
NSManagedObjectModel Class Reference
Cocoa > Data Management

2007-01-26

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSManagedObjectModel Class Reference 7

Overview 7
Loading a Model File 8
Stored Fetch Requests 8
Configurations 8
Changing Models 8
Editing Models Programmatically 8
Fast Enumeration 9

Tasks 9
Initializing a Model 9
Entities and Configurations 9
Getting Fetch Request Templates 10
Localization 10
Versioning and Migration 10

Class Methods 10
mergedModelFromBundles: 10
mergedModelFromBundles:forStoreMetadata: 11
modelByMergingModels: 12
modelByMergingModels:forStoreMetadata: 12

Instance Methods 13
configurations 13
entities 13
entitiesByName 14
entitiesForConfiguration: 14
entityVersionHashesByName 15
fetchRequestFromTemplateWithName:substitutionVariables: 15
fetchRequestTemplateForName: 16
fetchRequestTemplatesByName 16
initWithContentsOfURL: 17
isConfiguration:compatibleWithStoreMetadata: 17
localizationDictionary 18
setEntities: 18
setEntities:forConfiguration: 19
setFetchRequestTemplate:forName: 19
setLocalizationDictionary: 20
setVersionIdentifiers: 21
versionIdentifiers 21

3
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History 23

Index 25

4
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tables

NSManagedObjectModel Class Reference 7

Table 1 Key and value pattern for the localization dictionary. 20

5
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

6
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

TABLES

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectModel.h

Companion guides Core Data Programming Guide
Core Data Utility Tutorial
Core Data Model Versioning and Data Migration Programming Guide

Related sample code Core Data HTML Store
CoreRecipes

Overview

An NSManagedObjectModel object describes a schema—a collection of entities (data models) that you use
in your application.

The model contains one or more NSEntityDescription objects representing the entities in the schema.
Each NSEntityDescription object has property description objects (instances of subclasses of
NSPropertyDescription) that represent the properties (or fields) of the entity in the schema. The Core
Data framework uses this description in several ways:

 ■ Constraining UI creation in Interface Builder

 ■ Validating attribute and relationship values at runtime

 ■ Mapping between your managed objects and a database or file-based schema for object persistence.

A managed object model maintains a mapping between each of its entity objects and a corresponding
managed object class for use with the persistent storage mechanisms in the Core Data Framework. You can
determine the entity for a particular managed object with the entity method.

You typically create managed object models using the data modeling tool in Xcode, but it is possible to build
an model programmatically if needed.

Overview 7
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

Loading a Model File

Managed object model files are typically stored in a project or a framework. To load a model, you provide
an URL to the constructor. Note that loading a model doesn’t have the effect of loading all of its entities.

Stored Fetch Requests

It is often the case that in your application you want to get hold of a collection of objects that share features
in common. Sometimes you can define those features (property values) in advance; sometimes you need to
be able to supply values at runtime. For example, you might want to be able to retrieve all movies owned
by Pixar; alternatively you might want to be able to retrieve all movies that earned more than an amount
specified by the user at runtime.

Fetch requests are often predefined in a managed object model as templates. They allow you to pre-define
named queries and their parameters in the model. Typically they contain variables that need to be substituted
at runtime. NSManagedObjectModel provides API to retrieve a stored fetch request by name, and to perform
variable substitution—see fetchRequestTemplateForName: (page 16) and
fetchRequestFromTemplateWithName:substitutionVariables: (page 15). You can create fetch
request templates programmatically, and associate them with a model using
setFetchRequestTemplate:forName: (page 19); typically, however, you define them using the Xcode
design tool.

Configurations

Sometimes a model—particularly one in a framework—may be used in different situations, and you may
want to specify different sets of entities to be used in different situations. There might, for example, be certain
entities that should only be available if a user has administrative privileges. To support this requirement, a
model may have more than one configuration. Each configuration is named, and has an associated set of
entities. The sets may overlap. You establish configurations programmatically using
setEntities:forConfiguration: (page 19) or using the Xcode design tool, and retrieve the entities for
a given configuration name using entitiesForConfiguration: (page 14).

Changing Models

Since a model describes the structure of the data in a persistent store, changing any parts of a model that
alters the schema renders it incompatible with (and so unable to open) the stores it previously created. If
you change your schema, you therefore need to migrate the data in existing stores to new version (see
Versioning in Core Data Programming Guide). For example, if you add a new entity or a new attribute to an
existing entity, you will not be able to open old stores; if you add a validation constraint or set a new default
value for an attribute, you will be able to open old stores.

Editing Models Programmatically

Managed object models are editable until they are used by an object graph manager (a managed object
context or a persistent store coordinator). This allows you to create or modify them dynamically. However,
once a model is being used, it must not be changed. This is enforced at runtime—when the object manager

8 Overview
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

first fetches data using a model, the whole of that model becomes uneditable. Any attempt to mutate a
model or any of its sub-objects after that point causes an exception to be thrown. If you need to modify a
model that is in use, create a copy, modify the copy, and then discard the objects with the old model.

Fast Enumeration

In Mac OS X v10.5 and later, NSManagedObjectModel supports the NSFastEnumeration protocol. You
can use this to enumerate over a model’s entities, as illustrated in the following example:

NSManagedObjectModel *aModel = ...;
for (NSEntityDescription *entity in aModel) {
 // entity is each instance of NSEntityDescription in aModel in turn
}

Tasks

Initializing a Model

– initWithContentsOfURL: (page 17)
Initializes the receiver using the model file at the specified URL.

+ mergedModelFromBundles: (page 10)
Returns a model created by merging all the models found in given bundles.

+ mergedModelFromBundles:forStoreMetadata: (page 11)
Returns a merged model from a specified array for the version information in provided metadata.

+ modelByMergingModels: (page 12)
Creates a single model from an array of existing models.

+ modelByMergingModels:forStoreMetadata: (page 12)
Returns, for the version information in given metadata, a model merged from a given array of models.

Entities and Configurations

– entities (page 13)
Returns the entities in the receiver.

– entitiesByName (page 14)
Returns the entities of the receiver in a dictionary.

– setEntities: (page 18)
Sets the entities array of the receiver.

– configurations (page 13)
Returns all the available configuration names of the receiver.

– entitiesForConfiguration: (page 14)
Returns the entities of the receiver for a specified configuration.

– setEntities:forConfiguration: (page 19)
Associates the specified entities with the receiver using the given configuration name.

Tasks 9
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

Getting Fetch Request Templates

– fetchRequestTemplatesByName (page 16)
Returns a dictionary of the receiver’s fetch request templates.

– fetchRequestTemplateForName: (page 16)
Returns the fetch request with a specified name.

– fetchRequestFromTemplateWithName:substitutionVariables: (page 15)
Returns a copy of the fetch request template with the variables substituted by values from the
substitutions dictionary.

– setFetchRequestTemplate:forName: (page 19)
Associates the specified fetch request with the receiver using the given name.

Localization

– localizationDictionary (page 18)
Returns the localization dictionary of the receiver.

– setLocalizationDictionary: (page 20)
Sets the localization dictionary of the receiver.

Versioning and Migration

– isConfiguration:compatibleWithStoreMetadata: (page 17)
Returns a Boolean value that indicates whether a given configuration in the receiver is compatible
with given metadata from a persistent store.

– entityVersionHashesByName (page 15)
Returns a dictionary of the version hashes for the entities in the receiver.

– versionIdentifiers (page 21)
Returns the collection of developer-defined version identifiers for the receiver.

– setVersionIdentifiers: (page 21)
Sets the identifiers for the receiver.

Class Methods

mergedModelFromBundles:
Returns a model created by merging all the models found in given bundles.

+ (NSManagedObjectModel *)mergedModelFromBundles:(NSArray *)bundles

Parameters
bundles

An array of instances of NSBundle to search. If you specify nil, then the main bundle is searched.

10 Class Methods
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

Return Value
A model created by merging all the models found in bundles.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ mergedModelFromBundles:forStoreMetadata: (page 11)
+ modelByMergingModels: (page 12)
+ modelByMergingModels:forStoreMetadata: (page 12)
– initWithContentsOfURL: (page 17)

Related Sample Code
Core Data HTML Store
CoreRecipes

Declared In
NSManagedObjectModel.h

mergedModelFromBundles:forStoreMetadata:
Returns a merged model from a specified array for the version information in provided metadata.

+ (NSManagedObjectModel *)mergedModelFromBundles:(NSArray *)bundles
forStoreMetadata:(NSDictionary *)metadata

Parameters
bundles

An array of bundles.

metadata
A dictionary containing version information from the metadata for a persistent store.

Return Value
The managed object model used to create the store for the metadata. If a model cannot be created to match
the version information specified by metadata, returns nil.

Discussion
This method is a companion to mergedModelFromBundles: (page 10).

Availability
Available in Mac OS X v10.5 and later.

See Also
+ mergedModelFromBundles: (page 10)
+ modelByMergingModels: (page 12)
+ modelByMergingModels:forStoreMetadata: (page 12)
– initWithContentsOfURL: (page 17)

Declared In
NSManagedObjectModel.h

Class Methods 11
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

modelByMergingModels:
Creates a single model from an array of existing models.

+ (NSManagedObjectModel *)modelByMergingModels:(NSArray *)models

Parameters
models

An array of instances of NSManagedObjectModel.

Return Value
A single model made by combining the models in models.

Discussion
You use this method to combine multiple models (typically from different frameworks) into one.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ mergedModelFromBundles: (page 10)
+ mergedModelFromBundles:forStoreMetadata: (page 11)
+ modelByMergingModels:forStoreMetadata: (page 12)
– initWithContentsOfURL: (page 17)

Declared In
NSManagedObjectModel.h

modelByMergingModels:forStoreMetadata:
Returns, for the version information in given metadata, a model merged from a given array of models.

+ (NSManagedObjectModel *)modelByMergingModels:(NSArray *)models
forStoreMetadata:(NSDictionary *)metadata

Parameters
models

An array of instances of NSManagedObjectModel.

metadata
A dictionary containing version information from the metadata for a persistent store.

Return Value
A merged model from models for the version information in metadata. If a model cannot be created to
match the version information in metadata, returns nil.

Discussion
This is the companion method to mergedModelFromBundles:forStoreMetadata: (page 11).

Availability
Available in Mac OS X v10.5 and later.

See Also
+ mergedModelFromBundles: (page 10)
+ mergedModelFromBundles:forStoreMetadata: (page 11)

12 Class Methods
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

+ modelByMergingModels: (page 12)
– initWithContentsOfURL: (page 17)

Declared In
NSManagedObjectModel.h

Instance Methods

configurations
Returns all the available configuration names of the receiver.

- (NSArray *)configurations

Return Value
An array containing the available configuration names of the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– entitiesForConfiguration: (page 14)
– setEntities:forConfiguration: (page 19)

Declared In
NSManagedObjectModel.h

entities
Returns the entities in the receiver.

- (NSArray *)entities

Return Value
An array containing the entities in the receiver.

Discussion
Entities are instances of NSEntityDescription.

Availability
Available in Mac OS X v10.4 and later.

See Also
– entitiesByName (page 14)
– entitiesForConfiguration: (page 14)
– setEntities: (page 18)
– setEntities:forConfiguration: (page 19)

Related Sample Code
CoreRecipes

Instance Methods 13
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

Declared In
NSManagedObjectModel.h

entitiesByName
Returns the entities of the receiver in a dictionary.

- (NSDictionary *)entitiesByName

Return Value
The entities of the receiver in a dictionary, where the keys in the dictionary are the names of the corresponding
entities.

Availability
Available in Mac OS X v10.4 and later.

See Also
– entities (page 13)
– entitiesForConfiguration: (page 14)
– setEntities: (page 18)
– setEntities:forConfiguration: (page 19)
+ entityForName:inManagedObjectContext: (NSEntityDescription)

Related Sample Code
Core Data HTML Store
CoreRecipes
CustomAtomicStoreSubclass

Declared In
NSManagedObjectModel.h

entitiesForConfiguration:
Returns the entities of the receiver for a specified configuration.

- (NSArray *)entitiesForConfiguration:(NSString *)configuration

Parameters
configuration

The name of a configuration in the receiver.

Return Value
An array containing the entities of the receiver for the configuration specified by configuration.

Availability
Available in Mac OS X v10.4 and later.

See Also
– entities (page 13)
– entitiesByName (page 14)
– setEntities: (page 18)
– setEntities:forConfiguration: (page 19)

14 Instance Methods
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

Declared In
NSManagedObjectModel.h

entityVersionHashesByName
Returns a dictionary of the version hashes for the entities in the receiver.

- (NSDictionary *)entityVersionHashesByName

Return Value
A dictionary of the version hashes for the entities in the receiver, keyed by entity name.

Discussion
The dictionary of version hash information is used by Core Data to determine schema compatibility.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isConfiguration:compatibleWithStoreMetadata: (page 17)

Declared In
NSManagedObjectModel.h

fetchRequestFromTemplateWithName:substitutionVariables:
Returns a copy of the fetch request template with the variables substituted by values from the substitutions
dictionary.

- (NSFetchRequest *)fetchRequestFromTemplateWithName:(NSString *)name
substitutionVariables:(NSDictionary *)variables

Parameters
name

A string containing the name of a fetch request template.

variables
A dictionary containing key-value pairs where the keys are the names of variables specified in the
template; the corresponding values are substituted before the fetch request is returned. The dictionary
must provide values for all the variables in the template.

Return Value
A copy of the fetch request template with the variables substituted by values from variables.

Discussion
The variables dictionary must provide values for all the variables. If you want to test for a nil value, use
[NSNull null].

This method provides the usual way to bind an “abstractly” defined fetch request template to a concrete
fetch. For more details on using this method, see Creating Predicates.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 15
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

See Also
– fetchRequestTemplatesByName (page 16)
– fetchRequestTemplateForName: (page 16)
– setFetchRequestTemplate:forName: (page 19)

Declared In
NSManagedObjectModel.h

fetchRequestTemplateForName:
Returns the fetch request with a specified name.

- (NSFetchRequest *)fetchRequestTemplateForName:(NSString *)name

Parameters
name

A string containing the name of a fetch request template.

Return Value
The fetch request named name.

Discussion
If the template contains substitution variables, you should instead use
fetchRequestFromTemplateWithName:substitutionVariables: (page 15) to create a new fetch
request.

Availability
Available in Mac OS X v10.4 and later.

See Also
– fetchRequestTemplatesByName (page 16)
– fetchRequestFromTemplateWithName:substitutionVariables: (page 15)
– setFetchRequestTemplate:forName: (page 19)

Declared In
NSManagedObjectModel.h

fetchRequestTemplatesByName
Returns a dictionary of the receiver’s fetch request templates.

- (NSDictionary *)fetchRequestTemplatesByName

Return Value
A dictionary of the receiver’s fetch request templates, keyed by name.

Discussion
If the template contains a predicate with substitution variables, you should instead use
fetchRequestFromTemplateWithName:substitutionVariables: (page 15) to create a new fetch
request.

Availability
Available in Mac OS X v10.5 and later.

16 Instance Methods
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

See Also
– fetchRequestTemplateForName: (page 16)
– fetchRequestFromTemplateWithName:substitutionVariables: (page 15)

Declared In
NSManagedObjectModel.h

initWithContentsOfURL:
Initializes the receiver using the model file at the specified URL.

- (id)initWithContentsOfURL:(NSURL *)url

Parameters
url

An URL object specifying the location of a model file.

Return Value
A managed object model initialized using the file at url.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ mergedModelFromBundles: (page 10)
+ mergedModelFromBundles:forStoreMetadata: (page 11)
+ modelByMergingModels: (page 12)
+ modelByMergingModels:forStoreMetadata: (page 12)

Declared In
NSManagedObjectModel.h

isConfiguration:compatibleWithStoreMetadata:
Returns a Boolean value that indicates whether a given configuration in the receiver is compatible with given
metadata from a persistent store.

- (BOOL)isConfiguration:(NSString *)configuration
compatibleWithStoreMetadata:(NSDictionary *)metadata

Parameters
configuration

The name of a configuration in the receiver. Pass nil to specify no configuration.

metadata
Metadata for a persistent store.

Return Value
YES if the configuration in the receiver specified by configuration is compatible with the store metadata
given by metadata, otherwise NO.

Instance Methods 17
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

Discussion
This method compares the version information in the store metadata with the entity versions of a given
configuration. For information on specific differences, use entityVersionHashesByName (page 15) and
perform an entity-by-entity comparison.

Availability
Available in Mac OS X v10.5 and later.

See Also
– entityVersionHashesByName (page 15)

Declared In
NSManagedObjectModel.h

localizationDictionary
Returns the localization dictionary of the receiver.

- (NSDictionary *)localizationDictionary

Return Value
The localization dictionary of the receiver.

Discussion
The key-value pattern is described in setLocalizationDictionary: (page 20).

Note that in the implementation in Mac OS X v10.4, localizationDictionary may return nil until Core
Data lazily loads the dictionary for its own purposes (for example, reporting a localized error).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLocalizationDictionary: (page 20)

Declared In
NSManagedObjectModel.h

setEntities:
Sets the entities array of the receiver.

- (void)setEntities:(NSArray *)entities

Parameters
entities

An array of instances of NSEntityDescription.

Special Considerations

This method raises an exception if the receiver has been used by an object graph manager.

Availability
Available in Mac OS X v10.4 and later.

18 Instance Methods
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

See Also
– entities (page 13)
– entitiesByName (page 14)
– entitiesForConfiguration: (page 14)
– setEntities:forConfiguration: (page 19)

Declared In
NSManagedObjectModel.h

setEntities:forConfiguration:
Associates the specified entities with the receiver using the given configuration name.

- (void)setEntities:(NSArray *)entities forConfiguration:(NSString *)configuration

Parameters
entities

An array of instances of NSEntityDescription.

configuration
A name for the configuration.

Special Considerations

This method raises an exception if the receiver has been used by an object graph manager.

Availability
Available in Mac OS X v10.4 and later.

See Also
– entities (page 13)
– entitiesByName (page 14)
– entitiesForConfiguration: (page 14)
– setEntities: (page 18)

Declared In
NSManagedObjectModel.h

setFetchRequestTemplate:forName:
Associates the specified fetch request with the receiver using the given name.

- (void)setFetchRequestTemplate:(NSFetchRequest *)fetchRequest forName:(NSString
*)name

Parameters
fetchRequest

A fetch request, typically containing predicates with variables for substitution.

name
A string that specifies the name of the fetch request template.

Discussion
For more details on using this method, see Creating Predicates.

Instance Methods 19
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

Special Considerations

This method raises an exception if the receiver has been used by an object graph manager.

Availability
Available in Mac OS X v10.4 and later.

See Also
– fetchRequestTemplatesByName (page 16)
– fetchRequestTemplateForName: (page 16)
– fetchRequestFromTemplateWithName:substitutionVariables: (page 15)

Declared In
NSManagedObjectModel.h

setLocalizationDictionary:
Sets the localization dictionary of the receiver.

- (void)setLocalizationDictionary:(NSDictionary *)localizationDictionary

Parameters
localizationDictionary

A dictionary containing localized string values for entities, properties, and error strings related to the
model. The key and value pattern is described in Table 1 (page 20).

Discussion
Table 1 (page 20) describes the key and value pattern for the localization dictionary.

Table 1 Key and value pattern for the localization dictionary.

NoteValueKey

"LocalizedEntityName""Entity/NonLocalizedEntityName"

(1)"LocalizedPropertyName""Property/NonLocalizedPropertyName/Entity/EntityName"

"LocalizedPropertyName""Property/NonLocalizedPropertyName"

"LocalizedErrorString""ErrorString/NonLocalizedErrorString"

(1) For properties in different entities with the same non-localized name but which should have different
localized names.

Availability
Available in Mac OS X v10.4 and later.

See Also
– localizationDictionary (page 18)

Declared In
NSManagedObjectModel.h

20 Instance Methods
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

setVersionIdentifiers:
Sets the identifiers for the receiver.

- (void)setVersionIdentifiers:(NSSet *)identifiers

Parameters
identifiers

An array of identifiers for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– versionIdentifiers (page 21)

Declared In
NSManagedObjectModel.h

versionIdentifiers
Returns the collection of developer-defined version identifiers for the receiver.

- (NSSet *)versionIdentifiers

Return Value
The collection of developer-defined version identifiers for the receiver. Merged models return the combined
collection of identifiers.

Discussion
The Core Data framework does not give models a default identifier, nor does it depend this value at runtime.
For models created in Xcode, you set this value in the model inspector.

This value is meant to be used as a debugging hint to help you determine the models that were combined
to create a merged model.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setVersionIdentifiers: (page 21)

Declared In
NSManagedObjectModel.h

Instance Methods 21
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

22 Instance Methods
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObjectModel Class Reference

This table describes the changes to NSManagedObjectModel Class Reference.

NotesDate

Updated for Mac OS X v10.52007-01-26

Added a caveat regarding changing model schema.2006-12-05

First publication of this content as a separate document.2006-05-23

23
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

24
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

C

configurations instance method 13

E

entities instance method 13
entitiesByName instance method 14
entitiesForConfiguration: instance method 14
entityVersionHashesByName instance method 15

F

fetchRequestFromTemplateWithName:
substitutionVariables: instance method 15

fetchRequestTemplateForName: instance method 16
fetchRequestTemplatesByName instance method 16

I

initWithContentsOfURL: instance method 17
isConfiguration:compatibleWithStoreMetadata:

instance method 17

L

localizationDictionary instance method 18

M

mergedModelFromBundles: class method 10
mergedModelFromBundles:forStoreMetadata: class

method 11

modelByMergingModels: class method 12
modelByMergingModels:forStoreMetadata: class

method 12

S

setEntities: instance method 18
setEntities:forConfiguration: instance method

19
setFetchRequestTemplate:forName: instance

method 19
setLocalizationDictionary: instance method 20
setVersionIdentifiers: instance method 21

V

versionIdentifiers instance method 21

25
2007-01-26 | © 2007 Apple Inc. All Rights Reserved.

Index

	NSManagedObjectModel Class Reference
	Contents
	Tables
	NSManagedObjectModel Class Reference
	Overview
	Loading a Model File
	Stored Fetch Requests
	Configurations
	Changing Models
	Editing Models Programmatically
	Fast Enumeration

	Tasks
	Initializing a Model
	Entities and Configurations
	Getting Fetch Request Templates
	Localization
	Versioning and Migration

	Class Methods
	mergedModelFromBundles:
	mergedModelFromBundles:forStoreMetadata:
	modelByMergingModels:
	modelByMergingModels:forStoreMetadata:

	Instance Methods
	configurations
	entities
	entitiesByName
	entitiesForConfiguration:
	entityVersionHashesByName
	fetchRequestFromTemplateWithName:substitutionVariables:
	fetchRequestTemplateForName:
	fetchRequestTemplatesByName
	initWithContentsOfURL:
	isConfiguration:compatibleWithStoreMetadata:
	localizationDictionary
	setEntities:
	setEntities:forConfiguration:
	setFetchRequestTemplate:forName:
	setLocalizationDictionary:
	setVersionIdentifiers:
	versionIdentifiers

	Revision History
	Index
	C
	E
	F
	I
	L
	M
	S
	V

