
NSFormatter Class Reference
Cocoa > User Experience

2007-07-09

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Cocoa are
trademarks of Apple Inc., registered in the
United States and other countries.

iPhone is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSFormatter Class Reference 5

Overview 5
Subclassing Notes 5

Tasks 6
Textual Representation of Cell Content 6
Object Equivalent to Textual Representation 6
Dynamic Cell Editing 6

Instance Methods 6
attributedStringForObjectValue:withDefaultAttributes: 6
editingStringForObjectValue: 7
getObjectValue:forString:errorDescription: 7
isPartialStringValid:newEditingString:errorDescription: 9
isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange: errorDescription:
9
stringForObjectValue: 10

Document Revision History 13

Index 15

3
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

4
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Data Formatting Programming Guide for Cocoa

Declared in NSFormatter.h

Related sample code bMoviePalette
bMoviePaletteCocoa
QTMetadataEditor
QTSSConnectionMonitor
QTSSInspector

Overview

NSFormatter is an abstract class that declares an interface for objects that create, interpret, and validate
the textual representation of cell contents. The Foundation framework provides two concrete subclasses of
NSFormatter to generate these objects: NSNumberFormatter and NSDateFormatter.

Subclassing Notes

NSFormatter is intended for subclassing. A custom formatter can restrict the input and enhance the display
of data in novel ways. For example, you could have a custom formatter that ensures that serial numbers
entered by a user conform to predefined formats. Before you decide to create a custom formatter, make sure
that you cannot configure the public subclasses NSDateFormatter and NSNumberFormatter to satisfy
your requirements.

For instructions on how to create your own custom formatter, see Creating a Custom Formatter.

Overview 5
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

NSFormatter Class Reference

Tasks

Textual Representation of Cell Content

– stringForObjectValue: (page 10)
The default implementation of this method raises an exception.

– attributedStringForObjectValue:withDefaultAttributes: (page 6)
The default implementation returns nil to indicate that the formatter object does not provide an
attributed string.

– editingStringForObjectValue: (page 7)
The default implementation of this method invokes stringForObjectValue: (page 10).

Object Equivalent to Textual Representation

– getObjectValue:forString:errorDescription: (page 7)
The default implementation of this method raises an exception.

Dynamic Cell Editing

– isPartialStringValid:newEditingString:errorDescription: (page 9)
Returns a Boolean value that indicates whether a partial string is valid.

– isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:errorDescription: (page
9)

This method should be implemented in subclasses that want to validate user changes to a string in
a field, where the user changes are not necessarily at the end of the string, and preserve the selection
(or set a different one, such as selecting the erroneous part of the string the user has typed).

Instance Methods

attributedStringForObjectValue:withDefaultAttributes:
The default implementation returns nil to indicate that the formatter object does not provide an attributed
string.

- (NSAttributedString *)attributedStringForObjectValue:(id)anObject
withDefaultAttributes:(NSDictionary *)attributes

Parameters
anObject

The object for which a textual representation is returned.

attributes
The default attributes to use for the returned attributed string.

6 Tasks
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

NSFormatter Class Reference

Return Value
An attributed string that represents anObject.

Discussion
When implementing a subclass, return an NSAttributedString object if the string for display should have
some attributes. For instance, you might want negative values in a financial application to appear in red text.
Invoke your implementation of stringForObjectValue: (page 10) to get the non-attributed string, then
create an NSAttributedString object with it (see initWithString:). Use the attributes default
dictionary to reset the attributes of the string when a change in value warrants it (for example, a negative
value becomes positive) For information on creating attributed strings, see Attributed Strings Programming
Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
– editingStringForObjectValue: (page 7)

Declared In
NSFormatter.h

editingStringForObjectValue:
The default implementation of this method invokes stringForObjectValue: (page 10).

- (NSString *)editingStringForObjectValue:(id)anObject

Parameters
anObject

The object for which to return an editing string.

Return Value
An NSString object that is used for editing the textual representation of anObject.

Discussion
When implementing a subclass, override this method only when the string that users see and the string that
they edit are different. In your implementation, return an NSString object that is used for editing, following
the logic recommended for implementing stringForObjectValue: (page 10). As an example, you would
implement this method if you want the dollar signs in displayed strings removed for editing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedStringForObjectValue:withDefaultAttributes: (page 6)

Declared In
NSFormatter.h

getObjectValue:forString:errorDescription:
The default implementation of this method raises an exception.

Instance Methods 7
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

NSFormatter Class Reference

- (BOOL)getObjectValue:(id *)anObject forString:(NSString *)string
errorDescription:(NSString **)error

Parameters
anObject

If conversion is successful, upon return contains the object created from string.

string
The string to parse.

error
If non-nil, if there is a error during the conversion, upon return contains an NSString object that
describes the problem.

Return Value
YES if the conversion from string to cell content object was successful, otherwise NO.

Discussion
When implementing a subclass, return by reference the object anObject after creating it from string.
Return YES if the conversion is successful. If you return NO, also return by indirection (in error) a localized
user-presentable NSString object that explains the reason why the conversion failed; the delegate (if any)
of the NSControl object managing the cell can then respond to the failure in
control:didFailToFormatString:errorDescription:. However, if error is nil, the sender is not
interested in the error description, and you should not attempt to assign one.

The following example (which is paired with the example given in stringForObjectValue: (page 10))
converts a string representation of a dollar amount that includes the dollar sign; it uses an NSScanner
instance to convert this amount to a float after stripping out the initial dollar sign.

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string
errorDescription:(NSString **)error
{
 float floatResult;
 NSScanner *scanner;
 BOOL returnValue = NO;

 scanner = [NSScanner scannerWithString: string];
 [scanner scanString: @"$" intoString: NULL]; //ignore return value
 if ([scanner scanFloat:&floatResult] && ([scanner isAtEnd])) {
 returnValue = YES;
 if (obj)
 *obj = [NSNumber numberWithFloat:floatResult];
 } else {
 if (error)
 *error = NSLocalizedString(@"Couldn’t convert to float", @"Error
converting");
 }
 return returnValue;
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringForObjectValue: (page 10)

Declared In
NSFormatter.h

8 Instance Methods
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

NSFormatter Class Reference

isPartialStringValid:newEditingString:errorDescription:
Returns a Boolean value that indicates whether a partial string is valid.

- (BOOL)isPartialStringValid:(NSString *)partialString newEditingString:(NSString
 **)newString errorDescription:(NSString **)error

Parameters
partialString

The text currently in a cell.

newString
If partialString needs to be modified, upon return contains the replacement string.

error
If non-nil, if validation fails contains an NSString object that describes the problem.

Return Value
YES if partialString is an acceptable value, otherwise NO.

Discussion
This method is invoked each time the user presses a key while the cell has the keyboard focus—it lets you
verify and edit the cell text as the user types it.

In a subclass implementation, evaluate partialString according to the context, edit the text if necessary,
and return by reference any edited string in newString. Return YES if partialString is acceptable and
NO if partialString is unacceptable. If you return NO and newString is nil, the cell displays
partialString minus the last character typed. If you return NO, you can also return by indirection an
NSString object (in error) that explains the reason why the validation failed; the delegate (if any) of the
NSControl object managing the cell can then respond to the failure in
control:didFailToValidatePartialString:errorDescription:. The selection range will always
be set to the end of the text if replacement occurs.

This method is a compatibility method. If a subclass overrides this method and does not override
isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription: (page 9), this method will be called as before
(isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription: (page 9) just calls this one by default).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormatter.h

isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription:
This method should be implemented in subclasses that want to validate user changes to a string in a field,
where the user changes are not necessarily at the end of the string, and preserve the selection (or set a
different one, such as selecting the erroneous part of the string the user has typed).

Instance Methods 9
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

NSFormatter Class Reference

- (BOOL)isPartialStringValid:(NSString **)partialStringPtr
proposedSelectedRange:(NSRangePointer)proposedSelRangePtr
originalString:(NSString *)origString originalSelectedRange:(NSRange)origSelRange
errorDescription:(NSString **)error

Parameters
partialStringPtr

The new string to validate.

proposedSelRangePtr
The selection range that will be used if the string is accepted or replaced.

origString
The original string, before the proposed change.

origSelRange
The selection range over which the change is to take place.

error
If non-nil, if validation fails contains an NSString object that describes the problem.

Return Value
YES if partialStringPtr is acceptable, otherwise NO.

Discussion
In a subclass implementation, evaluate partialString according to the context. Return YES if
partialStringPtr is acceptable and NO if partialStringPtr is unacceptable. Assign a new string to
partialStringPtr and a new range to proposedSelRangePtr and return NO if you want to replace the
string and change the selection range. If you return NO, you can also return by indirection an NSString
object (in error) that explains the reason why the validation failed; the delegate (if any) of the NSControl
object managing the cell can then respond to the failure in
control:didFailToValidatePartialString:errorDescription:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isPartialStringValid:newEditingString:errorDescription: (page 9)

Declared In
NSFormatter.h

stringForObjectValue:
The default implementation of this method raises an exception.

- (NSString *)stringForObjectValue:(id)anObject

Parameters
anObject

The object for which a textual representation is returned.

Return Value
An NSString object that textually represents object for display. Returns nil if object is not of the correct
class.

10 Instance Methods
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

NSFormatter Class Reference

Discussion
When implementing a subclass, return the NSString object that textually represents the cell’s object for
display and—if editingStringForObjectValue: (page 7) is unimplemented—for editing. First test the
passed-in object to see if it’s of the correct class. If it isn’t, return nil; but if it is of the right class, return a
properly formatted and, if necessary, localized string. (See the specification of the NSString class for formatting
and localizing details.)

The following implementation (which is paired with the
getObjectValue:forString:errorDescription: (page 7) example above) prefixes a two-digit float
representation with a dollar sign:

- (NSString *)stringForObjectValue:(id)anObject
{
 if (![anObject isKindOfClass:[NSNumber class]]) {
 return nil;
 }
 return [NSString stringWithFormat:@"$%.2f", [anObject floatValue]];
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedStringForObjectValue:withDefaultAttributes: (page 6)
– editingStringForObjectValue: (page 7)
– getObjectValue:forString:errorDescription: (page 7)

Declared In
NSFormatter.h

Instance Methods 11
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

NSFormatter Class Reference

12 Instance Methods
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

NSFormatter Class Reference

This table describes the changes to NSFormatter Class Reference.

NotesDate

Corrected minor typographical error.2007-07-09

First publication of this content as a separate document.2006-05-23

First publication of this content as a separate document.

13
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

14
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

attributedStringForObjectValue:
withDefaultAttributes: instance method 6

E

editingStringForObjectValue: instance method 7

G

getObjectValue:forString:errorDescription:
instance method 7

I

isPartialStringValid:newEditingString:
errorDescription: instance method 9

isPartialStringValid:proposedSelectedRange:
originalString:originalSelectedRange:
errorDescription: instance method 9

S

stringForObjectValue: instance method 10

15
2007-07-09 | © 2007 Apple Inc. All Rights Reserved.

Index

	NSFormatter Class Reference
	Contents
	NSFormatter Class Reference
	Overview
	Subclassing Notes

	Tasks
	Textual Representation of Cell Content
	Object Equivalent to Textual Representation
	Dynamic Cell Editing

	Instance Methods
	attributedStringForObjectValue:withDefaultAttributes:
	editingStringForObjectValue:
	getObjectValue:forString:errorDescription:
	isPartialStringValid:newEditingString:errorDescription:
	isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange: errorDescription:
	stringForObjectValue:

	Revision History
	Index
	A
	E
	G
	I
	S

