Departments and Employees
QTMetadataEditor

Overview

An instance of NSManagedObjectContext represents a single “object space” or scratch pad in an application.
Its primary responsibility is to manage a collection of managed objects. These objects form a group of related
model objects that represent an internally consistent view of one or more persistent stores. A single managed
object instance exists in one and only one context, but multiple copies of an object can exist in different
contexts. Thus object uniquing is scoped to a particular context.

Life-cycle Management

The context is a powerful object with a central role in the life-cycle of managed objects, with responsibilities
from life-cycle management (including faulting) to validation, inverse relationship handling, and undo/redo.
Through a context you can retrieve or “fetch” objects from a persistent store, make changes to those objects,
and then either discard the changes or—again through the context—commit them back to the persistent
store. The context is responsible for watching for changes in its objects and maintains an undo manager so
you can have finer-grained control over undo and redo. You can insert new objects and delete ones you
have fetched, and commit these modifications to the persistent store.

Overview 5
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

If you are using Cocoa Bindings, the context can also serve as a controller. It implements the NSEditor and
NSEditorRegistration informal protocols, although there should typically be little reason for you to
directly invoke any method other than commitEditing (page 10) or
commitEditingWithDelegate:didCommitSelector:contextInfo: (page 11), and then only rarely.

Persistent Store Coordinator

A context always has a “parent” persistent store coordinator which provides the model and dispatches
requests to the various persistent stores containing the data. Without a coordinator, a context is not fully
functional. The context’s coordinator provides the managed object model and handles persistency. All objects
fetched from an external store are registered in a context together with a global identifier (an instance of
NSManagedObjectID) that’s used to uniquely identify each object to the external store.

Subclassing Notes

You are strongly discouraged from subclassing NSManagedObjectContext. The change tracking and undo
management mechanisms are highly optimized and hence intricate and delicate. Interposing your own
additional logic that might impact processPendingChanges can have unforeseen consequences. In
situations such as store migration, Core Data will create instances of NSManagedObjectContext for its own
use. Under these circumstances, you cannot rely on any features of your custom subclass. Any
NSManagedObject subclass must always be fully compatible with NSManagedObjectContext (as opposed
to any subclass of NSManagedObjectContext).

Tasks

Registering and Fetching Objects

– objectRegisteredForID: (page 19)
Returns the object for a specified ID, if the object is registered with the receiver.

– objectWithID: (page 20)
Returns the object for a specified ID.

– executeFetchRequest:error: (page 14)
Returns an array of objects that meet the criteria specified by a given fetch request.

– countForFetchRequest:error: (page 12)
Returns the number of objects a given fetch request would have returned if it had been passed to
executeFetchRequest:error:.

– registeredObjects (page 24)
Returns the set of objects registered with the receiver.

Managed Object Management

– insertObject: (page 16)
Registers an object to be inserted in the receiver’s persistent store the next time changes are saved.

6 Tasks
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

– deleteObject: (page 13)
Specifies an object that should be removed from its persistent store when changes are committed.

– assignObject:toPersistentStore: (page 9)
Specifies the store in which a newly-inserted object will be saved.

– obtainPermanentIDsForObjects:error: (page 21)
Converts to permanent IDs the object IDs of the objects in a given array.

– detectConflictsForObject: (page 14)
Marks an object for conflict detection.

– refreshObject:mergeChanges: (page 23)
Updates the persistent properties of a managed object to use the latest values from the persistent
store.

– processPendingChanges (page 22)
Forces the receiver to process changes to the object graph.

– insertedObjects (page 16)
Returns the set of objects that have been inserted into the receiver but not yet saved in a persistent
store.

– updatedObjects (page 31)
Returns the set of objects registered with the receiver that have uncommitted changes.

– deletedObjects (page 12)
Returns the set of objects that will be removed from their persistent store during the next save
operation.

Merging Changes from Another Context

– mergeChangesFromContextDidSaveNotification: (page 17)
Merges the changes specified in a given notification.

Undo Management

– undoManager (page 30)
Returns the undo manager of the receiver.

– setUndoManager: (page 29)
Sets the undo manager of the receiver.

– undo (page 30)
Sends an undo message to the receiver’s undo manager, asking it to reverse the latest uncommitted
changes applied to objects in the object graph.

– redo (page 23)
Sends an redo message to the receiver’s undo manager, asking it to reverse the latest undo operation
applied to objects in the object graph.

– reset (page 25)
Returns the receiver to its base state.

– rollback (page 25)
Removes everything from the undo stack, discards all insertions and deletions, and restores updated
objects to their last committed values.

Tasks 7
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

– save: (page 26)
Attempts to commit unsaved changes to registered objects to their persistent store.

– hasChanges (page 15)
Returns a Boolean value that indicates whether the receiver has uncommitted changes.

Locking

– lock (page 17)
Attempts to acquire a lock on the receiver.

– unlock (page 31)
Relinquishes a previously acquired lock.

– tryLock (page 30)
Attempts to acquire a lock.

Delete Propagation

– propagatesDeletesAtEndOfEvent (page 22)
Returns a Boolean that indicates whether the receiver propagates deletes at the end of the event in
which a change was made.

– setPropagatesDeletesAtEndOfEvent: (page 27)
Sets whether the context propagates deletes to related objects at the end of the event.

Retaining Registered Objects

– retainsRegisteredObjects (page 25)
Returns a Boolean that indicates whether the receiver sends a retain message to objects upon
registration.

– setRetainsRegisteredObjects: (page 28)
Sets whether or not the receiver retains all registered objects, or only objects necessary for a pending
save (those that are inserted, updated, deleted, or locked).

Managing the Persistent Store Coordinator

– persistentStoreCoordinator (page 22)
Returns the persistent store coordinator of the receiver.

– setPersistentStoreCoordinator: (page 27)
Sets the persistent store coordinator of the receiver.

Managing the Staleness Interval

– stalenessInterval (page 29)
Returns the staleness interval of the receiver.

8 Tasks
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

– setStalenessInterval: (page 28)
Sets the staleness interval of the receiver.

Managing the Merge Policy

– mergePolicy (page 18)
Returns the merge policy of the receiver.

– setMergePolicy: (page 26)
Sets the merge policy of the receiver.

Supporting NSKeyValueObserving Protocol

– observeValueForKeyPath:ofObject:change:context: (page 20)
This message is sent to the receiver when the value at the specified key path relative to the given
object has changed.

Supporting NSEditor and NSEditorRegistration Protocols

– commitEditing (page 10)
Returns a Boolean that indicates whether the receiver was able to commit any pending edits in known
editors.

– commitEditingWithDelegate:didCommitSelector:contextInfo: (page 11)
Attempts to commit any pending changes in known editors of the receiver.

– discardEditing (page 14)
Causes the receiver to discard any changes in known editors, restoring the previous values

– objectDidBeginEditing: (page 18)
Provides support for the NSEditorRegistration informal protocol.

– objectDidEndEditing: (page 19)
Provides support for theNSEditorRegistration informal protocol.

Instance Methods

assignObject:toPersistentStore:
Specifies the store in which a newly-inserted object will be saved.

- (void)assignObject:(id)object toPersistentStore:(NSPersistentStore *)store

Parameters
object

A managed object.

store
A persistent store.

Instance Methods 9
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Discussion
You can obtain a store from the persistent store coordinator, using for example persistentStoreForURL:.

Special Considerations

It is only necessary to use this method if the receiver’s persistent store coordinator manages multiple writable
stores that have object’s entity in their configuration. Maintaining configurations in the managed object
model can eliminate the need for invoking this method directly in many situations. If the receiver’s persistent
store coordinator manages only a single writable store, or if only one store has object’s entity in its model,
object will automatically be assigned to that store.

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertObject: (page 16)
– persistentStoreCoordinator (page 22)

Related Sample Code
CoreRecipes

Declared In
NSManagedObjectContext.h

commitEditing
Returns a Boolean that indicates whether the receiver was able to commit any pending edits in known editors.

- (BOOL)commitEditing

Return Value
YES if the changes were successfully applied, otherwise NO.

Discussion
This method attempts to commit pending changes in known external editors—it does not commit unsaved
changes to registered objects to their persistent store (contrast save: (page 26)). Known editors are either
instances of a subclass of NSController or (more rarely) user interface controls that may contain pending
edits—such as text fields—that registered with the context using objectDidBeginEditing: and have not
yet unregistered using a subsequent invocation of objectDidEndEditing:. Note that controllers only
register with the context as being an editor if their content binding is not bound—if they have content of
any kind, then they do not register.

The receiver iterates through the array of its known editors and invokes commitEditing on each until either
it reaches the end of the array or an editor returns NO. If an editor returns NO, then the context also returns
NO; otherwise the context returns YES.

You may find this method useful in some situations (typically if you are using Cocoa Bindings) when you
want to ensure that pending changes are applied before a change in user interface state. For example, you
may need to ensure that changes pending in a text field are applied before a window is closed. See also
commitEditingWithDelegate:didCommitSelector:contextInfo: (page 11) which performs a similar
function but which allows you to specify a delegate that will handle any errors—the delegate is informed
which editor failed to commit, which may be useful if you want to display an alert panel on the editor’s
window.

10 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

See Also
– commitEditingWithDelegate:didCommitSelector:contextInfo: (page 11)
– discardEditing (page 14)
– objectDidBeginEditing: (page 18)
– objectDidEndEditing: (page 19)

commitEditingWithDelegate:didCommitSelector:contextInfo:
Attempts to commit any pending changes in known editors of the receiver.

-(void)commitEditingWithDelegate:(id)delegate
didCommitSelector:(SEL)didCommitSelector contextInfo:(void *)contextInfo

Parameters
delegate

An object that can serve as the receiver's delegate. It should implement the method specified by
didCommitSelector.

didCommitSelector
A selector that is invoked on delegate. The method specified by the selector must have the same
signature as the following method:

- (void)editor:(id)editor didCommit:(BOOL)didCommit contextInfo:(void
*)contextInfo

contextInfo
Contextual information that is sent as the contextInfo argument to delegate when
didCommitSelector is invoked.

Discussion
Provides support for the NSEditor informal protocol. This method attempts to commit pending changes
in known external editors—it does not commit unsaved changes to registered objects to their persistent store
(contrast save: (page 26)). Known editors are either instances of a subclass of NSController or (more
rarely) user interface controls that may contain pending edits—such as text fields—that registered with the
context using objectDidBeginEditing: and have not yet unregistered using a subsequent invocation of
objectDidEndEditing:. Note that controllers only register with the context as being an editor if their
content binding is not bound—if they have content of any kind, then they do not register.

The receiver iterates through the array of its known editors and invokes commitEditing on each. The receiver
then sends the message specified by the didCommitSelector selector to the specified delegate.

The didCommit argument is the value returned by the editor specified by editor from the commitEditing
message. The contextInfo argument is the same value specified as the contextInfo parameter—you
may use this value however you wish.

If an error occurs while attempting to commit, for example if key-value coding validation fails, your
implementation of this method should typically send the view in which editing is being performed a
presentError:modalForWindow:delegate:didRecoverSelector:contextInfo:message, specifying
the view's containing window.

Instance Methods 11
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

You may find this method useful in some situations (typically if you are using Cocoa Bindings) when you
want to ensure that pending changes are applied before a change in user interface state. For example, you
may need to ensure that changes pending in a text field are applied before a window is closed. See also
commitEditing (page 10) which performs a similar function but which allows you to handle any errors
directly, although it provides no information beyond simple success/failure.

See Also
– commitEditing (page 10)
– discardEditing (page 14)
– objectDidBeginEditing: (page 18)
– objectDidEndEditing: (page 19)

countForFetchRequest:error:
Returns the number of objects a given fetch request would have returned if it had been passed to
executeFetchRequest:error:.

- (NSUInteger)countForFetchRequest:(NSFetchRequest *)request error:(NSError **)error

Parameters
request

A fetch request that specifies the search criteria for the fetch.

error
If there is a problem executing the fetch, upon return contains an instance of NSError that describes
the problem.

Return Value
The number of objects a given fetch request would have returned if it had been passed to
executeFetchRequest:error: (page 14). If an error occurrs during the processing of the request, returns
NSNotFound.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSManagedObjectContext.h

deletedObjects
Returns the set of objects that will be removed from their persistent store during the next save operation.

- (NSSet *)deletedObjects

Return Value
The set of objects that will be removed from their persistent store during the next save operation.

Discussion
Note that the returned set does not necessarily include all the objects that have been deleted (using
deleteObject: (page 13))—if an object has been inserted and deleted without an intervening save
operation, it is not included in the set.

12 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

A managed object context does not post key-value observing notifications when the return value of
deletedObjects changes—it does, however, post a
NSManagedObjectContextObjectsDidChangeNotification (page 35) notification when a change is
made, and a NSManagedObjectContextDidSaveNotification (page 35) notification when changes are
committed (although again note that the set of deleted objects given for a
NSManagedObjectContextDidSaveNotification (page 35) does not include objects that were inserted
and deleted without an intervening save operation—that is, they had not been saved to a persistent store).

Availability
Available in Mac OS X v10.4 and later.

See Also
– deleteObject: (page 13)
– insertedObjects (page 16)
– registeredObjects (page 24)
– updatedObjects (page 31)
– isDeleted (NSManagedObject)

Declared In
NSManagedObjectContext.h

deleteObject:
Specifies an object that should be removed from its persistent store when changes are committed.

- (void)deleteObject:(NSManagedObject *)object

Parameters
object

A managed object.

Discussion
When changes are committed, objectwill be removed from the uniquing tables. If object has not yet been
saved to a persistent store, it is simply removed from the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– deletedObjects (page 12)
– isDeleted (NSManagedObject)

Related Sample Code
Core Data HTML Store
CoreRecipes
Departments and Employees
QTMetadataEditor

Declared In
NSManagedObjectContext.h

Instance Methods 13
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

detectConflictsForObject:
Marks an object for conflict detection.

- (void)detectConflictsForObject:(NSManagedObject *)object

Parameters
object

A managed object.

Discussion
If on the next invocation of save: (page 26) object has been modified in its persistent store, the save fails.
This allows optimistic locking for unchanged objects. Conflict detection is always performed on changed or
deleted objects.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

discardEditing
Causes the receiver to discard any changes in known editors, restoring the previous values

- (void)discardEditing

Discussion
Provides support for the NSEditor informal protocol. Causes the receiver to discard any changes in known
editors, restoring the previous values. This method only applies to known editors (see commitEditing (page
10)). To discard general edits, use rollback (page 25) or reset (page 25).

See Also
– commitEditing (page 10)
– commitEditingWithDelegate:didCommitSelector:contextInfo: (page 11)
– objectDidBeginEditing: (page 18)
– objectDidEndEditing: (page 19)
– reset (page 25)
– rollback (page 25)

executeFetchRequest:error:
Returns an array of objects that meet the criteria specified by a given fetch request.

- (NSArray *)executeFetchRequest:(NSFetchRequest *)request error:(NSError **)error

Parameters
request

A fetch request that specifies the search criteria for the fetch.

error
If there is a problem executing the fetch, upon return contains an instance of NSError that describes
the problem.

14 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Return Value
An array of objects that meet the criteria specified by request fetched from the receiver and from the
persistent stores associated with the receiver’s persistent store coordinator. If an error occurs, returns nil.
If no objects match the criteria specified by request, returns an empty array.

Discussion
Returned objects are registered with the receiver.

The following points are important to consider:

 ■ If the fetch request has no predicate, then all instances of the specified entity are retrieved, modulo other
criteria below.

 ■ An object that meets the criteria specified by request (it is an instance of the entity specified by the
request, and it matches the request’s predicate if there is one) and that has been inserted into a context
but which is not yet saved to a persistent store, is retrieved if the fetch request is executed on that
context.

 ■ If an object in a context has been modified, a predicate is evaluated against its modified state, not against
the current state in the persistent store. Therefore, if an object in a context has been modified such that
it meets the fetch request’s criteria, the request retrieves it even if changes have not been saved to the
store and the values in the store are such that it does not meet the criteria. Conversely, if an object in a
context has been modified such that it does not match the fetch request, the fetch request will not
retrieve it even if the version in the store does match.

 ■ If an object has been deleted from the context, the fetch request does not retrieve it even if that deletion
has not been saved to a store.

Objects that have been realized (populated, faults fired, “read from”, and so on) as well as pending updated,
inserted, or deleted, are never changed by a fetch operation without developer intervention. If you fetch
some objects, work with them, and then execute a new fetch that includes a superset of those objects, you
do not get new instances or update data for the existing objects—you get the existing objects with their
current in-memory state.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Core Data HTML Store
CoreRecipes
Departments and Employees
QTMetadataEditor

Declared In
NSManagedObjectContext.h

hasChanges
Returns a Boolean value that indicates whether the receiver has uncommitted changes.

- (BOOL)hasChanges

Return Value
YES if the receiver has uncommitted changes, otherwise NO.

Instance Methods 15
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Discussion
This property is not key-value observing compliant (see Key-Value Observing Programming Guide)—if you are
using Cocoa bindings, you cannot bind to the hasChanges property of a managed object context.

Availability
Available in Mac OS X v10.4 and later.

See Also
– save: (page 26)
– reset (page 25)
– rollback (page 25)

Declared In
NSManagedObjectContext.h

insertedObjects
Returns the set of objects that have been inserted into the receiver but not yet saved in a persistent store.

- (NSSet *)insertedObjects

Return Value
The set of objects that have been inserted into the receiver but not yet saved in a persistent store.

Discussion
A managed object context does not post key-value observing notifications when the return value of
insertedObjects changes—it does, however, post a
NSManagedObjectContextObjectsDidChangeNotification (page 35) notification when a change is
made, and a NSManagedObjectContextDidSaveNotification (page 35) notification when changes are
committed.

Availability
Available in Mac OS X v10.4 and later.

See Also
– deletedObjects (page 12)
– insertObject: (page 16)
– registeredObjects (page 24)
– updatedObjects (page 31)

Declared In
NSManagedObjectContext.h

insertObject:
Registers an object to be inserted in the receiver’s persistent store the next time changes are saved.

- (void)insertObject:(NSManagedObject *)object

Parameters
object

A managed object.

16 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Discussion
The managed object (object) is registered in the receiver with a temporary global ID. It is assigned a
permanent global ID when changes are committed. If the current transaction is rolled back (for example, if
the receiver is sent a rollback (page 25) message) before a save operation, the object is unregistered from
the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertedObjects (page 16)

Declared In
NSManagedObjectContext.h

lock
Attempts to acquire a lock on the receiver.

- (void)lock

Discussion
This method blocks a thread’s execution until the lock can be acquired. An application protects a critical
section of code by requiring a thread to acquire a lock before executing the code. Once the critical section
is past, the thread relinquishes the lock by invoking unlock (page 31).

Sending this message to a managed object context helps the framework to understand the scope of a
transaction in a multi-threaded environment. It is preferable to use the NSManagedObjectContext’s
implementation of NSLocking instead using of a separate mutex object.

If you lock (or successfully tryLock) a managed object context, the thread in which the lock call is made
must have a retain until it invokes unlock. If you do not properly retain a context in a multi-threaded
environment, this will result in deadlock.

Availability
Available in Mac OS X v10.4 and later.

See Also
– tryLock (page 30)
– unlock (page 31)

Declared In
NSManagedObjectContext.h

mergeChangesFromContextDidSaveNotification:
Merges the changes specified in a given notification.

- (void)mergeChangesFromContextDidSaveNotification:(NSNotification *)notification

Instance Methods 17
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Parameters
notification

An instance of an NSManagedObjectContextDidSaveNotification (page 35) notification posted
by another context.

Discussion
This method refreshes any objects which have been updated in the other context, faults in any newly-inserted
objects, and invokes deleteObject: (page 13): on those which have been deleted.

You can use this method to, for example, update a managed object context on the main thread with work
completed in another context in another thread. You must, though, lock (page 17) the receiver or otherwise
ensure thread safety (that is, the notification contents are handled safely by Core Data, but the receiver's
usage is still expected to conform to the standard Core Data threading policies). For example, you might
implement a method to handle a notification that a worker thread had finished saving as follows:

- (void)workerThreadObjectContextDidSave:(NSNotification*)saveNotification {
 NSManagedObjectContext *appMOC = [[NSApp delegate] managedObjectContext];
 [appMOC
performSelectorOnMainThread:@selector(mergeChangesFromContextDidSaveNotification:)
 withObject:saveNotification
 waitUntilDone:NO];
}

In this case, serialization is enforced by the main thread's run loop.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSManagedObjectContext.h

mergePolicy
Returns the merge policy of the receiver.

- (id)mergePolicy

Return Value
The receiver’s merge policy.

Discussion
The default is NSErrorMergePolicy.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

objectDidBeginEditing:
Provides support for the NSEditorRegistration informal protocol.

- (void)objectDidBeginEditing:(id)editor

18 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Parameters
editor

An external editor that has changes that may affect the receiver.

Discussion
This message should be sent to the receiver when editor has uncommitted changes that can affect the
receiver. There should typically be no reason for you to invoke this method directly.

See Also
– commitEditing (page 10)
– commitEditingWithDelegate:didCommitSelector:contextInfo: (page 11)
– discardEditing (page 14)
– objectDidEndEditing: (page 19)

objectDidEndEditing:
Provides support for theNSEditorRegistration informal protocol.

- (void)objectDidEndEditing:(id)editor

Parameters
editor

An external editor that has made changes that affect the receiver.

Discussion
This message should be sent to the receiver when editor has finished editing a property belonging to the
receiver. There should typically be no reason for you to invoke this method directly.

See Also
– commitEditing (page 10)
– commitEditingWithDelegate:didCommitSelector:contextInfo: (page 11)
– discardEditing (page 14)
– objectDidBeginEditing: (page 18)

objectRegisteredForID:
Returns the object for a specified ID, if the object is registered with the receiver.

- (NSManagedObject *)objectRegisteredForID:(NSManagedObjectID *)objectID

Parameters
objectID

An object ID.

Return Value
The object for the specified ID if it is registered with the receiver, otherwise nil.

Availability
Available in Mac OS X v10.4 and later.

See Also
– objectWithID: (page 20)

Instance Methods 19
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Related Sample Code
CoreRecipes

Declared In
NSManagedObjectContext.h

objectWithID:
Returns the object for a specified ID.

- (NSManagedObject *)objectWithID:(NSManagedObjectID *)objectID

Parameters
objectID

An object ID.

Return Value
The object for the specified ID.

Discussion
If the object is not registered in the context, it may be fetched or returned as a fault. This method always
returns an object. The data in the persistent store represented by objectID is assumed to exist—if it does
not, the returned object throws an exception when you access any property (that is, when the fault is fired).
The benefit of this behavior is that it allows you to create and use faults, then create the underlying rows
later or in a separate context.

Availability
Available in Mac OS X v10.4 and later.

See Also
– objectRegisteredForID: (page 19)
– managedObjectIDForURIRepresentation:

– URIRepresentation

Related Sample Code
CoreRecipes

Declared In
NSManagedObjectContext.h

observeValueForKeyPath:ofObject:change:context:
This message is sent to the receiver when the value at the specified key path relative to the given object has
changed.

- (void)observeValueForKeyPath:(NSString *)keyPath
ofObject:(id)object
change:(NSDictionary *)change
context:(void *)context

Parameters
keyPath

The key path, relative to object, to the value that has changed.

20 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

object
The source object of the key path keyPath.

change
A dictionary that describes the changes that have been made to the value of the property at the key
path keyPath relative to object. For possible values, see NSKeyValueObserving.

context
The value that was provided when the receiver was registered to receive key-value observation
notifications.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

obtainPermanentIDsForObjects:error:
Converts to permanent IDs the object IDs of the objects in a given array.

- (BOOL)obtainPermanentIDsForObjects:(NSArray *)objects error:(NSError **)error

Parameters
objects

An array of managed objects.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if permanent IDs are obtained for all the objects in objects, otherwise NO.

Discussion
This method converts the object ID of each managed object in objects to a permanent ID. Although the
object will have a permanent ID, it will still respond positively to isInserted until it is saved. Any object
that already has a permanent ID is ignored.

Any object not already assigned to a store is assigned based on the same rules Core Data uses for assignment
during a save operation (first writable store supporting the entity, and appropriate for the instance and its
related items).

Special Considerations

This method results in a transaction with the underlying store which changes the file’s modification date.

This results an additional consideration if you invoke this method on the managed object context associated
with an instance of NSPersistentDocument. Instances of NSDocument need to know that they are in sync
with the underlying content. To avoid problems, after invoking this method you must therefore update the
document’s modification date (using setFileModificationDate:).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSManagedObjectContext.h

Instance Methods 21
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

persistentStoreCoordinator
Returns the persistent store coordinator of the receiver.

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator

Return Value
The persistent store coordinator of the receiver.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreRecipes

Declared In
NSManagedObjectContext.h

processPendingChanges
Forces the receiver to process changes to the object graph.

- (void)processPendingChanges

Discussion
This method causes changes to registered managed objects to be recorded with the undo manager.

In AppKit-based applications, this method is invoked automatically at least once during the event loop (at
the end of the loop)—it may be called more often than that if the framework needs to coalesce your changes
before doing something else. You can also invoke it manually to coalesce any pending unprocessed changes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– redo (page 23)
– undo (page 30)
– undoManager (page 30)

Related Sample Code
CoreRecipes
Departments and Employees

Declared In
NSManagedObjectContext.h

propagatesDeletesAtEndOfEvent
Returns a Boolean that indicates whether the receiver propagates deletes at the end of the event in which
a change was made.

- (BOOL)propagatesDeletesAtEndOfEvent

22 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Return Value
YES if the receiver propagates deletes at the end of the event in which a change was made, NO if it propagates
deletes only immediately before saving changes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPropagatesDeletesAtEndOfEvent: (page 27)

Declared In
NSManagedObjectContext.h

redo
Sends an redo message to the receiver’s undo manager, asking it to reverse the latest undo operation applied
to objects in the object graph.

- (void)redo

Availability
Available in Mac OS X v10.4 and later.

See Also
– undo (page 30)
– processPendingChanges (page 22)

Declared In
NSManagedObjectContext.h

refreshObject:mergeChanges:
Updates the persistent properties of a managed object to use the latest values from the persistent store.

- (void)refreshObject:(NSManagedObject *)object mergeChanges:(BOOL)flag

Parameters
object

A managed object.

flag
A Boolean value.

If flag is NO, then object is turned into a fault and any pending changes are lost. The object remains
a fault until it is accessed again, at which time its property values will be reloaded from the store or
last cached state.

If flag is YES, then object’s property values are reloaded from the values from the store or the last
cached state then any changes that were made (in the local context) are re-applied over those (now
newly updated) values. (If flag is YES the merge of the values into object will always succeed—in
this case there is therefore no such thing as a “merge conflict” or a merge that is not possible.)

Instance Methods 23
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Discussion
If the staleness interval (see stalenessInterval (page 29)) has not been exceeded, any available cached
data is reused instead of executing a new fetch. If flag is YES, this method does not affect any transient
properties; if flag is NO, transient properties are released.

You typically use this method to ensure data freshness if more than one managed object context may use
the same persistent store simultaneously, in particular if you get an optimistic locking failure when attempting
to save.

It is important to note that turning object into a fault (flag is NO) also causes related managed objects
(that is, those to which object has a reference) to be released, so you can also use this method to trim a
portion of your object graph you want to constrain memory usage.

Availability
Available in Mac OS X v10.4 and later.

See Also
– detectConflictsForObject: (page 14)
– reset (page 25)
– setStalenessInterval: (page 28)

Related Sample Code
CoreRecipes

Declared In
NSManagedObjectContext.h

registeredObjects
Returns the set of objects registered with the receiver.

- (NSSet *)registeredObjects

Return Value
The set of objects registered with the receiver.

Discussion
A managed object context does not post key-value observing notifications when the return value of
registeredObjects changes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– deletedObjects (page 12)
– insertedObjects (page 16)
– updatedObjects (page 31)

Declared In
NSManagedObjectContext.h

24 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

reset
Returns the receiver to its base state.

- (void)reset

Discussion
All the receiver's managed objects are “forgotten.” If you use this method, you should ensure that you also
discard references to any managed objects fetched using the receiver, since they will be invalid afterwards.

Availability
Available in Mac OS X v10.4 and later.

See Also
– rollback (page 25)
– setStalenessInterval: (page 28)
– undo (page 30)

Related Sample Code
QTMetadataEditor

Declared In
NSManagedObjectContext.h

retainsRegisteredObjects
Returns a Boolean that indicates whether the receiver sends a retain message to objects upon registration.

- (BOOL)retainsRegisteredObjects

Return Value
YES if the receiver sends a retain message to objects upon registration, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setRetainsRegisteredObjects: (page 28)

Declared In
NSManagedObjectContext.h

rollback
Removes everything from the undo stack, discards all insertions and deletions, and restores updated objects
to their last committed values.

- (void)rollback

Discussion
This method does not refetch data from the persistent store or stores.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 25
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

See Also
– reset (page 25)
– setStalenessInterval: (page 28)
– undo (page 30)
– processPendingChanges (page 22)

Declared In
NSManagedObjectContext.h

save:
Attempts to commit unsaved changes to registered objects to their persistent store.

- (BOOL)save:(NSError **)error

Parameters
error

A pointer to an NSError object. You do not need to create an NSError object. The save operation
aborts after the first failure if you pass NULL.

Return Value
YES if the save succeeds, otherwise NO.

Discussion
If there were multiple errors (for example several edited objects had validation failures) the description of
NSError returned indicates that there were multiple errors, and its userInfo dictionary contains the key
NSDetailedErrors. The value associated with the NSDetailedErrors key is an array that contains the
individual NSError objects.

Availability
Available in Mac OS X v10.4 and later.

See Also
– reset (page 25)
– rollback (page 25)
– hasChanges (page 15)

Related Sample Code
CoreRecipes

Declared In
NSManagedObjectContext.h

setMergePolicy:
Sets the merge policy of the receiver.

- (void)setMergePolicy:(id)mergePolicy

26 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Parameters
mergePolicy

The merge policy of the receiver. For possible values, see “Merge Policies” (page 33).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

setPersistentStoreCoordinator:
Sets the persistent store coordinator of the receiver.

- (void)setPersistentStoreCoordinator:(NSPersistentStoreCoordinator *)coordinator

Parameters
coordinator

The persistent store coordinator of the receiver.

Discussion
The coordinator provides the managed object model and handles persistency. Note that multiple contexts
can share a coordinator.

This method raises an exception if coordinator is nil. If you want to “disconnect" a context from its
persistent store coordinator, you should simply release all references to the context and allow it to be
deallocated normally.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Core Data HTML Store
CoreRecipes

Declared In
NSManagedObjectContext.h

setPropagatesDeletesAtEndOfEvent:
Sets whether the context propagates deletes to related objects at the end of the event.

- (void)setPropagatesDeletesAtEndOfEvent:(BOOL)flag

Parameters
Flag

A Boolean value that indicates whether the context propagates deletes to related objects at the end
of the event (YES) or not (NO).

Discussion
The default is YES. If the value is NO, then deletes are propagated during a save operation.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 27
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

See Also
– propagatesDeletesAtEndOfEvent (page 22)

Declared In
NSManagedObjectContext.h

setRetainsRegisteredObjects:
Sets whether or not the receiver retains all registered objects, or only objects necessary for a pending save
(those that are inserted, updated, deleted, or locked).

- (void)setRetainsRegisteredObjects:(BOOL)flag

Parameters
flag

A Boolean value.

If flag is NO, then registered objects are retained only when they are inserted, updated, deleted, or
locked.

If flag is YES, then all registered objects are retained.

Discussion
The default is NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– retainsRegisteredObjects (page 25)

Declared In
NSManagedObjectContext.h

setStalenessInterval:
Sets the staleness interval of the receiver.

- (void)setStalenessInterval:(NSTimeInterval)expiration

Parameters
expiration

The staleness interval of the receiver.

Discussion
The staleness interval controls whether fulfilling a fault uses data previously fetched by the application, or
issues a new fetch (see also refreshObject:mergeChanges: (page 23)). The staleness interval does not
affect objects currently in use (that is, it is not used to automatically update property values from a persistent
store after a certain period of time).

The expiration value is applied on a per object basis. It is the relative time until cached data (snapshots)
should be considered stale. For example, a value of 300.0 informs the context to utilize cached information
for no more than 5 minutes after an object was originally fetched.

The default is infinite staleness (represented by an interval of 0).

28 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Note that the staleness interval is a hint and may not be supported by all persistent store types. It is not used
by XML and binary stores, since these stores maintain all current values in memory.

Availability
Available in Mac OS X v10.4 and later.

See Also
– reset (page 25)
– rollback (page 25)
– stalenessInterval (page 29)
– undo (page 30)
– refreshObject:mergeChanges: (page 23)

Declared In
NSManagedObjectContext.h

setUndoManager:
Sets the undo manager of the receiver.

- (void)setUndoManager:(NSUndoManager *)undoManager

Parameters
undoManager

The undo manager of the receiver.

Discussion
By default, a context provides its own undo manager. You can set the undo manager to nil to disable undo
support, for example in a large import process. For more details, see Core Data Programming Guide.

Availability
Available in Mac OS X v10.4 and later.

See Also
– undoManager (page 30)

Declared In
NSManagedObjectContext.h

stalenessInterval
Returns the staleness interval of the receiver.

- (NSTimeInterval)stalenessInterval

Return Value
The staleness interval of the receiver.

Discussion
For more details, see setStalenessInterval: (page 28).

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 29
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

See Also
– setStalenessInterval: (page 28)

Declared In
NSManagedObjectContext.h

tryLock
Attempts to acquire a lock.

- (BOOL)tryLock

Return Value
YES if a lock was acquired, NO otherwise.

Discussion
This method returns immediately after the attempt to acquire a lock.

Availability
Available in Mac OS X v10.4 and later.

See Also
– lock (page 17)
– unlock (page 31)

Declared In
NSManagedObjectContext.h

undo
Sends an undo message to the receiver’s undo manager, asking it to reverse the latest uncommitted changes
applied to objects in the object graph.

- (void)undo

Availability
Available in Mac OS X v10.4 and later.

See Also
– reset (page 25)
– rollback (page 25)
– undoManager (page 30)
– processPendingChanges (page 22)

Declared In
NSManagedObjectContext.h

undoManager
Returns the undo manager of the receiver.

30 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

- (NSUndoManager *)undoManager

Return Value
The undo manager of the receiver.

Discussion
By default, a context provides its own undo manager. For more details, see setUndoManager: (page 29).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setUndoManager: (page 29)

Related Sample Code
Departments and Employees

Declared In
NSManagedObjectContext.h

unlock
Relinquishes a previously acquired lock.

- (void)unlock

Availability
Available in Mac OS X v10.4 and later.

See Also
– lock (page 17)
– tryLock (page 30)

Declared In
NSManagedObjectContext.h

updatedObjects
Returns the set of objects registered with the receiver that have uncommitted changes.

- (NSSet *)updatedObjects

Return Value
The set of objects registered with the receiver that have uncommitted changes.

Discussion
A managed object context does not post key-value observing notifications when the return value of
updatedObjects changes—it does, however, post a
NSManagedObjectContextObjectsDidChangeNotification (page 35) notification when a change is
made, and a NSManagedObjectContextDidSaveNotification (page 35) notification when changes are
committed.

Instance Methods 31
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– deletedObjects (page 12)
– insertedObjects (page 16)
– registeredObjects (page 24)

Declared In
NSManagedObjectContext.h

Constants

NSManagedObjectContext Change Notification User Info Keys
Core Data uses these string constants as keys in the user info dictionary in managed object context notifications
(NSManagedObjectContextObjectsDidChangeNotification (page 35) and
NSManagedObjectContextDidSaveNotification (page 35)).

NSString * const NSInsertedObjectsKey;
NSString * const NSUpdatedObjectsKey;
NSString * const NSDeletedObjectsKey;
NSString * const NSRefreshedObjectsKey;
NSString * const NSInvalidatedObjectsKey;
NSString * const NSInvalidatedAllObjectsKey;

Constants
NSInsertedObjectsKey

Key for the set of objects that were inserted into the context.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSUpdatedObjectsKey
Key for the set of objects that were updated.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSDeletedObjectsKey
Key for the set of objects that were marked for deletion during the previous event.

Note that the set of deleted objects given for a
NSManagedObjectContextDidSaveNotification (page 35) does not include objects that were
inserted and deleted without an intervening save operation—that is, they had not been saved to a
persistent store. See also deletedObjects (page 12) (NSManagedObjectContext) and isDeleted
(NSManagedObject).

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

32 Constants
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

NSRefreshedObjectsKey
Key for the set of objects that were refreshed.

Available in Mac OS X v10.5 and later.

Declared in NSManagedObjectContext.h.

NSInvalidatedObjectsKey
Key for the set of objects that were invalidated.

Available in Mac OS X v10.5 and later.

Declared in NSManagedObjectContext.h.

NSInvalidatedAllObjectsKey
Key that specifies that all objects in the context have been invalidated.

Available in Mac OS X v10.5 and later.

Declared in NSManagedObjectContext.h.

Declared In
NSManagedObjectContext.h

Merge Policies
Merge policy constants define the way conflicts are handled during a save operation.

id NSErrorMergePolicy;
id NSMergeByPropertyStoreTrumpMergePolicy;
id NSMergeByPropertyObjectTrumpMergePolicy;
id NSOverwriteMergePolicy;
id NSRollbackMergePolicy;

Constants
NSErrorMergePolicy

This policy causes a save to fail if there are any merge conflicts.

In the case of failure, the save method returns with an error with a userInfo dictionary that contains
the key @"conflictList"; the corresponding value is an array of conflict records.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSMergeByPropertyStoreTrumpMergePolicy
This policy merges conflicts between the persistent store’s version of the object and the current
in-memory version, giving priority to external changes.

The merge occurs by individual property. For properties that have been changed in both the external
source and in memory, the external changes trump the in-memory ones.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSMergeByPropertyObjectTrumpMergePolicy
This policy merges conflicts between the persistent store’s version of the object and the current
in-memory version, giving priority to in-memory changes.

The merge occurs by individual property. For properties that have been changed in both the external
source and in memory, the in-memory changes trump the external ones.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

Constants 33
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

NSOverwriteMergePolicy
This policy overwrites state in the persistent store for the changed objects in conflict.

Changed objects’ current state is forced upon the persistent store.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSRollbackMergePolicy
This policy discards in-memory state changes for objects in conflict.

The persistent store’s version of the objects’ state is used.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

Discussion
The default policy is the NSErrorMergePolicy. It is the only policy that requires action to correct any
conflicts; the other policies make a save go through silently by making changes following their rules.

Declared In
NSManagedObjectContext.h

The following constants, defined in CoreDataErrors.h, relate to errors returned following validation failures
or problems encountered during a save operation.

Key for the object that failed to validate for a validation
error.

NSValidationObjectErrorKey

The key for stores prompting an error.NSAffectedStoresErrorKey

The key for objects prompting an error.NSAffectedObjectsErrorKey

Each conflict record in the @"conflictList" array in the userInfo dictionary for an error from the
NSErrorMergePolicy is a dictionary containing some of the keys described in the following table. Of the
cachedRow, databaseRow, and snapshot keys, only two will be present depending on whether the conflict
is between the managed object context and the persistent store coordinator (snapshot and cachedRow)
or between the persistent store coordinator and the persistent store (cachedRow and databaseRow).

DescriptionConstant

The managed object that could not be saved.@"object"

A dictionary of key-value pairs for the properties that represents the managed object
context’s last saved state for this managed object.

@"snapshot"

A dictionary of key-value pairs for the properties that represents the persistent store's
last saved state for this managed object.

@"cachedRow"

A dictionary of key-value pairs for the properties that represents the database's current
state for this managed object.

@"databaseRow"

An NSNumber object whose value is latest version number of this managed object.@"newVersion"

As NSNumber object whose value is the version number that this managed object
context last saved for this managed object.

@"oldVersion"

34 Constants
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Notifications

NSManagedObjectContextObjectsDidChangeNotification
Posted when values of properties of objects contained in a managed object context are changed.

The notification is posted during processPendingChanges (page 22), after the changes have been processed,
but before it is safe to call save: (page 26) again (if you try, you will generate an infinite loop).

The notification object is the managed object context. The userInfo dictionary contains the following keys:
NSInsertedObjectsKey, NSUpdatedObjectsKey, and NSDeletedObjectsKey.

Note that this notification is posted only when managed objects are changed; it is not posted when managed
objects are added to a context as the result of a fetch.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

NSManagedObjectContextDidSaveNotification
Posted whenever a managed object context completes a save operation.

The notification object is the managed object context. The userInfo dictionary contains the following keys:
NSInsertedObjectsKey, NSUpdatedObjectsKey, and NSDeletedObjectsKey.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

Notifications 35
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

36 Notifications
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

This table describes the changes to NSManagedObjectContext Class Reference.

NotesDate

Clarifed return value for countForFetchRequest:error:.2008-10-15

Updated for Mac OS X v10.5.2007-07-19

Clarified description of NSManagedObjectContextObjectsDidChangeNotification.2007-03-06

Noted that hasChanges is not KVO-compliant, and enhanced discussion of
setPersistentStoreCoordinator:.

2007-01-08

Clarified effect of refreshObject:mergeChanges:.2006-11-07

First publication of this content as a separate document.2006-05-23

37
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

38
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Symbols

@"cachedRow" constant 34
@"databaseRow" constant 34
@"newVersion" constant 34
@"object" constant 34
@"oldVersion" constant 34
@"snapshot" constant 34

A

assignObject:toPersistentStore: instance method
9

C

commitEditing instance method 10
commitEditingWithDelegate:didCommitSelector:

contextInfo: instance method 11
countForFetchRequest:error: instance method 12

D

deletedObjects instance method 12
deleteObject: instance method 13
detectConflictsForObject: instance method 14
discardEditing instance method 14

E

executeFetchRequest:error: instance method 14

H

hasChanges instance method 15

I

insertedObjects instance method 16
insertObject: instance method 16

L

lock instance method 17

M

Merge Policies 33
mergeChangesFromContextDidSaveNotification:

instance method 17
mergePolicy instance method 18

N

NSDeletedObjectsKey constant 32
NSErrorMergePolicy constant 33
NSInsertedObjectsKey constant 32
NSInvalidatedAllObjectsKey constant 33
NSInvalidatedObjectsKey constant 33
NSManagedObjectContext Change Notification User Info

Keys 32
NSManagedObjectContextDidSaveNotification

notification 35
NSManagedObjectContextObjectsDidChangeNotification

notification 35
NSMergeByPropertyObjectTrumpMergePolicy

constant 33

39
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Index

NSMergeByPropertyStoreTrumpMergePolicy
constant 33

NSOverwriteMergePolicy constant 34
NSRefreshedObjectsKey constant 33
NSRollbackMergePolicy constant 34
NSUpdatedObjectsKey constant 32

O

objectDidBeginEditing: instance method 18
objectDidEndEditing: instance method 19
objectRegisteredForID: instance method 19
objectWithID: instance method 20
observeValueForKeyPath:ofObject:change:context:

instance method 20
obtainPermanentIDsForObjects:error: instance

method 21

P

persistentStoreCoordinator instance method 22
processPendingChanges instance method 22
propagatesDeletesAtEndOfEvent instance method

22

R

redo instance method 23
refreshObject:mergeChanges: instance method 23
registeredObjects instance method 24
reset instance method 25
retainsRegisteredObjects instance method 25
rollback instance method 25

S

save: instance method 26
setMergePolicy: instance method 26
setPersistentStoreCoordinator: instance method

27
setPropagatesDeletesAtEndOfEvent: instance

method 27
setRetainsRegisteredObjects: instance method 28
setStalenessInterval: instance method 28
setUndoManager: instance method 29
stalenessInterval instance method 29

T

tryLock instance method 30

U

undo instance method 30
undoManager instance method 30
unlock instance method 31
updatedObjects instance method 31

40
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

INDEX

	NSManagedObjectContext Class Reference
	Contents
	NSManagedObjectContext Class Reference
	Overview
	Life-cycle Management
	Persistent Store Coordinator
	Subclassing Notes

	Tasks
	Registering and Fetching Objects
	Managed Object Management
	Merging Changes from Another Context
	Undo Management
	Locking
	Delete Propagation
	Retaining Registered Objects
	Managing the Persistent Store Coordinator
	Managing the Staleness Interval
	Managing the Merge Policy
	Supporting NSKeyValueObserving Protocol
	Supporting NSEditor and NSEditorRegistration Protocols

	Instance Methods
	assignObject:toPersistentStore:
	commitEditing
	commitEditingWithDelegate:didCommitSelector:contextInfo:
	countForFetchRequest:error:
	deletedObjects
	deleteObject:
	detectConflictsForObject:
	discardEditing
	executeFetchRequest:error:
	hasChanges
	insertedObjects
	insertObject:
	lock
	mergeChangesFromContextDidSaveNotification:
	mergePolicy
	objectDidBeginEditing:
	objectDidEndEditing:
	objectRegisteredForID:
	objectWithID:
	observeValueForKeyPath:ofObject:change:context:
	obtainPermanentIDsForObjects:error:
	persistentStoreCoordinator
	processPendingChanges
	propagatesDeletesAtEndOfEvent
	redo
	refreshObject:mergeChanges:
	registeredObjects
	reset
	retainsRegisteredObjects
	rollback
	save:
	setMergePolicy:
	setPersistentStoreCoordinator:
	setPropagatesDeletesAtEndOfEvent:
	setRetainsRegisteredObjects:
	setStalenessInterval:
	setUndoManager:
	stalenessInterval
	tryLock
	undo
	undoManager
	unlock
	updatedObjects

	Constants
	NSManagedObjectContext Change Notification User Info Keys
	Merge Policies

	Notifications
	NSManagedObjectContextObjectsDidChangeNotification
	NSManagedObjectContextDidSaveNotification

	Revision History
	Index
	Symbols
	A
	C
	D
	E
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U

