
Core Data Reference Update
Cocoa

2007-07-18

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Core Data Reference Update 5

Organization of This Document 5
See Also 5

10.4 - 10.5 Symbol Changes 7

Classes 7
NSAtomicStore (New) 7
NSAtomicStoreCacheNode (New) 8
NSAttributeDescription 8
NSEntityDescription 8
NSEntityMapping (New) 9
NSEntityMigrationPolicy (New) 10
NSFetchRequest 10
NSFetchRequestExpression (New) 11
NSManagedObject 11
NSManagedObjectContext 12
NSManagedObjectModel 12
NSMappingModel (New) 13
NSMigrationManager (New) 13
NSPersistentStore (New) 15
NSPersistentStoreCoordinator 16
NSPropertyDescription 16
NSPropertyMapping (New) 16
NSRelationshipDescription 17

C Symbols 17
CoreDataErrors.h 17
NSEntityMapping.h 18
NSEntityMigrationPolicy.h 19
NSFetchRequest.h 19
NSFetchRequestExpression.h 19
NSManagedObjectContext.h 20
NSPersistentStoreCoordinator.h 20

10.3 - 10.4 Symbol Changes 21

Classes 21
NSAttributeDescription (New) 21
NSEntityDescription (New) 21
NSFetchedPropertyDescription (New) 22
NSFetchRequest (New) 23

3
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

NSManagedObject (New) 23
NSManagedObjectContext (New) 25
NSManagedObjectID (New) 28
NSManagedObjectModel (New) 28
NSPersistentStoreCoordinator (New) 29
NSPropertyDescription (New) 30
NSRelationshipDescription (New) 31

C Symbols 31
CoreDataDefines.h 32
CoreDataErrors.h 32
NSAttributeDescription.h 34
NSManagedObjectContext.h 35
NSPersistentStoreCoordinator.h 36
NSRelationshipDescription.h 36

Document Revision History 39

4
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

This document summarizes the symbols that have been added to the Core Data framework. The full reference
documentation notes in what version a symbol was introduced, but sometimes it's useful to see only the
new symbols for a given release.

If you are not familiar with this framework you should refer to the complete framework reference
documentation.

Organization of This Document

Symbols are grouped by class or protocol for Objective-C and by header file for C. For each symbol there is
a link to complete documentation, if available, and a brief description, if available.

See Also

For reference documentation on this framework, see Core Data Framework Reference.

Organization of This Document 5
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

Introduction to Core Data Reference Update

6 See Also
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

Introduction to Core Data Reference Update

This document lists the symbols in CoreData that are new between Mac OS X v10.4 and Mac OS X v10.5.

Classes

All of the classes with new symbols are listed alphabetically, with their new class, instance, and delegate
methods described.

NSAtomicStore (New)

Complete reference information is available in the NSAtomicStore reference.

Instance Methods

Registers a set of cache nodes with the receiver.addCacheNodes:

Returns the cache node for a given managed object ID.cacheNodeForObjectID:

Returns the set of cache nodes registered with the receiver.cacheNodes

Returns an atomic store, initialized with the given
arguments.

initWithPersistentStoreCoordinator:
configurationName:URL:options:

Loads the cache nodes for the receiver.load:

Returns a new cache node for a given managed object.newCacheNodeForManagedObject:

Returns a new reference object for a given managed object.newReferenceObjectForManagedObject:

Returns a managed object ID from the reference data for
a specified entity.

objectIDForEntity:referenceObject:

Returns the reference object for a given managed object
ID.

referenceObjectForObjectID:

Saves the cache nodes.save:

Updates the given cache node using the values in a given
managed object.

updateCacheNode:fromManagedObject:

Method invoked before the store removes the given
collection of cache nodes.

willRemoveCacheNodes:

Classes 7
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

NSAtomicStoreCacheNode (New)

Complete reference information is available in the NSAtomicStoreCacheNode reference.

Instance Methods

Returns a cache node for the given managed object ID.initWithObjectID:

Returns the managed object ID for the receiver.objectID

Returns the property cache dictionary for the receiver.propertyCache

Sets the property cache dictionary for the receiver.setPropertyCache:

Sets the value for the given key.setValue:forKey:

Returns the value for a given key.valueForKey:

NSAttributeDescription

Complete reference information is available in the NSAttributeDescription reference.

Instance Methods

Sets the name of the class used to represent the receiver.setAttributeValueClassName:

Sets the name of the transformer to use to transform the attribute
value.

setValueTransformerName:

Returns the name of the transformer used to transform the
attribute value.

valueTransformerName

Returns the version hash for the receiver.versionHash

NSEntityDescription

Complete reference information is available in the NSEntityDescription reference.

Instance Methods

Returns a Boolean value that indicates whether the receiver is a
subentity of another given entity.

isKindOfEntity:

Sets the version hash modifier for the receiver.setVersionHashModifier:

Returns the version hash for the receiver.versionHash

8 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

Returns the version hash modifier for the receiver.versionHashModifier

NSEntityMapping (New)

Complete reference information is available in the NSEntityMapping reference.

Instance Methods

Returns the array of attribute mappings for the receiver.attributeMappings

Returns the destination entity name for the receiver.destinationEntityName

Returns the version hash for the destination entity for the
receiver.

destinationEntityVersionHash

Returns the class name of the migration policy for the
receiver.

entityMigrationPolicyClassName

Returns the mapping type for the receiver.mappingType

Returns the name of the receiver.name

Returns the array of relationship mappings for the receiver.relationshipMappings

Sets the array of attribute mappings for the receiver.setAttributeMappings:

Sets the destination entity name for the receiver.setDestinationEntityName:

Sets the version hash for the destination entity for the
receiver.

setDestinationEntityVersionHash:

Sets the class name of the migration policy for the receiver.setEntityMigrationPolicyClassName:

Sets the mapping type for the receiver.setMappingType:

Sets the name of the receiver.setName:

Sets the array of relationship mappings for the receiver.setRelationshipMappings:

Sets the source entity name for the receiver.setSourceEntityName:

Sets the version hash for the source entity for the receiver.setSourceEntityVersionHash:

Sets the source expression for the receiver.setSourceExpression:

Sets the user info dictionary for the receiver.setUserInfo:

Returns the source entity name for the receiver.sourceEntityName

Returns the version hash for the source entity for the
receiver.

sourceEntityVersionHash

Classes 9
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

Returns the source expression for the receiver.sourceExpression

Returns the user info dictionary for the receiver.userInfo

NSEntityMigrationPolicy (New)

Complete reference information is available in the NSEntityMigrationPolicy reference.

Instance Methods

Invoked by the migration manager at
the start of a given entity mapping.

beginEntityMapping:manager:error:

Creates the destination instance(s) for
a given source instance.

createDestinationInstancesForSourceInstance:
entityMapping:manager:error:

Constructs the relationships between
the newly-created destination
instances.

createRelationshipsForDestinationInstance:
entityMapping:manager:error:

Invoked by the migration manager at
the end of a given entity mapping.

endEntityMapping:manager:error:

Indicates the end of the creation stage
for the specified entity mapping, and
the precursor to the next migration
stage.

endInstanceCreationForEntityMapping:manager:error:

Indicates the end of the relationship
creation stage for the specified entity
mapping.

endRelationshipCreationForEntityMapping:manager:
error:

Invoked during the validation stage of
the entity migration policy, providing
the option of performing custom
validation on migrated objects.

performCustomValidationForEntityMapping:manager:
error:

NSFetchRequest

Complete reference information is available in the NSFetchRequest reference.

Instance Methods

Returns a Boolean value that indicates whether, when
the fetch is executed, property data is obtained from
the persistent store.

includesPropertyValues

10 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

Returns a Boolean value that indicates whether the
receiver includes subentities in the results.

includesSubentities

Returns the array of relationship keypaths to prefetch
along with the entity for the request.

relationshipKeyPathsForPrefetching

Returns the result type of the receiver.resultType

Returns a Boolean value that indicates whether the
objects resulting from a fetch using the receiver are
faults.

returnsObjectsAsFaults

Sets if, when the fetch is executed, property data is
obtained from the persistent store.

setIncludesPropertyValues:

Sets whether the receiver includes subentities.setIncludesSubentities:

Sets an array of relationship keypaths to prefetch along
with the entity for the request.

setRelationshipKeyPathsForPrefetching:

Sets the result type of the receiver.setResultType:

Sets whether the objects resulting from a fetch request
are faults.

setReturnsObjectsAsFaults:

NSFetchRequestExpression (New)

Complete reference information is available in the NSFetchRequestExpression reference.

Class Methods

Returns an expression which will evaluate to the result
of executing a fetch request on a context.

expressionForFetch:context:countOnly:

Instance Methods

Returns the expression for the receiver’s managed object context.contextExpression

Returns a Boolean value that indicates whether the receiver
represents a count-only fetch request.

isCountOnlyRequest

Returns the expression for the receiver’s fetch request.requestExpression

NSManagedObject

Complete reference information is available in the NSManagedObject reference.

Classes 11
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

Instance Methods

Returns a Boolean value that indicates whether the relationship
for a given key is a fault.

hasFaultForRelationshipNamed:

Invoked automatically by the Core Data framework before receiver
is converted to a fault.

willTurnIntoFault

NSManagedObjectContext

Complete reference information is available in the NSManagedObjectContext reference.

Instance Methods

Returns the number of objects a given fetch
request would have returned if it had been
passed to executeFetchRequest:error:.

countForFetchRequest:error:

Merges the changes specified in a given
notification.

mergeChangesFromContextDidSaveNotification:

Converts to permanent IDs the object IDs of the
objects in a given array.

obtainPermanentIDsForObjects:error:

NSManagedObjectModel

Complete reference information is available in the NSManagedObjectModel reference.

Class Methods

Returns a merged model from a specified array for
the version information in provided metadata.

mergedModelFromBundles:forStoreMetadata:

Returns, for the version information in given
metadata, a model merged from a given array of
models.

modelByMergingModels:forStoreMetadata:

Instance Methods

Returns a dictionary of the version hashes for
the entities in the receiver.

entityVersionHashesByName

Returns a dictionary of the receiver’s fetch
request templates.

fetchRequestTemplatesByName

12 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

Returns a Boolean value that indicates whether
a given configuration in the receiver is
compatible with given metadata from a
persistent store.

isConfiguration:compatibleWithStoreMetadata:

Sets the identifiers for the receiver.setVersionIdentifiers:

Returns the collection of developer-defined
version identifiers for the receiver.

versionIdentifiers

NSMappingModel (New)

Complete reference information is available in the NSMappingModel reference.

Class Methods

Returns the mapping model to translate data from
the source to the destination model.

mappingModelFromBundles:forSourceModel:
destinationModel:

Instance Methods

Returns the collection of entity mappings for the receiver.entityMappings

Returns a dictionary of the entity mappings for the receiver.entityMappingsByName

Returns a mapping model initialized from a given URL.initWithContentsOfURL:

Sets the collection of entity mappings for the receiversetEntityMappings:

NSMigrationManager (New)

Complete reference information is available in the NSMigrationManager reference.

Instance Methods

Associates a given source instance
with an array of destination instances
for a given property mapping.

associateSourceInstance:withDestinationInstance:
forEntityMapping:

Cancels the migration with a given
error.

cancelMigrationWithError:

Returns the entity mapping currently
being processed.

currentEntityMapping

Classes 13
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

Returns the managed object context
the receiver uses for writing the
destination persistent store.

destinationContext

Returns the entity description for the
destination entity of a given entity
mapping.

destinationEntityForEntityMapping:

Returns the managed object instances
created in the destination store for a
named entity mapping for a given
array of source instances.

destinationInstancesForEntityMappingNamed:
sourceInstances:

Returns the destination model for the
receiver.

destinationModel

Initializes a migration manager
instance with given source and
destination models.

initWithSourceModel:destinationModel:

Returns the mapping model for the
receiver.

mappingModel

Migrates of the store at a given source
URL to the store at a given destination
URL, performing all of the mappings
specified in a given mapping model.

migrateStoreFromURL:type:options:withMappingModel:
toDestinationURL:destinationType:
destinationOptions:error:

Returns a number from 0 to 1 that
indicates the proportion of
completeness of the migration.

migrationProgress

Resets the association tables for the
migration.

reset

Sets the user info for the receiver.setUserInfo:

Returns the managed object context
the receiver uses for reading the
source persistent store.

sourceContext

Returns the entity description for the
source entity of a given entity
mapping.

sourceEntityForEntityMapping:

Returns the managed object instances
in the source store used to create a
given destination instance for a given
property mapping.

sourceInstancesForEntityMappingNamed:
destinationInstances:

Returns the source model for the
receiver.

sourceModel

Returns the user info for the receiver.userInfo

14 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

NSPersistentStore (New)

Complete reference information is available in the NSPersistentStore reference.

Class Methods

Returns the metadata from the persistent store
at the given URL.

metadataForPersistentStoreWithURL:error:

Sets the metadata for the store at a given URL.setMetadata:forPersistentStoreWithURL:error:

Instance Methods

Returns the name of the managed object model
configuration used to create the receiver.

configurationName

Invoked after the receiver has been added to the
persistent store coordinator.

didAddToPersistentStoreCoordinator:

Returns the unique identifier for the receiver.identifier

Returns a store initialized with the given
arguments.

initWithPersistentStoreCoordinator:
configurationName:URL:options:

Returns a Boolean value that indicates whether
the receiver is read-only.

isReadOnly

Returns the metadata for the receiver.metadata

Returns the options with which the receiver was
created.

options

Returns the persistent store coordinator which
loaded the receiver.

persistentStoreCoordinator

Sets the unique identifier for the receiver.setIdentifier:

Sets the metadata for the receiver.setMetadata:

Sets whether the receiver is read-only.setReadOnly:

Sets the URL for the receiver.setURL:

Returns the type string of the receiver.type

Invoked before the receiver is removed from the
persistent store coordinator.

willRemoveFromPersistentStoreCoordinator:

Classes 15
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

NSPersistentStoreCoordinator

Complete reference information is available in the NSPersistentStoreCoordinator reference.

Class Methods

Returns a dictionary containing the
metadata stored in the persistent store at
a given URL.

metadataForPersistentStoreOfType:URL:error:

Returns a dictionary of the registered store
types.

registeredStoreTypes

Registers a given NSPersistentStore
subclass for a given store type string.

registerStoreClass:forStoreType:

Sets the metadata for a given store.setMetadata:forPersistentStoreOfType:URL:error:

Instance Methods

Sets the URL for a given persistent store.setURL:forPersistentStore:

NSPropertyDescription

Complete reference information is available in the NSPropertyDescription reference.

Instance Methods

Returns a Boolean value that indicates whether the receiver is
important for searching.

isIndexed

Sets the optionality flag of the receiver.setIndexed:

Sets the version hash modifier for the receiver.setVersionHashModifier:

Returns the version hash for the receiver.versionHash

Returns the version hash modifier for the receiver.versionHashModifier

NSPropertyMapping (New)

Complete reference information is available in the NSPropertyMapping reference.

16 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

Instance Methods

Returns the name of the property in the destination entity for the
receiver.

name

Sets the name of the property in the destination entity for the receiver.setName:

Sets the user info for the receiver.setUserInfo:

Sets the value expression for the receiver.setValueExpression:

Returns the user info for the receiver.userInfo

Returns the value expression for the receiver.valueExpression

NSRelationshipDescription

Complete reference information is available in the NSRelationshipDescription reference.

Instance Methods

Returns the version hash for the receiver.versionHash

C Symbols

All of the header files with new symbols are listed alphabetically, with their new symbols described.

CoreDataErrors.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Error code to denote that migration failed
during processing of an entity migration
policy.

NSEntityMigrationPolicyError

Error code to denote that migration failed
due to manual cancellation.

NSMigrationCancelledError

Error code to denote a general migration
error.

NSMigrationError

C Symbols 17
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

Error code to denote that migration failed
due to a problem with the destination data
store.

NSMigrationManagerDestinationStoreError

Error code to denote that migration failed
due to a problem with the source data store.

NSMigrationManagerSourceStoreError

Error code to denote that migration failed
due to a missing mapping model.

NSMigrationMissingMappingModelError

Error code to denote that migration failed
due to a missing source data model.

NSMigrationMissingSourceModelError

Error code to denote that entity version
hashes in the store are incompatible with the
current managed object model.

NSPersistentStoreIncompatibleVersionHashError

Error code to denote an error occurred while
attempting to open a persistent store.

NSPersistentStoreOpenError

Error code to denote that a persistent store
operation failed.

NSPersistentStoreOperationError

Error code to denote that Core Data failed to
connect to a persistent store within the time
specified by
NSPersistentStoreTimeoutOption.

NSPersistentStoreTimeoutError

Error code to denote a general SQLite error.NSSQLiteError

Domain for SQLite errors.NSSQLiteErrorDomain

NSEntityMapping.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specifies that this is a new entity in the destination model.NSAddEntityMappingType

Specifies that source instances are migrated as-is.NSCopyEntityMappingType

Specifies a custom mapping.NSCustomEntityMappingType

Data type used for constants that specify types of entity
mapping.

NSEntityMappingType

Specifies that this entity is not present in the destination
model.

NSRemoveEntityMappingType

18 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

Specifies that entity exists in source and destination and is
mapped.

NSTransformEntityMappingType

Specifies that the developer handles destination instance
creation.

NSUndefinedEntityMappingType

NSEntityMigrationPolicy.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Key for the destination object.NSMigrationDestinationObjectKey

Key for the entity mapping object.NSMigrationEntityMappingKey

Key for the migration manager.NSMigrationManagerKey

Key for the property mapping object.NSMigrationPropertyMappingKey

Key for the source object.NSMigrationSourceObjectKey

NSFetchRequest.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines the type for the fetch request result type.NSFetchRequestResultType

Specifies that the request returns managed object IDs.NSManagedObjectIDResultType

Specifies that the request returns managed objects.NSManagedObjectResultType

NSFetchRequestExpression.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specifies the fetch request expression type.NSFetchRequestExpressionType

C Symbols 19
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

NSManagedObjectContext.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Key that specifies that all objects in the context have been
invalidated.

NSInvalidatedAllObjectsKey

Key for the set of objects that were invalidated.NSInvalidatedObjectsKey

Key for the set of objects that were refreshed.NSRefreshedObjectsKey

NSPersistentStoreCoordinator.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Key to ignore the built-in versioning provided
by Core Data.

NSIgnorePersistentStoreVersioningOption

Key to automatically attempt to migrate
versioned stores.

NSMigratePersistentStoresAutomaticallyOption

Key to represent the earliest version of
Mac OS X the persistent store supports.

NSPersistentStoreOSCompatibility

Options key that specifies the connection
timeout for Core Data stores.

NSPersistentStoreTimeoutOption

Options key for a dictionary of SQLite pragma
settings with pragma values indexed by
pragma names as keys.

NSSQLitePragmasOption

Key to represent the version hash information
for the model used to create the store.

NSStoreModelVersionHashesKey

Key to represent the version identifier for the
model used to create the store.

NSStoreModelVersionIdentifiersKey

20 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.4 - 10.5 Symbol Changes

This document lists the symbols in CoreData that are new between Mac OS X v10.3 and Mac OS X v10.4.

Classes

All of the classes with new symbols are listed alphabetically, with their new class, instance, and delegate
methods described.

NSAttributeDescription (New)

Complete reference information is available in the NSAttributeDescription reference.

Instance Methods

Returns the type of the receiver.attributeType

Returns the name of the class used to represent the receiver.attributeValueClassName

Returns the default value of the receiver.defaultValue

Sets the type of the receiver.setAttributeType:

Sets the default value of the receiver.setDefaultValue:

NSEntityDescription (New)

Complete reference information is available in the NSEntityDescription reference.

Class Methods

Returns the entity with the specified name from the
managed object model associated with the specified
managed object context’s persistent store coordinator.

entityForName:inManagedObjectContext:

Creates, configures, and returns a new autoreleased
instance of the class for the entity with a given name.

insertNewObjectForEntityForName:
inManagedObjectContext:

Classes 21
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Instance Methods

Returns the attributes of the receiver in a dictionary, where
the keys in the dictionary are the attribute names.

attributesByName

Returns a Boolean value that indicates whether the receiver
represents an abstract entity.

isAbstract

Returns the name of the class that represents the receiver's
entity.

managedObjectClassName

Returns the managed object model with which the receiver
is associated.

managedObjectModel

Returns the entity name of the receiver.name

Returns an array containing the properties of the receiver.properties

Returns a dictionary containing the properties of the
receiver.

propertiesByName

Returns the relationships of the receiver in a dictionary,
where the keys in the dictionary are the relationship names.

relationshipsByName

Returns an array containing the relationships of the
receiver where the entity description of the relationship
is a given entity.

relationshipsWithDestinationEntity:

Sets whether the receiver represents an abstract entity.setAbstract:

Sets the name of the class that represents the receiver's
entity.

setManagedObjectClassName:

Sets the entity name of the receiver.setName:

Sets the properties array of the receiver.setProperties:

Sets the subentities of the receiver.setSubentities:

Sets the user info dictionary of the receiver.setUserInfo:

Returns an array containing the sub-entities of the receiver.subentities

Returns the sub-entities of the receiver in a dictionary.subentitiesByName

Returns the super-entity of the receiver.superentity

Returns the user info dictionary of the receiver.userInfo

NSFetchedPropertyDescription (New)

Complete reference information is available in the NSFetchedPropertyDescription reference.

22 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Instance Methods

Returns the fetch request of the receiver.fetchRequest

Sets the fetch request of the receiver.setFetchRequest:

NSFetchRequest (New)

Complete reference information is available in the NSFetchRequest reference.

Instance Methods

Returns an array containing the persistent stores specified for the
receiver.

affectedStores

Returns the entity specified for the receiver.entity

Returns the fetch limit of the receiver.fetchLimit

Returns the predicate of the receiver.predicate

Sets the array of persistent stores that will be searched by the
receiver.

setAffectedStores:

Sets the entity of the receiver.setEntity:

Sets the fetch limit of the receiver.setFetchLimit:

Sets the predicate of the receiver.setPredicate:

Sets the array of sort descriptors of the receiver.setSortDescriptors:

Returns the sort descriptors of the receiver.sortDescriptors

NSManagedObject (New)

Complete reference information is available in the NSManagedObject reference.

Instance Methods

Invoked automatically by the Core
Data framework after the receiver has
been fetched.

awakeFromFetch

Invoked automatically by the Core
Data framework when the receiver is
first inserted into a managed object
context.

awakeFromInsert

Classes 23
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Returns a dictionary containing the
keys and (new) values of persistent
properties that have been changed
since last fetching or saving the
receiver.

changedValues

Returns a dictionary of the last fetched
or saved values of the receiver for the
properties specified by the given keys.

committedValuesForKeys:

Provides support for key-value
observing access notification.

didAccessValueForKey:

Provides support for key-value
observing change notification.

didChangeValueForKey:

Provides support for key-value
observing change notifications for
to-many relationships.

didChangeValueForKey:withSetMutation:usingObjects:

Invoked automatically by the Core
Data framework after the receiver’s
managed object context completes a
save operation.

didSave

Invoked automatically by the Core
Data framework when the receiver is
turned into a fault.

didTurnIntoFault

Returns the entity description of the
receiver.

entity

Initializes the receiver and inserts it
into the specified managed object
context.

initWithEntity:insertIntoManagedObjectContext:

Returns a Boolean value that indicates
whether the receiver will be deleted
during the next save.

isDeleted

Returns a Boolean value that indicates
whether the receiver is a fault.

isFault

Returns a Boolean value that indicates
whether the receiver has been inserted
in a managed object context.

isInserted

Returns a Boolean value that indicates
whether the receiver has unsaved
changes.

isUpdated

Returns the managed object context
with which the receiver is registered.

managedObjectContext

24 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Returns the object ID of the receiver.objectID

Returns the observation info of the
receiver.

observationInfo

Returns from the receiver’s private
internal storage the value for the
specified property.

primitiveValueForKey:

Sets the observation info of the
receiver.

setObservationInfo:

Sets in the receiver's private internal
storage the value of a given property.

setPrimitiveValue:forKey:

Sets the specified property of the
receiver to the specified value.

setValue:forKey:

Determines whether the receiver can
be deleted in its current state.

validateForDelete:

Determines whether the receiver can
be inserted in its current state.

validateForInsert:

Determines whether the receiver’s
current state is valid.

validateForUpdate:

Validates a property value for a given
key.

validateValue:forKey:error:

Returns the value for the property
specified by key.

valueForKey:

Provides support for key-value
observing access notification.

willAccessValueForKey:

Provides support for key-value
observing change notification.

willChangeValueForKey:

Provides support for key-value
observing change notifications for
to-many relationships.

willChangeValueForKey:withSetMutation: usingObjects:

Invoked automatically by the Core
Data framework when the receiver’s
managed object context is saved.

willSave

NSManagedObjectContext (New)

Complete reference information is available in the NSManagedObjectContext reference.

Classes 25
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Instance Methods

Specifies the store in which a
newly-inserted object will be saved.

assignObject:toPersistentStore:

Returns the set of objects that will be
removed from their persistent store during
the next save operation.

deletedObjects

Specifies an object that should be
removed from its persistent store when
changes are committed.

deleteObject:

Marks an object for conflict detection.detectConflictsForObject:

Returns an array of objects that meet the
criteria specified by a given fetch request.

executeFetchRequest:error:

Returns a Boolean value that indicates
whether the receiver has uncommitted
changes.

hasChanges

Returns the set of objects that have been
inserted into the receiver but not yet saved
in a persistent store.

insertedObjects

Registers an object to be inserted in the
receiver’s persistent store the next time
changes are saved.

insertObject:

Attempts to acquire a lock on the receiver.lock

Returns the merge policy of the receiver.mergePolicy

Returns the object for a specified ID, if the
object is registered with the receiver.

objectRegisteredForID:

Returns the object for a specified ID.objectWithID:

This message is sent to the receiver when
the value at the specified key path relative
to the given object has changed.

observeValueForKeyPath:ofObject:change:context:

Returns the persistent store coordinator
of the receiver.

persistentStoreCoordinator

Forces the receiver to process changes to
the object graph.

processPendingChanges

Returns a Boolean that indicates whether
the receiver propagates deletes at the end
of the event in which a change was made.

propagatesDeletesAtEndOfEvent

26 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Sends an redo message to the receiver’s
undo manager, asking it to reverse the
latest undo operation applied to objects
in the object graph.

redo

Updates the persistent properties of a
managed object to use the latest values
from the persistent store.

refreshObject:mergeChanges:

Returns the set of objects registered with
the receiver.

registeredObjects

Returns the receiver to its base state.reset

Returns a Boolean that indicates whether
the receiver sends a retain message to
objects upon registration.

retainsRegisteredObjects

Removes everything from the undo stack,
discards all insertions and deletions, and
restores updated objects to their last
committed values.

rollback

Attempts to commit unsaved changes to
registered objects to their persistent store.

save:

Sets the merge policy of the receiver.setMergePolicy:

Sets the persistent store coordinator of the
receiver.

setPersistentStoreCoordinator:

Sets whether the context propagates
deletes to related objects at the end of the
event.

setPropagatesDeletesAtEndOfEvent:

Sets whether or not the receiver retains all
registered objects, or only objects
necessary for a pending save (those that
are inserted, updated, deleted, or locked).

setRetainsRegisteredObjects:

Sets the staleness interval of the receiver.setStalenessInterval:

Sets the undo manager of the receiver.setUndoManager:

Returns the staleness interval of the
receiver.

stalenessInterval

Attempts to acquire a lock.tryLock

Sends an undo message to the receiver’s
undo manager, asking it to reverse the
latest uncommitted changes applied to
objects in the object graph.

undo

Returns the undo manager of the receiver.undoManager

Classes 27
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Relinquishes a previously acquired lock.unlock

Returns the set of objects registered with
the receiver that have uncommitted
changes.

updatedObjects

NSManagedObjectID (New)

Complete reference information is available in the NSManagedObjectID reference.

Instance Methods

Returns the entity description associated with the receiver.entity

Returns a Boolean value that indicates whether the receiver is temporary.isTemporaryID

Returns the persistent store that contains the object whose ID is the
receiver.

persistentStore

Returns a URI that provides an archiveable reference to the object which
the receiver represents.

URIRepresentation

NSManagedObjectModel (New)

Complete reference information is available in the NSManagedObjectModel reference.

Class Methods

Returns a model created by merging all the models found in
given bundles.

mergedModelFromBundles:

Creates a single model from an array of existing models.modelByMergingModels:

Instance Methods

Returns all the available configuration names of the receiver.configurations

Returns the entities in the receiver.entities

Returns the entities of the receiver in a dictionary.entitiesByName

Returns the entities of the receiver for a specified
configuration.

entitiesForConfiguration:

28 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Returns a copy of the fetch request template with the
variables substituted by values from the substitutions
dictionary.

fetchRequestFromTemplateWithName:
substitutionVariables:

Returns the fetch request with a specified name.fetchRequestTemplateForName:

init

Initializes the receiver using the model file at the specified
URL.

initWithContentsOfURL:

Returns the localization dictionary of the receiver.localizationDictionary

Sets the entities array of the receiver.setEntities:

Associates the specified entities with the receiver using the
given configuration name.

setEntities:forConfiguration:

Associates the specified fetch request with the receiver using
the given name.

setFetchRequestTemplate:forName:

Sets the localization dictionary of the receiver.setLocalizationDictionary:

NSPersistentStoreCoordinator (New)

Complete reference information is available in the NSPersistentStoreCoordinator reference.

Class Methods

Returns a dictionary that contains the metadata
stored in the persistent store at the specified
location.

metadataForPersistentStoreWithURL:error:

Instance Methods

Adds a new persistent store of a specified type at
a given location, and returns the new store.

addPersistentStoreWithType:configuration:
URL:options:error:

Initializes the receiver with a managed object
model.

initWithManagedObjectModel:

Attempts to acquire a lock.lock

Returns an object ID for the specified URI
representation of an object ID if a matching store
is available, or nil if a matching store cannot be
found.

managedObjectIDForURIRepresentation:

Returns the receiver’s managed object model.managedObjectModel

Classes 29
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Returns a dictionary that contains the metadata
currently stored or to-be-stored in a given
persistent store.

metadataForPersistentStore:

Moves a persistent store to a new location,
changing the storage type if necessary.

migratePersistentStore:toURL:
options:withType:error:

Returns the persistent store for the specified URL.persistentStoreForURL:

Returns an array of persistent stores associated
with the receiver.

persistentStores

Removes a given persistent store.removePersistentStore:error:

Sets the metadata stored in the persistent store
during the next save operation executed on it to
metadata.

setMetadata:forPersistentStore:

Attempts to acquire a lock.tryLock

Relinquishes a previously acquired lock.unlock

Returns the URL for a given persistent store.URLForPersistentStore:

NSPropertyDescription (New)

Complete reference information is available in the NSPropertyDescription reference.

Instance Methods

Returns the entity description of the
receiver.

entity

Returns a Boolean value that indicates
whether the receiver is optional.

isOptional

Returns a Boolean value that indicates
whether the receiver is transient.

isTransient

Returns the name of the receiver.name

Sets the name of the receiver.setName:

Sets the optionality flag of the receiver.setOptional:

Sets the transient flag of the receiver.setTransient:

Sets the user info dictionary of the
receiver.

setUserInfo:

Sets the validation predicates and
warnings of the receiver.

setValidationPredicates:withValidationWarnings:

30 Classes
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Returns the user info dictionary of the
receiver.

userInfo

Returns the validation predicates of the
receiver.

validationPredicates

Returns the error strings associated with
the receiver’s validation predicates.

validationWarnings

NSRelationshipDescription (New)

Complete reference information is available in the NSRelationshipDescription reference.

Instance Methods

Returns the delete rule of the receiver.deleteRule

Returns the entity description of the receiver's destination.destinationEntity

Returns the relationship that represents the inverse of the receiver.inverseRelationship

Returns a Boolean value that indicates whether the receiver
represents a to-many relationship.

isToMany

Returns the maximum count of the receiver.maxCount

Returns the minimum count of the receiver.minCount

Sets the delete rule of the receiver.setDeleteRule:

Sets the entity description for the receiver's destination.setDestinationEntity:

Sets the inverse relationship of the receiver.setInverseRelationship:

Sets the maximum count of the receiver.setMaxCount:

Sets the minimum count of the receiver.setMinCount:

C Symbols

All of the header files with new symbols are listed alphabetically, with their new symbols described.

C Symbols 31
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

CoreDataDefines.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specifies the version of Core Data available in the current
process.

NSCoreDataVersionNumber

CoreDataErrors.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

The key for objects prompting an error.NSAffectedObjectsErrorKey

The key for stores prompting an error.NSAffectedStoresErrorKey

If multiple validation errors occur in one
operation, they are collected in an array
and added with this key to the “top-level
error” of the operation.

NSDetailedErrorsKey

Error code to denote an inability to
acquire a lock in a managed object
context.

NSManagedObjectContextLockingError

Error code to denote that an object being
saved has a relationship containing an
object from another store.

NSManagedObjectExternalRelationshipError

Error code to denote that a merge policy
failed—Core Data is unable to complete
merging.

NSManagedObjectMergeError

Error code to denote an attempt to fire
a fault pointing to an object that does
not exist.

NSManagedObjectReferentialIntegrityError

Error code to denote a generic validation
error.

NSManagedObjectValidationError

Error code to denote an inability to
acquire a lock in a persistent store.

NSPersistentStoreCoordinatorLockingError

32 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Error code to denote that a persistent
store returned an error for a save
operation.

NSPersistentStoreIncompatibleSchemaError

Error code to denote that one or more of
the stores returned an error during a save
operations.

NSPersistentStoreIncompleteSaveError

Error code to denote an unknown
persistent store type/format/version.

NSPersistentStoreInvalidTypeError

Error code to denote that a persistent
store returned an error for a save
operation.

NSPersistentStoreSaveError

Error code returned by a persistent store
coordinator if a store is accessed that
does not match the specified type.

NSPersistentStoreTypeMismatchError

Error code to denote some date value is
too late.

NSValidationDateTooLateError

Error code to denote some date value is
too soon.

NSValidationDateTooSoonError

Error code to denote some date value
fails to match date pattern.

NSValidationInvalidDateError

Key for the key that failed to validate for
a validation error.

NSValidationKeyErrorKey

Error code for a non-optional property
with a nil value.

NSValidationMissingMandatoryPropertyError

Error code to denote an error containing
multiple validation errors.

NSValidationMultipleErrorsError

Error code to denote some numerical
value is too large.

NSValidationNumberTooLargeError

Error code to denote some numerical
value is too small.

NSValidationNumberTooSmallError

Key for the object that failed to validate
for a validation error.

NSValidationObjectErrorKey

For predicate-based validation, key for
the predicate for the condition that failed
to validate.

NSValidationPredicateErrorKey

Error code to denote some relationship
with delete rule NSDeleteRuleDeny is
non-empty.

NSValidationRelationshipDeniedDeleteError

C Symbols 33
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Error code to denote a bounded to-many
relationship with too many destination
objects.

NSValidationRelationshipExceedsMaximumCountError

Error code to denote a to-many
relationship with too few destination
objects.

NSValidationRelationshipLacksMinimumCountError

Error code to denote some string value
fails to match some pattern.

NSValidationStringPatternMatchingError

Error code to denote some string value
is too long.

NSValidationStringTooLongError

Error code to denote some string value
is too short.

NSValidationStringTooShortError

If non-nil, the key for the value for the
key that failed to validate for a validation
error.

NSValidationValueErrorKey

NSAttributeDescription.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Defines the possible types of NSAttributeType properties.
These explicitly distinguish between bit sizes to ensure
data store independence.

NSAttributeType

Specifies an NSData attribute.NSBinaryDataAttributeType

Specifies a Boolean attribute.NSBooleanAttributeType

Specifies an NSDate attribute.NSDateAttributeType

Specifies an NSDecimalNumber attribute.NSDecimalAttributeType

Specifies a double attribute.NSDoubleAttributeType

Specifies a float attribute.NSFloatAttributeType

Specifies a 16-bit signed integer attribute.NSInteger16AttributeType

Specifies a 32-bit signed integer attribute.NSInteger32AttributeType

Specifies a 64-bit signed integer attribute.NSInteger64AttributeType

Specifies an NSString attribute.NSStringAttributeType

34 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

Specifies an undefined attribute type.NSUndefinedAttributeType

NSManagedObjectContext.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Key for the set of objects that were
marked for deletion during the
previous event.

NSDeletedObjectsKey

This policy causes a save to fail if there
are any merge conflicts.

NSErrorMergePolicy

Key for the set of objects that were
inserted into the context.

NSInsertedObjectsKey

Posted whenever a managed object
context completes a save operation.

NSManagedObjectContextDidSaveNotification

Posted when values of properties of
objects contained in a managed object
context are changed.

NSManagedObjectContextObjectsDidChangeNotification

This policy merges conflicts between
the persistent store’s version of the
object and the current in-memory
version, giving priority to in-memory
changes.

NSMergeByPropertyObjectTrumpMergePolicy

This policy merges conflicts between
the persistent store’s version of the
object and the current in-memory
version, giving priority to external
changes.

NSMergeByPropertyStoreTrumpMergePolicy

This policy overwrites state in the
persistent store for the changed
objects in conflict.

NSOverwriteMergePolicy

This policy discards in-memory state
changes for objects in conflict.

NSRollbackMergePolicy

Key for the set of objects that were
updated.

NSUpdatedObjectsKey

C Symbols 35
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

NSPersistentStoreCoordinator.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Key for the array of stores that were added.NSAddedPersistentStoresKey

The binary store type.NSBinaryStoreType

The in-memory store type.NSInMemoryStoreType

Posted whenever persistent stores are added to or removed
from a persistent store coordinator, or when store UUIDs
change.

NSPersistentStoreCoordinator-
StoresDidChangeNotification

A flag that indicates whether a store is treated as read-only
or not.

NSReadOnlyPersistentStoreOption

Key for the array of stores that were removed.NSRemovedPersistentStoresKey

The SQLite database store type.NSSQLiteStoreType

The key in the metadata dictionary to identify the store type.NSStoreTypeKey

The key in the metadata dictionary to identify the store UUID.NSStoreUUIDKey

Key for the array of stores whose UUIDs changed.NSUUIDChangedPersistentStoresKey

A flag that indicates whether an XML file should be validated
with the DTD while opening.

NSValidateXMLStoreOption

The XML store type.NSXMLStoreType

NSRelationshipDescription.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

If the object is deleted, the destination object or objects of this
relationship are also deleted.

NSCascadeDeleteRule

These constants define what happens to relationships when an object
is deleted.

NSDeleteRule

If the destination of this relationship is not nil, the delete creates a
validation error.

NSDenyDeleteRule

36 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

If the object is deleted, no modifications are made to objects at the
destination of the relationship.

NSNoActionDeleteRule

If the object is deleted, back pointers from the objects to which it is
related are nullified.

NSNullifyDeleteRule

C Symbols 37
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

38 C Symbols
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

10.3 - 10.4 Symbol Changes

This table describes the changes to Core Data Reference Update.

NotesDate

Updated for Mac OS X v10.5.2007-07-18

Corrected minor typographical errors.2006-03-08

Added cross-reference to complete Core Data reference to table of contents.2005-09-08

Corrected minor formatting errors.2005-07-07

Minor corrections to conform with style guidelines; added See Also section to
Introduction.

2005-04-29

New document that summarizes the symbols added to the Core Data framework
in Mac OS X v10.4.

39
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

40
2007-07-18 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

	Core Data Reference Update
	Contents
	Introduction
	10.4 - 10.5 Symbol Changes
	Classes
	NSAtomicStore (New)
	Instance Methods

	NSAtomicStoreCacheNode (New)
	Instance Methods

	NSAttributeDescription
	Instance Methods

	NSEntityDescription
	Instance Methods

	NSEntityMapping (New)
	Instance Methods

	NSEntityMigrationPolicy (New)
	Instance Methods

	NSFetchRequest
	Instance Methods

	NSFetchRequestExpression (New)
	Class Methods
	Instance Methods

	NSManagedObject
	Instance Methods

	NSManagedObjectContext
	Instance Methods

	NSManagedObjectModel
	Class Methods
	Instance Methods

	NSMappingModel (New)
	Class Methods
	Instance Methods

	NSMigrationManager (New)
	Instance Methods

	NSPersistentStore (New)
	Class Methods
	Instance Methods

	NSPersistentStoreCoordinator
	Class Methods
	Instance Methods

	NSPropertyDescription
	Instance Methods

	NSPropertyMapping (New)
	Instance Methods

	NSRelationshipDescription
	Instance Methods

	C Symbols
	CoreDataErrors.h
	Data Types & Constants

	NSEntityMapping.h
	Data Types & Constants

	NSEntityMigrationPolicy.h
	Data Types & Constants

	NSFetchRequest.h
	Data Types & Constants

	NSFetchRequestExpression.h
	Data Types & Constants

	NSManagedObjectContext.h
	Data Types & Constants

	NSPersistentStoreCoordinator.h
	Data Types & Constants

	10.3 - 10.4 Symbol Changes
	Classes
	NSAttributeDescription (New)
	Instance Methods

	NSEntityDescription (New)
	Class Methods
	Instance Methods

	NSFetchedPropertyDescription (New)
	Instance Methods

	NSFetchRequest (New)
	Instance Methods

	NSManagedObject (New)
	Instance Methods

	NSManagedObjectContext (New)
	Instance Methods

	NSManagedObjectID (New)
	Instance Methods

	NSManagedObjectModel (New)
	Class Methods
	Instance Methods

	NSPersistentStoreCoordinator (New)
	Class Methods
	Instance Methods

	NSPropertyDescription (New)
	Instance Methods

	NSRelationshipDescription (New)
	Instance Methods

	C Symbols
	CoreDataDefines.h
	Data Types & Constants

	CoreDataErrors.h
	Data Types & Constants

	NSAttributeDescription.h
	Data Types & Constants

	NSManagedObjectContext.h
	Data Types & Constants

	NSPersistentStoreCoordinator.h
	Data Types & Constants

	NSRelationshipDescription.h
	Data Types & Constants

	Revision History

