
NSTask Class Reference
Cocoa > Process Management

2007-01-31

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSTask Class Reference 5

Overview 5
Tasks 5

Creating and Initializing an NSTask Object 5
Returning Task Information 6
Running and Stopping a Task 6
Querying the Task State 6
Configuring an NSTask Object 7

Class Methods 7
launchedTaskWithLaunchPath:arguments: 7

Instance Methods 8
arguments 8
currentDirectoryPath 8
environment 8
init 9
interrupt 9
isRunning 10
launch 10
launchPath 10
processIdentifier 11
resume 11
setArguments: 11
setCurrentDirectoryPath: 12
setEnvironment: 12
setLaunchPath: 13
setStandardError: 13
setStandardInput: 14
setStandardOutput: 14
standardError 15
standardInput 15
standardOutput 15
suspend 16
terminate 16
terminationStatus 17
waitUntilExit 17

Notifications 18
NSTaskDidTerminateNotification 18

3
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History 19

Index 21

4
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Interacting with the Operating System

Declared in NSTask.h

Related sample code Moriarity
MP3 Player

Overview

Using the NSTask class, your program can run another program as a subprocess and can monitor that
program’s execution. An NSTask object creates a separate executable entity; it differs from NSThread in
that it does not share memory space with the process that creates it.

A task operates within an environment defined by the current values for several items: the current directory,
standard input, standard output, standard error, and the values of any environment variables. By default, an
NSTask object inherits its environment from the process that launches it. If there are any values that should
be different for the task, for example, if the current directory should change, you must change the value
before you launch the task. A task’s environment cannot be changed while it is running.

An NSTask object can only be run once. Subsequent attempts to run the task raise an error.

Tasks

Creating and Initializing an NSTask Object

+ launchedTaskWithLaunchPath:arguments: (page 7)
Creates and launches a task with a specified executable and arguments.

– init (page 9)
Returns an initialized NSTask object with the environment of the current process.

Overview 5
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

Returning Task Information

– arguments (page 8)
Returns the arguments used when the receiver was launched.

– currentDirectoryPath (page 8)
Returns the task’s current directory.

– environment (page 8)
Returns a dictionary of variables for the environment from which the receiver was launched.

– launchPath (page 10)
Returns the path of the receiver’s executable.

– processIdentifier (page 11)
Returns the receiver’s process identifier.

– standardError (page 15)
Returns the standard error file used by the receiver.

– standardInput (page 15)
Returns the standard input file used by the receiver.

– standardOutput (page 15)
Returns the standard output file used by the receiver.

Running and Stopping a Task

– interrupt (page 9)
Sends an interrupt signal to the receiver and all of its subtasks.

– launch (page 10)
Launches the task represented by the receiver.

– resume (page 11)
Resumes execution of the receiver task that had previously been suspended with a suspend (page
16) message.

– suspend (page 16)
Suspends execution of the receiver task.

– terminate (page 16)
Sends a terminate signal to the receiver and all of its subtasks.

– waitUntilExit (page 17)
Block until the receiver is finished.

Querying the Task State

– isRunning (page 10)
Returns whether the receiver is still running.

– terminationStatus (page 17)
Returns the exit status returned by the receiver’s executable.

6 Tasks
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

Configuring an NSTask Object

– setArguments: (page 11)
Sets the command arguments that should be used to launch the executable.

– setCurrentDirectoryPath: (page 12)
Sets the current directory for the receiver.

– setEnvironment: (page 12)
Sets the environment for the receiver.

– setLaunchPath: (page 13)
Sets the receiver’s executable.

– setStandardError: (page 13)
Sets the standard error for the receiver.

– setStandardInput: (page 14)
Sets the standard input for the receiver.

– setStandardOutput: (page 14)
Sets the standard output for the receiver.

Class Methods

launchedTaskWithLaunchPath:arguments:
Creates and launches a task with a specified executable and arguments.

+ (NSTask *)launchedTaskWithLaunchPath:(NSString *)path arguments:(NSArray
*)arguments

Parameters
path

The path to the executable.

arguments
An array of NSString objects that supplies the arguments to the task. If arguments is nil, an
NSInvalidArgumentException is raised.

Discussion
The task inherits its environment from the process that invokes this method.

The NSTask object converts both path and the strings in arguments to appropriate C-style strings (using
fileSystemRepresentation) before passing them to the task via argv[]) . The strings in arguments
do not undergo shell expansion, so you do not need to do special quoting, and shell variables, such as $PWD,
are not resolved.

Availability
Available in Mac OS X v10.0 and later.

See Also
– init (page 9)

Class Methods 7
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

Declared In
NSTask.h

Instance Methods

arguments
Returns the arguments used when the receiver was launched.

- (NSArray *)arguments

Return Value
An array of NSString objects containing the arguments used when the receiver was launched.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setArguments: (page 11)

Declared In
NSTask.h

currentDirectoryPath
Returns the task’s current directory.

- (NSString *)currentDirectoryPath

Return Value
The task's current working directory.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCurrentDirectoryPath: (page 12)

Declared In
NSTask.h

environment
Returns a dictionary of variables for the environment from which the receiver was launched.

- (NSDictionary *)environment

Return Value
A dictionary of variables for the environment from which the receiver was launched. The dictionary keys are
the environment variable names.

8 Instance Methods
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEnvironment: (page 12)
– environment (NSProcessInfo)

Declared In
NSTask.h

init
Returns an initialized NSTask object with the environment of the current process.

- (id)init

Return Value
An initialized NSTask object with the environment of the current process.

Discussion
If you need to modify the environment of a task, use alloc and init, and then set up the environment before
launching the new task. Otherwise, just use the class method
launchedTaskWithLaunchPath:arguments: (page 7) to create and run the task.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

interrupt
Sends an interrupt signal to the receiver and all of its subtasks.

- (void)interrupt

Discussion
If the task terminates as a result, which is the default behavior, an NSTaskDidTerminateNotification (page
18) gets sent to the default notification center. This method has no effect if the receiver was already launched
and has already finished executing. If the receiver has not been launched yet, this method raises an
NSInvalidArgumentException.

It is not always possible to interrupt the receiver because it might be ignoring the interrupt signal. interrupt
sends SIGINT.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

Instance Methods 9
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

isRunning
Returns whether the receiver is still running.

- (BOOL)isRunning

Return Value
YES if the receiver is still running, otherwise NO. NOmeans either the receiver could not run or it has terminated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– launch (page 10)
– terminate (page 16)
– waitUntilExit (page 17)

Declared In
NSTask.h

launch
Launches the task represented by the receiver.

- (void)launch

Discussion
Raises an NSInvalidArgumentException if the launch path has not been set or is invalid or if it fails to
create a process.

Availability
Available in Mac OS X v10.0 and later.

See Also
– launchPath (page 10)
– setLaunchPath: (page 13)
– terminate (page 16)
– waitUntilExit (page 17)

Declared In
NSTask.h

launchPath
Returns the path of the receiver’s executable.

- (NSString *)launchPath

Return Value
The path of the receiver’s executable.

Availability
Available in Mac OS X v10.0 and later.

10 Instance Methods
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

See Also
+ launchedTaskWithLaunchPath:arguments: (page 7)
– setLaunchPath: (page 13)

Declared In
NSTask.h

processIdentifier
Returns the receiver’s process identifier.

- (int)processIdentifier

Return Value
The receiver’s process identifier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

resume
Resumes execution of the receiver task that had previously been suspended with a suspend (page 16)
message.

- (BOOL)resume

Return Value
YES if the receiver was able to resume execution, NO otherwise.

Discussion
If multiple suspend messages were sent to the receiver, an equal number of resume messages must be sent
before the task resumes execution.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

setArguments:
Sets the command arguments that should be used to launch the executable.

- (void)setArguments:(NSArray *)arguments

Parameters
arguments

An array of NSString objects that supplies the arguments to the task. If arguments is nil, an
NSInvalidArgumentException is raised.

Instance Methods 11
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

Discussion
The NSTask object converts both path and the strings in arguments to appropriate C-style strings (using
fileSystemRepresentation) before passing them to the task via argv[] . The strings in arguments do
not undergo shell expansion, so you do not need to do special quoting, and shell variables, such as $PWD,
are not resolved.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arguments (page 8)

Declared In
NSTask.h

setCurrentDirectoryPath:
Sets the current directory for the receiver.

- (void)setCurrentDirectoryPath:(NSString *)path

Parameters
path

The current directory for the task.

Discussion
If this method isn’t used, the current directory is inherited from the process that created the receiver. This
method raises an NSInvalidArgumentException if the receiver has already been launched.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentDirectoryPath (page 8)

Declared In
NSTask.h

setEnvironment:
Sets the environment for the receiver.

- (void)setEnvironment:(NSDictionary *)environmentDictionary

Parameters
environmentDictionary

A dictionary of environment variable values whose keys are the variable names.

Discussion
If this method isn’t used, the environment is inherited from the process that created the receiver. This method
raises an NSInvalidArgumentException if the receiver has already been launched.

Availability
Available in Mac OS X v10.0 and later.

12 Instance Methods
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

See Also
– environment (page 8)

Declared In
NSTask.h

setLaunchPath:
Sets the receiver’s executable.

- (void)setLaunchPath:(NSString *)path

Parameters
path

The path to the executable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– launchPath (page 10)

Declared In
NSTask.h

setStandardError:
Sets the standard error for the receiver.

- (void)setStandardError:(id)file

Parameters
file

The standard error for the receiver, which can be either an NSFileHandle or an NSPipe object.

Discussion
If file is an NSPipe object, launching the receiver automatically closes the write end of the pipe in the
current task. Don’t create a handle for the pipe and pass that as the argument, or the write end of the pipe
won’t be closed automatically.

If this method isn’t used, the standard error is inherited from the process that created the receiver. This
method raises an NSInvalidArgumentException if the receiver has already been launched.

Availability
Available in Mac OS X v10.0 and later.

See Also
– standardError (page 15)

Declared In
NSTask.h

Instance Methods 13
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

setStandardInput:
Sets the standard input for the receiver.

- (void)setStandardInput:(id)file

Parameters
file

The standard input for the receiver, which can be either an NSFileHandle or an NSPipe object.

Discussion
If file is an NSPipe object, launching the receiver automatically closes the read end of the pipe in the
current task. Don’t create a handle for the pipe and pass that as the argument, or the read end of the pipe
won’t be closed automatically.

If this method isn’t used, the standard input is inherited from the process that created the receiver. This
method raises an NSInvalidArgumentException if the receiver has already been launched.

Availability
Available in Mac OS X v10.0 and later.

See Also
– standardInput (page 15)

Declared In
NSTask.h

setStandardOutput:
Sets the standard output for the receiver.

- (void)setStandardOutput:(id)file

Parameters
file

The standard output for the receiver, which can be either an NSFileHandle or an NSPipe object.

Discussion
If file is an NSPipe object, launching the receiver automatically closes the write end of the pipe in the
current task. Don’t create a handle for the pipe and pass that as the argument, or the write end of the pipe
won’t be closed automatically.

If this method isn’t used, the standard output is inherited from the process that created the receiver. This
method raises an NSInvalidArgumentException if the receiver has already been launched.

Availability
Available in Mac OS X v10.0 and later.

See Also
– standardOutput (page 15)

Declared In
NSTask.h

14 Instance Methods
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

standardError
Returns the standard error file used by the receiver.

- (id)standardError

Return Value
The standard error file used by the receiver.

Discussion
Standard error is where all diagnostic messages are sent. The object returned is either an NSFileHandle or
an NSPipe instance, depending on what type of object was passed to setStandardError: (page 13).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setStandardError: (page 13)

Declared In
NSTask.h

standardInput
Returns the standard input file used by the receiver.

- (id)standardInput

Return Value
The standard input file used by the receiver.

Discussion
Standard input is where the receiver takes its input from unless otherwise specified. The object returned is
either an NSFileHandle or an NSPipe instance, depending on what type of object was passed to the
setStandardInput: (page 14) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setStandardInput: (page 14)

Declared In
NSTask.h

standardOutput
Returns the standard output file used by the receiver.

- (id)standardOutput

Return Value
The standard output file used by the receiver.

Instance Methods 15
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

Discussion
Standard output is where the receiver displays its output. The object returned is either an NSFileHandle
or an NSPipe instance, depending on what type of object was passed to the setStandardOutput: (page
14) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setStandardOutput: (page 14)

Declared In
NSTask.h

suspend
Suspends execution of the receiver task.

- (BOOL)suspend

Return Value
YES if the receiver was successfully suspended, NO otherwise.

Discussion
Multiple suspend messages can be sent, but they must be balanced with an equal number of resume (page
11) messages before the task resumes execution.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

terminate
Sends a terminate signal to the receiver and all of its subtasks.

- (void)terminate

Discussion
If the task terminates as a result, which is the default behavior, an NSTaskDidTerminateNotification (page
18) gets sent to the default notification center. This method has no effect if the receiver was already launched
and has already finished executing. If the receiver has not been launched yet, this method raises an
NSInvalidArgumentException.

It is not always possible to terminate the receiver because it might be ignoring the terminate signal. terminate
sends SIGTERM.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ launchedTaskWithLaunchPath:arguments: (page 7)

16 Instance Methods
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

– launch (page 10)
– terminationStatus (page 17)
– waitUntilExit (page 17)

Declared In
NSTask.h

terminationStatus
Returns the exit status returned by the receiver’s executable.

- (int)terminationStatus

Return Value
The exit status returned by the receiver’s executable.

Discussion
Each task defines and documents how its return value should be interpreted. For example, many commands
return 0 if they complete successfully or an error code if they don’t. You’ll need to look at the documentation
for that task to learn what values it returns under what circumstances.

This method raises an NSInvalidArgumentException if the receiver is still running. Verify that the receiver
is not running before you use it.

if (![aTask isRunning]) {
 int status = [aTask terminationStatus];
 if (status == ATASK_SUCCESS_VALUE)
 NSLog(@"Task succeeded.");
 else
 NSLog(@"Task failed.");
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– terminate (page 16)
– waitUntilExit (page 17)

Declared In
NSTask.h

waitUntilExit
Block until the receiver is finished.

- (void)waitUntilExit

Discussion
This method first checks to see if the receiver is still running using isRunning (page 10). Then it polls the
current run loop using NSDefaultRunLoopMode until the task completes.

[aTask launch];

Instance Methods 17
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

[aTask waitUntilExit];
int status = [aTask terminationStatus];

if (status == ATASK_SUCCESS_VALUE)
 NSLog(@"Task succeeded.");
else
 NSLog(@"Task failed.");

Availability
Available in Mac OS X v10.0 and later.

See Also
– launch (page 10)
– terminate (page 16)

Declared In
NSTask.h

Notifications

NSTaskDidTerminateNotification
Posted when the task has stopped execution. This notification can be posted either when the task has exited
normally or as a result of terminate (page 16) being sent to the NSTask object. If the NSTask object gets
released, however, this notification will not get sent, as the port the message would have been sent on was
released as part of the task release. The observer method can use terminationStatus (page 17) to
determine why the task died. See “Ending an NSTask” for an example.

The notification object is the NSTask object that was terminated. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

18 Notifications
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

NSTask Class Reference

This table describes the changes to NSTask Class Reference.

NotesDate

Corrected the description for the setStandardInput: method. Updated for Mac
OS X v10.5.

2007-01-31

First publication of this content as a separate document.2006-05-23

19
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

20
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

arguments instance method 8

C

currentDirectoryPath instance method 8

E

environment instance method 8

I

init instance method 9
interrupt instance method 9
isRunning instance method 10

L

launch instance method 10
launchedTaskWithLaunchPath:arguments: class

method 7
launchPath instance method 10

N

NSTaskDidTerminateNotification notification 18

P

processIdentifier instance method 11

R

resume instance method 11

S

setArguments: instance method 11
setCurrentDirectoryPath: instance method 12
setEnvironment: instance method 12
setLaunchPath: instance method 13
setStandardError: instance method 13
setStandardInput: instance method 14
setStandardOutput: instance method 14
standardError instance method 15
standardInput instance method 15
standardOutput instance method 15
suspend instance method 16

T

terminate instance method 16
terminationStatus instance method 17

W

waitUntilExit instance method 17

21
2007-01-31 | © 2007 Apple Inc. All Rights Reserved.

Index

	NSTask Class Reference
	Contents
	NSTask Class Reference
	Overview
	Tasks
	Creating and Initializing an NSTask Object
	Returning Task Information
	Running and Stopping a Task
	Querying the Task State
	Configuring an NSTask Object

	Class Methods
	launchedTaskWithLaunchPath:arguments:

	Instance Methods
	arguments
	currentDirectoryPath
	environment
	init
	interrupt
	isRunning
	launch
	launchPath
	processIdentifier
	resume
	setArguments:
	setCurrentDirectoryPath:
	setEnvironment:
	setLaunchPath:
	setStandardError:
	setStandardInput:
	setStandardOutput:
	standardError
	standardInput
	standardOutput
	suspend
	terminate
	terminationStatus
	waitUntilExit

	Notifications
	NSTaskDidTerminateNotification

	Revision History
	Index
	A
	C
	E
	I
	L
	N
	P
	R
	S
	T
	W

