
NSObject Class Reference
Cocoa > Objective-C Language

2009-02-04

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Objective-C, and Quartz are trademarks of
Apple Inc., registered in the United States and
other countries.

Shuffle is a trademark of Apple Inc.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSObject Class Reference 7

Overview 7
Selectors 7

Adopted Protocols 9
Tasks 9

Initializing a Class 9
Creating, Copying, and Deallocating Objects 9
Identifying Classes 10
Testing Class Functionality 10
Testing Protocol Conformance 10
Obtaining Information About Methods 11
Describing Objects 11
Posing 11
Sending Messages 11
Forwarding Messages 12
Dynamically Resolving Methods 12
Error Handling 12
Archiving 12
Working with Class Descriptions 13
Scripting 13

Class Methods 14
alloc 14
allocWithZone: 14
cancelPreviousPerformRequestsWithTarget: 15
cancelPreviousPerformRequestsWithTarget:selector:object: 16
class 17
classFallbacksForKeyedArchiver 17
classForKeyedUnarchiver 18
conformsToProtocol: 18
copyWithZone: 19
description 19
initialize 20
instanceMethodForSelector: 21
instanceMethodSignatureForSelector: 22
instancesRespondToSelector: 23
isSubclassOfClass: 23
load 23
mutableCopyWithZone: 24
new 25
resolveClassMethod: 26
resolveInstanceMethod: 26

3
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

setVersion: 27
superclass 28
version 28

Instance Methods 29
attributeKeys 29
awakeAfterUsingCoder: 30
classCode 31
classDescription 31
classForArchiver 32
classForCoder 32
classForKeyedArchiver 32
classForPortCoder 33
className 33
copy 34
copyScriptingValue:forKey:withProperties: 34
dealloc 35
doesNotRecognizeSelector: 36
finalize 37
forwardInvocation: 38
init 40
inverseForRelationshipKey: 42
methodForSelector: 42
methodSignatureForSelector: 43
mutableCopy 44
newScriptingObjectOfClass:forValueForKey:withContentsValue:properties: 44
performSelector:onThread:withObject:waitUntilDone: 45
performSelector:onThread:withObject:waitUntilDone:modes: 46
performSelector:withObject:afterDelay: 47
performSelector:withObject:afterDelay:inModes: 48
performSelectorInBackground:withObject: 49
performSelectorOnMainThread:withObject:waitUntilDone: 50
performSelectorOnMainThread:withObject:waitUntilDone:modes: 51
replacementObjectForArchiver: 52
replacementObjectForCoder: 53
replacementObjectForKeyedArchiver: 53
replacementObjectForPortCoder: 54
scriptingProperties 54
scriptingValueForSpecifier: 55
setScriptingProperties: 55
toManyRelationshipKeys 56
toOneRelationshipKeys 56

Appendix A Deprecated NSObject Methods 59

Deprecated in Mac OS X v10.5 59
poseAsClass: 59

4
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Document Revision History 61

Index 63

5
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

6
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from none (NSObject is a root class)

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Cocoa Fundamentals Guide

Declared in NSArchiver.h
NSClassDescription.h
NSKeyedArchiver.h
NSObject.h
NSObjectScripting.h
NSPortCoder.h
NSRunLoop.h
NSScriptClassDescription.h
NSThread.h

Related sample code CoreRecipes
Dicey
ImageClient
Quartz Composer WWDC 2005 TextEdit
StickiesExample

Overview

NSObject is the root class of most Objective-C class hierarchies. Through NSObject, objects inherit a basic
interface to the runtime system and the ability to behave as Objective-C objects.

Selectors

NSObject has some special methods that take advantage of the Objective-C runtime system. For example,
you can ask a class or instance if it responds to a message before sending it a message. You can also ask for
a method implementation and invoke it using one of the perform... methods, or as a function. The
advantage of obtaining a method’s implementation and calling it as a function is that you can invoke the
implementation multiple times within a loop, or similar C construct, without the overhead of Objective-C
messaging.

Overview 7
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

These and other NSObject methods take a selector of type SEL as an argument. For efficiency, full ASCII
names are not used to represent methods in compiled code. Instead the compiler uses a unique identifier
to represent a method at runtime called a selector. A selector for a method name is obtained using the
@selector() directive:

SEL method = @selector(isEqual:);

The instanceMethodForSelector: (page 21) class method and the methodForSelector: (page 42)
instance method return a method implementation of type IMP. IMP is defined as a pointer to a function that
returns an id and takes a variable number of arguments (in addition to the two “hidden” arguments—self
and _cmd—that are passed to every method implementation):

typedef id (*IMP)(id, SEL, ...);

This definition serves as a prototype for the function pointer returned by these methods. It’s sufficient for
methods that return an object and take object arguments. However, if the selector takes different argument
types or returns anything but an id, its function counterpart will be inadequately prototyped. Lacking a
prototype, the compiler will promote floats to doubles and chars to ints, which the implementation won’t
expect. It will therefore behave differently (and erroneously) when performed as a method.

To remedy this situation, it’s necessary to provide your own prototype. In the example below, the declaration
of the test variable serves to prototype the implementation of the isEqual: method. test is defined as
a pointer to a function that returns a BOOL and takes an id argument (in addition to the two “hidden”
arguments). The value returned by methodForSelector: (page 42) is then similarly cast to be a pointer
to this same function type:

BOOL (*test)(id, SEL, id);
test = (BOOL (*)(id, SEL, id))[target methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {
 ...
}

In some cases, it might be clearer to define a type (similar to IMP) that can be used both for declaring the
variable and for casting the function pointer methodForSelector: (page 42) returns. The example below
defines the EqualIMP type for just this purpose:

typedef BOOL (*EqualIMP)(id, SEL, id);
EqualIMP test;
test = (EqualIMP)[target methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {
 ...
}

Either way, it’s important to cast the return value of methodForSelector: (page 42) to the appropriate
function type. It’s not sufficient to simply call the function returned by methodForSelector: and cast the
result of that call to the desired type. Doing so can result in errors.

See “How Messaging Works” in The Objective-C 2.0 Programming Language for more information.

8 Overview
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Adopted Protocols

NSObject
– autorelease

– class

– conformsToProtocol:

– description

– hash

– isEqual:

– isKindOfClass:

– isMemberOfClass:

– isProxy

– performSelector:

– performSelector:withObject:

– performSelector:withObject:withObject:

– release

– respondsToSelector:

– retain

– retainCount

– self

– superclass

– zone

Tasks

Initializing a Class

+ initialize (page 20)
Initializes the receiver before it’s used (before it receives its first message).

+ load (page 23)
Invoked whenever a class or category is added to the Objective-C runtime; implement this method
to perform class-specific behavior upon loading.

Creating, Copying, and Deallocating Objects

+ new (page 25)
Allocates a new instance of the receiving class, sends it an init (page 40) message, and returns the
initialized object.

+ alloc (page 14)
Returns a new instance of the receiving class.

Adopted Protocols 9
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

+ allocWithZone: (page 14)
Returns a new instance of the receiving class where memory for the new instance is allocated from
a given zone.

– init (page 40)
Implemented by subclasses to initialize a new object (the receiver) immediately after memory for it
has been allocated.

– copy (page 34)
Returns the object returned by copyWithZone:, where the zone is nil.

+ copyWithZone: (page 19)
Returns the receiver.

– mutableCopy (page 44)
Returns the object returned by mutableCopyWithZone: where the zone is nil.

+ mutableCopyWithZone: (page 24)
Returns the receiver.

– dealloc (page 35)
Deallocates the memory occupied by the receiver.

– finalize (page 37)
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

Identifying Classes

+ class (page 17)
Returns the class object.

+ superclass (page 28)
Returns the class object for the receiver’s superclass.

+ isSubclassOfClass: (page 23)
Returns a Boolean value that indicates whether the receiving class is a subclass of, or identical to, a
given class.

Testing Class Functionality

+ instancesRespondToSelector: (page 23)
Returns a Boolean value that indicates whether instances of the receiver are capable of responding
to a given selector.

Testing Protocol Conformance

+ conformsToProtocol: (page 18)
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

10 Tasks
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Obtaining Information About Methods

– methodForSelector: (page 42)
Locates and returns the address of the receiver’s implementation of a method so it can be called as
a function.

+ instanceMethodForSelector: (page 21)
Locates and returns the address of the implementation of the instance method identified by a given
selector.

+ instanceMethodSignatureForSelector: (page 22)
Returns an NSMethodSignature object that contains a description of the instance method identified
by a given selector.

– methodSignatureForSelector: (page 43)
Returns an NSMethodSignature object that contains a description of the method identified by a
given selector.

Describing Objects

+ description (page 19)
Returns a string that represents the contents of the receiving class.

Posing

+ poseAsClass: (page 59) Deprecated in Mac OS X v10.5
Causes the receiving class to pose as a specified superclass.

Sending Messages

– performSelector:withObject:afterDelay: (page 47)
Invokes a method of the receiver on the current thread using the default mode after a delay.

– performSelector:withObject:afterDelay:inModes: (page 48)
Invokes a method of the receiver on the current thread using the specified modes after a delay.

– performSelectorOnMainThread:withObject:waitUntilDone: (page 50)
Invokes a method of the receiver on the main thread using the default mode.

– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 51)
Invokes a method of the receiver on the main thread using the specified modes.

– performSelector:onThread:withObject:waitUntilDone: (page 45)
Invokes a method of the receiver on the specified thread using the default mode.

– performSelector:onThread:withObject:waitUntilDone:modes: (page 46)
Invokes a method of the receiver on the specified thread using the specified modes.

– performSelectorInBackground:withObject: (page 49)
Invokes a method of the receiver on a new background thread.

+ cancelPreviousPerformRequestsWithTarget: (page 15)
Cancels perform requests previously registered with the
performSelector:withObject:afterDelay: (page 47) instance method.

Tasks 11
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

+ cancelPreviousPerformRequestsWithTarget:selector:object: (page 16)
Cancels perform requests previously registered with
performSelector:withObject:afterDelay: (page 47).

Forwarding Messages

– forwardInvocation: (page 38)
Overridden by subclasses to forward messages to other objects.

Dynamically Resolving Methods

+ resolveClassMethod: (page 26)
Dynamically provides an implementation for a given selector for a class method.

+ resolveInstanceMethod: (page 26)
Dynamically provides an implementation for a given selector for an instance method.

Error Handling

– doesNotRecognizeSelector: (page 36)
Handles messages the receiver doesn’t recognize.

Archiving

– awakeAfterUsingCoder: (page 30)
Overridden by subclasses to substitute another object in place of the object that was decoded and
subsequently received this message.

– classForArchiver (page 32)
Overridden by subclasses to substitute a class other than its own during archiving.

– classForCoder (page 32)
Overridden by subclasses to substitute a class other than its own during coding.

– classForKeyedArchiver (page 32)
Overridden by subclasses to substitute a new class for instances during keyed archiving.

+ classFallbacksForKeyedArchiver (page 17)
Overridden to return the names of classes that can be used to decode objects if their class is unavailable.

+ classForKeyedUnarchiver (page 18)
Overridden by subclasses to substitute a new class during keyed unarchiving.

– classForPortCoder (page 33)
Overridden by subclasses to substitute a class other than its own for distribution encoding.

– replacementObjectForArchiver: (page 52)
Overridden by subclasses to substitute another object for itself during archiving.

– replacementObjectForCoder: (page 53)
Overridden by subclasses to substitute another object for itself during encoding.

12 Tasks
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

– replacementObjectForKeyedArchiver: (page 53)
Overridden by subclasses to substitute another object for itself during keyed archiving.

– replacementObjectForPortCoder: (page 54)
Overridden by subclasses to substitute another object or a copy for itself during distribution encoding.

+ setVersion: (page 27)
Sets the receiver's version number.

+ version (page 28)
Returns the version number assigned to the class.

Working with Class Descriptions

– attributeKeys (page 29)
Returns an array of NSString objects containing the names of immutable values that instances of
the receiver's class contain.

– classDescription (page 31)
Returns an object containing information about the attributes and relationships of the receiver’s class.

– inverseForRelationshipKey: (page 42)
For a given key that defines the name of the relationship from the receiver’s class to another class,
returns the name of the relationship from the other class to the receiver’s class.

– toManyRelationshipKeys (page 56)
Returns array containing the keys for the to-many relationship properties of the receiver.

– toOneRelationshipKeys (page 56)
Returns the keys for the to-one relationship properties of the receiver, if any.

Scripting

– classCode (page 31)
Returns the receiver's Apple event type code, as stored in the NSScriptClassDescription object
for the object’s class.

– className (page 33)
Returns a string containing the name of the class.

– copyScriptingValue:forKey:withProperties: (page 34)
Creates and returns one or more scripting objects to be inserted into the specified relationship by
copying the passed-in value and setting the properties in the copied object or objects.

– newScriptingObjectOfClass:forValueForKey:withContentsValue:properties: (page 44)
Creates and returns an instance of a scriptable class, setting its contents and properties, for insertion
into the relationship identified by the key.

– scriptingProperties (page 54)
Returns an NSString-keyed dictionary of the receiver's scriptable properties.

– setScriptingProperties: (page 55)
Given an NSString-keyed dictionary, sets one or more scriptable properties of the receiver.

– scriptingValueForSpecifier: (page 55)
Given an object specifier, returns the specified object or objects in the receiving container.

Tasks 13
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Class Methods

alloc
Returns a new instance of the receiving class.

+ (id)alloc

Return Value
A new instance of the receiver.

Discussion
The isa instance variable of the new instance is initialized to a data structure that describes the class; memory
for all other instance variables is set to 0. The new instance is allocated from the default zone—use
allocWithZone: (page 14) to specify a particular zone.

An init... method must be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass alloc] init];

Subclasses shouldn’t override alloc to include initialization code. Instead, class-specific versions of init...
methods should be implemented for that purpose. Class methods can also be implemented to combine
allocation and initialization, similar to the new class method.

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before returning
it. The returned object has a retain count of 1 and is not autoreleased. The invoker of this method is responsible
for releasing the returned object, using either release or autorelease.

Availability
Available in Mac OS X v10.0 and later.

See Also
– init (page 40)

Related Sample Code
CoreRecipes
GLSLShowpiece
ImageClient
iSpend
QTCoreVideo301

Declared In
NSObject.h

allocWithZone:
Returns a new instance of the receiving class where memory for the new instance is allocated from a given
zone.

+ (id)allocWithZone:(NSZone *)zone

14 Class Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Parameters
zone

The memory zone in which to create the new instance.

Return Value
A new instance of the receiver, where memory for the new instance is allocated from zone.

Discussion
The isa instance variable of the new instance is initialized to a data structure that describes the class; memory
for its other instance variables is set to 0. If zone is nil, the new instance will be allocated from the default
zone (as returned by NSDefaultMallocZone).

An init... method must be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass allocWithZone:someZone] init];

Subclasses shouldn’t override allocWithZone: to include any initialization code. Instead, class-specific
versions of init... methods should be implemented for that purpose.

When one object creates another, it’s sometimes a good idea to make sure they’re both allocated from the
same region of memory. The zonemethod (declared in the NSObject protocol) can be used for this purpose;
it returns the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocWithZone:[self zone]] init];

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before returning
it. The returned object has a retain count of 1 and is not autoreleased. The invoker of this method is responsible
for releasing the returned object, using either release or autorelease.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ alloc (page 14)
– init (page 40)

Related Sample Code
MenuItemView
QTCoreVideo201
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSObject.h

cancelPreviousPerformRequestsWithTarget:
Cancels perform requests previously registered with the
performSelector:withObject:afterDelay: (page 47) instance method.

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget

Class Methods 15
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Parameters
aTarget

The target for requests previously registered with the
performSelector:withObject:afterDelay: (page 47) instance method.

Discussion
All perform requests having the same target aTarget are canceled. This method removes perform requests
only in the current run loop, not all run loops.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSRunLoop.h

cancelPreviousPerformRequestsWithTarget:selector:object:
Cancels perform requests previously registered with performSelector:withObject:afterDelay: (page
47).

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget selector:(SEL)aSelector
object:(id)anArgument

Parameters
aTarget

The target for requests previously registered with the
performSelector:withObject:afterDelay: (page 47) instance method

aSelector
The selector for requests previously registered with the
performSelector:withObject:afterDelay: (page 47) instance method.

See “Selectors” (page 7) for a description of the SEL type.

anArgument
The argument for requests previously registered with the
performSelector:withObject:afterDelay: (page 47) instance method. Argument equality is
determined using isEqual:, so the value need not be the same object that was passed originally.
Pass nil to match a request for nil that was originally passed as the argument.

Discussion
All perform requests are canceled that have the same target as aTarget, argument as anArgument, and
selector as aSelector. This method removes perform requests only in the current run loop, not all run loops.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AttachAScript

Declared In
NSRunLoop.h

16 Class Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

class
Returns the class object.

+ (Class)class

Return Value
The class object.

Discussion
Refer to a class only by its name when it is the receiver of a message. In all other cases, the class object must
be obtained through this or a similar method. For example, here SomeClass is passed as an argument to
the isKindOfClass: method (declared in the NSObject protocol):

BOOL test = [self isKindOfClass:[SomeClass class]];

Availability
Available in Mac OS X v10.0 and later.

See Also
class (NSObject protocol)

Related Sample Code
NewsReader
OpenGLCaptureToMovie
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSObject.h

classFallbacksForKeyedArchiver
Overridden to return the names of classes that can be used to decode objects if their class is unavailable.

+ (NSArray *)classFallbacksForKeyedArchiver

Return Value
An array of NSString objects that specify the names of classes in preferred order for unarchiving

Discussion
NSKeyedArchiver calls this method and stores the result inside the archive. If the actual class of an object
doesn’t exist at the time of unarchiving, NSKeyedUnarchiver goes through the stored list of classes and
uses the first one that does exists as a substitute class for decoding the object. The default implementation
of this method returns nil.

Developers who introduce a new class can use this method to provided some backwards compatibility in
case the archive will be read on a system that does not have that class. Sometimes there may be another
class which may work nearly as well as a substitute for the new class, and the archive keys and archived state
for the new class can be carefully chosen (or compatibility written out) so that the object can be unarchived
as the substitute class if necessary.

Class Methods 17
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSKeyedArchiver.h

classForKeyedUnarchiver
Overridden by subclasses to substitute a new class during keyed unarchiving.

+ (Class)classForKeyedUnarchiver

Return Value
The class to substitute for the receiver during keyed unarchiving.

Discussion
During keyed unarchiving, instances of the receiver will be decoded as members of the returned class. This
method overrides the results of the decoder's class and instance name to class encoding tables.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

conformsToProtocol:
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

+ (BOOL)conformsToProtocol:(Protocol *)aProtocol

Parameters
aProtocol

A protocol.

Return Value
YES if the receiver conforms to aProtocol, otherwise NO.

Discussion
A class is said to “conform to” a protocol if it adopts the protocol or inherits from another class that adopts
it. Protocols are adopted by listing them within angle brackets after the interface declaration. For example,
here MyClass adopts the (fictitious) AffiliationRequests and Normalization protocols:

@interface MyClass : NSObject <AffiliationRequests, Normalization>

A class also conforms to any protocols that are incorporated in the protocols it adopts or inherits. Protocols
incorporate other protocols in the same way classes adopt them. For example, here the
AffiliationRequests protocol incorporates the Joining protocol:

@protocol AffiliationRequests <Joining>

If a class adopts a protocol that incorporates another protocol, it must also implement all the methods in
the incorporated protocol or inherit those methods from a class that adopts it.

18 Class Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

This method determines conformance solely on the basis of the formal declarations in header files, as illustrated
above. It doesn’t check to see whether the methods declared in the protocol are actually implemented—that’s
the programmer’s responsibility.

The protocol required as this method’s argument can be specified using the @protocol() directive:

BOOL canJoin = [MyClass conformsToProtocol:@protocol(Joining)];

Availability
Available in Mac OS X v10.0 and later.

See Also
+ conformsToProtocol: (page 18)

Declared In
NSObject.h

copyWithZone:
Returns the receiver.

+ (id)copyWithZone:(NSZone *)zone

Return Value
The receiver.

Discussion
This method exists so class objects can be used in situations where you need an object that conforms to the
NSCopying protocol. For example, this method lets you use a class object as a key to an NSDictionary
object. You should not override this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– copy (page 34)

Related Sample Code
AlbumToSlideshow
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSObject.h

description
Returns a string that represents the contents of the receiving class.

+ (NSString *)description

Return Value
A string that represents the contents of the receiving class.

Class Methods 19
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Discussion
The debugger’s print-object command invokes this method to produce a textual description of an object.

NSObject's implementation of this method simply prints the name of the class.

Availability
Available in Mac OS X v10.0 and later.

See Also
description (NSObject protocol)

Related Sample Code
iSpend
QTKitMovieShuffler
QTRecorder
SimpleCalendar
StickiesExample

Declared In
NSObject.h

initialize
Initializes the receiver before it’s used (before it receives its first message).

+ (void)initialize

Discussion
The runtime sends initialize to each class in a program exactly one time just before the class, or any class
that inherits from it, is sent its first message from within the program. (Thus the method may never be invoked
if the class is not used.) The runtime sends the initialize message to classes in a thread-safe manner.
Superclasses receive this message before their subclasses.

For example, if the first message your program sends is this:

[NSApplication new]

the runtime system sends these three initialize messages:

[NSObject initialize];
[NSResponder initialize];
[NSApplication initialize];

because NSApplication is a subclass of NSResponder and NSResponder is a subclass of NSObject. All
the initialize messages precede the new (page 25) message.

If your program later begins to use the NSText class,

[NSText instancesRespondToSelector:someSelector]

the runtime system invokes these additional initialize messages:

[NSView initialize];
[NSText initialize];

20 Class Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

because NSText inherits from NSObject, NSResponder, and NSView. The
instancesRespondToSelector: (page 23) message is sent only after all these classes are initialized. Note
that the initialize messages to NSObject and NSResponder aren’t repeated.

You implement initialize to provide class-specific initialization as needed. Since the runtime sends
appropriate initialize messages automatically, you should typically not send initialize to super in your
implementation.

If a particular class does not implement initialize, the initialize method of its superclass is invoked
twice, once for the superclass and once for the non-implementing subclass. If you want to make sure that
your class performs class-specific initializations only once, implement initialize as in the following example:

@implementation MyClass
+ (void)initialize
{
 if (self == [MyClass class]) {
 /* put initialization code here */
 }
}

Loading a subclasses of MyClass that does not implement its own initialize method will cause MyClass's
implementation to be invoked. The test clause (if (self == [MyClass class])) ensures that the
initialization code has no effect if initialize is invoked when a subclass is loaded.

Special Considerations

initialize it is invoked only once per class. If you want to perform independent initialization for the class
and for categories of the class, you should implement load (page 23) methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
– init (page 40)
+ load (page 23)
class (NSObject protocol)

Related Sample Code
CoreRecipes
Dicey
iSpend
NewsReader
Reducer

Declared In
NSObject.h

instanceMethodForSelector:
Locates and returns the address of the implementation of the instance method identified by a given selector.

+ (IMP)instanceMethodForSelector:(SEL)aSelector

Class Methods 21
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Parameters
aSelector

A selector that identifies the method for which to return the implementation address. The selector
must be non-NULL and valid for the receiver. If in doubt, use the respondsToSelector: method
to check before passing the selector to methodForSelector:.

See “Selectors” (page 7) for a description of the SEL type.

Return Value
The address of the implementation of the aSelector instance method.

Discussion
An error is generated if instances of the receiver can’t respond to aSelector messages.

Use this method to ask the class object for the implementation of instance methods only. To ask the class
for the implementation of a class method, send the methodForSelector: (page 42) instance method to
the class instead.

See “Selectors” (page 7) for a description of the IMP type, and how to invoke the returned method
implementation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

instanceMethodSignatureForSelector:
Returns an NSMethodSignature object that contains a description of the instance method identified by a
given selector.

+ (NSMethodSignature *)instanceMethodSignatureForSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies the method for which to return the implementation address.

See “Selectors” (page 7) for a description of the SEL type.

Return Value
An NSMethodSignature object that contains a description of the instance method identified by aSelector,
or nil if the method can’t be found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– methodSignatureForSelector: (page 43)

Declared In
NSObject.h

22 Class Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

instancesRespondToSelector:
Returns a Boolean value that indicates whether instances of the receiver are capable of responding to a given
selector.

+ (BOOL)instancesRespondToSelector:(SEL)aSelector

Parameters
aSelector

A selector. See “Selectors” (page 7) for a description of the SEL type.

Return Value
YES if instances of the receiver are capable of responding to aSelector messages, otherwise NO.

Discussion
If aSelector messages are forwarded to other objects, instances of the class are able to receive those
messages without error even though this method returns NO.

To ask the class whether it, rather than its instances, can respond to a particular message, send to the class
instead the NSObject protocol instance method respondsToSelector:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– forwardInvocation: (page 38)

Declared In
NSObject.h

isSubclassOfClass:
Returns a Boolean value that indicates whether the receiving class is a subclass of, or identical to, a given
class.

+ (BOOL)isSubclassOfClass:(Class)aClass

Parameters
aClass

A class object.

Return Value
YES if the receiving class is a subclass of—or identical to—aClass, otherwise NO.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSObject.h

load
Invoked whenever a class or category is added to the Objective-C runtime; implement this method to perform
class-specific behavior upon loading.

Class Methods 23
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

+ (void)load

Discussion
The load message is sent to classes and categories that are both dynamically loaded and statically linked,
but only if the newly loaded class or category implements a method that can respond.

On Mac OS X v10.5, the order of initialization is as follows:

1. All initializers in any framework you link to.

2. All +load methods in your image.

3. All C++ static initializers and C/C++ __attribute__(constructor) functions in your image.

4. All initializers in frameworks that link to you.

In addition:

 ■ A class’s +load method is called after all of its superclasses' +load methods.

 ■ A category +load method is called after the class's own +load method.

In a +load method, you can therefore safely message other unrelated classes from the same image, but any
+load methods on those classes may not have run yet.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ initialize (page 20)

Related Sample Code
CIAnnotation
CustomAtomicStoreSubclass
LSMSmartCategorizer
MethodReplacement
TextLinks

Declared In
NSObject.h

mutableCopyWithZone:
Returns the receiver.

+ (id)mutableCopyWithZone:(NSZone *)zone

Parameters
zone

The memory zone in which to create the copy of the receiver.

Return Value
The receiver.

24 Class Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Discussion
This method exists so class objects can be used in situations where you need an object that conforms to the
NSMutableCopying protocol. For example, this method lets you use a class object as a key to an
NSDictionary object. You should not override this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

new
Allocates a new instance of the receiving class, sends it an init (page 40) message, and returns the initialized
object.

+ (id)new

Return Value
A new instance of the receiver.

Discussion
This method is a combination of alloc (page 14) and init (page 40). Like alloc (page 14), it initializes
the isa instance variable of the new object so it points to the class data structure. It then invokes the
init (page 40) method to complete the initialization process.

Unlike alloc (page 14), new (page 25) is sometimes re-implemented in subclasses to invoke a class-specific
initialization method. If the init... method includes arguments, they’re typically reflected in a new...
method as well. For example:

+ newMyClassWithTag:(int)tag data:(struct info *)data
{
 return [[self alloc] initWithTag:tag data:data];
}

However, there’s little point in implementing a new... method if it’s simply a shorthand for alloc (page
14) and init..., as shown above. Often new...methods will do more than just allocation and initialization.
In some classes, they manage a set of instances, returning the one with the requested properties if it already
exists, allocating and initializing a new instance only if necessary. For example:

+ newMyClassWithTag:(int)tag data:(struct info *)data
{
 MyClass *theInstance;

 if (theInstance = findTheObjectWithTheTag(tag))
 return [theInstance retain];
 return [[self alloc] initWithTag:tag data:data];
}

Although it’s appropriate to define new new... methods in this way, the alloc (page 14) and
allocWithZone: (page 14) methods should never be augmented to include initialization code.

Class Methods 25
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before returning
it. The returned object has a retain count of 1 and is not autoreleased. The invoker of this method is responsible
for releasing the returned object, using either release or autorelease.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs
LSMSmartCategorizer
NURBSSurfaceVertexProg
Quartz Composer QCTV
SurfaceVertexProgram

Declared In
NSObject.h

resolveClassMethod:
Dynamically provides an implementation for a given selector for a class method.

+ (BOOL)resolveClassMethod:(SEL)name

Parameters
name

The name of a selector to resolve.

Return Value
YES if the method was found and added to the receiver, otherwise NO.

Discussion
This method allows you to dynamically provides an implementation for a given selector. See
resolveInstanceMethod: (page 26) for further discussion.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ resolveInstanceMethod: (page 26)

Declared In
NSObject.h

resolveInstanceMethod:
Dynamically provides an implementation for a given selector for an instance method.

+ (BOOL)resolveInstanceMethod:(SEL)name

26 Class Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Parameters
name

The name of a selector to resolve.

Return Value
YES if the method was found and added to the receiver, otherwise NO.

Discussion
This method and resolveClassMethod: (page 26) allow you to dynamically provide an implementation
for a given selector.

An Objective-C method is simply a C function that take at least two arguments—self and _cmd. Using the
class_addMethod function, you can add a function to a class as a method. Given the following function:

void dynamicMethodIMP(id self, SEL _cmd)
{
 // implementation
}

you can use resolveInstanceMethod: to dynamically add it to a class as a method (called
resolveThisMethodDynamically) like this:

+ (BOOL) resolveInstanceMethod:(SEL)aSEL
{
 if (aSEL == @selector(resolveThisMethodDynamically))
 {
 class_addMethod([self class], aSEL, (IMP) dynamicMethodIMP, "v@:");
 return YES;
 }
 return [super resolveInstanceMethod:aSel];
}

Special Considerations

This method is called before the Objective-C forwarding mechanism (see The Runtime System in TheObjective-C
2.0ProgrammingLanguage) is invoked. IfrespondsToSelector:orinstancesRespondToSelector: (page
23) is invoked, the dynamic method resolver is given the opportunity to provide an IMP for the given selector
first.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ resolveClassMethod: (page 26)

Declared In
NSObject.h

setVersion:
Sets the receiver's version number.

+ (void)setVersion:(NSInteger)aVersion

Class Methods 27
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Parameters
aVersion

The version number for the receiver.

Discussion
The version number is helpful when instances of the class are to be archived and reused later. The default
version is 0.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ version (page 28)

Declared In
NSObject.h

superclass
Returns the class object for the receiver’s superclass.

+ (Class)superclass

Return Value
The class object for the receiver’s superclass.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ class (page 17)
superclass (NSObject protocol)

Declared In
NSObject.h

version
Returns the version number assigned to the class.

+ (NSInteger)version

Return Value
The version number assigned to the class.

Discussion
If no version has been set, the default is 0.

28 Class Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Version numbers are needed for decoding or unarchiving, so older versions of an object can be detected
and decoded correctly.

Caution should be taken when obtaining the version from within an NSCoding protocol or other methods.
Use the class name explicitly when getting a class version number:

version = [MyClass version];

Don’t simply send version to the return value of class—a subclass version number may be returned instead.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setVersion: (page 27)
versionForClassName: (NSCoder)

Related Sample Code
CoreRecipes
Fiendishthngs
PrefsPane

Declared In
NSObject.h

Instance Methods

attributeKeys
Returns an array of NSString objects containing the names of immutable values that instances of the
receiver's class contain.

- (NSArray *)attributeKeys

Return Value
An array of NSString objects containing the names of immutable values that instances of the receiver's
class contain.

Discussion
NSObject’s implementation of attributeKeys simply calls [[self classDescription]
attributeKeys]. To make use of the default implementation, you must therefore implement and register
a suitable class description—see NSClassDescription. A class description that describes Movie objects
could, for example, return the attribute keys title, dateReleased, and rating.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 29
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

See Also
– classDescription (page 31)
– inverseForRelationshipKey: (page 42)
– toManyRelationshipKeys (page 56)
– toOneRelationshipKeys (page 56)

Related Sample Code
Core Data HTML Store
CoreRecipes
StickiesExample

Declared In
NSClassDescription.h

awakeAfterUsingCoder:
Overridden by subclasses to substitute another object in place of the object that was decoded and
subsequently received this message.

- (id)awakeAfterUsingCoder:(NSCoder *)aDecoder

Parameters
aDecoder

The decoder used to decode the receiver.

Return Value
The receiver, or another object to take the place of the object that was decoded and subsequently received
this message.

Discussion
This method can be used to eliminate redundant objects created by the coder. For example, if after decoding
an object you discover that an equivalent object already exists, you can return the existing object. If a
replacement is returned, your overriding method is responsible for releasing the receiver. To prevent the
accidental use of the receiver after its replacement has been returned, you should invoke the receiver’s
release method to release the object immediately.

This method is invoked by NSCoder. NSObject’s implementation simply returns self.

Availability
Available in Mac OS X v10.0 and later.

See Also
– classForCoder (page 32)
– replacementObjectForCoder: (page 53)
initWithCoder: (NSCoding protocol)

Declared In
NSObject.h

30 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

classCode
Returns the receiver's Apple event type code, as stored in the NSScriptClassDescription object for the
object’s class.

- (FourCharCode)classCode

Return Value
The receiver's Apple event type code, as stored in the NSScriptClassDescription object for the object’s
class.

Discussion
This method is invoked by Cocoa’s scripting support classes.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Video Hardware Info

Declared In
NSScriptClassDescription.h

classDescription
Returns an object containing information about the attributes and relationships of the receiver’s class.

- (NSClassDescription *)classDescription

Return Value
An object containing information about the attributes and relationships of the receiver’s class.

Discussion
NSObject’s implementation simply calls [NSClassDescription classDescriptionForClass:[self
class]]. See NSClassDescription for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributeKeys (page 29)
– inverseForRelationshipKey: (page 42)
– toManyRelationshipKeys (page 56)
– toOneRelationshipKeys (page 56)

Related Sample Code
SimpleScriptingObjects

Declared In
NSClassDescription.h

Instance Methods 31
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

classForArchiver
Overridden by subclasses to substitute a class other than its own during archiving.

- (Class)classForArchiver

Return Value
The class to substitute for the receiver's own class during archiving.

Discussion
This method is invoked by NSArchiver. It allows specialized behavior for archiving—for example, the private
subclasses of a class cluster substitute the name of their public superclass when being archived.

NSObject’s implementation returns the object returned by classForCoder (page 32). Override
classForCoder (page 32) to add general coding behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replacementObjectForArchiver: (page 52)

Declared In
NSArchiver.h

classForCoder
Overridden by subclasses to substitute a class other than its own during coding.

- (Class)classForCoder

Return Value
The class to substitute for the receiver's own class during coding.

Discussion
This method is invoked by NSCoder. NSObject’s implementation returns the receiver’s class. The private
subclasses of a class cluster substitute the name of their public superclass when being archived.

Availability
Available in Mac OS X v10.0 and later.

See Also
– awakeAfterUsingCoder: (page 30)
– replacementObjectForCoder: (page 53)

Declared In
NSObject.h

classForKeyedArchiver
Overridden by subclasses to substitute a new class for instances during keyed archiving.

- (Class)classForKeyedArchiver

32 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Discussion
The object will be encoded as if it were a member of the returned class. The results of this method are
overridden by the encoder class and instance name to class encoding tables. If nil is returned, the result of
this method is ignored.

Availability
Available in Mac OS X v10.2 and later.

See Also
– replacementObjectForKeyedArchiver: (page 53)

Declared In
NSKeyedArchiver.h

classForPortCoder
Overridden by subclasses to substitute a class other than its own for distribution encoding.

- (Class)classForPortCoder

Return Value
The class to substitute for the receiver in distribution encoding.

Discussion
This method allows specialized behavior for distributed objects—override classForCoder (page 32) to
add general coding behavior. This method is invoked by NSPortCoder. NSObject’s implementation returns
the class returned by classForCoder (page 32).

Availability
Available in Mac OS X v10.0 and later.

See Also
– replacementObjectForPortCoder: (page 54)

Declared In
NSPortCoder.h

className
Returns a string containing the name of the class.

- (NSString *)className

Return Value
A string containing the name of the class.

Discussion
This method is invoked by Cocoa’s scripting support classes.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Sketch-112

Instance Methods 33
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

StickiesExample

Declared In
NSScriptClassDescription.h

copy
Returns the object returned by copyWithZone:, where the zone is nil.

- (id)copy

Return Value
The object returned by the NSCopying protocol method copyWithZone:, where the zone is nil.

Discussion
This is a convenience method for classes that adopt the NSCopying protocol. An exception is raised if there
is no implementation for copyWithZone:.

NSObject does not itself support the NSCopying protocol. Subclasses must support the protocol and
implement the copyWithZone: method. A subclass version of the copyWithZone: method should send
the message to super first, to incorporate its implementation, unless the subclass descends directly from
NSObject.

Special Considerations

If you are using managed memory (not garbage collection), this method retains the new object before
returning it. The invoker of the method, however, is responsible for releasing the returned object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AttachAScript
Dicey
iSpend
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSObject.h

copyScriptingValue:forKey:withProperties:
Creates and returns one or more scripting objects to be inserted into the specified relationship by copying
the passed-in value and setting the properties in the copied object or objects.

- (id)copyScriptingValue:(id)value forKey:(NSString *)key
withProperties:(NSDictionary *)properties;

34 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Parameters
value

An object or objects to be copied. The type must match the type of the property identified by key.
(See also the Discussion section.)

For example, if the property is a to-many relationship, value will always be an array of objects to be
copied, and this method must therefore return an array of objects.

key
A key that identifies the relationship into which to insert the copied object or objects.

properties
The properties to be set in the copied object or objects. Derived from the "with properties" parameter
of a duplicate command. (See also the Discussion section.)

Return Value
The copied object or objects. Returns nil if an error occurs.

Discussion
You can override the copyScriptingValue method to take more control when your application is sent a
duplicate command. This method is invoked on the prospective container of the copied object or objects.
The properties are derived from the with properties parameter of the duplicate command. The
returned objects or objects are then inserted into the container using key-value coding.

When this method is invoked by Cocoa, neither the value nor the properties will have yet been coerced using
the NSScriptKeyValueCoding method coerceValue:forKey:. For sdef-declared scriptability, however,
the types of the passed-in objects reliably match the relevant sdef declarations.

The default implementation of this method copies scripting objects by sending copyWithZone: to the
object or objects specified by value. You override this method for situations where this is not sufficient,
such as in Core Data applications, in which new objects must be initialized with
[NSManagedObject initWithEntity:insertIntoManagedObjectContext:].

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSObjectScripting.h

dealloc
Deallocates the memory occupied by the receiver.

- (void)dealloc

Discussion
Subsequent messages to the receiver may generate an error indicating that a message was sent to a
deallocated object (provided the deallocated memory hasn’t been reused yet).

You never send a dealloc message directly. Instead, an object’s dealloc method is invoked indirectly
through the release NSObject protocol method (if the release message results in the receiver's retain
count becoming 0). See Memory Management Programming Guide for Cocoa for more details on the use of
these methods.

Instance Methods 35
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Subclasses must implement their own versions of dealloc to allow the release of any additional memory
consumed by the object—such as dynamically allocated storage for data or object instance variables owned
by the deallocated object. After performing the class-specific deallocation, the subclass method should
incorporate superclass versions of dealloc through a message to super:

- (void)dealloc {
 [companion release];
 NSZoneFree(private, [self zone])
 [super dealloc];
}

Important: Note that when an application terminates, objects may not be sent a dealloc message since
the process’s memory is automatically cleared on exit—it is more efficient simply to allow the operating
system to clean up resources than to invoke all the memory management methods. For this and other reasons,
you should not manage scarce resources in dealloc—see Object Ownership and Disposal in Memory
Management Programming Guide for Cocoa for more details.

Special Considerations

When garbage collection is enabled, the garbage collector sends finalize (page 37) to the receiver instead
of dealloc.

When garbage collection is enabled, this method is a no-op.

Availability
Available in Mac OS X v10.0 and later.

See Also
autorelease (NSObject protocol)
release (NSObject protocol)
– finalize (page 37)

Related Sample Code
ImageClient
iSpend
QTCoreVideo301
Sketch-112
StickiesExample

Declared In
NSObject.h

doesNotRecognizeSelector:
Handles messages the receiver doesn’t recognize.

- (void)doesNotRecognizeSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies a method not implemented or recognized by the receiver.

See “Selectors” (page 7) for a description of the SEL type.

36 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Discussion
The runtime system invokes this method whenever an object receives an aSelectormessage it can’t respond
to or forward. This method, in turn, raises an NSInvalidArgumentException, and generates an error
message.

Any doesNotRecognizeSelector: messages are generally sent only by the runtime system. However,
they can be used in program code to prevent a method from being inherited. For example, an NSObject
subclass might renounce the copy (page 34) or init (page 40) method by re-implementing it to include
a doesNotRecognizeSelector: message as follows:

- (id)copy
{
 [self doesNotRecognizeSelector:_cmd];
}

The _cmd variable is a hidden argument passed to every method that is the current selector; in this example,
it identifies the selector for the copy method. This code prevents instances of the subclass from responding
to copy messages or superclasses from forwarding copy messages—although respondsToSelector: will
still report that the receiver has access to a copy method.

If you override this method, you must call super or raise an NSInvalidArgumentException exception at
the end of your implementation. In other words, this method must not return normally; it must always result
in an exception being thrown.

Availability
Available in Mac OS X v10.0 and later.

See Also
– forwardInvocation: (page 38)

Declared In
NSObject.h

finalize
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

- (void)finalize

Discussion
The garbage collector invokes this method on the receiver before disposing of the memory it uses. When
garbage collection is enabled, this method is invoked instead of dealloc.

Note: Garbage collection is not available for use in Mac OS X before version 10.5.

You can override this method to relinquish resources the receiver has obtained, as shown in the following
example:

- (void)finalize {
 if (log_file != NULL) {
 fclose(log_file);
 log_file = NULL;
 }

Instance Methods 37
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

 [super finalize];
}

Typically, however, you are encouraged to relinquish resources prior to finalization if at all possible. For more
details, see Implementing a finalize Method.

Special Considerations

It is an error to store self into a new or existing live object (colloquially known as “resurrection”), which
implies that this method will be called only once. However, the receiver may be messaged after finalization
by other objects also being finalized at this time, so your override should guard against future use of resources
that have been reclaimed, as shown by the log_file = NULL statement in the example. The finalize
method itself will never be invoked more than once for a given object.

Important: finalize methods must be thread-safe.

Availability
Available in Mac OS X v10.4 and later.

See Also
– dealloc (page 35)

Declared In
NSObject.h

forwardInvocation:
Overridden by subclasses to forward messages to other objects.

- (void)forwardInvocation:(NSInvocation *)anInvocation

Parameters
anInvocation

The invocation to forward.

Discussion
When an object is sent a message for which it has no corresponding method, the runtime system gives the
receiver an opportunity to delegate the message to another receiver. It delegates the message by creating
an NSInvocation object representing the message and sending the receiver a forwardInvocation:
message containing this NSInvocation object as the argument. The receiver’s forwardInvocation:
method can then choose to forward the message to another object. (If that object can’t respond to the
message either, it too will be given a chance to forward it.)

The forwardInvocation: message thus allows an object to establish relationships with other objects that
will, for certain messages, act on its behalf. The forwarding object is, in a sense, able to “inherit” some of the
characteristics of the object it forwards the message to.

38 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Important: To respond to methods that your object does not itself recognize, you must override
methodSignatureForSelector: (page 43) in addition to forwardInvocation:. The mechanism for
forwarding messages uses information obtained from methodSignatureForSelector: (page 43) to create
the NSInvocation object to be forwarded. Your overriding method must provide an appropriate method
signature for the given selector, either by preformulating one or by asking another object for one.

An implementation of the forwardInvocation: method has two tasks:

 ■ To locate an object that can respond to the message encoded in anInvocation. This object need not
be the same for all messages.

 ■ To send the message to that object using anInvocation. anInvocation will hold the result, and the
runtime system will extract and deliver this result to the original sender.

In the simple case, in which an object forwards messages to just one destination (such as the hypothetical
friend instance variable in the example below), a forwardInvocation: method could be as simple as
this:

- (void)forwardInvocation:(NSInvocation *)invocation
{
 SEL aSelector = [invocation selector];

 if ([friend respondsToSelector:aSelector])
 [invocation invokeWithTarget:friend];
 else
 [self doesNotRecognizeSelector:aSelector];
}

The message that’s forwarded must have a fixed number of arguments; variable numbers of arguments (in
the style of printf()) are not supported.

The return value of the forwarded message is returned to the original sender. All types of return values can
be delivered to the sender: id types, structures, double-precision floating-point numbers.

Implementations of the forwardInvocation: method can do more than just forward messages.
forwardInvocation: can, for example, be used to consolidate code that responds to a variety of different
messages, thus avoiding the necessity of having to write a separate method for each selector. A
forwardInvocation:method might also involve several other objects in the response to a given message,
rather than forward it to just one.

NSObject’s implementation of forwardInvocation: simply invokes the
doesNotRecognizeSelector: (page 36) method; it doesn’t forward any messages. Thus, if you choose
not to implement forwardInvocation:, sending unrecognized messages to objects will raise exceptions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

Instance Methods 39
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

init
Implemented by subclasses to initialize a new object (the receiver) immediately after memory for it has been
allocated.

- (id)init

Return Value
The initialized receiver.

Discussion
An init message is generally coupled with an alloc (page 14) or allocWithZone: (page 14) message
in the same line of code:

TheClass *newObject = [[TheClass alloc] init];

An object isn’t ready to be used until it has been initialized. The init method defined in the NSObject class
does no initialization; it simply returns self.

Subclass implementations of this method should initialize and return the new object. If it can’t be initialized,
they should release the object and return nil. In some cases, an init method might release the new object
and return a substitute. Programs should therefore always use the object returned by init, and not necessarily
the one returned by alloc (page 14) or allocWithZone: (page 14), in subsequent code.

Every class must guarantee that the init method either returns a fully functional instance of the class or
raises an exception. Subclasses should override the init method to add class-specific initialization code.
Subclass versions of init need to incorporate the initialization code for the classes they inherit from, through
a message to super:

- (id)init
{
 if ((self = [super init])) {
 /* class-specific initialization goes here */
 }
 return self;
}

Note that the message to super precedes the initialization code added in the method. This sequencing
ensures that initialization proceeds in the order of inheritance.

Subclasses often define init... methods with additional arguments to allow specific values to be set. The
more arguments a method has, the more freedom it gives you to determine the character of initialized
objects. Classes often have a set of init... methods, each with a different number of arguments. For
example:

- (id)init;
- (id)initWithTag:(int)tag;
- (id)initWithTag:(int)tag data:(struct info *)data;

The convention is that at least one of these methods, usually the one with the most arguments, includes a
message to super to incorporate the initialization of classes higher up the hierarchy. This method is called
the designated initializer for the class. The other init... methods defined in the class directly or indirectly
invoke the designated initializer through messages to self. In this way, all init... methods are chained
together. For example:

- (id)init
{

40 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

 return [self initWithTag:-1];
}

- (id)initWithTag:(int)tag
{
 return [self initWithTag:tag data:NULL];
}

- (id)initWithTag:(int)tag data:(struct info *)data
{
 if ((self = [super init. . .])) {
 /* class-specific initialization goes here */
 }
 return self;
}

In this example, the initWithTag:data: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated initializer. This method should
begin by sending a message to super to invoke the designated initializer of its superclass. Suppose, for
example, that the three methods illustrated above are defined in the B class. The C class, a subclass of B,
might have this designated initializer:

- (id)initWithTag:(int)tag data:(struct info *)data object:anObject
{
 if ((self = [super initWithTag:tag data:data])) {
 /* class-specific initialization goes here */
 }
 return self;
}

If inherited init... methods are to successfully initialize instances of the subclass, they must all be made
to (directly or indirectly) invoke the new designated initializer. To accomplish this, the subclass is obliged to
cover (override) only the designated initializer of the superclass. For example, in addition to its designated
initializer, the C class would also implement this method:

- (id)initWithTag:(int)tag data:(struct info *)data
{
 return [self initWithTag:tag data:data object:nil];
}

This code ensures that all three methods inherited from the B class also work for instances of the C class.

Often the designated initializer of the subclass overrides the designated initializer of the superclass. If so, the
subclass need only implement the one init... method.

These conventions maintain a direct chain of init... links and ensure that the newmethod and all inherited
init... methods return usable, initialized objects. They also prevent the possibility of an infinite loop
wherein a subclass method sends a message (to super) to perform a superclass method, which in turn sends
a message (to self) to perform the subclass method.

This initmethod is the designated initializer for the NSObject class. Subclasses that do their own initialization
should override it, as described above.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 41
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Related Sample Code
ImageClient
Quartz Composer WWDC 2005 TextEdit
Quartz EB
StickiesExample
TextEditPlus

Declared In
NSObject.h

inverseForRelationshipKey:
For a given key that defines the name of the relationship from the receiver’s class to another class, returns
the name of the relationship from the other class to the receiver’s class.

- (NSString *)inverseForRelationshipKey:(NSString *)relationshipKey

Parameters
relationshipKey

The name of the relationship from the receiver’s class to another class.

Return Value
The name of the relationship that is the inverse of the receiver's relationship named relationshipKey.

Discussion
NSObject’s implementation of inverseForRelationshipKey: simply invokes [[self
classDescription] inverseForRelationshipKey:relationshipKey]. To make use of the default
implementation, you must therefore implement and register a suitable class description—see
NSClassDescription.

For example, suppose an Employee class has a relationship named department to a Department class, and
that Department has a relationship called employees to Employee. The statement:

employee inverseForRelationshipKey:@"department"];

returns the string employees.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributeKeys (page 29)
– classDescription (page 31)
– toManyRelationshipKeys (page 56)
– toOneRelationshipKeys (page 56)

Declared In
NSClassDescription.h

methodForSelector:
Locates and returns the address of the receiver’s implementation of a method so it can be called as a function.

42 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

- (IMP)methodForSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies the method for which to return the implementation address. The selector
must be a valid and non-NULL. If in doubt, use the respondsToSelector: method to check before
passing the selector to methodForSelector:.

Return Value
The address of the receiver’s implementation of the aSelector.

Discussion
If the receiver is an instance, aSelector should refer to an instance method; if the receiver is a class, it should
refer to a class method.

See “Selectors” (page 7) for a description of the IMP and SEL types, and how to invoke the returned method
implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ instanceMethodForSelector: (page 21)

Declared In
NSObject.h

methodSignatureForSelector:
Returns an NSMethodSignature object that contains a description of the method identified by a given
selector.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies the method for which to return the implementation address. When the
receiver is an instance, aSelector should identify an instance method; when the receiver is a class,
it should identify a class method.

See “Selectors” (page 7) for a description of the SEL type.

Return Value
An NSMethodSignature object that contains a description of the method identified by aSelector, or nil
if the method can’t be found.

Discussion
This method is used in the implementation of protocols. This method is also used in situations where an
NSInvocation object must be created, such as during message forwarding. If your object maintains a
delegate or is capable of handling messages that it does not directly implement, you should override this
method to return an appropriate method signature.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 43
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

See Also
+ instanceMethodSignatureForSelector: (page 22)
– forwardInvocation: (page 38)

Declared In
NSObject.h

mutableCopy
Returns the object returned by mutableCopyWithZone: where the zone is nil.

- (id)mutableCopy

Return Value
The object returned by the NSMutableCopying protocol method mutableCopyWithZone:, where the
zone is nil.

Discussion
This is a convenience method for classes that adopt the NSMutableCopying protocol. An exception is raised
if there is no implementation for mutableCopyWithZone:.

Special Considerations

If you are using managed memory (not garbage collection), this method retains the new object before
returning it. The invoker of the method, however, is responsible for releasing the returned object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
EnhancedAudioBurn
iSpend
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSObject.h

newScriptingObjectOfClass:forValueForKey:withContentsValue:properties:
Creates and returns an instance of a scriptable class, setting its contents and properties, for insertion into
the relationship identified by the key.

- (id)newScriptingObjectOfClass:(Class)class forValueForKey:(NSString *)key
withContentsValue:(id)contentsValue properties:(NSDictionary *)properties;

Parameters
class

The class of the scriptable object to be created.

key
A key that identifies the relationship into which the new class object will be inserted.

44 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

contentsValue
Specifies the contents of the object to be created. This may be nil. (See also the Discussion section.)

properties
The properties to be set in the new object. (See also the Discussion section.)

Return Value
The new object. Returns nil if an error occurs.

Discussion
You can override the newScriptingObjectOfClass method to take more control when your application
is sent a make command. This method is invoked on the prospective container of the new object.
The contentsValue and properties are derived from the with contents and with properties
parameters of the make command. The returned objects or objects are then inserted into the container using
key-value coding.

When this method is invoked by Cocoa, neither the contents value nor the properties will have yet been
coerced using the NSScriptKeyValueCoding method coerceValue:forKey:. For sdef-declared
scriptability, however, the types of the passed-in objects reliably match the relevant sdef declarations.

The default implementation of this method creates new scripting objects by sending alloc to a class and
init to the resulting object. You override this method for situations where this is not sufficient, such as in
Core Data applications, in which new objects must be initialized with
[NSManagedObject initWithEntity:insertIntoManagedObjectContext:].

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSObjectScripting.h

performSelector:onThread:withObject:waitUntilDone:
Invokes a method of the receiver on the specified thread using the default mode.

- (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg
waitUntilDone:(BOOL)wait

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 7) for a description of the SEL type.

thr
The thread on which to execute aSelector.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

Instance Methods 45
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the specified thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread and target thread are the same, and you specify YES for this parameter, the
selector is performed immediately on the current thread. If you specify NO, this method queues the
message on the thread’s run loop and returns, just like it does for other threads. The current thread
must then dequeue and process the message when it has an opportunity to do so.

Discussion
You can use this method to deliver messages to other threads in your application. The message in this case
is a method of the current object that you want to execute on the target thread.

This method queues the message on the run loop of the target thread using the default run loop modes—that
is, the modes associated with the NSRunLoopCommonModes constant. As part of its normal run loop processing,
the target thread dequeues the message (assuming it is running in one of the default run loop modes) and
invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 47) or
performSelector:withObject:afterDelay:inModes: (page 48) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in Mac OS X v10.5 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone:modes: (page 46)
– performSelectorInBackground:withObject: (page 49)

Declared In
NSThread.h

performSelector:onThread:withObject:waitUntilDone:modes:
Invokes a method of the receiver on the specified thread using the specified modes.

- (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg
waitUntilDone:(BOOL)wait modes:(NSArray *)array

Parameters
aSelector

A selector that identifies the method to invoke. It should not have a significant return value and should
take a single argument of type id, or no arguments.

See “Selectors” (page 7) for a description of the SEL type.

thr
The thread on which to execute aSelector. This thread represents the target thread.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

46 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the specified thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread and target thread are the same, and you specify YES for this parameter, the
selector is performed immediately. If you specify NO, this method queues the message and returns
immediately, regardless of whether the threads are the same or different.

array
An array of strings that identifies the modes in which it is permissible to perform the specified selector.
This array must contain at least one string. If you specify nil or an empty array for this parameter,
this method returns without performing the specified selector.

Discussion
You can use this method to deliver messages to other threads in your application. The message in this case
is a method of the current object that you want to execute on the target thread.

This method queues the message on the run loop of the target thread using the run loop modes specified
in the array parameter. As part of its normal run loop processing, the target thread dequeues the message
(assuming it is running in one of the specified modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 47) or
performSelector:withObject:afterDelay:inModes: (page 48) method instead.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in Mac OS X v10.5 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone: (page 45)
– performSelectorInBackground:withObject: (page 49)

Declared In
NSThread.h

performSelector:withObject:afterDelay:
Invokes a method of the receiver on the current thread using the default mode after a delay.

- (void)performSelector:(SEL)aSelector withObject:(id)anArgument
afterDelay:(NSTimeInterval)delay

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 7) for a description of the SEL type.

anArgument
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

Instance Methods 47
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

delay
The minimum time before which the message is sent. Specifying a delay of 0 does not necessarily
cause the selector to be performed immediately. The selector is still queued on the thread’s run loop
and performed as soon as possible.

Discussion
This method sets up a timer to perform the aSelector message on the current thread’s run loop. The timer
is configured to run in the default mode (NSDefaultRunLoopMode). When the timer fires, the thread attempts
to dequeue the message from the run loop and perform the selector. It succeeds if the run loop is running
and in the default mode; otherwise, the timer waits until the run loop is in the default mode.

If you want the message to be dequeued when the run loop is in a mode other than the default mode, use
the performSelector:withObject:afterDelay:inModes: (page 48) method instead. To ensure that
the selector is performed on the main thread, use the
performSelectorOnMainThread:withObject:waitUntilDone: (page 50) or
performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 51) method instead. To
cancel a queued message, use the cancelPreviousPerformRequestsWithTarget: (page 15) or
cancelPreviousPerformRequestsWithTarget:selector:object: (page 16) method.

This method retains the receiver and the anArgument parameter until after the selector is performed.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ cancelPreviousPerformRequestsWithTarget:selector:object: (page 16)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 50)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 51)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 46)

Related Sample Code
IdentitySample

Declared In
NSRunLoop.h

performSelector:withObject:afterDelay:inModes:
Invokes a method of the receiver on the current thread using the specified modes after a delay.

- (void)performSelector:(SEL)aSelector withObject:(id)anArgument
afterDelay:(NSTimeInterval)delay inModes:(NSArray *)modes

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 7) for a description of the SEL type.

anArgument
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

48 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

delay
The minimum time before which the message is sent. Specifying a delay of 0 does not necessarily
cause the selector to be performed immediately. The selector is still queued on the thread’s run loop
and performed as soon as possible.

modes
An array of strings that identify the modes to associate with the timer that performs the selector. This
array must contain at least one string. If you specify nil or an empty array for this parameter, this
method returns without performing the specified selector.

Discussion
This method sets up a timer to perform the aSelector message on the current thread’s run loop. The timer
is configured to run in the modes specified by the modes parameter. When the timer fires, the thread attempts
to dequeue the message from the run loop and perform the selector. It succeeds if the run loop is running
and in one of the specified modes; otherwise, the timer waits until the run loop is in one of those modes.

If you want the message to be dequeued when the run loop is in a mode other than the default mode, use
the performSelector:withObject:afterDelay:inModes: (page 48) method instead. To ensure that
the selector is performed on the main thread, use the
performSelectorOnMainThread:withObject:waitUntilDone: (page 50) or
performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 51) method instead. To
cancel a queued message, use the cancelPreviousPerformRequestsWithTarget: (page 15) or
cancelPreviousPerformRequestsWithTarget:selector:object: (page 16) method.

This method retains the receiver and the anArgument parameter until after the selector is performed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– performSelector:withObject:afterDelay: (page 47)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 50)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 51)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 46)
addTimer:forMode: (NSRunLoop)
invalidate (NSTimer)

Declared In
NSRunLoop.h

performSelectorInBackground:withObject:
Invokes a method of the receiver on a new background thread.

- (void)performSelectorInBackground:(SEL)aSelector withObject:(id)arg

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 7) for a description of the SEL type.

Instance Methods 49
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

Discussion
This method creates a new thread in your application, putting your application into multithreaded mode if
it was not already. The method represented by aSelector must set up the thread environment just as you
would for any other new thread in your program. For more information about how to configure and run
threads, see Threading Programming Guide.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in Mac OS X v10.5 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone:modes: (page 46)

Declared In
NSThread.h

performSelectorOnMainThread:withObject:waitUntilDone:
Invokes a method of the receiver on the main thread using the default mode.

- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg
waitUntilDone:(BOOL)wait

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 7) for a description of the SEL type.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the main thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread is also the main thread, and you specify YES for this parameter, the message is
delivered and processed immediately.

Discussion
You can use this method to deliver messages to the main thread of your application. The main thread
encompasses the application’s main run loop, and is where the NSApplication object receives events. The
message in this case is a method of the current object that you want to execute on the thread.

This method queues the message on the run loop of the main thread using the default run loop modes—that
is, the modes associated with the NSRunLoopCommonModes constant. As part of its normal run loop processing,
the main thread dequeues the message (assuming it is running in one of the default run loop modes) and
invokes the desired method.

50 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 47) or
performSelector:withObject:afterDelay:inModes: (page 48) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in Mac OS X v10.2 and later.

See Also
– performSelector:withObject:afterDelay: (page 47)
– performSelector:withObject:afterDelay:inModes: (page 48)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 51)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 46)

Related Sample Code
AudioDeviceNotify
CocoaDVDPlayer
ExtractMovieAudioToAIFF
HelpHook
JSheets

Declared In
NSThread.h

performSelectorOnMainThread:withObject:waitUntilDone:modes:
Invokes a method of the receiver on the main thread using the specified modes.

- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg
waitUntilDone:(BOOL)wait modes:(NSArray *)array

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 7) for a description of the SEL type.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the main thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread is also the main thread, and you pass YES, the message is performed immediately,
otherwise the perform is queued to run the next time through the run loop.

array
An array of strings that identifies the modes in which it is permissible to perform the specified selector.
This array must contain at least one string. If you specify nil or an empty array for this parameter,
this method returns without performing the specified selector.

Instance Methods 51
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Discussion
You can use this method to deliver messages to the main thread of your application. The main thread
encompasses the application’s main run loop, and is where the NSApplication object receives events. The
message in this case is a method of the current object that you want to execute on the thread.

This method queues the message on the run loop of the main thread using the run loop modes specified in
the array parameter. As part of its normal run loop processing, the main thread dequeues the message
(assuming it is running in one of the specified modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 47) or
performSelector:withObject:afterDelay:inModes: (page 48) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in Mac OS X v10.2 and later.

See Also
– performSelector:withObject:afterDelay: (page 47)
– performSelector:withObject:afterDelay:inModes: (page 48)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 50)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 46)

Declared In
NSThread.h

replacementObjectForArchiver:
Overridden by subclasses to substitute another object for itself during archiving.

- (id)replacementObjectForArchiver:(NSArchiver *)anArchiver

Parameters
anArchiver

The archiver creating an archive.

Return Value
The object to substitute for the receiver during archiving.

Discussion
This method is invoked by NSArchiver. NSObject’s implementation returns the object returned by
replacementObjectForCoder: (page 53).

Availability
Available in Mac OS X v10.0 and later.

See Also
– classForArchiver (page 32)

Declared In
NSArchiver.h

52 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

replacementObjectForCoder:
Overridden by subclasses to substitute another object for itself during encoding.

- (id)replacementObjectForCoder:(NSCoder *)aCoder

Parameters
aCoder

The coder encoding the receiver.

Return Value
The object encode instead of the receiver (if different).

Discussion
An object might encode itself into an archive, but encode a proxy for itself if it’s being encoded for distribution.
This method is invoked by NSCoder. NSObject’s implementation returns self.

Availability
Available in Mac OS X v10.0 and later.

See Also
– classForCoder (page 32)
– awakeAfterUsingCoder: (page 30)

Declared In
NSObject.h

replacementObjectForKeyedArchiver:
Overridden by subclasses to substitute another object for itself during keyed archiving.

- (id)replacementObjectForKeyedArchiver:(NSKeyedArchiver *)archiver

Parameters
archiver

A keyed archiver creating an archive.

Return Value
The object encode instead of the receiver (if different).

Discussion
This method is called only if no replacement mapping for the object has been set up in the encoder (for
example, due to a previous call of replacementObjectForKeyedArchiver: to that object).

Availability
Available in Mac OS X v10.2 and later.

See Also
– classForKeyedArchiver (page 32)

Declared In
NSKeyedArchiver.h

Instance Methods 53
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

replacementObjectForPortCoder:
Overridden by subclasses to substitute another object or a copy for itself during distribution encoding.

- (id)replacementObjectForPortCoder:(NSPortCoder *)aCoder

Parameters
aCoder

The port coder encoding the receiver.

Return Value
The object encode instead of the receiver (if different).

Discussion
This method is invoked by NSPortCoder. NSObject’s implementation returns an NSDistantObject object
for the object returned by replacementObjectForCoder: (page 53), enabling all objects to be distributed
by proxy as the default. However, if replacementObjectForCoder: (page 53) returns nil, NSObject’s
implementation will also return nil.

Subclasses that want to be passed by copy instead of by reference must override this method and return
self. The following example shows how to support object replacement both by copy and by reference:

- (id)replacementObjectForPortCoder:(NSPortCoder *)encoder {
 if ([encoder isByref])
 return [NSDistantObject proxyWithLocal:self
connection:[encoder connection]];
 else
 return self;
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– classForPortCoder (page 33)

Declared In
NSPortCoder.h

scriptingProperties
Returns an NSString-keyed dictionary of the receiver's scriptable properties.

- (NSDictionary *)scriptingProperties

Return Value
An NSString-keyed dictionary of the receiver's scriptable properties, including all of those that are declared
as Attributes and ToOneRelationships in the .scriptSuite property list entries for the class and its scripting
superclasses, with the exception of ones keyed by "scriptingProperties." Each key in the dictionary must be
identical to the key for an Attribute or ToOneRelationship. The values of the dictionary must be Objective-C
objects that are convertible to NSAppleEventDescriptor objects.

Availability
Available in Mac OS X v10.2 and later.

54 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

See Also
– setScriptingProperties: (page 55)

Declared In
NSObjectScripting.h

scriptingValueForSpecifier:
Given an object specifier, returns the specified object or objects in the receiving container.

- (id)scriptingValueForSpecifier:(NSScriptObjectSpecifier *)objectSpecifier;

Parameters
objectSpecifier

An object specifier to be evaluated.

Return Value
The specified object or objects in the receiving container.

This method might successfully return an object, an array of objects, or nil, depending on the kind of object
specifier. Because nil is a valid return value, failure is signaled by invoking the object specifier’s
setEvaluationError: method before returning.

Discussion
You can override this method to customize the evaluation of object specifiers without requiring that the
scripting container make up indexes for contained objects that don't naturally have indexes (as can be the
case if you implement indicesOfObjectsByEvaluatingObjectSpecifier: instead).

Your override of this method doesn't need to also invoke any of the NSScriptCommand error signaling
methods, though it can, to record very specific information. The NSUnknownKeySpecifierError and
NSInvalidIndexSpecifierError numbers are special, in that Cocoa may continue evaluating an outer
specifier if they're encountered, for the convenience of scripters.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSObjectScripting.h

setScriptingProperties:
Given an NSString-keyed dictionary, sets one or more scriptable properties of the receiver.

- (void)setScriptingProperties:(NSDictionary *)properties

Parameters
properties

A dictionary containing one or more scriptable properties of the receiver. The valid keys for the
dictionary include the keys for non-ReadOnly Attributes and ToOneRelationships in the .scriptSuite
property list entries for the object's class and its scripting superclasses, and no others. The values of
the dictionary are Objective-C objects.

Instance Methods 55
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Discussion
Invokers of this method must have already done any necessary validation to ensure that the properties
dictionary includes nothing but entries for declared, settable, Attributes and ToOneRelationships.
Implementations of this method are not expected to check the validity of keys in the passed-in dictionary,
but must be able to accept dictionaries that do not contain entries for every scriptable property.
Implementations of this method must perform type checking on the dictionary values.

Availability
Available in Mac OS X v10.2 and later.

See Also
– scriptingProperties (page 54)

Declared In
NSObjectScripting.h

toManyRelationshipKeys
Returns array containing the keys for the to-many relationship properties of the receiver.

- (NSArray *)toManyRelationshipKeys

Return Value
An array containing the keys for the to-many relationship properties of the receiver (if any).

Discussion
NSObject’s implementation simply invokes [[self classDescription] toManyRelationshipKeys].
To make use of the default implementation, you must therefore implement and register a suitable class
description—see NSClassDescription.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributeKeys (page 29)
– classDescription (page 31)
– inverseForRelationshipKey: (page 42)
– toOneRelationshipKeys (page 56)

Declared In
NSClassDescription.h

toOneRelationshipKeys
Returns the keys for the to-one relationship properties of the receiver, if any.

- (NSArray *)toOneRelationshipKeys

Return Value
An array containing the keys for the to-one relationship properties of the receiver.

56 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

Discussion
NSObject’s implementation of toOneRelationshipKeys simply invokes [[self classDescription]
toOneRelationshipKeys]. To make use of the default implementation, you must therefore implement
and register a suitable class description—see NSClassDescription.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributeKeys (page 29)
– classDescription (page 31)
– toManyRelationshipKeys (page 56)
– inverseForRelationshipKey: (page 42)

Declared In
NSClassDescription.h

Instance Methods 57
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

58 Instance Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

NSObject Class Reference

A method identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.5

poseAsClass:
Causes the receiving class to pose as a specified superclass. (Deprecated in Mac OS X v10.5.)

+ (void)poseAsClass:(Class)aClass

Parameters
aClass

A superclass of the receiver.

Discussion
The receiver takes the place of aClass in the inheritance hierarchy; all messages sent to aClass will actually
be delivered to the receiver. The receiver must be defined as a subclass of aClass. It can’t declare any new
instance variables of its own, but it can define new methods and override methods defined in aClass. The
poseAsClass: message should be sent before any messages are sent to aClass and before any instances
of aClass are created.

This facility allows you to add methods to an existing class by defining them in a subclass and having the
subclass substitute for the existing class. The new method definitions will be inherited by all subclasses of
the superclass. Care should be taken to ensure that the inherited methods do not generate errors.

A subclass that poses as its superclass still inherits from the superclass. Therefore, none of the functionality
of the superclass is lost in the substitution. Posing doesn’t alter the definition of either class.

Posing is useful as a debugging tool, but category definitions are a less complicated and more efficient way
of augmenting existing classes. Posing admits only two possibilities that are absent from categories:

 ■ A method defined by a posing class can override any method defined by its superclass. Methods defined
in categories can replace methods defined in the class proper, but they cannot reliably replace methods
defined in other categories. If two categories define the same method, one of the definitions will prevail,
but there’s no guarantee which one.

 ■ A method defined by a posing class can, through a message to super, incorporate the superclass method
it overrides. A method defined in a category can replace a method defined elsewhere by the class, but
it can’t incorporate the method it replaces.

Special Considerations

Posing is deprecated in Mac OS X v10.5. The poseAsClass: method is not available in 64-bit applications
on Mac OS X v10.5.

Deprecated in Mac OS X v10.5 59
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated NSObject Methods

Availability
Available in Mac OS X v10.0.
Deprecated in Mac OS X v10.5.

Declared In
NSObject.h

60 Deprecated in Mac OS X v10.5
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated NSObject Methods

This table describes the changes to NSObject Class Reference.

NotesDate

Added note about managing scarce resources in dealloc.2009-02-04

Added special consideration for +initialize method.2008-10-15

Updated sample code in +resolveInstanceMethod: to properly call super.2008-06-09

Updated the descriptions of the methods
copyScriptingValue:forKey:withProperties: and
newScriptingObjectOfClass:forValueForKey: withContentsValue:properties:.

2008-03-11

Updated the description of the load method.2008-02-08

Updated descriptions for the performSelector methods.2007-12-11

Included new API for Mac OS X v10.5.2007-07-07

The following new methods have been added for use with Cocoa scripting:
copyScriptingValue:forKey:withProperties: (page 34),
newScriptingObjectOfClass:forValueForKey:withContentsValue:properties: (page
44), and scriptingValueForSpecifier: (page 55).

Augmented the description of dealloc and version.2006-06-28

First publication of this content as a separate document.2006-05-23

61
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

62
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

alloc class method 14
allocWithZone: class method 14
attributeKeys instance method 29
awakeAfterUsingCoder: instance method 30

C

cancelPreviousPerformRequestsWithTarget: class
method 15

cancelPreviousPerformRequestsWithTarget:selector:
object: class method 16

class class method 17
classCode instance method 31
classDescription instance method 31
classFallbacksForKeyedArchiver class method 17
classForArchiver instance method 32
classForCoder instance method 32
classForKeyedArchiver instance method 32
classForKeyedUnarchiver class method 18
classForPortCoder instance method 33
className instance method 33
conformsToProtocol: class method 18
copy instance method 34
copyScriptingValue:forKey:withProperties:

instance method 34
copyWithZone: class method 19

D

dealloc instance method 35
description class method 19
doesNotRecognizeSelector: instance method 36

F

finalize instance method 37
forwardInvocation: instance method 38

I

init instance method 40
initialize class method 20
instanceMethodForSelector: class method 21
instanceMethodSignatureForSelector: class

method 22
instancesRespondToSelector: class method 23
inverseForRelationshipKey: instance method 42
isSubclassOfClass: class method 23

L

load class method 23

M

methodForSelector: instance method 42
methodSignatureForSelector: instance method 43
mutableCopy instance method 44
mutableCopyWithZone: class method 24

N

new class method 25
newScriptingObjectOfClass:forValueForKey:

withContentsValue:properties: instance
method 44

63
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Index

P

performSelector:onThread:withObject:waitUntilDone:
instance method 45

performSelector:onThread:withObject:waitUntilDone:
modes: instance method 46

performSelector:withObject:afterDelay: instance
method 47

performSelector:withObject:afterDelay:inModes:
instance method 48

performSelectorInBackground:withObject:
instance method 49

performSelectorOnMainThread:withObject:
waitUntilDone: instance method 50

performSelectorOnMainThread:withObject:
waitUntilDone:modes: instance method 51

poseAsClass: class method 59

R

replacementObjectForArchiver: instance method
52

replacementObjectForCoder: instance method 53
replacementObjectForKeyedArchiver: instance

method 53
replacementObjectForPortCoder: instance method

54
resolveClassMethod: class method 26
resolveInstanceMethod: class method 26

S

scriptingProperties instance method 54
scriptingValueForSpecifier: instance method 55
setScriptingProperties: instance method 55
setVersion: class method 27
superclass class method 28

T

toManyRelationshipKeys instance method 56
toOneRelationshipKeys instance method 56

V

version class method 28

64
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

INDEX

	NSObject Class Reference
	Contents
	NSObject Class Reference
	Overview
	Selectors

	Adopted Protocols
	Tasks
	Initializing a Class
	Creating, Copying, and Deallocating Objects
	Identifying Classes
	Testing Class Functionality
	Testing Protocol Conformance
	Obtaining Information About Methods
	Describing Objects
	Posing
	Sending Messages
	Forwarding Messages
	Dynamically Resolving Methods
	Error Handling
	Archiving
	Working with Class Descriptions
	Scripting

	Class Methods
	alloc
	allocWithZone:
	cancelPreviousPerformRequestsWithTarget:
	cancelPreviousPerformRequestsWithTarget:selector:object:
	class
	classFallbacksForKeyedArchiver
	classForKeyedUnarchiver
	conformsToProtocol:
	copyWithZone:
	description
	initialize
	instanceMethodForSelector:
	instanceMethodSignatureForSelector:
	instancesRespondToSelector:
	isSubclassOfClass:
	load
	mutableCopyWithZone:
	new
	resolveClassMethod:
	resolveInstanceMethod:
	setVersion:
	superclass
	version

	Instance Methods
	attributeKeys
	awakeAfterUsingCoder:
	classCode
	classDescription
	classForArchiver
	classForCoder
	classForKeyedArchiver
	classForPortCoder
	className
	copy
	copyScriptingValue:forKey:withProperties:
	dealloc
	doesNotRecognizeSelector:
	finalize
	forwardInvocation:
	init
	inverseForRelationshipKey:
	methodForSelector:
	methodSignatureForSelector:
	mutableCopy
	newScriptingObjectOfClass:forValueForKey:withContentsValue:properties:
	performSelector:onThread:withObject:waitUntilDone:
	performSelector:onThread:withObject:waitUntilDone:modes:
	performSelector:withObject:afterDelay:
	performSelector:withObject:afterDelay:inModes:
	performSelectorInBackground:withObject:
	performSelectorOnMainThread:withObject:waitUntilDone:
	performSelectorOnMainThread:withObject:waitUntilDone:modes:
	replacementObjectForArchiver:
	replacementObjectForCoder:
	replacementObjectForKeyedArchiver:
	replacementObjectForPortCoder:
	scriptingProperties
	scriptingValueForSpecifier:
	setScriptingProperties:
	toManyRelationshipKeys
	toOneRelationshipKeys

	Appendix A: Deprecated NSObject Methods
	Deprecated in Mac OS X v10.5
	poseAsClass:

	Revision History
	Index
	A
	C
	D
	F
	I
	L
	M
	N
	P
	R
	S
	T
	V

