
NSConnection Class Reference
Cocoa > Interapplication Communication

2008-02-08

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSConnection Class Reference 5

Overview 5
Tasks 5

Getting the Default Instance 5
Creating Instances 6
Running the Connection in a New Thread 6
Vending a Service 6
Getting a Remote Object 7
Getting a Conversation 7
Getting All NSConnection Objects 7
Configuring Instances 7
Getting Ports 8
Getting Statistics 8
Setting the Delegate 8
Authenticating 8
Responding to a Connection 9

Class Methods 9
allConnections 9
connectionWithReceivePort:sendPort: 9
connectionWithRegisteredName:host: 10
connectionWithRegisteredName:host:usingNameServer: 11
currentConversation 11
defaultConnection 11
rootProxyForConnectionWithRegisteredName:host: 12
rootProxyForConnectionWithRegisteredName:host:usingNameServer: 13
serviceConnectionWithName:rootObject: 13
serviceConnectionWithName:rootObject:usingNameServer: 14

Instance Methods 15
addRequestMode: 15
addRunLoop: 15
delegate 16
enableMultipleThreads 16
independentConversationQueueing 16
initWithReceivePort:sendPort: 17
invalidate 18
isValid 18
localObjects 19
multipleThreadsEnabled 19
receivePort 20
registerName: 20
registerName:withNameServer: 21

3
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

remoteObjects 22
removeRequestMode: 22
removeRunLoop: 22
replyTimeout 23
requestModes 23
requestTimeout 24
rootObject 24
rootProxy 24
runInNewThread 25
sendPort 25
setDelegate: 26
setIndependentConversationQueueing: 26
setReplyTimeout: 27
setRequestTimeout: 27
setRootObject: 27
statistics 28

Delegate Methods 28
authenticateComponents:withData: 28
authenticationDataForComponents: 29
connection:handleRequest: 30
connection:shouldMakeNewConnection: 30
createConversationForConnection: 31
makeNewConnection:sender: 31

Constants 32
NSConnection run loop mode 32
Connection Exception Names 32

Notifications 32
NSConnectionDidDieNotification 32
NSConnectionDidInitializeNotification 33

Document Revision History 35

Index 37

4
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Distributed Objects Programming Topics

Declared in NSConnection.h

Related sample code SimpleThreads
TrivialThreads

Overview

An NSConnection object manages the communication between objects in different threads or between a
thread and a process running on a local or remote system. Connection objects form the backbone of the
distributed objects mechanism and normally operate in the background. You use the methods of
NSConnection explicitly when vending an object to other applications, when accessing such a vended
object through a proxy, and when altering default communication parameters. At other times, you simply
interact with a vended object or its proxy.

In Mac OS X v10.5 and later, a single connection object may be shared by multiple threads and used to access
a vended object by default. Prior to Mac OS X v10.5, a separate connection object must be maintained by
each thread by default; however, an application can enable sharing by invoking the enableMultipleThreads
method of the object.

Tasks

Getting the Default Instance

+ defaultConnection (page 11)
Returns the default NSConnection object for the current thread.

Overview 5
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Creating Instances

+ connectionWithReceivePort:sendPort: (page 9)
Returns an NSConnection object that communicates using given send and receive ports.

– initWithReceivePort:sendPort: (page 17)
Returns an NSConnection object initialized with given send and receive ports.

Running the Connection in a New Thread

– runInNewThread (page 25)
Creates and starts a new NSThread object and then runs the receiving connection in the new thread.

– enableMultipleThreads (page 16)
Configures the receiver to allow requests from multiple threads to the remote object, without requiring
each thread to each maintain its own connection.

– multipleThreadsEnabled (page 19)
Returns a Boolean value that indicates whether the receiver supports requests from multiple threads.

– addRunLoop: (page 15)
Adds the specified run loop to the list of run loops the receiver monitors and from which it responds
to requests.

– removeRunLoop: (page 22)
Removes a given NSRunLoop object from the list of run loops the receiver monitors and from which
it responds to requests.

Vending a Service

+ serviceConnectionWithName:rootObject:usingNameServer: (page 14)
Creates and returns a new connection object representing a vended service on the specified port
name server.

+ serviceConnectionWithName:rootObject: (page 13)
Creates and returns a new connection object representing a vended service on the default system
port name server.

– registerName: (page 20)
Registers the specified service using with the default system port name server.

– registerName:withNameServer: (page 21)
Registers a service with the specified port name server.

– setRootObject: (page 27)
Sets the object that the receiver makes available to other applications or threads.

– rootObject (page 24)
Returns the object that the receiver (or its parent) makes available to other applications or threads.

6 Tasks
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Getting a Remote Object

+ connectionWithRegisteredName:host: (page 10)
Returns the NSConnection object whose send port links it to the NSConnection object registered
with the default NSPortNameServer under a given name on a given host.

+ connectionWithRegisteredName:host:usingNameServer: (page 11)
Returns the NSConnection object whose send port links it to the NSConnection object registered
under a given name with a given server on a given host.

– rootProxy (page 24)
Returns the proxy for the root object of the receiver’s peer in another application or thread.

+ rootProxyForConnectionWithRegisteredName:host: (page 12)
Returns a proxy for the root object of the NSConnection object registered with the default
NSPortNameServer under a given name on a given host.

+ rootProxyForConnectionWithRegisteredName:host:usingNameServer: (page 13)
Returns a proxy for the root object of the NSConnection object registered with server under name
on a given host.

– remoteObjects (page 22)
Returns all the local proxies for remote objects that have been received over the connection but not
deallocated yet.

– localObjects (page 19)
Returns the local objects that have been sent over the connection and still have proxies at the other
end.

Getting a Conversation

+ currentConversation (page 11)
Returns a token object representing any conversation in progress in the current thread.

Getting All NSConnection Objects

+ allConnections (page 9)
Returns all valid NSConnection objects in the process.

Configuring Instances

– setRequestTimeout: (page 27)
Sets the timeout interval for outgoing remote messages.

– requestTimeout (page 24)
Returns the timeout interval for outgoing remote messages.

– setReplyTimeout: (page 27)
Sets the timeout interval for replies to outgoing remote messages

– replyTimeout (page 23)
Returns the timeout interval for replies to outgoing remote messages.

Tasks 7
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

– setIndependentConversationQueueing: (page 26)
Sets a Boolean value that specifies whether the receiver handles remote messages atomically.

– independentConversationQueueing (page 16)
Returns a Boolean value that indicates whether the receiver handles remote messages atomically.

– addRequestMode: (page 15)
Adds mode to the set of run-loop input modes that the receiver uses for connection requests.

– removeRequestMode: (page 22)
Removes mode from the set of run-loop input modes the receiver uses for connection requests.

– requestModes (page 23)
Returns the set of request modes the receiver’s receive port is registered for with its NSRunLoop
object.

– invalidate (page 18)
Invalidates (but doesn’t release) the receiver.

– isValid (page 18)
Returns a Boolean value that indicates whether the receiver is known to be valid.

Getting Ports

– receivePort (page 20)
Returns the NSPort object on which the receiver receives incoming network messages.

– sendPort (page 25)
Returns the NSPort object that the receiver sends outgoing network messages through.

Getting Statistics

– statistics (page 28)
Returns an NSDictionary object containing various statistics for the receiver.

Setting the Delegate

– setDelegate: (page 26)
Sets the receiver’s delegate.

– delegate (page 16)
Returns the receiver’s delegate.

Authenticating

– authenticateComponents:withData: (page 28) delegate method
Returns a Boolean value that indicates whether given authentication data is valid for a given set of
components.

– authenticationDataForComponents: (page 29) delegate method
Returns an NSData object to be used as an authentication stamp for an outgoing message.

8 Tasks
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Responding to a Connection

– connection:shouldMakeNewConnection: (page 30) delegate method
Returns a Boolean value that indicates whether the parent connection should allow a given new
connection to be created.

– connection:handleRequest: (page 30) delegate method
This method should be implemented by NSConnection object delegates that want to intercept
distant object requests.

– createConversationForConnection: (page 31) delegate method
Returns an arbitrary object identifying a new conversation being created for the connection in the
current thread.

– makeNewConnection:sender: (page 31) delegate method
Returns a Boolean value that indicates whether the parent should allow a given new connection to
be created and configured.

Class Methods

allConnections
Returns all valid NSConnection objects in the process.

+ (NSArray *)allConnections

Return Value
An array containing all valid NSConnection objects in the process.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isValid (page 18)

Declared In
NSConnection.h

connectionWithReceivePort:sendPort:
Returns an NSConnection object that communicates using given send and receive ports.

+ (id)connectionWithReceivePort:(NSPort *)receivePort sendPort:(NSPort *)sendPort

Parameters
receivePort

A receive port.

sendPort
A send port.

Return Value
An NSConnection object that communicates using receivePort and sendPort.

Class Methods 9
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Discussion
See initWithReceivePort:sendPort: (page 17) for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultConnection (page 11)

Related Sample Code
SimpleThreads
TrivialThreads

Declared In
NSConnection.h

connectionWithRegisteredName:host:
Returns the NSConnection object whose send port links it to the NSConnection object registered with the
default NSPortNameServer under a given name on a given host.

+ (id)connectionWithRegisteredName:(NSString *)name host:(NSString *)hostName

Parameters
name

The name of an NSConnection object.

hostName
The name of the host. The domain name hostName is an Internet domain name (for example,
“sales.anycorp.com”). If hostName is nil or empty, then only the local host is searched for the
named NSConnection object.

Return Value
The NSConnection object whose send port links it to the NSConnection object registered with the default
NSPortNameServer under name on the host named hostName. Returns nil if no NSConnection object
can be found for name and hostName.

The returned NSConnection object is a child of the default NSConnection object for the current thread
(that is, it shares the default NSConnection object's receive port).

Discussion
To get the object vended by the NSConnection object, use the rootProxy (page 24) instance method.
The rootProxyForConnectionWithRegisteredName:host: (page 12) class method immediately returns
this object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultConnection (page 11)
+ connectionWithRegisteredName:host:usingNameServer: (page 11)

Declared In
NSConnection.h

10 Class Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

connectionWithRegisteredName:host:usingNameServer:
Returns the NSConnection object whose send port links it to the NSConnection object registered under
a given name with a given server on a given host.

+ (id)connectionWithRegisteredName:(NSString *)name host:(NSString *)hostName
usingNameServer:(NSPortNameServer *)server

Parameters
name

The connection name.

hostName
The host name.

server
The name server.

Return Value
The NSConnection object whose send port links it to the NSConnection object registered with server
under name on the host named hostName.

Discussion
See connectionWithRegisteredName:host: (page 10) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

currentConversation
Returns a token object representing any conversation in progress in the current thread.

+ (id)currentConversation

Return Value
A token object representing any conversation in progress in the current thread, or nil if there is no
conversation in progress.

Availability
Available in Mac OS X v10.0 and later.

See Also
– createConversationForConnection: (page 31)

Declared In
NSConnection.h

defaultConnection
Returns the default NSConnection object for the current thread.

+ (NSConnection *)defaultConnection

Class Methods 11
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Return Value
The default NSConnection object for the current thread, creating it if necessary.

Discussion
The default NSConnection object uses a single NSPort object for both receiving and sending and is useful
only for vending an object; use the setRootObject: (page 27) and registerName: (page 20) methods
to do this.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

rootProxyForConnectionWithRegisteredName:host:
Returns a proxy for the root object of the NSConnection object registered with the default
NSPortNameServer under a given name on a given host.

+ (NSDistantObject *)rootProxyForConnectionWithRegisteredName:(NSString *)name
host:(NSString *)hostName

Parameters
name

The name under which the connection is registered.

hostName
The host name. The domain name hostName is an Internet domain name (for example,
"sales.anycorp.com"). If hostName is nil or empty, then only the local host is searched for the
named NSConnection object.

Return Value
a proxy for the root object of the NSConnection object registered with the default NSPortNameServer
under name on the host named hostName, or nil if that NSConnection object has no root object set. Also
returns nil if no NSConnection object can be found for name and hostName.

Discussion
The NSConnection object of the returned proxy is a child of the default NSConnection object for the
current thread (that is, it shares the default NSConnection object's receive port).

This method invokes connectionWithRegisteredName:host: (page 10) and sends the resulting
NSConnection object a rootProxy (page 24) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRootObject: (page 27)
+ rootProxyForConnectionWithRegisteredName:host:usingNameServer: (page 13)

Declared In
NSConnection.h

12 Class Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

rootProxyForConnectionWithRegisteredName:host:usingNameServer:
Returns a proxy for the root object of the NSConnection object registered with server under name on a
given host.

+ (NSDistantObject *)rootProxyForConnectionWithRegisteredName:(NSString *)name
host:(NSString *)hostName usingNameServer:(NSPortNameServer *)server

Parameters
name

The name of an NSConnection object .

hostName
A host name.

server
The server.

Return Value
A proxy for the root object of the NSConnection object registered with server under name on the host
named hostName, or nil if that NSConnection object has no root object set.

Discussion
See rootProxyForConnectionWithRegisteredName:host: (page 12) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

serviceConnectionWithName:rootObject:
Creates and returns a new connection object representing a vended service on the default system port name
server.

+ (id)serviceConnectionWithName:(NSString *)name rootObject:(id)root

Parameters
name

The name of the service you want to publish.

root
The object to use as the root object for the published service. This is the object vended by the
connection.

Return Value
An NSConnection object representing the vended service or nil if there was a problem setting up the
connection object.

Discussion
This method creates the server-side of a connection object and registers it with the default system port name
server. Clients wishing to connect to this service can request a communications port from the same port
server and use that port to to communicate.

Availability
Available in Mac OS X v10.5 and later.

Class Methods 13
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

See Also
+ serviceConnectionWithName:rootObject:usingNameServer: (page 14)
+ connectionWithRegisteredName:host: (page 10)
– rootObject (page 24)
+ systemDefaultPortNameServer (NSPortNameServer)

Declared In
NSConnection.h

serviceConnectionWithName:rootObject:usingNameServer:
Creates and returns a new connection object representing a vended service on the specified port name
server.

+ (id)serviceConnectionWithName:(NSString *)name rootObject:(id)root
usingNameServer:(NSPortNameServer *)server

Parameters
name

The name of the service you want to publish.

root
The object to use as the root object for the published service. This is the object vended by the
connection.

server
The port name server with which to register your service.

Return Value
An NSConnection object representing the vended service or nil if there was a problem setting up the
connection object.

Discussion
This method creates the server-side of a connection object and registers it with the specified port name
server. Clients wishing to connect to this service can request a communications port from the same port
server and use that port to communicate.

If the specified service name corresponds to a service that is autolaunched by launchd, this method allows
the service to check in with the launchd process. If the service is not autolaunched by launchd, this method
registers the new connection with the specified name. For more information about launchd and its role in
launching services, see System Startup Programming Topics

Availability
Available in Mac OS X v10.5 and later.

See Also
+ connectionWithRegisteredName:host:usingNameServer: (page 11)
– rootObject (page 24)

Declared In
NSConnection.h

14 Class Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Instance Methods

addRequestMode:
Adds mode to the set of run-loop input modes that the receiver uses for connection requests.

- (void)addRequestMode:(NSString *)mode

Parameters
mode

The mode to add to the receiver.

Discussion
The default input mode is NSDefaultRunLoopMode. See the NSRunLoop class specification for more
information on input modes.

Availability
Available in Mac OS X v10.0 and later.

See Also
addPort:forMode: (NSRunLoop)

Declared In
NSConnection.h

addRunLoop:
Adds the specified run loop to the list of run loops the receiver monitors and from which it responds to
requests.

- (void)addRunLoop:(NSRunLoop *)runloop

Parameters
runloop

The run loop to add to the receiver.

Discussion
This method is invoked automatically when a request comes in from a new run loop if
enableMultipleThreads (page 16) has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableMultipleThreads (page 16)
– removeRunLoop: (page 22)

Declared In
NSConnection.h

Instance Methods 15
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 26)

Declared In
NSConnection.h

enableMultipleThreads
Configures the receiver to allow requests from multiple threads to the remote object, without requiring each
thread to each maintain its own connection.

- (void)enableMultipleThreads

Discussion
In Mac OS X v10.5 and later, multiple thread support is enabled by default and this method does nothing.

Prior to Mac OS X v10.5, multiple thread support is disabled by default and must be enabled explicitly. When
disabled, each thread must create its own NSConnection object in order to access a given remote object.
When enabled, threads may use the same NSConnection object to access the remote object. If this feature
is disabled and an attempt is made to connect to the receiver from a thread other than the one that created
it, the receiver raises an NSObjectInaccessibleException.

Availability
Available in Mac OS X v10.0 and later.

See Also
– multipleThreadsEnabled (page 19)

Declared In
NSConnection.h

independentConversationQueueing
Returns a Boolean value that indicates whether the receiver handles remote messages atomically.

- (BOOL)independentConversationQueueing

Return Value
YES if the receiver handles remote messages atomically, otherwise NO.

Discussion
See Configuring an NSConnection for more information on independent conversation queueing.

16 Instance Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIndependentConversationQueueing: (page 26)

Declared In
NSConnection.h

initWithReceivePort:sendPort:
Returns an NSConnection object initialized with given send and receive ports.

- (id)initWithReceivePort:(NSPort *)receivePort sendPort:(NSPort *)sendPort

Parameters
receivePort

The receive port for the new connection.

sendPort
The send port for the new connection.

Return Value
An NSConnection object initialized with receivePort and sendPort. The returned object might be
different than the original receiver.

Discussion
The new NSConnection object adds receivePort to the current NSRunLoop object with
NSDefaultRunLoopMode as the mode. If the application doesn’t use an NSApplication object to handle
events, it needs to run the NSRunLoop object with one of its various run... messages.

This method posts an NSConnectionDidInitializeNotification (page 33) once the connection is
initialized.

The receivePort and sendPort parameters affect initialization as follows:

 ■ If an NSConnection object with the same ports already exists, releases the receiver, retains the existing
connection, and returns it.

 ■ If an NSConnection object exists that uses the same ports, but switched in role, then the new
NSConnection object communicates with it. Messages sent to a proxy held by either connection are
forwarded through the other NSConnection object. This rule applies both within and across address
spaces.

This behavior is useful for setting up distributed object connections between threads within an application.
See Communicating With Distributed Objects for more information.

 ■ If receivePort and sendPort are nil, deallocates the receiver and returns nil.

 ■ If receivePort is nil, the NSConnection object allocates and uses a new port of the same class as
sendPort.

 ■ If sendPort is nil or if both ports are the same, the NSConnection object uses receivePort for both
sending and receiving and is useful only for vending an object. Use the registerName: (page 20) and
setRootObject: (page 27) instance methods to vend an object.

Instance Methods 17
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

 ■ If an NSConnection object exists that uses receivePort as both of its ports, it’s treated as the parent
of the new NSConnection object, and its root object and all its configuration settings are applied to
the new NSConnection object. You should neither register a name for nor set the root object of the
new NSConnection object. See Configuring an NSConnection for more information.

 ■ If receivePort and sendPort are different and neither is shared with another NSConnection object,
the receiver can be used to vend an object as well as to communicate with other NSConnection objects.
However, it has no other NSConnection object to communicate with until one is set up.

 ■ The receivePort parameter can’t be shared by NSConnection objects in different threads.

This method is the designated initializer for the NSConnection class.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultConnection (page 11)

Related Sample Code
SimpleThreads
TrivialThreads

Declared In
NSConnection.h

invalidate
Invalidates (but doesn’t release) the receiver.

- (void)invalidate

Discussion
After withdrawing the ports the receiver has registered with the current run loop, invalidate posts an
NSConnectionDidDieNotification (page 32) and then invalidates all remote objects and exported local
proxies.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isValid (page 18)
removePort:forMode: (NSRunLoop)
– requestModes (page 23)

Declared In
NSConnection.h

isValid
Returns a Boolean value that indicates whether the receiver is known to be valid.

- (BOOL)isValid

18 Instance Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Return Value
YES if the receiver is known to be valid, otherwise NO.

Discussion
An NSConnection object becomes invalid when either of its ports becomes invalid, but only notes that it
has become invalid when it tries to send or receive a message. When this happens it posts an
NSConnectionDidDieNotification (page 32) to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– invalidate (page 18)
isValid (NSPort)

Declared In
NSConnection.h

localObjects
Returns the local objects that have been sent over the connection and still have proxies at the other end.

- (NSArray *)localObjects

Return Value
An array containing the local objects that have been sent over the connection and still have proxies at the
other end.

Discussion
When an object’s remote proxy is deallocated, a message is sent back to the receiver to notify it that the
local object is no longer shared over the connection.

Availability
Available in Mac OS X v10.0 and later.

See Also
– remoteObjects (page 22)

Declared In
NSConnection.h

multipleThreadsEnabled
Returns a Boolean value that indicates whether the receiver supports requests from multiple threads.

- (BOOL)multipleThreadsEnabled

Return Value
YES if the receiver supports requests from multiple threads.

Discussion
In Mac OS X v10.5 and later, multiple threads are enabled by default.

Instance Methods 19
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableMultipleThreads (page 16)

Declared In
NSConnection.h

receivePort
Returns the NSPort object on which the receiver receives incoming network messages.

- (NSPort *)receivePort

Return Value
The NSPort object on which the receiver receives incoming network messages.

Discussion
You can inspect this object for debugging purposes or use it to create another NSConnection object, but
shouldn’t use it to send or receive messages explicitly. Don’t set the delegate of the receive port; it already
has a delegate established by the NSConnection object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendPort (page 25)
– initWithReceivePort:sendPort: (page 17)

Declared In
NSConnection.h

registerName:
Registers the specified service using with the default system port name server.

- (BOOL)registerName:(NSString *)name

Parameters
name

The name under which to register the receiver.

Return Value
YES if the operation was successful, otherwise NO (for example, if another NSConnection object on the same
host is already registered under name).

Discussion
This method connects the receive port of the receiving NSConnection object with the specified service
name. It registers the name using the port name server returned by the systemDefaultPortNameServer
method of NSPortNameServer. If the operation is successful, other NSConnection objects can contact the
receiver using the connectionWithRegisteredName:host: (page 10) and
rootProxyForConnectionWithRegisteredName:host: (page 12) class methods.

20 Instance Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

If the receiver was already registered under a name and this method returns NO, the old name remains in
effect. If this method is successful, it also unregisters the old name.

To unregister an NSConnection object, simply invoke registerName: and supply nil as the connection
name.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRootObject: (page 27)
– registerName:withNameServer: (page 21)
+ systemDefaultPortNameServer (NSPortNameServer)

Declared In
NSConnection.h

registerName:withNameServer:
Registers a service with the specified port name server.

- (BOOL)registerName:(NSString *)name withNameServer:(NSPortNameServer *)server

Parameters
name

The name under which to register the receiver.

server
The name server.

Return Value
YES if the operation was successful, otherwise NO (for example, if another NSConnection object on the same
host is already registered under name).

Discussion
This method connects the receive port of the receiving NSConnection object with the specified service
name. If the operation is successful, other NSConnection objects can contact the receiver using the
connectionWithRegisteredName:host: (page 10) and
rootProxyForConnectionWithRegisteredName:host: (page 12) class methods.

If the receiver was already registered under a name and this method returns NO, the old name remains in
effect. If this method is successful, it also unregisters the old name.

To unregister an NSConnection object, simply invoke registerName: and supply nil as the connection
name.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

Instance Methods 21
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

remoteObjects
Returns all the local proxies for remote objects that have been received over the connection but not
deallocated yet.

- (NSArray *)remoteObjects

Return Value
An array containing all the local proxies for remote objects that have been received over the connection but
not deallocated yet.

Availability
Available in Mac OS X v10.0 and later.

See Also
– localObjects (page 19)

Declared In
NSConnection.h

removeRequestMode:
Removes mode from the set of run-loop input modes the receiver uses for connection requests.

- (void)removeRequestMode:(NSString *)mode

Parameters
mode

The mode to remove from the set of run-loop input modes the receiver uses for connection requests.

Availability
Available in Mac OS X v10.0 and later.

See Also
– requestModes (page 23)
removePort:forMode: (NSRunLoop)

Declared In
NSConnection.h

removeRunLoop:
Removes a given NSRunLoop object from the list of run loops the receiver monitors and from which it
responds to requests.

- (void)removeRunLoop:(NSRunLoop *)runloop

Parameters
runloop

The run loop to remove from the receiver.

Availability
Available in Mac OS X v10.0 and later.

22 Instance Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

See Also
– addRunLoop: (page 15)

Declared In
NSConnection.h

replyTimeout
Returns the timeout interval for replies to outgoing remote messages.

- (NSTimeInterval)replyTimeout

Return Value
The timeout interval for replies to outgoing remote messages.

Discussion
If a non-oneway remote message is sent and no reply is received by the timeout, an
NSPortTimeoutException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
– requestTimeout (page 24)
– setReplyTimeout: (page 27)

Declared In
NSConnection.h

requestModes
Returns the set of request modes the receiver’s receive port is registered for with its NSRunLoop object.

- (NSArray *)requestModes

Return Value
An array of NSString objects that represents the set of request modes the receiver’s receive port is registered
for with its NSRunLoop object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addRequestMode: (page 15)
addPort:forMode: (NSRunLoop)
– removeRequestMode: (page 22)

Declared In
NSConnection.h

Instance Methods 23
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

requestTimeout
Returns the timeout interval for outgoing remote messages.

- (NSTimeInterval)requestTimeout

Return Value
The timeout interval for outgoing remote messages.

Discussion
If a remote message can’t be sent before the timeout, an NSPortTimeoutException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replyTimeout (page 23)
– setRequestTimeout: (page 27)

Declared In
NSConnection.h

rootObject
Returns the object that the receiver (or its parent) makes available to other applications or threads.

- (id)rootObject

Return Value
The object that the receiver (or its parent) makes available to other applications or threads, or nil if there
is no root object.

Discussion
To get a proxy to this object in another application or thread, invoke the
rootProxyForConnectionWithRegisteredName:host: (page 12) class method with the appropriate
arguments.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rootProxy (page 24)
– setRootObject: (page 27)

Declared In
NSConnection.h

rootProxy
Returns the proxy for the root object of the receiver’s peer in another application or thread.

- (NSDistantObject *)rootProxy

24 Instance Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Return Value
The proxy for the root object of the receiver’s peer in another application or thread.

Discussion
The proxy returned can change between invocations if the peer NSConnection object's root object is
changed.

Note: If the NSConnection object uses separate send and receive ports and has no peer, when you invoke
rootProxy it will block for the duration of the reply timeout interval, waiting for a reply.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rootObject (page 24)

Related Sample Code
SimpleThreads
TrivialThreads

Declared In
NSConnection.h

runInNewThread
Creates and starts a new NSThread object and then runs the receiving connection in the new thread.

- (void)runInNewThread

Discussion
If the newly created thread is the first to be detached from the current thread, this method posts an
NSWillBecomeMultiThreadedNotification with nil to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

sendPort
Returns the NSPort object that the receiver sends outgoing network messages through.

- (NSPort *)sendPort

Return Value
The NSPort object that the receiver sends outgoing network messages through.

Discussion
You can inspect this object for debugging purposes or use it to create another NSConnection object, but
shouldn’t use it to send or receive messages explicitly. Don’t set the delegate of the send port; it already has
a delegate established by the NSConnection object.

Instance Methods 25
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– receivePort (page 20)
– initWithReceivePort:sendPort: (page 17)

Declared In
NSConnection.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)anObject

Parameters
anObject

The receiver’s delegate.

Discussion
A connection’s delegate can process incoming messages itself instead of letting NSConnection object
handle them. The delegate can also authenticate messages and accept, deny, or modify new connections.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

setIndependentConversationQueueing:
Sets a Boolean value that specifies whether the receiver handles remote messages atomically.

- (void)setIndependentConversationQueueing:(BOOL)flag

Parameters
flag

YES if the receiver handles remote messages atomically, otherwise NO.

Discussion
The default is NO. An NSConnection object normally forwards remote message to the intended recipients
as they come in. See Configuring an NSConnection for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– independentConversationQueueing (page 16)

Declared In
NSConnection.h

26 Instance Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

setReplyTimeout:
Sets the timeout interval for replies to outgoing remote messages

- (void)setReplyTimeout:(NSTimeInterval)seconds

Parameters
seconds

The timeout interval for replies to outgoing remote messages.

Discussion
If a non-oneway remote message is sent and no reply is received by the timeout, an
NSPortTimeoutException is raised. The default timeout is the maximum possible value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRequestTimeout: (page 27)
– replyTimeout (page 23)

Declared In
NSConnection.h

setRequestTimeout:
Sets the timeout interval for outgoing remote messages.

- (void)setRequestTimeout:(NSTimeInterval)seconds

Parameters
seconds

The timeout interval for outgoing remote messages.

Discussion
If a remote message can’t be sent before the timeout, an NSPortTimeoutException is raised. The default
timeout is the maximum possible value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setReplyTimeout: (page 27)
– requestTimeout (page 24)

Declared In
NSConnection.h

setRootObject:
Sets the object that the receiver makes available to other applications or threads.

- (void)setRootObject:(id)anObject

Instance Methods 27
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Parameters
anObject

The root object for the receiver.

Discussion
This only affects new connection requests and rootProxy (page 24) messages to established NSConnection
objects; applications that have proxies to the old root object can still send messages through it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rootObject (page 24)

Related Sample Code
SimpleThreads

Declared In
NSConnection.h

statistics
Returns an NSDictionary object containing various statistics for the receiver.

- (NSDictionary *)statistics

Return Value
An NSDictionary object containing various statistics for the receiver, such as the number of vended objects,
the number of requests and replies, and so on.

Discussion
The statistics dictionary should be used only for debugging purposes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

Delegate Methods

authenticateComponents:withData:
Returns a Boolean value that indicates whether given authentication data is valid for a given set of components.

- (BOOL)authenticateComponents:(NSArray *)components withData:(NSData
*)authenticationData

28 Delegate Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Parameters
components

An array that contains NSData and NSPort objects belonging to an NSPortMessage object. See the
NSPortMessage class specification for more information.

authenticationData
Authentication data created by the delegate of the peer NSConnection object with
authenticationDataForComponents: (page 29).

Return Value
YES if the authenticationData provided is valid for components, otherwise NO.

Discussion
Use this message for validation of incoming messages. An NSConnection object raises an
NSFailedAuthenticationException on receipt of a remote message the delegate doesn’t authenticate.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

authenticationDataForComponents:
Returns an NSData object to be used as an authentication stamp for an outgoing message.

- (NSData *)authenticationDataForComponents:(NSArray *)components

Parameters
components

An array containing the elements of a network message, in the form of NSPort and NSData objects.

Return Value
An NSData object to be used as an authentication stamp for an outgoing message.

Discussion
The delegate should use only the NSData elements to create the authentication stamp. See the
NSPortMessage class specification for more information on the components.

If authenticationDataForComponents: (page 29) returns nil, an NSGenericExceptionwill be raised.
If the delegate determines that the message shouldn’t be authenticated, it should return an empty NSData
object. The delegate on the other side of the connection must then be prepared to accept an empty NSData
object as the second parameter to authenticateComponents:withData: (page 28) and to handle the
situation appropriately.

The components parameter will be validated on receipt by the delegate of the peer NSConnection object
with authenticateComponents:withData: (page 28).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

Delegate Methods 29
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

connection:handleRequest:
This method should be implemented by NSConnection object delegates that want to intercept distant
object requests.

- (BOOL)connection:(NSConnection *)conn handleRequest:(NSDistantObjectRequest
*)doReq

Parameters
conn

The connection object for which the receiver is the delegate.

doReq
The distant object request.

Return Value
YES if the request was handled by the delegate, NO if the request should proceed as if the delegate did not
intercept it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

connection:shouldMakeNewConnection:
Returns a Boolean value that indicates whether the parent connection should allow a given new connection
to be created.

- (BOOL)connection:(NSConnection *)parentConnection
shouldMakeNewConnection:(NSConnection *)newConnnection

Parameters
parentConnection

The connection object for which the receiver is the delegate.

newConnnection
The new connection.

Return Value
YES ifparentConnection should allownewConnnection to be created and set up,NO ifparentConnection
should refuse and immediately release newConnection.

Discussion
Use this method to limit the amount of NSConnection objects created in your application or to change the
parameters of child NSConnection objects.

Use NSConnectionDidInitializeNotification (page 33) instead of this delegate method if possible.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

30 Delegate Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

createConversationForConnection:
Returns an arbitrary object identifying a new conversation being created for the connection in the current
thread.

- (id)createConversationForConnection:(NSConnection *)conn

Parameters
conn

The connection object for which the receiver is the delegate.

Return Value
An arbitrary object identifying a new conversation being created for the connection in the current thread.

Discussion
New conversations are created only if independentConversationQueueing (page 16) is YES for conn. If
you do not implement this method, NSConnection object creates an instance of NSObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentConversation (page 11)
conversation (NSDistantObjectRequest)

Declared In
NSConnection.h

makeNewConnection:sender:
Returns a Boolean value that indicates whether the parent should allow a given new connection to be created
and configured.

- (BOOL)makeNewConnection:(NSConnection *)newConnection sender:(NSConnection
*)parentConnection

Parameters
newConnection

The new connection.

parentConnection
The parent connection.

Return Value
YES if parentConnection should allow newConnnection to be created and configured, NO if
parentConnection should refuse and immediately release newConnection.

Discussion
Use this method to limit the amount of NSConnection objects created in your application or to change the
parameters of child NSConnection objects.

Use NSConnectionDidInitializeNotification (page 33) instead of this delegate method if possible.

Availability
Available in Mac OS X v10.0 and later.

Delegate Methods 31
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

Declared In
NSConnection.h

Constants

NSConnection run loop mode
NSConnection defines the following run loop mode—see NSRunLoop for more details.

extern NSString *NSConnectionReplyMode;

Constants
NSConnectionReplyMode

The mode to indicate an NSConnection object waiting for replies.

You should rarely need to use this mode.

Declared in NSConnection.h.

Available in Mac OS X v10.0 and later.

Declared In
Foundation/NSConnection.h

Connection Exception Names
The name of an exception raised in case of authentication failure.

extern NSString *NSFailedAuthenticationException;

Constants
NSFailedAuthenticationException

Raised by NSConnection on receipt of a remote message the delegate doesn’t authenticate.

Available in Mac OS X v10.0 and later.

Declared in NSConnection.h.

Declared In
Foundation/NSConnection.h

Notifications

NSConnectionDidDieNotification
Posted when an NSConnection object is deallocated or when it’s notified that its NSPort object has become
invalid. The notification object is the NSConnection object. This notification does not contain a userInfo
dictionary.

An NSConnection object attached to a remote NSSocketPort object cannot detect when the remote port
becomes invalid, even if the remote port is on the same machine. Therefore, it cannot post this notification
when the connection is lost. Instead, you must detect the timeout error when the next message is sent.

32 Constants
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

The NSConnection object posting this notification is no longer useful, so all receivers should unregister
themselves for any notifications involving the NSConnection object.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSPortDidBecomeInvalidNotification (NSPort notification)

Declared In
NSConnection.h

NSConnectionDidInitializeNotification
Posted when an NSConnection object is initialized using initWithReceivePort:sendPort: (page 17)
(the designated initializer for NSConnection). The notification object is the NSConnection object. This
notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithReceivePort:sendPort: (page 17)

Declared In
NSConnection.h

Notifications 33
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

34 Notifications
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

NSConnection Class Reference

This table describes the changes to NSConnection Class Reference.

NotesDate

Updated information for the enableMultipleThreads method.2008-02-08

Updated for Mac OS X v10.5.2007-04-30

First publication of this content as a separate document.2006-05-23

35
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

36
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

addRequestMode: instance method 15
addRunLoop: instance method 15
allConnections class method 9
authenticateComponents:withData: <NSObject>

delegate method 28
authenticationDataForComponents: <NSObject>

delegate method 29

C

Connection Exception Names 32
connection:handleRequest: <NSObject> delegate

method 30
connection:shouldMakeNewConnection:<NSObject>

delegate method 30
connectionWithReceivePort:sendPort: class

method 9
connectionWithRegisteredName:host: class method

10
connectionWithRegisteredName:host:usingNameServer:

class method 11
createConversationForConnection: <NSObject>

delegate method 31
currentConversation class method 11

D

defaultConnection class method 11
delegate instance method 16

E

enableMultipleThreads instance method 16

I

independentConversationQueueing instance method
16

initWithReceivePort:sendPort: instance method
17

invalidate instance method 18
isValid instance method 18

L

localObjects instance method 19

M

makeNewConnection:sender: <NSObject> delegate
method 31

multipleThreadsEnabled instance method 19

N

NSConnection run loop mode 32
NSConnectionDidDieNotification notification 32
NSConnectionDidInitializeNotification

notification 33
NSConnectionReplyMode constant 32
NSFailedAuthenticationException constant 32

R

receivePort instance method 20
registerName: instance method 20
registerName:withNameServer: instance method 21
remoteObjects instance method 22
removeRequestMode: instance method 22
removeRunLoop: instance method 22

37
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Index

replyTimeout instance method 23
requestModes instance method 23
requestTimeout instance method 24
rootObject instance method 24
rootProxy instance method 24
rootProxyForConnectionWithRegisteredName:host:

class method 12
rootProxyForConnectionWithRegisteredName:host:

usingNameServer: class method 13
runInNewThread instance method 25

S

sendPort instance method 25
serviceConnectionWithName:rootObject: class

method 13
serviceConnectionWithName:rootObject:

usingNameServer: class method 14
setDelegate: instance method 26
setIndependentConversationQueueing: instance

method 26
setReplyTimeout: instance method 27
setRequestTimeout: instance method 27
setRootObject: instance method 27
statistics instance method 28

38
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

INDEX

	NSConnection Class Reference
	Contents
	NSConnection Class Reference
	Overview
	Tasks
	Getting the Default Instance
	Creating Instances
	Running the Connection in a New Thread
	Vending a Service
	Getting a Remote Object
	Getting a Conversation
	Getting All NSConnection Objects
	Configuring Instances
	Getting Ports
	Getting Statistics
	Setting the Delegate
	Authenticating
	Responding to a Connection

	Class Methods
	allConnections
	connectionWithReceivePort:sendPort:
	connectionWithRegisteredName:host:
	connectionWithRegisteredName:host:usingNameServer:
	currentConversation
	defaultConnection
	rootProxyForConnectionWithRegisteredName:host:
	rootProxyForConnectionWithRegisteredName:host:usingNameServer:
	serviceConnectionWithName:rootObject:
	serviceConnectionWithName:rootObject:usingNameServer:

	Instance Methods
	addRequestMode:
	addRunLoop:
	delegate
	enableMultipleThreads
	independentConversationQueueing
	initWithReceivePort:sendPort:
	invalidate
	isValid
	localObjects
	multipleThreadsEnabled
	receivePort
	registerName:
	registerName:withNameServer:
	remoteObjects
	removeRequestMode:
	removeRunLoop:
	replyTimeout
	requestModes
	requestTimeout
	rootObject
	rootProxy
	runInNewThread
	sendPort
	setDelegate:
	setIndependentConversationQueueing:
	setReplyTimeout:
	setRequestTimeout:
	setRootObject:
	statistics

	Delegate Methods
	authenticateComponents:withData:
	authenticationDataForComponents:
	connection:handleRequest:
	connection:shouldMakeNewConnection:
	createConversationForConnection:
	makeNewConnection:sender:

	Constants
	NSConnection run loop mode
	Connection Exception Names

	Notifications
	NSConnectionDidDieNotification
	NSConnectionDidInitializeNotification

	Revision History
	Index
	A
	C
	D
	E
	I
	L
	M
	N
	R
	S

