Foundation Framework Reference

Cocoa > Objective-C Language

¢

2008-06-27

.

[

Apple Inc.

© 1997, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Carbon, Cocoa,
eMac, Keychain, Mac, Mac OS, Macintosh,
Objective-C, Pages, Quartz, Safari, and Xcode
are trademarks of Apple Inc,, registered in the
United States and other countries.

Finder, iPhone, and Numbers are trademarks
of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction The Foundation Framework 37

Introduction 39

Part | Classes 45

Chapter 1 NSAffineTransform Class Reference 47

Overview 47
Adopted Protocols 48
Tasks 48

Class Methods 49
Instance Methods 49
Constants 57

Chapter 2 NSAppleEventDescriptor Class Reference 59

Overview 59
Adopted Protocols 60
Tasks 60

Class Methods 63
Instance Methods 68

Chapter 3 NSAppleEventManager Class Reference 83

Overview 83

Tasks 84

Class Methods 85
Instance Methods 85
Constants 90
Notifications 90

Chapter 4 NSAppleScript Class Reference 91

Overview 91
Adopted Protocols 92
Tasks 92

Instance Methods 93
Constants 96

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 5 NSArchiver Class Reference 97

Overview 97

Tasks 97

Class Methods 98
Instance Methods 100
Constants 103

Chapter 6 NSArray Class Reference 105

Overview 105
Adopted Protocols 107
Tasks 108

Class Methods 111
Instance Methods 116

Chapter 7 NSAssertionHandler Class Reference 143

Overview 143

Tasks 143

Class Methods 144
Instance Methods 144

Chapter 8 NSAttributedString Class Reference 147

Overview 147
Adopted Protocols 148
Tasks 148

Instance Methods 149
Constants 156

Chapter 9 NSAutoreleasePool Class Reference 157

Overview 157

Tasks 158

Class Methods 159
Instance Methods 160

Chapter 10 NSBundle Class Reference 163

Overview 163

Tasks 164

Class Methods 167
Instance Methods 173
Constants 191
Notifications 192

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 11 NSCachedURLResponse Class Reference 193

Overview 193

Tasks 193

Instance Methods 194
Constants 197

Chapter 12 NSCalendar Class Reference 199

Overview 199

Tasks 200

Class Methods 201
Instance Methods 202
Constants 213

Chapter 13 NSCalendarDate Class Reference 217

Overview 217

Tasks 219

Class Methods 221
Instance Methods 224

Chapter 14 NSCharacterSet Class Reference 241

Overview 241
Adopted Protocols 242
Tasks 242

Class Methods 244
Instance Methods 253
Constants 255

Chapter 15 NSClassDescription Class Reference 257

Overview 257

Tasks 258

Class Methods 258
Instance Methods 260
Notifications 262

Chapter 16 NSCloneCommand Class Reference 263

Overview 263
Tasks 263
Instance Methods 264

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 17 NSCloseCommand Class Reference 265

Overview 265

Tasks 265

Instance Methods 266
Constants 266

Chapter 18 NSCoder Class Reference 269

Overview 269
Tasks 270
Instance Methods 273

Chapter 19 NSComparisonPredicate Class Reference 297

Overview 297

Tasks 297

Class Methods 298
Instance Methods 299
Constants 303

Chapter 20 NSCompoundPredicate Class Reference 307

Overview 307

Tasks 307

Class Methods 308
Instance Methods 309
Constants 310

Chapter 21 NSCondition Class Reference 313

Overview 313
Tasks 314
Instance Methods 315

Chapter 22 NSConditionLock Class Reference 319

Overview 319
Adopted Protocols 319
Tasks 319

Instance Methods 320

Chapter 23 NSConnection Class Reference 325

Overview 325
Tasks 325

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Class Methods 329
Instance Methods 335
Delegate Methods 348
Constants 352
Notifications 352

Chapter 24 NSCountCommand Class Reference 355

Overview 355

Chapter 25 NSCountedSet Class Reference 357

Overview 357
Tasks 358
Instance Methods 358

Chapter 26 NSCreateCommand Class Reference 363

Overview 363
Tasks 364
Instance Methods 364

Chapter 27 NSData Class Reference 367

Overview 367
Adopted Protocols 368
Tasks 368

Class Methods 370
Instance Methods 376
Constants 387

Chapter 28 NSDate Class Reference 389

Overview 389
Adopted Protocols 391
Tasks 391

Class Methods 393
Instance Methods 399
Constants 409

Chapter 29 NSDateComponents Class Reference 411

Overview 411

Tasks 412

Instance Methods 413
Constants 422

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 30 NSDateFormatter Class Reference 423

Overview 423

Tasks 424

Class Methods 428
Instance Methods 429
Constants 460

Chapter 31 NSDecimalNumber Class Reference 463

Overview 463

Tasks 463

Class Methods 466
Instance Methods 471
Constants 480

Chapter 32 NSDecimalNumberHandler Class Reference 483

Overview 483
Adopted Protocols 483
Tasks 484

Class Methods 484
Instance Methods 485

Chapter 33 NSDeleteCommand Class Reference 487

Overview 487
Tasks 487
Instance Methods 488

Chapter 34 NSDeserializer Class Reference 489

Overview 489
Tasks 489
Class Methods 490

Chapter 35 NSDictionary Class Reference 493

Overview 493
Adopted Protocols 495
Tasks 495

Class Methods 498
Instance Methods 504

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 36 NSDirectoryEnumerator Class Reference 525

Overview 525
Tasks 525
Instance Methods 526

Chapter 37 NSDistantObject Class Reference 529

Overview 529
Adopted Protocols 530
Tasks 530

Class Methods 531
Instance Methods 532

Chapter 38 NSDistantObjectRequest Class Reference 535

Overview 535
Tasks 535
Instance Methods 536

Chapter 39 NSDistributedLock Class Reference 539

Overview 539

Tasks 539

Class Methods 540
Instance Methods 541

Chapter 40 NSDistributedNotificationCenter Class Reference 545

Class at a Glance 545
Overview 546

Tasks 546

Class Methods 547
Instance Methods 548
Constants 554

Chapter 41 NSEnumerator Class Reference 557

Overview 557
Tasks 558
Instance Methods 558

Chapter 42 NSError Class Reference 561

Overview 561
Adopted Protocols 562

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 562

Class Methods 563
Instance Methods 563
Constants 569

Chapter 43 NSException Class Reference 573

Overview 573
Adopted Protocols 573
Tasks 574

Class Methods 574
Instance Methods 576
Constants 579

Chapter 44 NSExistsCommand Class Reference 581

Overview 581

Chapter 45 NSExpression Class Reference 583

Overview 583

Tasks 585

Class Methods 586
Instance Methods 595
Constants 600

Chapter 46 NSFileHandle Class Reference 603

Overview 603

Tasks 603

Class Methods 606
Instance Methods 609
Constants 620
Notifications 621

Chapter 47 NSFileManager Class Reference 625

Overview 625

Tasks 625

Class Methods 630
Instance Methods 630
Delegate Methods 661
Constants 668

10
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Chapter 48

CONTENTS

NSFormatter Class Reference 675

Chapter 49

Overview 675
Tasks 676
Instance Methods 676

NSGarbageCollector Class Reference 683

Chapter 50

Overview 683

Tasks 684

Class Methods 685
Instance Methods 685

NSGetCommand Class Reference 691

Chapter 51

Overview 691

NSHashTable Class Reference 693

Chapter 52

Overview 693

Tasks 693

Class Methods 695
Instance Methods 696
Constants 702

NSHost Class Reference 705

Chapter 53

Overview 705

Tasks 706

Class Methods 707
Instance Methods 709

NSHTTPCookie Class Reference 713

Chapter 54

Overview 713
Adopted Protocols 713
Tasks 714

Class Methods 715
Instance Methods 716
Constants 721

NSHTTPCookieStorage Class Reference 725

Overview 725
Tasks 725
Class Methods 726

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

n

CONTENTS

Instance Methods 726
Constants 729
Notifications 730

Chapter 55 NSHTTPURLResponse Class Reference 733

Overview 733
Adopted Protocols 733
Tasks 733

Class Methods 734
Instance Methods 734

Chapter 56 NSIndexPath Class Reference 737

Overview 737
Adopted Protocols 738
Tasks 738

Class Methods 739
Instance Methods 740

Chapter 57 NSIndexSet Class Reference 745

Overview 745
Adopted Protocols 746
Tasks 746

Class Methods 747
Instance Methods 749

Chapter 58 NSIindexSpecifier Class Reference 759

Overview 759
Tasks 759
Instance Methods 760

Chapter 59 NSInputStream Class Reference 763

Overview 763

Tasks 764

Class Methods 764
Instance Methods 765

Chapter 60 NSInvocation Class Reference 769

Overview 769
Adopted Protocols 770
Tasks 770

12
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Chapter 61

CONTENTS

Class Methods 771
Instance Methods 771
Constants 778

NSInvocationOperation Class Reference 781

Chapter 62

Overview 781

Tasks 781

Instance Methods 782
Constants 783

NSKeyedArchiver Class Reference 785

Chapter 63

Overview 785

Tasks 786

Class Methods 787
Instance Methods 789
Delegate Methods 797
Constants 799

NSKeyedUnarchiver Class Reference 801

Chapter 64

Overview 801

Tasks 802

Class Methods 803
Instance Methods 806
Delegate Methods 812
Constants 815

NSLocale Class Reference 817

Chapter 65

Overview 817

Tasks 818

Class Methods 819
Instance Methods 825
Constants 827
Notifications 831

NSLock Class Reference 833

Overview 833
Adopted Protocols 834
Tasks 834

Instance Methods 834

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

13

CONTENTS

Chapter 66 NSLogicalTest Class Reference 837

Overview 837
Tasks 837
Instance Methods 838

Chapter 67 NSMachBootstrapServer Class Reference 841

Overview 841

Tasks 841

Class Methods 842
Instance Methods 842

Chapter 68 NSMachPort Class Reference 845

Overview 845

Tasks 845

Class Methods 846
Instance Methods 847
Delegate Methods 849
Constants 850

Chapter 69 NSMapTable Class Reference 851

Overview 851

Tasks 852

Class Methods 853
Instance Methods 855
Constants 860

Chapter 70 NSMessagePort Class Reference 863

Overview 863

Chapter 71 NSMessagePortNameServer Class Reference 865

Overview 865

Tasks 865

Class Methods 866
Instance Methods 866

Chapter 72 NSMetadataltem Class Reference 869

Overview 869
Adopted Protocols 869
Tasks 869

14
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 870

Chapter 73 NSMetadataQuery Class Reference 873
Overview 873
Tasks 874
Instance Methods 875
Delegate Methods 887
Constants 888
Notifications 889
Chapter 74 NSMetadataQueryAttributeValueTuple Class Reference 891
Overview 891
Tasks 891
Instance Methods 892
Chapter 75 NSMetadataQueryResultGroup Class Reference 893
Overview 893
Tasks 893
Instance Methods 894
Chapter 76 NSMethodSignature Class Reference 897
Overview 897
Tasks 898
Class Methods 898
Instance Methods 899
Chapter 77 NSMiddleSpecifier Class Reference 903
Overview 903
Chapter 78 NSMoveCommand Class Reference 905
Overview 905
Tasks 905
Instance Methods 906
Chapter 79 NSMutableArray Class Reference 907

Overview 907

Tasks 908

Class Methods 910
Instance Methods 911

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

15

Chapter 80

CONTENTS

NSMutableAttributedString Class Reference 929

Chapter 81

Overview 929

Tasks 930

Instance Methods 931
Constants 938

NSMutableCharacterSet Class Reference 939

Chapter 82

Overview 939
Tasks 939
Instance Methods 940

NSMutableData Class Reference 945

Chapter 83

Overview 945

Tasks 946

Class Methods 947
Instance Methods 948

NSMutableDictionary Class Reference 955

Chapter 84

Class at a Glance 955
Overview 956

Tasks 956

Class Methods 957
Instance Methods 958

NSMutablelndexSet Class Reference 963

Chapter 85

Overview 963
Tasks 963
Instance Methods 964

NSMutableSet Class Reference 969

Chapter 86

Overview 969

Tasks 970

Class Methods 971
Instance Methods 971

NSMutableString Class Reference 977

16

Overview 977
Tasks 978
Class Methods 978

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 979

Chapter 87 NSMutableURLRequest Class Reference 985
Overview 985
Tasks 985
Instance Methods 986
Chapter 88 NSNameSpecifier Class Reference 993
Overview 993
Tasks 994
Instance Methods 994
Chapter 89 NSNetService Class Reference 997
Overview 997
Tasks 998
Class Methods 1000
Instance Methods 1001
Delegate Methods 1012
Constants 1015
Chapter 90 NSNetServiceBrowser Class Reference 1019
Overview 1019
Tasks 1020
Instance Methods 1021
Delegate Methods 1026
Chapter 91 NSNotification Class Reference 1031
Overview 1031
Adopted Protocols 1032
Tasks 1032
Class Methods 1033
Instance Methods 1034
Chapter 92 NSNotificationCenter Class Reference 1037

Class at a Glance 1037
Overview 1039

Tasks 1039

Class Methods 1040
Instance Methods 1041

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

17

CONTENTS

Chapter 93 NSNotificationQueue Class Reference 1045

Overview 1045

Tasks 1045

Class Methods 1046
Instance Methods 1046
Constants 1048

Chapter 94 NSNull Class Reference 1051

Overview 1051
Adopted Protocols 1051
Tasks 1052

Class Methods 1052

Chapter 95 NSNumber Class Reference 1053

Overview 1053

Tasks 1054

Class Methods 1057
Instance Methods 1064

Chapter 96 NSNumberFormatter Class Reference 1079

Overview 1079

Tasks 1080

Class Methods 1087
Instance Methods 1088
Constants 1141

Chapter 97 NSObject Class Reference 1145

Overview 1145
Adopted Protocols 1147
Tasks 1147

Class Methods 1152
Instance Methods 1168

Chapter 98 NSOperation Class Reference 1197

Overview 1197

Tasks 1200

Instance Methods 1201
Constants 1208

18
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 99

NSOperationQueue Class Reference 1211

Chapter 100

Overview 1211

Tasks 1212

Instance Methods 1213
Constants 1216

NSOutputStream Class Reference 1217

Chapter 101

Overview 1217

Tasks 1218

Class Methods 1218
Instance Methods 1220

NSPipe Class Reference 1225

Chapter 102

Overview 1225

Tasks 1225

Class Methods 1226
Instance Methods 1226

NSPointerArray Class Reference 1229

Chapter 103

Overview 1229

Tasks 1229

Class Methods 1230
Instance Methods 1232

NSPointerFunctions Class Reference 1239

Chapter 104

Overview 1239

Tasks 1239

Properties 1240

Class Methods 1243
Instance Methods 1243
Constants 1244

NSPort Class Reference 1247

Overview 1247
Adopted Protocols 1248
Tasks 1248

Class Methods 1249
Instance Methods 1250
Delegate Methods 1255
Notifications 1256

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

19

CONTENTS

Chapter 105 NSPortCoder Class Reference 1257

Overview 1257

Tasks 1257

Class Methods 1258
Instance Methods 1259

Chapter 106 NSPortMessage Class Reference 1263

Overview 1263
Tasks 1264
Instance Methods 1264

Chapter 107 NSPortNameServer Class Reference 1269

Overview 1269

Tasks 1269

Class Methods 1270
Instance Methods 1270

Chapter 108 NSPositionalSpecifier Class Reference 1273

Overview 1273

Tasks 1273

Instance Methods 1274
Constants 1277

Chapter 109 NSPredicate Class Reference 1279

Overview 1279

Tasks 1280

Class Methods 1281
Instance Methods 1283

Chapter 110 NSProcessinfo Class Reference 1285

Overview 1285

Tasks 1286

Class Methods 1287
Instance Methods 1287
Constants 1292

Chapter 111 NSPropertyListSerialization Class Reference 1295

Overview 1295
Tasks 1295

20
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Chapter 112

CONTENTS

Class Methods 1296
Constants 1298

NSPropertySpecifier Class Reference 1301

Chapter 113

Overview 1301

NSProtocolChecker Class Reference 1303

Chapter 114

Overview 1303

Tasks 1303

Class Methods 1304
Instance Methods 1304

NSProxy Class Reference 1307

Chapter 115

Overview 1307
Adopted Protocols 1307
Tasks 1308

Class Methods 1309
Instance Methods 1310

NSQuitCommand Class Reference 1313

Chapter 116

Overview 1313
Tasks 1313
Instance Methods 1313

NSRandomSpecifier Class Reference 1315

Chapter 117

Overview 1315

NSRangeSpecifier Class Reference 1317

Chapter 118

Overview 1317
Tasks 1317
Instance Methods 1318

NSRecursiveLock Class Reference 1321

Overview 1321
Adopted Protocols 1321
Tasks 1322

Instance Methods 1322

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

21

CONTENTS

Chapter 119 NSRelativeSpecifier Class Reference 1325

Overview 1325

Tasks 1325

Instance Methods 1326
Constants 1327

Chapter 120 NSRunLoop Class Reference 1329

Overview 1329

Tasks 1330

Class Methods 1331
Instance Methods 1332
Constants 1340

Chapter 121 NSScanner Class Reference 1343

Overview 1343
Adopted Protocols 1344
Tasks 1344

Class Methods 1345
Instance Methods 1346

Chapter 122 NSScriptClassDescription Class Reference 1361

Overview 1361

Tasks 1362

Class Methods 1363
Instance Methods 1364

Chapter 123 NSScriptCoercionHandler Class Reference 1375

Overview 1375

Tasks 1375

Class Methods 1376
Instance Methods 1376

Chapter 124 NSScriptCommand Class Reference 1379

Overview 1379
Adopted Protocols 1380
Tasks 1380

Class Methods 1382
Instance Methods 1383
Constants 1393

22
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 125 NSScriptCommandDescription Class Reference 1397

Overview 1397
Adopted Protocols 1397
Tasks 1398

Instance Methods 1399

Chapter 126 NSScriptExecutionContext Class Reference 1405

Overview 1405

Tasks 1405

Class Methods 1406
Instance Methods 1406

Chapter 127 NSScriptObjectSpecifier Class Reference 1411

Overview 1411
Adopted Protocols 1412
Tasks 1412

Class Methods 1414
Instance Methods 1414
Constants 1424

Chapter 128 NSScriptSuiteRegistry Class Reference 1427

Overview 1427

Tasks 1428

Class Methods 1429
Instance Methods 1430

Chapter 129 NSScriptWhoseTest Class Reference 1437

Overview 1437
Adopted Protocols 1437
Tasks 1437

Instance Methods 1438

Chapter 130 NSSerializer Class Reference 1439

Overview 1439
Tasks 1439
Class Methods 1440

Chapter 131 NSSet Class Reference 1441

Overview 1441

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Adopted Protocols 1442
Tasks 1443

Class Methods 1445
Instance Methods 1449

Chapter 132 NSSetCommand Class Reference 1463

Overview 1463
Tasks 1463
Instance Methods 1464

Chapter 133 NSSocketPort Class Reference 1465

Overview 1465
Tasks 1465
Instance Methods 1466

Chapter 134 NSSocketPortNameServer Class Reference 1473

Overview 1473

Tasks 1473

Class Methods 1474
Instance Methods 1475

Chapter 135 NSSortDescriptor Class Reference 1479

Overview 1479
Adopted Protocols 1480
Tasks 1480

Instance Methods 1481

Chapter 136 NSSpecifierTest Class Reference 1485

Overview 1485

Tasks 1486

Instance Methods 1486
Constants 1486

Chapter 137 NSSpellServer Class Reference 1489

Overview 1489

Tasks 1489

Instance Methods 1490
Delegate Methods 1492
Constants 1496

24
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 138 NSStream Class Reference 1497

Overview 1497

Tasks 1498

Class Methods 1499
Instance Methods 1500
Delegate Methods 1504
Constants 1505

Chapter 139 NSString Class Reference 1513

Overview 1513
Adopted Protocols 1516
Tasks 1516

Class Methods 1526
Instance Methods 1538
Constants 1615

Chapter 140 NSTask Class Reference 1623

Overview 1623

Tasks 1623

Class Methods 1625
Instance Methods 1626
Notifications 1636

Chapter 141 NSThread Class Reference 1637

Overview 1637

Tasks 1638

Class Methods 1640
Instance Methods 1645
Notifications 1651

Chapter 142 NSTimer Class Reference 1653

Overview 1653

Tasks 1654

Class Methods 1655
Instance Methods 1658

Chapter 143 NSTimeZone Class Reference 1663

Overview 1663
Adopted Protocols 1664
Tasks 1664

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

25

CONTENTS

Class Methods 1666
Instance Methods 1671
Constants 1678
Notifications 1679

Chapter 144 NSUnarchiver Class Reference 1681

Overview 1681

Tasks 1681

Class Methods 1682
Instance Methods 1685

Chapter 145 NSUndoManager Class Reference 1689

Overview 1689

Tasks 1690

Instance Methods 1692
Constants 1707
Notifications 1707

Chapter 146 NSUniquelDSpecifier Class Reference 1711

Overview 1711
Tasks 1712
Instance Methods 1712

Chapter 147 NSURL Class Reference 1715

Overview 1715
Adopted Protocols 1716
Tasks 1716

Class Methods 1718
Instance Methods 1721
Constants 1733

Chapter 148 NSURLAuthenticationChallenge Class Reference 1737

Overview 1737
Tasks 1737
Instance Methods 1738

Chapter 149 NSURLCache Class Reference 1743

Overview 1743
Tasks 1743
Class Methods 1744

26
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 1746

Chapter 150 NSURLConnection Class Reference 1753

Overview 1753

Tasks 1754

Class Methods 1756
Instance Methods 1758
Delegate Methods 1761

Chapter 151 NSURLCredential Class Reference 1767

Overview 1767
Adopted Protocols 1767
Tasks 1767

Class Methods 1768
Instance Methods 1769
Constants 1771

Chapter 152 NSURLCredentialStorage Class Reference 1773

Overview 1773

Tasks 1773

Class Methods 1774
Instance Methods 1774
Notifications 1777

Chapter 153 NSURLDownload Class Reference 1779

Overview 1779

Tasks 1780

Class Methods 1782
Instance Methods 1782
Delegate Methods 1786

Chapter 154 NSURLHandle Class Reference 1793

Overview 1793

Tasks 1793

Class Methods 1795
Instance Methods 1797
Constants 1805

Chapter 155 NSURLProtectionSpace Class Reference 1807

Overview 1807

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

27

CONTENTS

Adopted Protocols 1807
Tasks 1807

Instance Methods 1808
Constants 1812

Chapter 156 NSURLProtocol Class Reference 1815

Overview 1815

Tasks 1816

Class Methods 1817
Instance Methods 1821

Chapter 157 NSURLRequest Class Reference 1825

Overview 1825
Adopted Protocols 1825
Tasks 1826

Class Methods 1827
Instance Methods 1828
Constants 1833

Chapter 158 NSURLResponse Class Reference 1835

Overview 1835
Adopted Protocols 1835
Tasks 1836

Instance Methods 1836
Constants 1839

Chapter 159 NSUserDefaults Class Reference 1841

Overview 1841

Tasks 1842

Class Methods 1844
Instance Methods 1845
Constants 1862
Notifications 1870

Chapter 160 NSValue Class Reference 1871

Overview 1871
Adopted Protocols 1871
Tasks 1872

Class Methods 1873
Instance Methods 1877

28
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 161 NSValueTransformer Class Reference 1883

Overview 1883

Tasks 1884

Class Methods 1884
Instance Methods 1887
Constants 1888

Chapter 162 NSWhoseSpecifier Class Reference 1891

Overview 1891

Tasks 1892

Instance Methods 1892
Constants 1896

Chapter 163 NSXMLDocument Class Reference 1899

Overview 1899

Tasks 1901

Class Methods 1903
Instance Methods 1904
Constants 1919

Chapter 164 NSXMLDTD Class Reference 1923

Overview 1923

Tasks 1924

Class Methods 1925
Instance Methods 1925

Chapter 165 NSXMLDTDNode Class Reference 1935

Overview 1935

Tasks 1935

Instance Methods 1936
Constants 1940

Chapter 166 NSXMLElement Class Reference 1945

Overview 1945
Tasks 1946
Instance Methods 1948

Chapter 167 NSXMLNode Class Reference 1963

Overview 1963

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Adopted Protocols 1964
Tasks 1965

Class Methods 1968
Instance Methods 1975
Constants 1992

Chapter 168 NSXMLParser Class Reference 1997

Overview 1997

Tasks 1997

Instance Methods 2000
Delegate Methods 2007
Constants 2017

Part II Protocols 2031

Chapter 169 NSCoding Protocol Reference 2033

Overview 2033
Tasks 2033
Instance Methods 2034

Chapter 170 NSComparisonMethods Protocol Reference 2035

Overview 2035
Tasks 2035
Instance Methods 2036

Chapter 171 NSCopying Protocol Reference 2041

Overview 2041
Tasks 2042
Instance Methods 2042

Chapter 172 NSDecimalNumberBehaviors Protocol Reference 2043

Overview 2043

Tasks 2043

Instance Methods 2044
Constants 2045

Chapter 173 NSErrorRecoveryAttempting Protocol Reference 2049

Overview 2049
Tasks 2049

30
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 2049

Chapter 174 NSFastEnumeration Protocol Reference 2053

Overview 2053

Tasks 2053

Instance Methods 2053
Constants 2054

Chapter 175 NSKeyValueCoding Protocol Reference 2057

Overview 2057

Tasks 2057

Class Methods 2059
Instance Methods 2060
Constants 2072

Chapter 176 NSKeyValueObserving Protocol Reference 2075

Overview 2075

Tasks 2075

Class Methods 2076
Instance Methods 2079
Constants 2085

Chapter 177 NSLocking Protocol Reference 2091

Overview 2091
Tasks 2091
Instance Methods 2091

Chapter 178 NSMutableCopying Protocol Reference 2093

Overview 2093
Tasks 2093
Instance Methods 2094

Chapter 179 NSODbjCTypeSerializationCallBack Protocol Reference 2095

Overview 2095
Tasks 2095
Instance Methods 2096

Chapter 180 NSObject Protocol Reference 2097

Overview 2097

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

31

CONTENTS

Tasks 2097
Instance Methods 2099

Chapter 181 NSScriptingComparisonMethods Protocol Reference 2113

Overview 2113
Tasks 2113
Instance Methods 2114

Chapter 182 NSScriptKeyValueCoding Protocol Reference 2117

Overview 2117

Tasks 2117

Instance Methods 2118
Constants 2121

Chapter 183 NSScriptObjectSpecifiers Protocol Reference 2123

Overview 2123
Tasks 2123
Instance Methods 2123

Chapter 184 NSURLAuthenticationChallengeSender Protocol Reference 2125

Overview 2125
Tasks 2125
Instance Methods 2126

Chapter 185 NSURLClient Protocol Reference (Not Recommended) 2129

Overview 2129
Tasks 2129
Instance Methods 2129

Chapter 186 NSURLHandleClient Protocol Reference 2133

Overview 2133
Tasks 2133
Instance Methods 2134

Chapter 187 NSURLProtocolClient Protocol Reference 2137

Overview 2137
Tasks 2137
Instance Methods 2138

32
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Part llI Functions 2143

Chapter 188 Foundation Functions Reference 2145
Overview 2145
Functions by Task 2145
Functions 2157

Part IV Data Types 2265

Chapter 189 Foundation Data Types Reference 2267
Overview 2267
Data Types 2267

Part V Constants 2285

Chapter 190 Foundation Constants Reference 2287

Overview 2287
Constants 2287

Document Revision History 2315

Index 2317

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

33

34

CONTENTS

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Figures and Tables

Introduction The Foundation Framework 37
Figure I-1 Cocoa Objective-C Hierarchy for Foundation 40
Chapter 56 NSIndexPath Class Reference 737

Chapter 92

Figure 56-1 Index path 1.4.3.2 737

NSNotificationCenter Class Reference 1037

Table 92-1 Types of dispatch table entries 1038
Table 92-2 Example notification dispatch table 1038

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

35

36

FIGURES AND TABLES

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

Framework /System/Library/Frameworks/Foundation.framework
Header file directories /System/Library/Frameworks/Foundation.framework/Headers

Declared in FoundationErrors.h
IKPictureTaker.h
NSAffineTransform.h
NSAppleEventDescriptor.h
NSAppleEventManager.h
NSAppleScript.h
NSArchiver.h
NSArray.h
NSAttributedString.h
NSAutoreleasePool.h
NSBundle.h
NSByteOrder.h
NSCalendar.h
NSCalendarDate.h
NSCharacterSet.h
NSClassDescription.h
NSCoder.h
NSComparisonPredicate.h
NSCompoundPredicate.h
NSConnection.h
NSData.h
NSDate.h
NSDateFormatter.h
NSDecimal.h
NSDecimalNumber.h
NSDictionary.h
NSDistantObject.h
NSDistributedLock.h
NSDistributedNotificationCenter.h
NSEnumerator.h
NSError.h
NSException.h
NSExpression.h
NSFileHandle.h
NSFileManager.h
NSFormatter.h
NSGarbageCollector.h
NSGeometry.h
NSHFSFileTypes.h
NSHTTPCookie.h
NSHTTPCookieStorage.h
NSHashTable.h
NSHost.h

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

37

INTRODUCTION

The Foundation Framework

NSIndexPath.h
NSIndexSet.h
NSInvocation.h
NSJavaSetup.h
NSKeyValueCoding.h
NSKeyValueObserving.h
NSKeyedArchiver.h
NSLocale.h

NSLock.h

NSMapTable.h
NSMetadata.h
NSMethodSignature.h
NSNetServices.h
NSNotification.h
NSNotificationQueue.h
NSNullh
NSNumberFormatter.h
NSObjCRuntime.h
NSObject.h
NSObjectScripting.h
NSOperation.h
NSPathUtilities.h
NSPointerArray.h
NSPointerFunctions.h
NSPort.h

NSPortCoder.h
NSPortMessage.h
NSPortNameServer.h
NSPredicate.h
NSProcessinfo.h
NSPropertyList.h
NSProtocolChecker.h
NSProxy.h

NSRange.h

NSRunLoop.h

NSScanner.h
NSScriptClassDescription.h
NSScriptCoercionHandler.h
NSScriptCommand.h
NSScriptCommandDescription.h
NSScriptExecutionContext.h
NSScriptKeyValueCoding.h
NSScriptObjectSpecifiers.h
NSScriptStandardSuiteCommands.h
NSScriptSuiteRegistry.h
NSScriptWhoseTests.h
NSSerialization.h

NSSet.h
NSSortDescriptor.h
NSSpellServer.h
NSStream.h

NSString.h

NSTask.h

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

NSThread.h
NSTimeZone.h
NSTimer.h

NSURL.h
NSURLAuthenticationChallenge.h
NSURLCache.h
NSURLConnection.h
NSURLCredential.h
NSURLCredentialStorage.h
NSURLDownload.h
NSURLError.h
NSURLHandle.h
NSURLProtectionSpace.h
NSURLProtocol.h
NSURLRequest.h
NSURLResponse.h
NSUndoManager.h
NSUserDefaults.h
NSValue.h
NSValueTransformer.h
NSXMLDTD.h
NSXMLDTDNode.h
NSXMLDocument.h
NSXMLElement.h
NSXMLNode.h
NSXMLNodeOptions.h
NSXMLParser.h

NSZone.h

QTKitDefines.h

Introduction

The Foundation framework defines a base layer of Objective-C classes. In addition to providing a set of useful
primitive object classes, it introduces several paradigms that define functionality not covered by the Objective-C
language. The Foundation framework is designed with these goals in mind:

= Provide a small set of basic utility classes.
= Make software development easier by introducing consistent conventions for things such as deallocation.
m Support Unicode strings, object persistence, and object distribution.

= Provide a level of OS independence, to enhance portability.

The Foundation framework includes the root object class, classes representing basic data types such as strings
and byte arrays, collection classes for storing other objects, classes representing system information such as
dates, and classes representing communication ports. See Figure I-1 (page 40) for a list of those classes that
make up the Foundation framework.

Introduction 39
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

40

INTRODUCTION

The Foundation Framework

The Foundation framework introduces several paradigms to avoid confusion in common situations, and to
introduce a level of consistency across class hierarchies. This consistency is done with some standard policies,
such as that for object ownership (that is, who is responsible for disposing of objects), and with abstract
classes like NSEnumerator. These new paradigms reduce the number of special and exceptional cases in an
APl and allow you to code more efficiently by reusing the same mechanisms with various kinds of objects.

Foundation Framework Classes

The Foundation class hierarchy is rooted in the Foundation framework’s NSOb ject class (see Figure I-1 (page
40)). The remainder of the Foundation framework consists of several related groups of classes as well as a
few individual classes. Many of the groups form what are called class clusters—abstract classes that work as
umbrella interfaces to a versatile set of private subclasses. NSString and NSMutableString, for example,
act as brokers for instances of various private subclasses optimized for different kinds of storage needs.
Depending on the method you use to create a string, an instance of the appropriate optimized class will be
returned to you.

Note: In the following class-hierarchy diagrams, blue-shaded areas include classes that are available in Mac
OS X and iPhone OS; gray-shaded areas include classes that are available in Mac OS X only.

Figure I-1 Cocoa Objective-C Hierarchy for Foundation
“ Value Objects ‘—

— NSAffineTransform
— NSCalendar
— NSData—— — NSMutableData
H NSDate ——— — NSCalendarDate
— NSDateComponents
- NSDecimalNumberHandler
— NSLocale
H NSNull
— NSTimeZone
— NSValue ———— NSNumber——NSDecimalNumber
H NSValueTransformer

NSObject ——

XML
H NSXMLNode NSXMLDocument
HNSXMLParser NSXMLDTD
NSXMLDTDNode
NSXMLElement
— NSAttributedString—— NSMutableAttributedString
H NSCharacterSet NSMutableCharacterSet
H NSString——— NSMutableString
H NSFormatter—E NSDateFormatter
— NSScanner NSNumberFormatter
— NSSortDescriptor
J Collections
H NSArray ——— NSMutableArray
— NSDictionary ——— NSMutableDictionary
— NSEnumerator NSDirectoryEnumerator
— NSHashTable
— NSIndexPath
— NSIndexSet ———— NSMutablelndexSet
H NSMapTable
— NSPointerArray
H NSPointerFunctions
H NSSet————— NSMutableSet——NSCountedSet
= = Predicates
] xpression I:NSComparisonPredicate
e NSCompoundPredicate

Introduction
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

Objective-C Foundation Continued

S Operating-System Services¥
— NSError

— NSHost

— NSNetService

— NSNetServiceBrowser
— NSProcessinfo

— NSRunLoo|
 NSSpellServer

— NSTimer

— NSUserDefaults

— NSBundle

— NSFileHandle

— NSFileManager

— [NSMetadataltem

1 | NSMetadataQuery

— | NSMetadataQueryAttributeValueTuple

— |NSMetadataQueryResultGroup rNSInputStream
— NSStream NSOutputStream

NSObject URL
— NSCachedURLResponse

— NSHTTPCookie

— NSHTTPCookieStorage

— NSURL

L NSURLAuthorizationChallenge

— NSURLCache

— NSURLConnection

— NSURLCredential

— NSURLCredentialStorage

— NSURLDownload

— NSURLProtectionSpace

— NSURLProtocol

NSURLRequest ————— NSMutableURLRequest
NSURLResponse NSHTTPURLResponse

Interprocess Communication

NSMachPort
|| NSMessagePort
mgﬁg:}“ - LINSSocketPort)

NSPortNameServer ENSMachBootstrapServer

File System

NSPipe

NSMessagePortNameServer
NSSocketPortNameServer

Locking/Threading

— NSConditionLock

— NSDistributedLock

— NSLock

— NSOperation — NSInvocationOperation
— NSOperationQueue

— NSRecursiveLock

— NSTask

— NSThread

Introduction
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

1

42

INTRODUCTION

The Foundation Framework

Objective-C Foundation Continued

/ Notifications '~
1 NSNotification
— NSNotificationCenter NSDistributedNotificationCenter
— NSNotificationQueue
S Archiving and Serialization K
HNSCoder NSArchiver
HNSPropertyListSerialization - NSKeyedArchiver
NSKeyedUnarchiver
NSPortCoder
NSUnarchiver
S Obijective-C Language Services k
—NSAssertionHandler
—NSAutoreleasePool
—NSClassDescription
— NSException
HNSGarbageCollector
—NSInvocation
—NSMethodSignature
—HNSUndoManager
NSObject — f—wScripting
) —NSScriptClassDescription
—NSAppleEventDescriptor _NSCloneCommand
~NSCloseCommand
NSAppleEventManager | NSCountCommand
A ; —NSCreateCommand
Ml e -NSDeleteCommand
. i —NSExistsCommand
—NSPositionalSpecif
ositionalSpecifier | NSGetCommand
—NSScriptCoercionHandler ~NSMoveCommand
~NSQuitCommand
HNSScriptCommand ~NSSetCommand
~NSIndexSpecifier
HNSScriptCommandDescription -NSMiddleSpecifier
—NSNameSpecifier
HNSScriptExecutionContext ~ NSPropertySpecifier
~NSRandomSpecifier
HNSScriptObjectSpecifier —NSRangeSpecifier
. .) ~NSRelativeSpecifier
—NSScriptSuiteRegistry -NSUniquelDSpecifier
. T —NSWhoseSpecifier
SScriptWhoseTest —t NSLogicalTest
NSSpecifierTest
/ Distributed Objects
— NSConnection
— NSDistantObjectRequest
|: NSDistantObject
NSProxy NSProtocolChecker

Many of these classes have closely rel

m Data storage. NSData and NSString provide object-oriented storage for arrays of bytes. NSValue and
NSNumber provide object-oriented storage for arrays of simple C data values. NSArray, NSDictionary,
bjective-C objects of any class.

and NSSet provide storage for O

m Text and strings. NSCharacterSet represents various groupings of characters that are used by the
NSStringand NSScanner classes. The NSString classes represent text strings and provide methods
for searching, combining, and comparing strings. An NSScanner object is used to scan numbers and
words from an NSString object.

m Datesand times.The NSDate, NSTimeZone,and NSCalendar classes store times and dates and represent
calendrical information. They offer methods for calculating date and time differences. Together with
NSLocale, they provide methods for displaying dates and times in many formats, and for adjusting

ated functionality:

times and dates based on location in the world.

Introduction

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

m Application coordination and timing. NSNotification, NSNotificationCenter, and
NSNotificationQueue provide systems that an object can use to notify all interested observers of
changes that occur. You can use an NSTimer object to send a message to another object at specific
intervals.

m Object creation and disposal. NSAutoreleasePool is used to implement the delayed-release feature
of the Foundation framework.

m Object distribution and persistence. The data that an object contains can be represented in an
architecture-independent way using NSPropertylListSerialization.The NSCoder andits subclasses
take this process a step further by allowing class information to be stored along with the data. The
resulting representations are used for archiving and for object distribution.

= Operating-system services. Several classes are designed to insulate you from the idiosyncrasies of various
operating systems. NSFi1eManager provides a consistent interface for file operations (creating, renaming,
deleting, and so on). NSThread and NSProcessInfo let you create multithreaded applications and
query the environment in which an application runs.

= URL loading system. A set of classes and protocols provide access to common Internet protocols.

Introduction 43
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

44 Introduction
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART |

Classes

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

45

46

PART |

Classes

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Inherits from NSObject
Conforms to NSCoding
NSCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSAffineTransform.h
Companion guide Cocoa Drawing Guide
Related sample code DockTile

SpeedometerView
Transformed Image
WebKitPluginStarter
WebKitPluginWithJavaScript

Overview

The NSAffineTransform class provides methods for creating, concatenating, and applying affine
transformations.

A transformation specifies how points in one coordinate system are transformed to points in another coordinate
system. An affine transformation is a special type of transformation that preserves parallel lines in a path but
does not necessarily preserve lengths or angles. Scaling, rotation, and translation are the most commonly
used manipulations supported by affine transforms, but shearing is also possible.

Note: In Mac OS X v10.3 and earlier the NSAffineTransformclass was declared and implemented entirely
in the Application Kit framework. As of Mac OS X v10.4 the NSAffineTransform class has been split across
the Foundation Kit and Application Kit frameworks.

Methods for applying affine transformations to the current graphics context and a method for applying an
affine transformation to an NSBezierPath object are described in NSAffineTransform Additions in the
Application Kit.

Overview 47
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Adopted Protocols

NSCoding
- encodeWithCoder: (page 2034)

- initWithCoder: (page 2034)

NSCopying
- copyWithZone: (page 2042)

Tasks

Creating an NSAffineTransform Object

+ transform (page 49)
Creates and returns a new NSAffineTransform object initialized to the identity matrix.

- initWithTransform: (page 50)
Initializes the receiver’s matrix using another transform object and returns the receiver.

Accumulating Transformations

- rotateByDegrees: (page 51)
Applies a rotation factor (measured in degrees) to the receiver’s transformation matrix.

- rotateByRadians: (page 52)
Applies a rotation factor (measured in radians) to the receiver’s transformation matrix.

- scaleBy: (page 53)

Applies the specified scaling factor along both x and y axes to the receiver’s transformation matrix.
- scaleXBy:yBy: (page 53)

Applies scaling factors to each axis of the receiver’s transformation matrix.

- translateXBy:yBy: (page 56)
Applies the specified translation factors to the receiver’s transformation matrix.

- appendTransform: (page 49)
Appends the specified matrix to the receiver’s matrix.

- prependTransform: (page 51)
Prepends the specified matrix to the receiver’s matrix.

- invert (page 50)
Replaces the receiver’s matrix with its inverse matrix.

Transforming Data and Objects

- transformPoint: (page 54)
Applies the receiver’s transform to the specified NSPoint data type and returns the results.

48 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

- transformSize: (page 55)
Applies the receiver’s transform to the specified NSSi ze data type and returns the results.

Accessing the Transformation Structure

- transformStruct (page 55)
Returns the matrix coefficients stored in the receiver’s matrix.

- setTransformStruct: (page 54)
Replaces the receiver’s transformation matrix with the specified values.

Class Methods

transform

Creates and returns a new NSAffineTransform object initialized to the identity matrix.
+ (NSAffineTransform *)transform

Return Value
A new identity transform object. This matrix transforms any point to the same point.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithTransform: (page 50)

Related Sample Code
DockTile

Sketch-112
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

Instance Methods

appendTransform:

Appends the specified matrix to the receiver’s matrix.

- (void)appendTransform: (NSAffineTransform *)aTransform

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

49

50

CHAPTER 1

NSAffineTransform Class Reference

Parameters
alransform
The matrix to append to the receiver.

Discussion

This method multiplies the receiver's matrix by the matrix in aTransformand replaces the receiver's matrix
with the results. This type of operation is the same as applying the transformations in the receiver followed
by the transformations in aTransform.

Availability
Available in Mac OS X v10.0 and later.

See Also
- prependTransform: (page 51)

Declared In
NSAffineTransform.h

initWithTransform:

Initializes the receiver’s matrix using another transform object and returns the receiver.
- (id)initWithTransform: (NSAffineTransform *)aTlransform

Parameters

alransform
The transform object whose matrix values should be copied to this object.

Return Value
A new transform object initialized with the matrix values of aTransform.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ transform (page 49)

Related Sample Code
DockTile

SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

invert

Replaces the receiver’s matrix with its inverse matrix.

- (void)invert

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Discussion
Inverse matrices are useful for undoing the effects of a matrix. If a previous point (x,y) was transformed to
(x}y"), inverting the matrix and applying it to point (x}y’) yields the point (x,y).

You can also use inverse matrices in conjunction with the concat method to remove the effects of
concatenating the matrix to the current transformation matrix of the current graphic context.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile

SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

prependTransform:

Prepends the specified matrix to the receiver’s matrix.
- (void)prependTransform: (NSAffineTransform *)aTransform

Parameters
alransform
The matrix to prepend to the receiver.

Discussion

This method multiplies the matrix in aTrans formby the receiver’s matrix and replaces the receiver’s matrix
with the result. This type of operation is the same as applying the transformations in aTrans formfollowed
by the transformations in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- appendTransform: (page 49)

Declared In
NSAffineTransform.h

rotateByDegrees:

Applies a rotation factor (measured in degrees) to the receiver’s transformation matrix.
- (void)rotateByDegrees: (CGFloat)angle

Parameters
angle
The rotation angle, measured in degrees.

Instance Methods 51
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Discussion
After invoking this method, applying the receiver’s matrix turns the axes counterclockwise about the current
origin by ange degrees, in addition to performing all previous transformations.

Availability
Available in Mac OS X v10.0 and later.

See Also
- rotateByRadians: (page 52)

- scaleBy: (page 53)
- scaleXBy:yBy: (page 53)
- translateXBy:yBy: (page 56)

Related Sample Code
DockTile

PDF Annotation Editor
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

rotateByRadians:

Applies a rotation factor (measured in radians) to the receiver’s transformation matrix.
- (void)rotateByRadians:(CGFloat)angle

Parameters
angle
The rotation angle, measured in radians.

Discussion
After invoking this method, applying the receiver’s matrix turns the axes counterclockwise about the current
origin by angJ e radians, in addition to performing all previous transformations.

Availability
Available in Mac OS X v10.0 and later.

See Also
- rotateByDegrees: (page 51)

- scaleBy: (page 53)
- scaleXBy:yBy: (page 53)
- translateXBy:yBy: (page 56)

Related Sample Code
Polygons

TextLayoutDemo

Declared In
NSAffineTransform.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

scaleBy:

Applies the specified scaling factor along both x and y axes to the receiver’s transformation matrix.
- (void)scaleBy:(CGFloat)scale

Parameters

scale
The scaling factor to apply to both axes. Specifying a negative value has the effect of inverting the
direction of the axes in addition to scaling them. A scaling factor of 1.0 scales the content to exactly
the same size.

Discussion
After invoking this method, applying the receiver’s matrix modifies the unit lengths along the current x and
y axes by a factor of scale, in addition to performing all previous transformations.

Availability
Available in Mac OS X v10.0 and later.

See Also
- rotateByDegrees: (page 51)

- rotateByRadians: (page 52)
- scaleXBy:yBy: (page 53)
- translateXBy:yBy: (page 56)

Related Sample Code
Aperture Edit Plugin - Borders & Titles

ClAnnotation
Polygons
Transformed Image

Declared In
NSAffineTransform.h

scaleXBy:yBy:
Applies scaling factors to each axis of the receiver’s transformation matrix.

- (void)scaleXBy:(CGFloat)scaleX yBy:(CGFloat)scaleY

Parameters
scaleX
The scaling factor to apply to the x axis.

scaleY
The scaling factor to apply to the y axis.

Discussion

After invoking this method, applying the receiver’s matrix modifies the unit length on the x axis by a factor
of scaleXand they axis by a factor of scaleV, in addition to performing all previous transformations. A
value of 1.0 for either axis scales the content on that axis to the same size.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 53
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

54

CHAPTER 1

NSAffineTransform Class Reference

See Also
- rotateByDegrees: (page 51)

- rotateByRadians: (page 52)
- scaleBy: (page 53)
- translateXBy:yBy: (page 56)

Related Sample Code
Sketch-112

Declared In
NSAffineTransform.h

setTransformStruct:

Replaces the receiver’s transformation matrix with the specified values.
- (void)setTransformStruct: (NSAffineTransformStruct)alransformStruct

Parameters
alransformStruct
The structure containing the six transform values you want the receiver to use.

Discussion
The matrix is of the form shown in “Manipulating Transform Values”, and the six-element structure defined
by the NSAffineTransformStruct structure is of the form:

{mll, ml2, m21, m22, tX, tY}

The NSAffineTransformStruct structure is an alternate representation of a transformation matrix that
can be used to specify matrix values directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithTransform: (page 50)

- transformStruct (page 55)

Related Sample Code
Transformed Image

Declared In
NSAffineTransform.h

transformPoint:

Applies the receiver’s transform to the specified NSPoint data type and returns the results.

- (NSPoint)transformPoint: (NSPoint)aPoint

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Parameters
arpoint
The point in the current coordinate system to which you want to apply the matrix.

Return Value
The resulting point after applying the receiver's transformations.

Availability
Available in Mac OS X v10.0 and later.

See Also
- transformSize: (page 55)

Declared In
NSAffineTransform.h

transformSize:

Applies the receiver’s transform to the specified NSSi ze data type and returns the results.
- (NSSize)transformSize: (NSSize)aSize

Parameters
aSize
The size data to which you want to apply the matrix.

Return Value
The resulting size after applying the receiver's transformations.

Discussion

This method applies the current rotation and scaling factors to aS7ze; it does not apply translation factors.
You can think of this method as transforming a vector whose origin is (0, 0) and whose end point is specified
by the value in aS7ze. After the rotation and scaling factors are applied, this method effectively returns the
end point of the new vector.

This method is useful for transforming delta or distance values when you need to take scaling and rotation
factors into account.

Availability
Available in Mac OS X v10.0 and later.

See Also
- transformPoint: (page 54)

Declared In
NSAffineTransform.h

transformStruct

Returns the matrix coefficients stored in the receiver’s matrix.

- (NSAffineTransformStruct)transformStruct

Instance Methods 55
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Return Value
The structure containing the receiver's six matrix values.

Discussion
The matrix is of the form shown in “Manipulating Transform Values”, and the six-element structure defined
by the NSAffineTransformStruct structure is of the form:

{mll, ml2, m21, m22, tX, tY}

The NSAffineTransformStruct structure is an alternate representation of a transformation matrix that
can be used to specify matrix values directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithTransform: (page 50)

- setTransformStruct: (page 54)

Related Sample Code
Transformed Image

Declared In
NSAffineTransform.h

translateXBy:yBy:

Applies the specified translation factors to the receiver’s transformation matrix.
- (void)translateXBy:(CGFloat)deltaX yBy:(CGFloat)deltaY

Parameters
deltaX
The number of units to move along the x axis.
deltaY
The number of units to move along the y axis.
Discussion
Subsequent transformations cause coordinates to be shifted by de 7 ta X units along the x axis and by deiltaY

units along the y axis. Translation factors do not affect NSS1i ze values, which specify a differential between
points.

Availability
Available in Mac OS X v10.0 and later.

See Also
- rotateByDegrees: (page 51)

- rotateByRadians: (page 52)
- scaleBy: (page 53)
- scaleXBy:yBy: (page 53)

Related Sample Code
Cropped Image

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

PDF Annotation Editor
Sketch-112
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

Constants

NSAffineTransformStruct

This type defines the three-by-three matrix that performs an affine transform between two coordinate systems.

typedef struct _NSAffineTransformStruct {
float mll, ml2, m2l, m22;
float tX, tY;

} NSAffineTransformStruct;

Fields
mll , ml2, m21, m2?2

Elements of a two-by-two matrix for rotation, scale, and shear transformations.
tX, ty
x and y translation elements

Discussion
For more details, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAffineTransform.h

Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

57

CHAPTER 1

NSAffineTransform Class Reference

58 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

Inherits from NSObject
Conforms to NSCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSAppleEventDescriptor.h
Companion guide Cocoa Scripting Guide
Related sample code Apply Firmware Password
AttachAScript
CoreRecipes
SimpleCarbonAppleScript
Sketch-112
Overview

An instance of NSAppleEventDescriptor represents a descriptor—the basic building block for Apple
events. This class is a wrapper for the underlying Apple event descriptor data type, AEDesc. Scriptable Cocoa
applications frequently work with instances of NSAppleEventDescriptor, but should rarely need to work
directly with the AEDesc data structure.

A descriptor is a data structure that stores data and an accompanying four-character code. A descriptor can
store a value, or it can store a list of other descriptors (which may also be lists). All the information in an Apple
event is stored in descriptors and lists of descriptors, and every Apple event is itself a descriptor list that
matches certain criteria.

Important: An instance of NSAppleEventDescriptor can represent any kind of descriptor, from a simple
value descriptor, to a descriptor list, to a full-fledged Apple event.

Descriptors can be used to build arbitrarily complex containers, so that one Apple event can represent a
script statement such as tell application "TextEdit" to get word 3 of paragraph 6 of
document 3.

In working with Apple event descriptors, it can be useful to understand some of the underlying data types.
You'll find terms such as descriptor, descriptor list, Apple event record, and Apple event defined in Building
an Apple Event in Apple Events Programming Guide. You'll also find information on the four-character codes

Overview 59
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

used to identify information within a descriptor. Apple event data types are defined in Apple Event Manager
Reference. The values of many four-character codes used by Apple (and in some cases reused by developers)
can be found in AppleScript Terminology and Apple Event Codes.

The most common reason to construct an Apple event with an instance of NSAppleEventDescriptoris
to supply information in a return Apple event. The most common situation where you might need to extract
information from an Apple event (as an instance of NSAppleEventDescriptor) is when an Apple event
handler installed by your application is invoked, as described in “Installing an Apple Event Handler” in How
Cocoa Applications Handle Apple Events. In addition, if you execute an AppleScript script using the
NSAppleScript class, you get an instance of NSAppleEventDescriptor as the return value, from which
you can extract any required information.

When you work with an instance of NSAppleEventDescriptor, you can access the underlying descriptor
directly, if necessary, with the aeDesc (page 68) method. Other methods, including
descriptorWithDescriptorType:bytes:length: (page 64) make it possible to create and initialize
instances of NSAppleEventDescriptor without creating temporary instances of NSData.

The designated initializer for NSAppleEventDescriptorisinitWithAEDescNoCopy : (page 73). However,
it is unlikely that you will need to create a subclass of NSAppleEventDescriptor.

Cocoa doesn't currently provide a mechanism for applications to directly send raw Apple events (though
compiling and executing an AppleScript script with NSAppleScript may result in Apple events being sent).
However, Cocoa applications have full access to the Apple Event Manager C APIs for working with Apple
events. So, for example, you might use an instance of NSAppleEventDescriptor to assemble an Apple
event and call the Apple Event Manager function AESend to send it.

If you need to send Apple events, or if you need more information on some of the Apple event concepts
described here, see Apple Events Programming Guide and Apple Event Manager Reference.

Adopted Protocols

Tasks

60

NSCopying
- copyWithZone: (page 2042)

Creating and Initializing Descriptors

+ appleEventWithEventClass:eventID:targetDescriptor:returnID:transactionID: (page
63)
Creates a descriptor that represents an Apple event, initialized according to the specified information.

+ descriptorWithBoolean: (page 64)
Creates a descriptor initialized with type typeBoolean that stores the specified Boolean value.

+ descriptorWithDescriptorType:bytes:length: (page 64)

Creates a descriptor initialized with the specified event type that stores the specified data (from a
series of bytes).

Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

http://developer.apple.com/releasenotes/AppleScript/ASTerminology_AppleEventCodes/TermsAndCodes.html

CHAPTER 2
NSAppleEventDescriptor Class Reference

+ descriptorWithDescriptorType:data: (page 65)
Creates a descriptor initialized with the specified event type that stores the specified data (from an
instance of NSData).

+ descriptorWithEnumCode: (page 65)
Creates a descriptor initialized with type typeEnumerated that stores the specified enumerator data
type value.

+ descriptorWithInt32: (page 66)
Creates a descriptor initialized with Apple event type typeSInt32 that stores the specified integer
value.

+ descriptorWithString: (page 66)
Creates a descriptor initialized with type typeUnicodeText that stores the text from the specified
string.

+ descriptorWithTypeCode: (page 67)
Creates a descriptor initialized with type typeType that stores the specified type value.

+ TistDescriptor (page 67)
Creates and initializes an empty list descriptor.

+ nullDescriptor (page 67)
Creates and initializes a descriptor with no parameter or attribute values set.

+ recordDescriptor (page 68)
Creates and initializes a descriptor for an Apple event record whose data has yet to be set.

- initlListDescriptor (page 72)
Initializes a newly allocated instance as an empty list descriptor.

- initRecordDescriptor (page 73)
Initializes a newly allocated instance as a descriptor that is an Apple event record.

- initWithAEDescNoCopy: (page 73)
Initializes a newly allocated instance as a descriptor for the specified Carbon AEDesc structure.

- initWithDescriptorType:bytes:length: (page 74)
Initializes a newly allocated instance as a descriptor with the specified descriptor type and data (from
an arbitrary sequence of bytes and a length count).

- initWithDescriptorType:data: (page 74)
Initializes a newly allocated instance as a descriptor with the specified descriptor type and data (from
an instance of NSData).

- initWithEventClass:eventID:targetDescriptor:returniD:transactionlID: (page 74)

Initializes a newly allocated instance as a descriptor for an Apple event, initialized with the specified
values.

Getting Information About a Descriptor

- aeDesc (page 68)
Returns a pointer to the AEDesc structure that is encapsulated by the receiver, if it has one.

- booleanValue (page 69)
Returns the contents of the receiver as a Boolean value, coercing (to typeBoolean) if necessary.

- coerceToDescriptorType: (page 69)
Returns a descriptor obtained by coercing the receiver to the specified type.

Tasks 61
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

62

CHAPTER 2
NSAppleEventDescriptor Class Reference

- data (page 70)

Returns the receiver’s data as an NSData object.
- descriptorType (page 71)

Returns the descriptor type of the receiver.
- enumCodeValue (page 71)

Returns the contents of the receiver as an enumeration type, coercing (to typeEnumerated) if
necessary.

- int32Value (page 76)
Returns the contents of the receiver as an integer, coercing (to typeSInt32) if necessary.

- numberOfItems (page 77)
Returns the number of descriptors in the receiver’s descriptor list.

- stringValue (page 80)
Returns the contents of the receiver as a Unicode text string, coercing (to typeUnicodeText) if
necessary.

- typeCodeValue (page 81)
Returns the contents of the receiver as a type, coercing (to typeType) if necessary.

Working With List Descriptors

- descriptorAtIndex: (page 70)
Returns the descriptor at the specified (one-based) position in the receiving descriptor list.

- insertDescriptor:atindex: (page 75)
Inserts a descriptor at the specified (one-based) position in the receiving descriptor list, replacing the
existing descriptor, if any, at that position.

- removeDescriptorAtindex: (page 77)
Removes the descriptor at the specified (one-based) position in the receiving descriptor list.

Working With Record Descriptors

- descriptorForKeyword: (page 70)
Returns the receiver’s descriptor for the specified keyword.

- keywordForDescriptorAtIndex: (page 76)
Returns the keyword for the descriptor at the specified (one-based) position in the receiver.

- removeDescriptorWithKeyword: (page 78)
Removes the receiver’s descriptor identified by the specified keyword.

- setDescriptor:forKeyword: (page 79)
Adds a descriptor, identified by a keyword, to the receiver.

Working With Apple Event Descriptors

- attributeDescriptorForKeyword: (page 69)
Returns a descriptor for the receiver’s Apple event attribute identified by the specified keyword.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

- eventClass (page 71)
Returns the event class for the receiver.
- eventID (page 72)
Returns the event ID for the receiver.
- paramDescriptorfForKeyword: (page 77)
Returns a descriptor for the receiver’s Apple event parameter identified by the specified keyword.
- removeParamDescriptorWithKeyword: (page 78)
Removes the receiver’s parameter descriptor identified by the specified keyword.
- returnlID (page 79)
Returns the receiver’s return ID (the ID for a reply Apple event).
- setAttributeDescriptor:forKeyword: (page 79)
Adds a descriptor to the receiver as an attribute identified by the specified keyword.
- setParamDescriptor:forKeyword: (page 80)
Adds a descriptor to the receiver as an Apple event parameter identified by the specified keyword.
- transactionlID (page 81)
Returns the receiver’s transaction ID, if any.

Class Methods

appleEventWithEventClass:eventID:targetDescriptor:returniD:transactioniD:

Creates a descriptor that represents an Apple event, initialized according to the specified information.

+ (NSAppleEventDescriptor *)appleEventWithEventClass:(AEEventClass)event(Class
eventID: (AEEventID)eventID targetDescriptor: (NSAppleEventDescriptor
*)addressDescriptor returnID: (AEReturnID)returnID
transactionID: (AETransactionlID) transactionlD

Parameters
eventClass
The event class to be set in the returned descriptor.

eventlID
The event ID to be set in the returned descriptor.

addressDescriptor
A pointer to a descriptor that identifies the target application for the Apple event. Passing ni 1 results
in an Apple event descriptor that has no keyAddressAttr attribute (it is valid for an Apple event to
have no target address attribute).

returnlD

The return ID to be set in the returned descriptor. If you pass a value of kAutoGenerateReturnlID,
the Apple Event Manager assigns the created Apple event a return ID that is unique to the current
session. If you pass any other value, the Apple Event Manager assigns that value for the ID.

Class Methods 63
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

64

CHAPTER 2
NSAppleEventDescriptor Class Reference

transactionlD

The transaction ID to be set in the returned descriptor. A transaction is a sequence of Apple events
that are sent back and forth between client and server applications, beginning with the client’s initial
request for a service. All Apple events that are part of a transaction must have the same transaction
ID. You can specify kAnyTransactionID if the Apple event is not one of a series of interdependent
Apple events.

Return Value
A descriptor for an Apple event, initialized according to the specified parameter values, or ni1 if an error
occurs.

Discussion
Constants such as kAutoGenerateReturnID and kAnyTransactionID are defined in AE. framework, a
subframework of ApplicationServices.framework.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

descriptorWithBoolean:

Creates a descriptor initialized with type typeBoolean that stores the specified Boolean value.
+ (NSAppleEventDescriptor *)descriptorWithBoolean:(Boolean)boolean

Parameters
boolean
The Boolean value to be set in the returned descriptor.

Return Value
A descriptor with the specified Boolean value, or ni1 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

descriptorWithDescriptorType:bytes:length:

Creates a descriptor initialized with the specified event type that stores the specified data (from a series of
bytes).

+ (NSAppleEventDescriptor *)descriptorWithDescriptorType:(DescType)descriptoriype
bytes:(const void *)bytes Tength:(NSUInteger)byteCount

Parameters
descriptorType
The descriptor type to be set in the returned descriptor.
bytes
The data, as a sequence of bytes, to be set in the returned descriptor.

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

byteCount
The length, in bytes, of the data to be set in the returned descriptor.

Return Value
A descriptor with the specified type and data, or ni 1 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

descriptorWithDescriptorType:data:

Creates a descriptor initialized with the specified event type that stores the specified data (from an instance
of NSData).

+ (NSAppleEventDescriptor *)descriptorWithDescriptorType:(DescType)descriptorType
data:(NSData *)data

Parameters
descriptorType
The descriptor type to be set in the returned descriptor.
data
The data, as an instance of NSData, to be set in the returned descriptor.

Return Value
A descriptor with the specified type and data, or ni 1 if an error occurs.

Discussion

You can use this method to create a descriptor that you can build into a complete Apple event by calling
methods such as setAttributeDescriptor:forKeyword: (page 79),
setDescriptor:forKeyword: (page 79),and setParamDescriptor:forKeyword: (page 80).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

descriptorWithEnumCode:

Creates a descriptor initialized with type typeEnumerated that stores the specified enumerator data type
value.

+ (NSAppleEventDescriptor *)descriptorWithEnumCode: (0SType)enumerator

Parameters
enumerator
A type code that identifies the type of enumerated data to be stored in the returned descriptor.

Return Value
A descriptor with the specified enumerator data type value, or ni1 if an error occurs.

Class Methods 65
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

66

CHAPTER 2
NSAppleEventDescriptor Class Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

descriptorWithint32:

Creates a descriptor initialized with Apple event type typeSInt32 that stores the specified integer value.
+ (NSAppleEventDescriptor *)descriptorWithInt32:(SInt32)signedInt

Parameters
signedint
The integer value to be stored in the returned descriptor.

Return Value
A descriptor containing the specified integer value, or ni 1 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
AttachAScript

SimpleCarbonAppleScript
Sketch-112

Declared In
NSAppleEventDescriptor.h

descriptorWithString:

Creates a descriptor initialized with type typeUnicodeText that stores the text from the specified string.
+ (NSApplekventDescriptor *)descriptorWithString: (NSString *)string

Parameters
string
A string that specifies the text to be stored in the returned descriptor.

Return Value
A descriptor that contains the text from the specified string, or ni1 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
AttachAScript

SimpleCarbonAppleScript

Declared In
NSAppleEventDescriptor.h

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

descriptorWithTypeCode:

Creates a descriptor initialized with type typeType that stores the specified type value.
+ (NSAppleEventDescriptor *)descriptorWithTypeCode: (0SType)typeCode

Parameters
typeCode
The type value to be set in the returned descriptor.

Return Value
A descriptor with the specified type, or ni1 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSApplekEventDescriptor.h

listDescriptor
Creates and initializes an empty list descriptor.

+ (NSApplekventDescriptor *)listDescriptor

Return Value
An empty list descriptor, or ni 1 if an error occurs.

Discussion

A list descriptor is a descriptor whose data consists of one or more descriptors. You can add items to the list
by calling insertDescriptor:atindex: (page 75) or remove them with

removeDescriptorAtindex: (page 77).

Invoking this method is equivalent to allocating an instance of NSAppleEventDescriptor and invoking
initListDescriptor (page 72).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AttachAScript

Declared In
NSAppleEventDescriptor.h

nullDescriptor

Creates and initializes a descriptor with no parameter or attribute values set.
+ (NSAppleEventDescriptor *)nullDescriptor

Return Value
A descriptor with no parameter or attribute values set, or ni1 if an error occurs.

Class Methods 67
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

Discussion
You don't typically call this method, as most NSAppleEventDescriptor instance methods can't be safely
called on the returned empty descriptor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

recordDescriptor

Creates and initializes a descriptor for an Apple event record whose data has yet to be set.
+ (NSAppleEventDescriptor *)recordDescriptor

Return Value
An Apple event descriptor whose data has yet to be set, or ni1 if an error occurs.

Discussion

An Apple event record is a descriptor whose data is a set of descriptors keyed by four-character codes. You
can add information to the descriptor with methods suchas setAttributeDescriptor:forKeyword: (page
79), setDescriptor:forKeyword: (page 79),and setParamDescriptor:forKeyword: (page 80).

Invoking this method is equivalent to allocating an instance of NSAppleEventDescriptor and invoking
initRecordDescriptor (page 73).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

Instance Methods

68

aeDesc

Returns a pointer to the AEDesc structure that is encapsulated by the receiver, if it has one.
- (const AEDesc *)aeDesc

Return Value
If the receiver has a valid AEDesc structure, returns a pointer to it; otherwise returns ni1.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

attributeDescriptorForKeyword:

Returns a descriptor for the receiver’s Apple event attribute identified by the specified keyword.
- (NSAppleEventDescriptor *)attributeDescriptorForKeyword: (AEKeyword)keyword

Parameters
keyword
A keyword (a four-character code) that identifies the descriptor to obtain.

Return Value
The attribute descriptor for the specified keyword, or ni 1 if an error occurs.

Discussion
The receiver must be an Apple event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

booleanValue

Returns the contents of the receiver as a Boolean value, coercing (to typeBoolean) if necessary.
- (Boolean)booleanValue

Return Value
The contents of the descriptor, as a Boolean value, or false if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Apply Firmware Password

Declared In
NSAppleEventDescriptor.h

coerceToDescriptorType:

Returns a descriptor obtained by coercing the receiver to the specified type.
- (NSAppleEventDescriptor *)coerceToDescriptorType:(DescType)descriptorType

Parameters
descriptorType
The descriptor type to coerce the receiver to.

Return Value
A descriptor of the specified type, or ni1 if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

69

70

CHAPTER 2
NSAppleEventDescriptor Class Reference

Declared In
NSAppleEventDescriptor.h

data

Returns the receiver’s data as an NSData object.
- (NSData *)data

Return Value
An instance of NSData containing the receiver’s data, or ni1 if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Apply Firmware Password

Declared In
NSAppleEventDescriptor.h

descriptorAtindex:

Returns the descriptor at the specified (one-based) position in the receiving descriptor list.
- (NSAppleEventDescriptor *)descriptorAtIndex:(NSInteger)anindex

Parameters
anlndex
The one-based descriptor list position of the descriptor to return.

Return Value
The descriptor from the specified position (one-based) in the descriptor list, or ni 1 if the specified descriptor
cannot be obtained.

Availability
Available in Mac OS X v10.0 and later.

See Also
- insertDescriptor:atindex: (page 75)

- removeDescriptorAtindex: (page 77)

Related Sample Code
Apply Firmware Password

AttachAScript

Declared In
NSAppleEventDescriptor.h

descriptorForKeyword:

Returns the receiver’s descriptor for the specified keyword.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

- (NSAppleEventDescriptor *)descriptorForKeyword: (AEKeyword) keyword

Parameters
keyword

A keyword (a four-character code) that identifies the descriptor to obtain.

Return Value

A descriptor for the specified keyword, or ni 1 if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

descriptorType

Returns the descriptor type of the receiver.
- (DescType)descriptorType

Return Value
The descriptor type of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

enumCodeValue

Returns the contents of the receiver as an enumeration type, coercing (to typeEnumerated) if necessary.

- (0SType)enumCodeValue

Return Value

The contents of the descriptor, as an enumeration type, or 0 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Apply Firmware Password

Declared In
NSAppleEventDescriptor.h

eventClass

Returns the event class for the receiver.

- (AEEventClass)eventClass

Instance Methods

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

71

72

CHAPTER 2
NSAppleEventDescriptor Class Reference

Return Value
The event class (a four-character code) for the receiver, or 0 if an error occurs.

Discussion

The receiver must be an Apple event. An Apple event is identified by its event class and event ID, a pair of
four-character codes stored as 32-bit integers. For example, most events in the Standard suite have the
four-character code 'core' (defined as the constant kAECoreSuitein AE. framework, a subframework of
ApplicationServices.framework). For more information on event classes and event IDs, see Building
an Apple Event in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

eventiD

Returns the event ID for the receiver.
- (AEEventID)eventID

Return Value
The event ID (a four-character code) for the receiver, or 0 if an error occurs.

Discussion

The receiver must be an Apple event. An Apple event is identified by its event class and event ID, a pair of
four-character codes stored as 32-bit integers. For example, the open Apple event from the Standard suite
has the four-character code 'odoc' (defined as the constant kAEOpen in AE. framework, a subframework
of ApplicationServices.framework).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

initListDescriptor

Initializes a newly allocated instance as an empty list descriptor.
- (id)initListDescriptor

Return Value
An empty list descriptor, or ni 1 if an error occurs.

Discussion
You can add items to the empty list descriptor with insertDescriptor:atindex: (page 75). The list
indices are one-based.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

See Also
+ listDescriptor (page 67)

Declared In
NSAppleEventDescriptor.h

initRecordDescriptor

Initializes a newly allocated instance as a descriptor that is an Apple event record.
- (id)initRecordDescriptor

Return Value
The initialized Apple event record, or ni 1 if an error occurs.

Discussion

An Apple event record is a descriptor whose data is a set of descriptors keyed by four-character codes. You
can add information to the descriptor with methods suchas setAttributeDescriptor:forKeyword: (page
79), setDescriptor: forKeyword: (page 79),and setParamDescriptor:forKeyword: (page 80).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ recordDescriptor (page 68)

Declared In
NSAppleEventDescriptor.h

initWithAEDescNoCopy:

Initializes a newly allocated instance as a descriptor for the specified Carbon AEDesc structure.
- (id)initWithAEDescNoCopy:(const AEDesc *)aeDesc

Parameters

aeDesc
A pointer to the AEDesc structure to associate with the descriptor.

Return Value
An instance of NSAppleEventDescriptor thatis associated with the structure pointed to by aeDesc, or
nil if an error occurs.

Discussion
The initialized object takes responsibility for calling the AEDisposeDesc function on the AEDesc at object
deallocation time. This is the designated initializer for this class.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

Instance Methods 73
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

74

CHAPTER 2
NSAppleEventDescriptor Class Reference

initWithDescriptorType:bytes:length:

Initializes a newly allocated instance as a descriptor with the specified descriptor type and data (from an
arbitrary sequence of bytes and a length count).

- (id)initWithDescriptorType: (DescType)descriptorType bytes:(const void *)bytes
Tength: (NSUInteger)byteCount
Parameters

descriptorType
The descriptor type to be set in the returned descriptor.

bytes
The data, as a sequence of bytes, to be set in the returned descriptor.

byteCount
The length, in bytes, of the data to be set in the returned descriptor.

Return Value
An instance of NSAppleEventDescriptor with the specified type and data. Returns ni 1 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

initWithDescriptorType:data:

Initializes a newly allocated instance as a descriptor with the specified descriptor type and data (from an
instance of NSData).

- (id)initWithDescriptorType: (DescType)descriptorType data:(NSData *)data

Parameters

descriptorType
The descriptor type to be set in the initialized descriptor.

data
The data to be set in the initialized descriptor.

Return Value
An instance of NSAppleEventDescriptor with the specified type and data. Returns ni 1 if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ descriptorWithDescriptorType:data: (page 65)

Declared In
NSAppleEventDescriptor.h

initWithEventClass:eventID:targetDescriptor:returniD:transactioniD:

Initializes a newly allocated instance as a descriptor for an Apple event, initialized with the specified values.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

- (id)initWithEventClass: (AEEventClass)eventClass eventID: (AEEventID)eventID
targetDescriptor: (NSAppleEventDescriptor *)addressDescriptor
returnID: (AEReturnID)returniD transactionID:(AETransactionID)transactionlD

Parameters

eventClass
The event class to be set in the returned descriptor.

eventlID
The event ID to be set in the returned descriptor.

addressDescriptor
A pointer to a descriptor that identifies the target application for the Apple event. Passing ni1 results
in an Apple event descriptor that has no keyAddressAttr attribute (it is valid for an Apple event to
have no target address attribute).

returnlD
The return ID to be set in the returned descriptor. If you pass a value of kAutoGenerateReturnlID,
the Apple Event Manager assigns the created Apple event a return ID that is unique to the current
session. If you pass any other value, the Apple Event Manager assigns that value for the ID.

transactionlID
The transaction ID to be set in the returned descriptor. A transaction is a sequence of Apple events
that are sent back and forth between client and server applications, beginning with the client’s initial
request for a service. All Apple events that are part of a transaction must have the same transaction
ID. You can specify kAnyTransactionID if the Apple event is not one of a series of interdependent
Apple events.

Return Value

The initialized Apple event (an instance of NSAppleEventDescriptor), ornil if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

insertDescriptor:atindex:

Inserts a descriptor at the specified (one-based) position in the receiving descriptor list, replacing the existing
descriptor, if any, at that position.

- (void)insertDescriptor: (NSAppleEventDescriptor *)descriptor
atIndex: (NSInteger)anlndex

Parameters

descriptor

The descriptor to insert in the receiver. Specifying an index of 0 or count + 1 causes appending to
the end of the list.

anlndex
The one-based descriptor list position at which to insert the descriptor.
Discussion
Because it actually replaces the descriptor, if any, at the specified position, this method might better be called

replaceDescriptor:atIndex:.The receiver must be a list descriptor. The indices are one-based. Currently
provides no indication if an error occurs.

Instance Methods 75
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

76

CHAPTER 2
NSAppleEventDescriptor Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- descriptorAtindex: (page 70)

- removeDescriptorAtindex: (page 77)

Related Sample Code
AttachAScript

Declared In
NSAppleEventDescriptor.h

int32Value
Returns the contents of the receiver as an integer, coercing (to typeSInt32) if necessary.

- (SInt32)int32Value

Return Value
The contents of the descriptor, as an integer value, or 0 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Apply Firmware Password

AttachAScript

Declared In
NSAppleEventDescriptor.h

keywordForDescriptorAtindex:

Returns the keyword for the descriptor at the specified (one-based) position in the receiver.
- (AEKeyword)keywordForDescriptorAtIndex: (NSInteger)anlndex

Parameters
anlndex
The one-based descriptor list position of the descriptor to get the keyword for.

Return Value

The keyword (a four-character code) for the descriptor at the one-based location specified by anindex, or

0 if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

numberOfitems

Returns the number of descriptors in the receiver’s descriptor list.
- (NSInteger)numberOfItems

Return Value

The number of descriptors in the receiver’s descriptor list (possibly 0); returns 0 if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Apply Firmware Password

Declared In
NSAppleEventDescriptor.h

paramDescriptorForKeyword:

Returns a descriptor for the receiver’s Apple event parameter identified by the specified keyword.

- (NSAppleEventDescriptor *)paramDescriptorForKeyword: (AEKeyword)keyword

Parameters

keyword
A keyword (a four-character code) that identifies the parameter descriptor to obtain.

Return Value
A descriptor for the specified keyword, or ni 1 if an error occurs.

Discussion
The receiver must be an Apple event.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes

Declared In
NSAppleEventDescriptor.h

removeDescriptorAtindex:

Removes the descriptor at the specified (one-based) position in the receiving descriptor list.
- (void)removeDescriptorAtIndex: (NSInteger)anindex

Parameters

anlndex
The one-based position of the descriptor to remove.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

77

78

CHAPTER 2
NSAppleEventDescriptor Class Reference

Discussion

The receiver must be a list descriptor. The indices are one-based. Currently provides no indication if an error

occurs.

Availability
Available in Mac OS X v10.2 and later.

See Also
- descriptorAtindex: (page 70)

- insertDescriptor:atindex: (page 75)

Declared In
NSAppleEventDescriptor.h

removeDescriptorWithKeyword:

Removes the receiver’s descriptor identified by the specified keyword.
- (void)removeDescriptorWithKeyword: (AEKeyword) keyword

Parameters
keyword
A keyword (a four-character code) that identifies the descriptor to remove.

Discussion
The receiver must be an Apple event or Apple event record. Currently provides no indication if an error
occurs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

removeParamDescriptorWithKeyword:

Removes the receiver’s parameter descriptor identified by the specified keyword.
- (void)removeParamDescriptorWithKeyword: (AEKeyword) keyword

Parameters

keyword
A keyword (a four-character code) that identifies the parameter descriptor to remove. Currently
provides no indication if an error occurs.

Discussion
The receiver must be an Apple event or Apple event record, both of which can contain parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

returniD

Returns the receiver’s return ID (the ID for a reply Apple event).
- (AEReturnID)returnID

Return Value
The receiver’s return ID (an integer value), or 0 if an error occurs.

Discussion
The receiver must be an Apple event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

setAttributeDescriptor:forKeyword:

Adds a descriptor to the receiver as an attribute identified by the specified keyword.

- (void)setAttributeDescriptor: (NSAppleEventDescriptor *)descriptor
forKeyword: (AEKeyword) keyword

Parameters
descriptor
The attribute descriptor to add to the receiver.

keyword
A keyword (a four-character code) that identifies the attribute descriptor to add. If a descriptor with
that keyword already exists in the receiver, it is replaced.

Discussion
The receiver must be an Apple event. Currently provides no indication if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

setDescriptor:forKeyword:

Adds a descriptor, identified by a keyword, to the receiver.

- (void)setDescriptor: (NSAppleEventDescriptor *)descriptor
forKeyword: (AEKeyword) keyword

Parameters

descriptor
The descriptor to add to the receiver.

Instance Methods 79
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

80

CHAPTER 2
NSAppleEventDescriptor Class Reference

keyword
A keyword (a four-character code) that identifies the descriptor to add. If a descriptor with that keyword
already exists in the receiver, it is replaced.

Discussion
The receiver must be an Apple event or Apple event record. Currently provides no indication if an error
occurs.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AttachAScript

SimpleCarbonAppleScript
Sketch-112

Declared In
NSAppleEventDescriptor.h

setParamDescriptor:forKeyword:
Adds a descriptor to the receiver as an Apple event parameter identified by the specified keyword.

- (void)setParamDescriptor: (NSAppleEventDescriptor *)descriptor
forKeyword: (AEKeyword) keyword

Parameters

descriptor
The parameter descriptor to add to the receiver.

keyword
A keyword (a four-character code) that identifies the parameter descriptor to add. If a descriptor with
that keyword already exists in the receiver, it is replaced.

Discussion
The receiver must be an Apple event or Apple event record, both of which can contain parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

stringValue

Returns the contents of the receiver as a Unicode text string, coercing (to typeUnicodeText) if necessary.
- (NSString *)stringValue

Return Value
The contents of the descriptor, as a string, or ni 1 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

Related Sample Code
Apply Firmware Password

AttachAScript
CoreRecipes

Declared In
NSAppleEventDescriptor.h

transactionID
Returns the receiver’s transaction ID, if any.

- (AETransactionID)transactionID

Return Value
The receiver’s transaction ID (an integer value), or 0 if an error occurs.

Discussion

The receiver must be an Apple event. Currently provides no indication if an error occurs. For more information
on transactions, see the description for
appletventWithEventClass:eventID:targetDescriptor:returniD:transactionID: (page 63).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

typeCodeValue

Returns the contents of the receiver as a type, coercing (to typeType) if necessary.
- (0SType)typeCodeValue

Return Value
The contents of the descriptor, as a type, or 0 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Apply Firmware Password

Declared In
NSAppleEventDescriptor.h

Instance Methods 81
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2
NSAppleEventDescriptor Class Reference

82 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAppleEventManager Class Reference

Inherits from NSObject
Conforms to NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSAppleEventManager.h
Companion guide Cocoa Scripting Guide
Related sample code CoreRecipes
SimpleCarbonAppleScript
Sketch-112
Overview

Provides a mechanism for registering handler routines for specific types of Apple events and dispatching
events to those handlers.

Cocoa provides built-in scriptability support that uses scriptability information supplied by an application to
automatically convert Apple events into script command objects that perform the desired operation. However,
some applications may want to perform more basic Apple event handling, in which an application registers
handlers for the Apple events it can process, then calls on the Apple Event Manager to dispatch received
Apple events to the appropriate handler. NSAppTeEventManager supports these mechanisms by providing
methods to register and remove handlers and to dispatch Apple events to the appropriate handler, if one
exists. For related information, see “How Cocoa Applications Handle Apple Events.”

Each application has at most one instance of NSAppleEventManager. To obtain a reference to it, you call
the class method sharedAppleEventManager (page 85), which creates the instance if it doesn't already
exist.

For information about the Apple Event Manager, see Apple Event Manager Reference and Apple Events
Programming Guide.

Overview 83
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

84

CHAPTER 3
NSAppleEventManager Class Reference

Getting an Event Manager

+ sharedAppleEventManager (page 85)
Returns the single instance of NSAppleEventManager, creating it first if it doesn’t exist.

Working with Event Handlers

- removebventHandlerForEventClass:andEventID: (page 87)
If an Apple event handler has been registered for the event specified by eventClass and eventID,
removes it.

- setEventHandler:andSelector:forEventClass:andEventID: (page 89)

Registers the Apple event handler specified by hander for the event specified by event(ilass and
eventID.

Working with Events

- dispatchRawAppleEvent:withRawReply:handlerRefCon: (page 87)

Causes the Apple event specified by theAppleEvent to be dispatched to the appropriate Apple
event handler, if one has been registered by calling
setEventHandler:andSelector:forEventClass:andEventID: (page 89).

Suspending and Resuming Apple Events

- appleEventForSuspensionID: (page 85)
Given a nonzero suspensionlDreturned by an invocation of suspendCurrentAppleEvent (page
89), returns the descriptor for the event whose handling was suspended.

- currentAppleEvent (page 86)
Returns the descriptor for currentAppleEvent if an Apple event is being handled on the current
thread.

- currentReplyAppleEvent (page 86)
Returns the corresponding reply event descriptor if an Apple event is being handled on the current
thread.

- replyAppleEventForSuspensionID: (page 87)
Given a nonzero suspensionlDreturned by an invocation of suspendCurrentAppleEvent (page
89), returns the corresponding reply event descriptor.

- resumeWithSuspensionID: (page 88)
Given a nonzero suspensionlDreturned by an invocation of suspendCurrentAppleEvent (page
89), signal that handling of the suspended event may now continue.

- setCurrentAppleEventAndReplyEventWithSuspensionID: (page 88)

Given a nonzero suspensionIDreturned by an invocation of suspendCurrentAppleEvent (page
89), sets the values that will be returned by subsequent invocations of currentAppleEvent (page

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3
NSAppleEventManager Class Reference

86) and currentReplyAppleEvent (page 86) to be the event whose handling was suspended and
its corresponding reply event, respectively.

- suspendCurrentAppleEvent (page 89)
Suspends the handling of the current event and returns an ID that must be used to resume the
handling of the event if an Apple event is being handled on the current thread.

Class Methods

sharedAppleEventManager

Returns the single instance of NSAppleEventManager, creating it first if it doesn’t exist.
+ (NSAppleEventManager *)sharedAppleEventManager

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes

SimpleCarbonAppleScript
Sketch-112

Declared In
NSAppleEventManager.h

Instance Methods

appleEventForSuspensionlID:

Given a nonzero suspensionlDreturned by an invocation of suspendCurrentAppleEvent (page 89),
returns the descriptor for the event whose handling was suspended.

- (NSAppleEventDescriptor
*)appleEventForSuspensionID: (NSAppleEventManagerSuspensionlID)suspensionlID

Discussion

The effects of mutating or retaining the returned descriptor are undefined, although it may be copied.
applekEventForSuspensionID: may beinvoked in any thread, not just the one in which the corresponding
invocation of suspendCurrentAppleEvent occurred.

Availability
Available in Mac OS X v10.3 and later.

See Also
- currentAppletvent (page 86)

- currentReplyAppleEvent (page 86)

Class Methods 85
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

86

CHAPTER 3
NSAppleEventManager Class Reference

Declared In
NSAppleEventManager.h

currentAppleEvent

Returns the descriptor for currentAppleEvent if an Apple event is being handled on the current thread.
- (NSAppleEventDescriptor *)currentAppleEvent

Discussion

An Apple event is being handled on the current thread if a handler that was registered with
setEventHandler:andSelector:forEventClass:andEventID: (page 89) is being messaged at this
instantor setCurrentAppleEventAndReplyEventWithSuspensionID: (page 88) has just been invoked.
Returns ni1 otherwise. The effects of mutating or retaining the returned descriptor are undefined, although
it may be copied.

Availability
Available in Mac OS X v10.3 and later.

See Also
- currentReplyAppleEvent (page 86)

Declared In
NSAppleEventManager.h

currentReplyAppleEvent

Returns the corresponding reply event descriptor if an Apple event is being handled on the current thread.
- (NSAppleEventDescriptor *)currentReplyAppleEvent

Discussion

An Apple event is being handled on the current thread if currentAppletvent (page 86) does not return
nil.Returns ni1 otherwise. This descriptor, including any mutations, will be returned to the sender of the
current event when all handling of the event has been completed, if the sender has requested a reply. The
effects of retaining the descriptor are undefined; it may be copied, but mutations of the copy are not returned
to the sender of the current event.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setCurrentAppleEventAndReplyEventWithSuspensionID: (page 88)

Related Sample Code
SimpleCarbonAppleScript

Sketch-112

Declared In
NSAppleEventManager.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3
NSAppleEventManager Class Reference

dispatchRawAppleEvent:withRawReply:handlerRefCon:

Causes the Apple event specified by theAppleEvent to be dispatched to the appropriate Apple event
handler, if one has been registered by calling
setEventHandler:andSelector:forEventClass:andEventID: (page 89).

- (OSErr)dispatchRawAppleEvent:(const AppleEvent *)theAppleEvent
withRawReply: (ApplekEvent *)theReply handlerRefCon:(UInt32)handlerRefcon

Discussion
The theReply parameter always specifies a reply Apple event, never ni 1. However, the handler should not
fill out the reply if the descriptor type for the reply event is typeNul1, indicating the sender does not want

a reply.

The handlerRefcon parameter provides 4 bytes of data to the handler; a common use for this parameter
is to pass a pointer to additional data.

This method is primarily intended for Cocoa’s internal use. Note that dispatching an event means routing an
event to an appropriate handler in the current application. You cannot use this method to send an event to
other applications.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventManager.h

removeEventHandlerForEventClass:andEventID:

If an Apple event handler has been registered for the event specified by eventClassand event ID, removes
it.

- (void)removeEventHandlerForEventClass: (AEEventClass)event(Class
andEventID: (AEEventID)eventiID

Discussion
Otherwise does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setEventHandler:andSelector:forEventClass:andEventID: (page 89)

Declared In
NSAppleEventManager.h

replyAppleEventForSuspensioniD:

Given a nonzero suspensionlDreturned by an invocation of suspendCurrentAppleEvent (page 89),
returns the corresponding reply event descriptor.

- (NSAppleEventDescriptor
*)replyAppleEventForSuspensionID: (NSAppleEventManagerSuspensionlID)suspensionlD

Instance Methods 87
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

88

CHAPTER 3
NSAppleEventManager Class Reference

Discussion

This descriptor, including any mutations, will be returned to the sender of the suspended event when handling
of the event is resumed, if the sender has requested a reply. The effects of retaining the descriptor are
undefined; it may be copied, but mutations of the copy are returned to the sender of the suspended event.
replyAppleEventForSuspensionID: may be invoked in any thread, not just the one in which the
corresponding invocation of suspendCurrentAppleEvent occurred.

Availability
Available in Mac OS X v10.3 and later.

See Also
- applekEventForSuspensionID: (page 85)

- currentAppleEvent (page 86)
- currentReplyAppleEvent (page 86)
- setCurrentAppleEventAndReplyEventWithSuspensionID: (page 88)

Declared In
NSAppleEventManager.h

resumeWithSuspensioniD:

Given a nonzero suspensionlDreturned by an invocation of suspendCurrentAppleEvent (page 89),
signal that handling of the suspended event may now continue.

- (void)resumeWithSuspensionID: (NSAppleEventManagerSuspensionlD)suspensionlID

Discussion

This may result in the immediate sending of the reply event to the sender of the suspended event, if the
sender has requested a reply. If suspensionIDhas been used in a previous invocation of
setCurrentAppleEventAndReplyEventWithSuspensionID: (page 88) the effects of that invocation
are completely undone. Redundant invocations of resumelithSuspensionID: are ignored. Subsequent
invocations of other NSAppleEventManager methods using the same suspension ID are invalid.
resumelWithSuspensionID: may be invoked in any thread, not just the one in which the corresponding
invocation of suspendCurrentAppleEvent occurred.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAppleEventManager.h

setCurrentAppleEventAndReplyEventWithSuspensioniD:

Given a nonzero suspensionlDreturned by an invocation of suspendCurrentAppleEvent (page 89),
sets the values that will be returned by subsequent invocations of currentAppleEvent (page 86) and
currentReplyAppleEvent (page 86) to be the event whose handling was suspended and its corresponding
reply event, respectively.

(void)setCurrentAppleEventAndReplyEventWithSuspensionID: (NSAppleEventManagerSuspensionID)suspensionlD

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3
NSAppleEventManager Class Reference

Discussion
Redundant invocations of setCurrentAppleEventAndReplyEventWithSuspensionID: are ignored.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAppleEventManager.h

setEventHandler:andSelector:forEventClass:andEventID:
Registers the Apple event handler specified by handTer for the event specified by eventCilassand eventID.

- (void)setEventHandler:(id)handler andSelector:(SEL)handleEventSelector
forEventClass: (AEEventClass)eventClass andEventID: (AEEventID)eventID

Discussion
If an event handler is already registered for the specified event class and event ID, removes it. The signature
for handTer should match the following:

- (void)handleAppleEvent: (NSAppleEventDescriptor *)event withReplyEvent:
(NSAppleEventDescriptor *)replyEvent;

Availability
Available in Mac OS X v10.0 and later.

See Also
- removekventHandlerForEventClass:andEventID: (page 87)

Related Sample Code
CoreRecipes

Declared In
NSAppleEventManager.h

suspendCurrentAppleEvent

Suspends the handling of the current event and returns an ID that must be used to resume the handling of
the event if an Apple event is being handled on the current thread.

- (NSAppleEventManagerSuspensionID)suspendCurrentAppleEvent

Discussion
An Apple event is being handled on the current thread if currentAppleEvent (page 86) does not return
nil.Returns zero otherwise. The suspended event is no longer the current event after this method returns.

Availability
Available in Mac OS X v10.3 and later.

See Also
- currentReplyAppleEvent (page 86)

- resumeWithSuspensionID: (page 88)

Instance Methods 89
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3
NSAppleEventManager Class Reference

Declared In
NSAppleEventManager.h

Constants

NSAppleEvent Timeouts
The following constants should not be used and may eventually be removed.

extern const double NSAppleEventTimeQutDefault;
extern const double NSAppleEventTimeOutNone;

Constants

NSApplekventTimeOutDefault
Specifies that an event-processing operation should continue until a timeout occurs based on a value
determined by the Apple Event Manager (about 1 minute). Not currently used by applications.
Available in Mac OS X v10.0 and later.
Declared in NSAppleEventManager.h.

NSAppleEventTimeOutNone
Specifies that the application is willing to wait indefinitely for the current operation to complete. Not
currently used by applications.

Available in Mac OS X v10.0 and later.
Declared in NSAppleEventManager.h.

Declared In
NSAppleEventManager.h

Notifications

NSAppleEventManagerWillProcessFirstEventNotification

Posted by NSAppleEventManager before it first dispatches an Apple event. Your application can use this
notification to avoid registering any Apple event handlers until the first time at which they may be needed.
The notification object is the NSAppTeEventManager. This notification does not containa userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventManager.h

90 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAppleScript Class Reference

Inherits from NSObject
Conforms to NSCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Declared in Foundation/NSAppleScript.h

AppKit/NSAppleScriptExtensions.h

Availability Available in Mac OS X v10.2 and later.
Companion guide Cocoa Scripting Guide
Related sample code AttachAScript

Overview

The NSAppleScript class provides the ability to load, compile, and execute scripts.

Important: You should access NSAppleScript only from the main thread.

This class provides applications with the ability to

m load a script from a URL or from a text string

= compile or execute a script or an individual Apple event

m obtain an NSAppleEventDescriptor containing the reply from an executed script or event
= obtain an attributed string for a compiled script, suitable for display in a script editor

m obtain various kinds of information about any errors that may occur

Overview 91
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4
NSAppleScript Class Reference

Important: NSAppleScript provides the executeAppleEvent:error: (page 94) method so that you
can send an Apple event to invoke a handler in a script. (In an AppleScript script, a handler is the equivalent
of a function.) However, you cannot use this method to send Apple events to other applications.

When you create an instance of NSAppleScript object, you can use a URL to specify a script that can be in
either text or compiled form, or you can supply the script as a string. Should an error occur when compiling
or executing the script, several of the methods return a dictionary containing error information. The keys for
obtaining error information, suchas NSAppleScriptErrorMessage (page 96), are described in the Constants
section.

See also NSAppleScript Additions in the Application Kit framework, which defines a method that returns the
syntax-highlighted source code for a script.

Adopted Protocols

Tasks

92

NSCopying
- copyWithZone: (page 2042)

Initializing a Script

- initWithContentsOfURL:error: (page 94)
Initializes a newly allocated script instance from the source identified by the passed URL.

- initWithSource: (page 95)
Initializes a newly allocated script instance from the passed source.

Getting Information About a Script

- isCompiled (page 95)
Returns a Boolean value that indicates whether the receiver's script has been compiled.

- source (page 95)
Returns the script source for the receiver.

Compiling and Executing a Script

- compileAndReturnError: (page 93)
Compiles the receiver, if it is not already compiled.

- executeAndReturnError: (page 93)
Executes the receiver, compiling it first if it is not already compiled.

Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4
NSAppleScript Class Reference

- executeAppletvent:error: (page 94)
Executes an Apple event in the context of the receiver, as a means of allowing the application to
invoke a handler in the script.

Instance Methods

compileAndReturnError:

Compiles the receiver, if it is not already compiled.
- (BOOL)compileAndReturnError: (NSDictionary **)errorinfo

Parameters
errorinfo
On return, if an error occurs, a pointer to an error information dictionary.

Return Value
YES for success or if the script was already compiled, NO otherwise.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

executeAndReturnError:

Executes the receiver, compiling it first if it is not already compiled.
- (NSAppleEventDescriptor *)executeAndReturnError:(NSDictionary **)errorinfo

Parameters
errorinfo
On return, if an error occurs, a pointer to an error information dictionary.

Return Value
The result of executing the event, or ni 1 if an error occurs.

Discussion
Any changes to property values caused by executing the script do not persist.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

Instance Methods 93
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

94

CHAPTER 4
NSAppleScript Class Reference

executeAppleEvent:error:

Executes an Apple event in the context of the receiver, as a means of allowing the application to invoke a
handler in the script.

- (NSAppleEventDescriptor *)executeAppleEvent: (NSAppleEventDescriptor *)event
error:(NSDictionary **)errorinfo
Parameters

event
The Apple event to execute.

errorinfo
On return, if an error occurs, a pointer to an error information dictionary.

Return Value
The result of executing the event, or ni1 if an error occurs.

Discussion
Compiles the receiver before executing it if it is not already compiled.

Important: You cannot use this method to send Apple events to other applications.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

initWithContentsOfURL:error:

Initializes a newly allocated script instance from the source identified by the passed URL.
- (id)initWithContentsOfURL: (NSURL *)url error:(NSDictionary **)errorinfo

Parameters
url
A URL that locates a script, in either text or compiled form.
errorinfo
On return, if an error occurs, a pointer to an error information dictionary.

Return Value
The initialized script object, ni 1 if an error occurs.

Discussion
This method is a designated initializer for NSAppleScript.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4
NSAppleScript Class Reference

initWithSource:
Initializes a newly allocated script instance from the passed source.

- (id)initWithSource: (NSString *)source

Parameters

source
A string containing the source code of a script.

Return Value
The initialized script object, ni1 if an error occurs.

Discussion
This method is a designated initializer for NSAppleScript.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

isCompiled

Returns a Boolean value that indicates whether the receiver's script has been compiled.
- (BOOL)isCompiled

Return Value
YES if the receiver is already compiled, NO otherwise.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

source

Returns the script source for the receiver.
- (NSString *)source

Return Value
The script source code of the receiver if it is available, ni1 otherwise.

Discussion
Itis possible foran NSAppleScript that has been instantiated with initl/ithContentsOfURL:error: (page
94) to be a script for which the source code is not available but is nonetheless executable.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

Instance Methods 95
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4
NSAppleScript Class Reference

Constants

Error Dictionary Keys

If the result of initWithContentsOfURL:error: (page 94), compileAndReturnError: (page 93),
executeAndReturnError: (page 93), or executeAppleEvent:error: (page 94), signals failure (ni1,
NO,ni1,ornil, respectively), a pointer to an autoreleased dictionary is put at the location pointed to by the
error parameter. The error info dictionary may contain entries that use any combination of the following
keys, including no entries at all.

extern NSString *NSAppleScriptErrorMessage;
extern NSString *NSAppleScriptErrorNumber;
extern NSString *NSAppleScriptErrorAppName;
extern NSString *NSAppleScriptErrorBriefMessage;
extern NSString *NSAppleScriptErrorRange;

Constants
NSAppleScriptErrorMessage
An NSString that supplies a detailed description of the error condition.

Available in Mac OS X v10.2 and later.
Declared in NSAppleScript.h.

NSAppleScriptErrorNumber
An NSNumber that specifies the error number.

Available in Mac OS X v10.2 and later.
Declared in NSAppleScript.h.

NSAppleScriptErrorAppName
An NSString that specifies the name of the application that generated the error.

Available in Mac OS X v10.2 and later.
Declared in NSAppleScript.h.

NSAppleScriptErrorBriefMessage
An NSString that provides a brief description of the error.

Available in Mac OS X v10.2 and later.
Declared in NSAppleScript.h.

NSAppleScriptErrorRange
An NSVaTlue that specifies a range.

Available in Mac OS X v10.2 and later.
Declared in NSAppleScript.h.

Declared In
NSAppleScript.h

Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Inherits from NSCoder : NSObject
Conforms to NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSArchiver.h
Companion guide Archives and Serializations Programming Guide for Cocoa
Related sample code Departments and Employees
MenultemView
QTMetadataEditor
Sketch-112

StickiesExample

Overview

Tasks

NSArchiver, a concrete subclass of NSCoder, provides a way to encode objects into an
architecture-independent format that can be stored in a file. When you archive a graph of objects, the class
information and instance variables for each object are written to the archive. NSArchi ver's companion class,
NSUnarchiver, decodes the data in an archive and creates a graph of objects equivalent to the original set.

NSArchiver stores the archive data in a mutable data object (NSMutab1eData). After encoding the objects,
you can have the NSArchiver object write this mutable data objectimmediately to a file, or you can retrieve
the mutable data object for some other use.

In Mac OS X v10.2 and later, NSArchiver and NSUnarchiver have been replaced by NSKeyedArchiver
and NSKeyedUnarchiver respectively—see Archives and Serializations Programming Guide for Cocoa.

Initializing an NSArchiver

- initForWritingWithMutableData: (page 102)
Returns an archiver, initialized to encode stream and version information into a given mutable data
object.

Overview 97
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Archiving Data

+ archivedDataWithRootObject: (page 98)
Returns a data object containing the encoded form of the object graph whose root object is given.

+

archiveRootObject:toFile: (page 99)
Creates a temporary instance of NSArchiver and archives an object graph by encoding it into a data
object and writing the resulting data object to a specified file.

- encodeRoot0Object: (page 101)

Archives a given object along with all the objects to which it is connected.

encodeConditionalObject: (page 101)
Conditionally archives a given object.

Getting the Archived Data

- archiverData (page 100)
Returns the receiver's archive data.

Substituting Classes or Objects

- classNameEncodedForTrueClassName: (page 100)
Returns the name of the class used to archive instances of the class with a given true name.

- encodeClassName:intoClassName: (page 100)
Encodes a substitute name for the class with a given true name.
- replaceObject:withObject: (page 102)

Causes the receiver to treat subsequent requests to encode a given object as though they were
requests to encode another given object.

Class Methods

98

archivedDataWithRootObject:

Returns a data object containing the encoded form of the object graph whose root object is given.
+ (NSData *)archivedDataWithRootObject:(id)rootObject

Parameters
rootObject
The root object of the object graph to archive.

Return Value
A data object containing the encoded form of the object graph whose root object is root0bject.

Discussion
This method invokes initForWritingWithMutableData: (page 102) and encodeRootObject: (page
101) to create a temporary archiver that encodes the object graph.

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- dinitForWritingWithMutableData: (page 102)

- encodeRoot0Object: (page 101)

Related Sample Code
Departments and Employees

MenultemView
QTMetadataEditor
Sketch-112
StickiesExample

Declared In
NSArchiver.h

archiveRootObject:toFile:

Creates a temporary instance of NSArchiver and archives an object graph by encoding it into a data object
and writing the resulting data object to a specified file.

+ (BOOL)archiveRootObject:(id)rootObject toFile:(NSString *)path

Parameters
rootObject
The root object of the object graph to archive.
path
The location of the the file into which to write the archive.

Return Value
YES if the archive was written successfully, otherwise NO.

Discussion

This convenience method invokes archivedDatallithRoot0Object: (page 98) to get the encoded data,
and then sends that data object the message writeToFile:atomically: (page 384), using path for the
first argument and YES for the second.

The archived data should be retrieved from the archive by an NSUnarchiver object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ archivedDataWithRootObject: (page 98)

- writeToFile:atomically: (page 384) (NSData)

Declared In
NSArchiver.h

Class Methods 929
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Instance Methods

100

archiverData

Returns the receiver's archive data.
- (NSMutableData *)archiverData

Return Value
The receiver's archive data.

Discussion

The returned data object is the same one specified as the argument to
initForWritingWithMutableData: (page 102). It contains whatever data has been encoded thus far by
invocations of the various encoding methods. It is safest not to invoke this method until after
encodeRootObject: (page 101) has returned. In other words, although it is possible for a class to invoke
this method from within its encodeWithCoder: (page 2034) method, that method must not alter the data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

classNameEncodedForTrueClassName:

Returns the name of the class used to archive instances of the class with a given true name.
- (NSString *)classNameEncodedForTrueClassName: (NSString *)trueName

Parameters
trueName
The real name of an encoded class.

Return Value
The name of the class used to archive instances of the class trueName.

Availability
Available in Mac OS X v10.0 and later.

See Also
- encodeClassName:intoClassName: (page 100)

Declared In
NSArchiver.h

encodeClassName:intoClassName:

Encodes a substitute name for the class with a given true name.

- (void)encodeClassName: (NSString *) trueName intoClassName: (NSString *)inArchiveName

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Parameters
trueName

The real name of a class in the object graph being archived.
inArchiveName

The name of the class to use in the archive in place of trueName.

Discussion

Any subsequently encountered objects of class t rueName are archived as instances of class 7nArchiveName.
It is safest not to invoke this method during the archiving process (that is, withinan encodelli thCoder: (page
2034) method). Instead, invoke it before encodeRootObject: (page 101).

Availability
Available in Mac OS X v10.0 and later.

See Also
- classNameEncodedForTrueClassName: (page 100)

Declared In
NSArchiver.h

encodeConditionalObject:

Conditionally archives a given object.
- (void)encodeConditionalObject:(id)object

Parameters
object

The object to archive.
Discussion
This method overrides the superclass implementation to allow object to be encoded only if it is also encoded
unconditionally by another object in the object graph. Conditional encoding lets you encode one part of a
graph detached from the rest. (See Archives and Serializations Programming Guide for Cocoa for more
information.)

This method should be invoked only from within an encodeWithCoder: (page 2034) method. If object is
nil, the NSArchiver object encodes it unconditionally as ni1. This method raises an
NSInvalidArgumentException if no root object has been encoded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

encodeRootObject:

Archives a given object along with all the objects to which it is connected.

- (void)encodeRootObject:(id)rootObject

Instance Methods 101
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

102

CHAPTER 5

NSArchiver Class Reference

Parameters
rootObject
The root object of the object graph to archive.

Discussion

If any object is encountered more than once while traversing the graph, it is encoded only once, but the
multiple references to it are stored. (See Archives and Serializations Programming Guide for Cocoa for more
information.)

This message must not be sent more than once to a given NSArchiver object; an
NSInvalidArgumentException is raised if a root object has already been encoded. If you need to encode
multiple object graphs, therefore, don't attempt to reuse an NSArchiver instance; instead, create a new
one for each graph.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

initForWritingWithMutableData:

Returns an archiver, initialized to encode stream and version information into a given mutable data object.
- (id)initForWritingWithMutableData: (NSMutableData *)data

Parameters

data
The mutable data object into which to write the archive. This value must not be ni1.

Return Value
An archiver object, initialized to encode stream and version information into data.

Discussion
Raises an NSInvalidArgumentExceptionif dataisnil.

Availability
Available in Mac OS X v10.0 and later.

See Also
- archiverData (page 100)

Declared In
NSArchiver.h

replaceObject:withObject:

Causes the receiver to treat subsequent requests to encode a given object as though they were requests to
encode another given object.

- (void)replaceObject:(id)object withObject:(id)newlObject

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Parameters
object
An object in the object graph being archived.

newObject

The object with which to replace object in the archive.
Discussion
Both object and newObject must be valid objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

Constants

Archiving Exception Names

Raised by NSArchiver if there are problems initializing or encoding.
extern NSString *NSInconsistentArchivekException;

Constants
NSInconsistentArchiveException
The name of an exception raised by NSArchiver if there are problems initializing or encoding.

Available in Mac OS X v10.0 and later.
Declared in NSArchiver.h.

Declared In
NSArchiver.h

Constants 103
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

104 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Inherits from

Conforms to

Framework

Availability

Declared in

Companion guides

Related sample code

Overview

NSObject

NSCoding
NSCopying
NSMutableCopying
NSFastEnumeration
NSObject (NSObject)

/System/Library/Frameworks/Foundation.framework
Available in Mac OS X v10.0 and later.

Foundation/NSArray.h
Foundation/NSKeyValueCoding.h
Foundation/NSKeyValueObserving.h
Foundation/NSPathUtilities.h
Foundation/NSPredicate.h
Foundation/NSSortDescriptor.h

Collections Programming Topics for Cocoa
Key-Value Coding Programming Guide
Property List Programming Guide
Predicate Programming Guide

CoreRecipes

iSpend

Quartz Composer WWDC 2005 TextEdit
Sketch-112

StickiesExample

NSArray and its subclass NSMutableArray manage collections of objects called arrays. NSArray creates
static arrays, and NSMutableArray creates dynamic arrays.

The NSArray and NSMutableArray classes adopt the NSCopying and NSMutableCopying protocols,
making it convenient to convert an array of one type to the other.

NSArray and NSMutableArray are part of a class cluster, so arrays are not actual instances of the NSArray
or NSMutableArray classes but of one of their private subclasses. Although an array’s class is private, its

interface is public, as declared by these abstract superclasses, NSArray and NSMutableArray.

Overview

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

105

106

CHAPTER 6

NSArray Class Reference

NSArray's two primitive methods—count (page 119) and objectAtIndex: (page 131)—provide the basis
for all other methods in its interface. The count method returns the number of elements in the array;
objectAtIndex: gives you access to the array elements by index, with index values starting at 0.

The methods objectEnumerator (page 131) and reverseObjectEnumerator (page 134) also grant
sequential access to the elements of the array, differing only in the direction of travel through the elements.
These methods are provided so that arrays can be traversed in a manner similar to that used for objects of
other collection classes, suchas NSDictionary.Seethe objectEnumerator method description for a code
excerpt that shows how to use these methods to access the elements of an array. In Mac OS X v10.5 and
later, it is more efficient to use the fast enumeration protocol (see NSFastEnumeration).

NSArray provides methods for querying the elements of the array. The index0f0Object : (page 123) method
searches the array for the object that matches its argument. To determine whether the search is successful,
each element of the array is sentan isEqual: (page 2101) message, as declared in the NSObject protocol.
Another method, index0fObjectIdenticalTo: (page 124), is provided for the less common case of
determining whether a specific object is present in the array. The index0fObjectIdenticalTo: method
tests each element in the array to see whether its id matches that of the argument.

NSArray's filteredArrayUsingPredicate: (page 121) method allows you to create a new array from
an existing array filtered using a predicate (see Predicate Programming Guide).

NSArray'smakeObjectsPerformSelector: (page 129) and
makeObjectsPerformSelector:withObject: (page 130) methods let you send messages to all objects
in the array. To act on the array as a whole, a variety of other methods are defined. You can create a sorted
version of the array (sortedArrayUsingSelector: (page 138) and
sortedArrayUsingFunction:context: (page 136), extract a subset of the array
(subarrayWithRange: (page 138)), or concatenate the elements of an array of NSString objects into a
single string (componentsdoinedByString: (page 118)). In addition, you can compare two arrays using
theistqualToArray: (page129)and firstObjectCommonWithArray: (page 122) methods. Finally, you
can create new arrays that contain the objects in an existing array and one or more additional objects with
arrayByAddingObject: (page 117)and arrayByAddingObjectsFromArray: (page 117).

Arrays maintain strong references to their contents—in a managed memory environment, each object receives
a retain message before its id is added to the array and a release message when it is removed from the
array or when the array is deallocated. If you want a collection with different object ownership semantics,
consider using CFArray Reference, NSPointerArray, or NSHashTab1e instead.

NSArray is “toll-free bridged” with its Core Foundation counterpart, CFArray Reference. What this means is
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object, providing you cast one type to the other. Therefore, in an APl where you seean NSArray * parameter,
you can pass ina CFArrayRef, and in an APl where you see a CFArrayRef parameter, you can pass in an
NSArray instance. This arrangement also applies to your concrete subclasses of NSArray. See Carbon-Cocoa
Integration Guide for more information on toll-free bridging.

Subclassing Notes

Most developers would not have any reason to subclass NSArray. The class does well what it is designed to
do—maintain an ordered collection of objects. But there are situations where a custom NSArray object
might come in handy. Here are a few possibilities:

= Changing how NSArray stores the elements of its collection. You might do this for performance reasons
or for better compatibility with legacy code.

Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

= Changing how NSArray retains and releases its elements.

= Acquiring more information about what is happening to the collection (for example, statistics gathering).

Methods to Override

Any subclass of NSArray must override the primitive instance methods count (page 119) and
objectAtIndex: (page 131). These methods must operate on the backing store that you provide for the
elements of the collection. For this backing store you can use a static array, a standard NSArray object, or
some other data type or mechanism. You may also choose to override, partially or fully, any other NSArray
method for which you want to provide an alternative implementation.

You might want to implement an initializer for your subclass that is suited to the backing store that the
subclass is managing. The NSArray class does not have a designated initializer, so your initializer need only
invoke the init (page 1178) method of super.The NSArray class adopts the NSCopying, NSMutableCopying,
and NSCoding protocols; if you want instances of your own custom subclass created from copying or coding,
override the methods in these protocols.

Remember that NSArray is the public interface for a class cluster and what this entails for your subclass. The
primitive methods of NSArray do not include any designated initializers. This means that you must provide
the storage for your subclass and implement the primitive methods that directly act on that storage.

Special Considerations

In most cases your custom NSArray class should conform to Cocoa’s object-ownership conventions. Thus
you must send retain (page 2108) to each object that you add to your collection and release (page 2106) to
each object that you remove from the collection. Of course, if the reason for subclassing NSArray is to
implement object-retention behavior different from the norm (for example, a non-retaining array), then you
can ignore this requirement.

Alternatives to Subclassing

Before making a custom class of NSArray, investigate NSPointerArray, NSHashTable, and the
corresponding Core Foundation type, CFArray Reference. Because NSArray and CFArray are “toll-free bridged,”
you can substitute a CFArray object for a NSArray object in your code (with appropriate casting). Although
they are corresponding types, CFArray and NSArray do not have identical interfaces or implementations,
and you can sometimes do things with CFArray that you cannot easily do with NSArray. For example, CFArray
provides a set of callbacks, some of which are for implementing custom retain-release behavior. If you specify
NULL implementations for these callbacks, you can easily get a non-retaining array.

If the behavior you want to add supplements that of the existing class, you could write a category on NSArray.
Keep in mind, however, that this category will be in effect for all instances of NSArray that you use, and this
might have unintended consequences.

Adopted Protocols

NSCoding
- encodeWithCoder: (page 2034)

- initWithCoder: (page 2034)

Adopted Protocols 107
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

108

CHAPTER 6

NSArray Class Reference

NSCopying
- copyWithZone: (page 2042)

NSMutableCopying
- mutableCopyWithZone: (page 2094)

Creating an Array

+ array (page 111)
Creates and returns an empty array.
+ arrayWithArray: (page 112)
Creates and returns an array containing the objects in another given array.
+ arrayWithContentsOfFile: (page 113)
Creates and returns an array containing the contents of the file specified by a given path.
+ arrayWithContentsOfURL: (page 113)
Creates and returns an array containing the contents specified by a given URL.
+ arrayWithObject: (page 114)
Creates and returns an array containing a given object.
+ arrayWithObjects: (page 114)
Creates and returns an array containing the objects in the argument list.
+ arrayWithObjects:count: (page 115)
Creates and returns an array that includes a given number of objects from a given C array.

Initializing an Array

- initWithArray: (page 125)

Initializes a newly allocated array by placing in it the objects contained in a given array.
- initWithArray:copyltems: (page 126)

Initializes a newly allocated array using anArray as the source of data objects for the array.
- initWithContentsOfFile: (page 126)

Initializes a newly allocated array with the contents of the file specified by a given path.
- initWithContentsOfURL: (page 127)

Initializes a newly allocated array with the contents of the location specified by a given URL.
- initWithObjects: (page 127)

Initializes a newly allocated array by placing in it the objects in the argument list.
- initWithObjects:count: (page 128)

Initializes a newly allocated array to include a given number of objects from a given C array.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Querying an Array

- containsObject: (page 119)
Returns a Boolean value that indicates whether a given object is present in the receiver.
- count (page 119)
Returns the number of objects currently in the receiver.
- getObjects: (page 122)
Copies all the objects contained in the receiver to aBuffer.
- getObjects:range: (page 123)
Copies the objects contained in the receiver that fall within the specified range to aBuffer.
- index0fObject: (page 123)
Returns the lowest index whose corresponding array value is equal to a given object.
- index0fObject:inRange: (page 123)
Returns the lowest index within a specified range whose corresponding array value is equal to a given
object.
- index0OfObjectIdenticalTo: (page 124)
Returns the lowest index whose corresponding array value is identical to a given object.
- index0fObjectIdenticalTo:inRange: (page 125)
Returns the lowest index within a specified range whose corresponding array value is equal to a given
object.
- lastObject (page 129)
Returns the object in the array with the highest index value.
- objectAtIndex: (page 131)
Returns the object located at index.
- objectsAtIndexes: (page 132)
Returns an array containing the objects in the receiver at the indexes specified by a given index set.
- objectEnumerator (page 131)
Returns an enumerator object that lets you access each object in the receiver.
- reverseObjectEnumerator (page 134)
Returns an enumerator object that lets you access each object in the receiver, in reverse order.

Sending Messages to Elements

- makeObjectsPerformSelector: (page 129)
Sends to each object in the receiver the message identified by a given selector, starting with the first
object and continuing through the array to the last object.

- makeObjectsPerformSelector:withObject: (page 130)

Sends the aSelector message to each object in the array, starting with the first object and continuing
through the array to the last object.

Comparing Arrays

- firstObjectCommonWithArray: (page 122)
Returns the first object contained in the receiver that’s equal to an object in another given array.

Tasks 109
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

110

CHAPTER 6

NSArray Class Reference

- iskEqualToArray: (page 129)
Compares the receiving array to another array.

Deriving New Arrays

- arrayByAddingObject: (page 117)
Returns a new array that is a copy of the receiver with a given object added to the end.

- arrayByAddingObjectsFromArray: (page 117)
Returns a new array that is a copy of the receiver with the objects contained in another array added
to the end.

- filteredArrayUsingPredicate: (page 121)
Evaluates a given predicate against each object in the receiver and returns a new array containing
the objects for which the predicate returns true.

- subarrayWithRange: (page 138)

Returns a new array containing the receiver’s elements that fall within the limits specified by a given
range.

Sorting

- sortedArrayHint (page 135)
Analyzes the receiver and returns a “hint” that speeds the sorting of the array when the hint is supplied
tosortedArrayUsingFunction:context:hint: (page 137).

- sortedArrayUsingFunction:context: (page 136)
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison
function comparator.

- sortedArrayUsingFunction:context:hint: (page 137)
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison
function comparator.

- sortedArrayUsingDescriptors: (page 135)
Returns a copy of the receiver sorted as specified by a given array of sort descriptors.

- sortedArrayUsingSelector: (page 138)
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by a given selector.

Working with String Elements

- componentsdoinedByString: (page 118)
Constructs and returns an NSString object that is the result of interposing a given separator between
the elements of the receiver’s array.

Creating a Description

- description (page 120)

Returns a string that represents the contents of the receiver, formatted as a property list.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

- descriptionWithlLocale: (page 120)
Returns a string that represents the contents of the receiver, formatted as a property list.

- descriptionWithlLocale:indent: (page 121)
Returns a string that represents the contents of the receiver, formatted as a property list.

- writeToFile:atomically: (page 139)
Writes the contents of the receiver to a file at a given path.

- writeToURL:atomically: (page 140)
Writes the contents of the receiver to the location specified by a given URL.

Collecting Paths

- pathsMatchingExtensions: (page 133)
Returns an array containing all the pathname elements in the receiver that have filename extensions
from a given array.

Key-Value Observing

- addObserver:forKeyPath:options:context: (page 116)
Raises an exception.

- removeObserver:forKeyPath: (page 133)
Raises an exception.

- addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 116)
Registers anObserver to receive key value observer notifications for the specified keypath relative
to the objects at indexes.

- removeObserver:fromObjectsAtIndexes:forKeyPath: (page 134)

Removes anObserver from all key value observer notifications associated with the specified keyPath
relative to the receiver’s objects at indexes.

Key-Value Coding

- setValue:forKey: (page 135)
Invokes setValue:forKey: on each of the receiver's items using the specified value and key.

- valueForKey: (page 139)
Returns an array containing the results of invoking valueForKey : using key on each of the receiver's
objects.

Class Methods

array

Creates and returns an empty array.

+ (id)array

Class Methods m
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Return Value
An empty array.

Discussion
This method is used by mutable subclasses of NSArray.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithObject: (page 114)

+ arrayWithObjects: (page 114)

Related Sample Code
CoreRecipes

Dicey

Quartz Composer WWDC 2005 TextEdit
Sketch-112

TextEditPlus

Declared In
NSArray.h

arrayWithArray:

Creates and returns an array containing the objects in another given array.
+ (id)arrayWithArray: (NSArray *)anArray

Parameters
anArray
An array.

Return Value
An array containing the objects in anArray.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithObjects: (page 114)

- initWithObjects: (page 127)

Related Sample Code
CoreRecipes

iSpend
QTKitMovieShuffler
Reminders

Squiggles

Declared In
NSArray.h

112 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

arrayWithContentsOfFile:

Creates and returns an array containing the contents of the file specified by a given path.
+ (id)arrayWithContentsOfFile: (NSString *)aPath

Parameters

aPath
The path to a file containing a string representation of an array produced by the
writeToFile:atomically: (page 139) method.

Return Value
An array containing the contents of the file specified by aPath. Returns ni1 if the file can't be opened or if
the contents of the file can’t be parsed into an array.

Discussion
The array representation in the file identified by aPath must contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in Mac OS X v10.0 and later.

See Also
- writeToFile:atomically: (page 139)

Related Sample Code
LSMSmartCategorizer

Mountains
URL Cachelnfo

Declared In
NSArray.h

arrayWithContentsOfURL:

Creates and returns an array containing the contents specified by a given URL.
+ (id)arrayWithContentsOfURL: (NSURL *)aURL

Parameters
aURL

The location of a file containing a string representation of an array produced by the
writeToURL:atomically: (page 140) method.

Return Value
An array containing the contents specified by aURL. Returns ni 1 if the location can’t be opened or if the
contents of the location can't be parsed into an array.

Discussion
The array representation at the location identified by aURL must contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in Mac OS X v10.0 and later.

Class Methods 113
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

See Also
- writeToURL:atomically: (page 140)

Declared In
NSArray.h

arrayWithObject:

Creates and returns an array containing a given object.
+ (id)arrayWithObject:(id)anObject

Parameters
anObject
An object.

Return Value
An array containing the single element anObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ array (page 111)

+ arrayWithObjects: (page 114)

Related Sample Code
CoreRecipes

Dicey

Quartz Composer WWDC 2005 TextEdit
StickiesExample

TextEditPlus

Declared In
NSArray.h

arrayWithObjects:

Creates and returns an array containing the objects in the argument list.
+ (id)arrayWithObjects:(id)first0by,

Parameters
firstobj,
A comma-separated list of objects ending with nil.

Return Value
An array containing the objects in the argument list.

Discussion
This code example creates an array containing three different types of element:

NSArray *myArray;

14 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

NSDate *aDate = [NSDate distantFuturel;
NSValue *aValue = [NSNumber numberWithInt:5];
NSString *aString = @"a string";

myArray = [NSArray arrayWithObjects:aDate, aValue, aString, nill;

Availability
Available in Mac OS X v10.0 and later.

See Also
+ array (page 111)

+ arrayWithObject: (page 114)

Related Sample Code
CoreRecipes

iSpend
QTCoreVideo301
Sketch-112
TimelineToTC

Declared In
NSArray.h

arrayWithObjects:count:

Creates and returns an array that includes a given number of objects from a given C array.
+ (id)arrayWithObjects:(const id *)objects count:(NSUInteger)count

Parameters

objects
A C array of objects.

count
The number of values from the objects C array to include in the new array. This number will be the
count of the new array—it must not be negative or greater than the number of elementsin objects.

Return Value
A new array including the first count objects from objects.

Discussion
Elements are added to the new array in the same order they appear in objects, up to but not including
index count.

Availability
Available in Mac OS X v10.0 and later.

See Also
- getObjects: (page 122)

- getObjects:range: (page 123)

Declared In
NSArray.h

Class Methods 115
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Instance Methods

116

addObserver:forKeyPath:options:context:

Raises an exception.

- (void)addObserver: (NSObject *)observer forKeyPath:(NSString *)keyPath
options: (NSKeyValueObservingOptions)options context:(void *)context

Parameters
observer
The object to register for KVO notifications. The observer must implement the key-value observing
method observeValueForKeyPath:ofObject:change:context: (page 2081).
keyPath
The key path, relative to the receiver, of the property to observe. This value must not be ni 1.
options
A combination of the NSKeyValueObservingOptions (page 2086) values that specifies what is
included in observation notifications. For possible values, see NSKeyValueObservingOptions.
context
Arbitrary data that is passed to observerin
observeValueForKeyPath:ofObject:change:context: (page 2081).
Special Considerations

NSArray objects are not observable, so this method raises an exception when invoked on an NSArray object.
Instead of observing an array, observe the to-many relationship for which the array is the collection of related
objects.

Availability
Available in Mac OS X v10.4 and later.

See Also
- removeObserver:forKeyPath: (page 133)

- addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 116)

Declared In
NSKeyValueObserving.h

addObserver:toObjectsAtindexes:forKeyPath:options:context:

Registers anObserver to receive key value observer notifications for the specified keypath relative to the
objects at 7ndexes.

- (void)addObserver: (NSObject *)anObserver toObjectsAtIndexes: (NSIndexSet *)indexes
forKeyPath: (NSString *)keyPath options:(NSKeyValueObservingOptions)options
context:(void *)context

Discussion
The options determine what is included in the notifications, and the context is passed in the notifications.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

This is not merely a convenience method; invoking this method is potentially much faster than repeatedly
invoking addObserver:forKeyPath:options:context: (page 2079).

Availability
Available in Mac OS X v10.3 and later.

See Also
- removeObserver:fromObjectsAtIndexes:forKeyPath: (page 134)

Related Sample Code
iSpend

Declared In
NSKeyValueObserving.h

arrayByAddingObject:

Returns a new array that is a copy of the receiver with a given object added to the end.
- (NSArray *)arrayByAddingObject:(id)anObject

Parameters

anObject
An object.
Return Value
A new array that is a copy of the receiver with an0bject added to the end.

Discussion
If anObjectisnil,an NSInvalidArgumentException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
- addObject: (page 911) (NSMutableArray)

Related Sample Code
UIElementinspector

Declared In
NSArray.h

arrayByAddingObjectsFromArray:

Returns a new array that is a copy of the receiver with the objects contained in another array added to the
end.

- (NSArray *)arrayByAddingObjectsFromArray: (NSArray *)otherArray

Parameters

otherArray
An array.

Instance Methods 17
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

118

CHAPTER 6

NSArray Class Reference

Return Value
A new array that is a copy of the receiver with the objects contained in otherArray added to the end.

Availability
Available in Mac OS X v10.0 and later.

See Also
- addObjectsFromArray: (page 911) (NSMutableArray)

Related Sample Code
QTRecorder

Declared In
NSArray.h

componentsJoinedByString:

Constructs and returns an NSString object that is the result of interposing a given separator between the
elements of the receiver’s array.

- (NSString *)componentsdoinedByString: (NSString *)separator

Parameters
separator
The string to interpose between the elements of the receiver’s array.

Return Value
An NSString object that is the result of interposing separator between the elements of the receiver’s
array. If the receiver has no elements, returns an NSString object representing an empty string.

Discussion
For example, this code excerpt writes "here be dragons" to the console:

NSArray *pathArray = [NSArray arrayWithObjects:@"here",
@"be", @"dragons", nill;

NSLog(@"2%@",
[pathArray componentsdoinedByString:@" "1);

Special Considerations
Each element in the receiver’s array must handle description.

Availability
Available in Mac OS X v10.0 and later.

See Also
- componentsSeparatedByString: (page 1547) (NSString)

Related Sample Code
Aperture Edit Plugin - Borders & Titles

AttachAScript
CoreRecipes
Sproing
TipWrapper

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Declared In
NSArray.h

containsObject:

Returns a Boolean value that indicates whether a given object is present in the receiver.

- (BOOL)containsObject:(id)an0Object

Parameters

anObject
An object.

Return Value
YES if anObject is present in the receiver, otherwise NO.

Discussion

This method determines whether an0Object is present in the receiver by sending an isEqual: (page 2101)

message to each of the receiver’s objects (and passing an0Object as the parameter to each isEqual:

message).

Availability
Available in Mac OS X v10.0 and later.

See Also
- index0fObject: (page 123)

- indexOfObjectIdenticalTo: (page 124)

Related Sample Code
TimelineToTC

Declared In
NSArray.h

count

Returns the number of objects currently in the receiver.
- (NSUInteger)count

Return Value
The number of objects currently in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- objectAtIndex: (page 131)

Related Sample Code
CoreRecipes

iSpend
Quartz Composer WWDC 2005 TextEdit

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

19

120

CHAPTER 6

NSArray Class Reference

Sketch-112
TextEditPlus

Declared In
NSArray.h

description

Returns a string that represents the contents of the receiver, formatted as a property list.
- (NSString *)description

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Availability
Available in Mac OS X v10.0 and later.

See Also
- descriptionWithlLocale: (page 120)

- descriptionWithlLocale:indent: (page 121)

Declared In
NSArray.h

descriptionWithLocale:

Returns a string that represents the contents of the receiver, formatted as a property list.
- (NSString *)descriptionWithLocale:(id)Jocale

Parameters
locale

An NSLocale object oran NSDictionary object that specifies options used for formatting each of
the receiver’s elements (where recognized). Specify ni1 if you don’t want the elements formatted.

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
For a description of how Tocale is applied to each element in the receiving array, see
descriptionWithlLocale:indent: (page 121).

Availability
Available in Mac OS X v10.0 and later.

See Also
- description (page 120)

- descriptionWithlLocale:indent: (page 121)

Declared In
NSArray.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

descriptionWithLocale:indent:

Returns a string that represents the contents of the receiver, formatted as a property list.
- (NSString *)descriptionWithLocale:(id)7ocale indent:(NSUInteger)level

Parameters
locale

An NSlLocale object oran NSDictionary object that specifies options used for formatting each of
the receiver’s elements (where recognized). Specify ni1 if you don’t want the elements formatted.

level

A level of indent, to make the output more readable: set 7evel to 0 to use four spaces to indent, or
1 to indent the output with a tab character.

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion

The returned NSString object contains the string representations of each of the receiver’s elements, in
order, from first to last. To obtain the string representation of a given element,
descriptionWithLocale:indent: proceeds as follows:

m [f the elementis an NSString object, itis used as is.

m [fthe element responds to descriptionWithlLocale:indent:, that method is invoked to obtain the
element’s string representation.

m If the element responds to descriptionWithlLocale: (page 120), that method is invoked to obtain
the element’s string representation.

= If none of the above conditions is met, the element’s string representation is obtained by invoking its
description (page 120) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
- description (page 120)

- descriptionWithlLocale: (page 120)

Declared In
NSArray.h

filteredArrayUsingPredicate:

Evaluates a given predicate against each object in the receiver and returns a new array containing the objects
for which the predicate returns true.

- (NSArray *)filteredArrayUsingPredicate:(NSPredicate *)predicate

Parameters

predicate
The predicate against which to evaluate the receiver’s elements.

Instance Methods 121
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

122

CHAPTER 6

NSArray Class Reference

Return Value
A new array containing the objects in the receiver for which predicate returns true.

Discussion
For more details, see Predicate Programming Guide.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSPredicate.h

firstObjectCommonWithArray:

Returns the first object contained in the receiver that’s equal to an object in another given array.
- (id)firstObjectCommonWithArray: (NSArray *)otherArray

Parameters

otherArray
An array.

Return Value
Returns the first object contained in the receiver that's equal to an object in otherArray. If no such object
is found, returns ni 1.

Discussion
This method uses istqual: (page 2101) to check for object equality.

Availability
Available in Mac OS X v10.0 and later.

See Also
- containsObject: (page 119)

Declared In
NSArray.h

getObjects:

Copies all the objects contained in the receiver to aBuffer.
- (void)getObjects:(id *)aBuffer

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithObjects:count: (page 115)

Declared In
NSArray.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

getObjects:range:

Copies the objects contained in the receiver that fall within the specified range to aBuffer.
- (void)getObjects:(id *)aBuffer range:(NSRange)aRange

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithObjects:count: (page 115)

Declared In
NSArray.h

indexOfObject:

Returns the lowest index whose corresponding array value is equal to a given object.
- (NSUInteger)index0fObject:(id)anObject

Parameters
anObject
An object.

Return Value
The lowest index whose corresponding array value is equal to an0bject. If none of the objects in the receiver
is equal to anObject, returns NSNotFound.

Discussion
Objects are considered equal if isEqual: (page 2101) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
- containsObject: (page 119)

- index0fObjectIdenticalTo: (page 124)

Related Sample Code
Core Data HTML Store

NewsReader
WhackedTV

Declared In
NSArray.h

indexOfObject:inRange:

Returns the lowest index within a specified range whose corresponding array value is equal to a given object

- (NSUInteger)index0fObject:(id)anObject inRange:(NSRange)range

Instance Methods 123
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Parameters
anObject
An object.
range
The range of indexes in the receiver within which to search for an0Object.

Return Value
The lowest index within range whose corresponding array value is equal to an0Object. If none of the objects
within rangeis equal to an0Object, returns NSNotFound.

Discussion
Objects are considered equal if isEqual: (page 2101) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
- containsObject: (page 119)

- index0fObjectIdenticalTo:inRange: (page 125)

Declared In
NSArray.h

indexOfObjectldenticalTo:

Returns the lowest index whose corresponding array value is identical to a given object.
- (NSUInteger)index0fObjectIdenticalTo:(id)an0Object

Parameters
anObject
An object.

Return Value
The lowest index whose corresponding array value is identical to an0bject. If none of the objects in the
receiver is identical to anObject, returns NSNotFound.

Discussion
Objects are considered identical if their object addresses are the same.

Availability
Available in Mac OS X v10.0 and later.

See Also
- containsObject: (page 119)

- index0fObject: (page 123)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Sketch-112
TextEditPlus

Declared In
NSArray.h

124 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

indexOfObjectldenticalTo:inRange:

Returns the lowest index within a specified range whose corresponding array value is equal to a given object

- (NSUInteger)index0fObjectIdenticalTo:(id)an0Object inRange: (NSRange)range

Parameters
anObject
An object.
range
The range of indexes in the receiver within which to search for anObject.

Return Value
The lowest index within range whose corresponding array value is identical to an0Object. If none of the
objects within range is identical to anObject, returns NSNot Found.

Discussion
Objects are considered identical if their object addresses are the same.

Availability
Available in Mac OS X v10.0 and later.

See Also
- containsObject: (page 119)

- index0fObject:inRange: (page 123)

Declared In
NSArray.h

initWithArray:

Initializes a newly allocated array by placing in it the objects contained in a given array.
- (id)initWithArray: (NSArray *)anArray

Parameters
anArray

An array.
Return Value

An array initialized to contain the objects in anArray. The returned object might be different than the original
receiver.

Discussion
After an immutable array has been initialized in this way, it cannot be modified.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithObject: (page 114)

- initWithObjects: (page 127)

Instance Methods 125
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

126

CHAPTER 6

NSArray Class Reference

Declared In
NSArray.h

initWithArray:copyltems:

Initializes a newly allocated array using anArray as the source of data objects for the array.
- (id)initWithArray: (NSArray *)array copyltems:(B0OOL)fTag

Parameters
array
An array.
flag
If YES, each object in array receives a copyWithZone: message to create a copy of the object. In a

managed memory environment, this is instead of the retain message the object would otherwise
receive. The object copy is then added to the returned array.

If NO, then in a managed memory environment each object in array simply receives a retain
message as it's added to the returned array.

Return Value
An array initialized to contain the objects—or if f1agis YES, copies of the objects—in array. The returned
object might be different than the original receiver.

Discussion
After an immutable array has been initialized in this way, it cannot be modified.

Availability
Available in Mac OS X v10.2 and later.

See Also
- initWithArray: (page 125)

+ arrayWithObject: (page 114)
- initWithObjects: (page 127)

Declared In
NSArray.h

initWithContentsOfFile:

Initializes a newly allocated array with the contents of the file specified by a given path.
- (id)initWithContentsOfFile: (NSString *)aPath

Parameters
aPath

The path to a file containing a string representation of an array produced by the
writeToFile:atomically: (page 139) method.

Return Value

An array initialized to contain the contents of the file specified by aPath or nil if the file can't be opened
or the contents of the file can’t be parsed into an array. The returned object might be different than the
original receiver.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Discussion
The array representation in the file identified by a Path must contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithContentsOfFile: (page 113)

- writeToFile:atomically: (page 139)

Declared In
NSArray.h

initWithContentsOfURL:

Initializes a newly allocated array with the contents of the location specified by a given URL.
- (id)initWithContentsOfURL: (NSURL *)aURL

Parameters
aURL

The location of a file containing a string representation of an array produced by the
writeToURL:atomically: (page 140) method.

Return Value

An array initialized to contain the contents specified by aURL. Returns ni 1 if the location can’t be opened
or if the contents of the location can't be parsed into an array. The returned object might be different than
the original receiver.

Discussion
The array representation at the location identified by aURL must contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithContentsOfURL: (page 113)

- writeToURL:atomically: (page 140)

Declared In
NSArray.h

initWithObjects:

Initializes a newly allocated array by placing in it the objects in the argument list.
- (id)initWithObjects: (id) firstobj,

Parameters
firstobj,
A comma-separated list of objects ending with ni1.

Instance Methods 127
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

128

CHAPTER 6

NSArray Class Reference

Return Value
An array initialized to include the objects in the argument list. The returned object might be different than
the original receiver.

Discussion
After an immutable array has been initialized in this way, it can’t be modified.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithObjects:count: (page 128)

+ arrayWithObjects: (page 114)
- initWithArray: (page 125)

Declared In
NSArray.h

initWithObjects:count:

Initializes a newly allocated array to include a given number of objects from a given C array.

- (id)initWithObjects:(const id *)objects
count: (NSUInteger)count

Parameters

objects
A C array of objects.

count
The number of values from the objects C array to include in the new array. This number will be the
count of the new array—it must not be negative or greater than the number of elementsin objects.
Return Value
A newly allocated array including the first count objects from objects. The returned object might be
different than the original receiver.

Discussion
Elements are added to the new array in the same order they appear in objects, up to but not including
index count.

After an immutable array has been initialized in this way, it can’t be modified.

Availability
Available in Mac OS X v10.0 and later.

See Also
- dinitWithObjects: (page 127)

+ arrayWithObjects: (page 114)
- initWithArray: (page 125)

Declared In
NSArray.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

isEqualToArray:

Compares the receiving array to another array.
- (BOOL)isEqualToArray:(NSArray *)otherArray

Parameters
otherArray
An array.

Return Value
YES if the contents of otherArray are equal to the contents of the receiver, otherwise NO.

Discussion
Two arrays have equal contents if they each hold the same number of objects and objects at a given index
in each array satisfy the istqual: (page 2101) test.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArray.h

lastObject

Returns the object in the array with the highest index value.
- (id)lastObject

Return Value
The object in the array with the highest index value. If the array is empty, returns ni1.

Availability
Available in Mac OS X v10.0 and later.

See Also
- removelastObject (page 916) (NSMutableArray)

Related Sample Code
Core Data HTML Store

CoreRecipes

QTKitAdvancedDocument

Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSArray.h

makeObjectsPerformSelector:

Sends to each object in the receiver the message identified by a given selector, starting with the first object
and continuing through the array to the last object.

Instance Methods 129
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

130

CHAPTER 6

NSArray Class Reference

- (void)makeObjectsPerformSelector:(SEL)aSelector

Parameters

aSelector
A selector that identifies the message to send to the objects in the receiver. The method must not
take any arguments, and must not have the side effect of modifying the receiving array.

Discussion
This method raises an NSInvalidArgumentExceptionif aSelectoris NULL.

Availability
Available in Mac OS X v10.0 and later.

See Also
- makeObjectsPerformSelector:withObject: (page 130)

Related Sample Code
EnhancedDataBurn

QTKitMovieShuffler
Sketch-112
WhackedTV

Declared In
NSArray.h

makeObjectsPerformSelector:withObject:

Sends the aSelector message to each object in the array, starting with the first object and continuing
through the array to the last object.

- (void)makeObjectsPerformSelector:(SEL)aSelector withObject:(id)anObject

Parameters
aSelector
A selector that identifies the message to send to the objects in the receiver. The method must take
a single argument of type id, and must not have the side effect of modifying the receiving array.
anObject
The object to send as the argument to each invocation of the aSelector method.

Discussion
This method raises an NSInvalidArgumentExceptionif aSelectoris NULL.

Availability
Available in Mac OS X v10.0 and later.

See Also
- makeObjectsPerformSelector: (page 129)

Related Sample Code
EnhancedDataBurn

ImageBackground
iSpend
QTKitMovieShuffler

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Sketch-112

Declared In
NSArray.h

objectAtindex:

Returns the object located at index.
- (id)objectAtIndex: (NSUInteger)index

Parameters
index
An index within the bounds of the receiver.

Return Value
The object located at 7ndex.

Discussion
If index is beyond the end of the array (that is, if index is greater than or equal to the value returned by
count),an NSRangeException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
- count (page 119)

- objectsAtIndexes: (page 132)

Related Sample Code
CoreRecipes

MyPhoto

Quartz Composer WWDC 2005 TextEdit
Sketch-112

TextEditPlus

Declared In
NSArray.h

objectEnumerator

Returns an enumerator object that lets you access each object in the receiver.
- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver, in order, from the element at the
lowest index upwards.

Discussion
Returns an enumerator object that lets you access each object in the receiver, in order, starting with the
element atindex 0, as in:

Instance Methods 131
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

132

CHAPTER 6

NSArray Class Reference

NSEnumerator *enumerator = [myArray objectEnumerator];
id anObject;

while (anObject = [enumerator nextObject]) {
/* code to act on each element as it is returned */
}

Special Considerations

When you use this method with mutable subclasses of NSArray, you must not modify the array during
enumeration.

On Mac OS X v10.5 and later, it is more efficient to use the fast enumeration protocol (see
NSFastEnumeration).

Availability
Available in Mac OS X v10.0 and later.

See Also
- reverseObjectEnumerator (page 134)

- nextObject (page 558) (NSEnumerator)

Related Sample Code
CoreRecipes

GridCalendar
iSpend
SimpleCalendar
StickiesExample

Declared In
NSArray.h

objectsAtindexes:

Returns an array containing the objects in the receiver at the indexes specified by a given index set.
- (NSArray *)objectsAtIndexes:(NSIndexSet *)indexes

Return Value
An array containing the objects in the receiver at the indexes specified by 7indexes.

Discussion
The returned objects are in the ascending order of their indexes in 7ndexes, so that object in returned array
with higher index in indexes will follow the object with smaller index in indexes.

Raises an NSRangeException exception if any location in 7ndexes exceeds the bounds of the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- count (page 119)

- objectAtIndex: (page 131)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Declared In
NSArray.h

pathsMatchingExtensions:

Returns an array containing all the pathname elements in the receiver that have filename extensions from
a given array.

- (NSArray *)pathsMatchingExtensions: (NSArray *)filterTypes

Parameters
filterTypes

An array of NSString objects containing filename extensions. The extensions should not include the
dot (“."”) character.

Return Value
An array containing all the pathname elements in the receiver that have filename extensions from the
filterTypes array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPathUtilities.h

removeObserver:forKeyPath:

Raises an exception.
- (void)removeObserver: (NSObject *)observer forKeyPath:(NSString *)keyPath

Parameters

observer
The object to remove as an observer.

keyPath
A key-path, relative to the receiver, for which observer is registered to receive KVO change
notifications. This value must not be ni1.

Special Considerations

NSArray objects are not observable, so this method raises an exception when invoked on an NSArray object.

Instead of observing an array, observe the to-many relationship for which the array is the collection of related
objects.

Availability
Available in Mac OS X v10.4 and later.

See Also
- addObserver:forKeyPath:options:context: (page 116)

- removeObserver:fromObjectsAtIndexes: forKeyPath: (page 134)

Declared In
NSKeyValueObserving.h

Instance Methods 133
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

134

CHAPTER 6

NSArray Class Reference

removeObserver:fromObjectsAtindexes:forKeyPath:

Removes anObserverfrom all key value observer notifications associated with the specified keyPathrelative
to the receiver’s objects at indexes.

- (void)removeObserver: (NSObject *)anObserver fromObjectsAtIndexes:(NSIndexSet
*)indexes forKeyPath:(NSString *)keyPath

Discussion
This is not merely a convenience method; invoking this method is potentially much faster than repeatedly
invoking removeObserver:forKeyPath: (page 2082).

Availability
Available in Mac OS X v10.3 and later.

See Also
- addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 116)

Related Sample Code
iSpend

Declared In
NSKeyValueObserving.h

reverseObjectEnumerator

Returns an enumerator object that lets you access each object in the receiver, in reverse order.
- (NSEnumerator *)reverseObjectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver, in order, from the element at the
highest index down to the element at index 0.

Special Considerations

When you use this method with mutable subclasses of NSArray, you must not modify the array during
enumeration.

On Mac OS X v10.5 and later, it is more efficient to use the fast enumeration protocol (see
NSFastEnumeration).

Availability
Available in Mac OS X v10.0 and later.

See Also
- objectEnumerator (page 131)

- nextObject (page 558) (NSEnumerator)

Related Sample Code
EnhancedAudioBurn

QTKitMovieShuffler

Declared In
NSArray.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

setValue:forKey:

Invokes setValue:forKey: on each of the receiver's items using the specified value and key.
- (void)setValue:(id)value forKey:(NSString *)key

Availability
Available in Mac OS X v10.3 and later.

See Also
- valueForKey: (page 139)

Related Sample Code
CoreRecipes

Declared In
NSKeyValueCoding.h

sortedArrayHint

Analyzes the receiver and returns a “hint” that speeds the sorting of the array when the hint is supplied to
sortedArraylUsingFunction:context:hint: (page 137).

- (NSData *)sortedArrayHint

Availability
Available in Mac OS X v10.0 and later.

See Also
- sortedArrayUsingFunction:context:hint: (page 137)

Declared In
NSArray.h

sortedArrayUsingDescriptors:

Returns a copy of the receiver sorted as specified by a given array of sort descriptors.
- (NSArray *)sortedArrayUsingDescriptors:(NSArray *)sortDescriptors

Parameters

sortDescriptors
An array of NSSortDescriptor objects.

Return Value
A copy of the receiver sorted as specified by sortDescriptors.

Discussion

The first descriptor specifies the primary key path to be used in sorting the receiver’s contents. Any subsequent
descriptors are used to further refine sorting of objects with duplicate values. See NSSortDescriptor for
additional information.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 135
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

136

CHAPTER 6

NSArray Class Reference

See Also
- sortedArrayUsingSelector: (page 138)

- sortedArrayUsingFunction:context: (page 136)
- sortedArrayUsingFunction:context:hint: (page 137)

Related Sample Code
CoreRecipes

Declared In
NSSortDescriptor.h

sortedArrayUsingFunction:context:

Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison function
comparator.

- (NSArray *)sortedArrayUsingFunction: (NSInteger (*)(id, id, void *))comparator
context:(void *)context

Discussion
The new array contains references to the receiver’s elements, not copies of them.

The comparison function is used to compare two elements at a time and should return NSOrderedAscending
if the first element is smaller than the second, NSOrderedDescending if the first element is larger than the
second, and NSOrderedSame if the elements are equal. Each time the comparison function is called, it’s
passed context as its third argument. This allows the comparison to be based on some outside parameter,
such as whether character sorting is case-sensitive or case-insensitive.

Given anArray (an array of NSNumber objects) and a comparison function of this type:

NSInteger intSort(id numl, id num2, void *context)
{
int vl = [numl intValuel;
int v2 = [num2 intValuel;
if (vl < v2)
return NSOrderedAscending;
else if (vl > v2)
return NSOrderedDescending;
else
return NSOrderedSame;
}

A sorted version of anArray is created in this way:

NSArray *sortedArray; sortedArray = [anArray sortedArrayUsingFunction:intSort
context:NULLT;

Availability
Available in Mac OS X v10.0 and later.

See Also
- sortedArrayUsingDescriptors: (page 135)

- sortedArrayUsingFunction:context:hint: (page 137)
- sortedArrayUsingSelector: (page 138)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Related Sample Code
Birthdays

NewsReader

Declared In
NSArray.h

sortedArrayUsingFunction:context:hint:

Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison function
comparator.

- (NSArray *)sortedArrayUsingFunction:(NSInteger (*)(id, id, void *))comparator
context:(void *)context hint:(NSData *)hint

Discussion
The new array contains references to the receiver’s elements, not copies of them.

This method is similar to sortedArrayUsingFunction:context: (page 136), except that it uses the
supplied hint to speed the sorting process. When you know the array is nearly sorted, this method is faster
than sortedArrayUsingFunction:context:.If you sorted a large array (N entries) once, and you don't
change it much (P additions and deletions, where P is much smaller than N), then you can reuse the work
you did in the original sort by conceptually doing a merge sort between the N “old” items and the P “new”
items.

To obtain an appropriate hint, use sortedArrayHint (page 135). You should obtain this hint when the
original array has been sorted, and keep hold of it until you need it, after the array has been modified. The
hint is computed by sortedArrayHint (page 135)in O0(N) (where N is the number of items). This assumes
that items in the array implement a - hash method. Given a suitable hint, and assuming that the hash function
is a “good” hash function, -sortedArrayUsingFunction:context:hint: (page 137) sorts the array in
O(P*LOG(P)+N) where P is the number of adds or deletes. This is an improvement over the unhinted sort,
0(N*LOG(N)), when P is small.

The hint is simply an array of size N containing the N hashes. To re-sort you need internally to create a map
table mapping a hash to the index. Using this map table on the new array, you can get a first guess for the
indices, and then sort that. For example, a sorted array {A, B, D, E, F} with corresponding hash values {25, 96,
78, 32, 17}, may be subject to small changes that result in contents {E, A, C, B, F}. The mapping table maps
the hashes {25, 96, 78, 32, 17} to the indices {#0, #1, #2, #3, #4}. If the hashes for {E, A, C, B, F} are {32, 25, 99,
96, 17}, then by using the mapping table you can get a first order sort {#3, #0, ?, #1, #4}, so therefore create
an initial semi-sorted array {A, B, E, F}, and then perform a cheap merge sort with {C} that yields {A, B, C, E, F}.

Availability
Available in Mac OS X v10.0 and later.

See Also
- sortedArrayUsingDescriptors: (page 135)

- sortedArrayUsingFunction:context: (page 136)
- sortedArrayUsingSelector: (page 138)

Declared In
NSArray.h

Instance Methods 137
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

138

CHAPTER 6

NSArray Class Reference

sortedArrayUsingSelector:

Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by a given selector.

- (NSArray *)sortedArrayUsingSelector:(SEL)comparator

Parameters

comparator
A selector that identifies the method to use to compare two elements at a time. The method should
return NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending
if the receiver is larger than the argument, and NSOrderedSame if they are equal.

Return Value
An array that lists the receiver’s elements in ascending order, as determined by the comparison method
specified by the selector comparator.

Discussion
The new array contains references to the receiver’s elements, not copies of them.

The comparator message is sent to each object in the array and has as its single argument another object
in the array.

For example, an array of NSString objects can be sorted by using the caselnsensitiveCompare: (page
1540) method declared in the NSString class. Assuming anArray exists, a sorted version of the array can be
created in this way:

NSArray *sortedArray =
[anArray sortedArrayUsingSelector:@selector(caselnsensitiveCompare:)];

Availability
Available in Mac OS X v10.0 and later.

See Also
- sortedArrayUsingDescriptors: (page 135)

- sortedArrayUsingFunction:context: (page 136)
- sortedArrayUsingFunction:context:hint: (page 137)

Related Sample Code
CoreRecipes

EnhancedAudioBurn
QTSSInspector

Declared In
NSArray.h

subarrayWithRange:

Returns a new array containing the receiver’s elements that fall within the limits specified by a given range.

- (NSArray *)subarrayWithRange:(NSRange)range

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Parameters
range
A range within the receiver’s range of elements.

Return Value
A new array containing the receiver’s elements that fall within the limits specified by range.

Discussion
If range isn't within the receiver’s range of elements, an NSRangeException is raised.

For example, the following code example creates an array containing the elements found in the first half of
wholeArray (assuming wholeArray exists).

NSArray *halfArray;
NSRange theRange;

theRange.location = 0;
theRange.length = [wholeArray count] / 2;

halfArray = [wholeArray subarrayWithRange:theRangel;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArray.h

valueForKey:

Returns an array containing the results of invoking valueForKey : using key on each of the receiver's objects.
- (id)valueForKey: (NSString *)key

Discussion
The returned array contains NSNu11 elements for each object that returns ni 1.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setValue:forKey: (page 135)

Related Sample Code
Core Data HTML Store

CoreRecipes
StickiesExample

Declared In
NSKeyValueCoding.h

writeToFile:atomically:

Writes the contents of the receiver to a file at a given path.

Instance Methods 139
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

140

CHAPTER 6

NSArray Class Reference

- (BOOL)writeToFile: (NSString *)path atomically:(B0OOL)flag

Parameters

path
The path at which to write the contents of the receiver.

If path contains a tilde (~) character, you must expand it with
stringByExpandingTildelInPath (page 1602) before invoking this method.

flag
If YES, the array is written to an auxiliary file, and then the auxiliary file is renamed to path. If NO, the
array is written directly to path. The YES option guarantees that pat#, if it exists at all, won't be
corrupted even if the system should crash during writing.

Return Value
YES if the file is written successfully, otherwise NO.

Discussion

If the receiver’s contents are all property list objects (NSString, NSData, NSArray,or NSDictionary objects),
the file written by this method can be used to initialize a new array with the class method
arrayWithContentsOfFile: (page 113)ortheinstance method initWithContentsOfFile: (page 126).
This method recursively validates that all the contained objects are property list objects before writing out
the file, and returns NO if all the objects are not property list objects, since the resultant file would not be a
valid property list.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithContentsOfFile: (page 126)

Declared In
NSArray.h

writeToURL:atomically:

Writes the contents of the receiver to the location specified by a given URL.
- (BOOL)writeToURL: (NSURL *)aURL atomically:(BOOL)flag

Parameters
aURL
The location at which to write the receiver.

flag
If YES, the array is written to an auxiliary location, and then the auxiliary location is renamed to aURL.
If NO, the array is written directly to aURL. The YES option guarantees that aURL, if it exists at all, won't
be corrupted even if the system should crash during writing.

Return Value
YES if the location is written successfully, otherwise NO.

Discussion

If the receiver’s contents are all property list objects (NSString, NSData, NSArray,or NSDictionary objects),
the location written by this method can be used to initialize a new array with the class method
arrayWithContentsOfURL: (page 113) or the instance method initWithContentsOfURL: (page 127).

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithContentsOfURL: (page 127)

Declared In
NSArray.h

Instance Methods M
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

142 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAssertionHandler Class Reference

Inherits from NSObject
Conforms to NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSException.h
Companion guide Assertions and Logging
Overview

Tasks

NSAssertionHandler objects are automatically created to handle false assertions. Assertion macros, such
as NSAssert and NSCAssert, are used to evaluate a condition, and, if the condition evaluates to false, the
macros pass a string to an NSAssertionHandler object describing the failure. Each thread has its own
NSAssertionHandler object. When invoked, an assertion handler prints an error message that includes
the method and class (or function) containing the assertion and raises an
NSInternallnconsistencyException.

You create assertions only using the assertion macros—you rarely need to invoke NSAssertionHandler
methods directly. The macros for use inside methods and functions send
handleFailurelnMethod:object:file:1ineNumber:description: (page 145)and
handleFailureInFunction:file:1ineNumber:description: (page 144) messages respectively to the
current assertion handler. The assertion handler for the current thread is obtained using the
currentHandler (page 144) class method. If you need to customize the behavior of NSAssertionHandler,
create a subclass, overriding the above two methods, and install your instance into the current thread’s
attributes dictionary with the key NSAssertionHandler.

Handling Assertion Failures

+ currentHandler (page 144)
Returns the NSAssertionHandler object associated with the current thread.

- handleFailureInFunction:file:1ineNumber:description: (page 144)
Logs (using NSLog) an error message that includes the name of the function, the name of the file,
and the line number.

Overview 143
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAssertionHandler Class Reference

- handleFailureInMethod:object:file:TineNumber:description: (page 145)

Logs (using NSLog) an error message that includes the name of the method that failed, the class name
of the object, the name of the source file, and the line number.

Class Methods

currentHandler

Returns the NSAssertionHandler object associated with the current thread.
+ (NSAssertionHandler *)currentHandler

Return Value
The NSAssertionHandler object associated with the current thread.

Discussion
If no assertion handler is associated with the current thread, this method creates one and assigns it to the
thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSException.h

Instance Methods

handleFailurelnFunction:file:lineNumber:description:

Logs (using NSLog) an error message that includes the name of the function, the name of the file, and the
line number.

- (void)handleFailureInFunction: (NSString *)functionName file:(NSString *)fileName
lTineNumber: (NSInteger)line description: (NSString *)format,

Parameters
functionName
The function that failed.
object
The object that failed.
fileName
The name of the source file.
line
The line in which the failure occurred.

144 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAssertionHandler Class Reference

format, ...
A format string followed by a comma-separated list of arguments to substitute into the format string.
See Formatting String Objects for more information.

Discussion
Raises NSInternalInconsistencyException.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSException.h

handleFailureInMethod:object:file:lineNumber:description:

Logs (using NSLog) an error message that includes the name of the method that failed, the class name of
the object, the name of the source file, and the line number.

- (void)handleFailureInMethod: (SEL)selector object:(id)object file:(NSString
*)fileName 1ineNumber:(NSInteger)/line description:(NSString *)format,

Parameters

selector
The selector for the method that failed
object
The object that failed.
fileName
The name of the source file.
line
The line in which the failure occurred.
format, ...
A format string followed by a comma-separated list of arguments to substitute into the format string.
See Formatting String Objects for more information.

Discussion
Raises NSInternalInconsistencyException.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSException.h

Instance Methods 145
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAssertionHandler Class Reference

146 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAttributedString Class Reference

Inherits from NSObject
Conforms to NSCoding

NSCopying

NSMutableCopying

NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSAttributedString.h
Companion guide Attributed Strings Programming Guide
Related sample code ClAnnotation

CoreRecipes

iSpend

OpenGL Screensaver

Sketch-112

Overview

NSAttributedString objects manage character strings and associated sets of attributes (for example, font
and kerning) that apply to individual characters or ranges of characters in the string. An association of
characters and their attributes is called an attributed string. The cluster’s two public classes,
NSAttributedStringand NSMutableAttributedString, declare the programmatic interface for read-only
attributed strings and modifiable attributed strings, respectively. The Foundation framework defines only
the basic functionality for attributed strings; additional methods supporting RTF, graphics attributes, and
drawing attributed strings are described in NSAttributedString Additions, found in the Application Kit. The
Application Kit also uses a subclass of NSMutableAttributedString, called NSTextStorage, to provide the
storage for the Application Kit's extended text-handling system.

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to encapsulate
the paragraph or ruler attributes used by the NSAttributedString classes.

An attributed string identifies attributes by name, storing a value under the name in an NSDictionary
object. Standard attribute keys are described in the “Constants” section of NSAttributedString Application Kit
Additions Reference. You can also assign any attribute name/value pair you wish to a range of characters—it
is up to your application to interpret custom attributes (see Attributed Strings Programming Guide).

Overview 147
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8
NSAttributedString Class Reference

Note that the default font for NSAttributedString objects is Helvetica 12-point, which differs from the
Mac OS X system font Lucida Grande, so you may wish to create the string with non-default attributes suitable
for your application using, for example, initWithString:attributes: (page 154).

Be aware that isEqual: comparison among NSAttributedString objects compares for exact equality,
including not only literal character-by-character string equality but also equality of all attributes, which is
not likely to be achieved in the case of many attributes such as attachments, lists, and tables, for example.

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)

initWithCoder: (page 2034)

NSCopying
copyWithZone: (page 2042)

NSMutableCopying
mutableCopyWithZone: (page 2094)

Tasks

Creating an NSAttributedString Object

- initWithString: (page 153)
Returns an NSAttributedString object initialized with the characters of a given string and no
attribute information.

- initWithAttributedString: (page 153)
Returns an NSAttributedString object initialized with the characters and attributes of another
given attributed string.

- initWithString:attributes: (page 154)
Returns an NSAttributedString object initialized with a given string and attributes.

Retrieving Character Information

- string (page 155)

Returns the character contents of the receiver as an NSString object.
- length (page 155)

Returns the length of the receiver’s string object.

148 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8
NSAttributedString Class Reference

Retrieving Attribute Information

- attributesAtIndex:effectiveRange: (page 152)
Returns the attributes for the character at a given index.

- attributesAtIndex:longestEffectiveRange:inRange: (page 152)

Returns the attributes for the character at a given index, and by reference the range over which the
attributes apply.

- attribute:atIndex:effectiveRange: (page 149)
Returns the value for an attribute with a given name of the character at a given index, and by reference
the range over which the attribute applies.

- attribute:atIndex:longestEffectiveRange:inRange: (page 150)

Returns the value for the attribute with a given name of the character at a given index, and by reference
the range over which the attribute applies.

Comparing Attributed Strings

- iskEqualToAttributedString: (page 154)
Returns a Boolean value that indicates whether the receiver is equal to another given attributed string.

Extracting a Substring

- attributedSubstringFromRange: (page 151)

Returns an NSAttributedString object consisting of the characters and attributes within a given
range in the receiver.

Instance Methods

attribute:atindex:effectiveRange:

Returns the value for an attribute with a given name of the character at a given index, and by reference the
range over which the attribute applies.

- (id)attribute: (NSString *)attributeName atIndex:(NSUInteger)index
effectiveRange: (NSRangePointer)aRange

Parameters

attributeName
The name of an attribute.

index
The index for which to return attributes. This value must not exceed the bounds of the receiver.

Instance Methods 149
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

150

CHAPTER 8
NSAttributedString Class Reference

aRange
If non-NULL:

= [f the named attribute exists at 7ndex, upon return aRange contains a range over which the
named attribute’s value applies.

= If the named attribute does not exist at index, upon return aRange contains the range over
which the attribute does not exist.

The range isn't necessarily the maximum range covered by attributeName, and its extent is
implementation-dependent. If you need the maximum range, use
attribute:atIndex:longestEffectiveRange:inRange: (page 150).If you don't need this value,
pass NULL.

Return Value

The value for the attribute named attributeName of the character at index 7ndex, or nil if there is no

such attribute.

Discussion
Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
- attributesAtIndex:effectiveRange: (page 152)

Related Sample Code
iSpend
TextLinks

Declared In
NSAttributedString.h

attribute:atindex:longestEffectiveRange:inRange:

Returns the value for the attribute with a given name of the character at a given index, and by reference the
range over which the attribute applies.

- (id)attribute: (NSString *)attributeName atIndex:(NSUInteger)index
longestEffectiveRange: (NSRangePointer)aRange inRange: (NSRange)rangelimit

Parameters

attributeName
The name of an attribute.

index
The index at which to test for attributeName.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8
NSAttributedString Class Reference

aRange
If non-NULL:

= [f the named attribute exists at 7ndex, upon return aRange contains the full range over which
the value of the named attribute is the same as that at 7ndex, clipped to rangel imit.

= If the named attribute does not exist at 7ndex, upon return aRange contains the full range over
which the attribute does not exist, clipped to rangel imit.

If you don't need this value, pass NULL.

rangelimit
The range over which to search for continuous presence of attributeName. This value must not
exceed the bounds of the receiver.
Return Value
The value for the attribute named attributeName of the character at index, or nil if there is no such
attribute.

Discussion
Raises an NSRangeException if index or any part of rangelimit lies beyond the end of the receiver’s
characters.

If you don't need the longest effective range, it's far more efficient to use the
attribute:atIndex:effectiveRange: (page 149) method to retrieve the attribute value.

Availability
Available in Mac OS X v10.0 and later.

See Also
- attributesAtIndex:longestEffectiveRange:inRange: (page 152)

Declared In
NSAttributedString.h

attributedSubstringFromRange:

Returns an NSAttributedString object consisting of the characters and attributes within a given range
in the receiver.

- (NSAttributedString *)attributedSubstringFromRange: (NSRange)aRange

Parameters

aRange
The range from which to create a new attributed string. aRange must lie within the bounds of the
receiver.

Return Value
An NSAttributedString object consisting of the characters and attributes within aRange in the receiver.

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters. This
method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 151
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

152

CHAPTER 8
NSAttributedString Class Reference

Declared In
NSAttributedString.h

attributesAtindex:effectiveRange:

Returns the attributes for the character at a given index.

- (NSDictionary *)attributesAtIndex: (NSUInteger)index
effectiveRange: (NSRangePointer)aRange

Parameters
index
The index for which to return attributes. This value must lie within the bounds of the receiver.

aRange
Upon return, the range over which the attributes and values are the same as those at 7ndex. This
range isn't necessarily the maximum range covered, and its extent is implementation-dependent. If
you need the maximum range, use
attributesAtIndex:longestEffectiveRange:inRange: (page 152).If you don't need this value,
pass NULL.

Return Value
The attributes for the character at index.

Discussion
Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
- attribute:atIndex:effectiveRange: (page 149)

Declared In
NSAttributedString.h

attributesAtindex:longestEffectiveRange:inRange:
Returns the attributes for the character at a given index, and by reference the range over which the attributes
apply.

- (NSDictionary *)attributesAtIndex:(NSUInteger)index
longestEffectiveRange: (NSRangePointer)aRange inRange: (NSRange)rangelimit

Parameters
index
The index for which to return attributes. This value must not exceed the bounds of the receiver.

aRange
If non-NULL, upon return contains the maximum range over which the attributes and values are the
same as those at index, clipped to rangelLimit.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8
NSAttributedString Class Reference

rangelimit
The range over which to search for continuous presence of the attributes at 7ndex. This value must
not exceed the bounds of the receiver.

Discussion
Raises an NSRangeException if index or any part of rangelimit lies beyond the end of the receiver’s
characters.

If you don’t need the range information, it's far more efficient to use the
attributesAtIndex:effectiveRange: (page 152) method to retrieve the attribute value.

Availability
Available in Mac OS X v10.0 and later.

See Also
- attribute:atIndex:longestEffectiveRange:inRange: (page 150)

Declared In
NSAttributedString.h

initWithAttributedString:

Returns an NSAttributedString object initialized with the characters and attributes of another given
attributed string.

- (id)initWithAttributedString: (NSAttributedString *)attributedString

Parameters
attributedString
An attributed string.

Return Value
An NSAttributedString objectinitialized with the characters and attributes of attributedString. The
returned object might be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithRTF:documentAttributes: (NSAttributedString Additions)

Related Sample Code
Sketch-112

Declared In
NSAttributedString.h

initWithString:

Returns an NSAttributedString object initialized with the characters of a given string and no attribute
information.

- (id)initWithString: (NSString *)aString

Instance Methods 153
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

154

CHAPTER 8
NSAttributedString Class Reference

Parameters
aString
The characters for the new object.

Return Value
An NSAttributedString object initialized with the characters of aStringand no attribute information
The returned object might be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithRTF:documentAttributes: (NSAttributedString Additions)

Declared In
NSAttributedString.h

initWithString:attributes:

Returns an NSAttributedString object initialized with a given string and attributes.
- (id)initWithString: (NSString *)aString attributes:(NSDictionary *)attributes

Parameters
aString

The string for the new attributed string.
attributes

The attributes for the new attributed string. You can assign to a range of characters any attribute
name/value pairs you wish, in addition to the standard attributes described in the “Constants” section
of NSAttributedString Application Kit Additions Reference.

Discussion
Returns an NSAttributedString object initialized with the characters of aString and the attributes of
attributes. The returned object might be different from the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithRTF:documentAttributes: (NSAttributedString Additions)

Related Sample Code
Aperture Edit Plugin - Borders & Titles

ClAnnotation
OpenGL Screensaver

Declared In
NSAttributedString.h

isEqualToAttributedString:

Returns a Boolean value that indicates whether the receiver is equal to another given attributed string.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8
NSAttributedString Class Reference

- (BOOL)isEqualToAttributedString: (NSAttributedString *)otherString

Parameters
otherString
The attributed string with which to compare the receiver.

Return Value
YES if the receiver is equal to otherString, otherwise NO.

Discussion
Attributed strings must match in both characters and attributes to be equal.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

length

Returns the length of the receiver’s string object.
- (NSUInteger)length

Availability
Available in Mac OS X v10.0 and later.

See Also
length (page 1580) (NSString)

- size (NSAttributedString Additions)

Related Sample Code
Numberlnput_IMKit_Sample

VertexPerformanceTest

Declared In
NSAttributedString.h

string
Returns the character contents of the receiver as an NSString object.

- (NSString *)string

Return Value
The character contents of the receiver as an NSString object.

Discussion
This method doesn’t strip out attachment characters; use NSText's string method to extract just the
linguistically significant characters.

Instance Methods 155
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8
NSAttributedString Class Reference

For performance reasons, this method returns the current backing store of the attributed string object. If you
want to maintain a snapshot of this as you manipulate the returned string, you should make a copy of the
appropriate substring.

This primitive method must guarantee efficient access to an attributed string’s characters; subclasses should
implement it to execute in O(1) time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend
Numberlnput_IMKit_Sample
Spotlight

Declared In
NSAttributedString.h

Constants

Standard attribute keys are described in the “Constants” section of NSAttributedString Application Kit Additions
Reference.

156 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSAutoreleasePool Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSAutoreleasePool.h

Companion guide Memory Management Programming Guide for Cocoa
Related sample code CocoaSpeechSynthesisExample

Numberlnput_IMKit_Sample
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
SpellingChecker-CocoaCarbon

Overview

The NSAutoreleasePool class is used to support Cocoa’s reference-counted memory management system.
An autorelease pool stores objects that are sent a release message when the pool itself is drained.

In a reference-counted environment (as opposed to one which uses garbage collection), an
NSAutoreleasePool object contains objects that have receivedan autorelease (page 2099) message and
when drained it sends a release (page 2106) message to each of those objects. Thus, sending
autorelease (page 2099) instead of release (page 2106) to an object extends the lifetime of that object at
least until the pool itself is drained (it may be longer if the object is subsequently retained). An object can
be put into the same pool several times, in which case it receives a release (page 2106) message for each
time it was put into the pool.

In a reference counted environment, Cocoa expects there to be an autorelease pool always available. If a
pool is not available, autoreleased objects do not get released and you leak memory. In this situation, your
program will typically log suitable warning messages.

The Application Kit creates an autorelease pool on the main thread at the beginning of every cycle of the
event loop, and drains it at the end, thereby releasing any autoreleased objects generated while processing
an event. If you use the Application Kit, you therefore typically don't have to create your own pools. If your
application creates a lot of temporary autoreleased objects within the event loop, however, it may be beneficial
to create “local” autorelease pools to help to minimize the peak memory footprint.

Overview 157
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

158

CHAPTER 9

NSAutoreleasePool Class Reference

You create an NSAutoreleasePool object with the usual alloc and init messages and dispose of it with
drain (page 160) (or release (page 161)—to understand the difference, see “Garbage Collection” (page
158)). Since you cannot retain an autorelease pool (or autorelease it—see retain (page 161) and
autorelease (page 160)), draining a pool ultimately has the effect of deallocating it. You should always
drain an autorelease pool in the same context (invocation of a method or function, or body of a loop) that
it was created. See Autorelease Pools for more details.

Each thread (including the main thread) maintains its own stack of NSAutoreleasePool objects (see
“Threads” (page 158)). As new pools are created, they get added to the top of the stack. When pools are
deallocated, they are removed from the stack. Autoreleased objects are placed into the top autorelease pool
for the current thread. When a thread terminates, it automatically drains all of the autorelease pools associated
with itself.

Threads

If you are making Cocoa calls outside of the Application Kit's main thread—for example if you create a
Foundation-only application or if you detach a thread—you need to create your own autorelease pool.

If your application or thread is long-lived and potentially generates a lot of autoreleased objects, you should
periodically drain and create autorelease pools (like the Application Kit does on the main thread); otherwise,
autoreleased objects accumulate and your memory footprint grows. If, however, your detached thread does
not make Cocoa calls, you do not need to create an autorelease pool.

Note: If you are creating secondary threads using the POSIX thread APIs instead of NSThread objects, you
cannot use Cocoa, including NSAutoreleasePool, unless Cocoa is in multithreading mode. Cocoa enters
multithreading mode only after detaching its first NSThread object. To use Cocoa on secondary POSIX
threads, your application must first detach at least one NSThread object, which can immediately exit. You
can test whether Cocoa is in multithreading mode with the NSThread class method i sMultiThreaded (page
1642).

Garbage Collection

In a garbage-collected environment, there is no need for autorelease pools. You may, however, write a
framework that is designed to work in both a garbage-collected and reference-counted environment. In this
case, you can use autorelease pools to hint to the collector that collection may be appropriate. In a
garbage-collected environment, sending a drain (page 160) message to a pool triggers garbage collection
if necessary; release (page 161), however, is a no-op. In a reference-counted environment, drain (page 160)
has the same effect as release (page 161). Typically, therefore, you should use drain (page 160) instead of
release (page 161).

Managing a Pool
- release (page 161)

Releases and pops the receiver.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSAutoreleasePool Class Reference

- drain (page 160)
In a reference-counted environment, releases and pops the receiver; in a garbage-collected
environment, triggers garbage collection if the memory allocated since the last collection is greater
than the current threshold.

- autorelease (page 160)
Raises an exception.

- retain (page 161)
Raises an exception.

Adding an Object to a Pool

+ addObject: (page 159)
Adds a given object to the active autorelease pool in the current thread.

- addObject: (page 160)
Adds a given object to the receiver

Class Methods

addObject:

Adds a given object to the active autorelease pool in the current thread.
+ (void)addObject:(id)object

Parameters
object
The object to add to the active autorelease pool in the current thread.

Discussion
The same object may be added several times to the active pool and, when the pool is deallocated, it will
receive a release (page 2106) message for each time it was added.

Normally you don’t invoke this method directly—you send autorelease (page 2099) to object instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
- addObject: (page 160)

Declared In
NSAutoreleasePool.h

Class Methods 159
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSAutoreleasePool Class Reference

Instance Methods

addObject:
Adds a given object to the receiver
- (void)addObject:(id)object

Parameters

object
The object to add to the receiver.

Discussion
The same object may be added several times to the same pool; when the pool is deallocated, the object will
receive a release (page 2106) message for each time it was added.

Normally you don't invoke this method directly—you send autorelease (page 2099) to object instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ addObject: (page 159)

Declared In
NSAutoreleasePool.h

autorelease

Raises an exception.
- (id)autorelease

Return Value
self.

Discussion
In a reference-counted environment, this method raises an exception.

drain

In a reference-counted environment, releases and pops the receiver; in a garbage-collected environment,
triggers garbage collection if the memory allocated since the last collection is greater than the current
threshold.

- (void)drain

160 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSAutoreleasePool Class Reference

Discussion

In a reference-counted environment, this method behaves the same as release (page 2106). Since an
autorelease pool cannot be retained (see retain (page 161)), this therefore causes the receiver to be
deallocated. When an autorelease pool is deallocated, it sends a release (page 2106) message to all its
autoreleased objects. If an object is added several times to the same pool, when the pool is deallocated it
receives a release (page 2106) message for each time it was added.

In a garbage-collected environment, this method ultimately calls objc_collect_if_needed.

Special Considerations

In a garbage-collected environment, release is a no-op, so unless you do not want to give the collector a
hint it is important to use drain in any code that may be compiled for a garbage-collected environment.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Core Data HTML Store

Massivelmage
VideoViewer

Declared In
NSAutoreleasePool.h

release

Releases and pops the receiver.
- (void)release

Discussion

In a reference-counted environment, since an autorelease pool cannot be retained (see retain (page 161)),
this method causes the receiver to be deallocated. When an autorelease pool is deallocated, it sends a
release (page 2106) message to all its autoreleased objects. If an object is added several times to the same
pool, when the pool is deallocated it receives a release (page 2106) message for each time it was added.

In a garbage-collected environment, this method is a no-op.

Special Considerations
You should typically use drain (page 160) instead of release.

See Also
- drain (page 160)

retain

Raises an exception.
- (id)retain

Return Value
self.

Instance Methods 161
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSAutoreleasePool Class Reference

Discussion
In a reference-counted environment, this method raises an exception.

162 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Inherits from

Conforms to

Framework

Availability
Declared in

Companion guides

Related sample code

Overview

NSObject
NSObject (NSObject)

/System/Library/Frameworks/Foundation.framework
Available in Mac OS X v10.0 and later.

Foundation/NSBundle.h

Bundle Programming Guide
Resource Programming Guide

CoreRecipes

GLSLShowpiece
Numberlnput_IMKit_Sample

Quartz Composer WWDC 2005 TextEdit
TextEditPlus

An NSBund1e object represents a location in the file system that groups code and resources that can be used
in a program. NSBund1e objects locate program resources, dynamically load and unload executable code,
and assist in localization. You build a bundle in Xcode using one of these project types: Application, Framework,

Loadable Bundle, Palette.

See also NSBundle Additions in the Application Kit framework, which defines methods for loading nib files

and locating image resources.

Unlike some other Foundation classes with corresponding Core Foundation names (such as NSString and
CFString), NSBund1e objects cannot be cast (“toll-free bridged”) to CFBundle references. If you need
functionality provided in CFBundle, you can still create a CFBundle and use the CFBundle API. See
Interchangeable Data Types for more information on toll-free bridging.

Overview

163

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Tasks

Initializing an NSBundle

- initWithPath: (page 176)
Returns an NSBund1e object initialized to correspond to a given directory.

Getting an NSBundle

+ bundleForClass: (page 167)
Returns the NSBund1e object with which a given class is associated.

+ bundleWithIdentifier: (page 168)
Returns the previously created NSBund1 e instance that has a given bundle identifier.

+ bundleWithPath: (page 169)
Returns an NSBund1e object that corresponds to the specified directory.
+ mainBundle (page 169)
Returns the NSBund1e object that corresponds to the directory where the current application
executable is located.
+ allBundles (page 167)
Returns an array of all the application’s non-framework bundles.
+ allFrameworks (page 167)
Returns an array of all of the application’s bundles that represent frameworks.

Getting a Bundled Class

- classNamed: (page 174)

Returns the C1ass object for the specified name.
- principalClass (page 187)

Returns the receiver’s principal class.

Finding a Resource

+ pathForResource:ofType:inDirectory: (page 170)
Returns the full pathname for the resource file identified by a given name and extension and residing
in a given bundle directory.
- pathForResource:ofType: (page 182)
Returns the full pathname for the resource identified by a given name and specified file extension.
- pathForResource:ofType:inDirectory: (page 183)

Returns the full pathname for the resource identified by the given name and file extension and located
in the specified bundle subdirectory.

164 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

- pathForResource:ofType:inDirectory:forlLocalization: (page 184)
Returns the full pathname for the resource identified by the given name and file extension, located
in the specified bundle subdirectory, and limited to global resources and those associated with the
specified localization.

+ pathsForResourcesOfType:inDirectory: (page 171)
Returns an array containing the pathnames for all bundle resources having a given extension and
residing in the bundle directory specified by a given path.

- pathsForResourcesOfType:inDirectory: (page 185)
Returns an array containing the pathnames for all bundle resources having the specified filename
extension and residing in the resource subdirectory.

- pathsForResourcesOfType:inDirectory:forlLocalization: (page 186)
Returns an array containing the pathnames for all bundle resources having the specified filename
extension, residing in the specified resource subdirectory, and limited to global resources and those
associated with the specified localization.

- resourcePath (page 189)
Returns the full pathname of the receiving bundle’s subdirectory containing resources.

Getting the Bundle Directory

- bundlePath (page 174)
Returns the full pathname of the receiver’s bundle directory.

Getting Bundle Information

- builtInPluglInsPath (page 173)
Returns the full pathname of the receiver's subdirectory containing plug-ins.

- bundleldentifier (page 173)
Returns the receiver’s bundle identifier.
- executablePath (page 175)
Returns the full pathname of the receiver's executable file.
- infoDictionary (page 176)
Returns a dictionary that contains information about the receiver.
- objectForInfoDictionaryKey: (page 181)
Returns the value associated with a given key in the receiver's property list.
- pathForAuxiliaryExecutable: (page 182)
Returns the full pathname of the executable with a given name in the receiver’s bundle.
- privateFrameworksPath (page 188)
Returns the full pathname of the receiver's subdirectory containing private frameworks.
- sharedFrameworksPath (page 189)
Returns the full pathname of the receiver's subdirectory containing shared frameworks.

- sharedSupportPath (page 190)
Returns the full pathname of the receiver's subdirectory containing shared support files.

Tasks 165
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

166

CHAPTER 10

NSBundle Class Reference

Managing Localized Resources

- localizedStringForKey:value:table: (page 180)
Returns a localized version of the string designated by a given key in a given table.

Loading a Bundle’s Code

- executableArchitectures (page 175)
Returns an array of numbers indicating the architecture types supported by the bundle’s executable.

- preflightAndReturnError: (page 187)
Returns a Boolean value indicating whether the bundle’s executable code could be loaded successfully.

- load (page 177)
Dynamically loads the bundle’s executable code into a running program, if the code has not already
been loaded.

- loadAndReturnError: (page 178)
Loads the bundle’s executable code and returns any errors.

- islLoaded (page 177)
Obtains information about the load status of a bundle.

- unload (page 190)
Unloads the code associated with the receiver.

Managing Localizations

+ preferredlocalizationsFromArray: (page 172)
Returns one or more localizations from the specified list that a bundle object would use to locate
resources for the current user.

+ preferredlocalizationsFromArray:forPreferences: (page 172)
Returns the localizations that a bundle object would prefer, given the specified bundle and user
preference localizations.

- localizations (page 179)
Returns a list of all the localizations contained within the receiver’s bundle.

- developmentlLocalization (page 175)
Returns the localization used to create the bundle.

- preferredlLocalizations (page 186)
Returns one or more localizations contained in the receiver’s bundle that the receiver uses to locate
resources based on the user’s preferences.

- localizedInfoDictionary (page 179)
Returns a dictionary with the keys from the bundle’s localized property list.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Class Methods

allBundles

Returns an array of all the application’s non-framework bundles.
+ (NSArray *)allBundles

Return Value
An array of all the application’s non-framework bundles.

Discussion
The returned array includes the main bundle and all bundles that have been dynamically created but doesn’t
contain any bundles that represent frameworks.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

allFrameworks

Returns an array of all of the application’s bundles that represent frameworks.
+ (NSArray *)allFrameworks

Return Value
An array of all of the application’s bundles that represent frameworks. Only frameworks with one or more
Objective-C classes in them are included.

Discussion
The returned array includes frameworks that are linked into an application when the application is built and
bundles for frameworks that have been dynamically created.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Core Data HTML Store

CoreRecipes

Declared In
NSBundle.h

bundleForClass:

Returns the NSBund1e object with which a given class is associated.

+ (NSBundle *)bundleForClass:(Class)aClass

Class Methods 167
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

168

CHAPTER 10

NSBundle Class Reference

Parameters
aClass
A class.
Return Value
The NSBund1e object that dynamically loaded aC7ass (a loadable bundle), the NSBund1e object for the

framework in which aClass is defined, or the main bundle object if aC7ass was not dynamically loaded or
is not defined in a framework.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ mainBundle (page 169)

+ bundleWithPath: (page 169)

Related Sample Code
BundleLoader

ClAnnotation

Core Data HTML Store
CoreRecipes
GLSLShowpiece

Declared In
NSBundle.h

bundleWithldentifier:

Returns the previously created NSBund1e instance that has a given bundle identifier.
+ (NSBundle *)bundleWithIdentifier:(NSString *)identifier

Parameters
identifier

The identifier for an existing NSBund1 e instance.
Return Value

The previously created NSBund1e instance that has the bundle identifier 7dentifier.Returns nil if the
requested bundle is not found.

Discussion

This method is typically used by frameworks and plug-ins to locate their own bundle at runtime. This method
may be somewhat more efficient than trying to locate the bundle using the bundleForClass: (page 167)
method.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
JavaSplashScreen

PrefsPane

Declared In
NSBundle.h

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

bundleWithPath:

Returns an NSBund1e object that corresponds to the specified directory.
+ (NSBundle *)bundleWithPath:(NSString *)fullPath

Parameters
fullPath
The path to a directory. This must be a full pathname for a directory; if it contains any symbolic links,
they must be resolvable.
Return Value
The NSBund1e object that corresponds to ful7Path,ornil if fullPath does notidentify an accessible
bundle directory.

Discussion
This method allocates and initializes the returned object if there is no existing NSBund1e associated with
fullPath, in which case it returns the existing object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ mainBundle (page 169)

+ bundleForClass: (page 167)
- initWithPath: (page 176)

Related Sample Code
BundleLoader

Core Data HTML Store

Declared In
NSBundle.h

mainBundle

Returns the NSBund1e object that corresponds to the directory where the current application executable is
located.

+ (NSBundle *)mainBundle

Return Value
The NSBund1e object that corresponds to the directory where the application executable is located, or ni 1
if a bundle object could not be created.

Discussion

This method allocates and initializes a bundle object if one doesn't already exist. The new object corresponds
to the directory where the application executable is located. Be sure to check the return value to make sure
you have a valid bundle. This method may return a valid bundle object even for unbundled applications.

In general, the main bundle corresponds to an application file package or application wrapper: a directory
that bears the name of the application and is marked by a “. app” extension.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 169
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

170

CHAPTER 10

NSBundle Class Reference

See Also
+ bundleForClass: (page 167)

+ bundleWithPath: (page 169)

Related Sample Code
ClTransitionSelectorSample2
CoreRecipes

NewsReader
Numberlnput_IMKit_Sample
StickiesExample

Declared In
NSBundle.h

pathForResource:ofType:inDirectory:

Returns the full pathname for the resource file identified by a given name and extension and residing in a
given bundle directory.

+ (NSString *)pathForResource: (NSString *)name ofType:(NSString *)extension
inDirectory: (NSString *)bundlePath

Parameters
name
The name of a resource file contained in the bundle specified by bundiePath.

extension
If extensionisan empty string or ni1, the returned pathname is the first one encountered that
exactly matches name.

bundlePath
The path of a top-level bundle directory. This must be a valid path. For example, to specify the bundle
directory for an application, you might specify the path /Applications/MyApp.app.

Return Value
The full pathname for the resource file or ni1 if the file could not be located. This method also returns ni 1
if the bundle specified by the bund1ePath parameter does not exist or is not a readable directory.

Discussion

The method first looks for a matching resource file in the nonlocalized resource directory (typically Resources)
of the specified bundle. If a matching resource file is not found, it then looks in the top level of any available
language-specific “. 1proj” directories. (The search order for the language-specific directories corresponds
to the user’s preferences.) It does not recurse through other subdirectories at any of these locations. For more
details see Bundles and Localization.

Note: This method is best suited only for the occasional retrieval of resource files. In most cases where you
need to retrieve bundle resources, it is preferable to use the NSBund1e instance methods instead.

Availability
Available in Mac OS X v10.0 and later.

See Also

- localizedStringForKey:value:table: (page 180)

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

pathForResource:ofType: (page 182)

- pathForResource:ofType:inDirectory: (page 183)
+ pathsForResourcesOfType:inDirectory: (page 171)
pathsForResourcesOfType:inDirectory: (page 185)

Declared In
NSBundle.h

pathsForResourcesOfType:inDirectory:

Returns an array containing the pathnames for all bundle resources having a given extension and residing
in the bundle directory specified by a given path.

+ (NSArray *)pathsForResourcesOfType: (NSString *)extension inDirectory:(NSString
*)bundlePath

Parameters

extension
If extensionisan empty string or ni1, all bundle resources in the top-level resource directories are
returned.

bundlePath
The top-level directory of a bundle. This must represent a valid path.

Return Value

An array containing the full pathnames for all bundle resources with the specified extension. This method

returns an empty array of no matching resource files are found. It also returns an empty array if the bundle
specified by the bund1ePath parameter does not exist or is not a readable directory.

Discussion
This method provides a means for dynamically discovering multiple bundle resources of the same type.

The method first looks for matching resource files in the nonlocalized resource directory (typically Resources)
of the specified bundle. It then looks in the top level of any available language-specific “. 1proj” directories.
It does not recurse through other subdirectories at any of these locations. For more details see Bundles and
Localization.

Note: This method is best suited only for the occasional retrieval of resource files. In most cases where you
need to retrieve bundle resources, it is preferable to use the NSBund1e instance methods instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
- localizedStringForKey:value:table: (page 180)

- pathForResource:ofType: (page 182)
- pathForResource:ofType:inDirectory: (page 183)
+ pathForResource:ofType:inDirectory: (page 170)

Declared In
NSBundle.h

Class Methods 171
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

172

CHAPTER 10

NSBundle Class Reference

preferredLocalizationsFromArray:

Returns one or more localizations from the specified list that a bundle object would use to locate resources
for the current user.

+ (NSArray *)preferredlLocalizationsFromArray:(NSArray *)JlocalizationsArray

Parameters

localizationsArray
An array of NSString objects, each of which specifies the name of a localization that the bundle
supports.
Return Value
An array of NSString objects containing the preferred localizations. These strings are ordered in the array
according to the current user's language preferences and are taken from the strings in the
localizationsArray parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

preferredLocalizationsFromArray:forPreferences:

Returns the localizations that a bundle object would prefer, given the specified bundle and user preference
localizations.

+ (NSArray *)preferredlLocalizationsFromArray:(NSArray *)localizationsArray
forPreferences: (NSArray *)preferencesArray

Parameters

localizationsArray
An array of NSString objects, each of which specifies the name of a localization that the bundle
supports.

preferencesArray
An array of NSString objects containing the user's preferred localizations. If this parameteris ni1,
the method uses the current user's localization preferences.

Return Value
An array of NSString objects containing the preferred localizations. These strings are ordered in the array
according to the specified preferences and are taken from the stringsinthe TocalizationsArray parameter.

Discussion
Use the argument TocalizationsArray to specify the supported localizations of the bundle and use
preferencesArray to specify the user’s localization preferences.

If none of the user-preferred localizations are available in the bundle, this method chooses one of the bundle
localizations and returns it.

Availability
Available in Mac OS X v10.2 and later.

Declared In

NSBundle.h

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Instance Methods

builtinPluginsPath

Returns the full pathname of the receiver's subdirectory containing plug-ins.
- (NSString *)builtInPluglnsPath

Return Value
The full pathname of the receiving bundle’s subdirectory containing plug-ins.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BundleLoader

ClAnnotation
Core Data HTML Store

Declared In
NSBundle.h

bundleldentifier

Returns the receiver’s bundle identifier.
- (NSString *)bundleldentifier

Return Value
The receiver’s bundle identifier, which is defined by the CFBundleIdentifier keyin the bundle’s information
property list.

Availability
Available in Mac OS X v10.0 and later.

See Also
- infoDictionary (page 176)

Related Sample Code
CoreRecipes

MungSaver
Numberlnput_IMKit_Sample

Declared In
NSBundle.h

Instance Methods 173
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

174

CHAPTER 10

NSBundle Class Reference

bundlePath

Returns the full pathname of the receiver’s bundle directory.
- (NSString *)bundlePath

Return Value
The full pathname of the receiver’s bundle directory.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
JavaSplashScreen

NSGLImage

Declared In
NSBundle.h

classNamed:

Returns the C1ass object for the specified name.
- (Class)classNamed: (NSString *)className

Parameters
className
The name of a class.

Return Value
The Class object for c7assName. Returns NIL if c7assName is not one of the classes associated with the
receiver or if there is an error loading the executable code containing the class implementation.

Discussion

If the bundle’s executable code is not yet loaded, this method dynamically loads it into memory. Classes (and
categories) are loaded from just one file within the bundle directory; this code file has the same name as the
directory, but without the extension (“.bundle’“.app’“. framework”). As a side effect of code loading,
the receiver posts NSBundleDidlLoadNotification (page 192) after all classes and categories have been
loaded; see “Notifications” (page 192) for details.

The following example loads a bundle’s executable code containing the class “FaxWatcher”:
(void)loadBundle: (id)sender

Class exampleClass;
id newlnstance;
NSString *str = @"~/BundleExamples/BundleExample.bundle";
NSBundle *bundleTolLoad = [NSBundle bundleWithPath:str];
if (exampleClass = [bundleToload classNamed:@"FaxWatcher"]) {
newlnstance = [[exampleClass alloc] init];
// [newlInstance doSomething];
}
}

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

See Also
- principalClass (page 187)

- load (page 177)

Declared In
NSBundle.h

developmentLocalization

Returns the localization used to create the bundle.
- (NSString *)developmentlLocalization

Return Value
The localization used to create the bundle.

Discussion
The returned localization corresponds to the value in the CFBundleDevelopmentRegion key of the bundle’s
property list (Info.plist).

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSBundle.h

executableArchitectures

Returns an array of numbers indicating the architecture types supported by the bundle’s executable.
- (NSArray *)executableArchitectures

Return Value

An array of NSNumbe r objects, each of which contains an integer value corresponding to a supported processor
architecture. For a list of common architecture types, see the constants in “Mach-O Architecture” (page 191).
If the bundle does not contain a Mach-O executable, this method returns nil.

Discussion

This method scans the bundle’s Mach-O executable and returns all of the architecture types it finds. Because
they are taken directly from the executable, the returned values may not always correspond to one of the
well-known CPU types defined in “Mach-O Architecture” (page 191).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSBundle.h

executablePath

Returns the full pathname of the receiver's executable file.

Instance Methods 175
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

- (NSString *)executablePath

Return Value
The full pathname of the receiving bundle’s executable file.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

infoDictionary

Returns a dictionary that contains information about the receiver.
- (NSDictionary *)infoDictionary

Return Value

A dictionary, constructed from the bundle's Info.p1ist file, that contains information about the receiver.
If the bundle does not contain an Info.p1ist file, a valid dictionary is returned but this dictionary contains
only private keys that are used internally by the NSBund1e class.

Discussion
Common keys for accessing the values of the dictionary are CFBundleldentifier, NSMainNibFile, and
NSPrincipalClass.

Availability
Available in Mac OS X v10.0 and later.

See Also
- principalClass (page 187)

Related Sample Code
JavaSplashScreen

PrefsPane
VertexPerformanceTest

Declared In
NSBundle.h

initWithPath:

Returns an NSBund1e object initialized to correspond to a given directory.
- (id)initWithPath: (NSString *)fullPath

Parameters

fullPath
The path to a directory. This must be a full pathname for a directory; if it contains any symbolic links,
they must be resolvable.

176 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Return Value

An NSBund1e object initialized to correspond to fu 1 1Path. This method initializes and returns a new instance
only if there is no existing bundle associated with ful7Path, otherwise it deallocates self and returns the
existing object. If ful7Pathdoesn’t exist or the user doesn’t have access to it, returns ni1.

Discussion

It's not necessary to allocate and initialize an instance for the main bundle; use the mainBundle (page 169)
class method to get this instance. You can also use the bundTeWithPath: (page 169) class method to obtain
a bundle identified by its directory path.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ bundleForClass: (page 167)

Declared In
NSBundle.h

isLoaded

Obtains information about the load status of a bundle.
- (BOOL)islLoaded

Return Value
YES if the bundle’s code is currently loaded, otherwise NO.

Availability
Available in Mac OS X v10.2 and later.

See Also
- load (page 177)

Declared In
NSBundle.h

load

Dynamically loads the bundle’s executable code into a running program, if the code has not already been
loaded.

- (BOOL)Toad

Return Value
YES if the method successfully loads the bundle’s code or if the code has already been loaded, otherwise
NO.

Discussion

You can use this method to load the code associated with a dynamically loaded bundle, such as a plug-in or
framework. Prior to Mac OS X version 10.5, a bundle would attempt to load its code—if it had any—only
once. Once loaded, you could not unload that code. In Mac OS X version 10.5 and later, you can unload a
bundle’s executable code using the unload (page 190) method.

Instance Methods 177
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

You don’t need to load a bundle’s executable code to search the bundle’s resources.

Availability
Available in Mac OS X v10.0 and later.

See Also
- loadAndReturnError: (page 178)

- islLoaded (page 177)

- unload (page 190)

- classNamed: (page 174)

- principalClass (page 187)

Related Sample Code
Core Data HTML Store

Declared In
NSBundle.h

loadAndReturnError:

Loads the bundle’s executable code and returns any errors.
- (BOOL)ToadAndReturnError:(NSError **)error

Parameters

error
On input, a pointer to an error object variable. On output, this variable may contain an error object
indicating why the bundle’s executable could not be loaded. If no error occurred, this parameter is

left unmodified. You may specify ni1 for this parameter if you are not interested in the error
information.

Return Value
YES if the bundle’s executable code was loaded successfully or was already loaded; otherwise, NO if the code
could not be loaded.

Discussion

If this method returns NO and you pass a value for the error parameter, a suitable error object is returned
in that parameter. Potential errors returned are in the Cocoa error domain and include the types that follow.
For a full list of error types, see FoundationErrors.h.

m NSFileNoSuchFileError -returned if the bundle’s executable file was not located.

m NSExecutableNotLoadableError - returned if the bundle’s executable file exists but could not be
loaded. This error is returned if the executable is not recognized as a loadable executable. It can also be
returned if the executable is a PEF/CFM executable but the current process does not support that type
of executable.

m NSExecutableArchitectureMismatchError - returned if the bundle executable does not include
code that matches the processor architecture of the current processor.

m NSExecutableRuntimeMismatchError - returned if the bundle’s required Objective-C runtime
information is not compatible with the runtime of the current process.

178 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

m NSExecutableloadError - returned if the bundle’s executable failed to load for some detectable
reason prior to linking. This error might occur if the bundle depends on a framework or library that is
missing or if the required framework or library is not compatible with the current architecture or runtime
version.

m NSExecutablelLinkError -returned if the executable failed to load due to link errors but is otherwise
alright.

The error object may contain additional debugging information in its description that you can use to identify
the cause of the error. (This debugging information should not be displayed to the user.) You can obtain the
debugging information by invoking the error object’s description method in your code or by using the
print-object command on the error object in gdb.

Availability
Available in Mac OS X v10.5 and later.

See Also
- load (page 177)

- unload (page 190)

Declared In
NSBundle.h

localizations

Returns a list of all the localizations contained within the receiver’s bundle.
- (NSArray *)localizations

Return Value
An array, containing NSString objects, that specifies all the localizations contained within the receiver’s
bundle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

localizedinfoDictionary

Returns a dictionary with the keys from the bundle’s localized property list.
- (NSDictionary *)localizedInfoDictionary

Return Value
A dictionary with the keys from the bundle’s localized property list (InfoP1ist.strings).

Discussion
This method uses the preferred localization for the current user when determining which resources to return.
If the preferred localization is not available, this method chooses the most appropriate localization found in
the bundle.

Instance Methods 179
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

180

CHAPTER 10

NSBundle Class Reference

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
PrefsPane

Declared In
NSBundle.h

localizedStringForKey:value:table:

Returns a localized version of the string designated by a given key in a given table.

- (NSString *)localizedStringForKey:(NSString *)key value:(NSString *)value
table: (NSString *)tableName

Parameters
key
The key for a string in the table identified by tab7eName.

value
The value to return if keyis ni1 or if a localized string for key can't be found in the table.

tableName
The receiver’s string table to search. If tableNameis nil oris an empty string, the method attempts
to use the table in Localizable.strings.

Return Value

A localized version of the string designated by key in table tab7eName.If valueis nil or an empty string,
and a localized string is not found in the table, returns key.If key and value are both ni1, returns the empty
string.

Discussion
For more details about string localization and the specification of a . strings file, see “Working With Localized
Strings.”

Using the user default NSShowNonlLocalizedStrings, you can alter the behavior of
TocalizedStringForKey:value:table: (page 180) to log a message when the method can't find a
localized string. If you set this default to YES (in the global domain or in the application’s domain), then when
the method can't find a localized string in the table, it logs a message to the console and capitalizes key
before returning it.

The following example cycles through a static array of keys when a button is clicked, gets the value for each
key from a strings table named Buttons.strings, and sets the button title with the returned value:

- (void)changeTitle:(id)sender
{
static int keylIndex = 0;
NSBundle *thisBundle = [NSBundle bundleForClass:[self class]l];

NSString *locString = [thisBundle
localizedStringForKey:assortedKeys[keyIndex++]
value:@"No translation" table:@"Buttons"];

[sender setTitle:locString];

if (keyIndex == MAXSTRINGS) keyIndex=0;

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- pathForResource:ofType: (page 182)

- pathForResource:ofType:inDirectory: (page 183)
- pathsForResourcesOfType:inDirectory: (page 185)

+

pathForResource:ofType:inDirectory: (page 170)

+

pathsForResourcesOfType:inDirectory: (page 171)

Related Sample Code
BundleLoader

CocoaDVDPlayer
InstallerPluginSample
NewsReader
Sketch-112

Declared In
NSBundle.h

objectForinfoDictionaryKey:

Returns the value associated with a given key in the receiver's property list.
- (id)objectForInfoDictionaryKey: (NSString *)key

Parameters
key

A key in the receiver's property list.
Return Value

The value associated with key in the receiver's property list (Info.p11st). The localized value of a key is
returned when one is available.

Discussion
Use of this method is preferred over other access methods because it returns the localized value of a key
when one is available.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
AutoUpdater

BundleLoader
FancyAbout
GridCalendar

Declared In
NSBundle.h

Instance Methods 181
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

pathForAuxiliaryExecutable:

Returns the full pathname of the executable with a given name in the receiver’s bundle.
- (NSString *)pathForAuxiliaryExecutable: (NSString *)executableName

Parameters
executableName
The name of an executable file.

Return Value
The full pathname of the executable executableName in the receiver’s bundle.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

pathForResource:ofType:

Returns the full pathname for the resource identified by a given name and specified file extension.
- (NSString *)pathForResource: (NSString *)name ofType:(NSString *)extension

Parameters

name
The name of the resource file.

extension
The file extension of a resource with the name name.

Return Value
The full pathname for the resource file or ni1 if the file could not be located.

Discussion
If extensionis an empty string or ni1, the returned pathname is the first one encountered where the file
name exactly matches name.

The method first looks for a matching resource file in the nonlocalized resource directory (typically Resources)
of the specified bundle. If a matching resource file is not found, it then looks in the top level of any available
language-specific “. 1proj” directories. (The search order for the language-specific directories corresponds
to the user’s preferences.) It does not recurse through other subdirectories at any of these locations. For more
details see Bundles and Localization.

The following code fragment gets the path to a localized sound, creates an NSSound instance from it, and
plays the sound.

NSString *soundPath;

NSSound *thisSound;

NSBundle *thisBundle = [NSBundle bundleForClass:[self class]l];

if (soundPath = [thisBundle pathForResource:@"Hello" ofType:@"snd"]) {

182 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

thisSound = [[[NSSound alloc] initFromSoundfile:soundPath] autorelease];
[thisSound play]l;
}

Availability
Available in Mac OS X v10.0 and later.

See Also
- localizedStringForKey:value:table: (page 180)

pathForResource:ofType: (page 182)

pathForResource:ofType:inDirectory: (page 183)

+

pathForResource:ofType:inDirectory: (page 170)
+ pathsForResourcesOfType:inDirectory: (page 171)

Related Sample Code
AttachAScript

ClAnnotation
ClTransitionSelectorSample2
GLSLShowpiece
StickiesExample

Declared In
NSBundle.h

pathForResource:of Type:inDirectory:

Returns the full pathname for the resource identified by the given name and file extension and located in
the specified bundle subdirectory.

- (NSString *)pathForResource: (NSString *)name ofType:(NSString *)extension
inDirectory: (NSString *)subpath

Parameters
name
The name of the resource file.

extension
The file extension of the specified resource file.

subpath
The name of the bundle subdirectory.

Return Value
The full pathname for the resource file or ni 1 if the file could not be located.

Discussion
If extensionisan empty string or ni 1, the returned pathname is the first one encountered where the file
name exactly matches name.

If subpathisnil,this method searches the top-level nonlocalized resource directory (typically Resources)
and the top-level of any language-specific directories. For example, suppose you have a modern bundle and
specify @"Documentation" for the subpath parameter. This method would first look in the
Contents/Resources/Documentation directory of the bundle, followed by the Documentation

Instance Methods 183
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

184

CHAPTER 10

NSBundle Class Reference

subdirectories of each language-specific . 1proj directory. (The search order for the language-specific
directories corresponds to the user’s preferences.) This method does not recurse through any other
subdirectories at any of these locations. For more details see Bundles and Localization.

Availability
Available in Mac OS X v10.0 and later.

See Also
- localizedStringForKey:value:table: (page 180)

- pathForResource:ofType: (page 182)
- pathsForResourcesOfType:inDirectory: (page 185)

+ pathForResource:ofType:inDirectory: (page 170)
+ pathsForResourcesOfType:inDirectory: (page 171)
Declared In
NSBundle.h

pathForResource:ofType:inDirectory:forLocalization:

Returns the full pathname for the resource identified by the given name and file extension, located in the
specified bundle subdirectory, and limited to global resources and those associated with the specified
localization.

- (NSString *)pathForResource: (NSString *)name ofType:(NSString *)extension
inDirectory: (NSString *)subpath forLocalization:(NSString *)JTocalizationName

Parameters
name
The name of the resource file.

extension
The file extension of the specified resource file.

subpath
The name of the bundle subdirectory to search.

localizationName
The name of the localization. This parameter should correspond to the name of one of the bundle's
language-specific resource directories without the . 1proj extension.

Return Value
The full pathname for the resource file or ni1 if the file could not be located.

Discussion

This method is equivalent to pathForResource:ofType:inDirectory: (page 183), except that only
nonlocalized resources and those in the language-specific . 1proj directory specified by 7TocalizationName
are searched.

There should typically be little reason to use this method—see Getting the Current Language and Locale.
See also preferredLocalizationsFromArray:forPreferences: (page 172) for how to determine what localizations
are available.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Declared In
NSBundle.h

pathsForResourcesOfType:inDirectory:

Returns an array containing the pathnames for all bundle resources having the specified filename extension
and residing in the resource subdirectory.

- (NSArray *)pathsForResourcesOfType: (NSString *)extension inDirectory:(NSString
*)subpath

Parameters
extension
The file extension of the files to retrieve.

subpath
The name of the bundle subdirectory to search.

Return Value
An array containing the full pathnames for all bundle resources matching the specified criteria. This method
returns an empty array of no matching resource files are found.

Discussion
This method provides a means for dynamically discovering multiple bundle resources of the same type. If
extensionis an empty string or ni1, all bundle resources in the specified resource directory are returned.

The argument subpath specifies the name of a specific subdirectory to search within the current bundle’s
resource directory hierarchy. If subpathis nil, this method searches the top-level nonlocalized resource
directory (typically Resources) and the top-level of any language-specific directories. For example, suppose
you have a modern bundle and specify @"Documentation" for the subpath parameter. This method would
first look in the Contents/Resources/Documentation directory of the bundle, followed by the
Documentation subdirectories of each language-specific . 1proj directory. (The search order for the
language-specific directories corresponds to the user’s preferences.) This method does not recurse through
any other subdirectories at any of these locations. For more details see Bundles and Localization.

Availability
Available in Mac OS X v10.0 and later.

See Also
- localizedStringForKey:value:table: (page 180)

- pathForResource:ofType: (page 182)

- pathForResource:ofType:inDirectory: (page 183)
+ pathForResource:ofType:inDirectory: (page 170)
+ pathsForResourcesOfType:inDirectory: (page 171)

Related Sample Code
AutoSample

CocoaCreateMovie
QTKitCreateMovie

Declared In
NSBundle.h

Instance Methods 185
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

186

CHAPTER 10

NSBundle Class Reference

pathsForResourcesOfType:inDirectory:forLocalization:

Returns an array containing the pathnames for all bundle resources having the specified filename extension,
residing in the specified resource subdirectory, and limited to global resources and those associated with
the specified localization.

- (NSArray *)pathsForResourcesOfType: (NSString *)extension inDirectory:(NSString
*)subpath forLocalization:(NSString *)localizationName

Parameters

extension
The file extension of the files to retrieve.

subpath
The name of the bundle subdirectory to search.

localizationName
The name of the localization. This parameter should correspond to the name of one of the bundle's
language-specific resource directories without the . 1proj extension.

Return Value

An array containing the full pathnames for all bundle resources matching the specified criteria. This method
returns an empty array of no matching resource files are found.

Discussion

This method is equivalent to pathsForResourcesOfType:inDirectory: (page 185), except that only
nonlocalized resources and those in the language-specific . 1proj directory specified by 7ocalizationName
are searched.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

preferredLocalizations

Returns one or more localizations contained in the receiver’s bundle that the receiver uses to locate resources
based on the user’s preferences.

- (NSArray *)preferredlLocalizations

Return Value
One or more localizations contained in the receiver’s bundle that the receiver uses to locate resources based
on the user’s preferences.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ preferredlLocalizationsFromArray: (page 172)

- localizations (page 179)

Declared In
NSBundle.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

preflightAndReturnError:

Returns a Boolean value indicating whether the bundle’s executable code could be loaded successfully.
- (BOOL)preflightAndReturnError: (NSError **)error

Parameters

error
On input, a pointer to an error object variable. On output, this variable may contain an error object
indicating why the bundle’s executable could not be loaded. If no error would occur, this parameter
is left unmodified. You may specify ni1 for this parameter if you are not interested in the error
information.

Return Value
YES if the bundle’s executable code could be loaded successfully or is already loaded; otherwise, NO if the
code could not be loaded.

Discussion

This method does not actually load the bundle’s executable code. Instead, it performs several checks to see
if the code could be loaded and with one exception returns the same errors that would occur during an
actual load operation. The one exception is the NSExecutablelLinkError error, which requires the actual
loading of the code to verify link errors.

For a list of possible load errors, see the discussion for the ToadAndReturnError: (page 178) method.

Availability
Available in Mac OS X v10.5 and later.

See Also
- loadAndReturnError: (page 178)

Declared In
NSBundle.h

principalClass

Returns the receiver’s principal class.
- (Class)principalClass

Return Value

The receiver’s principal class—after ensuring that the code containing the definition of that class is dynamically
loaded. If the receiver encounters errors in loading or if it can't find the executable code file in the bundle
directory, returns NI L.

Discussion

The principal class typically controls all the other classes in the bundle; it should mediate between those
classes and classes external to the bundle. Classes (and categories) are loaded from just one file within the
bundle directory. NSBund1e obtains the name of the code file to load from the dictionary returned from
infoDictionary (page 176), using “NSExecutable” as the key. The bundle determines its principal class
in one of two ways:

Instance Methods 187
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

188

CHAPTER 10

NSBundle Class Reference

m [t first looks in its own information dictionary, which extracts the information encoded in the bundle’s
property list (Info.plist). NSBund1e obtains the principal class from the dictionary using the key
NSPrincipalClass. For nonloadable bundles (applications and frameworks), if the principal class is
not specified in the property list, the method returns NI L.

= If the principal class is not specified in the information dictionary, NSBund1 e identifies the first class
loaded as the principal class. When several classes are linked into a dynamically loadable file, the default
principal class is the first one listed on the 1d command line. In the following example, Reporter would
be the principal class:

1d -0 myBundle -r Reporter.o NotePad.o Querylist.o

The order of classes in Xcode’s project browser is the order in which they will be linked. To designate the
principal class, control-drag the file containing its implementation to the top of the list.

As a side effect of code loading, the receiver posts NSBundleDidlLoadNotification (page 192) after all
classes and categories have been loaded; see “Notifications” (page 192) for details.

The following method obtains a bundle by specifying its path (bundleWithPath: (page 169)), then loads
the bundle with principalClass (page 187) and uses the returned class object to allocate and initialize an
instance of that class:

(void)loadBundle: (id)sender

Class exampleClass;
id newlnstance;
NSString *path = @"/tmp/Projects/BundleExample/BundleExample.bundle”;
NSBundle *bundleTolLoad = [NSBundle bundleWithPath:path];
if (exampleClass = [bundleToload principalClass]) ({
newlnstance = [[exampleClass alloc] init];
[newInstance doSomethingl;

}

Availability
Available in Mac OS X v10.0 and later.

See Also
- classNamed: (page 174)

- infoDictionary (page 176)
- load (page 177)

Related Sample Code
BundleLoader

Declared In
NSBundle.h

privateFrameworksPath

Returns the full pathname of the receiver's subdirectory containing private frameworks.

- (NSString *)privateFrameworksPath

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Return Value
The full pathname of the receiver's subdirectory containing private frameworks.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MP3 Player

Declared In
NSBundle.h

resourcePath

Returns the full pathname of the receiving bundle’s subdirectory containing resources.
- (NSString *)resourcePath

Return Value
The full pathname of the receiving bundle’s subdirectory containing resources.

Availability
Available in Mac OS X v10.0 and later.

See Also
- bundlePath (page 174)

Related Sample Code
NURBSSurfaceVertexProg

StickiesExample
SurfaceVertexProgram
TextureRange
VertexPerformanceDemo

Declared In
NSBundle.h

sharedFrameworksPath

Returns the full pathname of the receiver's subdirectory containing shared frameworks.
- (NSString *)sharedFrameworksPath

Return Value
The full pathname of the receiver's subdirectory containing shared frameworks.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Instance Methods 189
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

190

CHAPTER 10

NSBundle Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

sharedSupportPath

Returns the full pathname of the receiver's subdirectory containing shared support files.
- (NSString *)sharedSupportPath

Return Value
The full pathname of the receiver's subdirectory containing shared support files.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

unload

Unloads the code associated with the receiver.
- (BOOL)unload

Return Value
YES if the bundle was successfully unloaded or was not already loaded; otherwise, NO if the bundle could
not be unloaded.

Discussion

This method attempts to unload a bundle’s executable code using the underlying dynamic loader (typically
dy1d). You may use this method to unload plug-in and framework bundles when you no longer need the
code they contain. You should use this method to unload bundles that were loaded using the methods of
the NSBund1e class only. Do not use this method to unload bundles that were originally loaded using the
bundle-manipulation functions in Core Foundation.

It is the responsibility of the caller to ensure that no in-memory objects or data structures refer to the code
being unloaded. For example, if you have an object whose class is defined in a bundle, you must release that
object prior to unloading the bundle. Similarly, your code should not attempt to access any symbols defined
in an unloaded bundle.

Special Considerations

Prior to Mac OS X version 10.5, code could not be unloaded once loaded, and this method would always
return NO. In Mac OS X version 10.5 and later, you can unload a bundle’s executable code using this method.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

See Also
- loadAndReturnError: (page 178)

- load (page 177)

Declared In
NSBundle.h

Constants

Mach-O Architecture

These constants describe the CPU types that a bundle’s executable code may support.

enum {
NSBundleExecutableArchitecturel386 = 0x00000007,
NSBundleExecutableArchitecturePPC 0x00000012,
NSBundleExecutableArchitectureX86_64 = 0x01000007,
NSBundleExecutableArchitecturePPC64 = 0x01000012

b

Constants
NSBundleExecutableArchitecturel386
Specifies the 32-bit Intel architecture.

Available in Mac OS X v10.5 and later.
Declared in NSBundle. h.

NSBundleExecutableArchitecturePPC
Specifies the 32-bit PowerPC architecture.

Available in Mac OS X v10.5 and later.
Declared in NSBundle. h.

NSBundlekExecutableArchitecturex86_64
Specifies the 64-bit Intel architecture.

Available in Mac OS X v10.5 and later.
Declared in NSBundle. h.

NSBundleExecutableArchitecturePPC64
Specifies the 64-bit PowerPC architecture.

Available in Mac OS X v10.5 and later.
Declared in NSBundle. h.

Declared In
NSBundle.h

Constants 191
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Notifications

192

NSBundleDidLoadNotification

NSBundle posts NSBundleDidLoadNotification to notify observers which classes and categories have
been dynamically loaded. When a request is made to an NSBund1e object for a class (classNamed: (page
174)or principalClass (page 187)), the bundle dynamically loads the executable code file that contains
the class implementation and all other class definitions contained in the file. After the module is loaded, the

bundle posts the NSBundleDidLoadNotification.

The notification object is the NSBund1 e instance that dynamically loads classes. The userinfo dictionary

contains the following information:

Key

Value

@"NSLoadedClasses"

An NSArray object containing the names (as
NSString objects) of each class that was loaded

In a typical use of this notification, an object might want to enumerate the userinfo array to check if each
loaded class conformed to a certain protocol (say, an protocol for a plug-and-play tool set); if a class does
conform, the object would create an instance of that class and add the instance to another NSArray object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCachedURLResponse Class Reference

Inherits from NSObject
Conforms to NSCoding
NSCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Declared in Foundation/NSURLCache.h
Availability Available in Mac OS X v10.2 with Safari 1.0 installed.

Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System
Related sample code URL Cachelnfo
Overview

Tasks

An NSCachedURLResponse object encapsulates an NSURLResponse object, an NSData object containing
the content corresponding to the response, and an NSDictionary containing application specific information.

The NSURLCache system stores and retrieves instances of NSCachedURLResponse.

Creating a Cached URL Response

- initWithResponse:data: (page 194)
Initializes an NSCachedURLResponse object.

- initWithResponse:data:userInfo:storagePolicy: (page 195)
Initializes an NSCachedURLResponse object.

Getting Cached URL Response Properties
- data (page 194)

Returns the receiver’s cached data.

Overview 193
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSCachedURLResponse Class Reference

- response (page 195)
Returns the NSURLResponse object associated with the receiver.

- storagePolicy (page 196)
Returns the receiver’s cache storage policy.

- userInfo (page 196)
Returns the receiver’s user info dictionary.

Instance Methods

data

Returns the receiver’s cached data.
- (NSData *)data

Return Value
The receiver’s cached data.

Availability

Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Related Sample Code
URL Cachelnfo

Declared In
NSURLCache.h

initWithResponse:data:

Initializes an NSCachedURLResponse object.
- (id)initWithResponse: (NSURLResponse *)response data:(NSData *)data

Parameters
response

The response to cache.
data

The data to cache.

Return Value
The NSCachedURLResponse object, initialized using the given data.

Discussion
The cache storage policy is set to the default, NSURLCacheStorageAllowed, and the user info dictionary
issettonil.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.

194 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSCachedURLResponse Class Reference

Available in Mac OS X v10.2.7 and later.

See Also
- initWithResponse:data:userInfo:storagePolicy: (page 195)

Declared In
NSURLCache.h

initWithResponse:data:userinfo:storagePolicy:
Initializes an NSCachedURLResponse object.

- (id)initWithResponse: (NSURLResponse *)response data:(NSData *)data
userInfo:(NSDictionary *)userInfo
storagePolicy: (NSURLCacheStoragePolicy)storagePolicy

Parameters

response
The response to cache.

data
The data to cache.

userinfo
An optional dictionary of user information. May be ni1.

storagePolicy
The storage policy for the cached response.

Return Value
The NSCachedURLResponse object, initialized using the given data.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.

Available in Mac OS X v10.2.7 and later.

See Also
- initWithResponse:data: (page 194)

Related Sample Code
URL Cachelnfo

Declared In
NSURLCache.h

response

Returns the NSURLResponse object associated with the receiver.
- (NSURLResponse *)response

Return Value
The NSURLResponse object associated with the receiver.

Instance Methods 195
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSCachedURLResponse Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.

Available in Mac OS X v10.2.7 and later.

Related Sample Code
URL Cachelnfo

Declared In
NSURLCache.h

storagePolicy
Returns the receiver’s cache storage policy.

- (NSURLCacheStoragePolicy)storagePolicy

Return Value
The receiver’s cache storage policy.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.

Available in Mac OS X v10.2.7 and later.

Related Sample Code
URL Cachelnfo

Declared In
NSURLCache.h

userinfo

Returns the receiver’s user info dictionary.
- (NSDictionary *)userlInfo

Return Value
An NSDictionary object containing the receiver’s user info, or ni 1 if there is no such object.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.

Available in Mac OS X v10.2.7 and later.

Declared In
NSURLCache.h

196 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSCachedURLResponse Class Reference

Constants

NSURLCacheStoragePolicy
These constants specify the caching strategy used by an NSCachedURLResponse object.

typedef enum

{
NSURLCacheStorageAllowed,
NSURLCacheStorageAllowedInMemoryOnly,
NSURLCacheStorageNotAllowed,

} NSURLCacheStoragePolicy;

Constants
NSURLCacheStorageAllowed
Specifies that storage in NSURLCache is allowed without restriction.

Important: iPhone OS ignores this cache policy, and instead treats it as
NSURLCacheStorageAllowedInMemoryQOnly.

Available in Mac OS X v10.2 and later.
Declared in NSURLCache. h.

NSURLCacheStorageAllowedInMemoryOnly
Specifies that storage in NSURLCache is allowed; however storage should be restricted to memory
only.

Available in Mac OS X v10.2 and later.
Declared in NSURLCache. h.

NSURLCacheStorageNotAllowed
Specifies that storage in NSURLCache is not allowed in any fashion, either in memory or on disk.

Available in Mac OS X v10.2 and later.
Declared in NSURLCache.h.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.

Available in Mac OS X v10.2.7 and later.

Declared In
NSURLCache.h

Constants 197
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSCachedURLResponse Class Reference

198 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Inherits from NSObject
Conforms to NSCoding
NSCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.4 and later.
Declared in Foundation/NSCalendar.h
Companion guides Date and Time Programming Guide for Cocoa

Data Formatting Programming Guide for Cocoa

Related sample code Birthdays
Mountains
Reminders
Overview

Calendars encapsulate information about systems of reckoning time in which the beginning, length, and
divisions of a year are defined. They provide information about the calendar and support for calendrical
computations such as determining the range of a given calendrical unit and adding units to a given absolute
time.

In a calendar, day, week, weekday, month, and year numbers are generally 1-based, but there may be
calendar-specific exceptions. Ordinal numbers, where they occur, are 1-based. Some calendars represented
by this APl may have to map their basic unit concepts into year/month/week/day/... nomenclature. For
example, a calendar composed of 4 quarters in a year instead of 12 months uses the month unit to represent
quarters. The particular values of the unit are defined by each calendar, and are not necessarily consistent
with values for that unit in another calendar.

To do calendar arithmetic, you use NSDate objects in conjunction with a calendar. For example, to convert
between a decomposed date in one calendar and another calendar, you must first convert the decomposed
elements into a date using the first calendar, then decompose it using the second. NSDate provides the
absolute scale and epoch (reference point) for dates and times, which can then be rendered into a particular
calendar, for calendrical computations or user display.

Two NSCalendar methods that return a date object, dateFromComponents: (page 206),
dateByAddingComponents:toDate:options: (page 205), take as a parameter an NSDateComponents
object that describes the calendrical components required for the computation. You can provide as many
components as you need (or choose to). When there is incomplete information to compute an absolute time,

Overview 199
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

200

CHAPTER 12

NSCalendar Class Reference

default values similar to 0 and 1 are usually chosen by a calendar, but this is a calendar-specific choice. If you
provide inconsistent information, calendar-specific disambiguation is performed (which may involve ignoring
one or more of the parameters). Related methods (components: fromDate: (page 203) and
components:fromDate:toDate:options: (page 204)) take a bit mask parameter that specifies which
components to calculate when returning an NSDateComponents object. The bit mask is composed of
NSCalendarUnit constants (see “Constants” (page 213)).

NSCalendar is “toll-free bridged” with its Core Foundation counterpart, CFCalendar. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSCalendar * parameter, you can passina CFCalendarRef,

and in a function where you see a CFCalendarRef parameter, you can pass in an NSCalendar instance.
See Interchangeable Data Types for more information on toll-free bridging.

System Locale Information

+ currentCalendar (page 202)
Returns the logical calendar for the current user.

+ autoupdatingCurrentCalendar (page 201)
Returns the current logical calendar for the current user.

Initializing a Calendar

- initWithCalendarldentifier: (page 207)
Initializes a newly-allocated NSCalendar object for the calendar specified by a given identifier.

- setFirstWeekday: (page 211)
Sets the index of the first weekday for the receiver.

- setlocale: (page 211)
Sets the locale for the receiver.

- setMinimumDaysInFirstWeek: (page 212)
Sets the minimum number of days in the first week of the receiver.

- setTimeZone: (page 212)
Sets the time zone for the receiver.

Getting Information About a Calendar

- calendarldentifier (page 202)
Returns the identifier for the receiver.

- firstWeekday (page 207)
Returns the index of the first weekday of the receiver.

- locale (page 207)
Returns the locale for the receiver.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

- maximumRangeOfUnit: (page 208)
The maximum range limits of the values that a given unit can take on in the receive
- minimumDaysInFirstWeek (page 208)
Returns the minimum number of days in the first week of the receiver.
- minimumRangeOfUnit: (page 209)
Returns the minimum range limits of the values that a given unit can take on in the receiver.
- ordinality0OfUnit:inUnit:forDate: (page 209)
Returns, for a given absolute time, the ordinal number of a smaller calendar unit (such as a day) within
a specified larger calendar unit (such as a week).
- rangeOfUnit:inUnit:forDate: (page 210)
Returns the range of absolute time values that a smaller calendar unit (such as a day) can take on in
a larger calendar unit (such as a month) that includes a specified absolute time.
- rangeOfUnit:startDate:interval:forDate: (page 210)
Returns by reference the starting time and duration of a given calendar unit that contains a given
date.
- timeZone (page 213)
Returns the time zone for the receiver.

Calendrical Calculations

- components:fromDate: (page 203)
Returnsa NSDateComponents object containing a given date decomposed into specified components.

- components:fromDate:toDate:options: (page 204)

Returns, as an NSDateComponents object using specified components, the difference between two
supplied dates.

- dateByAddingComponents:toDate:options: (page 205)
Returns a new NSDate object representing the absolute time calculated by adding given components
to a given date.

- dateFromComponents: (page 206)
Returns a new NSDate object representing the absolute time calculated from given components.

Class Methods

autoupdatingCurrentCalendar

Returns the current logical calendar for the current user.
+ (id)autoupdatingCurrentCalendar

Return Value
The current logical calendar for the current user.

Discussion
Settings you get from this calendar do change as the user’s settings change (contrast with
currentCalendar (page 202)).

Class Methods 201
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Note that if you cache values based on the calendar or related information those caches will of course not
be automatically updated by the updating of the calendar object.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ currentCalendar (page 202)

- initWithCalendarldentifier: (page 207)
- calendarldentifier (page 202)

Declared In
NSCalendar.h

currentCalendar

Returns the logical calendar for the current user.
+ (id)currentCalendar

Return Value
The logical calendar for the current user.

Discussion

The returned calendar is formed from the settings for the current user’s chosen system locale overlaid with
any custom settings the user has specified in System Preferences. Settings you get from this calendar do not
change as System Preferences are changed, so that your operations are consistent (contrast with
autoupdatingCurrentCalendar (page 201)).

Availability
Available in Mac OS X v10.4 and later.

See Also
+ autoupdatingCurrentCalendar (page 201)

- initWithCalendarldentifier: (page 207)
- calendarldentifier (page 202)

Declared In
NSCalendar.h

Instance Methods

calendarldentifier

Returns the identifier for the receiver.
- (NSString *)calendarldentifier

Return Value
The identifier for the receiver. For valid identifiers, see NSLocale.

202 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
+ autoupdatingCurrentCalendar (page 201)

- initWithCalendarldentifier: (page 207)

Related Sample Code
Mountains

Declared In
NSCalendar.h

components:fromDate:

Returns a NSDateComponents object containing a given date decomposed into specified components.
- (NSDateComponents *)components: (NSUInteger)unitFlags fromDate:(NSDate *)date

Parameters
unitfFlags
The components into which to decompose date—a bitwise OR of NSCalendarUnit constants.

date
The date for which to perform the calculation.

Return Value

An NSDateComponents object containing da te decomposed into the components specified by unitfilags.
Returns nil if date falls outside of the defined range of the receiver or if the computation cannot be
performed

Discussion
The Weekday ordinality, when requested, refers to the next larger (than Week) of the requested units. Some
computations can take a relatively long time.

The following example shows how to use this method to determine the current year, month, and day, using
an existing calendar (gregorian):

unsigned unitFlags = NSYearCalendarUnit | NSMonthCalendarUnit |
NSDayCalendarUnit;

NSDate *date = [NSDate date];

NSDateComponents *comps = [gregorian components:unitFlags fromDate:date];

Availability
Available in Mac OS X v10.4 and later.

See Also
- dateFromComponents: (page 206)

- components:fromDate:toDate:options: (page 204)
- dateByAddingComponents:toDate:options: (page 205)

Related Sample Code
Birthdays

Instance Methods 203
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

204

CHAPTER 12

NSCalendar Class Reference

Declared In
NSCalendar.h

components:fromDate:toDate:options:

Returns,asan NSDateComponents object using specified components, the difference between two supplied
dates.

- (NSDateComponents *)components:(NSUInteger)unitFlags fromDate: (NSDate
*)startingDate toDate:(NSDate *)resultDate options:(NSUInteger)opts

Parameters

unitfFlags
Specifies the components for the returned NSDateComponents object—a bitwise OR of
NSCalendarUnit constants.

startingDate
The start date for the calculation.

resultDate
The end date for the calculation.

opts
Options for the calculation.

If you specify a “wrap” option (NSWrapCalendarComponents), the specified components are
incremented and wrap around to zero/one on overflow, but do not cause higher units to be
incremented. When the wrap option is false, overflow in a unit carries into the higher units, as in
typical addition.

Return Value

An NSDateComponents object whose components are specified by unitfiags and calculated from the
difference between the resultDate and startDate using the options specified by opts. Returns ni 1 if
either date falls outside the defined range of the receiver or if the computation cannot be performed.

Discussion

The result is lossy if there is not a small enough unit requested to hold the full precision of the difference.
Some operations can be ambiguous, and the behavior of the computation is calendar-specific, but generally
larger components will be computed before smaller components; for example, in the Gregorian calendar a
result might be 1 month and 5 days instead of, for example, 0 months and 35 days. The resulting component
values may be negative if resultDateis before startDate.

The following example shows how to get the approximate number of months and days between two dates
using an existing calendar (gregorian):

NSDate *startDate = ...;

NSDate *endDate = ...;

unsigned int unitFlags = NSMonthCalendarUnit | NSDayCalendarUnit;
NSDateComponents *comps = [gregorian components:unitFlags fromDate:startDate
toDate:endDate options:07;

int months = [comps month];

int days = [comps day];

Note that some computations can take a relatively long time.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

See Also
- dateByAddingComponents:toDate:options: (page 205)

- dateFromComponents: (page 206)

Declared In
NSCalendar.h

dateByAddingComponents:toDate:options:

Returns a new NSDate object representing the absolute time calculated by adding given components to a
given date.

- (NSDate *)dateByAddingComponents: (NSDateComponents *)comps toDate:(NSDate *)date
options:(NSUInteger)opts

Parameters
comps
The components to add to date.

date
The date to which comps are added.

opts
Options for the calculation. See “NSDateComponents wrapping behavior” (page 215) for possible
values. Pass 0 to specify no options.

If you specify no options (you pass 0), overflow in a unit carries into the higher units (as in typical
addition).

Return Value

Anew NSDate object representing the absolute time calculated by adding to dat e the calendrical components
specified by comps using the options specified by opts. Returns ni1 if date falls outside the defined range
of the receiver or if the computation cannot be performed.

Discussion
Some operations can be ambiguous, and the behavior of the computation is calendar-specific, but generally
components are added in the order specified.

The following example shows how to add 2 months and 3 days to the current date and time using an existing
calendar (gregorian):

NSDate *currentDate = [NSDate datel;

NSDateComponents *comps = [[NSDateComponents alloc] init];

[comps setMonth:27;

[comps setDay:31;

NSDate *date = [gregorian dateByAddingComponents:comps toDate:currentDate
options:0];

[comps releasel;

Note that some computations can take a relatively long time.

Availability
Available in Mac OS X v10.4 and later.

See Also
- dateFromComponents: (page 206)

Instance Methods 205
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

206

CHAPTER 12

NSCalendar Class Reference

- components:fromDate:toDate:options: (page 204)

Declared In
NSCalendar.h

dateFromComponents:

Returns a new NSDate object representing the absolute time calculated from given components.
- (NSDate *)dateFromComponents:(NSDateComponents *)comps

Parameters
comps
The components from which to calculate the returned date.

Return Value

A new NSDate object representing the absolute time calculated from comps. Returns ni1 if the receiver
cannot convert the components given in comps into an absolute time. The method also returns ni1 and for
out-of-range values.

Discussion

When there are insufficient components provided to completely specify an absolute time, a calendar uses
default values of its choice. When there is inconsistent information, a calendar may ignore some of the
components parameters or the method may return ni 1. Unnecessary components are ignored (for example,
Day takes precedence over Weekday and Weekday ordinals).

The following example shows how to use this method to create a date object to represent 14:10:00 on 6
January 1965, for a given calendar (gregorian).

NSDateComponents *comps = [[NSDateComponents alloc] init];
[comps setYear:1965]7;

[comps setMonth:17;

[comps setDay:61];

[comps setHour:147;

[comps setMinute:10];

[comps setSecond:07;

NSDate *date = [gregorian dateFromComponents:comps];
[comps release];

Note that some computations can take a relatively long time to perform.

Availability
Available in Mac OS X v10.4 and later.

See Also
- components:fromDate: (page 203)

- dateFromComponents: (page 206)

Related Sample Code
Reminders

Declared In
NSCalendar.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

firstWeekday

Returns the index of the first weekday of the receiver.

- (NSUInteger)firstWeekday

Return Value
The index of the first weekday of the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setFirstWeekday: (page 211)

Declared In
NSCalendar.h

initWithCalendarldentifier:

Initializes a newly-allocated NSCalendar object for the calendar specified by a given identifier.

- (id)initWithCalendarlIdentifier:(NSString *)string

Parameters
string

The identifier for the new calendar. For valid identifiers, see NSLocale.

Return Value

The initialized calendar, or ni1 if the identifier is unknown (if, for example, it is either an unrecognized string

or the calendar is not supported by the current version of the operating system).

Availability
Available in Mac OS X v10.4 and later.

See Also
+ autoupdatingCurrentCalendar (page 201)

- calendarldentifier (page 202)

Related Sample Code
Birthdays

Mountains
Reminders

Declared In
NSCalendar.h

locale

Returns the locale for the receiver.

- (NSLocale *)locale

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

207

208

CHAPTER 12

NSCalendar Class Reference

Return Value
The locale for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setlocale: (page 211)

Declared In
NSCalendar.h

maximumRangeOfUnit:

The maximum range limits of the values that a given unit can take on in the receive
- (NSRange)maximumRangeOfUnit: (NSCalendarUnit)unit

Parameters
unit
The unit for which the maximum range is returned.
Return Value
The maximum range limits of the values that the unit specified by unit can take on in the receiver.

Discussion
As an example, in the Gregorian calendar the maximum range of values for the Day unit is 1-31.

Availability
Available in Mac OS X v10.4 and later.

See Also
- minimumRangeOfUnit: (page 209)

Declared In
NSCalendar.h

minimumbDaysinFirstWeek

Returns the minimum number of days in the first week of the receiver.
- (NSUInteger)minimumDaysInFirstWeek

Return Value
The minimum number of days in the first week of the receiver

Availability
Available in Mac OS X v10.4 and later.

See Also
- setMinimumDaysInFirstWeek: (page 212)

Declared In
NSCalendar.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

minimumRangeOfUnit:

Returns the minimum range limits of the values that a given unit can take on in the receiver.
- (NSRange)minimumRangeOfUnit: (NSCalendarUnit)unit

Parameters
unit
The unit for which the maximum range is returned.

Return Value
The minimum range limits of the values that the unit specified by un7t can take on in the receiver.

Discussion
As an example, in the Gregorian calendar the minimum range of values for the Day unit is 1-28.

Availability
Available in Mac OS X v10.4 and later.

See Also
- maximumRangeOfUnit: (page 208)

Declared In
NSCalendar.h

ordinalityOfUnit:inUnit:forDate:

Returns, for a given absolute time, the ordinal number of a smaller calendar unit (such as a day) within a
specified larger calendar unit (such as a week).

- (NSUInteger)ordinalityOfUnit: (NSCalendarUnit)smaller inUnit:(NSCalendarUnit)larger
forDate: (NSDate *)date

Parameters
smaller
The smaller calendar unit

larger
The larger calendar unit

date
The absolute time for which the calculation is performed

Return Value

The ordinal number of sma 1 7erwithin 7arger at the time specified by date.Returns NSNotFound if Targer
is not logically bigger than sma 1 Ter in the calendar, or the given combination of units does not make sense
(or is a computation which is undefined).

Discussion

The ordinality is in most cases not the same as the decomposed value of the unit. Typically return values are
1 and greater. For example, the time 00: 45 is in the first hour of the day, and for units Hour and Day
respectively, the result would be 1. An exception is the week-in-month calculation, which returns 0 for days
before the first week in the month containing the date.

Note that some computations can take a relatively long time.

Instance Methods 209
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

210

CHAPTER 12

NSCalendar Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
- rangeOfUnit:inUnit:forDate: (page 210)

- rangeOfUnit:startDate:interval:forDate: (page 210)

Declared In
NSCalendar.h

rangeOfUnit:inUnit:forDate:

Returns the range of absolute time values that a smaller calendar unit (such as a day) can take on in a larger
calendar unit (such as a month) that includes a specified absolute time.

- (NSRange)rangeOfUnit: (NSCalendarUnit)smaller inUnit:(NSCalendarUnit)larger
forDate: (NSDate *)date

Parameters
smaller
The smaller calendar unit.
larger
The larger calendar unit.
date
The absolute time for which the calculation is performed.

Return Value

The range of absolute time values sma7er can take onin Targer at the time specified by date. Returns
{NSNotFound, NSNotFound}if 7argeris notlogically bigger than smaller in the calendar, or the given
combination of units does not make sense (or is a computation which is undefined).

Discussion
You can use this method to calculate, for example, the range the Day unit can take on in the Month in which
date lies.

Availability
Available in Mac OS X v10.4 and later.

See Also
- rangeOfUnit:startDate:interval:forDate: (page 210)

- ordinalityOfUnit:inUnit:forDate: (page 209)

Related Sample Code
Birthdays

Declared In
NSCalendar.h

rangeOfUnit:startDate:interval:forDate:

Returns by reference the starting time and duration of a given calendar unit that contains a given date.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

- (BOOL)rangeOfUnit:(NSCalendarUnit)unit startDate:(NSDate **)datep
interval:(NSTimelInterval *)tip forDate:(NSDate *)date
Parameters
unit
A calendar unit (see “Calendar Units” (page 213) for possible values).
datep
Upon return, contains the starting time of the calendar unit un7t that contains the date date
tip
Upon return, contains the duration of the calendar unit un7t that contains the date date

date
A date.

Return Value
YES if the starting time and duration of a unit could be calculated, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
- rangeOfUnit:inUnit:forDate: (page 210)

- ordinalityOfUnit:inUnit:forDate: (page 209)

Declared In
NSCalendar.h

setFirstWeekday:
Sets the index of the first weekday for the receiver.

- (void)setFirstWeekday: (NSUInteger)weekday

Parameters

weekday
The first weekday for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- firstWeekday (page 207)

Declared In
NSCalendar.h

setLocale:

Sets the locale for the receiver.

- (void)setLocale:(NSLocale *)Jocale

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

21

212

CHAPTER 12

NSCalendar Class Reference

Parameters
locale
The locale for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- locale (page 207)

Declared In
NSCalendar.h

setMinimumDaysInFirstWeek:

Sets the minimum number of days in the first week of the receiver.
- (void)setMinimumDaysInFirstWeek: (NSUInteger)mdw

Parameters
mdw
The minimum number of days in the first week of the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- minimumDaysInFirstWeek (page 208)

Declared In
NSCalendar.h

setTimeZone:

Sets the time zone for the receiver.
- (void)setTimeZone: (NSTimeZone *)tz

Parameters
tz
The time zone for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- timeZone (page 213)

Declared In
NSCalendar.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

timeZone

Returns the time zone for the receiver.
- (NSTimeZone *)timeZone

Return Value
The time zone for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setTimeZone: (page 212)

Declared In
NSCalendar.h

Constants

NSCalendarUnit

Defines a type used to specify calendrical units such as day and month.
typedef NSUInteger NSCalendarUnit;

Discussion
See “Calendar Units” (page 213) for possible values.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCalendar.h

Calendar Units

Specify calendrical units such as day and month.

Constants 213
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

enum {
NSEraCalendarUnit = kCFCalendarUnitEra,
NSYearCalendarUnit = kCFCalendarUnitYear,
NSMonthCalendarUnit = kCFCalendarUnitMonth,
NSDayCalendarUnit = kCFCalendarUnitDay,
NSHourCalendarUnit = kCFCalendarUnitHour,
NSMinuteCalendarUnit = kCFCalendarUnitMinute,
NSSecondCalendarUnit = kCFCalendarUnitSecond,
NSWeekCalendarUnit = kCFCalendarUnitWeek,
NSWeekdayCalendarUnit = kCFCalendarUnitWeekday,
NSWeekdayOrdinalCalendarUnit = kCFCalendarUnitWeekdayOrdinal

b

Constants
NSEraCalendarUnit
Specifies the era unit.

The corresponding value is an int. Equal to kCFCalendarUnitEra.
Available in Mac OS X v10.4 and later.
Declared in NSCalendar.h.

NSYearCalendarUnit
Specifies the year unit.

The corresponding value is an int. Equal to kCFCalendarUnitYear.
Available in Mac OS X v10.4 and later.
Declared in NSCalendar. h.

NSMonthCalendarUnit
Specifies the month unit.

The corresponding value is an int. Equal to kCFCalendarUnitMonth.
Available in Mac OS X v10.4 and later.
Declared in NSCalendar.h.

NSDayCalendarUnit
Specifies the day unit.

The corresponding value is an int. Equal to kCFCalendarUnitDay.
Available in Mac OS X v10.4 and later.
Declared in NSCalendar. h.

NSHourCalendarUnit
Specifies the hour unit.

The corresponding value is an int. Equal to kCFCalendarUnitHour.
Available in Mac OS X v10.4 and later.
Declared in NSCalendar. h.

NSMinuteCalendarUnit
Specifies the minute unit.

The corresponding value is an int. Equal to kCFCalendarUnitMinute.
Available in Mac OS X v10.4 and later.
Declared in NSCalendar. h.

214 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

NSSecondCalendarUnit
Specifies the second unit.

The corresponding value is a double. Equal to kCFCalendarUnitSecond.
Available in Mac OS X v10.4 and later.
Declared in NSCaTlendar. h.

NSWeekCalendarUnit
Specifies the week unit.

The corresponding value is an int. Equal to kCFCalendarUnitWeek.
Available in Mac OS X v10.4 and later.
Declared in NSCalendar. h.

NSWeekdayCalendarUnit
Specifies the weekday unit.
The corresponding value isan int. Equal to kCFCalendarUnitWeekday. The weekday units are the
numbers 1 through N (where for the Gregorian calendar N=7 and 1 is Sunday).
Available in Mac OS X v10.4 and later.
Declared in NSCalendar. h.
NSWeekdayOrdinalCalendarUnit
Specifies the ordinal weekday unit.

The corresponding value is an int. Equal to kCFCalendarUnitWeekdayOrdinal. The weekday
ordinal unit describes ordinal position within the month unit of the corresponding weekday unit. For
example, in the Gregorian calendar a weekday ordinal unit of 2 for a weekday unit 3 indicates "the
second Tuesday in the month".

Available in Mac OS X v10.4 and later.
Declared in NSCalendar.h.

Discussion
Calendar units may be used as a bit mask to specify a combination of units. Values in this enum are equal to
the corresponding constants in the CFCalendarUnit enum.

Declared In
NSCalendar.h

NSDateComponents wrapping behavior

The wrapping option specifies wrapping behavior for calculations involving NSDateComponents objects.

enum
{

NSWrapCalendarComponents = kCFCalendarComponentsWrap,
b

Constants

NSWrapCalendarComponents
Specifies that the components specified for an NSDateComponents object should be incremented
and wrap around to zero/one on overflow, but should not cause higher units to be incremented.

Available in Mac OS X v10.4 and later.
Declared in NSCalendar.h.

Constants 215
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Declared In
NSCalendar.h

216 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Inherits from NSDate : NSObject
Conforms to NSCoding (NSDate)
NSCopying (NSDate)
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSCalendarDate.h
Companion guides Date and Time Programming Guide for Cocoa

Data Formatting Programming Guide for Cocoa

Related sample code Clock Control
CoreRecipes
GridCalendar
NewsReader
SimpleCalendar

Overview

NSCalendarDate is a public subclass of NSDate that represents concrete date objects and performs date
computations based on the Gregorian calendar. These objects associate a time interval with a time zone and
are especially suited for representing and manipulating dates according to western calendrical systems.

Important: Use of NSCalendarDate strongly discouraged. It is not deprecated yet, however it may be in
the next major OS release after Mac OS X v10.5. For calendrical calculations, you should use suitable
combinationsof NSCalendar,NSDate,and NSDateComponents, as described in Calendars in Date and Time
Programming Guide for Cocoa.

An NSCalendarDate object stores a date as the number of seconds relative to the absolute reference date
(the firstinstance of 1 January 2001, GMT). Use the associated time zone to change how the NSCalendarDate
object prints its time interval. The time zone does not change how the time interval is stored. Because the
value is stored independently of the time zone, you can accurately compare NSCalendarDate objects with
any other NSDate objects or use them to create other NSDate objects. It also means that you can track a
date across different time zones; that is, you can create a new NSCalendarDate object with a different time
zone to see how the particular date is represented in that time zone.

Overview 217
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Important: NSCalendarDate usesthe Gregorian calendar for all of time, even before it was actually adopted.

NSCalendar's version of the Gregorian calendar uses the Julian calendar before October 4, 1582. If you need
to accurately deal with dates prior to October 4, 1582, you should use NSCalendar.

NSCalendarDate provides both class and instance methods for creating objects. Some of these methods
allow you to initialize NSCalendarDate objects from strings, while others create objects from sets of integers
corresponding to the standard time values (months, hours, seconds, and so on).

To retrieve conventional elements of an NSCalendarDate object, usethe .. .0f. .. methods. For example,
dayOfWeek (page 227) returns a number that indicates the day of the week (0 is Sunday). The
monthOfYear (page 234) method returns a number from 1 through 12 that indicates the month.

The Calendar Format

Each NSCalendarDate object has a calendar format associated with it. This format is a string that contains
date conversion specifiers that are very similar to those used in the standard C library function strftime().
NSCalendarDate interprets dates that are represented as strings conforming to this format. You can set
the default format for an NSCalendarDate object at initialization time or using the
setCalendarFormat: (page 235) method. Several methods allow you to specify formats other than the one
bound to the object.

The date conversion specifiers cover a range of date conventions. See Converting Dates to Strings in Date
and Time Programming Guide for Cocoa for the list of specifiers.

Locales and String Representations of Calendar Dates

NSCalendarDate provides several description. .. methods for representing dates as strings. These
methods—description (page 228), descriptionWithlLocale: (page 230),
descriptionWithCalendarFormat: (page228),anddescriptionWithCalendarfFormat:locale: (page
229)—take an implicit or explicit calendar format. The locale information affects the returned string. If you
use descriptionWithlocale: ordescriptionWithCalendarFormat:locale:, you may specify a
locale dictionary. NSCalendarDate accesses the locale information asan NSDictionary object. The following
keys in the locale dictionary affect NSCalendarDate:

NSTimeDateFormatString A format string that specifies how dates with times are printed. The
default is to use full month names and days with a 24-hour clock, as in
“Sunday, January 01, 2001 23:00:00 Pacific Standard Time.”

NSAMPMDesignation An array of strings that specify how the morning and afternoon
designations are printed. The defaults are AM and PM.

NSMonthNameArray An array that specifies the full names for the months.
NSShortMonthNameArray An array that specifies the abbreviations for the months.
NSWeekDayNameArray An array that gives the names for the days of the week. Sunday should

be the first day of the week.

218 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

CHAPTER 13

NSCalendarDate Class Reference

NSShortWeekDayNameArray An array that specifies the abbreviations for the days of the week. Sunday
should be the first day of the week.

Ifadescription... method does not have a locale parameter or if you pass ni1 as the locale to a method
that takes a locale argument, NSCalendarDate uses the system default locale. The default locale—sometimes
called the "root" locale—is a generic English-like locale. Typically you should instead use the user’s preferences.
You can obtain a dictionary representation of the user’s standard user defaults using the NSUserDefaults
method dictionaryRepresentation (page 1849), as illustrated in the following example:

NSCalendarDate *calendarDate = [[NSCalendarDate alloc]
initWithTimelIntervalSinceReferenceDate:uploadedTime];

[calendarDate descriptionWithLocale:[[NSUserDefaults standardUserDefaults]
dictionaryRepresentation]];

/..

[calendarDate release];

Subclassing Notes

If you subclass NSCalendarDate and override description (page 228), you should also override
descriptionWithlLocale: (page 230).ThestringWithFormat: (page 1536) method of NSString uses
descriptionWithlLocale: (page 230)instead of description when you use the %@ conversion specifier
to get a string representation of an NSCalendarDate object. That is, this message:

[NSString stringWithFormat:@"The current date and time are %@",
[MyNSCalendarDateSubclass date]]

invokes descriptionWithlLocale: (page 230).

Creating an NSCalendarDate Instance

+ calendarDate (page 221)
Creates and returns a calendar date initialized to the current date and time.

+ dateWithString:calendarFormat: (page 222)
Creates and returns a calendar date initialized with the date given as a string in a specified format.

+ dateWithString:calendarFormat:Tocale: (page 222)
Creates and returns a calendar date initialized with the date given as a string in a specified format
and interpreted using a given locale.

+ dateWithYear:month:day:hour:minute:second:timeZone: (page 223)

Creates and returns a calendar date initialized with specified values for year, month, day, hour, minute,
second, and time zone.

Tasks 219
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

220

CHAPTER 13

NSCalendarDate Class Reference

Initializing an NSCalendarDate Instance

- initWithString: (page 231)

Returns a calendar date initialized with the date specified as a string in the default calendar format.
- initWithString:calendarfFormat: (page 231)

Returns a calendar date initialized with the date given as a string in a specified format.
- initWithString:calendarFormat:locale: (page 232)

Returns a calendar date initialized with the date given as a string in a specified format and interpreted
using a given locale.

- initWithYear:month:day:hour:minute:second:timeZone: (page 233)

Returns a calendar date initialized with specified values for year, month, day, hour, minute, second,
and time zone.

Retrieving Date Elements

- dayOfCommonEra (page 226)

Returns the number of days between the receiver and the beginning of the Common Era.
- day0OfMonth (page 226)

Returns the day of the month (1 through 31) of the receiver.
- dayOfWeek (page 227)

Returns the day of the week (0 through 6) of the receiver.
- dayOfYear (page 227)

Returns the day of the year (1 through 366) of the receiver.
- hourOfDay (page 231)

Returns the hour (0 through 23) of the receiver.
- minuteOfHour (page 234)

Returns the minute (0 through 59) of the receiver.
- monthOfYear (page 234)

Returns the month of the year (1 through 12) of the receiver.
- secondOfMinute (page 235)

Returns the second (0 through 59) of the receiver.
- yearOfCommontra (page 237)

Returns the year, including the century, of the receiver.
Adjusting a Date
- dateByAddingYears:months:days:hours:minutes:seconds: (page 225)
Returns a new calendar date that represents the date of the receiver updated with given offsets.

Computing Date Intervals

- years:months:days:hours:minutes:seconds:sinceDate: (page 237)
Computes the calendrical time difference between the receiver and a given date.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Representing Dates as Strings

- description (page 228)
Returns a string representation of the receiver formatted as specified by the receiver’s default calendar
format.

- descriptionWithCalendarFormat: (page 228)
Returns a string representation of the receiver.

- descriptionWithCalendarFormat:locale: (page 229)
Returns a string representation of the receiver formatted according to given conversion specifiers
and represented according to given locale information.

- descriptionWithlLocale: (page 230)
Returns a string representation of the receiver formatted as specified by the receiver’s default calendar
format and represented according to the given locale information.

Getting and Setting Calendar Formats

- calendarFormat (page 224)
Returns the receiver’s default calendar format.

- setCalendarFormat: (page 235)
Sets the default calendar format for the receiver.

Managing the Time Zone

- setTimeZone: (page 236)
Sets the time zone for the receiver.

- timeZone (page 236)
Returns the time zone object associated with the receiver.

Class Methods

calendarDate

Creates and returns a calendar date initialized to the current date and time.
+ (id)calendarDate

Return Value
A new calendar date initialized to the current date and time.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ date (page 393) (NSDate)

Class Methods 221
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

222

CHAPTER 13

NSCalendarDate Class Reference

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

dateWithString:calendarFormat:

Creates and returns a calendar date initialized with the date given as a string in a specified format.
+ (id)dateWithString: (NSString *)description calendarFormat: (NSString *)format

Parameters

description
A string containing a description of a date in the format specified by format.

format
A string used to interpret descriptionand as the default calendar format for the new object. format
consists of conversion specifiers similar to those used in strftime().See Converting Dates to Strings,
in Date and Time Programming Guide for Cocoa for more details.

Return Value

A new calendar date initialized with the date specified in description.Returns nil if description does

not match format exactly.

Discussion
The following example shows how to get a calendar date with a temporal value corresponding to the form
“Friday, 1 July 2001, 11:45 AM.":

NSCalendarDate *today = [NSCalendarDate
dateWithString:@"Friday, 1 July 2001, 11:45 AM"
calendarfFormat:@"%A, %d %B %Y, %1:%M %p"1;

If you include a time zone in the description parameter, this method verifies it and can substitute an
alternative time zone. If the method does supply a new time zone, it applies the difference in offsets-from-GMT
values between the substituted and the original time zones to the calendar date being created.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithString:calendarFormat:locale: (page 222)

- calendarFormat (page 224)
- initWithString:calendarFormat: (page 231)

Declared In
NSCalendarDate.h

dateWithString:calendarFormat:locale:

Creates and returns a calendar date initialized with the date given as a string in a specified format and
interpreted using a given locale.

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

+ (id)dateWithString: (NSString *)description calendarFormat: (NSString *)format
locale:(id)TocaleDictionary

Parameters
description
A string containing a description of a date in the format specified by format.

format
A string used to interpret descriptionand as the default calendar format for the new object. format
consists of conversion specifiers similar to those used in strftime (). See Converting Dates to Strings,
in Date and Time Programming Guide for Cocoa for more details.

localeDictionary
A dictionary that contains keys and values to represent the locale data to use when parsing
description.See “Locales and String Representations of Calendar Dates” (page 218) for a list of the
appropriate keys.

Return Value
A new calendar date initialized with the date specified by descriptionand interpreted using the locale
datain 7TocaleDictionary.Returns nil if description does not exactly match format.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithString:calendarFormat: (page 222)

- calendarFormat (page 224)
- initWithString:calendarFormat:locale: (page 232)

Declared In
NSCalendarDate.h

dateWithYear:month:day:hour:minute:second:timeZone:

Creates and returns a calendar date initialized with specified values for year, month, day, hour, minute, second,
and time zone.

+ (id)dateWithYear:(NSInteger)year month:(NSUInteger)month day:(NSUInteger)day
hour: (NSUInteger)hour minute: (NSUInteger)minute second: (NSUInteger)second
timeZone: (NSTimeZone *)aTimeZone

Parameters
year

The year for the new date. The value must include the century (for example, 1999 instead of 99).
month

The month for the new date. Valid values are 1 through 12.
day

The day for the new date. Valid values are 1 through 31.
hour

The hour for the new date. Valid values are 0 through 23.
minute

The minute for the new date. Valid values are 0 through 59.

Class Methods 223
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

second
The second for the new date. Valid values are 0 through 59.

alimeZone
The time zone for the new date.

Return Value
A new calendar date initialized with the specified values for year, month, day, hour, minute, second, and time
zone.

Discussion

On days when daylight savings time “falls back,” there are two 1:30 AMs. If you use this method, there is no
way to create the second 1:30 AM. Instead, you should create the first and then use
dateByAddingYears:months:days:hours:minutes:seconds: (page 225) to add an hour.

The following code fragment shows a calendar date created for 4 July 2001, 9 PM, Eastern Standard Time
(timeZoneWithName: (page 1670) returns the NSTimeZone object that represents the time zone with the
specified name):

NSCalendarDate *fireworks = [NSCalendarDate dateWithYear:2001
month:7 day:4 hour:21 minute:0 second:0
timeZone:[NSTimeZone timeZoneWithAbbreviation:@"EST"]1];

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithYear:month:day:hour:minute:second:timeZone: (page 233)

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

Instance Methods

224

calendarFormat

Returns the receiver’s default calendar format.
- (NSString *)calendarFormat

Return Value
The receiver’s default calendar format (used when the format is unspecified).

Discussion

You can set this format when you create the calendar date using one of the class methods
dateWithString:calendarFormat: (page222)ordateWithString:calendarfFormat:locale: (page
222), or you can change the format using the instance method setCalendarFormat: (page 235).If you do
not specify a default calendar format, NSCalendarDate substitutes its own default: an international format

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

of “%Y-%m-%d %H:%M:%S %z" (for example, 2001-03-24 16:45:12 +0900). See Converting Dates to
Strings, in Date and Time Programming Guide for Cocoa for more information on what a calendar format
contains.

Availability
Available in Mac OS X v10.0 and later.

See Also
- descriptionWithlLocale: (page 230)

Declared In
NSCalendarDate.h

dateByAddingYears:months:days:hours:minutes:seconds:

Returns a new calendar date that represents the date of the receiver updated with given offsets.

- (NSCalendarDate *)dateByAddingYears:(NSInteger)year months:(NSInteger)month
days: (NSInteger)day hours:(NSInteger)hour minutes: (NSInteger)minute
seconds: (NSInteger)second

Parameters

year
The number of years to add to the receiver. The value may be negative to indicate a time in the past.

month
The number of months to add to the receiver. The value may be negative to indicate a time in the
past.

day
The number of days to add to the receiver. The value may be negative to indicate a time in the past.

hour
The number of hours to add to the receiver. The value may be negative to indicate a time in the past.

minute

The number of minutes to add to the receiver. The value may be negative to indicate a time in the
past.

second
The number of seconds to add to the receiver. The value may be negative to indicate a time in the
past.

Return Value
A new calendar date that represents the date of the receiver updated with the year, month, day, hour, minute,
and second offsets specified in the parameters.

Discussion
The parameter values are applied in a left-to-right order: year first, then month, then day, and so on. So,
adding one month, four days to 27 April results in 31 May, not 1 June.

This method preserves “clock time” across changes in daylight saving time zones and leap years. If you add
one day to 2:30 AM on the day before daylight saving time “springs ahead,” it will actually result in 1:30 AM
on the next day (which is one day, or 24 hours, later).

The following code fragment shows a calendar date created with a date a week later than an existing calendar
date:

Instance Methods 225
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

226

CHAPTER 13

NSCalendarDate Class Reference

NSCalendarDate *now = [NSCalendarDate calendarDate];
NSCalendarDate *nextWeek = [now dateByAddingYears:0 months:0
days:7 hours:0 minutes:0 seconds:01];

Availability
Available in Mac OS X v10.0 and later.

See Also
- years:months:days:hours:minutes:seconds:sinceDate: (page 237)

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

dayOfCommonEra

Returns the number of days between the receiver and the beginning of the Common Era.
- (NSInteger)dayOfCommonEra

Return Value
The number of days between the receiver and the beginning of the Common Era.

Discussion
The base year of the Common Era is 1 C.E. (which is the same as 1 A.D.).

Availability
Available in Mac OS X v10.0 and later.

See Also
- yearOfCommonktra (page 237)

Related Sample Code
NewsReader

Declared In
NSCalendarDate.h

dayOfMonth

Returns the day of the month (1 through 31) of the receiver.
- (NSInteger)dayOfMonth

Return Value
The day of the month (1 through 31) of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also

- dayOfWeek (page 227)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

- dayOfYear (page 227)

- hourOfDay (page 231)

- minuteOfHour (page 234)

- monthOfYear (page 234)

- secondOfMinute (page 235)

Related Sample Code
Birthdays

SimpleCalendar

Declared In
NSCalendarDate.h

dayOfWeek

Returns the day of the week (0 through 6) of the receiver.
- (NSInteger)dayOfWeek

Return Value

The day of the week (0 through 6) of the receiver. 0 indicates Sunday.

Availability
Available in Mac OS X v10.0 and later.

See Also
- dayOfMonth (page 226)

- dayOfYear (page 227)

- hourOfDay (page 231)

- minuteOfHour (page 234)

- monthOfYear (page 234)

- secondOfMinute (page 235)

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

dayOfYear

Returns the day of the year (1 through 366) of the receiver.
- (NSInteger)dayOfYear

Return Value
The day of the year (1 through 366) of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

227

228

CHAPTER 13

NSCalendarDate Class Reference

See Also
- day0fMonth (page 226)

- dayOfWeek (page 227)

- hourOfDay (page 231)

- minuteOfHour (page 234)

- monthOfYear (page 234)

- secondOfMinute (page 235)

Declared In
NSCalendarDate.h

description

Returns a string representation of the receiver formatted as specified by the receiver’s default calendar format.
- (NSString *)description

Return Value
A string representation of the receiver, formatted as specified by the receiver’s default calendar format.

Discussion
You can find out what the default calendar format is using the method calendarFormat (page 224). See
“Locales and String Representations of Calendar Dates” (page 218) for information on locales and this method.

Because NSCalendarDateimplementsdescriptionWithlLocale: (page230),descriptionWithlLocale:
is used to print the date when you use the %@ conversion specifier. That is, the following statement invokes
descriptionWithlLocale:, notdescription:

NSLog(@"The current date and time is %@", [NSCalendarDate datel]);

Availability
Available in Mac OS X v10.0 and later.

See Also
- descriptionWithCalendarFormat: (page 228)

- descriptionWithCalendarFormat:locale: (page 229)
- descriptionWithlLocale: (page 230)
- setCalendarFormat: (page 235)

Declared In
NSCalendarDate.h

descriptionWithCalendarFormat:

Returns a string representation of the receiver.

- (NSString *)descriptionWithCalendarFormat: (NSString *)format

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Parameters

format
The format for the description. See Converting Dates to Strings, in Date and Time Programming Guide
for Cocoa for a listing of specifiers.

Return Value
A string representation of the receiver, formatted as specified by the conversion specifiers in the calendar
format string format.

Discussion
See “Locales and String Representations of Calendar Dates” (page 218) for information on locales and this
method.

The following example shows how to create a description of the current date in the same format as “Tues
3/24/01 3:30 PM™:

NSCalendarDate *now = [NSCalendarDate calendarDatel;
NSString *nowAsString =
[now descriptionWithCalendarFormat:@"%a %»m/%d/%y %1:%M %p"1;

Availability
Available in Mac OS X v10.0 and later.

See Also
- description (page 228)

- descriptionWithCalendarFormat:locale: (page 229)
- descriptionWithlLocale: (page 230)

Related Sample Code
Clock Control

SimpleCalendar

Declared In
NSCalendarDate.h

descriptionWithCalendarFormat:locale:

Returns a string representation of the receiver formatted according to given conversion specifiers and
represented according to given locale information.

- (NSString *)descriptionWithCalendarFormat: (NSString *)format
locale:(id)localeDictionary

Parameters
format
The format for the description. See Converting Dates to Strings, in Date and Time Programming Guide
for Cocoa for a list of specifiers.
localeDictionary
A dictionary that contains keys and values to represent the locale data to use when creating the
description. See “Locales and String Representations of Calendar Dates” (page 218) for further details.
Return Value
A string representation of the receiver, formatted according to the conversion specifiers in format and
represented according to the locale information in TocaleDictionary.

Instance Methods 229
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

230

CHAPTER 13

NSCalendarDate Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- description (page 228)

- descriptionWithCalendarFormat: (page 228)
- descriptionWithlLocale: (page 230)

Related Sample Code
NewsReader

Declared In
NSCalendarDate.h

descriptionWithLocale:

Returns a string representation of the receiver formatted as specified by the receiver’s default calendar format
and represented according to the given locale information.

- (NSString *)descriptionWithlLocale:(id)/ocaleDictionary

Parameters
localeDictionary

A dictionary that contains keys and values to represent the locale data to use when creating the
description. See “Locales and String Representations of Calendar Dates” (page 218) for further details.

Return Value
A string representation of the receiver formatted as specified by the receiver’s default calendar format and
represented according to the locale information in TocaleDictionary.

Discussion
You can find out what the default calendar format is using the method calendarFormat (page 224).

This method is used to print an NSCalendarDate object when the %@ conversion specifier is used. That is,
this statement invokes descriptionWithlLocale::

NSLog(@"The current date and time is %@", [NSCalendarDate datel);

Availability
Available in Mac OS X v10.0 and later.

See Also
- description (page 228)

- descriptionWithCalendarfFormat: (page 228)
- descriptionWithCalendarFormat:locale: (page 229)
- setCalendarfFormat: (page 235)

Declared In
NSCalendarDate.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

hourOfDay

Returns the hour (0 through 23) of the receiver.
- (NSInteger)hourOfDay

Return Value
The hour (0 through 23) of the receiver.

Discussion
On daylight saving time “fall back” days, a value of 1 is returned for two consecutive hours, but with a different
time zone (the first in daylight saving time and the second in standard time).

Availability
Available in Mac OS X v10.0 and later.

See Also
- day0fMonth (page 226)

- dayOfWeek (page 227)

- dayOfYear (page 227)

- minuteOfHour (page 234)

- monthOfYear (page 234)

- secondOfMinute (page 235)

Declared In
NSCalendarDate.h

initWithString:

Returns a calendar date initialized with the date specified as a string in the default calendar format.
- (id)initWithString: (NSString *)description

Parameters

description
The description of the new date. The string must conform to the default calendar format “%Y - %m- %d
GH:%M: %S %z" (for example, 2001-03-24 16:45:12 +0900). See Converting Dates to Strings, in
Date and Time Programming Guide for Cocoa for a discussion of date conversion specifiers.

Return Value
A calendar date initialized with the date specified by description.Returns nil if description does not
exactly match the default calendar format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCalendarDate.h

initWithString:calendarFormat:

Returns a calendar date initialized with the date given as a string in a specified format.

Instance Methods 231
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

232

CHAPTER 13

NSCalendarDate Class Reference

- (id)initWithString: (NSString *)description calendarFormat: (NSString *)format

Parameters
description
A string containing a description of a date in the format specified by format.

format

A string used to interpret descriptionand as the default calendar format for the new object. format
consists of conversion specifiers similar to those used in strftime (). See Converting Dates to Strings,
in Date and Time Programming Guide for Cocoa for more details.

Discussion
The following example shows how to initialize a calendar date with a string of the form “03.24.01 22:00 PST":

NSCalendarDate *newDate = [[NSCalendarDate alloc]
initWithString:@"03.24.01 22:00 PST"
calendarfFormat:@"%m.%d.%y %H:%M %7"1;

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithString:calendarFormat: (page 222)

- calendarFormat (page 224)

Related Sample Code
Clock Control

Declared In
NSCalendarDate.h

initWithString:calendarFormat:locale:

Returns a calendar date initialized with the date given as a string in a specified format and interpreted using
a given locale.

- (id)initWithString: (NSString *)description calendarFormat: (NSString *)format
locale: (id)TocaleDictionary

Parameters
description
A string containing a description of a date in the format specified by format.

format
A string used to interpret descriptionand as the default calendar format for the new object. format
consists of conversion specifiers similar to those used in strftime().See Converting Dates to Strings,
in Date and Time Programming Guide for Cocoa for more details.

localeDictionary
A dictionary that contains keys and values to represent the locale data to use when parsing

description.See “Locales and String Representations of Calendar Dates” (page 218) for a list of the
appropriate keys.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Return Value

A calendar date initialized with the date specified in the string description. Returns nil if you specify a
locale dictionary that has a month name array with more than 12 elements or a day name array with more
than 7 arguments.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithString:calendarFormat:locale: (page 222)

- calendarFormat (page 224)

Declared In
NSCalendarDate.h

initWithYear:month:day:hour:minute:second:timeZone:

Returns a calendar date initialized with specified values for year, month, day, hour, minute, second, and time
zone.

- (id)initWithYear: (NSInteger)year month: (NSUInteger)month day:(NSUInteger)day
hour: (NSUInteger)hour minute: (NSUInteger)minute second: (NSUInteger)second
timeZone: (NSTimeZone *)aTlimeZone

Parameters
year
The year for the new date. The value must include the century (for example, 1999 instead of 99).

month
The month for the new date. Valid values are 1 through 12.

da
g The day for the new date. Valid values are 1 through 31.

hour

The hour for the new date. Valid values are 0 through 23.
minute

The minute for the new date. Valid values are 0 through 59.
second

The second for the new date. Valid values are 0 through 59.
alimeZone

The time zone for the new date.

Return Value
A calendar date initialized with the specified values for year, month, day, hour, minute, second, and time
zone.

Discussion

On days when daylight saving time “falls back,” there are two 1:30 AMs. If you use this method there is no
way to create the second 1:30 AM. Instead, you should create the first and then use
dateByAddingYears:months:days:hours:minutes:seconds: (page 225) to add an hour.

Instance Methods 233
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

234

CHAPTER 13

NSCalendarDate Class Reference

The following code fragment shows a calendar date created with a date of 4 July 2001, 9 PM, Eastern Standard
Time (timeZonelWithName: (page 1670) returns the NSTimeZone object that represents the time zone with
the specified name):

NSCalendarDate *fireworks = [[[NSCalendarDate alloc] initWithYear:2001
month:7 day:4 hour:21 minute:0 second:0
timeZone:[NSTimeZone timeZoneWithAbbreviation:@"EST"]] autorelease];

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithYear:month:day:hour:minute:second:timeZone: (page 223)

Related Sample Code
GridCalendar

Declared In
NSCalendarDate.h

minuteOfHour

Returns the minute (0 through 59) of the receiver.
- (NSInteger)minuteOfHour

Return Value
The minute (0 through 59) of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- dayOfMonth (page 226)

- dayOfWeek (page 227)

- dayOfYear (page 227)

- hourOfDay (page 231)

- monthOfYear (page 234)

- secondOfMinute (page 235)

Declared In
NSCalendarDate.h

monthOfYear

Returns the month of the year (1 through 12) of the receiver.
- (NSInteger)monthOfYear

Return Value
The month of the year (1 through 12) of the receiver.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- day0OfMonth (page 226)

- dayOfWeek (page 227)

- dayOfYear (page 227)

- hourOfDay (page 231)

- minuteOfHour (page 234)

- secondOfMinute (page 235)

Related Sample Code
Birthdays

GridCalendar
SimpleCalendar

Declared In
NSCalendarDate.h

secondOfMinute

Returns the second (0 through 59) of the receiver.
- (NSInteger)secondOfMinute

Return Value
The seconds value (0 through 59) of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- dayOfMonth (page 226)

- dayOfWeek (page 227)

- dayOfYear (page 227)

- hourOfDay (page 231)

- minuteOfHour (page 234)
- monthOfYear (page 234)

Declared In
NSCalendarDate.h

setCalendarFormat:

Sets the default calendar format for the receiver.

- (void)setCalendarFormat: (NSString *)format

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

235

CHAPTER 13

NSCalendarDate Class Reference

Parameters
format

The default calendar format for the receiver. See Converting Dates to Strings, in Date and Time
Programming Guide for Cocoa for a list of the date conversion specifiers.

Discussion

A calendar format is a string formatted with date conversion specifiers. If you do not specify a calendar format
for an object, NSCalendarDate substitutes its own default. The default is the international format of
“BY-%m-%d BH:%M:%S %z" (for example, 2001-03-24 16:45:12 +0900).

Availability
Available in Mac OS X v10.0 and later.

See Also
- calendarFormat (page 224)

- description (page 228)
- descriptionWithlLocale: (page 230)

Declared In
NSCalendarDate.h

setTimeZone:

Sets the time zone for the receiver.
- (void)setTimeZone: (NSTimeZone *)aTlimeZone

Parameters
alimeZone
The time zone for the receiver.

Discussion
If you do not specify a time zone for an object at initialization time, NSCalendarDate uses the default time
zone for the locale.

Availability
Available in Mac OS X v10.0 and later.

See Also
- timeZone (page 236)

Declared In
NSCalendarDate.h

timeZone

Returns the time zone object associated with the receiver.
- (NSTimeZone *)timeZone

Return Value
The time zone object associated with the receiver.

236 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Discussion

You can set the time zone when you create the calendar date using the class methods
dateWithString:calendarFormat: (page222)ordateWithString:calendarFormat:locale: (page
222) by including the time zone in the description and format parameters. Or you can explicitly set the time
zonetoan NSTimeZone objectusingdateWithYear:month:day:hour:minute:second:timeZone: (page
223). If you do not specify a time zone for an object at initialization time, NSCalendarDate uses the default
time zone for the locale.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTimeZone: (page 236)

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

yearOfCommonEra

Returns the year, including the century, of the receiver.
- (NSInteger)yearOfCommonEra

Return Value
The year, including the century, of the receiver (for example, 1995). The base year of the Common Era is 1
C.E. (which is the same as 1 A.D.).

Availability
Available in Mac OS X v10.0 and later.

See Also
- dayOfCommonEra (page 226)

Related Sample Code
GridCalendar

Reminders
SimpleCalendar

Declared In
NSCalendarDate.h

years:months:days:hours:minutes:seconds:sinceDate:

Computes the calendrical time difference between the receiver and a given date.

- (void)years:(NSInteger *)yearsPointer months:(NSInteger *)monthsPointer
days:(NSInteger *)daysPointer hours:(NSInteger *)hoursPointer minutes: (NSInteger
*)YminutesPointer seconds: (NSInteger *)secondsPointer sinceDate:(NSCalendarDate
*)date

Instance Methods 237
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

238

CHAPTER 13

NSCalendarDate Class Reference

Parameters

yearsPointer
Upon return, contains the number of years between the receiver and date. Pass NULL to ignore this
component.

monthsPointer
Upon return, contains the number of months between the receiver and date. Pass NULL to ignore
this component.

daysPointer
Upon return, contains the number of days between the receiver and date. Pass NULL to ignore this
component.

hoursPointer

Upon return, contains the number of hours between the receiver and date. Pass NULL to ignore this
component.

minutesPointer

Upon return, contains the number of minutes between the receiver and date. Pass NULL to ignore
this component.

secondsPointer
Upon return, contains the number of seconds between the receiver and date. Pass NULL to ignore
this component.

date

The date with which to compare the receiver. The value must not be ni 1, otherwise an exception is
raised.

Discussion

You can choose any representation you wish for the time difference by passing NULL for arguments you
want to ignore, other than da te. The following example illustrates how to compute the difference in months,
days, and years between two dates.

NSCalendarDate *momsBDay = [NSCalendarDate dateWithYear:1936
month:1 day:8 hour:7 minute:30 second:0
timeZone:[NSTimeZone timeZoneWithAbbreviation:@"EST"]];

NSCalendarDate *dateOfBirth = [NSCalendarDate dateWithYear:1965
month:12 day:7 hour:17 minute:25 second:0
timeZone:[NSTimeZone timeZoneWithAbbreviation:@"EST"]1];

int years, months, days;

[dateOfBirth years:&years months:&months days:&days hours:NULL
minutes:NULL seconds:NULL sinceDate:momsBDay];

This returns 29 years, 10 months, and 29 days. To express the years in terms of months, pass NULL for the
years argument:

[dateOfBirth years:NULL months:&months days:&days hours:NULL
minutes:NULL seconds:NULL sinceDate:momsBDay];

This returns 358 months and 29 days.

Availability
Available in Mac OS X v10.0 and later.

See Also
- dateByAddingYears:months:days:hours:minutes:seconds: (page 225)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

Instance Methods 239
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

240 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Inherits from NSObject
Conforms to NSCoding

NSCopying

NSMutableCopying

NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSCharacterSet.h
Companion guide String Programming Guide for Cocoa
Related sample code ImageClient

iSpend

Quartz Composer WWDC 2005 TextEdit

TextEditPlus

VertexPerformanceTest

Overview

An NSCharacterSet object represents a set of Unicode-compliant characters. NSString and NSScanner
objects use NSCharacterSet objects to group characters together for searching operations, so that they
can find any of a particular set of characters during a search. The cluster’s two public classes, NSCharacterSet
and NSMutableCharacterSet, declare the programmatic interface for static and dynamic character sets,
respectively.

The objects you create using these classes are referred to as character set objects (and when no confusion
will result, merely as character sets). Because of the nature of class clusters, character set objects aren't actual
instances of the NSCharacterSet orNSMutableCharacterSet classes but of one of their private subclasses.
Although a character set object’s class is private, its interface is public, as declared by these abstract
superclasses, NSCharacterSet and NSMutableCharacterSet. The character set classes adopt the
NSCopyingand NSMutableCopying protocols, making it convenient to convert a character set of one type
to the other.

The NSCharacterSet class declares the programmatic interface for an object that manages a set of Unicode
characters (see the NSString class cluster specification for information on Unicode). NSCharacterSet's
principal primitive method, characterIsMember: (page 253), provides the basis for all other instance
methods in its interface. A subclass of NSCharacterSet needs only to implement this method, plus

Overview 241
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

mutableCopyWithZone: (page 2094), for proper behavior. For optimal performance, a subclass should also
override bitmapRepresentation (page 253), which otherwise works by invoking
characterIsMember: (page 253) for every possible Unicode value.

NSCharacterSet is “toll-free bridged” with its Cocoa Foundation counterpart, CFCharacterSet Reference.
This means that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSCharacterSet * parameter, you can pass
a CFCharacterSetRef, and in a function where you see a CFCharacterSetRef parameter, you can pass
an NSCharacterSet instance (you cast one type to the other to suppress compiler warnings). See
Interchangeable Data Types for more information on toll-free bridging.

The mutable subclass of NSCharacterSet is NSMutableCharacterSet.

Adopted Protocols

Tasks

242

NSCoding
encodeWithCoder: (page 2034)

initWithCoder: (page 2034)

NSCopying
copyWithZone: (page 2042)

NSMutableCopying
mutableCopyWithZone: (page 2094)

Creating a Standard Character Set

+ alphanumericCharacterSet (page 244)
Returns a character set containing the characters in the categories Letters, Marks, and Numbers.

+ capitalizedlLetterCharacterSet (page 244)
Returns a character set containing the characters in the category of Titlecase Letters.

+ controlCharacterSet (page 247)
Returns a character set containing the characters in the categories of Control or Format Characters.

+ decimalDigitCharacterSet (page 247)
Returns a character set containing the characters in the category of Decimal Numbers.

+ decomposableCharacterSet (page 248)
Returns a character set containing all individual Unicode characters that can also be represented as
composed character sequences.

+ illegalCharacterSet (page 248)
Returns a character set containing values in the category of Non-Characters or that have not yet been
defined in version 3.2 of the Unicode standard.

Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

+ letterCharacterSet (page 249)
Returns a character set containing the characters in the categories Letters and Marks.

+ lTowercaseletterCharacterSet (page 249)
Returns a character set containing the characters in the category of Lowercase Letters.
+ newlineCharacterSet (page 250)
Returns a character set containing the newline characters.
+ nonBaseCharacterSet (page 250)
Returns a character set containing the characters in the category of Marks.
+ punctuationCharacterSet (page 250)
Returns a character set containing the characters in the category of Punctuation.
+ symbolCharacterSet (page 251)
Returns a character set containing the characters in the category of Symbols.
+ uppercaseletterCharacterSet (page 251)
Returns a character set containing the characters in the categories of Uppercase Letters and Titlecase
Letters.
+ whitespaceAndNewlineCharacterSet (page 252)
Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009)
and the newline and nextline characters (U+000A-U+000D, U+0085).
+ whitespaceCharacterSet (page 252)

Returns a character set containing only the in-line whitespace characters space (U+0020) and tab
(U+0009).

Creating a Custom Character Set

+ characterSetWithCharactersInString: (page 245)
Returns a character set containing the characters in a given string.

+ characterSetWithRange: (page 246)
Returns a character set containing characters with Unicode values in a given range.

- invertedSet (page 254)
Returns a character set containing only characters that don't exist in the receiver.

Creating and Managing Character Sets as Bitmap Representations

+ characterSetWithBitmapRepresentation: (page 245)
Returns a character set containing characters determined by a given bitmap representation.

+ characterSetWithContentsOfFile: (page 246)
Returns a character set read from the bitmap representation stored in the file a given path.

- bitmapRepresentation (page 253)
Returns an NSData object encoding the receiver in binary format.

Tasks 243
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Testing Set Membership

- characterlIsMember: (page 253)
Returns a Boolean value that indicates whether a given character is in the receiver.

- hasMemberInPlane: (page 254)
Returns a Boolean value that indicates whether the receiver has at least one member in a given
character plane.

- isSuperset0fSet: (page 254)
Returns a Boolean value that indicates whether the receiver is a superset of another given character
set.

- longCharacterIsMember: (page 255)
Returns a Boolean value that indicates whether a given long character is a member of the receiver.

Class Methods

244

alphanumericCharacterSet

Returns a character set containing the characters in the categories Letters, Marks, and Numbers.
+ (id)alphanumericCharacterSet

Return Value
A character set containing the characters in the categories Letters, Marks, and Numbers.

Discussion
Informally, this set is the set of all characters used as basic units of alphabets, syllabaries, ideographs, and
digits.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ letterCharacterSet (page 249)

+ decimalDigitCharacterSet (page 247)

Declared In
NSCharacterSet.h

capitalizedLetterCharacterSet

Returns a character set containing the characters in the category of Titlecase Letters.
+ (id)capitalizedLetterCharacterSet

Return Value
A character set containing the characters in the category of Titlecase Letters.

Availability
Available in Mac OS X v10.2 and later.

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

See Also
+ letterCharacterSet (page 249)

+ uppercaseletterCharacterSet (page 251)

Declared In
NSCharacterSet.h

characterSetWithBitmapRepresentation:

Returns a character set containing characters determined by a given bitmap representation.
+ (id)characterSetWithBitmapRepresentation: (NSData *)data

Parameters
data
A bitmap representation of a character set.

Return Value
A character set containing characters determined by data.

Discussion
This method is useful for creating a character set object with data from a file or other external data source.

A raw bitmap representation of a character set is a byte array of 2A16 bits (that is, 8192 bytes). The value of
the bit at position n represents the presence in the character set of the character with decimal Unicode value
n. To add a character with decimal Unicode value n to a raw bitmap representation, use a statement such as
the following:

unsigned char bitmapRep[8192];
bitmapRep[n >> 31 |= (((unsigned int)1l) << (n & 7));

To remove that character:
bitmapRep[n >> 3] &= ~(((unsigned int)l) << (n & 7));

Availability
Available in Mac OS X v10.0 and later.

See Also
- bitmapRepresentation (page 253)

+ characterSetWithContentsOfFile: (page 246)

Declared In
NSCharacterSet.h

characterSetWithCharactersinString:

Returns a character set containing the characters in a given string.

+ (id)characterSetWithCharactersInString: (NSString *)aString

Class Methods 245
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

246

CHAPTER 14

NSCharacterSet Class Reference

Parameters
aString
A string containing characters for the new character set.

Return Value
A character set containing the characters in aString. Returns an empty character set if aStringis empty.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend
QTAudioExtractionPanel
Quartz Composer QCTV

Declared In
NSCharacterSet.h

characterSetWithContentsOfFile:

Returns a character set read from the bitmap representation stored in the file a given path.
+ (id)characterSetWithContentsOfFile: (NSString *)path

Parameters

path
A path to a file containing a bitmap representation of a character set. The path name must end with
the extension .bitmap.

Return Value
A character set read from the bitmap representation stored in the file at path.

Discussion

To read a bitmap representation from any file, use the NSData
methoddatallithContentsOfFile:options:error: (page 373) and pass the result to
characterSetWithBitmapRepresentation: (page 245).

This method doesn’t use filenames to check for the uniqueness of the character sets it creates. To prevent
duplication of character sets in memory, cache them and make them available through an API that checks
whether the requested set has already been loaded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCharacterSet.h

characterSetWithRange:

Returns a character set containing characters with Unicode values in a given range.

+ (id)characterSetWithRange: (NSRange)aRange

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Parameters
aRange
A range of Unicode values.

aRange.location is the value of the first character to return; aRange.location +
aRange.length- 1 isthe value of the last.

Return Value

A character set containing characters whose Unicode values are given by aRange. If aRange.lengthis 0,

returns an empty character set.

Discussion

This code excerpt creates a character set object containing the lowercase English alphabetic characters:

NSRange 1cEnglishRange;
NSCharacterSet *1cEnglishlLetters;

lTcEnglishRange.location = (unsigned int)'a';
1cEnglishRange.length = 26;
lcEnglishLetters = [NSCharacterSet characterSetWithRange:lcEnglishRange];

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCharacterSet.h

controlCharacterSet

Returns a character set containing the characters in the categories of Control or Format Characters.
+ (id)controlCharacterSet

Return Value
A character set containing the characters in the categories of Control or Format Characters.

Discussion
These characters are specifically the Unicode values U+0000 to U+001F and U+007F to U+009F.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ illegalCharacterSet (page 248)

Related Sample Code
Link Snoop

Declared In
NSCharacterSet.h

decimalDigitCharacterSet

Returns a character set containing the characters in the category of Decimal Numbers.

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

247

248

CHAPTER 14

NSCharacterSet Class Reference

+ (id)decimalDigitCharacterSet

Return Value
A character set containing the characters in the category of Decimal Numbers.

Discussion
Informally, this set is the set of all characters used to represent the decimal values 0 through 9. These characters
include, for example, the decimal digits of the Indic scripts and Arabic.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ alphanumericCharacterSet (page 244)

Declared In
NSCharacterSet.h

decomposableCharacterSet

Returns a character set containing all individual Unicode characters that can also be represented as composed
character sequences.

+ (id)decomposableCharacterSet

Return Value

A character set containing all individual Unicode characters that can also be represented as composed
character sequences (such as for letters with accents), by the definition of “standard decomposition” in version
3.2 of the Unicode character encoding standard.

Discussion
These characters include compatibility characters as well as pre-composed characters.

Note: This character set doesn’t currently include the Hangul characters defined in version 2.0 of the Unicode
standard.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ nonBaseCharacterSet (page 250)

Declared In
NSCharacterSet.h

illegalCharacterSet

Returns a character set containing values in the category of Non-Characters or that have not yet been defined
in version 3.2 of the Unicode standard.

+ (id)illegalCharacterSet

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Return Value
A character set containing values in the category of Non-Characters or that have not yet been defined in
version 3.2 of the Unicode standard.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ controlCharacterSet (page 247)

Declared In
NSCharacterSet.h

letterCharacterSet

Returns a character set containing the characters in the categories Letters and Marks.
+ (id)letterCharacterSet

Return Value
A character set containing the characters in the categories Letters and Marks.

Discussion
Informally, this set is the set of all characters used as letters of alphabets and ideographs.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ alphanumericCharacterSet (page 244)

+ lowercaseletterCharacterSet (page 249)
+ uppercaseletterCharacterSet (page 251)

Declared In
NSCharacterSet.h

lowercaselLetterCharacterSet

Returns a character set containing the characters in the category of Lowercase Letters.
+ (id)lowercaselLetterCharacterSet

Return Value
A character set containing the characters in the category of Lowercase Letters.

Discussion
Informally, this set is the set of all characters used as lowercase letters in alphabets that make case distinctions.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ uppercaseletterCharacterSet (page 251)

Class Methods 249
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

+ letterCharacterSet (page 249)

Declared In
NSCharacterSet.h

newlineCharacterSet

Returns a character set containing the newline characters.
+ (id)newlineCharacterSet

Return Value
A character set containing the newline characters (U+000A-U+000D, U+0085).

Availability
Available in Mac OS X v10.5 and later.

See Also
+ whitespaceAndNewlineCharacterSet (page 252)

+ whitespaceCharacterSet (page 252)

Declared In
NSCharacterSet.h

nonBaseCharacterSet

Returns a character set containing the characters in the category of Marks.
+ (id)nonBaseCharacterSet

Return Value
A character set containing the characters in the category of Marks.

Discussion
This set is also defined as all legal Unicode characters with a non-spacing priority greater than 0. Informally,
this set is the set of all characters used as modifiers of base characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ decomposableCharacterSet (page 248)

Declared In
NSCharacterSet.h

punctuationCharacterSet

Returns a character set containing the characters in the category of Punctuation.

+ (id)punctuationCharacterSet

250 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Return Value
A character set containing the characters in the category of Punctuation.

Discussion
Informally, this set is the set of all non-whitespace characters used to separate linguistic units in scripts, such
as periods, dashes, parentheses, and so on.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCharacterSet.h

symbolCharacterSet
Returns a character set containing the characters in the category of Symbols.

+ (id)symbolCharacterSet

Return Value
A character set containing the characters in the category of Symbols.

Discussion
These characters include, for example, the dollar sign ($) and the plus (+) sign.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSCharacterSet.h

uppercaselLetterCharacterSet

Returns a character set containing the characters in the categories of Uppercase Letters and Titlecase Letters.
+ (id)uppercaselLetterCharacterSet

Return Value
A character set containing the characters in the categories of Uppercase Letters and Titlecase Letters.

Discussion
Informally, this set is the set of all characters used as uppercase letters in alphabets that make case distinctions.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ capitalizedlLetterCharacterSet (page 244)

+ lowercaseletterCharacterSet (page 249)
+ letterCharacterSet (page 249)

Declared In
NSCharacterSet.h

Class Methods 251
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

whitespaceAndNewlineCharacterSet

Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009) and the
newline and nextline characters (U+000A-U+000D, U+0085).

+ (id)whitespaceAndNewlineCharacterSet

Return Value
A character set containing only the whitespace characters space (U+0020) and tab (U+0009) and the newline
and nextline characters (U+000A-U+000D, U+0085).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ newlineCharacterSet (page 250)

+ whitespaceCharacterSet (page 252)

Related Sample Code
ImageMapExample

Quartz Composer WWDC 2005 TextEdit
TextEditPlus

TextLinks

VertexPerformanceTest

Declared In
NSCharacterSet.h

whitespaceCharacterSet

Returns a character set containing only the in-line whitespace characters space (U+0020) and tab (U+0009).
+ (id)whitespaceCharacterSet

Return Value
A character set containing only the in-line whitespace characters space (U+0020) and tab (U+0009).

Discussion
This set doesn’t contain the newline or carriage return characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ whitespaceAndNewlineCharacterSet (page 252)

+ newlineCharacterSet (page 250)

Related Sample Code
CoreRecipes

ImageClient

Declared In
NSCharacterSet.h

252 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Instance Methods

bitmapRepresentation

Returns an NSData object encoding the receiver in binary format.
- (NSData *)bitmapRepresentation

Return Value
An NSData object encoding the receiver in binary format.

Discussion
This format is suitable for saving to a file or otherwise transmitting or archiving.

A raw bitmap representation of a character set is a byte array of 2A16 bits (that is, 8192 bytes). The value of
the bit at position n represents the presence in the character set of the character with decimal Unicode value
n. To test for the presence of a character with decimal Unicode value n in a raw bitmap representation, use
an expression such as the following:

unsigned char bitmapRep[81927;

if (bitmapRep[n >> 31 & (((unsigned int)l) << (n & 7))) |
/* Character is present. */

}

Availability
Available in Mac OS X v10.0 and later.

See Also
+ characterSetWithBitmapRepresentation: (page 245)

Declared In
NSCharacterSet.h

characterlsMember:

Returns a Boolean value that indicates whether a given character is in the receiver.
- (BOOL)characterIsMember: (unichar)aCharacter

Parameters
aCharacter
The character to test for membership of the receiver.

Return Value
YES if aCharacteris in the receiving character set, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- longCharacterIsMember: (page 255)

Instance Methods 253
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Declared In
NSCharacterSet.h

hasMemberinPlane:

Returns a Boolean value that indicates whether the receiver has at least one member in a given character
plane.

- (BOOL)hasMemberInPlane: (uint8_t)thePlane

Parameters

thePlane
A character plane.

Return Value
YES if the receiver has at least one member in thePTane, otherwise NO.

Discussion
This method makes it easier to find the plane containing the members of the current character set. The Basic
Multilingual Plane is plane 0.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSCharacterSet.h

invertedSet

Returns a character set containing only characters that don't exist in the receiver.
- (NSCharacterSet *)invertedSet

Return Value
A character set containing only characters that don't exist in the receiver.

Discussion
Inverting an immutable character set is much more efficient than inverting a mutable character set.

Availability
Available in Mac OS X v10.0 and later.

See Also
invert (page 942) (NSMutableCharacterSet)

Declared In
NSCharacterSet.h

isSupersetOfSet:

Returns a Boolean value that indicates whether the receiver is a superset of another given character set.

- (BOOL)isSupersetOfSet: (NSCharacterSet *)theOtherSet

254 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Parameters
theOtherSet
A character set.

Return Value
YES if the receiver is a superset of theOtherSet, otherwise NO.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSCharacterSet.h

longCharacterlsMember:

Returns a Boolean value that indicates whether a given long character is a member of the receiver.
- (BOOL)TongCharacterIsMember:(UTF32Char) thelongChar

Parameters

thelLongChar
A UTF32 character.

Return Value
YES if theLongChar is in the receiver, otherwise NO.

Discussion
This method supports the specification of 32-bit characters.

Availability
Available in Mac OS X v10.2 and later.

See Also
- characterlIsMember: (page 253)

Declared In
NSCharacterSet.h

Constants

NSOpenStepUnicodeReservedBase

Specifies lower bound for a Unicode character range reserved for Apple’s corporate use.

Constants 255
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

enum {
NSOpenStepUnicodeReservedBase

0xF400

bs

Constants

NSOpenStepUnicodeReservedBase
Specifies lower bound for a Unicode character range reserved for Apple’s corporate use (the range is
OxF400-0xF8FF).

Available in Mac OS X v10.0 and later.
Declared in NSCharacterSet.h.

Declared In
NSCharacterSet.h

256 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSClassDescription Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSClassDescription.h

Companion guides Cocoa Scripting Guide

Key-Value Coding Programming Guide

Overview

NSClassDescription is an abstract class that provides the interface for querying the relationships and
properties of a class. Concrete subclasses of NSCTassDescription provide the available attributes of objects
of a particular class and the relationships between that class and other classes. Defining these relationships
between classes allows for more intelligent and flexible manipulation of objects with key-value coding.

It is important to note that there are no class descriptions by default. To use NSClassDescription objects
in your code you have to implement them for your model classes. For all concrete subclasses, you must
provide implementations for all instance methods of NSCTassDescription.(NSClassDescription
provides only the implementation for the class methods that maintain the cache of registered class
descriptions.) Once created, you must register a class description with the NSClassDescription method
registerClassDescription:forClass: (page 259).

You can use the NSString objects in the arrays returned by methods such as attributeKeys (page 260) and
toManyRelationshipKeys (page 261) to access—using key-value coding—the properties of an instance of the
class to which a class description object corresponds. For more about attributes and relationships, see Cocoa
Fundamentals Guide. For more about key-value coding, see Key-Value Coding Programming Guide.

NSScriptClassDescription, which is used to map the relationships between scriptable classes, is the
only concrete subclass of NSClassDescription provided as part of the Cocoa framework.

Overview 257
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

CHAPTER 15

NSClassDescription Class Reference

Working with Class Descriptions

+ classDescriptionForClass: (page 258)
Returns the class description for a given class.

+ invalidateClassDescriptionCache (page 259)
Removes all NSCT1assDescription objects from the cache.

+ registerClassDescription:forClass: (page 259)
Registers an NSClassDescription object for a given class in the NSCTassDescription cache.

Attribute Keys

- attributeKeys (page 260)
Overridden by subclasses to return the names of attributes of instances of the described class.

Relationship Keys

- inverseForRelationshipKey: (page 260)
Overridden by subclasses to return the name of the inverse relationship from a relationship specified
by a given key.

- toManyRelationshipKeys (page 261)

Overridden by subclasses to return the keys for the to-many relationship properties of instances of
the described class.

- toOneRelationshipKeys (page 261)
Overridden by subclasses to return the keys for the to-one relationship properties of instances of the
described class.

Class Methods

258

classDescriptionForClass:

Returns the class description for a given class.
+ (NSClassDescription *)classDescriptionForClass:(Class)alClass

Parameters
aClass
The class for which to return a class description.

Return Value
The class description for aC7ass, or nil if a class description cannot be found.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSClassDescription Class Reference

Discussion

If a class description for aC7ass is not found, the method posts an
NSClassDescriptionNeededForClassNotification on behalf of aC7ass, allowing an observer to
register a class description. The method then checks for a class description again. Returns ni1 if a class
description is still not found.

If you have an instance of the receiver’s class, you can use the NSObject instance method
classDescription (page 1170) instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSClassDescription.h

invalidateClassDescriptionCache

Removes all NSCTassDescription objects from the cache.
+ (void)invalidateClassDescriptionCache

Discussion

You should rarely need to invoke this method. Use it whenever a registered NSClassDescription object
might be replaced by a different version, such as when you have loaded a new provider of
NSClassDescription objects, or when you are about to remove a provider of NSClassDescription
objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSClassDescription.h

registerClassDescription:forClass:

Registers an NSCTassDescription object for a given class in the NSCTassDescription cache.

+ (void)registerClassDescription: (NSClassDescription *)description
forClass:(Class)aClass

Parameters
description
The class description to register.
aClass
The class for which to register description.

Discussion
You should rarely need to directly invoke this method.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 259
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSClassDescription Class Reference

Declared In
NSClassDescription.h

Instance Methods

260

attributeKeys

Overridden by subclasses to return the names of attributes of instances of the described class.
- (NSArray *)attributeKeys

Return Value
An array of NSString objects containing the names of attributes of instances of the described class.

Discussion
For example, a class description that describes Movie objects could return the attribute keys title,
dateReleased,and rating.

If you have an instance of the class the receiver describes, you can use the NSObject instance method
attributeKeys (page 1168) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
- toManyRelationshipKeys (page 261)

- toOneRelationshipKeys (page 261)

Declared In
NSClassDescription.h

inverseForRelationshipKey:
Overridden by subclasses to return the name of the inverse relationship from a relationship specified by a
given key.

- (NSString *)inverseForRelationshipKey: (NSString *)relationshipKey

Return Value
The name of the inverse relationship from the relationship specified by reilationshipKey.

Discussion

For a given key that defines the name of the relationship from the receiver’s class to another class, returns
the name of the relationship from the other class to the receiver’s class. For example, suppose an Employee
class has a relationship named department to a Department class, and that Department has a relationship
named employees to Employee. The statement:

[employee inverseForRelationshipKey:@"department"];

returns the string employees.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSClassDescription Class Reference

If you have an instance of the class the receiver describes, you can use the NSObject instance method
inverseForRelationshipKey: (page 1180) instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSClassDescription.h

toManyRelationshipKeys
Overridden by subclasses to return the keys for the to-many relationship properties of instances of the
described class.

- (NSArray *)toManyRelationshipKeys

Return Value
An array of NSString objects containing the names of the to-many relationship properties of instances of
the described class.

Discussion
To-many relationship properties are arrays of objects.

If you have an instance of the class the receiver describes, you can use the NSObject instance method
toManyRelationshipKeys (page 1194) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
- attributeKeys (page 260)

- toOneRelationshipKeys (page 261)

Declared In
NSClassDescription.h

toOneRelationshipKeys
Overridden by subclasses to return the keys for the to-one relationship properties of instances of the described
class.

- (NSArray *)toOneRelationshipKeys

Return Value
An array of NSString objects containing the names of the to-one relationship properties of instances of the
described class.

Discussion
To-one relationship properties are single objects.

If you have an instance of the class the receiver describes, you can use the NSObject instance method
toOneRelationshipKeys (page 1195) instead.

Instance Methods 261
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSClassDescription Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- attributeKeys (page 260)

- toManyRelationshipKeys (page 261)

Declared In
NSClassDescription.h

Notifications

262

NSClassDescriptionNeededForClassNotification
Posted by classDescriptionForClass: (page 258) when a class description cannot be found for a class.
After the notification is processed, classDescriptionForClass: (page 258) checks for a class description

again. This checking allows an observer to register class descriptions lazily. The notification is posted only
once for any given class, even if the class description remains undefined.

The notification object is the class object for which the class description is requested. This notification does
not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSClassDescription.h

Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCloneCommand Class Reference

Inherits from NSScriptCommand : NSObject
Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSScriptStandardSuiteCommands.h
Companion guide Cocoa Scripting Guide
Overview

Tasks

Aninstance of NSC1oneCommand clones the specified scriptable object or objects (such as words, paragraphs,
images, and so on) and inserts them in the specified location, or the default location if no location is specified.
The cloned scriptable objects typically correspond to objects in the application, but aren’t required to. This
command corresponds to AppleScript’s dup1icate command.

NSC1oneCommand is part of Cocoa’s built-in scripting support. It works automatically to support the duplicate
command through key-value coding. Most applications don't need to subclass NSCToneCommand or invoke
its methods.

When an instance of NSC1oneCommand is executed, it clones the specified objects by sending them
copyWithZone: (page 1157) messages.

Working with Specifiers

- keySpecifier (page 264)
Returns a specifier for the object or objects to be cloned.

- setReceiversSpecifier: (page 264)
Sets the receiver’s object specifier;.

Overview 263
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCloneCommand Class Reference

Instance Methods

264

keySpecifier

Returns a specifier for the object or objects to be cloned.
- (NSScriptObjectSpecifier *)keySpecifier

Return Value
A specifier for the object or objects to be cloned.

Discussion

For example, the specifier may indicate that a document’s third rectangle should be cloned. The returned
specifier is valid only in the context of the NSC1oneCommand object; for example, if you send the specifier a
containerSpecifier (page 1416) message, the resultis nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

setReceiversSpecifier:

Sets the receiver’s object specifier;.
- (void)setReceiversSpecifier: (NSScriptObjectSpecifier *)receiversRef

Parameters
receiversRef
The object specifier for the receiver.

Discussion
When evaluated, the specifier indicates the receiver or receivers of the c1one command.

This method overrides setReceiversSpecifier: (page 1390)in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRefis a specifier for the third
rectangle of the first document, the receiver specifieris the first document while the key
specifieris the third rectangle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCloseCommand Class Reference

Inherits from NSScriptCommand : NSObject
Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSScriptStandardSuiteCommands.h
Companion guide Cocoa Scripting Guide
Related sample code Quartz Composer WWDC 2005 TextEdit
TextEditPlus
Overview

Tasks

An instance of NSC1oseCommand closes the specified scriptable object or objects—typically a document or
window (and its associated document, if any). The command may optionally specify a location to save in and
how to handle modified documents (by automatically saving changes, not saving them, or asking the user).

NSCloseCommand is part of Cocoa’s built-in scripting support. It works automatically to support the close
command through key-value coding. Most applications don't need to subclass NSC1oseCommand or call its
methods.

Accessing Save Options

- saveOptions (page 266)
Returns a constant indicating how to deal with closing any modified documents.

Overview 265
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCloseCommand Class Reference

Instance Methods

saveOptions

Returns a constant indicating how to deal with closing any modified documents.
- (NSSaveOptions)saveOptions

Return Value
A constant indicating how to deal with closing any modified documents. The default value returned is
NSSaveOptionsAsk. See “Constants” (page 266) for a list of possible return values.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

TextEditPlus

Declared In
NSScriptStandardSuiteCommands.h

Constants

NSSaveOptions

The saveOptions (page 266) method returns one of the following constants to indicate how to deal with
saving any modified documents:

typedef enum {
NSSaveOptionsYes = 0,
NSSaveOptionsNo,
NSSaveOptionsAsk

} NSSaveOptions;

Constants
NSSaveOptionsYes
Indicates a modified document should be saved on closing without asking the user.

Available in Mac OS X v10.0 and later.
Declared in NSScriptStandardSuiteCommands. h.

NSSaveOptionsNo
Indicates a modified document should not be saved on closing.

Available in Mac OS X v10.0 and later.
Declared in NSScriptStandardSuiteCommands. h.

266 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCloseCommand Class Reference

NSSaveOptionsAsk
Indicates the user should be asked before saving any modified documents on closing. When no option
is specified, this is the default.

Available in Mac OS X v10.0 and later.
Declared in NSScriptStandardSuiteCommands. h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

Constants 267
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCloseCommand Class Reference

268 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSCoder.h

Foundation/NSKeyedArchiver.h
Foundation/NSGeometry.h

Companion guide Archives and Serializations Programming Guide for Cocoa
Related sample code bMoviePaletteCocoa

iSpend

Mountains

Reducer

StickiesExample

Overview

The NSCoder abstract class declares the interface used by concrete subclasses to transfer objects and other
Objective-C data items between memory and some other format. This capability provides the basis for
archiving (where objects and data items are stored on disk) and distribution (where objects and data items
are copied between different processes or threads). The concrete subclasses provided by Foundation for
these purposes are NSArchiver, NSUnarchiver, NSKeyedArchiver, NSKeyedUnarchiver, and
NSPortCoder. Concrete subclasses of NSCoder are referred to in general as coder classes, and instances of
these classes as coder objects (or simply coders). A coder object that can only encode values is referred to
as an encoder object, and one that can only decode values as a decoder object.

NSCoder operates on objects, scalars, C arrays, structures, and strings, and on pointers to these types. It does
not handle types whose implementation varies across platforms, such as union, void *, function pointers,
and long chains of pointers. A coder object stores object type information along with the data, so an object
decoded from a stream of bytes is normally of the same class as the object that was originally encoded into
the stream. An object can change its class when encoded, however; this is described in Archives and
Serializations Programming Guide for Cocoa.

Overview 269
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

270

CHAPTER 18

NSCoder Class Reference

Testing Coder

- allowsKeyedCoding (page 273)
Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.

- containsValueForKey: (page 274)
Returns a Boolean value that indicates whether an encoded value is available for a string.

Encoding Data

- encodeArray0fObjCType:count:at: (page 283)
Encodes an array of count items, whose Objective-C type is given by 7temType.

- encodeBool:forKey: (page 283)
Encodes boo v and associates it with the string key.

- encodeBycopyObject: (page 284)
Can be overridden by subclasses to encode object so that a copy, rather than a proxy, is created
upon decoding.

- encodeByrefObject: (page 284)
Can be overridden by subclasses to encode object so that a proxy, rather than a copy, is created
upon decoding.

- encodeBytes:length: (page 284)
Encodes a buffer of data whose types are unspecified.

- encodeBytes:length:forKey: (page 285)
Encodes a buffer of data, by tesp, whose length is specified by 7env, and associates it with the string
key.

- encodeConditionalObject: (page 285)
Can be overridden by subclasses to conditionally encode object, preserving common references to
that object.

- encodeConditionalObject:forKey: (page 286)

Conditionally encodes a reference to 0bjv and associates it with the string key only if 0bjv has been
unconditionally encoded with encodeObject: forKey: (page 290).

- encodeDataObject: (page 286)
Encodes a given NSData object.
- encodeDouble: forKey: (page 287)
Encodes realv and associates it with the string key.

- encodefFloat:forKey: (page 287)
Encodes realv and associates it with the string key.

- encodelnt:forKey: (page 288)
Encodes 7ntv and associates it with the string key.

- encodelnteger:forKey: (page 289)
Encodes a given NSInteger and associates it with a given key.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

- encodelInt32:forKey: (page 287)
Encodes the 32-bit integer 7ntv and associates it with the string key.

- encodelnt64:forKey: (page 288)
Encodes the 64-bit integer ntv and associates it with the string key.

- encodeObject: (page 289)
Encodes object.

- encodeObject: forKey: (page 290)
Encodes the object 0bjv and associates it with the string key.

- encodePoint: (page 291)
Encodes point.

- encodePoint:forKey: (page 291)
Encodes point and associates it with the string key.

- encodePropertylList: (page 291)
Encodes the property list aPropertylist.

- encodeRect: (page 291)
Encodes rect.
- encodeRect:forKey: (page 292)
Encodes rect and associates it with the string key.
- encodeRootObject: (page 292)
Can be overridden by subclasses to encode an interconnected group of Objective-C objects, starting
with rootObject.

- encodeSize: (page 293)
Encodes size.

- encodeSize:forKey: (page 293)
Encodes s7ze and associates it with the string key.
- encodeValueOfObjCType:at: (page 293)
Must be overridden by subclasses to encode a single value residing at address, whose Objective-C
type is given by valueType.
- encodeValues0f0ObjCTypes: (page 294)
Encodes a series of values of potentially differing Objective-C types.

- encodeNX0bject: (page 289) Deprecated in Mac OS X v10.5
Encodes an old-style object onto the coder.

Decoding Data

- decodeArray0OfObjCType:count:at: (page 274)
Decodes an array of count items, whose Objective-C type is given by itemType.

- decodeBoolForKey: (page 274)
Decodes and returns a boolean value that was previously encoded with encodeBool: forKey: (page
283) and associated with the string key.

- decodeBytesForKey:returnedLength: (page 275)
Decodes a buffer of data that was previously encoded with encodeBytes:length: forKey: (page
285) and associated with the string key.

Tasks 271
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

272

CHAPTER 18

NSCoder Class Reference

- decodeBytesWithReturnedlLength: (page 275)
Decodes a buffer of data whose types are unspecified.

- decodeDataObject (page 276)
Decodes and returns an NSData object that was previously encoded with encodeDataObject: (page
286). Subclasses must override this method.

- decodeDoubleForKey: (page 276)
Decodes and returns a doub1e value that was previously encoded with either
encodeFloat:forKey: (page287)orencodeDouble: forKey: (page 287)and associated with the
string key.

- decodeFloatForKey: (page 276)
Decodes and returns a f10at value that was previously encoded with encodeFloat: forKey: (page
287) or encodeDouble: forKey: (page 287) and associated with the string key.

- decodelntForKey: (page 278)
Decodes and returns an int value that was previously encoded with encodelnt: forKey: (page
288), encodelnteger:forkKey: (page 289), encodelInt32:forKey: (page 287), or
encodelnt64:forKey: (page 288) and associated with the string key.

- decodelntegerfForKey: (page 278)
Decodes and returns an NSInteger value that was previously encoded with
encodeInt:forKey: (page288),encodelnteger: forKey: (page289),encodelnt32:forKey: (page
287),or encodelInt64: forKey: (page 288) and associated with the string key.

- decodeInt32ForKey: (page 277)
Decodes and returns a 32-bit integer value that was previously encoded with
encodeInt:forKey: (page288),encodelnteger: forKey: (page289),encodelnt32:forKey: (page
287), orencodelnt64: forKey: (page 288) and associated with the string key.

- decodeInt64ForKey: (page 277)
Decodes and returns a 64-bit integer value that was previously encoded with
encodelnt:forKey: (page288),encodelnteger:forKey: (page289),encodelnt32:forKey: (page
287), orencodelnt64: forKey: (page 288) and associated with the string key.

- decodeObject (page 279)
Decodes an Objective-C object that was previously encoded with any of the encode...0Object:
methods.

- decodeObjectForKey: (page 279)
Decodes and returns an autoreleased Objective-C object that was previously encoded with
encodeObject:forKey: (page 290) or encodeConditionalObject:forKey: (page 286) and
associated with the string key.

- decodePoint (page 280)
Decodes and returns an NSPo1int structure that was previously encoded with encodePoint: (page
291).

- decodePointForKey: (page 280)
Decodes and returns an NSPoint structure that was previously encoded with
encodePoint:forKey: (page 291).

- decodePropertylList (page 280)
Decodes a property list that was previously encoded with encodePropertylList: (page 291).

- decodeRect (page 280)

Decodes and returns an NSRect structure that was previously encoded with encodeRect: (page
291).

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

- decodeRectForKey: (page 281)
Decodes and returns an NSRect structure that was previously encoded with
encodeRect:forKey: (page 292).

- decodeSize (page 281)

Decodes and returns an NSSi ze structure that was previously encoded with encodeSize: (page
293).

- decodeSizeForKey: (page 281)
Decodes and returns an NSS1 ze structure that was previously encoded with
encodeSize:forKey: (page 293).

- decodeValueOfObjCType:at: (page 282)
Decodes a single value, whose Objective-C type is given by valueType.

- decodeValuesOfObjCTypes: (page 282)
Decodes a series of potentially different Objective-C types.

- decodeNX0bject (page 278) Deprecated in Mac OS X v10.5
Decodes an object previously written with encodeNXObject: (page 289).

Managing Zones

- objectZone (page 294)
Returns the memory zone used to allocate decoded objects.

- setObjectZone: (page 295)
NSCoder’s implementation of this method does nothing.

Getting Version Information

- systemVersion (page 295)
During encoding, this method should return the system version currently in effect.

- versionForClassName: (page 295)
Returns the version in effect for the class with a given name.

Instance Methods

allowsKeyedCoding
Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.

- (BOOL)allowsKeyedCoding

Discussion
The default implementation returns NO. Concrete subclasses that support keyed coding, such as
NSKeyedArchiver, need to override this method to return YES.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 273
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

274

CHAPTER 18

NSCoder Class Reference

Declared In
NSCoder.h

containsValueForKey:

Returns a Boolean value that indicates whether an encoded value is available for a string.
- (BOOL)containsValueForKey: (NSString *)key

Discussion
The string is passed as key. Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSCoder.h

decodeArrayOfObjCType:count:at:

Decodes an array of count items, whose Objective-C type is given by itemType.

- (void)decodeArray0fObjCType: (const char *)itemType count:(NSUInteger)count at:(void
*)address

Discussion

The items are decoded into the buffer beginning at address, which must be large enough to contain them
all. 1temType must contain exactly one type code. NSCoder’s implementation invokes
decodeValue0fObjCType:at: (page 282) to decode the entire array of items. If you use this method to
decode an array of Objective-C objects, you are responsible for releasing each object.

This method matchesan encodeArray0f0bjCType:count:at: (page 283) message used during encoding.

For information on creating an Objective-C type code suitable for 7 temType, see the “Type Encodings”
section in the “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in Mac OS X v10.0 and later.

See Also
- decodeValuesOfObjCTypes: (page 282)

Declared In
NSCoder.h

decodeBoolForKey:

Decodes and returns a boolean value that was previously encoded with encodeBool:forKey: (page 283)
and associated with the string key.

- (BOOL)decodeBoolForKey: (NSString *)key

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
iSpend
Reducer

Declared In
NSCoder.h

decodeBytesForKey:returnedLength:

Decodes a buffer of data that was previously encoded with encodeBytes:length:forKey: (page 285)and
associated with the string key.

- (const uint8_t *)decodeBytesForKey:(NSString *)key returnedLength:(NSUInteger
*)lengthp

Discussion
The buffer’s length is returned by reference in 7engthp. The returned bytes are immutable. Subclasses must
override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
- encodeBytes:length:forKey: (page 285)

Declared In
NSCoder.h

decodeBytesWithReturnedLength:

Decodes a buffer of data whose types are unspecified.
- (void *)decodeBytesWithReturnedLength: (NSUInteger *)numBytes

Discussion

NSCoder’simplementation invokes decodeValue0f0bjCType:at: (page 282) to decode the data as a series
of bytes, which this method then places into a buffer and returns. The buffer’s length is returned by reference
in numBytes. If you need the bytes beyond the scope of the current autorelease pool, you must copy them.

This method matches an encodeBytes:length: (page 284) message used during encoding.

Availability
Available in Mac OS X v10.0 and later.

See Also
- encodeArray0fObjCType:count:at: (page 283)

Instance Methods 275
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

276

CHAPTER 18

NSCoder Class Reference

Declared In
NSCoder.h

decodeDataObject
Decodes and returns an NSData object that was previously encoded with encodeDataObject: (page 286).
Subclasses must override this method.

- (NSData *)decodeDataObject

Discussion

The implementation of your overriding method must match the implementation of your
encodeDataObject: (page 286) method. For example, a typical encodeDataObject: (page 286) method
encodes the number of bytes of data followed by the bytes themselves. Your override of this method must
read the number of bytes, create an NSData object of the appropriate size, and decode the bytes into the
new NSData object. Your overriding method should return an autoreleased NSData object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

decodeDoubleForKey:

Decodes and returns a doub1e value that was previously encoded with either encodeFloat: forKey: (page
287) or encodeDouble: forKey: (page 287) and associated with the string key.

- (double)decodeDoubleForKey: (NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
QTQuartzPlayer

Squiggles

Declared In
NSCoder.h

decodeFloatForKey:

Decodes and returns a f1oat value that was previously encoded with encodeFloat: forKey: (page 287)
orencodeDouble: forKey: (page 287) and associated with the string key.

- (float)decodeFloatForKey: (NSString *)key

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Discussion

If the value was encoded as a doub1e, the extra precision is lost. Also, if the encoded real value does not fit
into a f1oat, the method raises an NSRangeException. Subclasses must override this method if they
perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
iSpend

Declared In
NSCoder.h

decodeint32ForKey:

Decodes and returns a 32-bit integer value that was previously encoded with encodeInt: forKey: (page
288), encodelnteger:forKey: (page 289), encodelInt32:forKey: (page 287), or
encodelnt64:forKey: (page 288) and associated with the string key.

- (int32_t)decodelInt32ForKey: (NSString *)key

Discussion
If the encoded integer does not fit into a 32-bit integer, the method raises an NSRangeException. Subclasses
must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSCoder.h

decodeint64ForKey:

Decodes and returns a 64-bit integer value that was previously encoded with encodelInt: forKey: (page
288), encodelnteger: forkKey: (page 289), encodelInt32:forKey: (page 287), or
encodelnt64:forKey: (page 288) and associated with the string key.

- (int64_t)decodeInt64ForKey: (NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSCoder.h

Instance Methods 277
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

278

CHAPTER 18

NSCoder Class Reference

decodeintegerForKey:

Decodes and returns an NSInteger value that was previously encoded with encodeInt:forKey: (page
288), encodelnteger:forKey: (page 289), encodelnt32:forKey: (page 287), or
encodelnt64:forKey: (page 288) and associated with the string key.

- (NSInteger)decodeIntegerForKey: (NSString *)key

Discussion
If the encoded integer does not fit into the NSInteger size, the method raises an NSRangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCoder.h

decodelntForKey:

Decodes and returns an int value that was previously encoded with encodelnt: forKey: (page 288),
encodelnteger:forKey: (page289),encodelnt32:forKey: (page287),orencodelnt64:forKey: (page
288) and associated with the string key.

- (int)decodelIntForKey: (NSString *)key

Discussion
If the encoded integer does not fit into the default integer size, the method raises an NSRangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Reducer

Declared In
NSCoder.h

decodeNXObject

Decodes an object previously written with encodeNX0bject: (page 289). (Deprecated in Mac OS X v10.5.)
- (id)decodeNXObject

Discussion

No sharing is done across separate decodeNX0bject invocations. Callers must have implemented an
initWithCoder: (page 2034), which parallels the read: methods, on all of their classes that may be touched
by this operation. The returned object is autoreleased.

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Declared In
NSCoder.h

decodeObject

Decodes an Objective-C object that was previously encoded with any of the encode. . .0bject: methods.
- (id)decodeObject

Discussion
NSCoder’s implementation invokes decodeValue0f0bjCType:at: (page 282) to decode the object data.

Subclasses may need to override this method if they override any of the corresponding encode. . .0bject:
methods. For example, if an object was encoded conditionally using the encodeConditionalObject: (page
285) method, this method needs to check whether the object had actually been encoded.

The implementation for the concrete subclass NSUnarchiver returns an object that is retained by the
unarchiver and is released when the unarchiver is deallocated. Therefore, you must retain the returned object
before releasing the unarchiver. NSKeyedUnarchiver’s implementation, however, returns an autoreleased
object, so its life is the same as the current autorelease pool instead of the keyed unarchiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- encodeBycopyObject: (page 284)

- encodeByrefObject: (page 284)
- encodeObject: (page 289)

Related Sample Code
bMoviePalette

bMoviePaletteCocoa
Clock Control
StickiesExample

Declared In
NSCoder.h

decodeObjectForKey:

Decodes and returns an autoreleased Objective-C object that was previously encoded with
encodeObject:forKey: (page290)orencodeConditionalObject:forKey: (page 286)and associated
with the string key.

- (id)decodeObjectForKey: (NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 279
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Related Sample Code
IBFragmentView

iSpend
Mountains
Reducer
StickiesExample

Declared In
NSCoder.h

decodePoint

Decodes and returns an NSPoint structure that was previously encoded with encodePoint: (page 291).
- (NSPoint)decodePoint

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

decodePointForKey:

Decodes and returns an NSPoint structure that was previously encoded with encodePoint: forKey: (page
291).

- (NSPoint)decodePointForKey: (NSString *)key

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

decodePropertylList

Decodes a property list that was previously encoded with encodePropertylList: (page 291).
- (id)decodePropertylist

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

decodeRect

Decodes and returns an NSRect structure that was previously encoded with encodeRect: (page 291).

280 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

- (NSRect)decodeRect

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

decodeRectForKey:

Decodes and returns an NSRect structure that was previously encoded with encodeRect: forKey: (page
292).

- (NSRect)decodeRectForKey: (NSString *)key

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

decodeSize

Decodes and returns an NSSi ze structure that was previously encoded with encodeSize: (page 293).
- (NSSize)decodeSize

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

decodeSizeForKey:

Decodes and returns an NSSi ze structure that was previously encoded with encodeSize: forKey: (page
293).

- (NSSize)decodeSizeForKey: (NSString *)key

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Reducer

Declared In
NSKeyedArchiver.h

Instance Methods 281
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

282

CHAPTER 18

NSCoder Class Reference

decodeValueOfObjCType:at:

Decodes a single value, whose Objective-C type is given by valueType.
- (void)decodeValueOf0bjCType: (const char *)valueType at:(void *)data

Discussion

valueType must contain exactly one type code, and the buffer specified by data must be large enough to
hold the value corresponding to that type code. For information on creating an Objective-C type code suitable
for valueType, see the “Type Encodings” section in “The Objective-C Runtime System” chapter of The
Objective-C 2.0 Programming Language.

Subclasses must override this method and provide an implementation to decode the value. In your overriding
implementation, decode the value into the buffer beginning at data. If your overriding method is capable
of decoding an Objective-C object, your method must also retain that object. Clients of this method are then
responsible for releasing the object.

This method matches an encodeValue0fObjCType:at: (page 293) message used during encoding.

Availability
Available in Mac OS X v10.0 and later.

See Also
- decodeArray0fObjCType:count:at: (page 274)

- decodeValuesOfObjCTypes: (page 282)
- decodeObject (page 279)

Declared In
NSCoder.h

decodeValuesOfObjCTypes:

Decodes a series of potentially different Objective-C types.
- (void)decodeValuesO0fObjCTypes:(const char *)valueTypes,

Discussion

valueTypes is a single string containing any number of type codes. The variable arguments to this method
consist of one or more pointer arguments, each of which specifies the buffer in which to place a single
decoded value. For each type code in valueTypes, you must specify a corresponding pointer argument
whose buffer is large enough to hold the decoded value. If you use this method to decode Objective-C
objects, you are responsible for releasing them.

This method matches an encodeValues0f0bjCTypes: (page 294) message used during encoding.

NSCoder’s implementation invokes decodeValue0f0bjCType:at: (page 282) to decode individual types.
Subclasses that implement the decodeValue0Of0bjCType:at: (page 282) method do not need to override
this method.

For information on creating Objective-C type codes suitable for valueTypes, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

See Also
- decodeArray0fObjCType:count:at: (page 274)

Declared In
NSCoder.h

encodeArrayOfObjCType:count:at:
Encodes an array of count items, whose Objective-C type is given by 7 temType.

- (void)encodeArray0f0bjCType: (const char *)itemType count:(NSUInteger)count
at:(const void *)address

Discussion

The values are encoded from the buffer beginning at address. i temType must contain exactly one type
code. NSCoder’s implementation invokes encodeValue0fObjCType:at: (page 293) to encode the entire
array of items. Subclasses that implement the encodeValue0f0bjCType:at: (page 293) method do not
need to override this method.

This method must be matched by a subsequent decodeArray0fObjCType:count:at: (page 274) message.

For information on creating an Objective-C type code suitable for 7 temType, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C Programming Language.

Availability
Available in Mac OS X v10.0 and later.

See Also
- encodeValueOfObjCType:at: (page 293)

- encodeValuesOfObjCTypes: (page 294)
- encodeBytes:length: (page 284)

Declared In
NSCoder.h

encodeBool:forKey:
Encodes boo v and associates it with the string key.

- (void)encodeBool:(B0O0OL)boolv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
- decodeBoolForKey: (page 274)

Related Sample Code
iSpend
Reducer

Instance Methods 283
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

284

CHAPTER 18

NSCoder Class Reference

Declared In
NSCoder.h

encodeBycopyObject:

Can be overridden by subclasses to encode object so that a copy, rather than a proxy, is created upon
decoding.

- (void)encodeBycopyObject: (id)object

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 289).

This method must be matched by a corresponding decodeObject (page 279) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
- encodeRootObject: (page 292)

- encodeConditionalObject: (page 285)
- encodeByrefObject: (page 284)

Declared In
NSCoder.h

encodeByrefObject:

Can be overridden by subclasses to encode object so that a proxy, rather than a copy, is created upon
decoding.

- (void)encodeByrefObject:(id)object

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 289).

This method must be matched by a corresponding decodeObject (page 279) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
- encodeBycopyObject: (page 284)

Declared In
NSCoder.h

encodeBytes:length:

Encodes a buffer of data whose types are unspecified.

- (void)encodeBytes:(const void *)address length:(NSUInteger)numBytes

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Discussion
The buffer to be encoded begins at address, and its length in bytes is given by numBytes.

This method must be matched by a corresponding decodeBytesWithReturnedLength: (page 275) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
- encodeArray0fObjCType:count:at: (page 283)

Declared In
NSCoder.h

encodeBytes:length:forKey:

Encodes a buffer of data, by tesp, whose length is specified by 7env, and associates it with the string key.

- (void)encodeBytes:(const uint8_t *)bytesp length:(NSUInteger)lenv forKey:(NSString
*) key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
- decodeBytesForKey:returnedlLength: (page 275)

Declared In
NSCoder.h

encodeConditionalObject:
Can be overridden by subclasses to conditionally encode object, preserving common references to that
object.

- (void)encodeConditionalObject:(id)object

Discussion
In the overriding method, object should be encoded only if it's unconditionally encoded elsewhere (with
any other encode...0bject: method).

This method must be matched by a subsequent decodeObject (page 279) message. Upon decoding, if
object was never encoded unconditionally, decodeObject returns ni1 in place of object. However, if
object was encoded unconditionally, all references to object must be resolved.

NSCoder’s implementation simply invokes encodeObject: (page 289).

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 285
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

286

CHAPTER 18

NSCoder Class Reference

See Also
- encodeRoot0Object: (page 292)

- encodeObject: (page 289)
- encodeBycopyObject: (page 284)
- encodeConditionalObject: (page 101) (NSArchiver)

Declared In
NSCoder.h

encodeConditionalObject:forKey:

Conditionally encodes a reference to 0bj v and associates it with the string key only if 0bjv has been
unconditionally encoded with encodeObject: forKey: (page 290).

- (void)encodeConditionalObject:(id)objv forKey:(NSString *)key

Discussion
Subclasses must override this method if they support keyed coding.

The encoded object is decoded with the decodeObjectForKey: (page 279) method. If 0bjv was never
encoded unconditionally, decodeObjectForKey: (page 279) returns ni1 in place of objv.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
IBFragmentView

Reducer

Declared In
NSCoder.h

encodeDataObject:

Encodes a given NSData object.
- (void)encodeDataObject: (NSData *)data

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeDataObject (page 276) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
- encodeObject: (page 289)

Declared In
NSCoder.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

encodeDouble:forKey:
Encodes realv and associates it with the string key.
- (void)encodeDouble: (double)realv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
- decodeDoubleForKey: (page 276)

- decodeFloatForKey: (page 276)

Related Sample Code
QTQuartzPlayer

Squiggles

Declared In
NSCoder.h

encodeFloat:forKey:

Encodes realv and associates it with the string key.
- (void)encodeFloat:(float)realv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
- decodeFloatForKey: (page 276)

- decodeDoubleForKey: (page 276)

Related Sample Code
iSpend

Declared In
NSCoder.h

encodelnt32:forKey:

Encodes the 32-bit integer 7ntv and associates it with the string key.
- (void)encodeInt32:(int32_t)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

287

288

CHAPTER 18

NSCoder Class Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
- decodeIntForKey: (page 278)

- decodelntegerForKey: (page 278)
- decodeInt32ForKey: (page 277)
- decodelnt64ForKey: (page 277)

Declared In
NSCoder.h

encodelnt64:forKey:

Encodes the 64-bit integer 7ntv and associates it with the string key.
- (void)encodelnt64:(int6d_t)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
- decodelIntForKey: (page 278)

- decodelntegerForKey: (page 278)
- decodeInt32ForKey: (page 277)
- decodelnt64ForKey: (page 277)

Declared In
NSCoder.h

encodelnt:forKey:

Encodes intv and associates it with the string key.
- (void)encodelnt:(int)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
- decodelIntForKey: (page 278)

- decodelntegerForKey: (page 278)
- decodelInt32ForKey: (page 277)
- decodeInt64ForKey: (page 277)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Related Sample Code
Reducer

Declared In
NSCoder.h

encodelnteger:forKey:

Encodes a given NSInteger and associates it with a given key.
- (void)encodelnteger:(NSInteger)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.5 and later.

See Also
- decodelntForKey: (page 278)

- decodelntegerfForKey: (page 278)
- decodelInt32ForKey: (page 277)
- decodelnt64ForKey: (page 277)

Declared In
NSCoder.h

encodeNXObject:
Encodes an old-style object onto the coder. (Deprecated in Mac OS X v10.5.)

- (void)encodeNXObject:(id)object

Discussion

No sharing is done across separate encodeNX0bject : invocations. Callers must have implemented an
encodelithCoder: (page 2034), which parallels the write: methods, on all of their classes that may be
touched by this operation.

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared In
NSCoder.h

encodeObject:

Encodes object.

- (void)encodeObject:(id)object

Instance Methods 289
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Discussion

NSCoder’s implementation simply invokes encodeValue0f0bjCType:at: (page 293) to encode object.
Subclasses can override this method to encode a reference to object instead of object itself. For example,
NSArchiver detects duplicate objects and encodes a reference to the original object rather than encode
the same object twice.

This method must be matched by a subsequent decodeObject (page 279) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
- encodeRoot0Object: (page 292)

- encodeConditionalObject: (page 285)
- encodeBycopyObject: (page 284)

Related Sample Code
bMoviePalette

bMoviePaletteCocoa
Clock Control
StickiesExample

Declared In
NSCoder.h

encodeObject:forKey:

Encodes the object objv and associates it with the string key.
- (void)encodeObject:(id)objv forKey:(NSString *)key

Discussion

Subclasses must override this method to identify multiple encodings of objv and encode a reference to
objvinstead. For example, NSKeyedArchiver detects duplicate objects and encodes a reference to the
original object rather than encode the same object twice.

Availability
Available in Mac OS X v10.2 and later.

See Also
- decodeObjectForKey: (page 279)

Related Sample Code
IBFragmentView

iSpend
Mountains
Squiggles
StickiesExample

Declared In
NSCoder.h

290 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

encodePoint:

Encodes point.
- (void)encodePoint: (NSPoint)point

Discussion
NSCoder’s implementation invokes encodeValue0f0bjCType:at: (page 293) to encode point.

This method must be matched by a subsequent decodePoint (page 280) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

encodePoint:forKey:

Encodes point and associates it with the string key.
- (void)encodePoint: (NSPoint)point forKey:(NSString *)key

Availability
Available in Mac OS X v10.2 and later.

See Also
- decodePointForKey: (page 280)

Declared In
NSKeyedArchiver.h

encodePropertyList:
Encodes the property list aPropertylist.

- (void)encodePropertylList:(id)aPropertylist

Discussion
NSCoder’simplementation invokes encodeValue0fObjCType:at: (page 293)toencode aPropertylist.

This method must be matched by a subsequent decodePropertylist (page 280) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

encodeRect:

Encodes rect.

Instance Methods 291
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

- (void)encodeRect: (NSRect)rect

Discussion
NSCoder’s implementation invokes encodeValue0f0bjCType:at: (page 293) to encode rect.

This method must be matched by a subsequent decodeRect (page 280) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

encodeRect:forKey:

Encodes rect and associates it with the string key.
- (void)encodeRect: (NSRect)rect forKey:(NSString *)key

Availability
Available in Mac OS X v10.2 and later.

See Also
- decodeRectForKey: (page 281)

Declared In
NSKeyedArchiver.h

encodeRootObject:

Can be overridden by subclasses to encode an interconnected group of Objective-C objects, starting with
rootObject.

- (void)encodeRootObject:(id)rootObject

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 289).

This method must be matched by a subsequent decodeObject (page 279) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
- encodeObject: (page 289)

- encodeConditionalObject: (page 285)
- encodeBycopyObject: (page 284)
- encodeRootObject: (page 101) (NSArchiver)

Declared In
NSCoder.h

292 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

encodeSize:

Encodes size.
- (void)encodeSize: (NSSize)size

Discussion
NSCoder’s implementation invokes encodeValue0f0bjCType:at: (page 293) to encode size.

This method must be matched by a subsequent decodeSize (page 281) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

encodeSize:forKey:

Encodes s7ze and associates it with the string key.
- (void)encodeSize: (NSSize)size forKey:(NSString *)key

Availability
Available in Mac OS X v10.2 and later.

See Also
- decodeSizeForKey: (page 281)

Related Sample Code
Reducer

Declared In
NSKeyedArchiver.h

encodeValueOfObjCType:at:

Must be overridden by subclasses to encode a single value residing at address, whose Objective-C type is
given by valueType.

- (void)encodeValue0f0bjCType:(const char *)valueType at:(const void *)address

Discussion
valueType must contain exactly one type code.

This method must be matched by a subsequent decodeValueOf0ObjCType:at: (page 282) message.

For information on creating an Objective-C type code suitable for valueType, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 293
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

294

CHAPTER 18

NSCoder Class Reference

See Also
- encodeArray0fObjCType:count:at: (page 283)

- encodeValues0f0ObjCTypes: (page 294)

Declared In
NSCoder.h

encodeValuesOfObjCTypes:

Encodes a series of values of potentially differing Objective-C types.
- (void)encodeValuesOfObjCTypes:(const char *)valueTypes,

Discussion

valueTypes is a single string containing any number of type codes. The variable arguments to this method
consist of one or more pointer arguments, each of which specifies a buffer containing the value to be encoded.
For each type code in valueTypes, you must specify a corresponding pointer argument.

This method must be matched by a subsequent decodeValuesOf0bjCTypes: (page 282) message.

NSCoder’s implementation invokes encodeValueOf0bjCType:at: (page 293) to encode individual types.
Subclasses that implement the encodeValue0f0bjCType:at: (page 293) method do not need to override
this method. However, subclasses that provide a more efficient approach for encoding a series of values may
override this method to implement that approach.

For information on creating Objective-C type codes suitable for valueTypes, see the “Type Encodings” section
in “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in Mac OS X v10.0 and later.

See Also
- encodeArray0fObjCType:count:at: (page 283)

- encodeValueOfObjCType:at: (page 293)

Declared In
NSCoder.h

objectZone

Returns the memory zone used to allocate decoded objects.
- (NSZone *)objectZone

Discussion
NSCoder’simplementation simply returns the default memory zone, as given by NSDefaultMallocZone ().

Subclasses must override this method and the setObjectZone: (page 295) method to allow objects to be
decoded into a zone other than the default zone. In its overriding implementation of this method, your
subclass should return the current memory zone (if one has been set) or the default zone (if no other zone
has been set).

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

setObjectZone:

NSCoder’s implementation of this method does nothing.
- (void)setObjectZone: (NSZone *)zone

Discussion
Can be overridden by subclasses to set the memory zone used to allocate decoded objects.

Subclasses must override this method and objectZone (page 294) to allow objects to be decoded into a
zone other than the default zone. In its overriding implementation of this method, your subclass should store
a reference to the current memory zone.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

systemVersion

During encoding, this method should return the system version currently in effect.
- (unsigned)systemVersion

Discussion
During decoding, this method should return the version that was in effect when the data was encoded.

By default, this method returns the current system version, which is appropriate for encoding but not for
decoding. Subclasses that implement decoding must override this method to return the system version of
the data being decoded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

versionForClassName:

Returns the version in effect for the class with a given name.
- (NSInteger)versionForClassName: (NSString *)className

Return Value
The version in effect for the class named c7assName or NSNotFound if no class named c7assName exists.

Instance Methods 295
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Discussion
When encoding, this method returns the current version number of the class. When decoding, this method
returns the version number of the class being decoded. Subclasses must override this method.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setVersion: (page 1166) (NSObject)

+ version (page 1167) (NSObject)

Declared In
NSCoder.h

296 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

Inherits from NSPredicate : NSObject
Conforms to NSCoding (NSPredicate)
NSCopying (NSPredicate)
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.4 and later.
Declared in Foundation/NSComparisonPredicate.h
Companion guide Predicate Programming Guide
Related sample code CoreRecipes
iSpend

PredicateEditorSample

Overview

Tasks

NSComparisonPredicate isa subclass of NSPredicate used to compare expressions.

Comparison predicates are predicates used to compare the results of two expressions. Comparison predicates
take an operator, a left expression, and a right expression, and return as a BOOL the result of invoking the
operator with the results of evaluating the expressions. Expressions are represented by instances of the
NSExpression class.

Constructors

+ predicateWithleftExpression:rightExpression:customSelector: (page 298)
Returns a new predicate formed by combining the left and right expressions using a given selector.

+ predicateWithlLeftExpression:rightExpression:modifier:type:options: (page 299)

Creates and returns a predicate of a given type formed by combining given left and right expressions
using a given modifier and options.

- initWithlLeftExpression:rightExpression:customSelector: (page 300)
Initializes a predicate formed by combining given left and right expressions using a given selector.

Overview 297
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

- initWithLeftExpression:rightExpression:modifier:type:options: (page 301)
Initializes a predicate to a given type formed by combining given left and right expressions using a
given modifier and options.

Getting Information About a Comparison Predicate

- comparisonPredicateModifier (page 299)
Returns the comparison predicate modifier for the receiver.

- customSelector (page 300)
Returns the selector for the receiver.
- leftExpression (page 301)
Returns the left expression for the receiver.
- options (page 301)
Returns the options that are set for the receiver.
- predicateOperatorType (page 302)
Returns the predicate type for the receiver.
- rightExpression (page 302)
Returns the right expression for the receiver.

Class Methods

298

predicateWithLeftExpression:rightExpression:customSelector:

Returns a new predicate formed by combining the left and right expressions using a given selector.

+ (NSPredicate *)predicateWithLeftExpression:(NSExpression *)Ths
rightExpression: (NSExpression *)rhs customSelector:(SEL)selector

Parameters
Ths
The left hand side expression.
rhs
The right hand side expression.
selector
The selector to use for comparison. The method defined by the selector must take a single argument
and return a BOOL value.

Return Value
A new predicate formed by combining the left and right expressions using selector.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSComparisonPredicate.h

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

predicateWithLeftExpression:rightExpression:modifier:type:options:

Creates and returns a predicate of a given type formed by combining given left and right expressions using
a given modifier and options.

+ (NSPredicate *)predicateWithLeftExpression:(NSExpression *)I1hs
rightExpression: (NSExpression *)rhs
modifier: (NSComparisonPredicateModifier)modifier
type: (NSPredicateOperatorType)type options:(NSUInteger)options

Parameters
Ths
The left hand expression.

rhs
The right hand expression.

modifier
The modifier to apply.
type
The predicate operator type.
options
The options to apply (see NSComparisonPredicate Options (page 303)).

Return Value
A new predicate of type type formed by combining the given left and right expressions using the modifier
and options.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
iSpend
PredicateEditorSample

Declared In
NSComparisonPredicate.h

Instance Methods

comparisonPredicateModifier

Returns the comparison predicate modifier for the receiver.
- (NSComparisonPredicateModifier)comparisonPredicateModifier

Return Value
The comparison predicate modifier for the receiver.

Discussion
The default value is NSDirectPredicateModifier (page 303).

Instance Methods 299
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

300

CHAPTER 19

NSComparisonPredicate Class Reference

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
PredicateEditorSample

Declared In
NSComparisonPredicate.h

customSelector

Returns the selector for the receiver.
- (SEL)customSelector

Return Value
The selector for the receiver, or NULL if there is none.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSComparisonPredicate.h

initWithLeftExpression:rightExpression:customSelector:

Initializes a predicate formed by combining given left and right expressions using a given selector.

- (id)initWithLeftExpression: (NSExpression *)7hs rightExpression: (NSExpression
*)rhs customSelector:(SEL)selector

Parameters
Ths
The left hand expression.
rhs
The right hand expression.
selector
The selector to use. The method defined by the selector must take a single argument and return a
BOOL value.

Return Value
The receiver, initialized by combining the left and right expressions using selector.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSComparisonPredicate.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

initWithLeftExpression:rightExpression:modifier:type:options:
Initializes a predicate to a given type formed by combining given left and right expressions using a given
modifier and options.

- (id)initWithLeftExpression: (NSExpression *)7hs rightExpression: (NSExpression
*)rhs modifier:(NSComparisonPredicateModifier)modifier
type: (NSPredicateOperatorType)type options:(NSUInteger)options

Parameters
Ths
The left hand expression.

rhs
The right hand expression.

modifier
The modifier to apply.

type
The predicate operator type.

options
The options to apply (see NSComparisonPredicate Options (page 303)).

Return Value
The receiver, initialized to a predicate of type type formed by combining the left and right expressions using
the modifierand options.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSComparisonPredicate.h

leftExpression

Returns the left expression for the receiver.
- (NSExpression *)leftExpression

Return Value
The left expression for the receiver, or ni1 if there is none.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
PredicateEditorSample

Declared In
NSComparisonPredicate.h

options

Returns the options that are set for the receiver.

Instance Methods 301
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

302

CHAPTER 19

NSComparisonPredicate Class Reference

- (NSUInteger)options

Return Value
The options that are set for the receiver.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
PredicateEditorSample

Declared In
NSComparisonPredicate.h

predicateOperatorType

Returns the predicate type for the receiver.
- (NSPredicateOperatorType)predicateOperatorType

Return Value
The predicate type for the receiver.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreRecipes

PredicateEditorSample

Declared In
NSComparisonPredicate.h

rightExpression

Returns the right expression for the receiver.
- (NSExpression *)rightExpression

Return Value
The right expression for the receiver, or ni1 if there is none.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
PredicateEditorSample

Declared In
NSComparisonPredicate.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

Constants

NSComparisonPredicateModifier

These constants describe the possible types of modifier for NSComparisonPredicate.

typedef enum {
NSDirectPredicateModifier = 0,
NSAT1PredicateModifier,
NSAnyPredicateModifier,

} NSComparisonPredicateModifier;

Constants
NSDirectPredicateModifier
A predicate to compare directly the left and right hand sides.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSAT1PredicateModifier
A predicate to compare all entries in the destination of a to-many relationship.

The left hand side must be a collection. The corresponding predicate compares each value in the left
hand side with the right hand side, and returns NO when it finds the first mismatch—or YES if all
match.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSAnyPredicateModifier
A predicate to match with any entry in the destination of a to-many relationship.

The left hand side must be a collection. The corresponding predicate compares each value in the left
hand side against the right hand side and returns Y ES when it finds the first match—or NO if no match
is found

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

Declared In
NSComparisonPredicate.h

NSComparisonPredicate Options

These constants describe the possible types of string comparison for NSComparisonPredicate.

Constants 303
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

enum {
NSCaselnsensitivePredicateOption = 0x01,
NSDiacriticInsensitivePredicateOption = 0x02,
b

Constants
NSCaselnsensitivePredicateOption
A case-insensitive predicate.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSDiacriticInsensitivePredicateOption
A diacritic-insensitive predicate.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

Declared In
NSComparisonPredicate.h

NSPredicateOperatorType

Defines the type of comparison for NSComparisonPredicate.

typedef enum {
NSLessThanPredicateOperatorType = 0,
NSLessThanOrEqualToPredicateOperatorType,
NSGreaterThanPredicateOperatorType,
NSGreaterThanOrtqualToPredicateOperatorType,
NSEqualToPredicateOperatorType,
NSNotEqualToPredicateOperatorType,
NSMatchesPredicateOperatorType,
NSLikePredicateOperatorType,
NSBeginsWithPredicateOperatorType,
NSEndsWithPredicateOperatorType,
NSInPredicateOperatorType,
NSCustomSelectorPredicateOperatorType,
NSContainsPredicateOperatorType,
NSBetweenPredicateOperatorType

} NSPredicateOperatorType;

Constants
NSLessThanPredicateOperatorType
A less-than predicate.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSLessThanOrEqualToPredicateOperatorType
A less-than-or-equal-to predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

304 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

NSGreaterThanPredicateOperatorType
A greater-than predicate.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSGreaterThanOrEqualToPredicateOperatorType
A greater-than-or-equal-to predicate.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSEqualToPredicateOperatorType
An equal-to predicate.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSNotEqualToPredicateOperatorType
A not-equal-to predicate.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSMatchesPredicateOperatorType
A full regular expression matching predicate.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSLikePredicateOperatorType
A simple subset of the matches predicate, similar in behavior to SQL LIKE.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSBeginsWithPredicateOperatorType
A begins-with predicate.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSEndsWithPredicateOperatorType
An ends-with predicate.

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSInPredicateOperatorType
A predicate to determine if the left hand side is in the right hand side.

For strings, returns YES if the left hand side is a substring of the right hand side . For collections,
returns YES if the left hand side is in the right hand side .

Available in Mac OS X v10.4 and later.
Declared in NSComparisonPredicate.h.

NSCustomSelectorPredicateOperatorType
Predicate that uses a custom selector that takes a single argument and returns a BOOL value.

The selector is invoked on the left hand side with the right hand side.
Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

Constants 305
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

NSContainsPredicateOperatorType
A predicate to determine if the left hand side contains the right hand side.

Returns YES if [1hs contains rhs]; the left hand side must be an NSExpression object that
evaluates to a collection

Available in Mac OS X v10.5 and later.
Declared in NSComparisonPredicate.h.

NSBetweenPredicateOperatorType
A predicate to determine if the right hand side lies between bounds specified by the left hand side.

Returns YES if [1hs between rhs];the right hand side must be an array in which the first element
sets the lower bound and the second element the upper, inclusive. Comparison is performed using
compare: or the class-appropriate equivalent.

Available in Mac OS X v10.5 and later.
Declared in NSComparisonPredicate.h.

Declared In
NSComparisonPredicate.h

306 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSCompoundPredicate Class Reference

Inherits from NSPredicate : NSObject
Conforms to NSCoding (NSPredicate)
NSCopying (NSPredicate)
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.4 and later.
Declared in Foundation/NSCompoundPredicate.h
Companion guide Predicate Programming Guide
Related sample code CoreRecipes
iSpend

PredicateEditorSample
SpotlightFortunes

Overview

Tasks

NSCompoundPredicate is a subclass of NSPredicate used to represent logical “gate” operations
(AND/OR/NQOT) and comparison operations.

Comparison operations are based on two expressions, as represented by instances of the NSExpression
class. Expressions are created for constant values, key paths, and so on.

On Mac OS X v10.5 and later, NSCompoundPredi cate allows you to create an AND or OR compound predicate
(but not a NOT compound predicate) using an array with 0,1, or more elements. A compound predicate with
0 elements evaluates to TRUE, and a compound predicate with a single sub-predicate evaluates to the truth
of its sole subpredicate.

Constructors

+ andPredicateWithSubpredicates: (page 308)
Returns a new predicate formed by AND-ing the predicates in a given array.

Overview 307
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSCompoundPredicate Class Reference

+ notPredicateWithSubpredicate: (page 308)
Returns a new predicate formed by NOT-ing a given predicate.

+ orPredicateWithSubpredicates: (page 309)
Returns a new predicate formed by OR-ing the predicates in a given array.

- initWithType:subpredicates: (page 310)
Returns the receiver initialized to a given type using predicates from a given array.

Getting Information About a Compound Predicate

- compoundPredicateType (page 309)
Returns the predicate type for the receiver.

- subpredicates (page 310)
Returns the array of the receiver’s subpredicates.

Class Methods

308

andPredicateWithSubpredicates:

Returns a new predicate formed by AND-ing the predicates in a given array.
+ (NSPredicate *)andPredicateWithSubpredicates: (NSArray *)subpredicates

Parameters

subpredicates
An array of NSPredicate objects.
Return Value
A new predicate formed by AND-ing the predicates specified by subpredicates.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
iSpend
PredicateEditorSample
SpotlightFortunes

Declared In
NSCompoundPredicate.h

notPredicateWithSubpredicate:

Returns a new predicate formed by NOT-ing a given predicate.

+ (NSPredicate *)notPredicateWithSubpredicate: (NSPredicate *)predicate

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSCompoundPredicate Class Reference

Parameters

predicate
A predicate.

Return Value

A new predicate formed by NOT-ing the predicate specified by predicate.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCompoundPredicate.h

orPredicateWithSubpredicates:

Returns a new predicate formed by OR-ing the predicates in a given array.

+ (NSPredicate *)orPredicateWithSubpredicates: (NSArray *)subpredicates

Parameters
subpredicates
An array of NSPredicate objects.

Return Value

A new predicate formed by OR-ing the predicates specified by subpredicates.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
iSpend

Declared In
NSCompoundPredicate.h

Instance Methods

compoundPredicateType

Returns the predicate type for the receiver.
- (NSCompoundPredicateType)compoundPredicateType

Return Value
The predicate type for the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCompoundPredicate.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

309

CHAPTER 20

NSCompoundPredicate Class Reference

initWithType:subpredicates:

Returns the receiver initialized to a given type using predicates from a given array.

- (id)initWithType: (NSCompoundPredicateType)type subpredicates: (NSArray
*)subpredicates

Parameters

type
The type of the new predicate.

subpredicates
An array of NSPredicate objects.

Return Value
The receiver initialized with its type set to type and subpredicates array to subpredicates.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
PredicateEditorSample

Declared In
NSCompoundPredicate.h

subpredicates

Returns the array of the receiver’s subpredicates.
- (NSArray *)subpredicates

Return Value
The array of the receiver’s subpredicates.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCompoundPredicate.h

Constants

Compound Predicate Types

These constants describe the possible types of NSCompoundPredicate.

310 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSCompoundPredicate Class Reference

typedef enum {
NSNotPredicateType = 0,
NSAndPredicateType,
NSOrPredicateType,

} NSCompoundPredicateType;

Constants
NSNotPredicateType
A logical NOT predicate.

Available in Mac OS X v10.4 and later.
Declared in NSCompoundPredicate.h.

NSAndPredicateType
A logical AND predicate.

Available in Mac OS X v10.4 and later.
Declared in NSCompoundPredicate.h.

NSOrPredicateType
A logical OR predicate.

Available in Mac OS X v10.4 and later.
Declared in NSCompoundPredicate.h.

Declared In
NSCompoundPredicate.h

Constants 3N
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSCompoundPredicate Class Reference

312 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCondition Class Reference

Inherits from NSObject
Conforms to NSLocking
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.5 and later.
Declared in Foundation/NSLock.h
Companion guide Threading Programming Guide
Overview

The NSCond1ition class implements a condition variable whose semantics follow those used for POSIX-style
conditions. A condition object acts as both a lock and a checkpoint in a given thread. The lock protects your
code while it tests the condition and performs the task triggered by the condition. The checkpoint behavior
requires that the condition be true before the thread proceeds with its task. While the condition is not true,
the thread blocks. It remains blocked until another thread signals the condition object.

The semantics for using an NSCondi tion object are as follows:
1. Lock the condition object.

2. Test a boolean predicate. (This predicate is a boolean flag or other variable in your code that indicates
whether it is safe to perform the task protected by the condition.)

3. If the boolean predicate is false, call the condition object’s wait orwaitUntilDate: method to block
the thread. Upon returning from these methods, go to step 2 to retest your boolean predicate. (Continue
waiting and retesting the predicate until it is true.)

4. |If the boolean predicate is true, perform the task.
5. Optionally update any predicates (or signal any conditions) affected by your task.

6. When your task is done, unlock the condition object.

The pseudocode for performing the preceding steps would therefore look something like the following:

lock the condition
while (!(boolean_predicate)) {
wait on condition

Overview 313
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

314

CHAPTER 21

NSCondition Class Reference

}

do protected work

(optionally, signal or broadcast the condition again or change a predicate value)
unlock the condition

Whenever you use a condition object, the first step is to lock the condition. Locking the condition ensures
that your predicate and task code are protected from interference by other threads using the same condition.
Once you have completed your task, you can set other predicates or signal other conditions based on the
needs of your code. You should always set predicates and signal conditions while holding the condition
object’s lock.

When a thread waits on a condition, the condition object unlocks its lock and blocks the thread. When the
condition is signaled, the system wakes up the thread. The condition object then reacquires its lock before
returning from the wait or waitUntilDate: method. Thus, from the point of view of the thread, it is as if
it always held the lock.

A boolean predicate is an important part of the semantics of using conditions because of the way signaling
works. Signaling a condition does not guarantee that the condition itself is true. There are timing issues
involved in signaling that may cause false signals to appear. Using a predicate ensures that these spurious
signals do not cause you to perform work before it is safe to do so. The predicate itself is simply a flag or
other variable in your code that you test in order to acquire a Boolean result.

For more information on how to use conditions, see Using POSIX Thread Locks in Threading Programming
Guide.

Waiting for the Lock

- wait (page 316)
Blocks the current thread until the condition is signaled.

- waitUntilDate: (page 317)
Blocks the current thread until the condition is signaled or the specified time limit is reached.

Signaling Waiting Threads

- signal (page 316)
Signals the condition, waking up one thread waiting on it.

- broadcast (page 315)
Signals the condition, waking up all threads waiting on it.

Accessor Methods

- setName: (page 315)
Assigns a name to the receiver.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCondition Class Reference

- name (page 315)
Returns the name associated with the receiver.

Instance Methods

broadcast

Signals the condition, waking up all threads waiting on it.
- (void)broadcast

Discussion
If no threads are waiting on the condition, this method does nothing.

To avoid race conditions, you should invoke this method only while the receiver is locked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLock.h

name

Returns the name associated with the receiver.
- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setName: (page 315)

Declared In
NSLock.h

setName:

Assigns a name to the receiver.
- (void)setName: (NSString *)newName

Parameters
newName
The new name for the receiver. This method makes a copy of the specified string.

Instance Methods 315
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCondition Class Reference

Discussion
You can use a name string to identify a condition object within your code. Cocoa also uses this name as part
of any error descriptions involving the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- name (page 315)

Declared In
NSLock.h

signal

Signals the condition, waking up one thread waiting on it.
- (void)signal

Discussion

You use this method to wake up one thread that is waiting on the condition. You may call this method
multiple times to wake up multiple threads. If no threads are waiting on the condition, this method does
nothing.

To avoid race conditions, you should invoke this method only while the receiver is locked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLock.h

wait
Blocks the current thread until the condition is signaled.
- (void)wait

Discussion
You must lock the receiver prior to calling this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
- lock (page 2091) (NSLocking)

Declared In
NSLock.h

316 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCondition Class Reference

waitUntilDate:

Blocks the current thread until the condition is signaled or the specified time limit is reached.
- (BOOL)waitUntilDate: (NSDate *)Timit

Parameters
limit
The time at which to wake up the thread if the condition has not been signaled.

Return Value
YES if the condition was signaled; otherwise, NO if the time limit was reached.

Discussion
You must lock the receiver prior to calling this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
- lock (page 2091) (NSLocking)

Declared In
NSLock.h

Instance Methods 317
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCondition Class Reference

318 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

NSConditionLock Class Reference

Inherits from NSObject
Conforms to NSLocking
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSLock.h
Companion guide Threading Programming Guide
Related sample code QTAudioExtractionPanel

Vertex Optimization

Overview

The NSConditionlLock class defines objects whose locks can be associated with specific, user-defined
conditions. Using an NSConditionLock object, you can ensure that a thread can acquire a lock only if a
certain condition is met. Once it has acquired the lock and executed the critical section of code, the thread
can relinquish the lock and set the associated condition to something new. The conditions themselves are
arbitrary: you define them as needed for your application.

Adopted Protocols

NSLocking
lTock (page 2091)

unlock (page 2092)

Tasks

Initializing an NSConditionLock Object
- initWithCondition: (page 321)

Initializes a newly allocated NSConditionLock object and sets its condition.

Overview 319
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

NSConditionLock Class Reference

Returning the Condition

- condition (page 320)
Returns the condition associated with the receiver.

Acquiring and Releasing a Lock

- lockBeforeDate: (page 321)
Attempts to acquire a lock before a specified moment in time.

- lockWhenCondition: (page 321)
Attempts to acquire a lock.
- lockWhenCondition:beforeDate: (page 322)
Attempts to acquire a lock before a specified moment in time.
- trylock (page 323)
Attempts to acquire a lock without regard to the receiver’s condition.
- trylockWhenCondition: (page 324)
Attempts to acquire a lock if the receiver’s condition is equal to the specified condition.

- unlockWithCondition: (page 324)
Relinquishes the lock and sets the receiver’s condition.

Accessor Methods

- setName: (page 323)
Assigns a name to the receiver.
- name (page 322)
Returns the name associated with the receiver.

Instance Methods

320

condition

Returns the condition associated with the receiver.
- (NSInteger)condition

Return Value
The condition associated with the receiver. If no condition has been set, returns 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLock.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

NSConditionLock Class Reference

initWithCondition:

Initializes a newly allocated NSConditionLock object and sets its condition.
- (id)initWithCondition: (NSInteger)condition

Parameters
condition

The user-defined condition for the lock. The value of conditionis user-defined; see the class
description for more information.

Return Value
An initialized condition lock object; may be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTAudioExtractionPanel

Vertex Optimization

Declared In
NSLock.h

lockBeforeDate:

Attempts to acquire a lock before a specified moment in time.
- (BOOL)TockBeforeDate: (NSDate *)77mit

Parameters
limit
The date by which the lock must be acquired or the attempt will time out.

Return Value
YES if the lock is acquired within the time limit, NO otherwise.

Discussion
The condition associated with the receiver isn't taken into account in this operation. This method blocks the
thread’s execution until the receiver acquires the lock or 77mit is reached.

Availability
Available in Mac OS X v10.0 and later.

See Also
- lockWhenCondition:beforeDate: (page 322)

Declared In
NSLock.h

lockWhenCondition:

Attempts to acquire a lock.

Instance Methods 321
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

322

CHAPTER 22

NSConditionLock Class Reference

- (void)lockWhenCondition: (NSInteger)condition

Parameters
condition
The condition to match on.

Discussion
The receiver’s condition must be equal to cond7t i on before the locking operation will succeed. This method
blocks the thread’s execution until the lock can be acquired.

Availability
Available in Mac OS X v10.0 and later.

See Also
- lockWhenCondition:beforeDate: (page 322)

- unlockWithCondition: (page 324)

Declared In
NSLock.h

lockWhenCondition:beforeDate:

Attempts to acquire a lock before a specified moment in time.
- (BOOL)TockWhenCondition: (NSInteger)condition beforeDate:(NSDate *)/1imit

Parameters
condition
The condition to match on.
Timit
The date by which the lock must be acquired or the attempt will time out.

Return Value
YES if the lock is acquired within the time limit, NO otherwise.

Discussion
The receiver’s condition must be equal to cond1i t 7 on before the locking operation will succeed. This method
blocks the thread’s execution until the lock can be acquired or 77mit is reached.

Availability
Available in Mac OS X v10.0 and later.

See Also
- lockBeforeDate: (page 321)

- lockWhenCondition: (page 321)

Declared In
NSLock.h

name

Returns the name associated with the receiver.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

NSConditionLock Class Reference

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setName: (page 323)

Declared In
NSLock.h

setName:

Assigns a name to the receiver.
- (void)setName: (NSString *)newName

Parameters
newName

The new name for the receiver. This method makes a copy of the specified string.

Discussion

You can use a name string to identify a condition lock within your code. Cocoa also uses this name as part

of any error descriptions involving the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- name (page 322)

Declared In
NSLock.h

tryLock

Attempts to acquire a lock without regard to the receiver’s condition.

- (BOOL)tryLock

Return Value
YES if the lock could be acquired, NO otherwise.

Discussion
This method returns immediately.

Availability
Available in Mac OS X v10.0 and later.

See Also
- trylockWhenCondition: (page 324)

Instance Methods

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

323

CHAPTER 22

NSConditionLock Class Reference

Declared In
NSLock.h

tryLockWhenCondition:

Attempts to acquire a lock if the receiver’s condition is equal to the specified condition.
- (BOOL)tryLockWhenCondition: (NSInteger)condition

Return Value
YES if the lock could be acquired, NO otherwise.

Discussion
As part of its implementation, this method invokes TockWhenCondition:beforeDate: (page 322). This
method returns immediately.

Availability
Available in Mac OS X v10.0 and later.

See Also
- trylock (page 323)

Declared In
NSLock.h

unlockWithCondition:

Relinquishes the lock and sets the receiver’s condition.
- (void)unlockWithCondition: (NSInteger)condition

Parameters

condition
The user-defined condition for the lock. The value of conditionis user-defined; see the class
description for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
- lockWhenCondition: (page 321)

Declared In
NSLock.h

324 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Inherits from NSObject
Conforms to NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSConnection.h
Companion guide Distributed Objects Programming Topics
Related sample code SimpleThreads
TrivialThreads
Overview

Tasks

An NSConnection object manages the communication between objects in different threads or between a
thread and a process running on a local or remote system. Connection objects form the backbone of the
distributed objects mechanism and normally operate in the background. You use the methods of
NSConnection explicitly when vending an object to other applications, when accessing such a vended
object through a proxy, and when altering default communication parameters. At other times, you simply
interact with a vended object or its proxy.

In Mac OS X v10.5 and later, a single connection object may be shared by multiple threads and used to access
a vended object by default. Prior to Mac OS X v10.5, a separate connection object must be maintained by
each thread by default; however, an application can enable sharing by invoking the enableMultipleThreads
method of the object.

Getting the Default Instance

+ defaultConnection (page 331)
Returns the default NSConnection object for the current thread.

Overview 325
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

326

CHAPTER 23

NSConnection Class Reference

Creating Instances

+ connectionWithReceivePort:sendPort: (page 329)
Returns an NSConnection object that communicates using given send and receive ports.

- initWithReceivePort:sendPort: (page 337)
Returns an NSConnection object initialized with given send and receive ports.

Running the Connection in a New Thread

- runInNewThread (page 345)
Creates and starts a new NSThread object and then runs the receiving connection in the new thread.

- enableMultipleThreads (page 336)
Configures the receiver to allow requests from multiple threads to the remote object, without requiring
each thread to each maintain its own connection.

- multipleThreadsEnabled (page 339)

Returns a Boolean value that indicates whether the receiver supports requests from multiple threads.

- addRunloop: (page 335)
Adds the specified run loop to the list of run loops the receiver monitors and from which it responds
to requests.

- removeRunlLoop: (page 342)

Removes a given NSRunlLoop object from the list of run loops the receiver monitors and from which
it responds to requests.

Vending a Service

+ serviceConnectionWithName:rootObject:usingNameServer: (page 334)
Creates and returns a new connection object representing a vended service on the specified port
name server.
+ serviceConnectionWithName:rootObject: (page 333)
Creates and returns a new connection object representing a vended service on the default system
port name server.
- registerName: (page 340)
Registers the specified service using with the default system port name server.
- registerName:withNameServer: (page 341)
Registers a service with the specified port name server.
- setRootObject: (page 347)
Sets the object that the receiver makes available to other applications or threads.
- rootObject (page 344)
Returns the object that the receiver (or its parent) makes available to other applications or threads.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Getting a Remote Object

+ connectionWithRegisteredName:host: (page 330)
Returns the NSConnection object whose send port links it to the NSConnection object registered
with the default NSPortNameServer under a given name on a given host.

+ connectionWithRegisteredName:host:usingNameServer: (page 331)
Returns the NSConnection object whose send port links it to the NSConnection object registered
under a given name with a given server on a given host.

- rootProxy (page 344)
Returns the proxy for the root object of the receiver’s peer in another application or thread.

+ rootProxyForConnectionWithRegisteredName:host: (page 332)

Returns a proxy for the root object of the NSConnection object registered with the default
NSPortNameServer under a given name on a given host.

+ rootProxyForConnectionWithRegisteredName:host:usingNameServer: (page 333)
Returns a proxy for the root object of the NSConnection object registered with server under name
on a given host.

remoteObjects (page 342)
Returns all the local proxies for remote objects that have been received over the connection but not
deallocated yet.

- localObjects (page 339)

Returns the local objects that have been sent over the connection and still have proxies at the other
end.

Getting a Conversation

+ currentConversation (page 331)
Returns a token object representing any conversation in progress in the current thread.

Getting All NSConnection Objects

+ allConnections (page 329)
Returns all valid NSConnection objects in the process.

Configuring Instances

- setRequestTimeout: (page 347)
Sets the timeout interval for outgoing remote messages.

- requestTimeout (page 344)
Returns the timeout interval for outgoing remote messages.
- setReplyTimeout: (page 347)
Sets the timeout interval for replies to outgoing remote messages
- replyTimeout (page 343)
Returns the timeout interval for replies to outgoing remote messages.

Tasks 327
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

328

CHAPTER 23

NSConnection Class Reference

setIndependentConversationQueueing: (page 346)

Sets a Boolean value that specifies whether the receiver handles remote messages atomically.
independentConversationQueueing (page 336)

Returns a Boolean value that indicates whether the receiver handles remote messages atomically.
addRequestMode: (page 335)

Adds mode to the set of run-loop input modes that the receiver uses for connection requests.
removeRequestMode: (page 342)

Removes mode from the set of run-loop input modes the receiver uses for connection requests.
requestModes (page 343)

Returns the set of request modes the receiver’s receive port is registered for with its NSRunLoop

object.
invalidate (page 338)

Invalidates (but doesn'’t release) the receiver.
isValid (page 338)

Returns a Boolean value that indicates whether the receiver is known to be valid.

Getting Ports

- receivePort (page 340)

Returns the NSPort object on which the receiver receives incoming network messages.

- sendPort (page 345)

Returns the NSPort object that the receiver sends outgoing network messages through.

Getting Statistics

- statistics (page 348)

Returns an NSDictionary object containing various statistics for the receiver.

Setting the Delegate

- setDelegate: (page 346)

Sets the receiver’s delegate.

- delegate (page 336)

Returns the receiver’s delegate.

Authenticating

- authenticateComponents:withData: (page 348)

Returns a Boolean value that indicates whether given authentication data is valid for a given set of
components.

- authenticationDataForComponents: (page 349)

Returns an NSData object to be used as an authentication stamp for an outgoing message.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Responding to a Connection

- connection:shouldMakeNewConnection: (page 350)

Returns a Boolean value that indicates whether the parent connection should allow a given new
connection to be created.

- connection:handleRequest: (page 350)
This method should be implemented by NSConnection object delegates that want to intercept
distant object requests.

- createConversationForConnection: (page 351)

Returns an arbitrary object identifying a new conversation being created for the connection in the
current thread.

- makeNewConnection:sender: (page 351)

Returns a Boolean value that indicates whether the parent should allow a given new connection to
be created and configured.

Class Methods

allConnections

Returns all valid NSConnection objects in the process.
+ (NSArray *)allConnections

Return Value
An array containing all valid NSConnection objects in the process.

Availability
Available in Mac OS X v10.0 and later.

See Also
- isValid (page 338)

Declared In
NSConnection.h

connectionWithReceivePort:sendPort:

Returns an NSConnection object that communicates using given send and receive ports.
+ (id)connectionWithReceivePort: (NSPort *)receivePort sendPort:(NSPort *)sendPort

Parameters
receivePort

A receive port.
sendPort

A send port.

Return Value
An NSConnection object that communicates using receivePort and sendPort.

Class Methods 329
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

330

CHAPTER 23

NSConnection Class Reference

Discussion
See initWithReceivePort:sendPort: (page 337) for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultConnection (page 331)

Related Sample Code
SimpleThreads

TrivialThreads

Declared In
NSConnection.h

connectionWithRegisteredName:host:

Returns the NSConnection object whose send port links it to the NSConnection object registered with the
default NSPortNameServer under a given name on a given host.

+ (id)connectionWithRegisteredName: (NSString *)name host:(NSString *)hostName

Parameters
name
The name of an NSConnection object.

hostName
The name of the host. The domain name hostName is an Internet domain name (for example,
“sales.anycorp.com”).If hostNameis nil or empty, then only the local host is searched for the
named NSConnection object.

Return Value

The NSConnection object whose send port links it to the NSConnection object registered with the default
NSPortNameServer under name on the host named hostName. Returns ni1 if no NSConnection object
can be found for name and hostName.

The returned NSConnection object is a child of the default NSConnect1ion object for the current thread
(that is, it shares the default NSConnection object's receive port).

Discussion

To get the object vended by the NSConnection object, use the rootProxy (page 344) instance method.
The rootProxyForConnectionlithRegisteredName:host: (page 332) class method immediately returns
this object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultConnection (page 331)

+ connectionWithRegisteredName:host:usingNameServer: (page 331)

Declared In
NSConnection.h

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

connectionWithRegisteredName:host:usingNameServer:
Returns the NSConnection object whose send port links it to the NSConnection object registered under
a given name with a given server on a given host.

+ (id)connectionWithRegisteredName: (NSString *)name host:(NSString *)hostName
usingNameServer: (NSPortNameServer *)server

Parameters
name
The connection name.

hostName
The host name.

server
The name server.

Return Value
The NSConnection object whose send port links it to the NSConnection object registered with server
under name on the host named hostName.

Discussion
See connectionWithRegisteredName:host: (page 330) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

currentConversation

Returns a token object representing any conversation in progress in the current thread.
+ (id)currentConversation

Return Value
A token object representing any conversation in progress in the current thread, or ni1 if there is no
conversation in progress.

Availability
Available in Mac OS X v10.0 and later.

See Also
- createConversationfForConnection: (page 351)

Declared In
NSConnection.h

defaultConnection

Returns the default NSConnection object for the current thread.

+ (NSConnection *)defaultConnection

Class Methods 331
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

332

CHAPTER 23

NSConnection Class Reference

Return Value
The default NSConnection object for the current thread, creating it if necessary.

Discussion

The default NSConnection object uses a single NSPort object for both receiving and sending and is useful
only for vending an object; use the setRoot0bject: (page 347) and registerName: (page 340) methods
to do this.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

rootProxyForConnectionWithRegisteredName:host:

Returns a proxy for the root object of the NSConnection object registered with the default
NSPortNameServer under a given name on a given host.

+ (NSDistantObject *)rootProxyForConnectionWithRegisteredName: (NSString *)name
host: (NSString *)hostName

Parameters
name
The name under which the connection is registered.

hostName
The host name. The domain name hostName is an Internet domain name (for example,
"sales.anycorp.com").If hostNameisnil or empty, then only the local host is searched for the
named NSConnection object.

Return Value

a proxy for the root object of the NSConnection object registered with the default NSPortNameServer
under name on the host named hostName, or nil if that NSConnection object has no root object set. Also
returns ni1 if no NSConnection object can be found for name and hostName.

Discussion
The NSConnection object of the returned proxy is a child of the default NSConnection object for the
current thread (that is, it shares the default NSConnection object's receive port).

This method invokes connectionllithRegisteredName:host: (page 330) and sends the resulting
NSConnection objecta rootProxy (page 344) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setRootObject: (page 347)

+ rootProxyForConnectionWithRegisteredName:host:usingNameServer: (page 333)

Declared In
NSConnection.h

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

rootProxyForConnectionWithRegisteredName:host:usingNameServer:

Returns a proxy for the root object of the NSConnection object registered with server under name on a
given host.

+ (NSDistantObject *)rootProxyForConnectionWithRegisteredName: (NSString *)name
host: (NSString *)hostName usingNameServer:(NSPortNameServer *)server

Parameters
name
The name of an NSConnection object.

hostName
A host name.

server
The server.

Return Value

A proxy for the root object of the NSConnection object registered with server under name on the host

named hostName, or nil if that NSConnection object has no root object set.

Discussion
See rootProxyForConnectionWithRegisteredName:host: (page 332) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

serviceConnectionWithName:rootObject:

Creates and returns a new connection object representing a vended service on the default system port name
server.

+ (id)serviceConnectionWithName: (NSString *)name rootObject:(id)root

Parameters
name
The name of the service you want to publish.

root
The object to use as the root object for the published service. This is the object vended by the
connection.

Return Value
An NSConnection object representing the vended service or ni 1 if there was a problem setting up the
connection object.

Discussion

This method creates the server-side of a connection object and registers it with the default system port name
server. Clients wishing to connect to this service can request a communications port from the same port
server and use that port to to communicate.

Availability
Available in Mac OS X v10.5 and later.

Class Methods 333
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

See Also

+ serviceConnectionWithName:rootObject:usingNameServer: (page 334)
+ connectionWithRegisteredName:host: (page 330)

- rootObject (page 344)

+ systemDefaultPortNameServer (page 1270) (NSPortNameServer)

Declared In
NSConnection.h

serviceConnectionWithName:rootObject:usingNameServer:

Creates and returns a new connection object representing a vended service on the specified port name
server.

+ (id)serviceConnectionWithName: (NSString *)name rootObject:(id)root
usingNameServer: (NSPortNameServer *)server

Parameters
name
The name of the service you want to publish.

root
The object to use as the root object for the published service. This is the object vended by the
connection.

server
The port name server with which to register your service.

Return Value
An NSConnection object representing the vended service or ni1 if there was a problem setting up the
connection object.

Discussion

This method creates the server-side of a connection object and registers it with the specified port name
server. Clients wishing to connect to this service can request a communications port from the same port
server and use that port to communicate.

If the specified service name corresponds to a service that is autolaunched by 1aunchd, this method allows
the service to check in with the Taunchd process. If the service is not autolaunched by 1aunchd, this method
registers the new connection with the specified name. For more information about Taunchd and its role in
launching services, see System Startup Programming Topics

Availability
Available in Mac OS X v10.5 and later.

See Also
+ connectionWithRegisteredName:host:usingNameServer: (page 331)

- rootObject (page 344)

Declared In
NSConnection.h

334 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Instance Methods

addRequestMode:

Adds mode to the set of run-loop input modes that the receiver uses for connection requests.
- (void)addRequestMode: (NSString *)mode

Parameters
mode
The mode to add to the receiver.

Discussion
The default input mode is NSDefaultRunLoopMode. See the NSRunLoop class specification for more
information on input modes.

Availability
Available in Mac OS X v10.0 and later.

See Also
addPort:forMode: (page 1333) (NSRunLoop)

Declared In
NSConnection.h

addRunLoop:

Adds the specified run loop to the list of run loops the receiver monitors and from which it responds to
requests.

- (void)addRunLoop: (NSRunLoop *)runloop

Parameters
runloop
The run loop to add to the receiver.

Discussion
This method is invoked automatically when a request comes in from a new run loop if
enableMultipleThreads (page 336) has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
- enableMultipleThreads (page 336)

- removeRunLoop: (page 342)

Declared In
NSConnection.h

Instance Methods 335
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

336

CHAPTER 23

NSConnection Class Reference

delegate

Returns the receiver’s delegate.
- (id)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setDelegate: (page 346)

Declared In
NSConnection.h

enableMultipleThreads

Configures the receiver to allow requests from multiple threads to the remote object, without requiring each
thread to each maintain its own connection.

- (void)enableMultipleThreads

Discussion

In Mac OS X v10.5 and later, multiple thread support is enabled by default and this method does nothing.

Prior to Mac OS X v10.5, multiple thread support is disabled by default and must be enabled explicitly. When
disabled, each thread must create its own NSConnection object in order to access a given remote object.
When enabled, threads may use the same NSConnection object to access the remote object. If this feature
is disabled and an attempt is made to connect to the receiver from a thread other than the one that created
it, the receiver raises an NSObjectInaccessibleException.

Availability
Available in Mac OS X v10.0 and later.

See Also

- multipleThreadsEnabled (page 339)

Declared In
NSConnection.h

independentConversationQueueing

Returns a Boolean value that indicates whether the receiver handles remote messages atomically.

- (BOOL)independentConversationQueueing

Return Value

YES if the receiver handles remote messages atomically, otherwise NO.

Discussion

See Configuring an NSConnection for more information on independent conversation queueing.

Instance Methods

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- setIndependentConversationQueueing: (page 346)

Declared In
NSConnection.h

initWithReceivePort:sendPort:

Returns an NSConnection object initialized with given send and receive ports.

(id)initWithReceivePort: (NSPort *)receivePort sendPort:(NSPort *)sendPort

Parameters

receivePort

The receive port for the new connection.

sendPort

The send port for the new connection.

Return Value
An NSConnection object initialized with receivePort and sendPort. The returned object might be
different than the original receiver.

Discussion

The new NSConnection object adds receivePort to the current NSRunlLoop object with
NSDefaultRunlLoopMode as the mode. If the application doesn’t use an NSApp1ication object to handle
events, it needs to run the NSRunLoop object with one of its various run. .. messages.

This method posts an NSConnectionDidInitializeNotification (page 353) once the connection is
initialized.

The receivePort and sendPort parameters affect initialization as follows:

Ifan NSConnection object with the same ports already exists, releases the receiver, retains the existing
connection, and returns it.

If an NSConnection object exists that uses the same ports, but switched in role, then the new
NSConnection object communicates with it. Messages sent to a proxy held by either connection are
forwarded through the other NSConnection object. This rule applies both within and across address
spaces.

This behavior is useful for setting up distributed object connections between threads within an application.
See Communicating With Distributed Objects for more information.

If receivePortand sendPort are nil, deallocates the receiver and returns nil.

If receivePortisnil,the NSConnection object allocates and uses a new port of the same class as
sendPort.

If sendPortisnil orif both ports are the same, the NSConnection object uses receivePort for both
sending and receiving and is useful only for vending an object. Use the registerName: (page 340) and
setRootObject: (page 347) instance methods to vend an object.

Instance Methods 337
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

338

CHAPTER 23

NSConnection Class Reference

= Ifan NSConnection object exists that uses receivePort as both of its ports, it's treated as the parent
of the new NSConnection object, and its root object and all its configuration settings are applied to
the new NSConnection object. You should neither register a name for nor set the root object of the
new NSConnection object. See Configuring an NSConnection for more information.

m If receivePortand sendPort are different and neither is shared with another NSConnection object,
the receiver can be used to vend an object as well as to communicate with other NSConnect ion objects.
However, it has no other NSConnection object to communicate with until one is set up.

m The receivePort parameter can't be shared by NSConnection objects in different threads.

This method is the designated initializer for the NSConnection class.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultConnection (page 331)

Related Sample Code
SimpleThreads

TrivialThreads

Declared In
NSConnection.h

invalidate

Invalidates (but doesn't release) the receiver.
- (void)invalidate

Discussion

After withdrawing the ports the receiver has registered with the current run loop, invalidate posts an
NSConnectionDidDieNotification (page352)and theninvalidates all remote objects and exported local
proxies.

Availability
Available in Mac OS X v10.0 and later.

See Also

- isValid (page 338)

removePort:forMode: (page 1337) (NSRunLoop)
- requestModes (page 343)

Declared In
NSConnection.h

isValid

Returns a Boolean value that indicates whether the receiver is known to be valid.

- (BOOL)isValid

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Return Value
YES if the receiver is known to be valid, otherwise NO.

Discussion

An NSConnection object becomes invalid when either of its ports becomes invalid, but only notes that it
has become invalid when it tries to send or receive a message. When this happens it posts an
NSConnectionDidDieNotification (page 352) to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
- invalidate (page 338)

isValid (page 1252) (NSPort)

Declared In
NSConnection.h

localObjects
Returns the local objects that have been sent over the connection and still have proxies at the other end.

- (NSArray *)localObjects

Return Value
An array containing the local objects that have been sent over the connection and still have proxies at the
other end.

Discussion
When an object’s remote proxy is deallocated, a message is sent back to the receiver to notify it that the
local object is no longer shared over the connection.

Availability
Available in Mac OS X v10.0 and later.

See Also
- remoteObjects (page 342)

Declared In
NSConnection.h

multipleThreadsEnabled

Returns a Boolean value that indicates whether the receiver supports requests from multiple threads.
- (BOOL)multipleThreadsEnabled

Return Value
YES if the receiver supports requests from multiple threads.

Discussion
In Mac OS X v10.5 and later, multiple threads are enabled by default.

Instance Methods 339
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

340

CHAPTER 23

NSConnection Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- enableMultipleThreads (page 336)

Declared In
NSConnection.h

receivePort

Returns the NSPort object on which the receiver receives incoming network messages.
- (NSPort *)receivePort

Return Value
The NSPort object on which the receiver receives incoming network messages.

Discussion

You can inspect this object for debugging purposes or use it to create another NSConnection object, but
shouldn't use it to send or receive messages explicitly. Don't set the delegate of the receive port; it already
has a delegate established by the NSConnection object.

Availability
Available in Mac OS X v10.0 and later.

See Also
- sendPort (page 345)

- initWithReceivePort:sendPort: (page 337)

Declared In
NSConnection.h

registerName:

Registers the specified service using with the default system port name server.
- (BOOL)registerName: (NSString *)name

Parameters
name
The name under which to register the receiver.

Return Value
YES if the operation was successful, otherwise NO (for example, if another NSConnect i on object on the same
host is already registered under name).

Discussion

This method connects the receive port of the receiving NSConnection object with the specified service
name. It registers the name using the port name server returned by the

systemDefaultPortNameServer (page 1270) method of NSPortNameServer.|If the operation is successful,

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

other NSConnection objects can contact the receiver using the
connectionWithRegisteredName:host: (page 330) and
rootProxyForConnectionWithRegisteredName:host: (page 332) class methods.

If the receiver was already registered under a name and this method returns N0, the old name remains in
effect. If this method is successful, it also unregisters the old name.

To unregister an NSConnection object, simply invoke registerName: and supply ni1 as the connection
name.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setRootObject: (page 347)

- registerName:withNameServer: (page 341)
+ systemDefaultPortNameServer (page 1270) (NSPortNameServer)

Declared In
NSConnection.h

registerName:withNameServer:

Registers a service with the specified port name server.
- (BOOL)registerName: (NSString *)name withNameServer:(NSPortNameServer *)server

Parameters
name
The name under which to register the receiver.

server
The name server.

Return Value
YES if the operation was successful, otherwise NO (for example, if another NSConnection object on the same
host is already registered under name).

Discussion

This method connects the receive port of the receiving NSConnection object with the specified service
name. If the operation is successful, other NSConnection objects can contact the receiver using the
connectionWithRegisteredName:host: (page 330) and
rootProxyForConnectionWithRegisteredName:host: (page 332) class methods.

If the receiver was already registered under a name and this method returns N0, the old name remains in
effect. If this method is successful, it also unregisters the old name.

To unregister an NSConnection object, simply invoke registerName: and supply ni1 as the connection
name.

Availability
Available in Mac OS X v10.0 and later.

Declared In

NSConnection.h

Instance Methods 34
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

342

CHAPTER 23

NSConnection Class Reference

remoteObjects

Returns all the local proxies for remote objects that have been received over the connection but not
deallocated yet.

- (NSArray *)remoteObjects

Return Value
An array containing all the local proxies for remote objects that have been received over the connection but
not deallocated yet.

Availability
Available in Mac OS X v10.0 and later.

See Also
- localObjects (page 339)

Declared In
NSConnection.h

removeRequestMode:

Removes mode from the set of run-loop input modes the receiver uses for connection requests.
- (void)removeRequestMode: (NSString *)mode

Parameters
mode
The mode to remove from the set of run-loop input modes the receiver uses for connection requests.

Availability
Available in Mac OS X v10.0 and later.

See Also
- requestModes (page 343)

removePort:forMode: (page 1337) (NSRunLoop)

Declared In
NSConnection.h

removeRunLoop:

Removes a given NSRunLoop object from the list of run loops the receiver monitors and from which it
responds to requests.

- (void)removeRunLoop: (NSRunLoop *)runiloop

Parameters
runloop
The run loop to remove from the receiver.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

See Also
- addRunloop: (page 335)

Declared In
NSConnection.h

replyTimeout

Returns the timeout interval for replies to outgoing remote messages.
- (NSTimelnterval)replyTimeout

Return Value
The timeout interval for replies to outgoing remote messages.

Discussion
If a non-oneway remote message is sent and no reply is received by the timeout, an
NSPortTimeoutException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
- requestTimeout (page 344)

- setReplyTimeout: (page 347)

Declared In
NSConnection.h

requestModes

Returns the set of request modes the receiver’s receive port is registered for with its NSRunLoop object.
- (NSArray *)requestModes

Return Value
An array of NSString objects that represents the set of request modes the receiver’s receive port is registered
for with its NSRunLoop object.

Availability
Available in Mac OS X v10.0 and later.

See Also
- addRequestMode: (page 335)

addPort:forMode: (page 1333) (NSRunLoop)
- removeRequestMode: (page 342)

Declared In
NSConnection.h

Instance Methods 343
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

344

CHAPTER 23

NSConnection Class Reference

requestTimeout

Returns the timeout interval for outgoing remote messages.
- (NSTimelnterval)requestTimeout

Return Value
The timeout interval for outgoing remote messages.

Discussion
If a remote message can't be sent before the timeout, an NSPortTimeoutException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
- replyTimeout (page 343)
- setRequestTimeout: (page 347)

Declared In
NSConnection.h

rootObject

Returns the object that the receiver (or its parent) makes available to other applications or threads.
- (id)rootObject

Return Value
The object that the receiver (or its parent) makes available to other applications or threads, or ni1 if there
is no root object.

Discussion

To get a proxy to this object in another application or thread, invoke the
rootProxyForConnectionWithRegisteredName:host: (page 332) class method with the appropriate
arguments.

Availability
Available in Mac OS X v10.0 and later.

See Also
- rootProxy (page 344)

- setRootObject: (page 347)

Declared In
NSConnection.h

rootProxy

Returns the proxy for the root object of the receiver’s peer in another application or thread.

- (NSDistantObject *)rootProxy

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Return Value
The proxy for the root object of the receiver’s peer in another application or thread.

Discussion
The proxy returned can change between invocations if the peer NSConnection object's root object is
changed.

Note: If the NSConnection object uses separate send and receive ports and has no peer, when you invoke
rootProxy it will block for the duration of the reply timeout interval, waiting for a reply.

Availability
Available in Mac OS X v10.0 and later.

See Also
- rootObject (page 344)

Related Sample Code
SimpleThreads

TrivialThreads

Declared In
NSConnection.h

runinNewThread

Creates and starts a new NSThread object and then runs the receiving connection in the new thread.
- (void)runInNewThread

Discussion
If the newly created thread is the first to be detached from the current thread, this method posts an
NSWil1BecomeMultiThreadedNotification with nil to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

sendPort

Returns the NSPort object that the receiver sends outgoing network messages through.
- (NSPort *)sendPort

Return Value
The NSPort object that the receiver sends outgoing network messages through.

Discussion

You can inspect this object for debugging purposes or use it to create another NSConnection object, but
shouldn’t use it to send or receive messages explicitly. Don't set the delegate of the send port; it already has
a delegate established by the NSConnection object.

Instance Methods 345
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

346

CHAPTER 23

NSConnection Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- receivePort (page 340)

- initWithReceivePort:sendPort: (page 337)

Declared In
NSConnection.h

setDelegate:

Sets the receiver’s delegate.
- (void)setDelegate:(id)anObject

Parameters
anObject
The receiver’s delegate.

Discussion
A connection’s delegate can process incoming messages itself instead of letting NSConnection object
handle them. The delegate can also authenticate messages and accept, deny, or modify new connections.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

setindependentConversationQueueing:

Sets a Boolean value that specifies whether the receiver handles remote messages atomically.
- (void)setIndependentConversationQueueing: (BOOL) flag

Parameters
flag

YES if the receiver handles remote messages atomically, otherwise NO.
Discussion

The default is NO. An NSConnection object normally forwards remote message to the intended recipients
as they come in. See Configuring an NSConnection for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
- independentConversationQueueing (page 336)

Declared In
NSConnection.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

setReplyTimeout:

Sets the timeout interval for replies to outgoing remote messages
- (void)setReplyTimeout: (NSTimelnterval)seconds

Parameters

seconds
The timeout interval for replies to outgoing remote messages.

Discussion
If a non-oneway remote message is sent and no reply is received by the timeout, an
NSPortTimeoutException is raised. The default timeout is the maximum possible value.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setRequestTimeout: (page 347)

- replyTimeout (page 343)

Declared In
NSConnection.h

setRequestTimeout:

Sets the timeout interval for outgoing remote messages.
- (void)setRequestTimeout: (NSTimelnterval)seconds

Parameters

seconds
The timeout interval for outgoing remote messages.

Discussion
If a remote message can't be sent before the timeout, an NSPortTimeoutException is raised. The default
timeout is the maximum possible value.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setReplyTimeout: (page 347)

- requestTimeout (page 344)

Declared In
NSConnection.h

setRootObject:

Sets the object that the receiver makes available to other applications or threads.

- (void)setRootObject:(id)anObject

Instance Methods 347
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Parameters

anObject
The root object for the receiver.

Discussion
This only affects new connection requests and rootProxy (page 344) messages to established NSConnection
objects; applications that have proxies to the old root object can still send messages through it.

Availability
Available in Mac OS X v10.0 and later.

See Also
- rootObject (page 344)

Related Sample Code
SimpleThreads

Declared In
NSConnection.h

statistics
Returns an NSDictionary object containing various statistics for the receiver.

- (NSDictionary *)statistics

Return Value
An NSDictionary object containing various statistics for the receiver, such as the number of vended objects,
the number of requests and replies, and so on.

Discussion
The statistics dictionary should be used only for debugging purposes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

Delegate Methods

348

authenticateComponents:withData:

Returns a Boolean value that indicates whether given authentication data is valid for a given set of components.

- (BOOL)authenticateComponents: (NSArray *)components withData:(NSData
*)authenticationData

Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Parameters

components
An array that contains NSData and NSPort objects belonging to an NSPortMessage object. See the
NSPortMessage class specification for more information.

authenticationData
Authentication data created by the delegate of the peer NSConnection object with
authenticationDataForComponents: (page 349).

Return Value
YES if the authenticationData provided is valid for components, otherwise NO.

Discussion
Use this message for validation of incoming messages. An NSConnection object raises an
NSFailedAuthenticationException on receipt of a remote message the delegate doesn't authenticate.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

authenticationDataForComponents:

Returns an NSData object to be used as an authentication stamp for an outgoing message.
- (NSData *)authenticationDataForComponents: (NSArray *)components

Parameters

components
An array containing the elements of a network message, in the form of NSPort and NSData objects.

Return Value
An NSData object to be used as an authentication stamp for an outgoing message.

Discussion
The delegate should use only the NSData elements to create the authentication stamp. See the
NSPortMessage class specification for more information on the components.

IfauthenticationDataForComponents: (page349)returnsnil,anNSGenericException will be raised.
If the delegate determines that the message shouldn’t be authenticated, it should return an empty NSData
object. The delegate on the other side of the connection must then be prepared to accept an empty NSData
object as the second parameter to authenticateComponents:withData: (page 348) and to handle the
situation appropriately.

The components parameter will be validated on receipt by the delegate of the peer NSConnection object
with authenticateComponents:withData: (page 348).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

Delegate Methods 349
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

350

CHAPTER 23

NSConnection Class Reference

connection:handleRequest:

This method should be implemented by NSConnection object delegates that want to intercept distant
object requests.

- (BOOL)connection: (NSConnection *)conn handleRequest:(NSDistantObjectRequest
*)doReq

Parameters
conn

The connection object for which the receiver is the delegate.
doReq

The distant object request.

Return Value
YES if the request was handled by the delegate, NO if the request should proceed as if the delegate did not
intercept it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

connection:shouldMakeNewConnection:

Returns a Boolean value that indicates whether the parent connection should allow a given new connection
to be created.

- (BOOL)connection: (NSConnection *)parentConnection
shouldMakeNewConnection: (NSConnection *)newConnnection

Parameters
parentConnection
The connection object for which the receiver is the delegate.
newConnnection
The new connection.
Return Value

YESif parentConnectionshouldallow newConnnectionto be created and set up, NO if parentConnection
should refuse and immediately release newConnection.

Discussion
Use this method to limit the amount of NSConnect i on objects created in your application or to change the
parameters of child NSConnection objects.

Use NSConnectionDidInitializeNotification (page 353)instead of this delegate method if possible.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

createConversationForConnection:

Returns an arbitrary object identifying a new conversation being created for the connection in the current
thread.

- (id)createConversationForConnection: (NSConnection *)conn

Parameters
conn
The connection object for which the receiver is the delegate.

Return Value
An arbitrary object identifying a new conversation being created for the connection in the current thread.

Discussion
New conversations are created only if independentConversationQueueing (page 336)is YES for conn. If
you do not implement this method, NSConnection object creates an instance of NSObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentConversation (page 331)

conversation (page 536) (NSDistantObjectRequest)

Declared In
NSConnection.h

makeNewConnection:sender:

Returns a Boolean value that indicates whether the parent should allow a given new connection to be created
and configured.

- (BOOL)makeNewConnection: (NSConnection *)newConnection sender:(NSConnection
*)parentConnection

Parameters

newConnection
The new connection.

parentConnection
The parent connection.

Return Value
YES if parentConnectionshould allow newConnnection to be created and configured, NO if
parentConnection should refuse and immediately release newConnection.

Discussion
Use this method to limit the amount of NSConnection objects created in your application or to change the
parameters of child NSConnection objects.

Use NSConnectionDidInitializeNotification (page 353)instead of this delegate method if possible.

Availability
Available in Mac OS X v10.0 and later.

Delegate Methods 351
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Declared In
NSConnection.h

Constants

NSConnection run loop mode

NSConnection defines the following run loop mode—see NSRunLoop for more details.
extern NSString *NSConnectionReplyMode;

Constants
NSConnectionReplyMode
The mode to indicate an NSConnection object waiting for replies.

You should rarely need to use this mode.
Declared in NSConnection.h.
Available in Mac OS X v10.0 and later.

Declared In
Foundation/NSConnection.h

Connection Exception Names

The name of an exception raised in case of authentication failure.
extern NSString *NSFailedAuthenticationkException;

Constants
NSFailedAuthenticationkException
Raised by NSConnection on receipt of a remote message the delegate doesn’t authenticate.

Available in Mac OS X v10.0 and later.
Declared in NSConnection.h.

Declared In
Foundation/NSConnection.h

Notifications

352

NSConnectionDidDieNotification

Posted when an NSConnection object is deallocated or when it’s notified that its NSPort object has become
invalid. The notification object is the NSConnection object. This notification does not contain a userinfo
dictionary.

An NSConnection object attached to a remote NSSocketPort object cannot detect when the remote port
becomes invalid, even if the remote port is on the same machine. Therefore, it cannot post this notification
when the connection is lost. Instead, you must detect the timeout error when the next message is sent.

Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

The NSConnection object posting this notification is no longer useful, so all receivers should unregister
themselves for any notifications involving the NSConnection object.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSPortDidBecomeInvalidNotification (NSPort notification)

Declared In
NSConnection.h

NSConnectionDidlInitializeNotification

Posted when an NSConnection objectis initialized using initWithReceivePort:sendPort: (page 337)
(the designated initializer for NSConnection). The notification object is the NSConnection object. This
notification does not contain a usernfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithReceivePort:sendPort: (page 337)

Declared In
NSConnection.h

Notifications 353
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

354 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 24

NSCountCommand Class Reference

Inherits from NSScriptCommand : NSObject
Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSScriptStandardSuiteCommands.h
Companion guide Cocoa Scripting Guide
Overview

An instance of NSCountCommand counts the number of objects of a specified class in the specified object
container (such as the number of words in a paragraph or document) and returns the result.

NSCountCommand is part of Cocoa’s built-in scripting support. It works automatically to support the count
command through key-value coding. Most applications don't need to subclass NSCountCommand or call its
methods.

Overview 355
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 24

NSCountCommand Class Reference

356 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

NSCountedSet Class Reference

Inherits from NSMutableSet : NSSet : NSObject

Conforms to NSCoding (NSSet)
NSCopying (NSSet)
NSMutableCopying (NSSet)
NSFastEnumeration (NSSet)

NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSSet.h
Companion guide Collections Programming Topics for Cocoa
Related sample code Dicey

Overview

The NSCountedSet class declares the programmatic interface to an object that manages a mutable set of
objects. NSCountedSet provides support for the mathematical concept of a counted set. A counted set,
both in its mathematical sense and in the implementation of NSCountedSet, is an unordered collection of
elements, just as in a regular set, but the elements of the set aren’t necessarily distinct. A counted set is also
known as a bag.

Each distinct object inserted into an NSCountedSet object has a counter associated with it.
NSCountedSetkeeps track of the number of times objects are inserted and requires that objects be removed
the same number of times. Thus, there is only one instance of an object in an NSSet object even if the object
has been added to the set multiple times. The count (page 1451) method defined by the superclass NSSet
has special significance; it returns the number of distinct objects, not the total number of times objects are
represented in the set. The NSSet and NSMutableSet classes are provided for static and dynamic sets
(respectively) whose elements are distinct.

You add objects to or remove objects from a counted set using the addObject: (page 358) and
removeObject: (page 361) methods. You can traverse elements of an NSCountedSet object using the
enumerator returned by objectEnumerator (page 361).The countForObject: (page 359) method returns
the number of times a given object has been added to this set.

While NSCountedSet and CFBag are not toll-free bridged, they provide similar functionality. For more
information on CFBag, consult the CFBag Reference.

Overview 357
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 25
NSCountedSet Class Reference

Tasks

Initializing a Counted Set

- initWithArray: (page 359)
Returns a counted set object initialized with the contents of a given array.
- initWithSet: (page 360)
Returns a counted set object initialized with the contents of a given set.
- initWithCapacity: (page 360)
Returns a counted set object initialized with enough memory to hold a given number of objects.

Adding and Removing Entries

- addObject: (page 358)
Adds a given object to the receiver.

- removeObject: (page 361)
Removes a given object from the receiver.

Examining a Counted Set

- countForObject: (page 359)
Returns the count associated with a given object in the receiver.

- objectEnumerator (page 361)

Returns an enumerator object that lets you access each object in the set once, independent of its
count.

Instance Methods

addObject:

Adds a given object to the receiver.
- (void)addObject:(id)anObject

Parameters
anObject

The object to add to the receiver.
Discussion

If anObjectisalready a member, add0bject : increments the count associated with the object. If an0Object
is not already a member, itis senta retain (page 2108) message.

Availability
Available in Mac OS X v10.0 and later.

358 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 25
NSCountedSet Class Reference

Declared In
NSSet.h

countForObject:

Returns the count associated with a given object in the receiver.
- (NSUInteger)countForObject:(id)anObject

Parameters
anObject
The object for which to return the count.

Return Value
The count associated with an0Object in the receiver, which can be thought of as the number of occurrences
of anObject present in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- count (page 1451) (NSSet)

Related Sample Code
Dicey

Declared In
NSSet.h

initWithArray:

Returns a counted set object initialized with the contents of a given array.
- (id)initWithArray: (NSArray *)anArray

Parameters
anArray
An array of objects to add to the new set.

Return Value
An initialized counted set object with the contents of anArray. The returned object might be different than
the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
initWithArray: (page 1452) (NSSet)

setWithArray: (page 1445) (NSSet)

Declared In
NSSet.h

Instance Methods 359
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

360

CHAPTER 25
NSCountedSet Class Reference

initWithCapacity:

Returns a counted set object initialized with enough memory to hold a given number of objects.
- (id)initWithCapacity: (NSUInteger)numltems

Parameters
numlItems
The initial capacity of the new counted set.

Return Value
A counted set object initialized with enough memory to hold numItems objects

Discussion
The method is the designated initializer for NSCountedSet.

Note that the capacity is simply a hint to help initial memory allocation—the initial count of the object is 0,
and the set still grows and shrinks as you add and remove objects. The hint is typically useful if the set will
become large.

Availability
Available in Mac OS X v10.0 and later.

See Also
initWithCapacity: (page973) (NSMutableSet)

setWithCapacity: (page971) (NSMutableSet)

Declared In
NSSet.h

initWithSet:

Returns a counted set object initialized with the contents of a given set.
- (id)initWithSet:(NSSet *)aSet

Parameters
aSet
An set of objects to add to the new set.

Return Value
An initialized counted set object with the contents of aSet. The returned object might be different than the
original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
initWithSet: (page 1454) (NSSet)

setWithSet: (page 1448) (NSSet)

Declared In
NSSet.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 25
NSCountedSet Class Reference

objectEnumerator

Returns an enumerator object that lets you access each object in the set once, independent of its count.
- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the set once, independent of its count.

Discussion
If you add a given object to the counted set multiple times, an enumeration of the set will produce that
object only once.

You shouldn’t modify the set during enumeration. If you intend to modify the set, usethe a1 10bjects (page
1449) method to create a “snapshot,” then enumerate the snapshot and modify the original set.

Availability
Available in Mac OS X v10.0 and later.

See Also
nextObject (page 558) (NSEnumerator)

Declared In
NSSet.h

removeObject:

Removes a given object from the receiver.
- (void)removeObject:(id)anObject

Parameters

anObject
The object to remove from the receiver.

Discussion

If anObject is present in the set, decrements the count associated with it. If the count is decremented to 0,
anObjectisremoved fromthe setand sentarelease (page 2106) message. removeObject : does nothing
if anObject is not present in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- countForObject: (page 359)

Declared In
NSSet.h

Instance Methods 361
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

NSCountedSet Class Reference

362 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCreateCommand Class Reference

Inherits from NSScriptCommand : NSObject
Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSScriptStandardSuiteCommands.h
Companion guide Cocoa Scripting Guide
Overview

An instance of NSCreateCommand creates the specified scriptable object (such as a document), optionally
supplying the new object with the specified attributes. This command corresponds to AppleScript’s make
command.

NSCreateCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSCreateCommand or invoke its methods.

When an instance of NSCreateCommand is executed, it creates a new object using [[theClassToBeCreated
allocWithZone:NULL] init] (where theClassToBeCreated is the class of the object to be created),
unless the command hasawith data argument. In the latter case, the new object is created by invoking
[[NSScriptCoercionHandler sharedCoercionHandler] coerceValue:theDataAsAnObject
toClass:theClassToBeCreated]. Any properties specified by awith properties argument are then
set in the new object using -setScriptingProperties:.

If an NSCreateCommand object with no argument corresponding to the at parameter is executed (for
example, tell application "Mail" to make new mailbox with properties
{name:"testFolder"}), and the receiver of the command (not necessarily the application object) has a
to-many relationship to objects of the class to be instantiated, and the class description for the receiving
class returns NO when sentan islLocationRequiredToCreateForKey: message, the NSCreateCommand
object creates a new object and sends the receiveran insertValue:atIndex:inPropertyWithKey: (page
2118) message to place the new object in the container. This is part of Cocoa’s scripting support for inserting
newly-created objects into containers without explicitly specifying a location.

Overview 363
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

CHAPTER 26

NSCreateCommand Class Reference

Getting Information About a Create Command

- createClassDescription (page 364)
Returns the class description for the class that is to be created.

- resolvedKeyDictionary (page 364)
Returns a dictionary that contains the properties that were specified in the make Apple event command
that has been converted to this NSCreateCommand object.

Instance Methods

364

createClassDescription

Returns the class description for the class that is to be created.
- (NSScriptClassDescription *)createClassDescription

Return Value
The class description for the class that is to be created.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

resolvedKeyDictionary

Returns a dictionary that contains the properties that were specified in the make Apple event command that
has been converted to this NSCreateCommand object.

- (NSDictionary *)resolvedKeyDictionary

Return Value
A dictionary that contains the properties that were specified in the make Apple event script command that
has been converted to this NSCreateCommand object.

Discussion

The keys in the returned dictionary are the names of properties (attributes or relationships, in the script suite)
that have been specified for the command, and the corresponding values in the dictionary are the values
that those properties should take. The required and optional arguments for the ma ke command are specified
in the core suite definition, NSCoreSuite.scriptSuite.

Availability
Available in Mac OS X v10.0 and later.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCreateCommand Class Reference

Declared In
NSScriptStandardSuiteCommands.h

Instance Methods 365
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCreateCommand Class Reference

366 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Inherits from NSObject
Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSData.h

Foundation/NSSerialization.h (Deprecated)

Companion guides Binary Data Programming Guide for Cocoa
Property List Programming Guide

Related sample code CocoaHTTPServer
CocoaSOAP
iSpend
Sketch-112
StickiesExample

Overview

NSData and its mutable subclass NSMutableData provide data objects, object-oriented wrappers for byte
buffers. Data objects let simple allocated buffers (that is, data with no embedded pointers) take on the
behavior of Foundation objects.

NSData creates static data objects, and NSMutableData creates dynamic data objects. NSData and
NSMutableData are typically used for data storage and are also useful in Distributed Objects applications,
where data contained in data objects can be copied or moved between applications.

Using 32-bit Cocoa, the size of the data is subject to a theoretical 2GB limit (in practice, because memory will
be used by other objects this limit will be smaller); using 64-bit Cocoa, the size of the data is subject to a
theoretical limit of about 8EB (in practice, the limit should not be a factor).

NSData is “toll-free bridged” with its Core Foundation counterpart, CFData. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. Therefore,
in a method where you see an NSData * parameter, you can pass a CFDataRef, and in a function where
you see a CFDataRef parameter, you can pass an NSData instance (you cast one type to the other to suppress
compiler warnings). This also applies to your concrete subclasses of NSData. See Interchangeable Data Types
for more information on toll-free bridging.

Overview 367
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Adopted Protocols

NSCoding
- encodeWithCoder: (page 2034)

- initWithCoder: (page 2034)

NSCopying
- copyWithZone: (page 2042)

NSMutableCopying
- mutableCopyWithZone: (page 2094)

Tasks

Creating Data Objects

+ data (page 370)
Creates and returns an empty data object.
+ dataWithBytes:Tength: (page 370)
Creates and returns a data object containing a given number of bytes copied from a given buffer.
+ dataWithBytesNoCopy:length: (page 371)
Creates and returns a data object that holds 7ength bytes from the buffer bytes.
+ dataWithBytesNoCopy:length:freellhenDone: (page 371)
Creates and returns a data object that holds a given number of bytes from a given buffer.
+ dataWithContentsOfFile: (page 372)
Creates and returns a data object by reading every byte from the file specified by a given path.
+ dataWithContentsOfFile:options:error: (page 373)
Creates and returns a data object by reading every byte from the file specified by a given path.
+ dataWithContentsOfMappedFile: (page 373)
Creates and returns a data object from the mapped file specified by path.
+ dataWithContentsOfURL: (page 374)
Returns a data object containing the data from the location specified by a given URL.
+ dataWithContentsOfURL:options:error: (page 375)
Creates and returns a data object containing the data from the location specified by aURL.
+ dataWithData: (page 375)
Creates and returns a data object containing the contents of another data object.
- initWithBytes:length: (page 378)
Returns a data object initialized by adding to it a given number of bytes of data copied from a given
buffer.
- initWithBytesNoCopy:length: (page 379)
Returns a data object initialized by adding to it a given number of bytes of data from a given buffer.
- initWithBytesNoCopy:length:freeWhenDone: (page 379)
Initializes a newly allocated data object by adding to it 7ength bytes of data from the buffer bytes.

368 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

- initWithContentsOfFile: (page 380)

Returns a data object initialized by reading into it the data from the file specified by a given path.

- initWithContentsOfFile:options:error: (page 381)

Returns a data object initialized by reading into it the data from the file specified by a given path.

- initWithContentsOfMappedFile: (page 381)

Returns a data object initialized by reading into it the mapped file specified by a given path.

- initWithContentsOfURL: (page 382)

Initializes a newly allocated data object initialized with the data from the location specified by aURL.

- initWithContentsOfURL:options:error: (page 382)

Returns a data object initialized with the data from the location specified by a given URL.

- initWithData: (page 383)

Returns a data object initialized with the contents of another data object.

Accessing Data

- bytes (page 376)
Returns a pointer to the receiver’s contents.

- description (page 376)

Returns an NSString object that contains a hexadecimal representation of the receiver’s contents.

- getBytes: (page 377)
Copies a data object’s contents into a given buffer.

- getBytes:Tength: (page 377)

Copies a number of bytes from the start of the receiver's data into a given buffer.

- getBytes:range: (page 378)

Copies a range of bytes from the receiver’s data into a given buffer.

- subdataWithRange: (page 384)

Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by

a given range.

Testing Data

- iskEqualToData: (page 383)
Compares the receiving data object to otherData.

- length (page 383)
Returns the number of bytes contained in the receiver.

Storing Data

- writeToFile:atomically: (page 384)

Writes the bytes in the receiver to the file specified by a given path.

- writeToFile:options:error: (page 385)

Writes the bytes in the receiver to the file specified by a given path.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

369

CHAPTER 27

NSData Class Reference

- writeToURL:atomically: (page 385)
Writes the bytes in the receiver to the location specified by aURL.

- writeToURL:options:error: (page 386)
Writes the bytes in the receiver to the location specified by a given URL.

Class Methods

370

data

Creates and returns an empty data object.
+ (id)data

Return Value
An empty data object.

Discussion
This method is declared primarily for the use of mutable subclasses of NSData.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedDataBurn

QTKitMovieShuffler

Declared In
NSData.h

dataWithBytes:length:

Creates and returns a data object containing a given number of bytes copied from a given buffer.
+ (id)dataWithBytes:(const void *)bytes length:(NSUInteger)length

Parameters
bytes
A buffer containing data for the new object.
length
The number of bytes to copy from by tes. This value must not exceed the length of by tes.
Return Value

A data object containing 7ength bytes copied from the buffer bytes. Returns ni1 if the data object could
not be created.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithBytesNoCopy:Tlength: (page 371)

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

+ dataWithBytesNoCopy:length:freeWhenDone: (page 371)

Related Sample Code
CocoaHTTPServer

CocoaSOAP
EnhancedDataBurn
QTCoreVideo301
QTMetadataEditor

Declared In
NSData.h

dataWithBytesNoCopy:length:

Creates and returns a data object that holds 7ength bytes from the buffer by tes.
+ (id)dataWithBytesNoCopy:(void *)bytes length:(NSUInteger)length

Parameters

bytes
A buffer containing data for the new object. by tes must point to a memory block allocated with
malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of by tes.

Return Value
A data object that holds 7ength bytes from the buffer bytes. Returns nil if the data object could not be
created.

Discussion
The returned object takes ownership of the by tes pointer and frees it on deallocation. Therefore, by tes
must point to a memory block allocated with malloc.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithBytes:Tength: (page 370)

+ dataWithBytesNoCopy:length:freeWhenDone: (page 371)

Declared In
NSData.h

dataWithBytesNoCopy:length:freeWhenDone:

Creates and returns a data object that holds a given number of bytes from a given buffer.

+ (id)dataWithBytesNoCopy:(void *)bytes length:(NSUInteger)length
freeWhenDone: (BOOL) freeWhenDone

Class Methods 37
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

372

CHAPTER 27

NSData Class Reference

Parameters
bytes
A buffer containing data for the new object. If freelWfhenDoneis YES, bytes must point to a memory
block allocated with malloc.
length
The number of bytes to hold from bytes. This value must not exceed the length of by tes.
freeWhenDone
If YES, the returned object takes ownership of the bytes pointer and frees it on deallocation.

Return Value
A data object that holds 7ength bytes from the buffer bytes. Returns nil if the data object could not be
created.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ dataWithBytes:Tength: (page 370)

+ dataWithBytesNoCopy:length: (page 371)

Related Sample Code
CocoaSpeechSynthesisExample

Declared In
NSData.h

dataWithContentsOfFile:

Creates and returns a data object by reading every byte from the file specified by a given path.
+ (id)dataWithContentsOfFile: (NSString *)path

Parameters
path

The absolute path of the file from which to read data.
Return Value

A data object by reading every byte from the file specified by path. Returns ni1 if the data object could not
be created.

Discussion

This method is equivalent to dataWithContentsOfFile:options:error: (page 373) with no options. If
you need to know what was the reason for failure, use datallithContentsOfFile:options:error: (page
373).

A sample using this method can be found in Working With Binary Data.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfFile:options:error: (page 373)

+ dataWithContentsOfMappedFile: (page 373)

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Related Sample Code
CarbonCocoaCorelmageTab

iSpend
LiveVideoMixer2
Reducer
WhackedTV

Declared In
NSData.h

dataWithContentsOfFile:options:error:

Creates and returns a data object by reading every byte from the file specified by a given path.

+ (id)dataWithContentsOfFile: (NSString *)path options: (NSUInteger)mask error:(NSError
**)errorPtr

Parameters
path
The absolute path of the file from which to read data.

mask

A mask that specifies options for reading the data. Constant components are described in “Options
for NSData Reading Methods” (page 387).

errorPtr
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
A data object by reading every byte from the file specified by path. Returns ni1 if the data object could not
be created.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSData.h

dataWithContentsOfMappedFile:

Creates and returns a data object from the mapped file specified by path.
+ (id)dataWithContentsOfMappedFile: (NSString *)path

Parameters
path
The absolute path of the file from which to read data.

Return Value
A data object from the mapped file specified by path. Returns ni1 if the data object could not be created.

Class Methods 373
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

374

CHAPTER 27

NSData Class Reference

Discussion

Because of file mapping restrictions, this method should only be used if the file is guaranteed to exist for the
duration of the data object’s existence. It is generally safer to use the datalithContentsOfFile: (page
372) method.

This methods assumes mapped files are available from the underlying operating system. A mapped file uses
virtual memory techniques to avoid copying pages of the file into memory until they are actually needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfFile: (page 372)

Related Sample Code
Quartz EB

Declared In
NSData.h

dataWithContentsOfURL:

Returns a data object containing the data from the location specified by a given URL.
+ (id)dataWithContentsOfURL: (NSURL *)aURL

Parameters
aURL

The URL from which to read data.
Return Value

A data object containing the data from the location specified by aURL. Returns ni1 if the data object could
not be created.

Discussion
If you need to know what was the reason for failure, use dataWithContentsOfURL:options:error: (page
375).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfURL:options:error: (page 375)

- initWithContentsOfURL: (page 382)

Related Sample Code
CocoaSpeechSynthesisExample

Core Data HTML Store
CustomAtomicStoreSubclass
QTKitFrameStepper
WebKitCIPlugln

Declared In
NSData.h

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

dataWithContentsOfURL:options:error:

Creates and returns a data object containing the data from the location specified by aURL.

+ (id)dataWithContentsOfURL: (NSURL *)aURL options:(NSUInteger)mask error:(NSError
**)errorPtr

Parameters

aURL
The URL from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in “Options
for NSData Reading Methods” (page 387).

errorPtr

If there is an error reading in the data, upon return contains an NSError object that describes the
problem.

Availability
Available in Mac OS X v10.4 and later.

See Also
- initWithContentsOfURL: (page 382)

Declared In
NSData.h

dataWithData:

Creates and returns a data object containing the contents of another data object.
+ (id)dataWithData:(NSData *)aData

Parameters
aData
A data object.

Return Value
A data object containing the contents of aData. Returns ni1 if the data object could not be created.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithData: (page 383)

Related Sample Code
Core Data HTML Store

Declared In
NSData.h

Class Methods 375
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Instance Methods

bytes

Returns a pointer to the receiver’s contents.
- (const void *)bytes

Return Value
A read-only pointer to the receiver’s contents.

Discussion
If the Tength (page 383) of the receiver is 0, this method returns ni1.

Availability
Available in Mac OS X v10.0 and later.

See Also
- description (page 376)

- getBytes: (page 377)
- getBytes:length: (page 377)
- getBytes:range: (page 378)

Related Sample Code
AudioBurn

CocoaHTTPServer
CocoaSOAP
EnhancedDataBurn
QTSSConnectionMonitor

Declared In
NSData.h

description

Returns an NSString object that contains a hexadecimal representation of the receiver’s contents.
- (NSString *)description

Return Value
An NSString object that contains a hexadecimal representation of the receiver’s contents in NSData property
list format.

Availability
Available in Mac OS X v10.0 and later.

See Also
- bytes (page 376)

- getBytes: (page 377)
- getBytes:length: (page 377)

376 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

- getBytes:range: (page 378)

Related Sample Code
Fiendishthngs

Declared In
NSData.h

getBytes:

Copies a data object’s contents into a given buffer.
- (void)getBytes:(void *)buffer

Parameters
buffer

A buffer into which to copy the receiver's data. The buffer must be at least 1ength (page 383) bytes.

Discussion
You can see a sample using this method in Working With Binary Data.

Availability
Available in Mac OS X v10.0 and later.

See Also
- bytes (page 376)

- description (page 376)
- getBytes:length: (page 377)
- getBytes:range: (page 378)

Related Sample Code
JavaSplashScreen

OpenGLCaptureToMovie
QTCoreVideo301
QTMetadataEditor
Quartz Composer QCTV

Declared In
NSData.h

getBytes:length:

Copies a number of bytes from the start of the receiver's data into a given buffer.
- (void)getBytes:(void *)buffer length:(NSUInteger)length

Parameters
buffer
A buffer into which to copy data.

length

The number of bytes from the start of the receiver's data to copy to buffer.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

377

378

CHAPTER 27

NSData Class Reference

Discussion
The number of bytes copied is the smaller of the 7engthparameter and the Tength of the data encapsulated
in the object.

Availability
Available in Mac OS X v10.0 and later.

See Also
- bytes (page 376)

- description (page 376)
- getBytes: (page 377)
- getBytes:range: (page 378)

Declared In
NSData.h

getBytes:range:

Copies a range of bytes from the receiver’s data into a given buffer.
- (void)getBytes:(void *)buffer range:(NSRange)range

Parameters
buffer

A buffer into which to copy data.
range

The range of bytes in the receiver's data to copy to buffer. The range must lie within the range of
bytes of the receiver's data.

Discussion
If range isn't within the receiver’s range of bytes, an NSRangeException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also

- bytes (page 376)

- description (page 376)

- getBytes: (page 377)

- getBytes:length: (page 377)

Declared In
NSData.h

initWithBytes:length:

Returns a data object initialized by adding to it a given number of bytes of data copied from a given buffer.

- (id)initWithBytes:(const void *)bytes length:(NSUInteger)length

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Discussion
A data object initialized by adding to it 7ength bytes of data copied from the buffer by tes. The returned
object might be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithBytes:Tength: (page 370)

- initWithBytesNoCopy:length: (page 379)
- initWithBytesNoCopy:length:freeWhenDone: (page 379)

Declared In
NSData.h

initWithBytesNoCopy:length:

Returns a data object initialized by adding to it a given number of bytes of data from a given buffer.
- (id)initWithBytesNoCopy:(void *)bytes length:(NSUInteger)length

Parameters

bytes
A buffer containing data for the new object. by tes must point to a memory block allocated with
malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of by tes.

Return Value
A data object initialized by adding to it 7ength bytes of data from the buffer bytes. The returned object
might be different than the original receiver.

Discussion
The returned object takes ownership of the by tes pointer and frees it on deallocation. Therefore, by tes
must point to a memory block allocated with malloc.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithBytes:Tength: (page 370)

- initWithBytes:length: (page 378)
- initWithBytesNoCopy:length:freeWhenDone: (page 379)

Declared In
NSData.h

initWithBytesNoCopy:length:freeWhenDone:

Initializes a newly allocated data object by adding to it 7ength bytes of data from the buffer by tes.

Instance Methods 379
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

380

CHAPTER 27

NSData Class Reference

- (id)initWithBytesNoCopy:(void *)bytes length:(NSUInteger)length
freeWhenDone: (BOOL) flag

Parameters
bytes
A buffer containing data for the new object. If f7agis YES, bytes must point to a memory block
allocated with malloc.
length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.
flag
If YES, the returned object takes ownership of the bytes pointer and frees it on deallocation.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ dataWithBytesNoCopy:length:freeWhenDone: (page 371)

- initWithBytes:length: (page 378)
- initWithBytesNoCopy:length: (page 379)

Declared In
NSData.h

initWithContentsOfFile:
Returns a data object initialized by reading into it the data from the file specified by a given path.

- (id)initWithContentsOfFile: (NSString *)path

Parameters
path
The absolute path of the file from which to read data.

Return Value
A data object initialized by reading into it the data from the file specified by path. The returned object might
be different than the original receiver.

Discussion
This method is equivalent to initWithContentsOfFile:options:error: (page 381) with no options.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfFile: (page 372)

- initWithContentsOfMappedFile: (page 381)

Declared In
NSData.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

initWithContentsOfFile:options:error:
Returns a data object initialized by reading into it the data from the file specified by a given path.

- (id)initWithContentsOfFile: (NSString *)path options:(NSUInteger)mask error:(NSError
**)errorPtr

Parameters
path
The absolute path of the file from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in “Options
for NSData Reading Methods” (page 387).

errorPtr
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
A data object initialized by reading into it the data from the file specified by path. The returned object might
be different than the original receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ dataWithContentsOfFile:options:error: (page 373)

Declared In
NSData.h

initWithContentsOfMappedFile:

Returns a data object initialized by reading into it the mapped file specified by a given path.
- (id)initWithContentsOfMappedFile: (NSString *)path

Parameters
path
The absolute path of the file from which to read data.

Return Value
A data object initialized by reading into it the mapped file specified by path. The returned object might be
different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfMappedFile: (page 373)

- initWithContentsOfFile: (page 380)

Declared In
NSData.h

Instance Methods 381
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

382

CHAPTER 27

NSData Class Reference

initWithContentsOfURL:

Initializes a newly allocated data object initialized with the data from the location specified by aURL.
- (id)initWithContentsOfURL: (NSURL *)aURL

Parameters
aURL
The URL from which to read data
Return Value
An NSData object initialized with the data from the location specified by aURL. The returned object might
be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfURL: (page 374)

Declared In
NSData.h

initWithContentsOfURL:options:error:

Returns a data object initialized with the data from the location specified by a given URL.

- (id)initWithContentsOfURL: (NSURL *)aURL options:(NSUInteger)mask error:(NSError
**)errorPtr

Parameters
aURL
The URL from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in “Options
for NSData Reading Methods” (page 387).

errorPtr
If there is an error reading in the data, upon return contains an NSError object that describes the
problem.

Return Value
A data object initialized with the data from the location specified by aURL. The returned object might be
different than the original receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ dataWithContentsOfURL:options:error: (page 375)

Declared In
NSData.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

initWithData:

Returns a data object initialized with the contents of another data object.

- (id)initWithData: (NSData *)data

Parameters

data
A data object.

Return Value

A data object initialized with the contents data. The returned object might be different than the original

receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithData: (page 375)

Declared In
NSData.h

isEqualToData:

Compares the receiving data object to otherData.
- (BOOL)isEqualToData:(NSData *)otherData

Parameters
otherData

The data object with which to compare the receiver.

Return Value

YES if the contents of otherData are equal to the contents of the receiver, otherwise NO.

Discussion

Two data objects are equal if they hold the same number of bytes, and if the bytes at the same position in

the objects are the same.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSData.h

length

Returns the number of bytes contained in the receiver.

- (NSUInteger)length

Return Value
The number of bytes contained in the receiver.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

383

384

CHAPTER 27

NSData Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioBurn

CocoaHTTPServer
CocoaSOAP
QTMetadataEditor
WhackedTV

Declared In
NSData.h

subdataWithRange:

Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by a given
range.

- (NSData *)subdataWithRange: (NSRange)range

Parameters
range

The range in the receiver from which to copy bytes. The range must not exceed the bounds of the
receiver.

Return Value
A data object containing a copy of the receiver’s bytes that fall within the limits specified by range.

Discussion
If range isn't within the receiver’s range of bytes, an NSRangeException is raised.

A sample using this method can be found in Working With Binary Data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSData.h

writeToFile:atomically:
Writes the bytes in the receiver to the file specified by a given path.

- (BOOL)writeToFile: (NSString *)path atomically:(B0OOL)flag

Parameters
path

The location to which to write the receiver's bytes. If path contains a tilde (~) character, you must
expand it with stringByExpandingTildeInPath (page 1602) before invoking this method.

atomically
If YES, the data is written to a backup file, and then—assuming no errors occur—the backup file is
renamed to the name specified by path; otherwise, the data is written directly to path.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Return Value
YES if the operation succeeds, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- writeToURL:atomically: (page 385)

Related Sample Code
Aperture Edit Plugin - Borders & Titles

Quartz Composer WWDC 2005 TextEdit
Reducer

TextEditPlus

WhackedTV

Declared In
NSData.h

writeToFile:options:error:
Writes the bytes in the receiver to the file specified by a given path.

- (BOOL)writeToFile: (NSString *)path options:(NSUInteger)mask error:(NSError
**)errorPtr

Parameters
path
The location to which to write the receiver's bytes.

mask
A mask that specifies options for writing the data. Constant components are described in “Options
for NSData Writing Methods” (page 387).

errorPtr
If there is an error writing out the data, upon return contains an NSError object that describes the
problem.

Return Value
YES if the operation succeeds, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
- writeToURL:options:error: (page 386)

Declared In
NSData.h

writeToURL:atomically:
Writes the bytes in the receiver to the location specified by aURL.

Instance Methods 385
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

386

CHAPTER 27

NSData Class Reference

- (BOOL)writeToURL: (NSURL *)aURL atomically:(BOOL)atomically

Parameters
aURL

The location to which to write the receiver's bytes. Only file:// URLs are supported.
atomically

If YES, the data is written to a backup location, and then—assuming no errors occur—the backup

location is renamed to the name specified by aURL; otherwise, the data is written directly to aURL.
atomicallyisignored if aURL is not of a type the supports atomic writes.

Return Value
YES if the operation succeeds, otherwise NO.

Discussion
Since at present only file:// URLs are supported, there is no difference between this method and
writeToFile:atomically: (page 384), except for the type of the first argument.

Availability
Available in Mac OS X v10.0 and later.

See Also
- writeToFile:atomically: (page 384)

Related Sample Code
Core Data HTML Store

CoreRecipes
CustomAtomicStoreSubclass

Declared In
NSData.h

writeToURL:options:error:

Writes the bytes in the receiver to the location specified by a given URL.
- (BOOL)writeToURL: (NSURL *)aURL options:(NSUInteger)mask error:(NSError **)errorPtr

Parameters

aURL
The location to which to write the receiver's bytes.

mask
A mask that specifies options for writing the data. Constant components are described in “Options
for NSData Writing Methods” (page 387).

errorPtr
If there is an error writing out the data, upon return contains an NSError object that describes the
problem.

Return Value
YES if the operation succeeds, otherwise NO.

Discussion
Since at present only file:// URLs are supported, there is no difference between this method and
writeToFile:options:error: (page 385), except for the type of the first argument.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
- writeToFile:options:error: (page 385)

Declared In
NSData.h

Constants

Options for NSData Reading Methods

Options for methods used to read NSData objects.

enum {
NSMappedRead

=1,
NSUncachedRead =

2
b

Constants
NSMappedRead
A hint indicating the file should be mapped into virtual memory, if possible.

Available in Mac OS X v10.4 and later.
Declared in NSData.h.

NSUncachedRead
A hint indicating the file should not be stored in the file-system caches.

For data being read once and discarded, this option can improve performance.
Available in Mac OS X v10.4 and later.
Declared in NSData. h.

Declared In
NSData.h

Options for NSData Writing Methods

Options for methods used to write NSData objects.

enum {
NSAtomicWrite =1
b

Constants
NSAtomicWrite
A hint to use an auxiliary file when saving data and then exchange the files.

Available in Mac OS X v10.4 and later.
Declared in NSData.h.

Constants 387
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Declared In
NSData.h

388 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Inherits from NSObject
Conforms to NSCoding
NSCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSDate.h

Foundation/NSCalendarDate.h

Companion guides Date and Time Programming Guide for Cocoa
Property List Programming Guide

Related sample code iSpend
NewsReader
Quartz Composer WWDC 2005 TextEdit
Reminders
TextEditPlus
Overview

NSDate objects represent a single pointin time. NSDate is a class cluster; its single public superclass, NSDate,
declares the programmatic interface for specific and relative time values. The objects you create using NSDate
are referred to as date objects. They are immutable objects. Because of the nature of class clusters, objects
returned by the NSDate class are instances not of that abstract class but of one of its private subclasses.
Although a date object’s class is private, its interface is public, as declared by the abstract superclass NSDate.
Generally, you instantiate a suitable date object by invoking one of the date. .. class methods.

NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing dates,
computing intervals, and similar functionality. NSDate presents a programmatic interface through which
suitable date objects are requested and returned. Date objects returned from NSDate are lightweight and
immutable since they represent an invariant point in time. This class is designed to provide the foundation
for arbitrary calendrical representations.

The sole primitive method of NSDate, timeIntervalSinceReferenceDate (page 408), provides the basis
for all the other methods in the NSDate interface. This method returns a time value relative to an absolute
reference date—the first instant of 1 January 2001, GMT.

Overview 389
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

390

CHAPTER 28

NSDate Class Reference

NSDate provides several methods to interpret and to create string representations of dates (for example,
dateWithNaturalLanguageString:locale: (page 394) and descriptionWithLocale: (page 402)). In general, on Mac
OS X v10.4 and later you should use an instance of NSDateFormatter to parse and generate strings using
the methods dateFromString: (page431)and stringFromDate: (page 456)—see NSDateFormatter on
Mac OS X 10.4 for more details.

NSDate models the change from the Julian to the Gregorian calendar in October 1582, and calendrical
calculations performed in conjunction with NSCalendar take this transition into account. Note, however,
that some locales adopted the Gregorian calendar at other times; for example, Great Britain didn't switch
over until September 1752.

NSDate is “toll-free bridged” with its Cocoa Foundation counterpart, CFDate Reference. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSDate * parameter, you can passa CFDateRef, and in a function
where you see a CFDateRef parameter, you can pass an NSDate instance (you cast one type to the other
to suppress compiler warnings). See Interchangeable Data Types for more information on toll-free bridging.

Subclassing Notes

The major reason for subclassing NSDate is to create a class with convenience methods for working with a
particular calendrical system. But you could also require a custom NSDate class for other reasons, such as to
get a date and time value that provides a finer temporal granularity.

Methods to Override

If you want to subclass NSDate to obtain behavior different than that provided by the private or public
subclasses, you must do these things:

= Declare a suitable instance variable to hold the date and time value (relative to an absolute reference
date).

m Overridethe timelntervalSinceReferenceDate (page 408) instance method to provide the correct
date and time value based on your instance variable.

m OverrideinitWithTimeIntervalSinceReferenceDate: (page 406), the designated initializer method.

If you are creating a subclass that represents a calendrical system, you must also define methods that partition
past and future periods into the units of this calendar.

Because the NSDate class adopts the NSCopyingand NSCod1ing protocols, your subclass must also implement
all of the methods in these protocols.

Special Considerations

Your subclass may use a different reference date than the absolute reference date used by NSDate (the first
instance of 1 January 2001, GMT). If it does, it must still use the absolute reference date in its implementations
of the methods timelntervalSinceReferenceDate (page 408) and
initWithTimeIntervalSinceReferenceDate: (page 406). That is, the reference date referred to in the
titles of these methods is the absolute reference date. If you do not use the absolute reference date in these
methods, comparisons between NSDate objects of your subclass and NSDate objects of a private subclass
will not work.

Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Adopted Protocols

Tasks

NSCoding

encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

NSCopying

copyWithZone: (page 2042)

Creating and Initializing Date Objects

+

date (page 393)

Creates and returns a new date set to the current date and time.
dateWithNaturallanguageString: (page 394)

Creates and returns an NSDate object set to the date and time specified by a given string.

dateWithNaturallanguageString:locale: (page 394)
Creates and returns an NSDate object set to the date and time specified by a given string.

dateWithString: (page 395)
Creates and returns an NSDate object with a date and time value specified by a given string in the
international string representation format (YYYY-MM-DD HH:MM:SS +HHMM).

dateWithTimeIntervalSinceNow: (page 396)
Creates and returns an NSDate object set to a given number of seconds from the current date and
time.

dateWithTimeIntervalSinceReferenceDate: (page 397)
Creates and returns an NSDate object set to a given number of seconds from the first instant of 1
January 2001, GMT.

dateWithTimeIntervalSincel970: (page 396)
Creates and returns an NSDate object set to the given number of seconds from the first instant of 1
January 1970, GMT.

init (page 404)
Returns an NSDate object initialized to the current date and time.

initWithString: (page 404)
Returns an NSDate object initialized with a date and time value specified by a given string in the
international string representation format.

initWithTimelIntervalSinceNow: (page 405)
Returns an NSDate object initialized relative to the current date and time by a given number of
seconds.

initWithTimeInterval:sinceDate: (page 405)
Returns an NSDate object initialized relative to another given date by a given number of seconds.

Adopted Protocols 391
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

392

CHAPTER 28

NSDate Class Reference

- initWithTimelIntervalSinceReferenceDate: (page 406)
Returns an NSDate object initialized relative the first instant of 1 January 2001, GMT by a given number
of seconds.

Getting Temporal Boundaries

+ distantFuture (page 397)
Creates and returns an NSDate object representing a date in the distant future.

+ distantPast (page 398)
Creates and returns an NSDate object representing a date in the distant past.

Comparing Dates

- iskqualToDate: (page 406)
Returns a Boolean value that indicates whether a given object is an NSDa te object and exactly equal
the receiver.

- earlierDate: (page 403)
Returns the earlier of the receiver and another given date.

- laterDate: (page 407)
Returns the later of the receiver and another given date.

- compare: (page 400)
Returns an NSComparisonResult value that indicates the temporal ordering of the receiver and
another given date.

Getting Time Intervals

- timelntervalSinceDate: (page 408)
Returns the interval between the receiver and another given date.

- timelntervalSinceNow (page 408)
Returns the interval between the receiver and the current date and time.

+ timelntervalSinceReferenceDate (page 398)
Returns the interval between the first instant of 1 January 2001, GMT and the current date and time.

- timelntervalSinceReferenceDate (page 408)
Returns the interval between the receiver and the first instant of 1 January 2001, GMT.

- timelntervalSincel970 (page 407)
Returns the interval between the receiver and the first instant of 1 January 1970, GMT.

Adding a Time Interval

- addTimelnterval: (page 399)
Returns a new NSDate object that is set to a given number of seconds relative to the receiver.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Representing Dates as Strings

- description (page 401)
Returns a string representation of the receiver.

- descriptionWithCalendarFormat:timeZone:locale: (page 401)
Returns a string representation of the receiver, formatted as specified by given conversion specifiers.

- descriptionWithlLocale: (page 402)
Returns a string representation of the receiver using the given locale.

Converting to an NSCalendarDate Object

- dateWithCalendarFormat:timeZone: (page 400)
Converts the receiver to an NSCalendarDate object with a given format string and time zone.

Class Methods

date

Creates and returns a new date set to the current date and time.
+ (id)date

Return Value
A new date object set to the current date and time.

Discussion
This method uses the default initializer method for the class, init (page 404).

The following code sample shows how to use date to get the current date:
NSDate *today = [NSDate datel;

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Clock Control

DatePicker
iSpend
Reminders
StickiesExample

Declared In
NSDate.h

Class Methods 393
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

394

CHAPTER 28

NSDate Class Reference

dateWithNaturalLanguageString:

Creates and returns an NSDate object set to the date and time specified by a given string.
+ (id)dateWithNaturallLanguageString: (NSString *)string

Parameters

string
A string that contains a colloquial specification of a date, such as “last Tuesday at dinner,” “3pm
December 31, 2001,” “12/31/01,” or “31/12/01.”

Return Value
A new NSDate object set to the current date and time specified by string.

Discussion
This method supports only a limited set of colloquial phrases, primarily in English. It may give unexpected
results, and its use is strongly discouraged.

In parsing the string, this method uses the date and time preferences stored in the user’s defaults database.
(See dateWithNaturallanguageString:locale: (page 394) for a list of the specific items used.)

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Core Data HTML Store

Reminders

Declared In
NSCalendarDate.h

dateWithNaturalLanguageString:locale:

Creates and returns an NSDate object set to the date and time specified by a given string.
+ (id)dateWithNaturallLanguageString: (NSString *)string locale:(id)/ocaleDictionary

Parameters
string

A string that contains a colloquial specification of a date, such as “last Tuesday at dinner,” “3pm
December 31, 2001,” “12/31/01,” or “31/12/01.”

localeDictionary
An NSDictionary object containing locale data. To use the user's preferences, you can use
[[NSUserDefaults standardUserDefaults] dictionaryRepresentation].

If you pass ni1 or an instance of NSLocale, NSDate uses the system default locale—this is not the
same as the current user's locale.

Return Value
A new NSDate object set to the date and time specified by string as interpreted according to
localeDictionary.

Discussion
This method supports only a limited set of colloquial phrases, primarily in English. It may give unexpected
results, and its use is strongly discouraged.

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

The keys and values that represent the locale data from 7ocaleDictionary are used when parsing the
string. In addition to the locale keys listed in the class description, these keys are used when parsing natural
language strings:

NSDateTimeOrdering
NSEarlierTimeDesignations
NSHourNameDesignations
NSLaterTimeDesignations
NSNextDayDesignations
NSNextNextDayDesignations
NSPriorDayDesignations
NSThisDayDesignations
NSYearMonthWeekDesignations

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithNaturallanguageString: (page 394)

Declared In
NSCalendarDate.h

dateWithString:

Creates and returns an NSDat e object with a date and time value specified by a given string in the international
string representation format (YYYY-MM-DD HH:MM:SS £HHMM).

+ (id)dateWithString: (NSString *)aString

Parameters
aString

A string that specifies a date and time value in the international string representation
format—YYYY-MM-DD HH:MM:SS £HHMM, where +HHMM is a time zone offset in hours and minutes
from GMT (for example, “2001-03-24 10:45:32 +0600").

You must specify all fields of the format string, including the time zone offset, which must have a plus
or minus sign prefix.

Return Value
An NSDate object with a date and time value specified by aString.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithString: (page 404)

Declared In
NSCalendarDate.h

Class Methods 395
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

396

CHAPTER 28

NSDate Class Reference

dateWithTimelntervalSince1970:

Creates and returns an NSDate object set to the given number of seconds from the first instant of 1 January
1970, GMT.

+ (id)dateWithTimeIntervalSincel970:(NSTimelnterval)seconds

Parameters
seconds

The number of seconds from the reference date, 1 January 1970, GMT, for the new date. Use a negative
argument to specify a date before this date.

Return Value
An NSDate object set to seconds seconds from the reference date.

Discussion
This method is useful for creating NSDate objects from time_t values returned by BSD system functions.

Availability
Available in Mac OS X v10.0 and later.

See Also
- timelntervalSincel970 (page 407)

Related Sample Code
SharedMemory

Declared In
NSDate.h

dateWithTimelntervalSinceNow:

Creates and returns an NSDate object set to a given number of seconds from the current date and time.
+ (id)dateWithTimeIntervalSinceNow: (NSTimelnterval)seconds

Parameters

seconds
The number of seconds from the current date and time for the new date. Use a negative value to
specify a date before the current date.

Return Value
An NSDate object set to seconds seconds from the current date and time.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithTimeIntervalSinceNow: (page 405)

Related Sample Code
IdentitySample

SimpleThreads
StickiesExample
TrivialThreads

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

WhackedTV

Declared In
NSDate.h

dateWithTimelntervalSinceReferenceDate:

Creates and returns an NSDate object set to a given number of seconds from the first instant of 1 January
2001, GMT.

+ (id)dateWithTimeIntervalSinceReferenceDate: (NSTimelnterval)seconds

Parameters

seconds
The number of seconds from the absolute reference date (the first instant of 1 January 2001, GMT)
for the new date. Use a negative argument to specify a date and time before the reference date.

Return Value
An NSDate object set to seconds seconds from the absolute reference date.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithTimelIntervalSinceReferenceDate: (page 406)

Related Sample Code
GridCalendar

NewsReader

Declared In
NSDate.h

distantFuture

Creates and returns an NSDate object representing a date in the distant future.
+ (id)distantFuture

Return Value
An NSDate object representing a date in the distant future (in terms of centuries).

Discussion

You can pass this value when an NSDate object is required to have the date argument essentially ignored.
For example, the NSWindow method nextEventMatchingMask:untilDate:inMode:dequeue: returns
nil if an event specified in the event mask does not happen before the specified date. You can use the
object returned by distantFuture as the date argument to wait indefinitely for the event to occur.

myEvent = [myWindow nextEventMatchingMask:myEventMask
untilDate:[NSDate distantFuture]
inMode:NSDefaultRunLoopMode
dequeue:YEST;

Class Methods 397
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ distantPast (page 398)

Related Sample Code
ClAnnotation

Core Data HTML Store
DatePicker
LiveVideoMixer2
SeeMyFriends

Declared In
NSDate.h

distantPast

Creates and returns an NSDate object representing a date in the distant past.
+ (id)distantPast

Return Value
An NSDate object representing a date in the distant past (in terms of centuries).

Discussion
You can use this object as a control date, a guaranteed temporal boundary.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ distantFuture (page 397)

Related Sample Code
CIVideoDemoGL

DatePicker
GLChildWindowDemo
ThreadsExportMovie
Vertex Optimization

Declared In
NSDate.h

timelntervalSinceReferenceDate

Returns the interval between the first instant of 1 January 2001, GMT and the current date and time.

+ (NSTimelInterval)timelntervalSinceReferenceDate

398 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Return Value
The interval between the system’s absolute reference date (the first instant of 1 January 2001, GMT) and the
current date and time.

Discussion
This method is the primitive method for NSDate. If you subclass NSDate, you must override this method
with your own implementation for it.

Availability
Available in Mac OS X v10.0 and later.

See Also
- timelntervalSinceReferenceDate (page 408)

- timelntervalSinceDate: (page 408)
- timelntervalSincel970 (page 407)
- timelntervalSinceNow (page 408)

Declared In
NSDate.h

Instance Methods

addTimelnterval:

Returns a new NSDate object that is set to a given number of seconds relative to the receiver.
- (id)addTimeInterval: (NSTimelnterval)seconds

Parameters

seconds
The number of seconds to add to the receiver. Use a negative value for seconds to have the returned
object specify a date before the receiver.

Return Value
A new NSDate object that is set to seconds seconds relative to the receiver. The date returned might have
a representation different from the receiver’s.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithTimelInterval:sinceDate: (page 405)

- timelntervalSinceDate: (page 408)

Declared In
NSDate.h

Instance Methods 399
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

400

CHAPTER 28

NSDate Class Reference

compare:

Returns an NSComparisonResult value that indicates the temporal ordering of the receiver and another
given date.

- (NSComparisonResult)compare: (NSDate *)anotherDate

Parameters

anotherDate
The date with which to compare the receiver.
This value must not be nil.If the value is ni1, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
If:

m The receiver and anotherDate are exactly equal to each other, NSOrderedSame
m The receiver is later in time than anotherDate, NSOrderedDescending

m The receiver is earlier in time than anotherDate, NSOrderedAscending.

Discussion
This method detects sub-second differences between dates. If you want to compare dates with a less fine
granularity, use timeIntervalSinceDate: (page 408) to compare the two dates.

Availability
Available in Mac OS X v10.0 and later.

See Also
- earlierDate: (page 403)

- isEqual: (page 2101) (NSObject protocol)
- laterDate: (page 407)

Related Sample Code
Reminders

Declared In
NSDate.h

dateWithCalendarFormat:timeZone:

Converts the receiver to an NSCalendarDate object with a given format string and time zone.

- (NSCalendarDate *)dateWithCalendarFormat: (NSString *)formatString
timeZone: (NSTimeZone *)timeZone

Parameters
formatString

The format for the returned string (see Converting Dates to Strings for a discussion of how to create
the format string). Pass ni 1 to use the default format string, “%Y - 5m-%d %H:%M:%S %z" (this conforms
to the international format YYYY-MM-DD HH:MM:SS *HHMM.)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

timeZone

The time zone for the new calendar date. Pass ni 1 to use the default time zone—specific to the
current locale.

Return Value
A new NSCalendarDate object bound to formatStringand the time zone timeZone.

Special Considerations

Important: NSCalendarDate is slated for deprecation, and its use is strongly discouraged.

Availability
Available in Mac OS X v10.0 and later.

See Also

- description (page 401)

- descriptionWithCalendarFormat:timeZone:locale: (page 401)
- descriptionWithlLocale: (page 402)
dateWithString:calendarFormat: (page 222)(NSCalendarDate)

Declared In
NSCalendarDate.h

description
Returns a string representation of the receiver.

- (NSString *)description

Return Value

A string representation of the receiver in the international format YYYY -MM-DD HH:MM:SS £HHMM, where
+HHMM represents the time zone offset in hours and minutes from GMT (for example, “2001-03-24 10:45:32
+0600").

Availability
Available in Mac OS X v10.0 and later.

See Also
- descriptionWithlLocale: (page 402)

Declared In
NSDate.h

descriptionWithCalendarFormat:timeZone:locale:

Returns a string representation of the receiver, formatted as specified by given conversion specifiers.

- (NSString *)descriptionWithCalendarFormat: (NSString *)formatString
timeZone: (NSTimeZone *)aTlimeZone locale:(id)localeDictionary

Instance Methods 401
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

402

CHAPTER 28

NSDate Class Reference

Parameters

formatString
The format for the returned string (see Converting Dates to Strings for a discussion of how to create
the format string). Pass ni1 to use the default format string, “%Y - 5m-%d %H:%M:%S %z" (this conforms
to the international format YYYY -MM-DD HH:MM:SS +HHMM.)

alimeZone
The time zone in which to represent the receiver. Pass ni1 to use the default time zone—specific to
the current locale.

localeDictionary
An NSDictionary object containing locale data. To use the user's preferences, you can use
[[NSUserDefaults standardUserDefaults] dictionaryRepresentationl.

If you pass ni1 oran instance of NSLocale, NSDate uses the system default locale—this is not the
same as the current user's locale.

Return Value
A string representation of the receiver, formatted as specified by the given conversion specifiers.

Discussion

There are several problems with the implementation of this method that cannot be fixed for compatibility
reasons. To format a date correctly, you should consider using a date formatter object instead (see
NSDateFormatter and Data Formatting Programming Guide for Cocoa).

You could use this method to print the current time as follows:

sprintf(aString, "The current time is %s\n", [[[NSDate date]
descriptionWithCalendarfFormat:@"%H:%M:%S %Z" timeZone:nil
locale:[[NSUserDefaults standardUserDefaults] dictionaryRepresentation]]
UTF8Stringl);

Availability
Available in Mac OS X v10.0 and later.

See Also

- description (page 401)

descriptionWithCalendarFormat:locale: (page229) (NSCalendarDate)
- descriptionWithlLocale: (page 402)

Related Sample Code
SharedMemory

Declared In
NSCalendarDate.h

descriptionWithLocale:

Returns a string representation of the receiver using the given locale.

- (NSString *)descriptionWithLocale:(id)Jocale

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Parameters
locale
An NSLocale object.
If you pass ni1, NSDate formats the date in the same way as the description (page 401) method.

On Mac OS X v10.4 and earlier, this parameter was an NSDictionary object. If you pass in an
NSDictionary object on Mac OS X v10.5, NSDate uses the default user locale—the same as if you
passed in [NSLocale currentlocale].

Return Value

A string representation of the receiver, using the given locale, or if the locale argument is ni1, in the
international format YYYY -MM-DD HH:MM:SS £HHMM, where +HHMM represents the time zone offset in hours
and minutes from GMT (for example, “2001-03-24 10:45:32 +0600")

Special Considerations

On Mac OS X v10.4 and earlier, TocaleDictionaryisan NSDictionary object containing locale data. To
use the user's preferences, you can use [[NSUserDefaults standardUserDefaults]
dictionaryRepresentation].

Availability
Available in Mac OS X v10.0 and later.

See Also
- description (page 401)

Declared In
NSCalendarDate.h

earlierDate:

Returns the earlier of the receiver and another given date.
- (NSDate *)earlierDate:(NSDate *)anotherDate

Parameters
anotherDate
The date with which to compare the receiver.

Return Value
The earlier of the receiver and anotherDate, determined using timeIntervalSinceDate: (page 408). If
the receiver and anotherDate represent the same date, returns the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- compare: (page 400)

- isEqual: (page 2101) (NSObject protocol)
- laterDate: (page 407)

Declared In
NSDate.h

Instance Methods 403
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

404

CHAPTER 28

NSDate Class Reference

init
Returns an NSDate object initialized to the current date and time.
- (id)init

Return Value
An NSDate object initialized to the current date and time.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page 406).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ date (page 393)

- initWithTimeIntervalSinceReferenceDate: (page 406)

Declared In
NSDate.h

initWithString:

Returns an NSDate object initialized with a date and time value specified by a given string in the international
string representation format.

- (id)initWithString: (NSString *)description

Parameters

description
A string that specifies a date and time value in the international string representation
format—YYYY-MM-DD HH:MM:SS £HHMM, where £HHMM is a time zone offset in hours and minutes
from GMT (for example, “2001-03-24 10:45:32 +0600").

You must specify all fields of the format string, including the time zone offset, which must have a plus
or minus sign prefix.

Return Value
An NSDate object initialized with a date and time value specified by aString.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page 406).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithString: (page 395)

- description (page 401)

Declared In
NSCalendarDate.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

initWithTimelnterval:sinceDate:

Returns an NSDate object initialized relative to another given date by a given number of seconds.
- (id)initWithTimeInterval: (NSTimelInterval)seconds sinceDate: (NSDate *)refDate

Parameters
seconds

The number of seconds to add to refDate. A negative value means the receiver will be earlier than
refDate.

refDate
The reference date.

Return Value
An NSDate object initialized relative to refDate by seconds seconds.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page 406).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDate.h

initWithTimelntervalSinceNow:

Returns an NSDate object initialized relative to the current date and time by a given number of seconds.
- (id)initWithTimeIntervalSinceNow: (NSTimelnterval)seconds

Parameters

seconds
The number of seconds from relative to the current date and time to which the receiver should be
initialized. A negative value means the returned object will represent a date in the past.

Return Value
An NSDate object initialized relative to the current date and time by seconds seconds.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page 406).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithTimeIntervalSinceNow: (page 396)

Related Sample Code
PDFKitLinker2

SimpleScriptingProperties
Vertex Optimization

Declared In

NSDate.h

Instance Methods 405
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

406

CHAPTER 28

NSDate Class Reference

initWithTimelntervalSinceReferenceDate:

Returns an NSDate object initialized relative the first instant of 1 January 2001, GMT by a given number of
seconds.

- (id)initWithTimelIntervalSinceReferenceDate: (NSTimelInterval)seconds

Parameters
seconds

The number of seconds to add to the reference date (the first instant of 1 January 2001, GMT). A
negative value means the receiver will be earlier than the reference date.

Return Value
An NSDate object initialized relative to the absolute reference date by seconds seconds.

Discussion
This method is the designated initializer for the NSDa te class and is declared primarily for the use of subclasses
of NSDate. When you subclass NSDate to create a concrete date class, you must override this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithTimelIntervalSinceReferenceDate: (page 397)

Declared In
NSDate.h

isEqualToDate:

Returns a Boolean value that indicates whether a given object is an NSDate object and exactly equal the
receiver.

- (BOOL)isEqualToDate: (NSDate *)anotherDate

Parameters
anotherDate
The date to compare with the receiver.

Return Value
YES if the anotherDateis an NSDate object and is exactly equal to the receiver, otherwise NO.

Discussion
This method detects sub-second differences between dates. If you want to compare dates with a less fine
granularity, use timeIntervalSinceDate: (page 408) to compare the two dates.

Availability
Available in Mac OS X v10.0 and later.

See Also
- compare: (page 400)

- earlierDate: (page 403)
- isEqual: (page 2101) (NSObject protocol)
- laterDate: (page 407)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Declared In
NSDate.h

laterDate:

Returns the later of the receiver and another given date.

- (NSDate *)laterDate:(NSDate *)anotherDate

Parameters

anotherDate
The date with which to compare the receiver.

Return Value

The later of the receiverand anotherDate, determined using timeIntervalSinceDate: (page 408). If the

receiver and anotherDate represent the same date, returns the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also

- compare: (page 400)

- earlierDate: (page 403)

- isEqual: (page 2101) (NSObject protocol)

Declared In
NSDate.h

timelntervalSince1970

Returns the interval between the receiver and the first instant of 1 January 1970, GMT.

- (NSTimelInterval)timelntervalSincel970

Return Value

The interval between the receiver and the reference date, 1 January 1970, GMT. If the receiver is earlier than

the reference date, the value is negative.

Availability
Available in Mac OS X v10.0 and later.

See Also
- timelntervalSinceDate: (page 408)

- timelntervalSinceNow (page 408)
- timelntervalSinceReferenceDate (page 408)
+ timelntervalSinceReferenceDate (page 398)

Declared In
NSDate.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

407

CHAPTER 28

NSDate Class Reference

timelntervalSinceDate:

Returns the interval between the receiver and another given date.
- (NSTimelnterval)timelntervalSinceDate: (NSDate *)anotherDate

Parameters
anotherDate
The date with which to compare the receiver.

Return Value
The interval between the receiver and anotherDate. If the receiver is earlier than anotherDate, the return
value is negative.

Availability
Available in Mac OS X v10.0 and later.

See Also
- timelntervalSincel970 (page 407)

- timelntervalSinceNow (page 408)
- timelntervalSinceReferenceDate (page 408)

Related Sample Code
URL Cachelnfo

Declared In
NSDate.h

timelntervalSinceNow

Returns the interval between the receiver and the current date and time.
- (NSTimelInterval)timeIntervalSinceNow

Return Value
The interval between the receiver and the current date and time. If the receiver is earlier than the current
date and time, the return value is negative.

Availability
Available in Mac OS X v10.0 and later.

See Also
- timelntervalSinceDate: (page 408)

- timelntervalSincel970 (page 407)
- timelntervalSinceReferenceDate (page 408)

Declared In
NSDate.h

timelntervalSinceReferenceDate

Returns the interval between the receiver and the first instant of 1 January 2001, GMT.

408 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

- (NSTimelInterval)timeIntervalSinceReferenceDate

Return Value
The interval between the receiver and the system’s absolute reference date (the first instant of 1 January
2001, GMT). If the receiver is earlier than the reference date, the value is negative.

Availability
Available in Mac OS X v10.0 and later.

See Also
- timelntervalSinceDate: (page 408)

- timelntervalSinceNow (page 408)
+ timelntervalSinceReferenceDate (page 398)

Related Sample Code
ClTransitionSelectorSample2

NewsReader

OpenGLCaptureToMovie

Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSDate.h

Constants

NSTimelntervalSince1970

NSDate provides a constant that specifies the number of seconds from 1 January 1970 to the reference date,
1 January 2001.

fidefine NSTimeIntervalSincel970 978307200.0

Constants
NSTimelIntervalSincel970
The number of seconds from 1 January 1970 to the reference date, 1 January 2001.

Available in Mac OS X v10.0 and later.
Declared in NSDate.h.
Discussion
1 January 1970 is the epoch (or starting point) for Unix time.

Declared In
NSDate.h

Constants 409
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

410 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Inherits from NSObject
Conforms to NSCoding
NSCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.4 and later.
Declared in Foundation/NSCalendar.h
Companion guide Date and Time Programming Guide for Cocoa
Related sample code Birthdays
Reminders
Overview

NSDateComponents encapsulates the components of a date in an extendable, object-oriented manner. It
is used to specify a date by providing the temporal components that make up a date and time: hour, minutes,
seconds, day, month, year, and so on. It can also be used to specify a duration of time, for example, 5 hours
and 16 minutes. An NSDateComponents object is not required to define all the component fields. When a
new instance of NSDateComponents is created the date components are setto NSUndefinedDateComponent.

Important: An NSDateComponents object is meaningless in itself; you need to know what calendar it is
interpreted against, and you need to know whether the values are absolute values of the units, or quantities
of the units.

An instance of NSDateComponents is not responsible for answering questions about a date beyond the
information with which it was initialized. For example, if you initialize one with May 6, 2004, its weekday is
NSUndefinedDateComponent, not Thursday. To get the correct day of the week, you must create a suitable
instance of NSCalendar, create an NSDate object using dateFromComponents: and then use
components:fromDate: to retrieve the weekday—as illustrated in the following example.

NSDateComponents *comps = [[NSDateComponents alloc] initl;

[comps setDay:61];

[comps setMonth:57;

[comps setYear:20047;

NSCalendar *gregorian = [[NSCalendar alloc]
initWithCalendarIdentifier:NSGregorianCalendar];

NSDate *date = [gregorian dateFromComponents:comps];

Overview m
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

[comps release];
NSDateComponents *weekdayComponents =

[gregorian components:NSWeekdayCalendarUnit fromDate:date];
int weekday = [weekdayComponents weekday];

For more details, see Calendars in Date and Time Programming Guide for Cocoa.

Tasks

Getting Information About an NSDateComponents Object

- era (page 413)

Returns the number of era units for the receiver.
- year (page 422)

Returns the number of year units for the receiver.
- month (page 415)

Returns the number of month units for the receiver.
- day (page 413)

Returns the number of day units for the receiver.
- hour (page 414)

Returns the number of hour units for the receiver.
- minute (page 414)

Returns the number of minute units for the receiver.
- second (page 415)

Returns the number of second units for the receiver.
- week (page 420)

Returns the number of week units for the receiver.
- weekday (page 421)

Returns the number of weekday units for the receiver.

- weekdayOrdinal (page 421)
Returns the ordinal number of weekday units for the receiver.

Setting Information for an NSDateComponents Object

- setkra: (page 416)
Sets the number of era units for the receiver.
- setYear: (page 420)
Sets the number of year units for the receiver.
- setMonth: (page 417)
Sets the number of month units for the receiver.
- setDay: (page 415)
Sets the number of day units for the receiver.

412 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

- setHour: (page 416)
Sets the number of hour units for the receiver.

- setMinute: (page 417)
Sets the number of minute units for the receiver.

- setSecond: (page 418)
Sets the number of second units for the receiver.

- setWeek: (page 418)
Sets the number of week units for the receiver.

- setWeekday: (page 419)
Sets the number of weekday units for the receiver.

- setWeekdayOrdinal: (page 419)
Sets the ordinal number of weekday units for the receiver.

Instance Methods

day
Returns the number of day units for the receiver.

- (NSInteger)day

Return Value
The number of day units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setDay: (page 415)

Related Sample Code
Birthdays

Declared In
NSCalendar.h

era

Returns the number of era units for the receiver.
- (NSInteger)era

Return Value
The number of era units for the receiver.

Instance Methods 413
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setfra: (page 416)

Declared In
NSCalendar.h

hour

Returns the number of hour units for the receiver.
- (NSInteger)hour

Return Value
The number of hour units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setHour: (page 416)

Declared In
NSCalendar.h

minute

Returns the number of minute units for the receiver.
- (NSInteger)minute

Return Value
The number of minute units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setMinute: (page 417)

414 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Declared In
NSCalendar.h

month

Returns the number of month units for the receiver.
- (NSInteger)month

Return Value
The number of month units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setMonth: (page 417)

Declared In
NSCalendar.h

second

Returns the number of second units for the receiver.
- (NSInteger)second

Return Value
The number of second units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setSecond: (page 418)

Declared In
NSCalendar.h

setDay:

Sets the number of day units for the receiver.

- (void)setDay: (NSInteger)v

Instance Methods 415
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Parameters
v
The number of day units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- day (page 413)

Related Sample Code
Reminders

Declared In
NSCalendar.h

setEra:

Sets the number of era units for the receiver.
- (void)setEra:(NSInteger)v

Parameters
%
The number of era units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- era (page 413)

Declared In
NSCalendar.h

setHour:

Sets the number of hour units for the receiver.
- (void)setHour:(NSInteger)v

Parameters
%
The number of hour units for the receiver.

416 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- hour (page 414)

Related Sample Code
Reminders

Declared In
NSCalendar.h

setMinute:

Sets the number of minute units for the receiver.
- (void)setMinute: (NSInteger)v

Parameters
v
The number of minute units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- minute (page 414)

Related Sample Code
Reminders

Declared In
NSCalendar.h

setMonth:

Sets the number of month units for the receiver.
- (void)setMonth:(NSInteger)v

Parameters
%
The number of month units for the receiver.

Instance Methods 17
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- month (page 415)

Related Sample Code
Reminders

Declared In
NSCalendar.h

setSecond:

Sets the number of second units for the receiver.
- (void)setSecond: (NSInteger)v

Parameters
v
The number of second units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- second (page 415)

Related Sample Code
Reminders

Declared In
NSCalendar.h

setWeek:

Sets the number of week units for the receiver.
- (void)setWeek: (NSInteger)v

Parameters
%
The number of week units for the receiver.

418 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- week (page 420)

Declared In
NSCalendar.h

setWeekday:

Sets the number of weekday units for the receiver.
- (void)setWeekday: (NSInteger)v

Parameters
v
The number of weekday units for the receiver.

Discussion
Weekday units are the numbers 1 through n, where n is the number of days in the week. For example, in the
Gregorian calendar, n is 7 and Sunday is represented by 1.

This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- weekday (page 421)

Declared In
NSCalendar.h

setWeekdayOrdinal:

Sets the ordinal number of weekday units for the receiver.
- (void)setWeekdayOrdinal:(NSInteger)v

Parameters
v

The ordinal number of weekday units for the receiver.
Discussion

Weekday ordinal units represent the position of the weekday within the next larger calendar unit, such as
the month. For example, 2 is the weekday ordinal unit for the second Friday of the month.

Instance Methods 419
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- weekdayOrdinal (page 421)

Declared In
NSCalendar.h

setYear:

Sets the number of year units for the receiver.
- (void)setYear:(NSInteger)v

Parameters

v
The number of year units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- year (page 422)

Related Sample Code
Reminders

Declared In
NSCalendar.h

week
Returns the number of week units for the receiver.

- (NSInteger)week

Return Value
The number of week units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

420 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

See Also
- setWeek: (page 418)

Declared In
NSCalendar.h

weekday

Returns the number of weekday units for the receiver.
- (NSInteger)weekday

Return Value
The number of weekday units for the receiver.

Discussion
Weekday units are the numbers 1 through n, where n is the number of days in the week. For example, in the
Gregorian calendar, n is 7 and Sunday is represented by 1.

This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setWeekday: (page 419)

Related Sample Code
Birthdays

Declared In
NSCalendar.h

weekdayOrdinal

Returns the ordinal number of weekday units for the receiver.
- (NSInteger)weekdayOrdinal

Return Value
The ordinal number of weekday units for the receiver.

Discussion
Weekday ordinal units represent the position of the weekday within the next larger calendar unit, such as
the month. For example, 2 is the weekday ordinal unit for the second Friday of the month.

This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods a1
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

See Also
- setWeekdayOrdinal: (page 419)

Declared In
NSCalendar.h

year

Returns the number of year units for the receiver.
- (NSInteger)year

Return Value
The number of year units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setYear: (page 420)

Declared In
NSCalendar.h

Constants

NSDateComponents undefined component identifier

This constant specifies that an NSDateComponents component is undefined.

enum {
NSUndefinedDateComponent = Ox7fffffff
by

Constants
NSUndefinedDateComponent
Specifies that the component is undefined.

Available in Mac OS X v10.4 and later.
Declared in NSCalendar.h.

Declared In
NSCalendar.h

422 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Inherits from NSFormatter : NSObject
Conforms to NSCoding (NSFormatter)
NSCopying (NSFormatter)
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSDateFormatter.h
Companion guide Data Formatting Programming Guide for Cocoa
Related sample code Core Data HTML Store
DatePicker
iSpend
Mountains
Reminders
Overview

Instances of NSDateFormatter create string representations of NSDate (and NSCalendarDate) objects,
and convert textual representations of dates and times into NSDa t e objects. You can express the representation
of dates and times flexibly: “Thu 22 Dec 1994" is just as acceptable as “12/22/94."

With Mac OS X v10.4 and later, NSDateFormatter has two modes of operation (or behaviors). By default,
instances of NSDateFormatter have the same behavior as they did on Mac OS X versions 10.0 to 10.3. You
can, however, configure instances (or set a default for all instances) to adopt a new behavior implemented
for Mac OS X version 10.4. See Data Formatting Programming Guide for Cocoa for a full description of the old
and new behaviors.

iPhone OS Note: iPhone OS supports only the modern 10.4+ behavior. 10.0-style methods and format strings
are not available on iPhone OS.

If you initialize a formatter using initWithDateFormat:allowNaturallanguage: (page 435),you are (for
backwards compatibility reasons) creating an “old-style” date formatter. To use the new behavior, you initialize
the formatter with init (page 434). If you have not set the default class behavior (see
setDefaultFormatterBehavior: (page429)), yousendtheinstanceasetFormatterBehavior: (page
441) message with the argument NSDateFormatterBehaviorl0_4. You can then set the date format as
appropriate, typically using a format style as illustrated in the following code fragment.

Overview 423
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

424

CHAPTER 30

NSDateFormatter Class Reference

// assume default behavior set for class using
// [NSDateFormatter setDefaultFormatterBehavior:NSDateFormatterBehaviorlO_47;

NSDateFormatter *dateFormatter = [[[NSDateFormatter alloc] init] autoreleasel];
[dateFormatter setDateStyle:NSDateFormatterMediumStyle];
[dateFormatter setTimeStyle:NSDateFormatterNoStyle];

NSDate *date = [NSDate dateWithTimelIntervalSinceReferenceDate:1188001];
NSString *formattedDateString = [dateFormatter stringFromDate:datel];
NSLog(@"formattedDateString for locale %@: %@",

[[dateFormatter locale] localeldentifier], formattedDateString);

// Qutput: formattedDateString for locale en_US: Jan 2, 2001
Note that the format for a given style is dependent on a user’s preferences, including the locale setting.

Note also that by default the new-style formatter returns NSDat e objects instead of NSCalendarDate objects.
You can change this behavior using setGeneratesCalendarDates: (page 441).

Initializing a Date Formatter

- init (page 434)
Initializes and returns an NSDateFormatter instance.
- initWithDateFormat:allowNaturallanguage: (page 435)

Initializes and returns an NSDateFormatter instance that uses the Mac OS X v10.0 formatting behavior
and the given date format string in its conversions.

Managing Behavior

allowsNaturallanguage (page 429)
Returns a Boolean value that indicates whether the receiver attempts to process dates entered as a
vernacular string.

- formatterBehavior (page 432)

Returns the formatter behavior for the receiver.

- setFormatterBehavior: (page 441)
Sets the formatter behavior for the receiver.

+ defaultFormatterBehavior (page 428)
Returns the default formatting behavior for instances of the class.

+ setDefaultFormatterBehavior: (page 429)
Sets the default formatting behavior for instances of the class.
- generatesCalendarDates (page 433)
Returns a Boolean value that indicates whether the receiver generates calendar dates.

- setGeneratesCalendarDates: (page 441)
Sets whether the receiver generates calendar dates.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

- islenient (page 436)
Returns a Boolean value that indicates whether the receiver uses heuristics when parsing a string.

- setlenient: (page 442)
Sets whether the receiver uses heuristics when parsing a string.

Converting Objects

- datefFromString: (page 431)
Returns a date representation of a given string interpreted using the receiver’s current settings.

- stringFromDate: (page 456)
Returns a string representation of a given date formatted using the receiver’s current settings.

- getObjectValue:forString:range:error: (page 433)
Returns by reference a date representation of a given string and the range of the string used, and
returns a Boolean value that indicates whether the string could be parsed.

Managing Formats and Styles

- dateFormat (page 430)
Returns the date format string used by the receiver.
- setDateFormat: (page 439)
Sets the date format for the receiver.
- dateStyle (page 431)
Returns the date style of the receiver.
- setDateStyle: (page 439)
Sets the date style of the receiver.
- timeStyle (page 456)
Returns the time style of the receiver.

- setTimeStyle: (page 448)
Sets the time style of the receiver.

Managing Attributes

- calendar (page 430)
Returns the calendar for the receiver.
- setCalendar: (page 439)
Sets the calendar for the receiver.
- defaultDate (page 432)
Returns the default date for the receiver.
- setDefaultDate: (page 440)
Sets the default date for the receiver.
- locale (page 436)
Returns the locale for the receiver.

Tasks 425
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

426

CHAPTER 30

NSDateFormatter Class Reference

- setlocale: (page 442)
Sets the locale for the receiver.

- timeZone (page 457)
Returns the time zone for the receiver.
- setTimeZone: (page 449)
Sets the time zone for the receiver.
- twoDigitStartDate (page 457)
Returns the earliest date that can be denoted by a two-digit year specifier.
- setTwoDigitStartDate: (page 449)
Sets the two-digit start date for the receiver.
- gregorianStartDate (page 434)
Returns the start date of the Gregorian calendar for the receiver.

- setGregorianStartDate: (page 441)
Sets the start date of the Gregorian calendar for the receiver.

Managing AM and PM Symbols

- AMSymbol (page 430)

Returns the AM symbol for the receiver.
- setAMSymbol: (page 438)

Sets the AM symbol for the receiver.
- PMSymbol (page 437)

Returns the PM symbol for the receiver.

- setPMSymbol: (page 443)
Sets the PM symbol for the receiver.

Managing Weekday Symbols

- weekdaySymbols (page 459)

Returns the array of weekday symbols for the receiver.
- setWeekdaySymbols: (page 451)

Sets the weekday symbols for the receiver.
- shortWeekdaySymboTls (page 454)

Returns the array of short weekday symbols for the receiver.
- setShortWeekdaySymbols: (page 447)

Sets the short weekday symbols for the receiver.
- veryShortWeekdaySymbols (page 459)

Returns the array of very short weekday symbols for the receiver.
- setVeryShortWeekdaySymbols: (page 451)

Sets the vert short weekday symbols for the receiver

- standaloneWleekdaySymbols (page 455)
Returns the array of standalone weekday symbols for the receiver.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

- setStandaloneWeekdaySymbols: (page 448)
Sets the standalone weekday symbols for the receiver.

- shortStandaloneWeekdaySymbols (page 454)
Returns the array of short standalone weekday symbols for the receiver.
- setShortStandaloneWeekdaySymbols: (page 446)
Sets the short standalone weekday symbols for the receiver.
- veryShortStandalonelWeekdaySymbols (page 458)
Returns the array of very short standalone weekday symbols for the receiver.

- setVeryShortStandaloneWeekdaySymbols: (page 450)
Sets the very short standalone weekday symbols for the receiver.

Managing Month Symbols

- monthSymbols (page 437)
Returns the month symbols for the receiver.
- setMonthSymbols: (page 443)
Sets the month symbols for the receiver.
- shortMonthSymbols (page 452)
Returns the array of short month symbols for the receiver.
- setShortMonthSymbols: (page 444)
Sets the short month symbols for the receiver.
- veryShortMonthSymbols (page 458)
Returns the very short month symbols for the receiver.
- setVeryShortMonthSymbols: (page 450)
Sets the very short month symbols for the receiver.
- standaloneMonthSymbols (page 455)
Returns the standalone month symbols for the receiver.
- setStandaloneMonthSymbols: (page 447)
Sets the standalone month symbols for the receiver.
- shortStandaloneMonthSymbols (page 453)
Returns the short standalone month symbols for the receiver.
- setShortStandaloneMonthSymbols: (page 445)
Sets the short standalone month symbols for the receiver.
- veryShortStandaloneMonthSymbols (page 458)
Returns the very short month symbols for the receiver.
- setVeryShortStandaloneMonthSymbols: (page 450)
Sets the very short standalone month symbols for the receiver.

Managing Quarter Symbols

- quarterSymbols (page 438)
Returns the quarter symbols for the receiver.

Tasks 427
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

- setQuarterSymbols: (page 444)
Sets the quarter symbols for the receiver.

- shortQuarterSymbols (page 452)
Returns the short quarter symbols for the receiver.

- setShortQuarterSymbols: (page 445)
Sets the short quarter symbols for the receiver.

- standaloneQuarterSymbols (page 455)
Returns the standalone quarter symbols for the receiver.

- setStandaloneQuarterSymbols: (page 447)
Sets the standalone quarter symbols for the receiver.

- shortStandaloneQuarterSymbols (page 453)
Returns the short standalone quarter symbols for the receiver.

- setShortStandaloneQuarterSymbols: (page 446)
Sets the short standalone quarter symbols for the receiver.

Managing Era Symbols

- eraSymbols (page 432)
Returns the era symbols for the receiver.

- setEraSymbols: (page 440)
Sets the era symbols for the receiver.

- longEraSymbols (page 437)
Returns the long era symbols for the receiver

- setlongEraSymbols: (page 443)
Sets the long era symbols for the receiver.

Class Methods

defaultFormatterBehavior

Returns the default formatting behavior for instances of the class.
+ (NSDateFormatterBehavior)defaultFormatterBehavior

Return Value
The default formatting behavior for instances of the class. For possible values, see
NSDateFormatterBehavior (page 461).

Discussion
The default is NSDateFormatterBehavior10_0.

Availability
Available in Mac OS X v10.4 and later.

See Also

+ setDefaultFormatterBehavior: (page 429).

428 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

- formatterBehavior (page 432)
- setFormatterBehavior: (page 441)

Declared In
NSDateFormatter.h

setDefaultFormatterBehavior:

Sets the default formatting behavior for instances of the class.
+ (void)setDefaultFormatterBehavior:(NSDateFormatterBehavior)behavior

Parameters
behavior

The default formatting behavior for instances of the class. For possible values, see
NSDateFormatterBehavior (page 461).

Availability
Available in Mac OS X v10.4 and later.

See Also
+ defaultFormatterBehavior (page 428)

- formatterBehavior (page 432)
- setFormatterBehavior: (page 441)

Related Sample Code
DatePicker

Declared In
NSDateFormatter.h

Instance Methods

allowsNaturalLanguage
Returns a Boolean value that indicates whether the receiver attempts to process dates entered as a vernacular
string.

- (BOOL)allowsNaturallLanguage

Return Value
YES if the receiver attempts to process dates entered as a vernacular string ("today,
time," and so on), otherwise NO.

next week," "dinner

Discussion
Natural-language processing supports only a limited set of colloquial phrases, primarily in English. It may
give unexpected results, and its use is strongly discouraged.

Special Considerations
This method is for use with formatters using NSDateFormatterBehavior10_0 behavior.

Instance Methods 429
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDateFormatter.h

AMSymbol

Returns the AM symbol for the receiver.
- (NSString *)AMSymbol

Return Value
The AM symbol for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setAMSymbol: (page 438)

- PMSymbol (page 437)
- setPMSymbol: (page 443)

Declared In
NSDateFormatter.h

calendar

Returns the calendar for the receiver.
- (NSCalendar *)calendar

Return Value
The calendar for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setCalendar: (page 439)

Declared In
NSDateFormatter.h

dateFormat

Returns the date format string used by the receiver.
- (NSString *)dateFormat

Return Value
The date format string used by the receiver.

430 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Discussion

See Date Format String Syntax (MacA OSA X Versions 10.0 to 10.3) for a list of the conversion specifiers

permitted in date format strings.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setDatefFormat: (page 439)

Declared In
NSDateFormatter.h

dateFromString:

Returns a date representation of a given string interpreted using the receiver’s current settings.

- (NSDate *)dateFromString:(NSString *)string

Parameters
string
The string to parse.

Return Value
A date representation of string interpreted using the receiver’s current settings.

Availability
Available in Mac OS X v10.4 and later.

See Also
- getObjectValue:forString:range:error: (page 433)

- stringFromDate: (page 456)

Related Sample Code
Reminders

Declared In
NSDateFormatter.h

dateStyle

Returns the date style of the receiver.
- (NSDateFormatterStyle)dateStyle

Return Value
The date style of the receiver. For possible values, see NSDateFormatterStyle (page 460).

Availability
Available in Mac OS X v10.4 and later.

See Also
- setDateStyle: (page 439)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

431

432

CHAPTER 30

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

defaultDate

Returns the default date for the receiver.
- (NSDate *)defaultDate

Return Value
The default date for the receiver.

Discussion
The default default date is nil.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setDefaultDate: (page 440)

Declared In
NSDateFormatter.h

eraSymbols

Returns the era symbols for the receiver.
- (NSArray *)eraSymbols

Return Value
An array containing NSString objects representing the era symbols for the receiver (for example, {"B.C.E.]
“C.E."}).

Availability
Available in Mac OS X v10.4 and later.

See Also
- setEraSymbols: (page 440)

- longEraSymbols (page 437)

Declared In
NSDateFormatter.h

formatterBehavior

Returns the formatter behavior for the receiver.
- (NSDateFormatterBehavior)formatterBehavior

Return Value
The formatter behavior for the receiver. For possible values, see NSDateFormatterBehavior (page 461).

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
+ defaultFormatterBehavior (page 428).

+ setDefaultFormatterBehavior: (page 429)
- setFormatterBehavior: (page 441)

Declared In
NSDateFormatter.h

generatesCalendarDates

Returns a Boolean value that indicates whether the receiver generates calendar dates.
- (BOOL)generatesCalendarDates

Return Value
YES if the receiver generates calendar dates, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setGeneratesCalendarDates: (page 441)

Declared In
NSDateFormatter.h

getObjectValue:forString:range:error:

Returns by reference a date representation of a given string and the range of the string used, and returns a
Boolean value that indicates whether the string could be parsed.

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string range:(inout NSRange
*)rangep error:(NSError **)error

Parameters
obJj
If the receiver is able to parse st ring, upon return contains a date representation of string.
string
The string to parse.
rangep
If the receiver is able to parse string, upon return contains the range of string used to create the
date.
error
If the receiver is unable to create a date by parsing string, upon return contains an NSError object
that describes the problem.

Return Value
YES if the receiver can create a date by parsing string, otherwise NO.

Instance Methods 433
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

434

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
- dateFromString: (page 431)

- stringForObjectValue: (page 680)

Related Sample Code
iSpend

Declared In
NSDateFormatter.h

gregorianStartDate

Returns the start date of the Gregorian calendar for the receiver.
- (NSDate *)gregorianStartDate

Return Value
The start date of the Gregorian calendar for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setGregorianStartDate: (page 441)

Declared In
NSDateFormatter.h

init
Initializes and returns an NSDateFormatter instance.
- (id)init

Return Value
An NSDateFormatter instance initialized with locale, time zone, calendar, and behavior set to the appropriate
default values.

Discussion

There are many new attributes you can get and set on a 10.4-style date formatter, including the locale, time
zone, calendar, format string, the two-digit-year cross-over date, the default date which provides unspecified
components, and there is also access to the various textual strings, like the month names. You are encouraged,
however, not to change individual settings. Instead you should accept the default settings established on
initialization and specify the format using setDateStyle: (page 439), setTimeStyle: (page 448), and
appropriate style constants (see NSDateFormatterStyle (page 460)—these are styles that the user can
configure in the International preferences panel in System Preferences).

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Special Considerations
If you want the Mac OS X 10.4 behavior but have not set the class’s default behavior to

NSDateFormatterBehavior10_4, you also need to send the new instance a
setFormatterBehavior: (page 441) message with the argument NSDateFormatterBehaviorl0_4.

Availability
Available in Mac OS X v10.4 and later.

See Also

- initWithDateFormat:allowNaturallanguage: (page 435)
- setDateStyle: (page 439)

- setTimeStyle: (page 448)

Declared In
NSDateFormatter.h

initWithDateFormat:allowNaturalLanguage:

Initializes and returns an NSDateFormatter instance that uses the Mac OS X v10.0 formatting behavior and
the given date format string in its conversions.

- (id)initWithDateFormat: (NSString *)format allowNaturallanguage: (BOOL)f/ag

Parameters
format

The format for the receiver. See Date Format String Syntax (MacA OSA X Versions 10.0 to 10.3) for a
list of conversion specifiers permitted in date format strings.

flag
A flag that specifies whether the receiver should process dates entered as expressions in the vernacular
(for example, "tomorrow")—YES means that it should.

Return Value
An initialized NSDateFormatter instance that uses format in its conversions and that uses the Mac OS X
v10.0 formatting behavior.

Discussion

NSDateFormatter attempts natural-language processing only after it fails to interpret an entered string
according to format. Natural-language processing supports only a limited set of colloquial phrases, primarily
in English. It may give unexpected results, and its use is strongly discouraged.

The following example creates a date formatter with the format string (for example) “Mar 15 1994” and then
associates the formatter with the cells of a form (contactsForm):

NSDateFormatter *dateFormat = [[NSDateFormatter alloc]
initWithDateFormat:@"%b %d %Y" allowNaturallanguage:NOJ;

[[contactsForm cells] makeObjectsPerformSelector:@selector(setFormatter:)
withObject:dateFormat];

Instance Methods 435
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Important: You cannot use this method to initialize a formatter with the Mac OS X v10.4 formatting behavior,
you must use init (page 434).

Availability
Available in Mac OS X v10.0 and later.

See Also
- init (page 434)

Declared In
NSDateFormatter.h

isLenient

Returns a Boolean value that indicates whether the receiver uses heuristics when parsing a string.
- (BOOL)isLenient

Return Value
YES if the receiver has been set to use heuristics when parsing a string to guess at the date which is intended,
otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setlenient: (page 442)

Declared In
NSDateFormatter.h

locale

Returns the locale for the receiver.
- (NSLocale *)locale

Return Value
The locale for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setlocale: (page 442)

Declared In
NSDateFormatter.h

436 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

longEraSymbols

Returns the long era symbols for the receiver
- (NSArray *)longEraSymbols

Return Value

An array containing NSString objects representing the era symbols for the receiver (for example, {“Before

Common Era; “Common Era"}).

Availability
Available in Mac OS X v10.5 and later.

See Also
- setlongEraSymbols: (page 443)

- eraSymbols (page 432)

Declared In
NSDateFormatter.h

monthSymbols

Returns the month symbols for the receiver.
- (NSArray *)monthSymbols

Return Value

An array of NSString objects that specify the month symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setMonthSymbols: (page 443)

- shortMonthSymbols (page 452)

- veryShortMonthSymbols (page 458)

- standaloneMonthSymbols (page 455)

- shortStandaloneMonthSymboTls (page 453)

- veryShortStandaloneMonthSymbols (page 458)

Declared In
NSDateFormatter.h

PMSymbol

Returns the PM symbol for the receiver.
- (NSString *)PMSymbol

Return Value
The PM symbol for the receiver.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

437

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
- setPMSymbol: (page 443)

- AMSymbol (page 430)
- setAMSymbol: (page 438)

Declared In
NSDateFormatter.h

quarterSymbols

Returns the quarter symbols for the receiver.
- (NSArray *)quarterSymbols

Return Value
An array containing NSString objects representing the quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setQuarterSymbols: (page 444)

- shortQuarterSymbols (page 452)
- standaloneQuarterSymbols (page 455)
- shortStandaloneQuarterSymbols (page 453)

Declared In
NSDateFormatter.h

setAMSymbol:

Sets the AM symbol for the receiver.
- (void)setAMSymbol:(NSString *)string

Parameters
string
The AM symbol for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- AMSymbol (page 430)

- PMSymbol (page 437)
- setPMSymbol: (page 443)

Declared In

NSDateFormatter.h

438 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

setCalendar:

Sets the calendar for the receiver.
- (void)setCalendar:(NSCalendar *)calendar

Parameters
calendar
The calendar for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- calendar (page 430)

Declared In
NSDateFormatter.h

setDateFormat:

Sets the date format for the receiver.
- (void)setDateFormat: (NSString *)string

Parameters
string

The date format for the receiver. See Data Formatting Programming Guide for Cocoa for a list of the
conversion specifiers permitted in date format strings.

Availability
Available in Mac OS X v10.4 and later.

See Also
- dateFormat (page 430).

Declared In
NSDateFormatter.h

setDateStyle:

Sets the date style of the receiver.
- (void)setDateStyle:(NSDateFormatterStyle)style

Parameters
style
The date style of the receiver. For possible values, see NSDateFormatterStyle (page 460).

Availability
Available in Mac OS X v10.4 and later.

See Also
- dateStyle (page 431).

Instance Methods 439
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Related Sample Code
DatePicker

iSpend

Mountains
NSOperationSample
Reminders

Declared In
NSDateFormatter.h

setDefaultDate:

Sets the default date for the receiver.
- (void)setDefaultDate: (NSDate *)date

Parameters
date
The default date for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- defaultDate (page 432)

Declared In
NSDateFormatter.h

setEraSymbols:

Sets the era symbols for the receiver.
- (void)setEraSymbols: (NSArray *)array

Parameters

array
An array containing NSString objects representing the era symbols for the receiver (for example,
{"B.C.E.7 “"C.E"}).

Availability

Available in Mac OS X v10.4 and later.

See Also
- eraSymbols (page 432)

- lTongEraSymbols (page 437)

Declared In
NSDateFormatter.h

440 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

setFormatterBehavior:

Sets the formatter behavior for the receiver.
- (void)setFormatterBehavior:(NSDateFormatterBehavior)behavior

Parameters
behavior

The formatter behavior for the receiver. For possible values, see NSDateFormatterBehavior (page
461).

Availability
Available in Mac OS X v10.4 and later.

See Also
+ defaultFormatterBehavior (page 428).

+ setDefaultFormatterBehavior: (page 429)
- formatterBehavior (page 432)

Declared In
NSDateFormatter.h

setGeneratesCalendarDates:

Sets whether the receiver generates calendar dates.
- (void)setGeneratesCalendarDates: (BOOL)b

Parameters
b
A Boolean value that specifies whether the receiver generates calendar dates.

Availability
Available in Mac OS X v10.4 and later.

See Also
- generatesCalendarDates (page 433).

Declared In
NSDateFormatter.h

setGregorianStartDate:

Sets the start date of the Gregorian calendar for the receiver.
- (void)setGregorianStartDate: (NSDate *)array

Parameters
array
The start date of the Gregorian calendar for the receiver.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods M1
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

See Also
- gregorianStartDate (page 434)

Declared In
NSDateFormatter.h

setLenient:

Sets whether the receiver uses heuristics when parsing a string.
- (void)setlLenient:(BOOL)b

Parameters
b
YES to use heuristics when parsing a string to guess at the date which is intended, otherwise NO.

Discussion
If a formatter is set to be lenient, when parsing a string it uses heuristics to guess at the date which is intended.
As with any guessing, it may get the result date wrong (that is, a date other than that which was intended).

Availability
Available in Mac OS X v10.4 and later.

See Also
- islenient (page 436)

Declared In
NSDateFormatter.h

setLocale:

Sets the locale for the receiver.
- (void)setlLocale:(NSLocale *)Jocale

Parameters
locale
The locale for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- locale (page 436)

Related Sample Code
Mountains

Declared In
NSDateFormatter.h

442 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

setLongEraSymbols:

Sets the long era symbols for the receiver.
- (void)setLongEraSymbols:(NSArray *)array

Parameters
array

An array containing NSString objects representing the era symbols for the receiver (for example,

{“Before Common Era” “Common Era"}).

Availability
Available in Mac OS X v10.5 and later.

See Also
- longEraSymbols (page 437)

- eraSymbols (page 432)

Declared In
NSDateFormatter.h

setMonthSymbols:

Sets the month symbols for the receiver.
- (void)setMonthSymbols: (NSArray *)array

Parameters
array
An array of NSString objects that specify the month symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- monthSymbols (page 437)

- setShortMonthSymbols: (page 444)

- setVeryShortMonthSymbols: (page 450)

- setStandaloneMonthSymbols: (page 447)

- setShortStandaloneMonthSymbols: (page 445)

- setVeryShortStandaloneMonthSymbols: (page 450)

Declared In
NSDateFormatter.h

setPMSymbol:

Sets the PM symbol for the receiver.

- (void)setPMSymbol:(NSString *)string

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

443

444

CHAPTER 30

NSDateFormatter Class Reference

Parameters
string
The PM symbol for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- PMSymbol (page 437)

- AMSymbol (page 430)
- setAMSymbol: (page 438)

Declared In
NSDateFormatter.h

setQuarterSymbols:

Sets the quarter symbols for the receiver.
- (void)setQuarterSymbols:(NSArray *)array

Parameters
array
An array of NSString objects that specify the quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- quarterSymbols (page 438)

- setShortQuarterSymbols: (page 445)
- setStandaloneQuarterSymbols: (page 447)
- setShortStandaloneQuarterSymbols: (page 446)

Declared In
NSDateFormatter.h

setShortMonthSymbols:

Sets the short month symbols for the receiver.
- (void)setShortMonthSymbols: (NSArray *)array

Parameters
array
An array of NSString objects that specify the short month symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- shortMonthSymbols (page 452)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

- setMonthSymbols: (page 443)

- setVeryShortMonthSymbols: (page 450)

- setStandaloneMonthSymbols: (page 447)

- setShortStandaloneMonthSymbols: (page 445)

- setVeryShortStandaloneMonthSymbols: (page 450)

Declared In
NSDateFormatter.h

setShortQuarterSymbols:

Sets the short quarter symbols for the receiver.

- (void)setShortQuarterSymbols: (NSArray *)array

Parameters
array

An array of NSString objects that specify the short quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- shortQuarterSymbols (page 452)

- setQuarterSymbols: (page 444)
- setStandaloneQuarterSymbols: (page 447)
- setShortStandaloneQuarterSymbols: (page 446)

Declared In
NSDateFormatter.h

setShortStandaloneMonthSymbols:

Sets the short standalone month symbols for the receiver.

- (void)setShortStandaloneMonthSymbols: (NSArray *)array

Parameters
array

An array of NSString objects that specify the short standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- shortStandaloneMonthSymbols (page 453)

- setMonthSymbols: (page 443)

- setShortMonthSymbols: (page 444)

- setVeryShortMonthSymbols: (page 450)

- setStandaloneMonthSymbols: (page 447)

- setVeryShortStandaloneMonthSymbols: (page 450)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

445

CHAPTER 30

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

setShortStandaloneQuarterSymbols:

Sets the short standalone quarter symbols for the receiver.
- (void)setShortStandaloneQuarterSymbols: (NSArray *)array

Parameters
array
An array of NSString objects that specify the short standalone quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- shortStandaloneQuarterSymbols (page 453)

- setQuarterSymbols: (page 444)
- setShortQuarterSymbols: (page 445)
- setStandaloneQuarterSymbols: (page 447)

Declared In
NSDateFormatter.h

setShortStandaloneWeekdaySymbols:

Sets the short standalone weekday symbols for the receiver.
- (void)setShortStandaloneWeekdaySymbols: (NSArray *)array

Parameters
array
An array of NSString objects that specify the short standalone weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- shortStandaloneWeekdaySymbols (page 454)

- setWeekdaySymbols: (page 451)

- setShortWeekdaySymbols: (page 447)

- setVeryShortWeekdaySymbols: (page 451)

- setStandaloneWeekdaySymbols: (page 448)

- setVeryShortStandaloneWeekdaySymbols: (page 450)

Declared In
NSDateFormatter.h

446 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

setShortWeekdaySymbols:

Sets the short weekday symbols for the receiver.
- (void)setShortWeekdaySymbols: (NSArray *)array

Parameters
array
An array of NSString objects that specify the short weekday symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- shortWeekdaySymbols (page 454)

- setWeekdaySymbols: (page 451)

- setVeryShortWeekdaySymbols: (page 451)

- setStandaloneWeekdaySymbols: (page 448)

- setShortStandalonelleekdaySymbols: (page 446)

- setVeryShortStandaloneWeekdaySymbols: (page 450)

Declared In
NSDateFormatter.h

setStandaloneMonthSymbols:

Sets the standalone month symbols for the receiver.
- (void)setStandaloneMonthSymbols: (NSArray *)array

Parameters
array

An array of NSString objects that specify the standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- standaloneMonthSymbols (page 455)

- setMonthSymbols: (page 443)

- setShortMonthSymbols: (page 444)

- setVeryShortMonthSymbols: (page 450)

- setShortStandaloneMonthSymbols: (page 445)

- setVeryShortStandaloneMonthSymbols: (page 450)

Declared In
NSDateFormatter.h

setStandaloneQuarterSymbols:

Sets the standalone quarter symbols for the receiver.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

447

CHAPTER 30

NSDateFormatter Class Reference

- (void)setStandaloneQuarterSymbols: (NSArray *)array

Parameters
array
An array of NSString objects that specify the standalone quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setStandaloneQuarterSymbols: (page 447)

- setQuarterSymbols: (page 444)
- setShortQuarterSymbols: (page 445)
- setShortStandaloneQuarterSymbols: (page 446)

Declared In
NSDateFormatter.h

setStandaloneWeekdaySymbols:

Sets the standalone weekday symbols for the receiver.
- (void)setStandaloneWeekdaySymbols:(NSArray *)array

Parameters
array
An array of NSString objects that specify the standalone weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- standaloneWeekdaySymbols (page 455)

- setWeekdaySymbols: (page 451)

- setShortWeekdaySymbols: (page 447)

- setVeryShortWeekdaySymbols: (page 451)

- setShortStandaloneWeekdaySymbols: (page 446)

- setVeryShortStandaloneWeekdaySymbols: (page 450)

Declared In
NSDateFormatter.h

setTimeStyle:
Sets the time style of the receiver.

- (void)setTimeStyle:(NSDateFormatterStyle)style

Parameters
style
The time style for the receiver. For possible values, see NSDateFormatterStyle (page 460).

448 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
- timeStyle (page 456)

Related Sample Code
DatePicker

Mountains
NSOperationSample
Reminders

Declared In
NSDateFormatter.h

setTimeZone:

Sets the time zone for the receiver.
- (void)setTimeZone: (NSTimeZone *)tz

Parameters
tz
The time zone for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- timeZone (page 457)

Declared In
NSDateFormatter.h

setTwoDigitStartDate:

Sets the two-digit start date for the receiver.
- (void)setTwoDigitStartDate: (NSDate *)date

Parameters
date
The earliest date that can be denoted by a two-digit year specifier.

Availability
Available in Mac OS X v10.4 and later.

See Also
- twoDigitStartDate (page 457)

Declared In
NSDateFormatter.h

Instance Methods 449
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

setVeryShortMonthSymbols:

Sets the very short month symbols for the receiver.
- (void)setVeryShortMonthSymbols: (NSArray *)array

Parameters
array
An array of NSString objects that specify the very short month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- veryShortMonthSymbols (page 458)

- setMonthSymbols: (page 443)

- setShortMonthSymbols: (page 444)

- setStandaloneMonthSymbols: (page 447)

- setShortStandaloneMonthSymbols: (page 445)

- setVeryShortStandaloneMonthSymbols: (page 450)

Declared In
NSDateFormatter.h

setVeryShortStandaloneMonthSymbols:

Sets the very short standalone month symbols for the receiver.
- (void)setVeryShortStandaloneMonthSymbols: (NSArray *)array

Parameters
array
An array of NSString objects that specify the very short standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- veryShortStandaloneMonthSymbols (page 458)

- setMonthSymbols: (page 443)

- setShortMonthSymbols: (page 444)

- setVeryShortMonthSymbols: (page 450)

- setStandaloneMonthSymbols: (page 447)

- setShortStandaloneMonthSymbols: (page 445)

Declared In
NSDateFormatter.h

setVeryShortStandaloneWeekdaySymbols:

Sets the very short standalone weekday symbols for the receiver.

450 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

- (void)setVeryShortStandaloneWeekdaySymbols: (NSArray *)array

Parameters
array
An array of NSString objects that specify the very short standalone weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- veryShortStandalonelWeekdaySymbols (page 458)

- setWeekdaySymbols: (page 451)

- setShortWeekdaySymbols: (page 447)

- setVeryShortWeekdaySymbols: (page 451)

- setStandaloneWeekdaySymbols: (page 448)

- setShortStandalonelleekdaySymbols: (page 446)

Declared In
NSDateFormatter.h

setVeryShortWeekdaySymbols:

Sets the vert short weekday symbols for the receiver
- (void)setVeryShortWeekdaySymbols: (NSArray *)array

Parameters
array
An array of NSString objects that specify the very short weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- veryShortWeekdaySymbols (page 459)

- setWeekdaySymbols: (page 451)

- setShortWeekdaySymbols: (page 447)

- setStandaloneWeekdaySymboTls: (page 448)

- setShortStandaloneWleekdaySymbols: (page 446)

- setVeryShortStandaloneWeekdaySymbols: (page 450)

Declared In
NSDateFormatter.h

setWeekdaySymbols:

Sets the weekday symbols for the receiver.

- (void)setWeekdaySymbols:(NSArray *)array

Instance Methods 451
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Parameters
array
An array of NSString objects that specify the weekday symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- weekdaySymbols (page 459)

- setShortWeekdaySymbols: (page 447)

- setVeryShortWeekdaySymbols: (page 451)

- setStandaloneWeekdaySymboTls: (page 448)

- setShortStandaloneWleekdaySymbols: (page 446)

- setVeryShortStandaloneWeekdaySymbols: (page 450)

Declared In
NSDateFormatter.h

shortMonthSymbols

Returns the array of short month symbols for the receiver.
- (NSArray *)shortMonthSymbols

Return Value
An array containing NSString objects representing the short month symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setShortMonthSymbols: (page 444)

- monthSymboTls (page 437)

- veryShortMonthSymbols (page 458)

- standaloneMonthSymbols (page 455)

- shortStandaloneMonthSymboTls (page 453)

- veryShortStandaloneMonthSymbols (page 458)

Declared In
NSDateFormatter.h

shortQuarterSymbols

Returns the short quarter symbols for the receiver.
- (NSArray *)shortQuarterSymbols

Return Value
An array containing NSString objects representing the short quarter symbols for the receiver.

452 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
- setShortQuarterSymbols: (page 445)

- quarterSymbols (page 438)
- standaloneQuarterSymbols (page 455)
- shortStandaloneQuarterSymbols (page 453)

Declared In
NSDateFormatter.h

shortStandaloneMonthSymbols

Returns the short standalone month symbols for the receiver.
- (NSArray *)shortStandaloneMonthSymbols

Return Value
An array of NSString objects that specify the short standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setShortStandaloneMonthSymbols: (page 445)

- monthSymbols (page 437)

- shortMonthSymbols (page 452)

- veryShortMonthSymbols (page 458)

- standaloneMonthSymbols (page 455)

- veryShortStandaloneMonthSymbols (page 458)

Declared In
NSDateFormatter.h

shortStandaloneQuarterSymbols

Returns the short standalone quarter symbols for the receiver.
- (NSArray *)shortStandaloneQuarterSymbols

Return Value
An array containing NSString objects representing the short standalone quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setShortStandaloneQuarterSymbols: (page 446)

- quarterSymbols (page 438)
- shortQuarterSymbols (page 452)

Instance Methods 453
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

454

CHAPTER 30

NSDateFormatter Class Reference

- standaloneQuarterSymbols (page 455)

Declared In
NSDateFormatter.h

shortStandaloneWeekdaySymbols

Returns the array of short standalone weekday symbols for the receiver.
- (NSArray *)shortStandaloneWeekdaySymbols

Return Value
An array of NSString objects that specify the short standalone weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setShortStandalonelleekdaySymbols: (page 446)

- weekdaySymbols (page 459)

- shortWeekdaySymbols (page 454)

- veryShortWeekdaySymbols (page 459)

- standaloneWeekdaySymbols (page 455)

- veryShortStandaloneWeekdaySymbols (page 458)

Declared In
NSDateFormatter.h

shortWeekdaySymbols

Returns the array of short weekday symbols for the receiver.
- (NSArray *)shortWeekdaySymbols

Return Value
An array of NSString objects that specify the short weekday symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setShortWeekdaySymbols: (page 447)

- weekdaySymbols (page 459)

- veryShortWeekdaySymbols (page 459)

- standaloneWeekdaySymbols (page 455)

- shortStandaloneWeekdaySymbols (page 454)

- veryShortStandaloneWeekdaySymbols (page 458)

Declared In
NSDateFormatter.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

standaloneMonthSymbols

Returns the standalone month symbols for the receiver.
- (NSArray *)standaloneMonthSymbols

Return Value
An array of NSString objects that specify the standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- monthSymboTls (page 437)

- setStandaloneMonthSymbols: (page 447)

- shortMonthSymbols (page 452)

- veryShortMonthSymbols (page 458)

- shortStandaloneMonthSymbols (page 453)

- veryShortStandaloneMonthSymbols (page 458)

Declared In
NSDateFormatter.h

standaloneQuarterSymbols

Returns the standalone quarter symbols for the receiver.
- (NSArray *)standaloneQuarterSymbols

Return Value

An array containing NSString objects representing the standalone quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setStandaloneQuarterSymbols: (page 447)

- quarterSymbols (page 438)
- shortQuarterSymbols (page 452)
- shortStandaloneQuarterSymbols (page 453)

Declared In
NSDateFormatter.h

standaloneWeekdaySymbols

Returns the array of standalone weekday symbols for the receiver.
- (NSArray *)standaloneWeekdaySymbols

Return Value

An array of NSString objects that specify the standalone weekday symbols for the receiver.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

455

456

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
- setStandaloneWeekdaySymbols: (page 448)

- weekdaySymbols (page 459)

- shortWeekdaySymbols (page 454)

- veryShortWeekdaySymbols (page 459)

- shortStandaloneWeekdaySymbols (page 454)

- veryShortStandalonelWeekdaySymbols (page 458)

Declared In
NSDateFormatter.h

stringFromDate:

Returns a string representation of a given date formatted using the receiver’s current settings.
- (NSString *)stringFromDate:(NSDate *)date

Parameters
date
The date to format.

Return Value
A string representation of date formatted using the receiver’s current settings.

Availability
Available in Mac OS X v10.4 and later.

See Also
- dateFromString: (page 431)

Related Sample Code
DatePicker

iSpend

Mountains
NSOperationSample
Reminders

Declared In
NSDateFormatter.h

timeStyle

Returns the time style of the receiver.
- (NSDateFormatterStyle)timeStyle

Return Value
The time style of the receiver. For possible values, see NSDateFormatterStyle (page 460).

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
- setTimeStyle: (page 448)

Declared In
NSDateFormatter.h

timeZone

Returns the time zone for the receiver.
- (NSTimeZone *)timeZone

Return Value
The time zone for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setTimeZone: (page 449)

Declared In
NSDateFormatter.h

twoDigitStartDate

Returns the earliest date that can be denoted by a two-digit year specifier.
- (NSDate *)twoDigitStartDate

Return Value
The earliest date that can be denoted by a two-digit year specifier.

Discussion
If the two-digit start date is set to January 6, 1976, then “January 1, 76" is interpreted as New Year's Day in
2076, whereas “February 14, 76" is interpreted as Valentine's Day in 1976.

The default date is December 31, 1949.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setTwoDigitStartDate: (page 449)

Declared In
NSDateFormatter.h

Instance Methods 457
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

veryShortMonthSymbols

Returns the very short month symbols for the receiver.
- (NSArray *)veryShortMonthSymbols

Return Value
An array of NSString objects that specify the very short month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setVeryShortMonthSymbols: (page 450)

- monthSymboTls (page 437)

- shortMonthSymbols (page 452)

- standaloneMonthSymbols (page 455)

- shortStandaloneMonthSymbols (page 453)

- veryShortStandaloneMonthSymbols (page 458)

Declared In
NSDateFormatter.h

veryShortStandaloneMonthSymbols

Returns the very short month symbols for the receiver.
- (NSArray *)veryShortStandaloneMonthSymbols

Return Value
An array of NSString objects that specify the very short standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setVeryShortStandaloneMonthSymbols: (page 450)

- monthSymbols (page 437)

- shortMonthSymbols (page 452)

- veryShortMonthSymbols (page 458)

- standaloneMonthSymbols (page 455)

- shortStandaloneMonthSymbols (page 453)

Declared In
NSDateFormatter.h

veryShortStandaloneWeekdaySymbols

Returns the array of very short standalone weekday symbols for the receiver.

- (NSArray *)veryShortStandaloneWeekdaySymbols

458 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Return Value

An array of NSString objects that specify the very short standalone weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setShortStandalonelleekdaySymbols: (page 446)

- weekdaySymbols (page 459)

- shortWeekdaySymbols (page 454)

- veryShortWeekdaySymbols (page 459)

- standaloneWeekdaySymbols (page 455)

- shortStandaloneWeekdaySymbols (page 454)

Declared In
NSDateFormatter.h

veryShortWeekdaySymbols

Returns the array of very short weekday symbols for the receiver.
- (NSArray *)veryShortWeekdaySymbols

Return Value
An array of NSString objects that specify the very short weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setVeryShortWeekdaySymbols: (page 451)

- weekdaySymbols (page 459)

- shortWeekdaySymbols (page 454)

- standaloneWeekdaySymbols (page 455)

- shortStandaloneWeekdaySymbols (page 454)

- veryShortStandaloneWeekdaySymbols (page 458)

Declared In
NSDateFormatter.h

weekdaySymbols

Returns the array of weekday symbols for the receiver.
- (NSArray *)weekdaySymbols

Return Value
An array of NSString objects that specify the weekday symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

459

CHAPTER 30

NSDateFormatter Class Reference

See Also
- setWeekdaySymbols: (page 451)

- shortWeekdaySymbols (page 454)

- veryShortWeekdaySymbols (page 459)

- standalonelleekdaySymbols (page 455)

- shortStandaloneWeekdaySymbols (page 454)

- veryShortStandaloneWeekdaySymbols (page 458)

Declared In
NSDateFormatter.h

Constants

460

NSDateFormatterStyle

The following constants specify predefined date and time format styles.

typedef enum {
NSDateFormatterNoStyle = kCFDateFormatterNoStyle,
NSDateFormatterShortStyle = kCFDateFormatterShortStyle,
NSDateFormatterMediumStyle kCFDateFormatterMediumStyle,
NSDateFormatterLongStyle kCFDateFormatterLongStyle,
NSDateFormatterFullStyle = kCFDateFormatterFullStyle

} NSDateFormatterStyle;

Constants
NSDateFormatterNoStyle
Specifies no style.

Equal to kCFDateFormatterNoStyle.
Available in Mac OS X v10.4 and later.
Declared in NSDateFormatter.h.

NSDateFormatterShortStyle
Specifies a short style, typically numeric only, such as “11/23/37" or “3:30pm’".

Equal to kCFDateFormatterShortStyle.
Available in Mac OS X v10.4 and later.
Declared in NSDateFormatter.h.

NSDateFormatterMediumStyle
Specifies a medium style, typically with abbreviated text, such as “Nov 23, 1937".

Equal to kCFDateFormatterMediumStyle.
Available in Mac OS X v10.4 and later.
Declared in NSDateFormatter.h.

Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

NSDateFormatterLongStyle
Specifies a long style, typically with full text, such as “November 23, 1937” or “3:30:32pm".

Equal to kCFDateFormatterlLongStyle.
Available in Mac OS X v10.4 and later.
Declared in NSDateFormatter.h.

NSDateFormatterFullStyle
Specifies a full style with complete details, such as “Tuesday, April 12, 1952 AD” or “3:30:42pm PST".

Equal to kCFDateFormatterFullStyle.
Available in Mac OS X v10.4 and later.
Declared in NSDateFormatter.h.

Discussion
The format for these date and time styles is not exact because they depend on the locale, user preference
settings, and the operating system version. Do not use these constants if you want an exact format.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDateFormatter.h

NSDateFormatterBehavior
Constants that specify the behavior NSDateFormatter should exhibit.
typedef enum {
NSDateFormatterBehaviorDefault = 0,
NSDateFormatterBehaviorl0_0 = 1000,

NSDateFormatterBehaviorl0_4 = 1040,
} NSDateFormatterBehavior;

Constants
NSDateFormatterBehaviorDefault
Specifies default formatting behavior.

Available in Mac OS X v10.4 and later.
Declared in NSDateFormatter.h.

NSDateFormatterBehaviorl0_0
Specifies formatting behavior equivalent to that in Mac OS X 10.0.

Available in Mac OS X v10.4 and later.
Declared in NSDateFormatter.h.

NSDateFormatterBehaviorl0_4
Specifies formatting behavior equivalent for Mac OS X 10.4.

Available in Mac OS X v10.4 and later.
Declared in NSDateFormatter.h.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDateFormatter.h

Constants 461
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

462 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Inherits from NSNumber : NSValue : NSObject
Conforms to NSCoding (NSValue)
NSCopying (NSValue)
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSDecimalNumber.h
Companion guide Number and Value Programming Topics for Cocoa
Related sample code BindingsJoystick
Calculator

Core Data HTML Store

Overview

Tasks

NSDecimalNumber, an immutable subclass of NSNumber, provides an object-oriented wrapper for doing
base-10 arithmetic. An instance can represent any number that can be expressed as mantissa x
10”exponent where mantissa is a decimal integer up to 38 digits long, and exponent is an integer from
-128 through 127.

Creating a Decimal Number

+ decimalNumberWithDecimal: (page 466)
Creates and returns an NSDecimalNumber object equivalent to a given NSDecimal structure.

+ decimalNumberWithMantissa:exponent:isNegative: (page 466)
Creates and returns an NSDecima1Number object equivalent to the number specified by the arguments.

+ decimalNumberWithString: (page 467)
Creates and returns an NSDecima1Number object whose value is equivalent to that in a given numeric
string.

Overview 463
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

464

CHAPTER 31

NSDecimalNumber Class Reference

+ decimalNumberWithString:locale: (page 468)
Creates and returns an NSDecima 1 Number object whose value is equivalent to that in a given numeric
string, interpreted using a given locale.
+ one (page 470)
Returns an NSDecimalNumber object equivalent to the number 1.0.
+ zero (page 471)
Returns an NSDecimalNumber object equivalent to the number 0.0.

+ notANumber (page 470)
Returns an NSDecimalNumber object that specifies no number.

Initializing a Decimal Number

- initWithDecimal: (page 478)
Returns an NSDecimalNumber object initialized to represent a given decimal.

- initWithMantissa:exponent:isNegative: (page 478)
Returns an NSDecimalNumber object initialized using the given mantissa, exponent, and sign.
- initWithString: (page 479)
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given
numeric string.
- initWithString:Tocale: (page 480)
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given
numeric string, interpreted using a given locale.

Performing Arithmetic

- decimalNumberByAdding: (page 472)
Returns a new NSDecimalNumber object whose value is the sum of the receiver and another given
NSDecimalNumber object.

- decimalNumberBySubtracting: (page 476)
Returns a new NSDecimalNumber object whose value is that of another given NSDecimalNumber
object subtracted from the value of the receiver.

- decimalNumberByMultiplyingBy: (page 473)
Returns a new NSDecimalNumber object whose value is the value of the receiver multiplied by that
of another given NSDecimalNumber object.

- decimalNumberByDividingBy: (page 473)
Returns a new NSDecimalNumber object whose value is the value of the receiver divided by that of
another given NSDecimalNumber object.

- decimalNumberByRaisingToPower: (page 475)
Returns a new NSDecimalNumber object whose value is the value of the receiver raised to a given
power.

- decimalNumberByMultiplyingByPower0f10: (page 474)
Multiplies the receiver by 10~ power and returns the product, a newly created NSDecimalNumber
object.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

- decimalNumberByAdding:withBehavior: (page 472)
Adds decimalNumber to the receiver and returns the sum, a newly created NSDecimalNumber
object.

- decimalNumberBySubtracting:withBehavior: (page 477)
Subtracts decimalNumber from the receiver and returns the difference, a newly created
NSDecimalNumber object.

- decimalNumberByMultiplyingBy:withBehavior: (page 474)
Multiplies the receiver by decima I Numbe r and returns the product, a newly created NSDecimalNumber
object.

- decimalNumberByDividingBy:withBehavior: (page 473)
Divides the receiver by decima 1 Number and returns the quotient, a newly created NSDecimalNumber
object.

- decimalNumberByRaisingToPower:withBehavior: (page 475)
Raises the receiver to power and returns the result, a newly created NSDecimalNumber object.

- decimalNumberByMultiplyingByPower0f10:withBehavior: (page 475)

Multiplies the receiver by 10Apower and returns the product, a newly created NSDecimalNumber
object.

Rounding Off

- decimalNumberByRoundingAccordingToBehavior: (page 476)
Rounds the receiver off in the way specified by behavior and returns the result, a newly created
NSDecimalNumber object.

Accessing the Value

- decimalValue (page 477)
Returns the receiver’s value, expressed as an NSDecimal structure.

- doubleValue (page 478)

Returns the approximate value of the receiver as a double.
- descriptionWithlLocale: (page 477)

Returns a string, specified according to a given locale, that represents the contents of the receiver.
- 0bjCType (page 480)

Returns a C string containing the Objective-C type of the data contained in the receiver, which for an
NSDecimalNumber object is always “d” (for double).

Managing Behavior

+ defaultBehavior (page 468)
Returns the way arithmetic methods, like decimalNumberByAdding: (page 472), round off and
handle error conditions.

+ setDefaultBehavior: (page 470)

Specifies the way that arithmetic methods, like decimalNumberByAdding: (page 472), round off
and handle error conditions.

Tasks 465
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Comparing Decimal Numbers

- compare: (page 471)
Returns an NSComparisonResult value that indicates the numerical ordering of the receiver and
another given NSDecimalNumber object.

Getting Maximum and Minimum Possible Values

+ maximumDecimalNumber (page 469)

Returns the largest possible value of an NSDecimalNumber object.
+ minimumDecimalNumber (page 469)

Returns the smallest possible value of an NSDecimalNumber object.

Class Methods

466

decimalNumberWithDecimal:

Creates and returns an NSDecimalNumber object equivalent to a given NSDecimal structure.
+ (NSDecimalNumber *)decimalNumberWithDecimal: (NSDecimal)decimal

Parameters
decimal
An NSDecimal structure that specifies the value for the new decimal number object.

Return Value
An NSDecimalNumber object equivalent to decimal.

Discussion

You can initialize decimal programmatically or generate it using the NSScanner method,

scanDecimal: (page 1349)

Availability

Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberWithMantissa:exponent:isNegative:

Creates and returns an NSDecimalNumber object equivalent to the number specified by the arguments.

+ (NSDecimalNumber *)decimalNumberWithMantissa:(unsigned long long)mantissa
exponent: (short)exponent isNegative:(BOOL)isNegative

Parameters

mantissa
The mantissa for the new decimal number object.

Class Methods

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

exponent
The exponent for the new decimal number object.

isNegative

A Boolean value that specifies whether the sign of the number is negative.
Discussion
The arguments express a number in a kind of scientific notation that requires the mantissa to be an integer.
So, for example, if the number to be represented is -12.345, it is expressed as 12345x10~-3—mantissa
is 12345; exponentis -3;and 7sNegativeis YES, as illustrated by the following example.

NSDecimalNumber *number = [NSDecimalNumber decimalNumberWithMantissa:12345
exponent:-3
isNegative:YES];

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberWithString:

Creates and returns an NSDecima1Number object whose value is equivalent to that in a given numeric string.
+ (NSDecimalNumber *)decimalNumberWithString:(NSString *)numericString

Parameters

numericString
A numeric string.

u_n,

Besides digits, numericString can include an initial “+” or “~"; a single “E” or “e] to indicate the
exponent of a number in scientific notation; and a single NSDecima1Separator to divide the fractional
from the integral part of the number.

Return Value
An NSDecimalNumber object whose value is equivalent to numericString.

Discussion
Whether the NSDecimalSeparator is a period (as is used, for example, in the United States) or a comma
(as is used, for example, in France) depends on the default locale.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ decimalNumberWithString:locale: (page 468)

Related Sample Code
Calculator

Core Data HTML Store

Declared In
NSDecimalNumber.h

Class Methods 467
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

468

CHAPTER 31

NSDecimalNumber Class Reference

decimalNumberWithString:locale:

Creates and returnsan NSDecima1Number object whose value is equivalent to that in a given numeric string,
interpreted using a given locale.

+ (NSDecimalNumber *)decimalNumberWithString:(NSString *)numericString
locale: (NSDictionary *)locale

Parameters

numericString
A numeric string.

u_nm,

Besides digits, numericString can include an initial “+” or “~"; a single “E” or “e] to indicate the
exponent of a number in scientific notation; and a single NSDecima1Separator to divide the fractional
from the integral part of the number.

locale
A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to interpret the
number in numericString.

Return Value
An NSDecimalNumber object whose value is equivalent to numericString.

Discussion
The 7Tocale parameter determines whether the NSDecimalSeparator is a period (as is used, for example,
in the United States) or a comma (as is used, for example, in France).

The following strings show examples of acceptable values for numericString:

“2500.6” (or “2500,6, depending on locale)
“-2500.6" (or "-2500.6")

“-2.5006e3" (or “-2,5006e3")

“~2.5006E3" (or “-2,5006E3")

The following strings are unacceptable:

“2,500.6"

“2500 3/5”

“2.5006x10e3"”

“two thousand five hundred and six tenths”

Availability
Available in Mac OS X v10.0 and later.

See Also
+ decimalNumberWithString: (page 467)

Declared In
NSDecimalNumber.h

defaultBehavior

Returns the way arithmetic methods, like decimalNumberByAdding: (page 472), round off and handle error
conditions.

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

+ (id < NSDecimalNumberBehaviors >)defaultBehavior

Discussion

By default, the arithmetic methods use the NSRoundP1ain behavior; that is, the methods round to the closest
possible return value. The methods assume your need for precision does not exceed 38 significant digits and
raise exceptions when they try to divide by 0 or produce a number too big or too small to be represented.

If this default behavior doesn't suit your application, you should use methods that let you specify the behavior,
like decimalNumberByAdding:withBehavior: (page 472).If you find yourself using a particular behavior
consistently, you can specify a different default behavior with setDefaultBehavior: (page 470).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

maximumDecimalNumber

Returns the largest possible value of an NSDecimalNumber object.
+ (NSDecimalNumber *)maximumDecimalNumber

Return Value
The largest possible value of an NSDecimalNumber object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ minimumDecimalNumber (page 469)

Declared In
NSDecimalNumber.h

minimumDecimalNumber

Returns the smallest possible value of an NSDecimalNumber object.
+ (NSDecimalNumber *)minimumDecimalNumber

Return Value
The smallest possible value of an NSDecimalNumber object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ maximumDecimalNumber (page 469)

Declared In
NSDecimalNumber.h

Class Methods 469
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

470

CHAPTER 31

NSDecimalNumber Class Reference

notANumber

Returns an NSDecimalNumber object that specifies no number.
+ (NSDecimalNumber *)notANumber

Return Value
An NSDecimalNumber object that specifies no number.

Discussion
Any arithmetic method receiving notANumber as an argument returns notANumber.

This value can be a useful way of handling non-numeric data in an input file. This method can also be a useful
response to calculation errors. For more information on calculation errors, see the
exceptionDuringOperation:error:leftOperand:rightOperand: (page 2044) method description in
the NSDecimalNumberBehaviors protocol specification.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Calculator

Declared In
NSDecimalNumber.h

one

Returns an NSDecimalNumber object equivalent to the number 1.0.
+ (NSDecimalNumber *)one

Return Value
An NSDecimalNumber object equivalent to the number 1.0.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ zero (page 471)

Declared In
NSDecimalNumber.h

setDefaultBehavior:

Specifies the way that arithmetic methods, like decimalNumberByAdding: (page 472), round off and handle
error conditions.

+ (void)setDefaultBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior must conform to the NSDecimalNumberBehaviors protocol.

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

zero

Returns an NSDecimalNumber object equivalent to the number 0.0.
+ (NSDecimalNumber *)zero

Return Value
An NSDecimalNumber object equivalent to the number 0.0.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ one (page 470)

Related Sample Code
BindingsJoystick
Calculator

Declared In
NSDecimalNumber.h

Instance Methods

compare:

Returns an NSComparisonResult value that indicates the numerical ordering of the receiver and another
given NSDecimalNumber object.

- (NSComparisonResult)compare: (NSNumber *)decimalNumber

Parameters

decimalNumber
The number with which to compare the receiver.
This value must not be ni1. If this value is ni1, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending if the value of decimalNumber is greater than the receiver; NSOrderedSame if
they're equal; and NSOrderedDescending if the value of decimalNumber is less than the receiver.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods an
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Declared In
NSDecimalNumber.h

decimalNumberByAdding:
Returns a new NSDecimalNumber object whose value is the sum of the receiver and another given
NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByAdding: (NSDecimalNumber *)decimalNumber

Parameters
decimalNumber
The number to add to the receiver.
Return Value
A new NSDecimalNumber object whose value is the sum of the receiver and decimalNumber.

Discussion
This method uses the default behavior when handling calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also
- decimalNumberByAdding:withBehavior: (page 472)

+ defaultBehavior (page 468)

Related Sample Code
Calculator

Declared In
NSDecimalNumber.h

decimalNumberByAdding:withBehavior:

Adds decimalNumber to the receiver and returns the sum, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByAdding: (NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

472 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

decimalNumberByDividingBy:
Returns a new NSDecimalNumber object whose value is the value of the receiver divided by that of another
given NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber

Parameters
decimalNumber
The number by which to divide the receiver.

Return Value
A new NSDecimalNumber object whose value is the value of the receiver divided by decimalNumber.

Discussion
This method uses the default behavior when handling calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also
- decimalNumberByDividingBy:withBehavior: (page 473)

+ defaultBehavior (page 468)

Related Sample Code
Calculator

Declared In
NSDecimalNumber.h

decimalNumberByDividingBy:withBehavior:

Divides the receiver by decimalNumberand returns the quotient, a newly created NSDecima1Number object.

- (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingBy:

Returns a new NSDecimalNumber object whose value is the value of the receiver multiplied by that of
another given NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByMultiplyingBy: (NSDecimalNumber *)decimalNumber

Instance Methods 473
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Parameters
decimalNumber
The number by which to multiply the receiver.

Return Value
A new NSDecimalNumber object whose value is decimalNumber multiplied by the receiver.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also
- decimalNumberByMultiplyingBy:withBehavior: (page 474)

+ defaultBehavior (page 468)

Related Sample Code
Calculator

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingBy:withBehavior:

Multiplies the receiver by decimalNumber and returns the product, a newly created NSDecimalNumber
object.

- (NSDecimalNumber *)decimalNumberByMultiplyingBy:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingByPowerOf10:

Multiplies the receiver by 10Apower and returns the product, a newly created NSDecimalNumber object.
- (NSDecimalNumber *)decimalNumberByMultiplyingByPowerO0f10:(short)power

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also

- decimalNumberByMultiplyingByPower0f10:withBehavior: (page 475)

474 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

+ defaultBehavior (page 468)

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingByPowerOf10:withBehavior:

Multiplies the receiver by 10Apower and returns the product, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByMultiplyingByPowerO0f10:(short)power
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByRaisingToPower:

Returns a new NSDecimalNumber object whose value is the value of the receiver raised to a given power.
- (NSDecimalNumber *)decimalNumberByRaisingToPower: (NSUInteger)power

Parameters

power
The power to which to raise the receiver.

Return Value

A new NSDecimalNumber object whose value is the value of the receiver raised to the power power.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also
- decimalNumberByRaisingToPower:withBehavior: (page 475)

+ defaultBehavior (page 468)

Declared In
NSDecimalNumber.h

decimalNumberByRaisingToPower:withBehavior:

Raises the receiver to power and returns the result, a newly created NSDecimalNumber object.

Instance Methods 475
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

476

CHAPTER 31

NSDecimalNumber Class Reference

- (NSDecimalNumber *)decimalNumberByRaisingToPower: (NSUInteger)power withBehavior:(id
< NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByRoundingAccordingToBehavior:

Rounds the receiver off in the way specified by behavior and returns the result, a newly created
NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByRoundingAccordingToBehavior:(id <
NSDecimalNumberBehaviors >)behavior

Discussion
For a description of the different ways of rounding, see the roundingMode (page 1109) method in the
NSDecimalNumberBehaviors protocol specification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberBySubtracting:

Returns a new NSDecimalNumber object whose value is that of another given NSDecimalNumber object
subtracted from the value of the receiver.

- (NSDecimalNumber *)decimalNumberBySubtracting: (NSDecimalNumber *)decimalNumber

Parameters
decimalNumber
The number to subtract from the receiver.

Return Value
A new NSDecimalNumber object whose value is decimalNumber subtracted from the receiver.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also
- decimalNumberBySubtracting:withBehavior: (page 477)

+ defaultBehavior (page 468)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Related Sample Code
Calculator

Declared In
NSDecimalNumber.h

decimalNumberBySubtracting:withBehavior:

Subtracts decimalNumberfrom the receiver and returns the difference, a newly created NSDecimalNumber
object.

- (NSDecimalNumber *)decimalNumberBySubtracting: (NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalValue

Returns the receiver’s value, expressed as an NSDecimal structure.
- (NSDecimal)decimalValue

Return Value
The receiver’s value, expressed as an NSDecimal structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

descriptionWithLocale:

Returns a string, specified according to a given locale, that represents the contents of the receiver.
- (NSString *)descriptionWithLocale:(NSDictionary *)locale

Parameters

Tocale
A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to generate the
returned string.

Return Value
A string that represents the contents of the receiver, according to 7ocale.

Instance Methods 477
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

478

CHAPTER 31

NSDecimalNumber Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

doubleValue

Returns the approximate value of the receiver as a double.
- (double)doubleValue

Return Value
The approximate value of the receiver as a double.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

initWithDecimal:

Returns an NSDecimalNumber object initialized to represent a given decimal.
- (id)initWithDecimal: (NSDecimal)decimal

Parameters
decimal
The value of the new object.

Return Value
An NSDecimalNumber object initialized to represent decimal.

Discussion
This method is the designated initializer for NSDecimalNumber.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

initWithMantissa:exponent:isNegative:

Returns an NSDecimalNumber object initialized using the given mantissa, exponent, and sign.

- (id)initWithMantissa:(unsigned long long)mantissa exponent:(short)exponent
isNegative: (BOOL)flag

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Parameters
mantissa
The mantissa for the new decimal number object.

exponent
The exponent for the new decimal number object.

flag
A Boolean value that specifies whether the sign of the number is negative.

Return Value
An NSDecimalNumber object initialized using the given mantissa, exponent, and sign.

Discussion

The arguments express a number in a type of scientific notation that requires the mantissa to be an integer.
So, for example, if the number to be represented is 1.23, it is expressed as 123x10A-2—mantissais 123;
exponentis-2;and 7sNegative, which refers to the sign of the mantissa, is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ decimalNumberWithMantissa:exponent:isNegative: (page 466)

Declared In
NSDecimalNumber.h

initWithString:

Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given numeric
string.

- (id)initWithString: (NSString *)numericString

Parameters
numericString
A numeric string.

u_n,

Besides digits, numericString can include an initial “+” or “~"; a single “E” or “e to indicate the
exponent of a number in scientific notation; and a single NSDecimalSeparator to divide the fractional
from the integral part of the number. For a listing of acceptable and unacceptable strings, see the
class method decimalNumberWithString:locale: (page 468).

Return Value
An NSDecimalNumber object initialized so that its value is equivalent to that in numericString.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

Instance Methods 479
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

initWithString:locale:

Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given numeric
string, interpreted using a given locale.

- (1d)initWithString: (NSString *)numericString locale:(NSDictionary *)locale

Parameters

numericString
A numeric string.

Besides digits, numericString can include an initial “+” or “="; a single “E” or “e’ to indicate the
exponent of a number in scientific notation; and a single NSDecimalSeparator to divide the fractional
from the integral part of the number.

locale

A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to interpret the
number in numericString.

Return Value
An NSDecimalNumber objectinitialized so that its value is equivalent to thatin numericString,interpreted
using Tocale.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ decimalNumberWithString:locale: (page 468)

Declared In
NSDecimalNumber.h

objCType

Returns a C string containing the Objective-C type of the data contained in the receiver, which for an
NSDecimalNumber object is always “d” (for double).

- (const char *)objCType

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

Constants

NSDecimalNumber Exception Names

Names of the various exceptions raised by NSDecimalNumber to indicate computational errors.

480 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

extern NSString
extern NSString
extern NSString
extern NSString

Constants

*NSDecimalNumberExactnesskException;
*NSDecimalNumberOverflowException;
*NSDecimalNumberUnderflowException;
*NSDecimalNumberDivideByZeroException;

NSDecimalNumberExactnesskException
The name of the exception raised if there is an exactness error.

Available in Mac OS X v10.0 and later.

Declared in NSDecimalNumber. h.

NSDecimalNumberOverflowException
The name of the exception raised on overflow.

Available in Mac OS X v10.0 and later.

Declared in NSDecimalNumber.h.

NSDecimalNumberUnderflowException
The name of the exception raised on underflow.

Available in Mac OS X v10.0 and later.

Declared in NSDecimalNumber. h.

NSDecimalNumberDivideByZeroException
The name of the exception raised on divide by zero.

Available in Mac OS X v10.0 and later.

Declared in NSDecimalNumber. h.

Declared In

NSDecimalNumber.

Constants

h

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

481

CHAPTER 31

NSDecimalNumber Class Reference

482 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDecimalNumberHandler Class Reference

Inherits from NSObject
Conforms to NSCoding
NSDecimalNumberBehaviors
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSDecimalNumber.h
Companion guide Number and Value Programming Topics for Cocoa
Overview

NSDecimalNumberHandler is a class that adopts the NSDecimalNumberBehaviors protocol. This class
allows you to set the way an NSDecimalNumber object rounds off and handles errors, without having to
create a custom class.

You can use an instance of this class as an argument to any of the NSDecima1Number methods that end
with .. .Behavior:.If you don't think you need special behavior, you probably don't need this class—it is
likely that NSDecimalNumber's default behavior will suit your needs.

For more information, see the NSDecimalNumberBehaviors protocol specification.

Adopted Protocols

NSDecimalNumberBehaviors
- roundingMode (page 2044)

- scale (page 2045)
- exceptionDuringOperation:error:leftOperand:rightOperand: (page 2044)

NSCoding
- encodeWithCoder: (page 2034)

- initWithCoder: (page 2034)

Overview 483
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

CHAPTER 32

NSDecimalNumberHandler Class Reference

Creating a Decimal Number Handler

+ defaultDecimalNumberHandler (page 485)

Returns the default instance of NSDecimalNumberHandler.
+ decimalNumberHandlerii thRoundingVode: scale: rai seOnExactness: raiseOnOverflow: raiseOnUnderflow: raiseOnDivideByZero: (oage
484)

Returns an NSDecimalNumberHand1er object with customized behavior.

Initializing a Decimal Number Handler

- initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow: raiseOnUnderflow: raiseOnDivideByZero: (page
485)
Returns an NSDecimalNumberHandler object initialized so it behaves as specified by the method'’s
arguments.

Class Methods

484

decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:
raiseOnUnderflow:raiseOnDivideByZero:

Returns an NSDecimalNumberHand1er object with customized behavior.

+ (id)decimalNumberHandlerWithRoundingMode: (NSRoundingMode) roundingMode
scale:(short)scale raiseOnExactness:(BOOL)raiseOnExactness
raiseOnOverflow: (BOOL)raiseOnOverfiow raiseOnUnderflow: (BOOL)raiseOnUnderflow
raiseOnDivideByZero: (BOOL)raiseOnDivideByZero

Parameters

roundingMode
The rounding mode to use. There are four possible values: NSRoundUp, NSRoundDown, NSRoundP1ain,
and NSRoundBankers.

scale
The number of digits a rounded value should have after its decimal point.

raiseOnExactness
If YES, in the event of an exactness error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method.

raiseOnOverflow
If YES, in the event of an overflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

raiseOnUnderflow

If YES, in the event of an underflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDecimalNumberHandler Class Reference

raiseOnDivideByZero
If YES, in the event of a divide by zero error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

Return Value
An NSDecimalNumberHand1er object with customized behavior.

Discussion
See the NSDecimalNumberBehaviors protocol specification for a complete explanation of the possible
behaviors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

defaultDecimalNumberHandler

Returns the default instance of NSDecimalNumberHandler.
+ (id)defaultDecimalNumberHandler

Return Value
The default instance of NSDecimalNumberHandler.

Discussion

This default decimal number handler rounds to the closest possible return value. It assumes your need for
precision does not exceed 38 significant digits, and it raises an exception when its NSDecimalNumber object
tries to divide by 0 or when its NSDecima1Number object produces a number too big or too small to be
represented.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

Instance Methods

initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:

raiseOnDivideByZero:

Returnsan NSDecimalNumberHand1er objectinitialized so it behaves as specified by the method’s arguments.

- (id)initWithRoundingMode: (NSRoundingMode) roundingMode scale:(short)scale
raiseOnExactness: (BOOL)raiseOnkxactness raiseOnOverflow: (BOOL)raiseOnOverflow

raiseOnUnderflow: (BOOL)raiseOnUnderflow
raiseOnDivideByZero: (BOOL)raiseOnDivideByZero

Instance Methods 485
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

486

CHAPTER 32

NSDecimalNumberHandler Class Reference

Parameters

roundingMode
The rounding mode to use. There are four possible values: NSRoundUp, NSRoundDown, NSRoundPT1ain,
and NSRoundBankers.

scale
The number of digits a rounded value should have after its decimal point.

raiseOnkxactness
If YES, in the event of an exactness error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method.

raiseOnOverfliow
If YES, in the event of an overflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

raiseOnUnderflow
If YES, in the event of an underflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

raiseOnDivideByZero
If YES, in the event of a divide by zero error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

Return Value

An initialized NSDecimalNumberHand1er object initialized with customized behavior. The returned object
might be different than the original receiver.

Discussion
See the NSDecimalNumberBehaviors protocol specification for a complete explanation of the possible
behaviors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDeleteCommand Class Reference

Inherits from NSScriptCommand : NSObject
Conforms to NSCoding (NSScriptCommand)

NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSScriptStandardSuiteCommands.h
Companion guides Cocoa Scripting Guide

Key-Value Coding Programming Guide

Overview

Tasks

Aninstance of NSDeleteCommand deletes the specified scriptable object or objects (such as words, paragraphs,
and so on).

Suppose, for example, a user executes a script that sends the command delete the third rectangle
in the first document to the Sketch sample application (located in /Developer/Examples/AppKit).
Cocoa creates an NSDeleteCommand object to perform the operation. When the command is executed, it
uses the key-value coding mechanism (by invoking removeValueAtIndex: fromPropertyWithKey:)to
remove the specified object or objects from their container. See the description for
removeValueAtIndex: fromPropertyWithKey: (page 2119) for related information.

NSDeleteCommand is part of Cocoa’s built-in scripting support. Most applications don't need to subclass
NSDeleteCommand or call its methods.

Working with Specifiers

- keySpecifier (page 488)
Returns a specifier for the object or objects to be deleted.

- setReceiversSpecifier: (page 488)
Sets the receiver’s object specifier.

Overview 487
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDeleteCommand Class Reference

Instance Methods

keySpecifier

Returns a specifier for the object or objects to be deleted.
- (NSScriptObjectSpecifier *)keySpecifier

Return Value
A specifier for the object or objects to be deleted.

Discussion
Note that this may be different than the specifier or specifiers setby setReceiversSpecifier: (page 488).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

setReceiversSpecifier:

Sets the receiver’s object specifier.
- (void)setReceiversSpecifier: (NSScriptObjectSpecifier *)receiversRef

Parameters
receiversRef
The receiver’s object specifier.

Discussion

This method overrides setReceiversSpecifier: (page 1390)in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRefis a specifier for the third
rectangle of the first document, the receiver specifieris the first document while the key
specifieris the third rectangle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

488 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDeserializer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSSerialization.h

Availability Deprecated in Mac OS X v10.2.

Companion guide Archives and Serializations Programming Guide for Cocoa
Overview

Tasks

Note: NSDeserializer is obsolete and has been deprecated. Instead use NSPropertylListSerialization.

The NSDeserializer class declares methods that convert a representation of a property list (as contained
in an NSData object) into a structure of property list objects in memory. The NSDeserializer class object
itself provides these methods—you don't create instances of NSDeserializer. Options to these methods
allow you to specify that container objects (arrays or dictionaries) in the resulting graph be mutable or
immutable; that deserialization begin at the start of the data or from some position within it; or that
deserialization occur lazily, so a property list is deserialized only if it is actually going to be accessed.

Deserializing a Property List

+ deserializePropertylistFromData:atCursor:mutableContainers: (page 490) Deprecated in
Mac OS X v10.2
Returns a property list object from a given location in a given serialized representation of a property
list.
+ deserializePropertylListFromData:mutableContainers: (page490)Deprecatedin Mac OS Xv10.2
Returns a property list object from given serialized data, optionally making the list elements mutable.
+ deserializePropertylistlazilyFromData:atCursor:length:mutableContainers: (page491)
Deprecated in Mac OS X v10.2
Returns a property list from a given location in a given serialized representation of a property list.

Overview 489
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDeserializer Class Reference

Class Methods

490

deserializePropertyListFromData:atCursor:mutableContainers:

Returns a property list object from a given location in a given serialized representation of a property list.
(Deprecated in Mac OS X v10.2.)

+ (id)deserializePropertylListFromData: (NSData *)data atCursor:(unsigned *)cursor
mutableContainers: (BOOL)mutable

Parameters
data
A serialized representation of a property list.
cursor
mutable
If YES and the property list object is a dictionary or an array, the recomposed object is made mutable

Return Value
A property list object corresponding to the representation in data at the location cursor. Returns nil if
the property list object is not valid for property lists.

Availability
Deprecated in Mac OS X v10.2.

Declared In
NSSerialization.h

deserializePropertyListFromData:mutableContainers:

Returns a property list object from given serialized data, optionally making the list elements mutable.
(Deprecated in Mac OS X v10.2.)

+ (id)deserializePropertylListFromData: (NSData *)serialization
mutableContainers: (BOOL)mutable

Parameters
serialization
A serialized representation of a property list.
mutable
If YES and the property list object is a dictionary or an array, the recomposed object is made mutable.
Return Value

A property list object corresponding to the representation in serialization,ornilif serialization
does not represent a property list.

Availability
Deprecated in Mac OS X v10.2.

Declared In
NSSerialization.h

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDeserializer Class Reference

deserializePropertyListLazilyFromData:atCursor:length:mutableContainers:

Returns a property list from a given location in a given serialized representation of a property list. (Deprecated
in Mac OS X v10.2.)

+ (id)deserializePropertylListlLazilyFromData: (NSData *)data atCursor:(unsigned
*)cursor length:(unsigned) length mutableContainers:(BOOL)mutable

Parameters

data
A serialized representation of a property list.

cursor
The cursor location.

length
The number of bytes to read.

mutable
If YES and the object is a dictionary or an array, the recomposed object is made mutable.

Return Value
A property list from data at location cursor, or nil if data does not represent a property list.

Discussion

The deserialization proceeds lazily—that is, if the data at cursor has a length greater than 7ength, a proxy
is substituted for the actual property list as long as the constituent objects of that property list are not
accessed.

Availability
Deprecated in Mac OS X v10.2.

Declared In
NSSerialization.h

Class Methods 491
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDeserializer Class Reference

492 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Inherits from

Conforms to

Framework

Availability

Declared in

Companion guides

Related sample code

Overview

The NSDictionary class declares the programmatic interface to objects that manage immutable associations
of keys and values. Use this class or its subclass NSMutableDictionary when you need a convenient and
efficient way to retrieve data associated with an arbitrary key. (For convenience, we use the term dictionary
to refer to any instance of one of these classes without specifying its exact class membership.)

A key-value pair within a dictionary is called an entry. Each entry consists of one object that represents the
key and a second object that is that key’s value. Within a dictionary, the keys are unique. That is, no two keys
in a single dictionary are equal (as determined by isEqual : (page 2101)). In general, a key can be any object
(provided that it conforms to the NSCopying protocol—see below), but note that when using key-value

coding the key must be a string (see Key-Value Coding Fundamentals). Neither a key nor a value can be ni1;

NSObject

NSCoding
NSCopying
NSMutableCopying
NSFastEnumeration
NSObject (NSObject)

/System/Library/Frameworks/Foundation.framework
Available in Mac OS X v10.0 and later.

Foundation/NSDictionary.h
Foundation/NSFileManager.h
Foundation/NSKeyValueCoding.h

Collections Programming Topics for Cocoa
Property List Programming Guide

MyPhoto

QTCoreVideo301

Quartz Composer WWDC 2005 TextEdit
StickiesExample

TextEditPlus

if you need to represent a null value in a dictionary, you should use NSNu11.

Overview

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

494

CHAPTER 35

NSDictionary Class Reference

An instance of NSDictionary is an immutable dictionary: you establish its entries when it’s created and
cannot modify them afterward. An instance of NSMutableDictionary is a mutable dictionary: you can add
or delete entries at any time, and the object automatically allocates memory as needed. The dictionary classes
adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert a dictionary of
one type to the other.

NSDictionary and NSMutableDictionary are part of a class cluster, so the objects you create with this
interface are not actual instances of the these two classes. Rather, the instances belong to one of their private
subclasses. Although a dictionary’s class is private, its interface is public, as declared by these abstract
superclasses, NSDictionary and NSMutableDictionary.

Internally, a dictionary uses a hash table to organize its storage and to provide rapid access to a value given
the corresponding key. However, the methods defined in this cluster insulate you from the complexities of

working with hash tables, hashing functions, or the hashed value of keys. The methods described below take
keys directly, not their hashed form.

Methods that add entries to dictionaries—whether as part of initialization (for all dictionaries) or during
modification (for mutable dictionaries)—copy each key argument (keys must conform to the NSCopying
protocol) and add the copies to the dictionary. Each corresponding value object receives a retain (page
2108) message to ensure that it won't be deallocated before the dictionary is through with it.

Enumeration

You can enumerate the contents of a dictionary by key or by value using the NSEnumerator object returned
by keyEnumerator (page 519) and objectEnumerator (page 520) respectively. On Mac OS X v10.5 and later,
NSDictionary supportsthe NSFastEnumeration protocol. You can use the for...in construct to enumerate
the keys of a dictionary, as illustrated in the following example.

NSArray *keys = [NSArray arrayWithObjects:@"keyl", @"key2", @"key3", nill;
NSArray *objects = [NSArray arrayWithObjects:@"valuel", @"value2", @"value3d",
nill;

NSDictionary *dictionary = [NSDictionary dictionaryWithObjects:objects
forKeys:keys];

for (id key in dictionary) f{

NSLog(@"key: %@, value: %@", key, [dictionary objectForKey:keyl);
}

Primitive Methods

Three primitive methods of NSDictionary—count (page 505), objectForKey: (page 521), and
keyEnumerator (page 519)—provide the basis for all of the other methods in its interface. The count (page
505) method returns the number of entries in the dictionary. objectForKey: (page 521) returns the value
associated with a given key. keyEnumerator (page 519) returns an object that lets you iterate through each
of the keys in the dictionary. The other methods declared here operate by invoking one or more of these
primitives. The non-primitive methods provide convenient ways of accessing multiple entries at once.

Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Descriptions and Persistence

You canusethedescription...andwriteToFile:atomically: (page523) methods to write a property
list representation of a dictionary to a string or to a file, respectively. These are not intended to be used for
general persistent storage of your custom data objects—see instead Archives and Serializations Programming
Guide for Cocoa.

Toll-Free Bridging

NSDictionary is “toll-free bridged” with its Core Foundation counterpart, CFDictionary Reference. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSDictionary * parameter, you can passin a
CFDictionaryRef,and where youseea CFDictionaryRef parameter, you can passinanNSDictionary
instance (you cast one type to the other to suppress compiler warnings). This bridging also applies to concrete
subclasses of NSDictionary. See Interchangeable Data Types for more information on toll-free bridging.

Adopted Protocols

Tasks

NSCoding
- encodeWithCoder: (page 2034)

- initWithCoder: (page 2034)

NSCopying
- copyWithZone: (page 2042)

NSMutableCopying
- mutableCopyWithZone: (page 2094)

NSFastEnumeration
- countByEnumeratingWithState:objects:count: (page 2053)

Creating a Dictionary

+ dictionary (page 498)

Creates and returns an empty dictionary.
+ dictionaryWithContentsOfFile: (page 499)

Creates and returns a dictionary using the keys and values found in a file specified by a given path.
+ dictionaryWithContentsOfURL: (page 500)

Creates and returns a dictionary using the keys and values found in a resource specified by a given
URL.

Adopted Protocols 495
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

496

CHAPTER 35

NSDictionary Class Reference

+ dictionaryWithDictionary: (page 500)
Creates and returns a dictionary containing the keys and values from another given dictionary.
+ dictionaryWithObject:forKey: (page 500)
Creates and returns a dictionary containing a given key and value.
+ dictionaryWithObjects:forKeys: (page 501)
Creates and returns a dictionary containing entries constructed from the contents of an array of keys
and an array of values.
+ dictionaryWithObjects:forKeys:count: (page 502)
Creates and returns a dictionary containing count objects from the objects array.
+ dictionaryWithObjectsAndKeys: (page 503)

Creates and returns a dictionary containing entries constructed from the specified set of values and
keys.

Initializing an NSDictionary Instance

- initWithContentsOfFile: (page 515)
Initializes a newly allocated dictionary using the keys and values found in a file at a given path.
- initWithContentsOfURL: (page 515)
Initializes a newly allocated dictionary using the keys and values found at a given URL.
- initWithDictionary: (page 516)
Initializes a newly allocated dictionary by placing in it the keys and values contained in another given
dictionary.
- initWithDictionary:copyltems: (page 516)
Initializes a newly allocated dictionary using the objects contained in another given dictionary.
- initWithObjects:forKeys: (page 517)
Initializes a newly allocated dictionary with entries constructed from the contents of the objects
and keys arrays.
- initWithObjects:forKeys:count: (page 517)
Initializes a newly allocated dictionary with count entries.
- initWithObjectsAndKeys: (page 518)

Initializes a newly allocated dictionary with entries constructed from the specified set of values and
keys.

Counting Entries
- count (page 505)
Returns the number of entries in the receiver.
Comparing Dictionaries
- isEqualToDictionary: (page 519)

Returns a Boolean value that indicates whether the contents of the receiver are equal to the contents
of another given dictionary.

Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Accessing Keys and Values

- allKeys (page 504)
Returns a new array containing the receiver’s keys.
- allKeysForObject: (page 504)

Returns a new array containing the keys corresponding to all occurrences of a given object in the
receiver.

- allValues (page 505)
Returns a new array containing the receiver’s values.
- getObjects:andKeys: (page 514)
Returns by reference C arrays of the keys and values in the receiver.
- keyEnumerator (page 519)
Returns an enumerator object that lets you access each key in the receiver.

- keysSortedByValuelUsingSelector: (page 520)

Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted by its
values.

- objectEnumerator (page 520)
Returns an enumerator object that lets you access each value in the receiver.

- objectForKey: (page 521)
Returns the value associated with a given key.

- objectsForKeys:notFoundMarker: (page 522)
Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.

- valueForKey: (page 522)
Returns the value associated with a given key.

Storing Dictionaries

- writeToFile:atomically: (page 523)
Writes a property list representation of the contents of the receiver to a given path.

- writeToURL:atomically: (page 524)
Writes a property list representation of the contents of the receiver to a given URL.

Accessing File Attributes

- fileCreationDate (page 508)
Returns the value for the NSFileCreationDate key.

- filekExtensionHidden (page 508)
Returns the value for the NSFileExtensionHidden key.

- fileGroupOwnerAccountID (page 508)
Returns the value for the NSFileGroupOwnerAccountID key.

- fileGroupOwnerAccountName (page 509)
Returns the value for the NSFileGroupOwnerAccountName key.

- fileHFSCreatorCode (page 509)
Returns the value for the NSFileHFSCreatorCode key.

Tasks 497
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

- fileHFSTypeCode (page 510)

Returns the value for the NSFileHFSTypeCode key.

- filelsAppendOnly (page 510)

Returns the value for the NSFileAppendOnly key.

- filelsImmutable (page 510)

Returns the value for the NSFileImmutable key.

- fileModificationDate (page 511)

Returns the value for the key NSFileModificationDate.

- fileOwnerAccountID (page 511)

Returns the value for the NSFileOwnerAccountID key.

- fileOwnerAccountName (page 512)

Returns the value for the key NSFileOwnerAccountName.

- filePosixPermissions (page 512)

Returns the value for the key NSFilePosixPermissions.

- fileSize (page 512)
Returns the value for the key NSFileSize.

- fileSystemFileNumber (page 513)

Returns the value for the key NSFileSystemFileNumber.

- fileSystemNumber (page 513)

Returns the value for the key NSFileSystemNumber.

- fileType (page 514)
Returns the value for the key NSFileType.

Creating a Description

- description (page 505)

Returns a string that represents the contents of the receiver, formatted as a property list.

- descriptionInStringsFileFormat (page 506)

Returns a string that represents the contents of the receiver, formatted in . strings file format.

- descriptionWithlLocale: (page 506)

Returns a string object that represents the contents of the receiver, formatted as a property list.

- descriptionWithlLocale:indent: (page 507)

Returns a string object that represents the contents of the receiver, formatted as a property list.

Class Methods

dictionary

Creates and returns an empty dictionary.

+ (id)dictionary

498 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Return Value
A new empty dictionary.

Discussion
This method is declared primarily for use with mutable subclasses of NSDictionary.

If you don’t want a temporary object, you can also create an empty dictionary using alloc... and init.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitMovieShuffler

QTSSInspector
StickiesExample

Declared In
NSDictionary.h

dictionaryWithContentsOfFile:

Creates and returns a dictionary using the keys and values found in a file specified by a given path.
+ (id)dictionaryWithContentsOfFile: (NSString *)path

Parameters

path
A full or relative pathname. The file identified by pa th must contain a string representation of a
property list whose root object is a dictionary. The dictionary must contain only property list objects
(instances of NSData, NSDate, NSNumber, NSString, NSArray,or NSDictionary). For more details,
see Property List Programming Guide.

Return Value

A new dictionary that contains the dictionary at path, or ni1 if there is a file error or if the contents of the

file are an invalid representation of a dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithContentsOfFile: (page 515)

Related Sample Code
CapabilitiesSample

Cocoa - SGDataProc
LSMSmartCategorizer
Spotlight
SpotlightFortunes

Declared In
NSDictionary.h

Class Methods 499
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

500

CHAPTER 35

NSDictionary Class Reference

dictionaryWithContentsOfURL:

Creates and returns a dictionary using the keys and values found in a resource specified by a given URL.
+ (id)dictionaryWithContentsOfURL: (NSURL *)aURL

Parameters
aURL

An URL that identifies a resource containing a string representation of a property list whose root
object is a dictionary. The dictionary must contain only property list objects (instances of NSData,
NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details, see Property List
Programming Guide.

Return Value
A new dictionary that contains the dictionary at aURL, or ni1 if there is an error or if the contents of the
resource are an invalid representation of a dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithContentsOfURL: (page 515)

Declared In
NSDictionary.h

dictionaryWithDictionary:

Creates and returns a dictionary containing the keys and values from another given dictionary.
+ (id)dictionaryWithDictionary:(NSDictionary *)otherDictionary

Parameters

otherDictionary
A dictionary containing keys and values for the new dictionary.

Return Value
A new dictionary containing the keys and values found in otherDictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithDictionary: (page 516)

Related Sample Code
QTSSInspector

Declared In
NSDictionary.h

dictionaryWithObject:forKey:

Creates and returns a dictionary containing a given key and value.

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

+ (id)dictionaryWithObject:(id)anObject forKey:(id)aKey

Parameters
anObject

The value corresponding to aKey.
akey

The key for anObject.

Return Value
A new dictionary containing a single object, anObject, for a single key, akey.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithObjects:forKeys: (page 501)

+ dictionaryWithObjects:forKeys:count: (page 502)
+ dictionaryWithObjectsAndKeys: (page 503)

Related Sample Code

iSpend

PDF Annotation Editor
QTCoreVideo301

Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSDictionary.h

dictionaryWithObjects:forKeys:

Creates and returns a dictionary containing entries constructed from the contents of an array of keys and an
array of values.

+ (id)dictionaryWithObjects: (NSArray *)objects forKeys:(NSArray *)keys

Parameters

objects
An array containing the values for the new dictionary.

keys
An array containing the keys for the new dictionary. Each key is copied (using copylithZone: (page
2042); keys must conform to the NSCopying protocol), and the copy is added to the dictionary.

Return Value
A new dictionary containing entries constructed from the contents of objects and keys.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.
An NSInvalidArgumentException israised if objects and keys don’t have the same number of elements.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 501
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

502

CHAPTER 35

NSDictionary Class Reference

See Also

- initWithObjects:forKeys: (page 517)

+ dictionaryWithObject:forKey: (page 500)

+ dictionaryWithObjects:forKeys:count: (page 502)
+ dictionaryWithObjectsAndKeys: (page 503)

Related Sample Code
ImageMapExample

TimelineToTC

Declared In
NSDictionary.h

dictionaryWithObjects:forKeys:count:

Creates and returns a dictionary containing count objects from the objects array.
+ (id)dictionaryWithObjects:(id *)objects forKeys:(id *)keys count:(NSUInteger)count

Parameters

objects
A C array of values for the new dictionary.

keys
A Carray of keys for the new dictionary. Each key is copied (using copyWithZone: (page 2042); keys
must conform to the NSCopy ing protocol), and the copy is added to the new dictionary.

count

The number of elements to use from the keys and objects arrays. count must not exceed the
number of elements in objects or keys.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.
An NSTInvalidArgumentException is raised if a key or value objectis nil.

The following code fragment illustrates how to create a dictionary that associates the alphabetic characters
with their ASCII values:

static const NSInteger N_ENTRIES = 26;
NSDictionary *asciiDict;

NSString *keyArray[N_ENTRIEST;
NSNumber *valueArray[N_ENTRIES];
NSInteger i;

for (i = 0; i < N_ENTRIES; i++) {
char charValue = 'a' + 1i;
keyArray[i] = [NSString stringWithFormat:@"%c", charValuel;
valueArrayl[i]l = [NSNumber numberWithChar:charValuel;

}

asciiDict = [NSDictionary dictionaryWithObjects:(id *)valueArray
forKeys: (id *)keyArray count:N_ENTRIEST;

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithObjects:forKeys:count: (page 517)

+ dictionaryWithObject:forKey: (page 500)
+ dictionaryWithObjects:forKeys: (page 501)
+ dictionaryWithObjectsAndKeys: (page 503)

Declared In
NSDictionary.h

dictionaryWithObjectsAndKeys:

Creates and returns a dictionary containing entries constructed from the specified set of values and keys.
+ (id)dictionaryWithObjectsAndKeys: (id)firstObject ,

Parameters

firstObject
The first value to add to the new dictionary.

First the key for firstObject, then a null-terminated list of alternating values and keys. If any key
isnil,an NSInvalidArgumentException is raised.

Discussion
This method is similartodictionaryWithObjects: forKeys: (page 501), differing only in the way key-value
pairs are specified.

For example:

NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
@"valuel", @"keyl", @"value2", @"key2", nill;

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithObjectsAndKeys: (page 518)

+ dictionaryWithObject:forKey: (page 500)
+ dictionaryWithObjects:forKeys: (page 501)
+ dictionaryWithObjects:forKeys:count: (page 502)

Related Sample Code
ClAnnotation

iSpend

Quartz Composer WWDC 2005 TextEdit
StickiesExample

TextEditPlus

Declared In
NSDictionary.h

Class Methods 503
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Instance Methods

allKeys

Returns a new array containing the receiver’s keys.
- (NSArray *)allKeys

Return Value
A new array containing the receiver’s keys, or an empty array if the receiver has no entries.

Discussion
The order of the elements in the array is not defined.

Availability
Available in Mac OS X v10.0 and later.

See Also
- allValues (page 505)

- allKeysForObject: (page 504)
- getObjects:andKeys: (page 514)

Related Sample Code
Core Data HTML Store

CoreRecipes
EnhancedAudioBurn
ImageMapExample
StickiesExample

Declared In
NSDictionary.h

allKeysForObject:

Returns a new array containing the keys corresponding to all occurrences of a given object in the receiver.
- (NSArray *)allKeysForObject:(id)anObject

Parameters
anObject

The value to look for in the receiver.
Return Value

A new array containing the keys corresponding to all occurrences of an0Object in the receiver. If no object
matching anObject is found, returns an empty array.

Discussion
Each object in the receiveris sentan istqual: (page 2101) message to determine if it's equal to anObject.

Availability
Available in Mac OS X v10.0 and later.

504 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

See Also
- allKeys (page 504)
- keyEnumerator (page 519)

Declared In
NSDictionary.h

allValues

Returns a new array containing the receiver’s values.
- (NSArray *)allValues

Return Value
A new array containing the receiver’s values, or an empty array if the receiver has no entries.

Discussion
The order of the values in the array isn’t defined.

Availability
Available in Mac OS X v10.0 and later.

See Also
- allKeys (page 504)

- getObjects:andKeys: (page 514)
- objectEnumerator (page 520)

Related Sample Code
ImageMapExample

Declared In
NSDictionary.h

count

Returns the number of entries in the receiver.
- (NSUInteger)count

Return Value
The number of entries in the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDictionary.h

description

Returns a string that represents the contents of the receiver, formatted as a property list.

Instance Methods 505
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

506

CHAPTER 35

NSDictionary Class Reference

- (NSString *)description

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion

If each key in the receiver is an NSString object, the entries are listed in ascending order by key, otherwise
the order in which the entries are listed is undefined. This method is intended to produce readable output
for debugging purposes, not for serializing data. If you want to store dictionary data for later retrieval, see
Property List Programming Guide and Archives and Serializations Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

See Also
- descriptionWithlLocale: (page 506)

- descriptionWithlLocale:indent: (page 507)

Related Sample Code
Sketch-112

TextLinks

Declared In
NSDictionary.h

descriptioninStringsFileFormat

Returns a string that represents the contents of the receiver, formatted in . strings file format.
- (NSString *)descriptionInStringsFileFormat

Return Value
A string that represents the contents of the receiver, formatted in . strings file format.

Discussion
The order in which the entries are listed is undefined.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDictionary.h

descriptionWithLocale:

Returns a string object that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)Jocale

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Parameters

locale
An object that specifies options used for formatting each of the receiver’s keys and values; pass ni 1
if you don’t want them formatted.
Prior to Mac OS X v10.5, locale must be an instance of NSDictionary. With Mac OS X v10.5 and later,
it may also be an NSLocaTe object.

Discussion
For a description of how 7Tocaleis applied to each element in the receiver, see
descriptionWithlLocale:indent: (page 507).

If each key in the dictionary responds to compare:, the entries are listed in ascending order by key, otherwise
the order in which the entries are listed is undefined.

Availability
Available in Mac OS X v10.0 and later.

See Also
- description (page 505)

- descriptionWithlLocale:indent: (page 507)

Declared In
NSDictionary.h

descriptionWithLocale:indent:

Returns a string object that represents the contents of the receiver, formatted as a property list.
- (NSString *)descriptionWithLocale:(id)Jocale indent:(NSUInteger)level

Parameters

lTocale
An object that specifies options used for formatting each of the receiver’s keys and values; pass ni 1
if you don’t want them formatted.

Prior to Mac OS X v10.5, locale must be an instance of NSDictionary. With Mac OS X v10.5 and later,
it may also be an NSLocale object.

level
Specifies a level of indent, to make the output more readable: set 7eve7 to 0 to use four spaces to
indent, or 1 to indent the output with a tab character

Return Value
A string object that represents the contents of the receiver, formatted as a property list.

Discussion
The returned NSString object contains the string representations of each of the receiver’s entries.
descriptionWithlLocale:indent: obtains the string representation of a given key or value as follows:

m [f the objectis an NSString object, it is used as is.

= If the object responds to descriptionWithlLocale:indent:, that method is invoked to obtain the
object’s string representation.

m [f the object responds to descriptionWithLocale:, that method is invoked to obtain the object’s
string representation.

Instance Methods 507
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

= If none of the above conditions is met, the object’s string representation is obtained by invoking its
description method.

If each key in the dictionary responds to compare :, the entries are listed in ascending order, by key. Otherwise,
the order in which the entries are listed is undefined.

Availability
Available in Mac OS X v10.0 and later.

See Also
- description (page 505)

- descriptionWithlLocale: (page 506)

Declared In
NSDictionary.h

fileCreationDate

Returns the value for the NSFileCreationDate key.
- (NSDate *)fileCreationDate

Return Value
The value for the NSFileCreationDate key, or ni1 if the receiver doesn’t have an entry for the key.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSFileManager.h

fileExtensionHidden

Returns the value for the NSFileExtensionHidden key.
- (BOOL)fileExtensionHidden

Return Value
The value for the NSFileExtensionHidden key, or NO if the receiver doesn't have an entry for the key.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSFileManager.h

fileGroupOwnerAccountID

Returns the value for the NSFileGroupOwnerAccountID key.

- (NSNumber *)fileGroupOwnerAccountlID

508 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Return Value
The value for the NSFileGroupOwnerAccountID key, or ni1 if the receiver doesn’t have an entry for the
key.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSFiTeManager.h

fileGroupOwnerAccountName

Returns the value for the NSFileGroupOwnerAccountName key.
- (NSString *)fileGroupOwnerAccountName

Return Value
The value for the key NSFileGroupOwnerAccountName, or nil if the receiver doesn’t have an entry for the
key.

Discussion

This and the other file. .. methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverselink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator),and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the name of the corresponding
file's group.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

fileHFSCreatorCode

Returns the value for the NSFileHFSCreatorCode key.
- (0SType)fileHFSCreatorCode

Return Value
The value for the NSFiTeHFSCreatorCode key, or 0 if the receiver doesn’t have an entry for the key.

Discussion
See HFS File Types for details on the 0SType data type.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSFiTeManager.h

Instance Methods 509
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

510

CHAPTER 35

NSDictionary Class Reference

fileHFSTypeCode
Returns the value for the NSFileHFSTypeCode key.

- (0SType)fileHFSTypeCode

Return Value
The value for the NSFiTeHFSTypeCode key, or 0 if the receiver doesn’t have an entry for the key.

Discussion
See HFS File Types for details on the 0SType data type.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSFileManager.h

filelsAppendOnly

Returns the value for the NSFileAppendOnly key.
- (BOOL)filelsAppendOnly

Return Value
The value for the NSFiTeAppendOnly key, or NO if the receiver doesn’t have an entry for the key.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSFileManager.h

filelsimmutable

Returns the value for the NSFileImmutable key.
- (BOOL)fileIsImmutable

Return Value
The value for the NSFiTeImmutable key, or NO if the receiver doesn’t have an entry for the key.

Discussion

This and the other file. .. methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverselink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator),and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

TextEditPlus

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Declared In
NSFiTeManager.h

fileModificationDate
Returns the value for the key NSFileModificationDate.

- (NSDate *)fileModificationDate

Return Value
The value for the key NSFileModificationDate, or nil if the receiver doesn't have an entry for the key.

Discussion

This and the other file. .. methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverselink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator),and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the date that the file’s data was
last modified.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

TextEditPlus

Declared In
NSFiTeManager.h

fileOwnerAccountID

Returns the value for the NSFileOwnerAccountID key.
- (NSNumber *)fileOwnerAccountID

Return Value
The value for the NSFiTeOwnerAccountID key, or ni 1 if the receiver doesn't have an entry for the key.

Discussion

This and the other file. .. methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverselink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator),and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the account name of the file’s
ownetr.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSFileManager.h

Instance Methods 51
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

512

CHAPTER 35

NSDictionary Class Reference

fileOwnerAccountName

Returns the value for the key NSFileOwnerAccountName.
- (NSString *)fileOwnerAccountName

Return Value
The value for the key NSFileOwnerAccountName, or nil if the receiver doesn’t have an entry for the key.

Discussion

This and the other file. .. methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverselink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator),and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the account name of the file's
ownetr.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFiTeManager.h

filePosixPermissions

Returns the value for the key NSFilePosixPermissions.
- (NSUInteger)filePosixPermissions

Return Value
The value, as an unsigned long, for the key NSFilePosixPermissions, or 0 if the receiver doesn’t have
an entry for the key.

Discussion

This and the other file. .. methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverselink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator),and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file’s permissions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

fileSize

Returns the value for the key NSFileSize.
- (unsigned long long)fileSize

Return Value
The value, as an unsigned Tong long, for the key NSFileSize, or 0 if the receiver doesn’t have an entry
for the key.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Discussion

This and the other file. .. methods are for use with a dictionary such, as those returned from the methods
fileAttributesAtPath:traverselink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator),and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file's size.

Special Considerations
If the file has a resource fork, the returned value does not include the size of the resource fork.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

fileSystemFileNumber
Returns the value for the key NSFileSystemFileNumber.

- (NSUInteger)fileSystemFileNumber

Return Value
The value, as an unsigned long, for the key NSFileSystemFileNumber, or 0 if the receiver doesn’t have
an entry for the key

Discussion

This and the other file. .. methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverselink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator),and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file’s inode.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

fileSystemNumber
Returns the value for the key NSFileSystemNumber.

- (NSInteger)fileSystemNumber

Return Value
The value, as an unsigned Tong, for the key NSFileSystemNumber, or 0 if the receiver doesn’t have an
entry for the key

Discussion

This and the other file. .. methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverselink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator),and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the ID of the device containing the
file.

Instance Methods 513
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

514

CHAPTER 35

NSDictionary Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

fileType

Returns the value for the key NSFiTleType.
- (NSString *)fileType

Return Value
The value for the key NSFileType, or nil if the receiver doesn’t have an entry for the key.

Discussion

This and the other file. .. methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverselink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator), and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file’s type. Possible return values
are described in the “Constants” section of NSFileManager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

getObjects:andKeys:

Returns by reference C arrays of the keys and values in the receiver.
- (void)getObjects:(id *)objects andKeys:(id *)keys

Parameters
objects

Upon return, contains a C array of the values in the receiver.
keys

Upon return, contains a C array of the keys in the receiver.

Discussion
The elements in the returned arrays are ordered such that the first element in objects is the value for the
first key in keys and so on.

Availability
Available in Mac OS X v10.5 and later.

See Also
- allKeys (page 504)

- allValues (page 505)
- objectForKey: (page 521)
- objectsForKeys:notFoundMarker: (page 522)

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Declared In
NSDictionary.h

initWithContentsOfFile:

Initializes a newly allocated dictionary using the keys and values found in a file at a given path.
- (id)initWithContentsOfFile: (NSString *)path

Parameters

path
A full or relative pathname. The file identified by pa th must contain a string representation of a
property list whose root object is a dictionary. The dictionary must contain only property list objects
(instances of NSData, NSDate, NSNumber, NSString, NSArray,or NSDictionary). For more details,
see Property List Programming Guide.

Return Value

An initialized object—which might be different than the original receiver—that contains the dictionary at

path,ornil if there is a file error or if the contents of the file are an invalid representation of a dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithContentsOfFile: (page 499)

Declared In
NSDictionary.h

initWithContentsOfURL:

Initializes a newly allocated dictionary using the keys and values found at a given URL.
- (id)initWithContentsOfURL: (NSURL *)aURL

Parameters

aURL
An URL that identifies a resource containing a string representation of a property list whose root
object is a dictionary. The dictionary must contain only property list objects (instances of NSData,
NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details, see Property List
Programming Guide.

Return Value
An initialized object—which might be different than the original receiver—that contains the dictionary at
aURL,ornil if thereis an error or if the contents of the resource are an invalid representation of a dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithContentsOfURL: (page 500)

Declared In
NSDictionary.h

Instance Methods 515
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

516

CHAPTER 35

NSDictionary Class Reference

initWithDictionary:

Initializes a newly allocated dictionary by placing in it the keys and values contained in another given
dictionary.

- (id)initWithDictionary:(NSDictionary *)otherDictionary

Parameters
otherDictionary

A dictionary containing keys and values for the new dictionary.
Return Value

An initialized object—which might be different than the original receiver—containing the keys and values
found in otherDictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithDictionary: (page 500)

Declared In
NSDictionary.h

initWithDictionary:copyltems:

Initializes a newly allocated dictionary using the objects contained in another given dictionary.
- (id)initWithDictionary: (NSDictionary *)otherDictionary copyltems:(BOOL)flag

Parameters
otherDictionary
A dictionary containing keys and values for the new dictionary.

flag
A flag that specifies whether values in otherDictionary should be copied. If YES, the members of
otherDictionary are copied, and the copies are added to the receiver. If NO, the values of
otherDictionary are retained by the new dictionary.

Return Value
An initialized object—which might be different than the original receiver—containing the keys and values
foundin otherDictionary.

Discussion

Note that copyWithZone: (page 2042) is used to make copies. Thus, the receiver’s new member objects may
be immutable, even though their counterparts in otherDictionary were mutable. Also, members must
conform to the NSCopying protocol.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithDictionary: (page 516)

Declared In

NSDictionary.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

initWithObjects:forKeys:

Initializes a newly allocated dictionary with entries constructed from the contents of the objects and keys
arrays.

- (id)initWithObjects: (NSArray *)objects forKeys:(NSArray *)keys

Parameters
objects
An array containing the values for the new dictionary.
keys
An array containing the keys for the new dictionary. Each key is copied (using copylWithZone: (page
2042); keys must conform to the NSCopying protocol), and the copy is added to the new dictionary.
Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.

An NSInvalidArgumentException is raised if the objects and keys arrays do not have the same number
of elements.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithObjects:forKeys: (page 501)

- initWithObjects:forKeys:count: (page 517)
- initWithObjectsAndKeys: (page 518)

Related Sample Code
QTCoreVideo301

Declared In
NSDictionary.h

initWithObjects:forKeys:count:

Initializes a newly allocated dictionary with count entries.
- (id)initWithObjects:(id *)objects forKeys:(id *)keys count:(NSUInteger)count

Parameters

objects
A C array of values for the new dictionary.
keys
A Carray of keys for the new dictionary. Each key is copied (using copyWithZone: (page 2042); keys
must conform to the NSCopy ing protocol), and the copy is added to the new dictionary.
count
The number of elements to use from the keys and objects arrays. count must not exceed the
number of elements in objects or keys.
Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.
An NSTInvalidArgumentException is raised if a key or value objectis nil.

Instance Methods 517
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithObjects:forKeys:count: (page 502)

- initWithObjects:forKeys: (page 517)
- initWithObjectsAndKeys: (page 518)

Declared In
NSDictionary.h

initWithObjectsAndKeys:

Initializes a newly allocated dictionary with entries constructed from the specified set of values and keys.
- (id)initWithObjectsAndKeys:(id)firstObject ,

Parameters

firstObject
The first value to add to the new dictionary.

First the key for firstObject, then a null-terminated list of alternating values and keys. If any key
isnil,an NSInvalidArgumentException is raised.

Discussion
This method is similar to initWithObjects:forKeys: (page 517), differing only in the way in which the
key-value pairs are specified.

For example:

NSDictionary *dict = [[NSDictionary alloc] initWithObjectsAndKeys:
@"valuel", @"keyl", @"value2", @"key2", nil]l;

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithObjectsAndKeys: (page 503)

- initWithObjects:forKeys: (page 517)
- initWithObjects:forKeys:count: (page 517)

Related Sample Code
GLChildWindowDemo

QTRecorder

Quartz Composer WWDC 2005 TextEdit
SpeedometerView

TextEditPlus

Declared In
NSDictionary.h

518 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

isEqualToDictionary:

Returns a Boolean value that indicates whether the contents of the receiver are equal to the contents of
another given dictionary.

- (BOOL)isEqualToDictionary: (NSDictionary *)otherDictionary

Parameters
otherDictionary
The dictionary with which to compare the receiver.

Return Value
YES if the contents of otherDictionary are equal to the contents of the receiver, otherwise NO.

Discussion
Two dictionaries have equal contents if they each hold the same number of entries and, for a given key, the
corresponding value objects in each dictionary satisfy the isEqual: (page 2101) test.

Availability
Available in Mac OS X v10.0 and later.

See Also
- isEqual: (page 2101) (NSObject protocol)

Declared In
NSDictionary.h

keyEnumerator

Returns an enumerator object that lets you access each key in the receiver.
- (NSEnumerator *)keyEnumerator

Return Value
An enumerator object that lets you access each key in the receiver.

Discussion
The following code fragment illustrates how you might use this method.

NSEnumerator *enumerator = [myDictionary keyEnumerator];
id key;

while ((key = [enumerator nextObject])) {
/* code that uses the returned key */
}

If you use this method with instances of mutable subclasses of NSDictionary, your code should not modify
the entries during enumeration. If you intend to modify the entries, use the al1Keys (page 504) method to
create a “snapshot” of the dictionary’s keys. Then use this snapshot to traverse the entries, modifying them
along the way.

Note that the objectEnumerator (page 520) method provides a convenient way to access each value in
the dictionary.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 519
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

520

CHAPTER 35

NSDictionary Class Reference

See Also
- allKeys (page 504)

- allKeysForObject: (page 504)

- getObjects:andKeys: (page 514)

- objectEnumerator (page 520)

- nextObject (page 558) (NSEnumerator)

Related Sample Code
ColorSyncDevices-Cocoa

LSMSmartCategorizer
StickiesExample

Declared In
NSDictionary.h

keysSortedByValueUsingSelector:

Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted by its values.
- (NSArray *)keysSortedByValueUsingSelector:(SEL)comparator

Parameters
comparator
A selector that specifies the method to use to compare the values in the receiver.
The comparator method should return NSOrderedAscending if the receiver is smaller than the

argument, NSOrderedDescending if the receiver is larger than the argument, and NSOrderedSame
if they are equal.

Return Value
An array of the receiver’s keys, in the order they would be in if the receiver were sorted by its values.

Discussion

Pairs of dictionary values are compared using the comparison method specified by comparator; the
comparator message is sent to one of the values and has as its single argument the other value from the
dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
- allKeys (page 504)

- sortedArrayUsingSelector: (page 138) (NSArray)

Declared In
NSDictionary.h

objectEnumerator

Returns an enumerator object that lets you access each value in the receiver.

- (NSEnumerator *)objectEnumerator

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Return Value
An enumerator object that lets you access each value in the receiver.

Discussion
The following code fragment illustrates how you might use the method.

NSEnumerator *enumerator = [myDictionary objectEnumerator];
id value;

while ((value = [enumerator nextObject])) {
/* code that acts on the dictionary’s values */
}

If you use this method with instances of mutable subclasses of NSDictionary, your code should not modify
the entries during enumeration. If you intend to modify the entries, use the al1Values (page 505) method
to create a “snapshot” of the dictionary’s values. Work from this snapshot to modify the values.

Availability
Available in Mac OS X v10.0 and later.

See Also
- keyEnumerator (page 519)

- nextObject (page 558) (NSEnumerator)

Declared In
NSDictionary.h

objectForKey:

Returns the value associated with a given key.
- (id)objectForKey: (id)aKey

Parameters
akey
The key for which to return the corresponding value.

Return Value
The value associated with aKey, or ni1 if no value is associated with aKey.

Availability
Available in Mac OS X v10.0 and later.

See Also
- allKeys (page 504)

- allValues (page 505)
- getObjects:andKeys: (page 514)

Related Sample Code

iSpend

People

QTCoreVideo301

Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Instance Methods 521
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

522

CHAPTER 35

NSDictionary Class Reference

Declared In
NSDictionary.h

objectsForKeys:notFoundMarker:

Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.
- (NSArray *)objectsForKeys:(NSArray *)keys notFoundMarker:(id)anObject

Parameters
keys

The keys for which to return corresponding values.
anObject

The marker object to place in the corresponding element of the returned array if an object isn’t found
in the receiver to correspond to a given key.

Discussion
The objects in the returned array and the keys array have a one-for-one correspondence, so that the nth
object in the returned array corresponds to the nth key in keys.

Availability
Available in Mac OS X v10.0 and later.

See Also
- allKeys (page 504)

- allValues (page 505)
- getObjects:andKeys: (page 514)

Declared In
NSDictionary.h

valueForKey:

Returns the value associated with a given key.
- (id)valueForKey: (NSString *)key

Parameters

key
The key for which to return the corresponding value. Note that when using key-value coding, the key
must be a string (see Key-Value Coding Fundamentals).

Return Value
The value associated with key.

Discussion
If key does not start with “@; invokes objectForKey: (page 521). If key does start with “@] strips the “@”
and invokes [super valueForKey: 1 with the rest of the key.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

See Also
- setValue:forKey: (page 962) (NSMutableDictionary)

- getObjects:andKeys: (page 514)

Related Sample Code
CustomAtomicStoreSubclass

ImageMapExample
NSOperationSample
SimpleCalendar
StickiesExample

Declared In
NSKeyValueCoding.h

writeToFile:atomically:

Writes a property list representation of the contents of the receiver to a given path.
- (BOOL)writeToFile: (NSString *)path atomically:(B0OOL)flag

Parameters

path
The path at which to write the file.

If path contains a tilde (~) character, you must expand it with
stringByExpandingTildeInPath (page 1602) before invoking this method.

flag
A flag that specifies whether the file should be written atomically.

If f1agis YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed to path.
If fTagis NO, the dictionary is written directly to path. The YES option guarantees that path, if it
exists at all, won't be corrupted even if the system should crash during writing.

Return Value
YES if the file is written successfully, otherwise NO.

Discussion

This method recursively validates that all the contained objects are property list objects (instances of NSData,
NSDate, NSNumber, NSString, NSArray, or NSDictionary) before writing out the file, and returns NO if
all the objects are not property list objects, since the resultant file would not be a valid property list.

If the receiver’s contents are all property list objects, the file written by this method can be used to initialize
a new dictionary with the class method dictionaryWithContentsOfFile: (page 499) or the instance
method initWithContentsOfFile: (page 515).

For more information about property lists, see Property List Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDictionary.h

Instance Methods 523
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

524

CHAPTER 35

NSDictionary Class Reference

writeToURL:atomically:

Writes a property list representation of the contents of the receiver to a given URL.
- (BOOL)writeToURL: (NSURL *)aURL atomically:(BOOL)flag

Parameters

aURL
The URL to which to write the receiver.

flag
A flag that specifies whether the output should be written atomically.

If f1agis YES, the receiver is written to an auxiliary location, and then the auxiliary location is renamed
to aURL.If f1agis NO, the dictionary is written directly to aURL. The YES option guarantees that aURL,
if it exists at all, won't be corrupted even if the system should crash during writing. f7ag is ignored
if aURL is of a type that cannot be written atomically.

Return Value
YES if the location is written successfully, otherwise NO.

Discussion

This method recursively validates that all the contained objects are property list objects (instances of NSDat a,
NSDate, NSNumber, NSString, NSArray, or NSDictionary) before writing out the file, and returns NO if
all the objects are not property list objects, since the resultant output would not be a valid property list.

If the receiver’s contents are all property list objects, the location written by this method can be used to
initialize a new dictionary with the class method dictionaryWithContentsOfURL: (page 500) or the
instance method initWithContentsOfURL: (page 515).

For more information about property lists, see Property List Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDictionary.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

NSDirectoryEnumerator Class Reference

Inherits from NSEnumerator : NSObject
Conforms to NSFastEnumeration (NSEnumerator)
NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSFileManager.h
Companion guide Low-Level File Management Programming Topics
Related sample code BundleLoader
DeskPictAppDockMenu
NSOperationSample
Overview

Tasks

An NSDirectoryEnumerator object enumerates the contents of a directory, returning the pathnames of
all files and directories contained within that directory. These pathnames are relative to the directory.

You obtain a directory enumerator using NSFileManager’s enumeratorAtPath: (page 644) method. For
more details, see Low-Level File Management Programming Topics.

An enumeration is recursive, including the files of all subdirectories, and crosses device boundaries. An
enumeration does not resolve symbolic links, or attempt to traverse symbolic links that point to directories.

Getting File and Directory Attributes

- directoryAttributes (page 526)
Returnsan NSDictionary object that contains the attributes of the directory at which enumeration
started.

- fileAttributes (page 526)
Returns an NSDictionary object that contains the attributes of the most recently returned file or
subdirectory (as referenced by the pathname).

Overview 525
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

NSDirectoryEnumerator Class Reference

Skipping Subdirectories

- skipDescendents (page 527)
Causes the receiver to skip recursion into the most recently obtained subdirectory.

Instance Methods

526

directoryAttributes

Returnsan NSDictionary object that contains the attributes of the directory at which enumeration started.
- (NSDictionary *)directoryAttributes

Return Value
An NSDictionary object that contains the attributes of the directory at which enumeration started.

Discussion
See the description of the fileAttributesAtPath:traverselink: (page 645) method of NSFileManager
for details on obtaining the attributes from the dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
createDirectoryAtPath:attributes: (page 637)(NSFileManager)

Declared In
NSFileManager.h

fileAttributes

Returns an NSDictionary object that contains the attributes of the most recently returned file or subdirectory
(as referenced by the pathname).

- (NSDictionary *)fileAttributes

Return Value
An NSDictionary object that contains the attributes of the most recently returned file or subdirectory (as
referenced by the pathname).

Discussion
See the description of the fileAttributesAtPath:traverselink: (page 645) method of NSFileManager
for details on obtaining the attributes from the dictionary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NSOperationSample

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

NSDirectoryEnumerator Class Reference

Declared In
NSFiTeManager.h

skipDescendents

Causes the receiver to skip recursion into the most recently obtained subdirectory.
- (void)skipDescendents

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

Instance Methods 527
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

NSDirectoryEnumerator Class Reference

528 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDistantObject Class Reference

Inherits from NSProxy
Conforms to NSCoding
NSObject (NSProxy)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDistantObject.h

Companion guide Distributed Objects Programming Topics
Overview

NSDistantObject is a concrete subclass of NSProxy that defines proxies for objects in other applications
or threads. When a distant object receives a message, in most cases it forwards the message through its
NSConnection object to the real object in another application, supplying the return value to the sender of
the message if one is received, and propagating any exception back to the invoker of the method that raised
it.

NSDistantObject adds two useful instance methods to those defined by NSProxy:
connectionForProxy (page 532) returns the NSConnection object that handles the receiver;
setProtocolForProxy: (page 533) establishes the set of methods the real object is known to respond to,
saving the network traffic required to determine the argument and return types the first time a particular
selector is forwarded to the remote proxy.

There are two kinds of distant object: local proxies and remote proxies. A local proxy is created by an
NSConnection object the first time an object is sent to another application. It is used by the connection for
bookkeeping purposes and should be considered private. The local proxy is transmitted over the network
using the NSCoding protocol to create the remote proxy, which is the object that the other application uses.
NSDistantObject defines methods foran NSConnection object to create instances, but they're intended
only for subclasses to override—you should never invoke them directly. Use the
rootProxyForConnectionWithRegisteredName:host: (page 332) method of NSConnection, which
sets up all the required state for an object-proxy pair.

Overview 529
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 37
NSDistantObject Class Reference

Important: NSDistantObject conforms to the NSCoding protocol, but only supports coding by an
NSPortCoder.NSDistantObject and its subclasses do not support archiving.

Adopted Protocols

Tasks

530

NSCoding
encodeWithCoder: (page 2034)

initWithCoder: (page 2034)

Creating a Local Proxy

+ proxyWithLocal:connection: (page 531)
Returns a local proxy for a given object and connection, creating the proxy if necessary.

- initWithLocal:connection: (page 532)
Initializes an NSDistant0Object object as a local proxy for a given object.

Creating a Remote Proxy

+ proxyWithTarget:connection: (page 531)
Returns a remote proxy for a given object and connection, creating the proxy if necessary.

- initWithTarget:connection: (page 533)
Initializes a newly allocated NSDistantObject as a remote proxy for remote0Object, whichisan idin

another thread or another application’s address space.
Getting a Proxy’s NSConnection

- connectionForProxy (page 532)
Returns the connection used by the receiver.

Setting a Proxy’s Protocol

- setProtocolForProxy: (page 533)
Sets the methods known to be handled by the receiver to those in a given protocol.

Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 37
NSDistantObject Class Reference

Class Methods

proxyWithLocal:connection:

Returns a local proxy for a given object and connection, creating the proxy if necessary.

+ (NSDistantObject *)proxyWithLocal:(id)an0Object connection:(NSConnection
*)aConnection

Parameters
anObject

An object in the receiver’s address space.
aConnection

The connection for the returned proxy.

Return Value
A local proxy for anObject and aConnection, creating it if necessary.

Discussion
Other applications connect to the proxy using the NSConnection
connectionWithRegisteredName:host: (page 330) class method.

Local proxies should be considered private to their NSConnection objects. Only an NSConnection object
should use this method to create them, and your code shouldn't retain or otherwise use local proxies.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithLocal:connection: (page 532)

Declared In
NSDistantObject.h

proxyWithTarget:connection:

Returns a remote proxy for a given object and connection, creating the proxy if necessary.

+ (NSDistantObject *)proxyWithTarget:(id)remoteObject connection:(NSConnection
*)aConnection

Parameters
remoteObject
An object in another thread or another application’s address space.

aConnection
The connection to set as the NSConnection object for the returned proxy—it should have been
created using the NSConnection connectionWithRegisteredName:host: (page 330) class
method.

Return Value
A remote proxy for remoteObject and aConnection, creating the proxy if necessary

Class Methods 531
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 37
NSDistantObject Class Reference

Discussion
A remote proxy cannot be used until its connection's peer has a local proxy representing remote0bject in
the other application.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithTarget:connection: (page 533)

Declared In
NSDistantObject.h

Instance Methods

532

connectionForProxy

Returns the connection used by the receiver.
- (NSConnection *)connectionForProxy

Return Value
The connection used by the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDistantObject.h

initWithLocal:connection:

Initializes an NSDistant0Object object as a local proxy for a given object.
- (id)initWithLocal:(id)an0Object connection:(NSConnection *)aConnection

Parameters

anObject
An object in the receiver’s address space.

aConnection
The connection for the returned proxy.

Return Value
An initialized NSDistant0bject object that serves as a local proxy for anObject. If a proxy for anObject
and aConnection already exists, the receiver is released and the existing proxy is retained and returned.

Discussion
Other applications connect to the proxy using the
NSConnectionconnectionWithRegisteredName:host: (page 330) class method.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 37
NSDistantObject Class Reference

Local proxies should be considered private to their NSConnection objects. Only an NSConnection object
should use this method to create them, and your code shouldn’t retain or otherwise use local proxies.

This is the designated initializer for local proxies. It returns an initialized object, which might be different
than the original receiver

Availability
Available in Mac OS X v10.0 and later.

See Also
+ proxyWithlLocal:connection: (page 531)

Declared In
NSDistantObject.h

initWithTarget:connection:

Initializes a newly allocated NSDistantObject as a remote proxy for remote0bject, whichis an id in another
thread or another application’s address space.

- (id)initWithTarget:(id)remoteObject connection: (NSConnection *)aConnection

Parameters

remoteObject
An object in another thread or another application’s address space.

aConnection
The connection to set as the NSConnection object for the returned proxy—it should have been
created using the NSConnectionconnectionWithRegisteredName:host: (page 330) class method.

Return Value
An NSDistantObject objectinitialized as a remote proxy for remote0Object.If a proxy for remoteObject
and aConnection already exists, the receiver is released and the existing proxy is retained and returned.

Discussion
A remote proxy can't be used until its connection’s peer has a local proxy representing remoteObject in
the other application.

This is the designated initializer for remote proxies. It returns an initialized object, which might be different
than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ proxyWithTarget:connection: (page 531)

Declared In
NSDistantObject.h

setProtocolForProxy:

Sets the methods known to be handled by the receiver to those in a given protocol.

Instance Methods 533
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

534

CHAPTER 37
NSDistantObject Class Reference

- (void)setProtocolForProxy:(Protocol *)aProtocol

Parameters

aProtocol
The protocol for the receiver.

Discussion
Setting a protocol for a remote proxy reduces network traffic needed to determine method argument and
return types.

In order to encode a message’s arguments for transmission over the network, the types of those arguments
must be known in advance. When they're not known, the distributed objects system must send an initial
message just to get those types, doubling the network traffic for every new message sent. Setting a protocol
alleviates this need for methods defined by the protocol. You can still send messages that aren’t declared in
aProtocol—in this case the initial message is sent to determine the types, and then the real message is
sent.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SimpleThreads

Declared In
NSDistantObject.h

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDistantObjectRequest Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSConnection.h

Companion guide Distributed Objects Programming Topics
Overview

Tasks

NSDistantObjectRequest objects are used by the distributed objects system to help handle invocations
between different processes. You should never create NSDistantObjectRequest objects directly. Unless
you are getting involved with the low-level details of distributed objects, there should never be a need to
access an NSDistantObjectRequest. To intercept and possibly process requests yourself, implement the
NSConnection delegate method connection:handleRequest: (page 350).

Getting Information About a Request

- connection (page 536)
Returns the NSConnection object involved in the request.

- conversation (page 536)
Returns the token object representing the conversation in which the receiver was created.

- invocation (page 536)
Returns the NSInvocation object for the request.

Raising a Remote Exception

- replyWithException: (page 537)
Sends a reply back to the remote object making the distant object request.

Overview 535
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 38
NSDistantObjectRequest Class Reference

Instance Methods

536

connection

Returns the NSConnection object involved in the request.
- (NSConnection *)connection

Return Value
The NSConnection object involved in the request.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

conversation

Returns the token object representing the conversation in which the receiver was created.
- (id)conversation

Return Value
The token object representing the conversation in which the receiver was created.

Discussion

If both ends of the distributed objects connection has independentConversationQueueing (page 336)
set to NO (the default), the conversation object is always ni 1. Otherwise, it is either a proxy (or a copy) of the
object created by the sender of the message or a locally created object, depending which end of the
connection has independent queueing on.

Availability
Available in Mac OS X v10.0 and later.

See Also
createConversationForConnection: (page 351) (NSConnection)

Declared In
NSConnection.h

invocation

Returns the NSInvocation object for the request.
- (NSInvocation *)invocation

Return Value
The NSInvocation object for the request.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 38
NSDistantObjectRequest Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

replyWithException:

Sends a reply back to the remote object making the distant object request.
- (void)replyWithException: (NSException *)exception

Parameters
exception
The exception to send.
Discussion
If exceptionisnil,the return value of the receiver’s invocation is sent; otherwise, exception is sent and
is automatically raised when it arrives at its destination.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

Instance Methods 537
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 38
NSDistantObjectRequest Class Reference

538 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 39

NSDistributedLock Class Reference

Inherits from NSObject
Conforms to NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.
Declared in Foundation/NSDistributedLock.h
Companion guide Threading Programming Guide
Overview

Tasks

The NSDistributedLock class defines an object that multiple applications on multiple hosts can use to
restrict access to some shared resource, such as a file.

The lock is implemented by an entry (such as a file or directory) in the file system. For multiple applications
tousean NSDistributedLock object to coordinate their activities, the lock must be writable on a file system
accessible to all hosts on which the applications might be running.

Use the trylLock (page 542) method to attempt to acquire a lock. You should generally use the unlock (page
543) method to release the lock rather than breaklLock (page 541).

NSDistributedLock doesn’t conform to the NSLocking protocol, nor does it have a 1ock method. The
protocol’s 1ock (page 2091) method is intended to block the execution of the thread until successful. For an
NSDistributedLock object, this could mean polling the file system at some predetermined rate. A better
solution is to provide the trylock (page 542) method and let you determine the polling frequency that
makes sense for your application.

Creating an NSDistributedLock

+ lockWithPath: (page 540)
Returns an NSDistributedLock object initialized to use as the locking object the file-system entry
specified by a given path.

Overview 539
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 39
NSDistributedLock Class Reference

- initWithPath: (page 541)
Initializes an NSDistributedLock object to use as the lock the file-system entry specified by a given
path.

Acquiring a Lock

- trylock (page 542)
Attempts to acquire the receiver and immediately returns a Boolean value that indicates whether the
attempt was successful.

Relinquishing a Lock

- breaklock (page 541)
Forces the lock to be relinquished.

- unlock (page 543)
Relinquishes the receiver.

Getting Lock Information

- lockDate (page 542)
Returns the time the receiver was acquired by any of the NSDistributedlLock objects using the
same path.

Class Methods

540

lockWithPath:

Returnsan NSDistributedlLock objectinitialized to use as the locking object the file-system entry specified
by a given path.

+ (NSDistributedLock *)TockWithPath:(NSString *)aPath

Parameters
aPath

All of aPath up to the last component itself must exist. You can use NSFileManager to create (and
set permissions) for any nonexistent intermediate directories.

Return Value
An NSDistributedLock object initialized to use as the locking object the file-system entry specified by
aPath.

Discussion
For applications to use the lock, aPath must be accessible to—and writable by—all hosts on which the
applications might be running.

Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 39
NSDistributedLock Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithPath: (page 541)

Declared In
NSDistributedLock.h

Instance Methods

breakLock

Forces the lock to be relinquished.
- (void)breaklock

Discussion

This method always succeeds unless the lock has been damaged. If another process has already unlocked
or broken the lock, this method has no effect. You should generally use unlock (page 543) rather than
breakLock to relinquish a lock.

Warning: Because breaklock can release another process’s lock, it should be used with great caution.

Even if you break a lock, there’s no guarantee that you will then be able to acquire the lock—another process
might get it before your trylLock (page 542) is invoked.

Raises an NSGenericException if the lock could not be removed.

Availability
Available in Mac OS X v10.0 and later.

See Also
- unlock (page 543)

Declared In
NSDistributedlLock.h

initWithPath:

Initializes an NSDistributedlLock object to use as the lock the file-system entry specified by a given path.
- (id)initWithPath: (NSString *)aPath

Parameters
aPath

All of aPath up to the last component itself must exist. You can use NSFileManager to create (and
set permissions) for any nonexistent intermediate directories.

Instance Methods 541
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

542

CHAPTER 39
NSDistributedLock Class Reference

Return Value
An NSDistributedLock object initialized to use as the locking object the file-system entry specified by
aPath.

Discussion
For applications to use the lock, aPath must be accessible to—and writable by—all hosts on which the
applications might be running.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ lTockWithPath: (page 540)

Declared In
NSDistributedLock.h

lockDate

Returns the time the receiver was acquired by any of the NSDistributedLock objects using the same path.
- (NSDate *)lockDate

Return Value
The time the receiver was acquired by any of the NSDistributedLock objects using the same path. Returns
nil if the lock doesn’t exist.

Discussion
This method is potentially useful to applications that want to use an age heuristic to decide if a lock is too
old and should be broken.

If the creation date on the lock isn't the date on which you locked it, you've lost the lock: it's been broken
since you last checked it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDistributedLock.h

tryLock

Attempts to acquire the receiver and immediately returns a Boolean value that indicates whether the attempt
was successful.

- (BOOL)tryLock

Return Value
YES if the attempt to acquire the receiver was successful, otherwise NO.

Discussion
Raises NSGenericException if a file-system error occurs.

Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 39
NSDistributedLock Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- unlock (page 543)

Declared In
NSDistributedLock.h

unlock

Relinquishes the receiver.
- (void)unlock

Discussion

You should generally use the un1ock method rather than breaklLock (page 541) to release a lock.

An NSGenericException is raised if the receiver doesn't already exist.

Availability
Available in Mac OS X v10.0 and later.

See Also
- breaklLock (page 541)

Declared In
NSDistributedlLock.h

Instance Methods

2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

543

CHAPTER 39
NSDistributedLock Class Reference

544 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class
Reference

Inherits from NSNotificationCenter : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDistributedNotificationCenter.h
Companion guide Notification Programming Topics for Cocoa

Related sample code StickiesExample

Class at a Glance

The NSDistributedNotificationCenter class provides a way to send notifications to objects in other
tasks. It takes NSNot i fication objects and broadcasts them to any objects in other tasks that have registered
for the notification with their task’s default distributed notification center.

Principal Attributes

= Notification dispatch table. See “Class at a Glance” > “Principal Attributes” in NSNotificationCenter Class
Reference for information about the dispatch table.

In addition to the notification name and sender, dispatch table entries for distributed notification centers
specify when the notification center delivers notifications to its observers. See the
postNotificationName:object:userInfo:deliverIimmediately: (page551) method,“Suspending
and Resuming Notification Delivery” (page 547), and NSNotificationSuspensionBehavior (page
555) for details.

Commonly Used Methods

defaultCenter (page 547)
Accesses the default distributed notification center.

addObserver:selector:name:object:suspensionBehavior: (page 549)

Registers an object to receive a notification with a specified behavior when notification delivery is
suspended.

Class at a Glance 545
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

postNotificationName:object:userInfo:deliverImmediately: (page 551)
Creates and posts a notification.

removeObserver:name:object: (page 552)
Specifies that an object no longer wants to receive certain notifications.

Overview

Tasks

546

The NSDistributedNotificationCenter class implements a notification center that can distribute
notifications asynchronously to tasks other than the one in which the notification was posted. An instance
of this class are known as a distributed notification center.

Each task has a default distributed notification center that you access with the defaultCenter (page 547)
class method. There may be different types of distributed notification centers. Currently there is a single
type—NSLocalNotificationCenterType.Thistype of distributed notification center handles notifications
that can be sent between tasks on a single computer. For communication between tasks on different
computers, use Distributed Objects Programming Topics.

Posting a distributed notification is an expensive operation. The notification gets sent to a system-wide server
that distributes it to all the tasks that have objects registered for distributed notifications. The latency between
posting the notification and the notification’s arrival in another task is unbounded. In fact, when too many
notifications are posted and the server’s queue fills up, notifications may be dropped.

Distributed notifications are delivered via a task’s run loop. A task must be running a run loop in one of the
“common” modes, such as NSDefaultRunLoopMode, to receive a distributed notification. For multithreaded
applications running in Mac OS X v10.3 and later, distributed notifications are always delivered to the main
thread. For multithreaded applications running in Mac OS X v10.2.8 and earlier, notifications are delivered
to the thread that first used the distributed notifications API, which in most cases is the main thread.

Note: NSDistributedNotificationCenter objects should not be used to send notifications between
threads within the same task. Use Distributed Objects Programming Topics or the NSObject method
performSelectorOnMainThread:withObject:waitUntilDone: (page 1188),instead. You can also setup
an NSPort object to receive and distribute messages from other threads.

Getting Distributed Notification Centers

+ defaultCenter (page 547)
Returns the default distributed notification center, representing the local notification center for the
computer.

+ notificationCenterForType: (page 548)
Returns the distributed notification center for a particular notification center type.

Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

Managing Observers

- addObserver:selector:name:object: (page 548)

Adds an entry to the receiver’s dispatch table with an observer, a notification selector and optional
criteria: notification name and sender.

- addObserver:selector:name:object:suspensionBehavior: (page 549)

Adds an entry to the receiver’s dispatch table with a specific observer and suspended-notifications
behavior, and optional notification name and sender.

- removeObserver:name:object: (page 552)
Removes matching entries from the receiver’s dispatch table.

Posting Notifications

- postNotificationName:object: (page 550)
Creates a notification, and posts it to the receiver.

- postNotificationName:object:userInfo: (page 550)
Creates a notification with information, and posts it to the receiver.

- postNotificationName:object:userInfo:deliverImmediately: (page 551)
Creates a notification with information and an immediate-delivery specifier, and posts it to the receiver.

- postNotificationName:object:userInfo:options: (page 552)
Creates a notification with information, and posts it to the receiver.

Suspending and Resuming Notification Delivery

- suspended (page 553)
Returns a Boolean value that indicates whether notification delivery is suspended.

- setSuspended: (page 553)
Suspends or resumes notification delivery.

Class Methods

defaultCenter

Returns the default distributed notification center, representing the local notification center for the computer.
+ (id)defaultCenter

Return Value
Default distributed notification center for the computer.

Discussion
This method calls notificationCenterForType: (page 548) with an argument of
NSLocalNotificationCenterType.

Class Methods 547
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
StickiesExample

Declared In
NSDistributedNotificationCenter.h

notificationCenterForType:

Returns the distributed notification center for a particular notification center type.

+ (NSDistributedNotificationCenter *)notifica