
NSMutableData Class Reference
Cocoa > Data Management

2007-03-26

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSMutableData Class Reference 5

Overview 5
Tasks 6

Creating and Initializing an NSMutableData Object 6
Adjusting Capacity 6
Accessing Data 6
Adding Data 6
Modifying Data 6

Class Methods 7
dataWithCapacity: 7
dataWithLength: 7

Instance Methods 8
appendBytes:length: 8
appendData: 8
increaseLengthBy: 9
initWithCapacity: 9
initWithLength: 10
mutableBytes 10
replaceBytesInRange:withBytes: 11
replaceBytesInRange:withBytes:length: 11
resetBytesInRange: 12
setData: 12
setLength: 13

Document Revision History 15

Index 17

3
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

4
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSData : NSObject

Conforms to NSCoding (NSData)
NSCopying (NSData)
NSMutableCopying (NSData)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Binary Data Programming Guide for Cocoa

Declared in NSData.h

Related sample code CocoaHTTPServer
CocoaSOAP
GridCalendar
ImageClient
URL CacheInfo

Overview

NSMutableData (and its superclass NSData) provide data objects, object-oriented wrappers for byte buffers.
Data objects let simple allocated buffers (that is, data with no embedded pointers) take on the behavior of
Foundation objects. They are typically used for data storage and are also useful in Distributed Objects
applications, where data contained in data objects can be copied or moved between applications. NSData
creates static data objects, and NSMutableData creates dynamic data objects. You can easily convert one
type of data object to the other with the initializer that takes an NSData object or an NSMutableData object
as an argument.

NSMutableData is “toll-free bridged” with its Core Foundation counterpart, CFData. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSMutableData * parameter, you can pass a CFDataRef, and in
a function where you see a CFDataRef parameter, you can pass an NSMutableData instance (you cast one
type to the other to suppress compiler warnings). See Interchangeable Data Types for more information on
toll-free bridging.

Overview 5
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

NSMutableData Class Reference

Tasks

Creating and Initializing an NSMutableData Object

+ dataWithCapacity: (page 7)
Creates and returns an NSMutableData object capable of holding the specified number of bytes.

+ dataWithLength: (page 7)
Creates and returns an NSMutableData object containing a given number of zeroed bytes.

– initWithCapacity: (page 9)
Returns an initialized NSMutableData object capable of holding the specified number of bytes.

– initWithLength: (page 10)
Initializes and returns an NSMutableData object containing a given number of zeroed bytes.

Adjusting Capacity

– increaseLengthBy: (page 9)
Increases the length of the receiver by a given number of bytes.

– setLength: (page 13)
Extends or truncates a mutable data object to a given length.

Accessing Data

– mutableBytes (page 10)
Returns a pointer to the receiver’s data.

Adding Data

– appendBytes:length: (page 8)
Appends to the receiver a given number of bytes from a given buffer.

– appendData: (page 8)
Appends the content of another NSData object to the receiver.

Modifying Data

– replaceBytesInRange:withBytes: (page 11)
Replaces with a given set of bytes a given range within the contents of the receiver.

– replaceBytesInRange:withBytes:length: (page 11)
Replaces with a given set of bytes a given range within the contents of the receiver.

– resetBytesInRange: (page 12)
Replaces with zeroes the contents of the receiver in a given range.

6 Tasks
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

NSMutableData Class Reference

– setData: (page 12)
Replaces the entire contents of the receiver with the contents of another data object.

Class Methods

dataWithCapacity:
Creates and returns an NSMutableData object capable of holding the specified number of bytes.

+ (id)dataWithCapacity:(NSUInteger)aNumItems

Parameters
aNumItems

The number of bytes the new data object can initially contain.

Return Value
A new NSMutableData object capable of holding aNumItems bytes.

Discussion
This method doesn’t necessarily allocate the requested memory right away. Mutable data objects allocate
additional memory as needed, so aNumItems simply establishes the object’s initial capacity. When it does
allocate the initial memory, though, it allocates the specified amount. This method sets the length of the
data object to 0.

If the capacity specified in aNumItems is greater than four memory pages in size, this method may round
the amount of requested memory up to the nearest full page.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithLength: (page 7)
– initWithCapacity: (page 9)
– initWithLength: (page 10)

Declared In
NSData.h

dataWithLength:
Creates and returns an NSMutableData object containing a given number of zeroed bytes.

+ (id)dataWithLength:(NSUInteger)length

Parameters
length

The number of bytes the new data object initially contains.

Return Value
A new NSMutableData object of length bytes, filled with zeros.

Class Methods 7
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

NSMutableData Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithCapacity: (page 7)
– initWithCapacity: (page 9)
– initWithLength: (page 10)

Declared In
NSData.h

Instance Methods

appendBytes:length:
Appends to the receiver a given number of bytes from a given buffer.

- (void)appendBytes:(const void *)bytes length:(NSUInteger)length

Parameters
bytes

A buffer containing data to append to the receiver's content.

length
The number of bytes from bytes to append.

Discussion
A sample using this method can be found in Working With Mutable Binary Data.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendData: (page 8)

Related Sample Code
Core Data HTML Store
QTSSConnectionMonitor
QTSSInspector

Declared In
NSData.h

appendData:
Appends the content of another NSData object to the receiver.

- (void)appendData:(NSData *)otherData

8 Instance Methods
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

NSMutableData Class Reference

Parameters
otherData

The data object whose content is to be appended to the contents of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendBytes:length: (page 8)

Related Sample Code
GridCalendar

Declared In
NSData.h

increaseLengthBy:
Increases the length of the receiver by a given number of bytes.

- (void)increaseLengthBy:(NSUInteger)extraLength

Parameters
extraLength

The number of bytes by which to increase the receiver's length.

Discussion
The additional bytes are all set to 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLength: (page 13)

Declared In
NSData.h

initWithCapacity:
Returns an initialized NSMutableData object capable of holding the specified number of bytes.

- (id)initWithCapacity:(NSUInteger)capacity

Parameters
capacity

The number of bytes the data object can initially contain.

Return Value
An initialized NSMutableData object capable of holding capacity bytes.

Instance Methods 9
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

NSMutableData Class Reference

Discussion
This method doesn’t necessarily allocate the requested memory right away. Mutable data objects allocate
additional memory as needed, so aNumItems simply establishes the object’s initial capacity. When it does
allocate the initial memory, though, it allocates the specified amount. This method sets the length of the
data object to 0.

If the capacity specified in aNumItems is greater than four memory pages in size, this method may round
the amount of requested memory up to the nearest full page.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithCapacity: (page 7)
– initWithLength: (page 10)

Declared In
NSData.h

initWithLength:
Initializes and returns an NSMutableData object containing a given number of zeroed bytes.

- (id)initWithLength:(NSUInteger)length

Parameters
length

The number of bytes the object initially contains.

Return Value
An initialized NSMutableData object containing length zeroed bytes.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithCapacity: (page 7)
+ dataWithLength: (page 7)
– initWithCapacity: (page 9)

Declared In
NSData.h

mutableBytes
Returns a pointer to the receiver’s data.

- (void *)mutableBytes

Return Value
A pointer to the receiver’s data.

10 Instance Methods
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

NSMutableData Class Reference

Discussion
If the length of the receiver’s data is not zero, this function is guaranteed to return a pointer to the object's
internal bytes. If the length of receiver’s data is zero, this function may or may not return NULL dependent
upon many factors related to how the object was created (moreover, in this case the method result might
change between different releases).

A sample using this method can be found in Working With Mutable Binary Data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSData.h

replaceBytesInRange:withBytes:
Replaces with a given set of bytes a given range within the contents of the receiver.

- (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)bytes

Parameters
range

The range within the receiver's contents to replace with bytes. The range must not exceed the bounds
of the receiver.

bytes
The data to insert into the receiver's contents.

Discussion
If the location of range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The
receiver is resized to accommodate the new bytes, if necessary.

A sample using this method is given in Working With Mutable Binary Data.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replaceBytesInRange:withBytes:length: (page 11)
– resetBytesInRange: (page 12)

Declared In
NSData.h

replaceBytesInRange:withBytes:length:
Replaces with a given set of bytes a given range within the contents of the receiver.

- (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)replacementBytes
length:(NSUInteger)replacementLength

Instance Methods 11
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

NSMutableData Class Reference

Parameters
range

The range within the receiver's contents to replace with bytes. The range must not exceed the bounds
of the receiver.

replacementBytes
The data to insert into the receiver's contents.

replacementLength
The number of bytes to take from replacementBytes.

Discussion
If the length of range is not equal to replacementLength, the receiver is resized to accommodate the new
bytes. Any bytes past range in the receiver are shifted to accommodate the new bytes. You can therefore
pass NULL for replacementBytes and 0 for replacementLength to delete bytes in the receiver in the
range range. You can also replace a range (which might be zero-length) with more bytes than the length
of the range, which has the effect of insertion (or “replace some and insert more”).

Availability
Available in Mac OS X v10.2 and later.

See Also
– replaceBytesInRange:withBytes: (page 11)

Declared In
NSData.h

resetBytesInRange:
Replaces with zeroes the contents of the receiver in a given range.

- (void)resetBytesInRange:(NSRange)range

Parameters
range

The range within the contents of the receiver to be replaced by zeros. The range must not exceed
the bounds of the receiver.

Discussion
If the location of range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The
receiver is resized to accommodate the new bytes, if necessary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replaceBytesInRange:withBytes: (page 11)

Declared In
NSData.h

setData:
Replaces the entire contents of the receiver with the contents of another data object.

12 Instance Methods
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

NSMutableData Class Reference

- (void)setData:(NSData *)aData

Parameters
aData

The data object whose content replaces that of the receiver.

Discussion
As part of its implementation, this method calls replaceBytesInRange:withBytes: (page 11).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSData.h

setLength:
Extends or truncates a mutable data object to a given length.

- (void)setLength:(NSUInteger)length

Parameters
length

The new length for the receiver.

Discussion
If the mutable data object is extended, the additional bytes are filled with zeros.

Availability
Available in Mac OS X v10.0 and later.

See Also
– increaseLengthBy: (page 9)

Declared In
NSData.h

Instance Methods 13
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

NSMutableData Class Reference

14 Instance Methods
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

NSMutableData Class Reference

This table describes the changes to NSMutableData Class Reference.

NotesDate

Corrected minor typographical errors.2007-03-26

Enhanced discussion of replaceBytesInRange:withBytes:length:.2007-04-03

Corrected typographical errors.2006-10-03

First publication of this content as a separate document.2006-05-23

15
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

16
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

appendBytes:length: instance method 8
appendData: instance method 8

D

dataWithCapacity: class method 7
dataWithLength: class method 7

I

increaseLengthBy: instance method 9
initWithCapacity: instance method 9
initWithLength: instance method 10

M

mutableBytes instance method 10

R

replaceBytesInRange:withBytes: instance method
11

replaceBytesInRange:withBytes:length: instance
method 11

resetBytesInRange: instance method 12

S

setData: instance method 12
setLength: instance method 13

17
2007-03-26 | © 2007 Apple Inc. All Rights Reserved.

Index

	NSMutableData Class Reference
	Contents
	NSMutableData Class Reference
	Overview
	Tasks
	Creating and Initializing an NSMutableData Object
	Adjusting Capacity
	Accessing Data
	Adding Data
	Modifying Data

	Class Methods
	dataWithCapacity:
	dataWithLength:

	Instance Methods
	appendBytes:length:
	appendData:
	increaseLengthBy:
	initWithCapacity:
	initWithLength:
	mutableBytes
	replaceBytesInRange:withBytes:
	replaceBytesInRange:withBytes:length:
	resetBytesInRange:
	setData:
	setLength:

	Revision History
	Index
	A
	D
	I
	M
	R
	S

