
NSThread Class Reference
Cocoa > Process Management

2007-12-11

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

iPhone is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSThread Class Reference 5

Overview 5
Subclassing Notes 5

Tasks 6
Initializing an NSThread Object 6
Starting a Thread 6
Stopping a Thread 6
Determining the Thread’s Execution State 6
Working with the Main Thread 7
Querying the Environment 7
Working with Thread Properties 7
Working with Thread Priorities 7

Class Methods 8
callStackReturnAddresses 8
currentThread 8
detachNewThreadSelector:toTarget:withObject: 8
exit 9
isMainThread 10
isMultiThreaded 10
mainThread 10
setThreadPriority: 11
sleepForTimeInterval: 11
sleepUntilDate: 12
threadPriority 12

Instance Methods 13
cancel 13
init 13
initWithTarget:selector:object: 14
isCancelled 15
isExecuting 15
isFinished 15
isMainThread 16
main 16
name 16
setName: 17
setStackSize: 17
stackSize 18
start 18
threadDictionary 18

Notifications 19
NSDidBecomeSingleThreadedNotification 19

3
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThreadWillExitNotification 19
NSWillBecomeMultiThreadedNotification 19

Document Revision History 21

Index 23

4
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Threading Programming Guide

Declared in NSThread.h

Related sample code QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
SimpleThreads
Vertex Optimization

Overview

An NSThread object controls a thread of execution. Use this class when you want to have an Objective-C
method run in its own thread of execution. Threads are especially useful when you need to perform a lengthy
task, but don’t want it to block the execution of the rest of the application. In particular, you can use threads
to avoid blocking the main thread of the application, which handles user interface and event-related actions.
Threads can also be used to divide a large job into several smaller jobs, which can lead to performance
increases on multi-core computers.

Prior to Mac OS X v10.5, the only way to start a new thread is to use the
detachNewThreadSelector:toTarget:withObject: (page 8) method. In Mac OS X v10.5 and later,
you can create instances of NSThread and start them at a later time using the start (page 18) method.

In Mac OS Xv10.5, the NSThread class supports semantics similar to those of NSOperation for monitoring
the runtime condition of a thread. You can use these semantics to cancel the execution of a thread or
determine if the thread is still executing or has finished its task. Canceling a thread requires support from
your thread code; see the description for cancel (page 13) for more information.

Subclassing Notes

In Mac OS X v10.5 and later, you can subclass NSThread and override the main method to implement your
thread’s main entry point. If you override main, you do not need to invoke the inherited behavior by calling
super.

Overview 5
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Tasks

Initializing an NSThread Object

– init (page 13)
Returns an initialized NSThread object.

– initWithTarget:selector:object: (page 14)
Returns an NSThread object initialized with the given arguments.

Starting a Thread

+ detachNewThreadSelector:toTarget:withObject: (page 8)
Detaches a new thread and uses the specified selector as the thread entry point.

– start (page 18)
Starts the receiver.

– main (page 16)
The main entry point routine for the thread.

Stopping a Thread

+ sleepUntilDate: (page 12)
Blocks the current thread until the time specified.

+ sleepForTimeInterval: (page 11)
Sleeps the thread for a given time interval.

+ exit (page 9)
Terminates the current thread.

– cancel (page 13)
Changes the cancelled state of the receiver to indicate that it should exit.

Determining the Thread’s Execution State

– isExecuting (page 15)
Returns a Boolean value that indicates whether the receiver is executing.

– isFinished (page 15)
Returns a Boolean value that indicates whether the receiver has finished execution.

– isCancelled (page 15)
Returns a Boolean value that indicates whether the receiver is cancelled.

6 Tasks
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Working with the Main Thread

+ isMainThread (page 10)
Returns a Boolean value that indicates whether the current thread is the main thread.

– isMainThread (page 16)
Returns a Boolean value that indicates whether the receiver is the main thread.

+ mainThread (page 10)
Returns the NSThread object representing the main thread.

Querying the Environment

+ isMultiThreaded (page 10)
Returns whether the application is multithreaded.

+ currentThread (page 8)
Returns the thread object representing the current thread of execution.

+ callStackReturnAddresses (page 8)
Returns an array containing the call stack return addresses.

Working with Thread Properties

– threadDictionary (page 18)
Returns the thread object's dictionary.

– name (page 16)
Returns the name of the receiver.

– setName: (page 17)
Sets the name of the receiver.

– stackSize (page 18)
Returns the stack size of the receiver.

– setStackSize: (page 17)
Sets the stack size of the receiver.

Working with Thread Priorities

+ threadPriority (page 12)
Returns the current thread’s priority.

+ setThreadPriority: (page 11)
Sets the current thread’s priority.

Tasks 7
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Class Methods

callStackReturnAddresses
Returns an array containing the call stack return addresses.

+ (NSArray *)callStackReturnAddresses

Return Value
An array containing the call stack return addresses. This value is nil by default.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSThread.h

currentThread
Returns the thread object representing the current thread of execution.

+ (NSThread *)currentThread

Return Value
A thread object representing the current thread of execution.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ detachNewThreadSelector:toTarget:withObject: (page 8)

Declared In
NSThread.h

detachNewThreadSelector:toTarget:withObject:
Detaches a new thread and uses the specified selector as the thread entry point.

+ (void)detachNewThreadSelector:(SEL)aSelector toTarget:(id)aTarget
withObject:(id)anArgument

Parameters
aSelector

The selector for the message to send to the target. This selector must take only one argument and
must not have a return value.

aTarget
The object that will receive the message aSelector on the new thread.

anArgument
The single argument passed to the target. May be nil.

8 Class Methods
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Discussion
For non garbage-collected applications, the method aSelector is responsible for setting up an autorelease
pool for the newly detached thread and freeing that pool before it exits. Garbage-collected applications do
not need to create an autorelease pool.

The objects aTarget and anArgument are retained during the execution of the detached thread, then
released. The detached thread is exited (using the exit (page 9) class method) as soon as aTarget has
completed executing the aSelector method.

If this thread is the first thread detached in the application, this method posts the
NSWillBecomeMultiThreadedNotification (page 19) with object nil to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentThread (page 8)
+ isMultiThreaded (page 10)
– start (page 18)

Related Sample Code
OpenGLCaptureToMovie
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
SharedMemory
SimpleThreads

Declared In
NSThread.h

exit
Terminates the current thread.

+ (void)exit

Discussion
This method uses the currentThread (page 8) class method to access the current thread. Before exiting
the thread, this method posts the NSThreadWillExitNotification (page 19) with the thread being
exited to the default notification center. Because notifications are delivered synchronously, all observers of
NSThreadWillExitNotification (page 19) are guaranteed to receive the notification before the thread
exits.

Invoking this method should be avoided as it does not give your thread a chance to clean up any resources
it allocated during its execution.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentThread (page 8)
+ sleepUntilDate: (page 12)

Class Methods 9
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Related Sample Code
SimpleThreads
Vertex Optimization

Declared In
NSThread.h

isMainThread
Returns a Boolean value that indicates whether the current thread is the main thread.

+ (BOOL)isMainThread

Return Value
YES if the current thread is the main thread, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ mainThread (page 10)

Declared In
NSThread.h

isMultiThreaded
Returns whether the application is multithreaded.

+ (BOOL)isMultiThreaded

Return Value
YES if the application is multithreaded, NO otherwise.

Discussion
An application is considered multithreaded if a thread was ever detached from the main thread using either
detachNewThreadSelector:toTarget:withObject: (page 8) or start (page 18). If you detached a
thread in your application using a non-Cocoa API, such as the POSIX or Multiprocessing Services APIs, this
method could still return NO. The detached thread does not have to be currently running for the application
to be considered multithreaded—this method only indicates whether a single thread has been spawned.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSThread.h

mainThread
Returns the NSThread object representing the main thread.

+ (NSThread *)mainThread

10 Class Methods
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Return Value
The NSThread object representing the main thread.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isMainThread (page 16)

Declared In
NSThread.h

setThreadPriority:
Sets the current thread’s priority.

+ (BOOL)setThreadPriority:(double)priority

Parameters
priority

The new priority, specified with a floating point number from 0.0 to 1.0, where 1.0 is highest priority.

Return Value
YES if the priority assignment succeeded, NO otherwise.

Discussion
The priorities in this range are mapped to the operating system's priority values.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ threadPriority (page 12)

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
Vertex Optimization

Declared In
NSThread.h

sleepForTimeInterval:
Sleeps the thread for a given time interval.

+ (void)sleepForTimeInterval:(NSTimeInterval)ti

Class Methods 11
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Parameters
ti

The duration of the sleep.

Discussion
No run loop processing occurs while the thread is blocked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSThread.h

sleepUntilDate:
Blocks the current thread until the time specified.

+ (void)sleepUntilDate:(NSDate *)aDate

Parameters
aDate

The time at which to resume processing.

Discussion
No run loop processing occurs while the thread is blocked.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentThread (page 8)
+ exit (page 9)

Related Sample Code
Core Data HTML Store
SharedMemory
SimpleThreads
TrivialThreads

Declared In
NSThread.h

threadPriority
Returns the current thread’s priority.

+ (double)threadPriority

Return Value
The current thread’s priority, which is specified by a floating point number from 0.0 to 1.0, where 1.0 is highest
priority.

12 Class Methods
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Discussion
The priorities in this range are mapped to the operating system's priority values. A “typical” thread priority
might be 0.5, but because the priority is determined by the kernel, there is no guarantee what this value
actually will be.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ setThreadPriority: (page 11)

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
NSThread.h

Instance Methods

cancel
Changes the cancelled state of the receiver to indicate that it should exit.

- (void)cancel

Discussion
The semantics of this method are the same as those used for the NSOperation object. This method sets
state information in the receiver that is then reflected by the isCancelled method. Threads that support
cancellation should periodically call the isCancelled method to determine if the thread has in fact been
cancelled, and exit if it has been.

For more information about cancellation and operation objects, see NSOperation Class Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isCancelled (page 15)

Declared In
NSThread.h

init
Returns an initialized NSThread object.

- (id)init

Instance Methods 13
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Return Value
An initialized NSThread object.

Discussion
This is the designated initializer for NSThread.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithTarget:selector:object: (page 14)
– start (page 18)

Declared In
NSThread.h

initWithTarget:selector:object:
Returns an NSThread object initialized with the given arguments.

- (id)initWithTarget:(id)target
selector:(SEL)selector
object:(id)argument

Parameters
target

The object to which the message specified by selector is sent.

selector
The selector for the message to send to target. This selector must take only one argument and must
not have a return value.

argument
The single argument passed to the target. May be nil.

Return Value
An NSThread object initialized with the given arguments.

Discussion
For non garbage-collected applications, the method selector is responsible for setting up an autorelease
pool for the newly detached thread and freeing that pool before it exits. Garbage-collected applications do
not need to create an autorelease pool.

The objects target and argument are retained during the execution of the detached thread. They are
released when the thread finally exits.

Availability
Available in Mac OS X v10.5 and later.

See Also
– init (page 13)
– start (page 18)

Declared In
NSThread.h

14 Instance Methods
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

isCancelled
Returns a Boolean value that indicates whether the receiver is cancelled.

- (BOOL)isCancelled

Return Value
YES if the receiver has been cancelled, otherwise NO.

Discussion
If your thread supports cancellation, it should call this method periodically and exit if it ever returns YES.

Availability
Available in Mac OS X v10.5 and later.

See Also
– cancel (page 13)
– isExecuting (page 15)
– isFinished (page 15)

Declared In
NSThread.h

isExecuting
Returns a Boolean value that indicates whether the receiver is executing.

- (BOOL)isExecuting

Return Value
YES if the receiver is executing, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isCancelled (page 15)
– isFinished (page 15)

Declared In
NSThread.h

isFinished
Returns a Boolean value that indicates whether the receiver has finished execution.

- (BOOL)isFinished

Return Value
YES if the receiver has finished execution, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 15
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

See Also
– isCancelled (page 15)
– isExecuting (page 15)

Declared In
NSThread.h

isMainThread
Returns a Boolean value that indicates whether the receiver is the main thread.

- (BOOL)isMainThread

Return Value
YES if the receiver is the main thread, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSThread.h

main
The main entry point routine for the thread.

- (void)main

Discussion
The default implementation of this method takes the target and selector used to initialize the receiver and
invokes the selector on the specified target. If you subclass NSThread, you can override this method and
use it to implement the main body of your thread instead. If you do so, you do not need to invoke super.

You should never invoke this method directly. You should always start your thread by invoking the start
method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– start (page 18)

Declared In
NSThread.h

name
Returns the name of the receiver.

- (NSString *)name

16 Instance Methods
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Return Value
The name of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setName: (page 17)

Declared In
NSThread.h

setName:
Sets the name of the receiver.

- (void)setName:(NSString *)n

Parameters
n

The name for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– name (page 16)

Declared In
NSThread.h

setStackSize:
Sets the stack size of the receiver.

- (void)setStackSize:(NSUInteger)s

Parameters
s

The stack size for the receiver. This value must be a multiple of 4KB.

Discussion
You must call this method before starting your thread. Setting the stack size after the thread has started
changes the attribute size (which is reflected by the stackSize (page 18) method), but it does not affect
the actual number of pages set aside for the thread.

Availability
Available in Mac OS X v10.5 and later.

See Also
– stackSize (page 18)

Declared In
NSThread.h

Instance Methods 17
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

stackSize
Returns the stack size of the receiver.

- (NSUInteger)stackSize

Return Value
The stack size of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setStackSize: (page 17)

Declared In
NSThread.h

start
Starts the receiver.

- (void)start

Discussion
This method spawns the new thread and invokes the receiver’s main method on the new thread. If you
initialized the receiver with a target and selector, the default mainmethod invokes that selector automatically.

If this thread is the first thread detached in the application, this method posts the
NSWillBecomeMultiThreadedNotification (page 19) with object nil to the default notification center.

Availability
Available in Mac OS X v10.5 and later.

See Also
– init (page 13)
– initWithTarget:selector:object: (page 14)
– main (page 16)

Declared In
NSThread.h

threadDictionary
Returns the thread object's dictionary.

- (NSMutableDictionary *)threadDictionary

Return Value
The thread object's dictionary.

18 Instance Methods
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Discussion
You can use the returned dictionary to store thread-specific data. The thread dictionary is not used during
any manipulations of the NSThread object—it is simply a place where you can store any interesting data.
For example, Foundation uses it to store the thread’s default NSConnection and NSAssertionHandler
instances. You may define your own keys for the dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSThread.h

Notifications

NSDidBecomeSingleThreadedNotification
Not implemented.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSThread.h

NSThreadWillExitNotification
An NSThread object posts this notification when it receives the exit (page 9) message, before the thread
exits. Observer methods invoked to receive this notification execute in the exiting thread, before it exits.

The notification object is the exiting NSThread object. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSThread.h

NSWillBecomeMultiThreadedNotification
Posted when the first thread is detached from the current thread. The NSThread class posts this notification
at most once—the first time a thread is detached using
detachNewThreadSelector:toTarget:withObject: (page 8) or the start (page 18) method.
Subsequent invocations of those methods do not post this notification. Observers of this notification have
their notification method invoked in the main thread, not the new thread. The observer notification methods
always execute before the new thread begins executing.

This notification does not contain a notification object or a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Notifications 19
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

Declared In
NSThread.h

20 Notifications
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

NSThread Class Reference

This table describes the changes to NSThread Class Reference.

NotesDate

Corrected some erroneous method descriptions and updated the class discussion.2007-12-11

Updated for Mac OS X v10.5.2007-02-21

First publication of this content as a separate document.2006-05-23

21
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

22
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

C

callStackReturnAddresses class method 8
cancel instance method 13
currentThread class method 8

D

detachNewThreadSelector:toTarget:withObject:
class method 8

E

exit class method 9

I

init instance method 13
initWithTarget:selector:object: instance method

14
isCancelled instance method 15
isExecuting instance method 15
isFinished instance method 15
isMainThread class method 10
isMainThread instance method 16
isMultiThreaded class method 10

M

main instance method 16
mainThread class method 10

N

name instance method 16
NSDidBecomeSingleThreadedNotification

notification 19
NSThreadWillExitNotification notification 19
NSWillBecomeMultiThreadedNotification

notification 19

S

setName: instance method 17
setStackSize: instance method 17
setThreadPriority: class method 11
sleepForTimeInterval: class method 11
sleepUntilDate: class method 12
stackSize instance method 18
start instance method 18

T

threadDictionary instance method 18
threadPriority class method 12

23
2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

Index

	NSThread Class Reference
	Contents
	NSThread Class Reference
	Overview
	Subclassing Notes

	Tasks
	Initializing an NSThread Object
	Starting a Thread
	Stopping a Thread
	Determining the Thread’s Execution State
	Working with the Main Thread
	Querying the Environment
	Working with Thread Properties
	Working with Thread Priorities

	Class Methods
	callStackReturnAddresses
	currentThread
	detachNewThreadSelector:toTarget:withObject:
	exit
	isMainThread
	isMultiThreaded
	mainThread
	setThreadPriority:
	sleepForTimeInterval:
	sleepUntilDate:
	threadPriority

	Instance Methods
	cancel
	init
	initWithTarget:selector:object:
	isCancelled
	isExecuting
	isFinished
	isMainThread
	main
	name
	setName:
	setStackSize:
	stackSize
	start
	threadDictionary

	Notifications
	NSDidBecomeSingleThreadedNotification
	NSThreadWillExitNotification
	NSWillBecomeMultiThreadedNotification

	Revision History
	Index
	C
	D
	E
	I
	M
	N
	S
	T

