
NSFileHandle Class Reference
Cocoa > File Management

2008-10-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSFileHandle Class Reference 5

Overview 5
Tasks 5

Getting a File Handle 5
Creating a File Handle 6
Getting a File Descriptor 6
Reading from a File Handle 6
Writing to a File Handle 6
Communicating Asynchronously 6
Seeking Within a File 7
Operating on a File 7

Class Methods 8
fileHandleForReadingAtPath: 8
fileHandleForUpdatingAtPath: 8
fileHandleForWritingAtPath: 9
fileHandleWithNullDevice 9
fileHandleWithStandardError 10
fileHandleWithStandardInput 10
fileHandleWithStandardOutput 11

Instance Methods 11
acceptConnectionInBackgroundAndNotify 11
acceptConnectionInBackgroundAndNotifyForModes: 12
availableData 12
closeFile 13
fileDescriptor 13
initWithFileDescriptor: 14
initWithFileDescriptor:closeOnDealloc: 14
offsetInFile 15
readDataOfLength: 15
readDataToEndOfFile 16
readInBackgroundAndNotify 16
readInBackgroundAndNotifyForModes: 17
readToEndOfFileInBackgroundAndNotify 18
readToEndOfFileInBackgroundAndNotifyForModes: 18
seekToEndOfFile 19
seekToFileOffset: 19
synchronizeFile 20
truncateFileAtOffset: 20
waitForDataInBackgroundAndNotify 20
waitForDataInBackgroundAndNotifyForModes: 21
writeData: 21

3
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Constants 22
Keys for Notification UserInfo Dictionary 22
Exception Names 23
Unused Constant 23

Notifications 23
NSFileHandleConnectionAcceptedNotification 23
NSFileHandleDataAvailableNotification 24
NSFileHandleReadCompletionNotification 24
NSFileHandleReadToEndOfFileCompletionNotification 25

Document Revision History 27

Index 29

4
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Low-Level File Management Programming Topics

Declared in NSFileHandle.h

Related sample code AudioBurn
PictureSharing
PictureSharingBrowser

Overview

NSFileHandle objects provide an object-oriented wrapper for accessing open files or communications
channels.

See the PictureSharing example project to examine code that creates an NSFileHandle object to listen for
incoming connections; the file-handle object is initialized from a socket obtained through BSD calls.

Note: The deallocation of an NSFileHandle object deletes its descriptor and closes the represented file or
channel unless the NSFileHandle object was created with initWithFileDescriptor: (page 14) or
initWithFileDescriptor:closeOnDealloc: (page 14) with NO as the parameter argument.

Tasks

Getting a File Handle

+ fileHandleForReadingAtPath: (page 8)
Returns a file handle initialized for reading the file, device, or named socket at the specified path.

+ fileHandleForWritingAtPath: (page 9)
Returns a file handle initialized for writing to the file, device, or named socket at the specified path.

Overview 5
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

+ fileHandleForUpdatingAtPath: (page 8)
Returns a file handle initialized for reading and writing to the file, device, or named socket at the
specified path.

+ fileHandleWithStandardError (page 10)
Returns the file handle associated with the standard error file.

+ fileHandleWithStandardInput (page 10)
Returns the file handle associated with the standard input file.

+ fileHandleWithStandardOutput (page 11)
Returns the file handle associated with the standard output file.

+ fileHandleWithNullDevice (page 9)
Returns a file handle associated with a null device.

Creating a File Handle

– initWithFileDescriptor: (page 14)
Returns a file handle initialized with a file descriptor.

– initWithFileDescriptor:closeOnDealloc: (page 14)
Returns a file handle initialized with a file handle, using a specified deallocation policy.

Getting a File Descriptor

– fileDescriptor (page 13)
Returns the file descriptor associated with the receiver.

Reading from a File Handle

– availableData (page 12)
Returns the data available through the receiver.

– readDataToEndOfFile (page 16)
Returns the data available through the receiver up to the end of file or maximum number of bytes.

– readDataOfLength: (page 15)
Reads data up to a specified number of bytes from the receiver.

Writing to a File Handle

– writeData: (page 21)
Synchronously writes data to the file, device, pipe, or socket represented by the receiver.

Communicating Asynchronously

– acceptConnectionInBackgroundAndNotify (page 11)
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle
for the “near” (client) end of the communications channel.

6 Tasks
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

– acceptConnectionInBackgroundAndNotifyForModes: (page 12)
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle
for the “near” (client) end of the communications channel.

– readInBackgroundAndNotify (page 16)
Reads from the file or communications channel in the background and posts a notification when
finished.

– readInBackgroundAndNotifyForModes: (page 17)
Reads from the file or communications channel in the background and posts a notification when
finished.

– readToEndOfFileInBackgroundAndNotify (page 18)
Reads to the end of file from the file or communications channel in the background and posts a
notification when finished.

– readToEndOfFileInBackgroundAndNotifyForModes: (page 18)
Reads to the end of file from the file or communications channel in the background and posts a
notification when finished.

– waitForDataInBackgroundAndNotify (page 20)
Checks to see if data is available in a background thread.

– waitForDataInBackgroundAndNotifyForModes: (page 21)
Checks to see if data is available in a background thread.

Seeking Within a File

– offsetInFile (page 15)
Returns the position of the file pointer within the file represented by the receiver.

– seekToEndOfFile (page 19)
Puts the file pointer at the end of the file referenced by the receiver and returns the new file offset.

– seekToFileOffset: (page 19)
Moves the file pointer to the specified offset within the file represented by the receiver.

Operating on a File

– closeFile (page 13)
Disallows further access to the represented file or communications channel and signals end of file on
communications channels that permit writing.

– synchronizeFile (page 20)
Causes all in-memory data and attributes of the file represented by the receiver to be written to
permanent storage.

– truncateFileAtOffset: (page 20)
Truncates or extends the file represented by the receiver to a specified offset within the file and puts
the file pointer at that position.

Tasks 7
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Class Methods

fileHandleForReadingAtPath:
Returns a file handle initialized for reading the file, device, or named socket at the specified path.

+ (id)fileHandleForReadingAtPath:(NSString *)path

Parameters
path

The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

Discussion
The file pointer is set to the beginning of the file. The returned object responds only to NSFileHandle
read... messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableData (page 12)
– initWithFileDescriptor: (page 14)
– readDataOfLength: (page 15)
– readDataToEndOfFile (page 16)

Related Sample Code
AudioBurn

Declared In
NSFileHandle.h

fileHandleForUpdatingAtPath:
Returns a file handle initialized for reading and writing to the file, device, or named socket at the specified
path.

+ (id)fileHandleForUpdatingAtPath:(NSString *)path

Parameters
path

The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

Discussion
The file pointer is set to the beginning of the file. The returned object responds to both NSFileHandle
read... messages and writeData: (page 21).

8 Class Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableData (page 12)
– initWithFileDescriptor: (page 14)
– readDataOfLength: (page 15)
– readDataToEndOfFile (page 16)

Declared In
NSFileHandle.h

fileHandleForWritingAtPath:
Returns a file handle initialized for writing to the file, device, or named socket at the specified path.

+ (id)fileHandleForWritingAtPath:(NSString *)path

Parameters
path

The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

Discussion
The file pointer is set to the beginning of the file. The returned object responds only to writeData: (page
21).

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFileDescriptor: (page 14)

Declared In
NSFileHandle.h

fileHandleWithNullDevice
Returns a file handle associated with a null device.

+ (id)fileHandleWithNullDevice

Return Value
A file handle associated with a null device.

Discussion
You can use null-device file handles as “placeholders” for standard-device file handles or in collection objects
to avoid exceptions and other errors resulting from messages being sent to invalid file handles. Read messages
sent to a null-device file handle return an end-of-file indicator (an empty NSData object) rather than raise
an exception. Write messages are no-ops, whereas fileDescriptor (page 13) returns an illegal value.
Other methods are no-ops or return “sensible” values.

Class Methods 9
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFileDescriptor: (page 14)

Declared In
NSFileHandle.h

fileHandleWithStandardError
Returns the file handle associated with the standard error file.

+ (id)fileHandleWithStandardError

Return Value
The shared file handle associated with the standard error file.

Discussion
Conventionally this is a terminal device to which error messages are sent. There is one standard error file
handle per process; it is a shared instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fileHandleWithNullDevice (page 9)
– initWithFileDescriptor: (page 14)

Declared In
NSFileHandle.h

fileHandleWithStandardInput
Returns the file handle associated with the standard input file.

+ (id)fileHandleWithStandardInput

Return Value
The shared file handle associated with the standard input file.

Discussion
Conventionally this is a terminal device on which the user enters a stream of data. There is one standard
input file handle per process; it is a shared instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fileHandleWithNullDevice (page 9)
– initWithFileDescriptor: (page 14)

10 Class Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Declared In
NSFileHandle.h

fileHandleWithStandardOutput
Returns the file handle associated with the standard output file.

+ (id)fileHandleWithStandardOutput

Return Value
The shared file handle associated with the standard output file.

Discussion
Conventionally this is a terminal device that receives a stream of data from a program. There is one standard
output file handle per process; it is a shared instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fileHandleWithNullDevice (page 9)
– initWithFileDescriptor: (page 14)

Declared In
NSFileHandle.h

Instance Methods

acceptConnectionInBackgroundAndNotify
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle for
the “near” (client) end of the communications channel.

- (void)acceptConnectionInBackgroundAndNotify

Discussion
This method is asynchronous. In a separate “safe” thread it accepts a connection, creates a file handle for the
other end of the connection, and returns that object to the client by posting an
NSFileHandleConnectionAcceptedNotification (page 23) in the run loop of the client. The notification
includes as data a userInfo dictionary containing the created NSFileHandle object; access this object
using the NSFileHandleNotificationFileHandleItem key.

The receiver must be created by an initWithFileDescriptor: (page 14) message that takes as an
argument a stream-type socket created by the appropriate system routine. The object that will write data to
the returned file handle must add itself as an observer of
NSFileHandleConnectionAcceptedNotification (page 23).

Note that this method does not continue to listen for connection requests after it posts
NSFileHandleConnectionAcceptedNotification. If you want to keep getting notified, you need to
call acceptConnectionInBackgroundAndNotify again in your observer method.

Instance Methods 11
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue)
– readInBackgroundAndNotify (page 16)
– readToEndOfFileInBackgroundAndNotify (page 18)

Related Sample Code
PictureSharing

Declared In
NSFileHandle.h

acceptConnectionInBackgroundAndNotifyForModes:
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle for
the “near” (client) end of the communications channel.

- (void)acceptConnectionInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the connection accepted notification can be posted.

Discussion
See acceptConnectionInBackgroundAndNotify (page 11) for details of how this method operates. This
method differs from acceptConnectionInBackgroundAndNotify (page 11) in that modes specifies the
run-loop mode (or modes) in which NSFileHandleConnectionAcceptedNotification (page 23) can
be posted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue)
– readInBackgroundAndNotifyForModes: (page 17)
– readToEndOfFileInBackgroundAndNotifyForModes: (page 18)

Declared In
NSFileHandle.h

availableData
Returns the data available through the receiver.

- (NSData *)availableData

Return Value
The data currently available through the receiver.

12 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Discussion
If the receiver is a file, returns the data obtained by reading the file from the file pointer to the end of the
file. If the receiver is a communications channel, reads up to a buffer of data and returns it; if no data is
available, the method blocks. Returns an empty data object if the end of file is reached. Raises
NSFileHandleOperationException if attempts to determine file-handle type fail or if attempts to read
from the file or channel fail.

Availability
Available in Mac OS X v10.0 and later.

See Also
– readDataOfLength: (page 15)
– readDataToEndOfFile (page 16)

Declared In
NSFileHandle.h

closeFile
Disallows further access to the represented file or communications channel and signals end of file on
communications channels that permit writing.

- (void)closeFile

Discussion
The file or communications channel is available for other uses after the file handle represented by the receiver
is closed. Further read and write messages sent to a file handle to which closeFile has been sent raises an
exception.

Sending closeFile to a file handle does not cause its deallocation. The deallocation of an NSFileHandle
object deletes its descriptor and closes the represented file or channel unless the NSFileHandle object was
created with initWithFileDescriptor: (page 14) or
initWithFileDescriptor:closeOnDealloc: (page 14) with NO as the parameter argument.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
PictureSharing

Declared In
NSFileHandle.h

fileDescriptor
Returns the file descriptor associated with the receiver.

- (int)fileDescriptor

Return Value
The POSIX file descriptor associated with the receiver.

Instance Methods 13
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Discussion
You can send this message to file handles originating from both file descriptors and file handles and receive
a valid file descriptor so long as the file handle is open. If the file handle has been closed by sending it
closeFile (page 13), this method raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFileDescriptor: (page 14)

Declared In
NSFileHandle.h

initWithFileDescriptor:
Returns a file handle initialized with a file descriptor.

- (id)initWithFileDescriptor:(int)fileDescriptor

Parameters
fileDescriptor

The POSIX file descriptor with which to initialize the file handle.

Return Value
A file handle initialized with fileDescriptor.

Discussion
You can create a file handle for a socket by using the result of a socket call as fileDescriptor.

Special Considerations

The object creating a file handle using this method owns fileDescriptor and is responsible for its
disposition.

Availability
Available in Mac OS X v10.0 and later.

See Also
– closeFile (page 13)

Declared In
NSFileHandle.h

initWithFileDescriptor:closeOnDealloc:
Returns a file handle initialized with a file handle, using a specified deallocation policy.

- (id)initWithFileDescriptor:(int)fileDescriptor closeOnDealloc:(BOOL)flag

Parameters
fileDescriptor

The POSIX file descriptor with which to initialize the file handle.

14 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

flag
YES if the file descriptor should be closed when the receiver is deallocated, otherwise NO.

Return Value
A file handle initialized with fileDescriptor with a deallocation policy specified by flag.

Special Considerations

If flag is NO, the object creating a file handle using this method owns fileDescriptor and is responsible
for its disposition.

Availability
Available in Mac OS X v10.0 and later.

See Also
– closeFile (page 13)

Declared In
NSFileHandle.h

offsetInFile
Returns the position of the file pointer within the file represented by the receiver.

- (unsigned long long)offsetInFile

Return Value
The position of the file pointer within the file represented by the receiver.

Special Considerations

Raises an exception if the message is sent to a file handle representing a pipe or socket or if the file descriptor
is closed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– seekToEndOfFile (page 19)
– seekToFileOffset: (page 19)

Related Sample Code
AudioBurn

Declared In
NSFileHandle.h

readDataOfLength:
Reads data up to a specified number of bytes from the receiver.

- (NSData *)readDataOfLength:(NSUInteger)length

Instance Methods 15
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Parameters
length

The number of bytes to read from the receiver.

Return Value
The data available through the receiver up to a maximum of length bytes.

Discussion
If the receiver is a file, returns the data obtained by reading from the file pointer to length or to the end of
the file, whichever comes first. If the receiver is a communications channel, the method reads data from the
channel up to length. Returns an empty NSData object if the file is positioned at the end of the file or if an
end-of-file indicator is returned on a communications channel. Raises NSFileHandleOperationException
if attempts to determine file-handle type fail or if attempts to read from the file or channel fail.

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableData (page 12)
– readDataToEndOfFile (page 16)

Declared In
NSFileHandle.h

readDataToEndOfFile
Returns the data available through the receiver up to the end of file or maximum number of bytes.

- (NSData *)readDataToEndOfFile

Return Value
The data available through the receiver up to UINT_MAX bytes (the maximum value for unsigned integers)
or, if a communications channel, until an end-of-file indicator is returned.

Discussion
This method invokes readDataOfLength: (page 15) as part of its implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableData (page 12)

Declared In
NSFileHandle.h

readInBackgroundAndNotify
Reads from the file or communications channel in the background and posts a notification when finished.

- (void)readInBackgroundAndNotify

16 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Discussion
This method performs an asynchronous availableData (page 12) operation on a file or communications
channel and posts an NSFileHandleReadCompletionNotification (page 24) to the client process’s run
loop.

The length of the data is limited to the buffer size of the underlying operating system. The notification
includes a userInfo dictionary that contains the data read; access this object using the
NSFileHandleNotificationDataItem key.

Any object interested in receiving this data asynchronously must add itself as an observer of
NSFileHandleReadCompletionNotification (page 24). In communication via stream-type sockets, the
receiver is often the object returned in the userInfo dictionary of
NSFileHandleConnectionAcceptedNotification (page 23).

Note that this method does not cause a continuous stream of notifications to be sent. If you wish to keep
getting notified, you’ll also need to call readInBackgroundAndNotify in your observer method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– acceptConnectionInBackgroundAndNotify (page 11)
– readToEndOfFileInBackgroundAndNotifyForModes: (page 18)
– enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue)

Related Sample Code
Moriarity

Declared In
NSFileHandle.h

readInBackgroundAndNotifyForModes:
Reads from the file or communications channel in the background and posts a notification when finished.

- (void)readInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the read completion notification can be posted.

Discussion
See readInBackgroundAndNotify (page 16) for details of how this method operates. This method differs
from readInBackgroundAndNotify (page 16) in that modes specifies the run-loop mode (or modes) in
which NSFileHandleReadCompletionNotification (page 24) can be posted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– acceptConnectionInBackgroundAndNotifyForModes: (page 12)
– enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue)

Instance Methods 17
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Declared In
NSFileHandle.h

readToEndOfFileInBackgroundAndNotify
Reads to the end of file from the file or communications channel in the background and posts a notification
when finished.

- (void)readToEndOfFileInBackgroundAndNotify

Discussion
This method performs an asynchronous readToEndOfFile operation on a file or communications channel
and posts an NSFileHandleReadToEndOfFileCompletionNotification (page 25) to the client process’s
run loop.

The notification includes a userInfo dictionary that contains the data read; access this object using the
NSFileHandleNotificationDataItem key.

Any object interested in receiving this data asynchronously must add itself as an observer of
NSFileHandleReadToEndOfFileCompletionNotification (page 25). In communication via stream-type
sockets, the receiver is often the object returned in the userInfo dictionary of
NSFileHandleConnectionAcceptedNotification (page 23).

Availability
Available in Mac OS X v10.0 and later.

See Also
– acceptConnectionInBackgroundAndNotify (page 11)
– readToEndOfFileInBackgroundAndNotifyForModes: (page 18)
– enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue)

Related Sample Code
PictureSharingBrowser

Declared In
NSFileHandle.h

readToEndOfFileInBackgroundAndNotifyForModes:
Reads to the end of file from the file or communications channel in the background and posts a notification
when finished.

- (void)readToEndOfFileInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the read completion notification can be posted.

Discussion
See readToEndOfFileInBackgroundAndNotify (page 18) for details of this method's operation. The
method differs from readToEndOfFileInBackgroundAndNotify (page 18) in that modes specifies the
run-loop mode (or modes) in which NSFileHandleReadToEndOfFileCompletionNotification (page
25) can be posted.

18 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– acceptConnectionInBackgroundAndNotifyForModes: (page 12)
– enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue)

Declared In
NSFileHandle.h

seekToEndOfFile
Puts the file pointer at the end of the file referenced by the receiver and returns the new file offset.

- (unsigned long long)seekToEndOfFile

Return Value
The file offset with the file pointer at the end of the file. This is therefore equal to the size of the file.

Special Considerations

Raises an exception if the message is sent to an NSFileHandle object representing a pipe or socket or if
the file descriptor is closed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– offsetInFile (page 15)

Declared In
NSFileHandle.h

seekToFileOffset:
Moves the file pointer to the specified offset within the file represented by the receiver.

- (void)seekToFileOffset:(unsigned long long)offset

Parameters
offset

The offset to seek to.

Special Considerations

Raises an exception if the message is sent to an NSFileHandle object representing a pipe or socket, if the
file descriptor is closed, or if any other error occurs in seeking.

Availability
Available in Mac OS X v10.0 and later.

See Also
– offsetInFile (page 15)

Instance Methods 19
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Related Sample Code
AudioBurn

Declared In
NSFileHandle.h

synchronizeFile
Causes all in-memory data and attributes of the file represented by the receiver to be written to permanent
storage.

- (void)synchronizeFile

Discussion
This method should be invoked by programs that require the file to always be in a known state. An invocation
of this method does not return until memory is flushed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

truncateFileAtOffset:
Truncates or extends the file represented by the receiver to a specified offset within the file and puts the file
pointer at that position.

- (void)truncateFileAtOffset:(unsigned long long)offset

Parameters
offset

The offset within the file that will mark the new end of the file.

Discussion
If the file is extended (if offset is beyond the current end of file), the added characters are null bytes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

waitForDataInBackgroundAndNotify
Checks to see if data is available in a background thread.

- (void)waitForDataInBackgroundAndNotify

20 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Discussion
When the data becomes available, the thread notifies all observers with
NSFileHandleDataAvailableNotification (page 24). After the notification has been posted, the thread
is terminated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– waitForDataInBackgroundAndNotifyForModes: (page 21)

Declared In
NSFileHandle.h

waitForDataInBackgroundAndNotifyForModes:
Checks to see if data is available in a background thread.

- (void)waitForDataInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the data available notification can be posted.

Discussion
When the data becomes available, the thread notifies all observers with
NSFileHandleDataAvailableNotification (page 24). After the notification has been posted, the thread
is terminated. This method differs from waitForDataInBackgroundAndNotify (page 20) in that modes
specifies the run-loop mode (or modes) in which NSFileHandleDataAvailableNotification (page 24)
can be posted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– waitForDataInBackgroundAndNotify (page 20)

Declared In
NSFileHandle.h

writeData:
Synchronously writes data to the file, device, pipe, or socket represented by the receiver.

- (void)writeData:(NSData *)data

Parameters
data

The data to be written.

Instance Methods 21
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Discussion
If the receiver is a file, writing takes place at the file pointer’s current position. After it writes the data, the
method advances the file pointer by the number of bytes written. Raises an exception if the file descriptor
is closed or is not valid, if the receiver represents an unconnected pipe or socket endpoint, if no free space
is left on the file system, or if any other writing error occurs.

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableData (page 12)
– readDataOfLength: (page 15)
– readDataToEndOfFile (page 16)

Related Sample Code
PictureSharing

Declared In
NSFileHandle.h

Constants

Keys for Notification UserInfo Dictionary
Strings that are used as keys in a userinfo dictionary in a file handle notification.

NSString * const NSFileHandleNotificationFileHandleItem;
NSString * const NSFileHandleNotificationDataItem;

Constants
NSFileHandleNotificationFileHandleItem

A key in the userinfo dictionary in a NSFileHandleConnectionAcceptedNotification (page 23)
notification.

The corresponding value is the NSFileHandle object representing the “near” end of a socket
connection.

Available in Mac OS X v10.0 and later.

Declared in NSFileHandle.h.

NSFileHandleNotificationDataItem
A key in the userinfo dictionary in a NSFileHandleReadCompletionNotification (page 24) and
NSFileHandleReadToEndOfFileCompletionNotification (page 25).

The corresponding value is an NSData object containing the available data read from a socket
connection.

Available in Mac OS X v10.0 and later.

Declared in NSFileHandle.h.

Declared In
NSFileHandle.h

22 Constants
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Exception Names
Constant that defines the name of a file operation exception.

extern NSString *NSFileHandleOperationException;

Constants
NSFileHandleOperationException

Raised by NSFileHandle if attempts to determine file-handle type fail or if attempts to read from a
file or channel fail.

Available in Mac OS X v10.0 and later.

Declared in NSFileHandle.h.

Declared In
NSFileHandle.h

Unused Constant
Constant that is currently unused.

NSString * const NSFileHandleNotificationMonitorModes;

Constants
NSFileHandleNotificationMonitorModes

Currently unused.

Available in Mac OS X v10.0 and later.

Declared in NSFileHandle.h.

Declared In
NSFileHandle.h

Notifications

NSFileHandle posts several notifications related to asynchronous background I/O operations. They are set
to post when the run loop of the thread that started the asynchronous operation is idle.

NSFileHandleConnectionAcceptedNotification
This notification is posted when an NSFileHandle object establishes a socket connection between two
processes, creates an NSFileHandle object for one end of the connection, and makes this object available
to observers by putting it in the userInfo dictionary. To cause the posting of this notification, you must
send either acceptConnectionInBackgroundAndNotify (page 11) or
acceptConnectionInBackgroundAndNotifyForModes: (page 12) to an NSFileHandle object
representing a server stream-type socket.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

Notifications 23
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

ValueKey

The NSFileHandle object representing the “near”
end of a socket connection

NSFileHandleNotificationFileHandleItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

NSFileHandleDataAvailableNotification
This notification is posted when the background thread determines that data is currently available for reading
in a file or at a communications channel. The observers can then issue the appropriate messages to begin
reading the data. To cause the posting of this notification, you must send either
waitForDataInBackgroundAndNotify (page 20) orwaitForDataInBackgroundAndNotifyForModes:
 (page 21) to an appropriate NSFileHandle object.

The notification object is the NSFileHandle object that sent the notification. This notification does not
contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

NSFileHandleReadCompletionNotification
This notification is posted when the background thread reads the data currently available in a file or at a
communications channel. It makes the data available to observers by putting it in the userInfo dictionary.
To cause the posting of this notification, you must send either readInBackgroundAndNotify (page 16)
or readInBackgroundAndNotifyForModes: (page 17) to an appropriate NSFileHandle object.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

ValueKey

An NSData object containing the available data read
from a socket connection

NSFileHandleNotificationDataItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

Availability
Available in Mac OS X v10.0 and later.

24 Notifications
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

Declared In
NSFileHandle.h

NSFileHandleReadToEndOfFileCompletionNotification
This notification is posted when the background thread reads all data in the file or, if a communications
channel, until the other process signals the end of data. It makes the data available to observers by putting
it in the userInfo dictionary. To cause the posting of this notification, you must send either
readToEndOfFileInBackgroundAndNotify (page 18) or
readToEndOfFileInBackgroundAndNotifyForModes: (page 18) to an appropriate NSFileHandle
object.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

ValueKey

An NSData object containing the available data read
from a socket connection

NSFileHandleNotificationDataItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

Notifications 25
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

26 Notifications
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSFileHandle Class Reference

This table describes the changes to NSFileHandle Class Reference.

NotesDate

Clarified description of closeFile and added link to related sample code project.2008-10-15

Added definition of NSFileHandleNotificationMonitorModes.2007-01-08

Updated for Mac OS X v10.5.2006-12-12

Added declarations for NSFileHandleNotificationDataItem and
NSFileHandleNotificationFileHandleItem.

2006-05-23

Added declarations for NSFileHandleNotificationDataItem and
NSFileHandleNotificationFileHandleItem.

First publication of this content as a separate document.

27
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

28
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

acceptConnectionInBackgroundAndNotify instance
method 11

acceptConnectionInBackgroundAndNotifyForModes:
instance method 12

availableData instance method 12

C

closeFile instance method 13

E

Exception Names 23

F

fileDescriptor instance method 13
fileHandleForReadingAtPath: class method 8
fileHandleForUpdatingAtPath: class method 8
fileHandleForWritingAtPath: class method 9
fileHandleWithNullDevice class method 9
fileHandleWithStandardError class method 10
fileHandleWithStandardInput class method 10
fileHandleWithStandardOutput class method 11

I

initWithFileDescriptor: instance method 14
initWithFileDescriptor:closeOnDealloc: instance

method 14

K

Keys for Notification UserInfo Dictionary 22

N

NSFileHandleConnectionAcceptedNotification
notification 23

NSFileHandleDataAvailableNotification
notification 24

NSFileHandleNotificationDataItem constant 22
NSFileHandleNotificationFileHandleItem

constant 22
NSFileHandleNotificationMonitorModes constant

23
NSFileHandleOperationException constant 23
NSFileHandleReadCompletionNotification

notification 24
NSFileHandleReadToEndOfFileCompletionNotification

notification 25

O

offsetInFile instance method 15

R

readDataOfLength: instance method 15
readDataToEndOfFile instance method 16
readInBackgroundAndNotify instance method 16
readInBackgroundAndNotifyForModes: instance

method 17
readToEndOfFileInBackgroundAndNotify instance

method 18
readToEndOfFileInBackgroundAndNotifyForModes:

instance method 18

29
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Index

S

seekToEndOfFile instance method 19
seekToFileOffset: instance method 19
synchronizeFile instance method 20

T

truncateFileAtOffset: instance method 20

U

Unused Constant 23

W

waitForDataInBackgroundAndNotify instance
method 20

waitForDataInBackgroundAndNotifyForModes:
instance method 21

writeData: instance method 21

30
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

INDEX

	NSFileHandle Class Reference
	Contents
	NSFileHandle Class Reference
	Overview
	Tasks
	Getting a File Handle
	Creating a File Handle
	Getting a File Descriptor
	Reading from a File Handle
	Writing to a File Handle
	Communicating Asynchronously
	Seeking Within a File
	Operating on a File

	Class Methods
	fileHandleForReadingAtPath:
	fileHandleForUpdatingAtPath:
	fileHandleForWritingAtPath:
	fileHandleWithNullDevice
	fileHandleWithStandardError
	fileHandleWithStandardInput
	fileHandleWithStandardOutput

	Instance Methods
	acceptConnectionInBackgroundAndNotify
	acceptConnectionInBackgroundAndNotifyForModes:
	availableData
	closeFile
	fileDescriptor
	initWithFileDescriptor:
	initWithFileDescriptor:closeOnDealloc:
	offsetInFile
	readDataOfLength:
	readDataToEndOfFile
	readInBackgroundAndNotify
	readInBackgroundAndNotifyForModes:
	readToEndOfFileInBackgroundAndNotify
	readToEndOfFileInBackgroundAndNotifyForModes:
	seekToEndOfFile
	seekToFileOffset:
	synchronizeFile
	truncateFileAtOffset:
	waitForDataInBackgroundAndNotify
	waitForDataInBackgroundAndNotifyForModes:
	writeData:

	Constants
	Keys for Notification UserInfo Dictionary
	Exception Names
	Unused Constant

	Notifications
	NSFileHandleConnectionAcceptedNotification
	NSFileHandleDataAvailableNotification
	NSFileHandleReadCompletionNotification
	NSFileHandleReadToEndOfFileCompletionNotification

	Revision History
	Index
	A
	C
	E
	F
	I
	K
	N
	O
	R
	S
	T
	U
	W

