
Foundation Framework Reference
Cocoa > Objective-C Language

2008-06-27

Apple Inc.
© 1997, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Carbon, Cocoa,
eMac, Keychain, Mac, Mac OS, Macintosh,
Objective-C, Pages, Quartz, Safari, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

Finder, iPhone, and Numbers are trademarks
of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction The Foundation Framework 37

Introduction 39

Part I Classes 45

Chapter 1 NSAffineTransform Class Reference 47

Overview 47
Adopted Protocols 48
Tasks 48
Class Methods 49
Instance Methods 49
Constants 57

Chapter 2 NSAppleEventDescriptor Class Reference 59

Overview 59
Adopted Protocols 60
Tasks 60
Class Methods 63
Instance Methods 68

Chapter 3 NSAppleEventManager Class Reference 83

Overview 83
Tasks 84
Class Methods 85
Instance Methods 85
Constants 90
Notifications 90

Chapter 4 NSAppleScript Class Reference 91

Overview 91
Adopted Protocols 92
Tasks 92
Instance Methods 93
Constants 96

3
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Chapter 5 NSArchiver Class Reference 97

Overview 97
Tasks 97
Class Methods 98
Instance Methods 100
Constants 103

Chapter 6 NSArray Class Reference 105

Overview 105
Adopted Protocols 107
Tasks 108
Class Methods 111
Instance Methods 116

Chapter 7 NSAssertionHandler Class Reference 143

Overview 143
Tasks 143
Class Methods 144
Instance Methods 144

Chapter 8 NSAttributedString Class Reference 147

Overview 147
Adopted Protocols 148
Tasks 148
Instance Methods 149
Constants 156

Chapter 9 NSAutoreleasePool Class Reference 157

Overview 157
Tasks 158
Class Methods 159
Instance Methods 160

Chapter 10 NSBundle Class Reference 163

Overview 163
Tasks 164
Class Methods 167
Instance Methods 173
Constants 191
Notifications 192

4
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 11 NSCachedURLResponse Class Reference 193

Overview 193
Tasks 193
Instance Methods 194
Constants 197

Chapter 12 NSCalendar Class Reference 199

Overview 199
Tasks 200
Class Methods 201
Instance Methods 202
Constants 213

Chapter 13 NSCalendarDate Class Reference 217

Overview 217
Tasks 219
Class Methods 221
Instance Methods 224

Chapter 14 NSCharacterSet Class Reference 241

Overview 241
Adopted Protocols 242
Tasks 242
Class Methods 244
Instance Methods 253
Constants 255

Chapter 15 NSClassDescription Class Reference 257

Overview 257
Tasks 258
Class Methods 258
Instance Methods 260
Notifications 262

Chapter 16 NSCloneCommand Class Reference 263

Overview 263
Tasks 263
Instance Methods 264

5
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 17 NSCloseCommand Class Reference 265

Overview 265
Tasks 265
Instance Methods 266
Constants 266

Chapter 18 NSCoder Class Reference 269

Overview 269
Tasks 270
Instance Methods 273

Chapter 19 NSComparisonPredicate Class Reference 297

Overview 297
Tasks 297
Class Methods 298
Instance Methods 299
Constants 303

Chapter 20 NSCompoundPredicate Class Reference 307

Overview 307
Tasks 307
Class Methods 308
Instance Methods 309
Constants 310

Chapter 21 NSCondition Class Reference 313

Overview 313
Tasks 314
Instance Methods 315

Chapter 22 NSConditionLock Class Reference 319

Overview 319
Adopted Protocols 319
Tasks 319
Instance Methods 320

Chapter 23 NSConnection Class Reference 325

Overview 325
Tasks 325

6
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Class Methods 329
Instance Methods 335
Delegate Methods 348
Constants 352
Notifications 352

Chapter 24 NSCountCommand Class Reference 355

Overview 355

Chapter 25 NSCountedSet Class Reference 357

Overview 357
Tasks 358
Instance Methods 358

Chapter 26 NSCreateCommand Class Reference 363

Overview 363
Tasks 364
Instance Methods 364

Chapter 27 NSData Class Reference 367

Overview 367
Adopted Protocols 368
Tasks 368
Class Methods 370
Instance Methods 376
Constants 387

Chapter 28 NSDate Class Reference 389

Overview 389
Adopted Protocols 391
Tasks 391
Class Methods 393
Instance Methods 399
Constants 409

Chapter 29 NSDateComponents Class Reference 411

Overview 411
Tasks 412
Instance Methods 413
Constants 422

7
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 30 NSDateFormatter Class Reference 423

Overview 423
Tasks 424
Class Methods 428
Instance Methods 429
Constants 460

Chapter 31 NSDecimalNumber Class Reference 463

Overview 463
Tasks 463
Class Methods 466
Instance Methods 471
Constants 480

Chapter 32 NSDecimalNumberHandler Class Reference 483

Overview 483
Adopted Protocols 483
Tasks 484
Class Methods 484
Instance Methods 485

Chapter 33 NSDeleteCommand Class Reference 487

Overview 487
Tasks 487
Instance Methods 488

Chapter 34 NSDeserializer Class Reference 489

Overview 489
Tasks 489
Class Methods 490

Chapter 35 NSDictionary Class Reference 493

Overview 493
Adopted Protocols 495
Tasks 495
Class Methods 498
Instance Methods 504

8
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 36 NSDirectoryEnumerator Class Reference 525

Overview 525
Tasks 525
Instance Methods 526

Chapter 37 NSDistantObject Class Reference 529

Overview 529
Adopted Protocols 530
Tasks 530
Class Methods 531
Instance Methods 532

Chapter 38 NSDistantObjectRequest Class Reference 535

Overview 535
Tasks 535
Instance Methods 536

Chapter 39 NSDistributedLock Class Reference 539

Overview 539
Tasks 539
Class Methods 540
Instance Methods 541

Chapter 40 NSDistributedNotificationCenter Class Reference 545

Class at a Glance 545
Overview 546
Tasks 546
Class Methods 547
Instance Methods 548
Constants 554

Chapter 41 NSEnumerator Class Reference 557

Overview 557
Tasks 558
Instance Methods 558

Chapter 42 NSError Class Reference 561

Overview 561
Adopted Protocols 562

9
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 562
Class Methods 563
Instance Methods 563
Constants 569

Chapter 43 NSException Class Reference 573

Overview 573
Adopted Protocols 573
Tasks 574
Class Methods 574
Instance Methods 576
Constants 579

Chapter 44 NSExistsCommand Class Reference 581

Overview 581

Chapter 45 NSExpression Class Reference 583

Overview 583
Tasks 585
Class Methods 586
Instance Methods 595
Constants 600

Chapter 46 NSFileHandle Class Reference 603

Overview 603
Tasks 603
Class Methods 606
Instance Methods 609
Constants 620
Notifications 621

Chapter 47 NSFileManager Class Reference 625

Overview 625
Tasks 625
Class Methods 630
Instance Methods 630
Delegate Methods 661
Constants 668

10
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 48 NSFormatter Class Reference 675

Overview 675
Tasks 676
Instance Methods 676

Chapter 49 NSGarbageCollector Class Reference 683

Overview 683
Tasks 684
Class Methods 685
Instance Methods 685

Chapter 50 NSGetCommand Class Reference 691

Overview 691

Chapter 51 NSHashTable Class Reference 693

Overview 693
Tasks 693
Class Methods 695
Instance Methods 696
Constants 702

Chapter 52 NSHost Class Reference 705

Overview 705
Tasks 706
Class Methods 707
Instance Methods 709

Chapter 53 NSHTTPCookie Class Reference 713

Overview 713
Adopted Protocols 713
Tasks 714
Class Methods 715
Instance Methods 716
Constants 721

Chapter 54 NSHTTPCookieStorage Class Reference 725

Overview 725
Tasks 725
Class Methods 726

11
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 726
Constants 729
Notifications 730

Chapter 55 NSHTTPURLResponse Class Reference 733

Overview 733
Adopted Protocols 733
Tasks 733
Class Methods 734
Instance Methods 734

Chapter 56 NSIndexPath Class Reference 737

Overview 737
Adopted Protocols 738
Tasks 738
Class Methods 739
Instance Methods 740

Chapter 57 NSIndexSet Class Reference 745

Overview 745
Adopted Protocols 746
Tasks 746
Class Methods 747
Instance Methods 749

Chapter 58 NSIndexSpecifier Class Reference 759

Overview 759
Tasks 759
Instance Methods 760

Chapter 59 NSInputStream Class Reference 763

Overview 763
Tasks 764
Class Methods 764
Instance Methods 765

Chapter 60 NSInvocation Class Reference 769

Overview 769
Adopted Protocols 770
Tasks 770

12
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Class Methods 771
Instance Methods 771
Constants 778

Chapter 61 NSInvocationOperation Class Reference 781

Overview 781
Tasks 781
Instance Methods 782
Constants 783

Chapter 62 NSKeyedArchiver Class Reference 785

Overview 785
Tasks 786
Class Methods 787
Instance Methods 789
Delegate Methods 797
Constants 799

Chapter 63 NSKeyedUnarchiver Class Reference 801

Overview 801
Tasks 802
Class Methods 803
Instance Methods 806
Delegate Methods 812
Constants 815

Chapter 64 NSLocale Class Reference 817

Overview 817
Tasks 818
Class Methods 819
Instance Methods 825
Constants 827
Notifications 831

Chapter 65 NSLock Class Reference 833

Overview 833
Adopted Protocols 834
Tasks 834
Instance Methods 834

13
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 66 NSLogicalTest Class Reference 837

Overview 837
Tasks 837
Instance Methods 838

Chapter 67 NSMachBootstrapServer Class Reference 841

Overview 841
Tasks 841
Class Methods 842
Instance Methods 842

Chapter 68 NSMachPort Class Reference 845

Overview 845
Tasks 845
Class Methods 846
Instance Methods 847
Delegate Methods 849
Constants 850

Chapter 69 NSMapTable Class Reference 851

Overview 851
Tasks 852
Class Methods 853
Instance Methods 855
Constants 860

Chapter 70 NSMessagePort Class Reference 863

Overview 863

Chapter 71 NSMessagePortNameServer Class Reference 865

Overview 865
Tasks 865
Class Methods 866
Instance Methods 866

Chapter 72 NSMetadataItem Class Reference 869

Overview 869
Adopted Protocols 869
Tasks 869

14
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 870

Chapter 73 NSMetadataQuery Class Reference 873

Overview 873
Tasks 874
Instance Methods 875
Delegate Methods 887
Constants 888
Notifications 889

Chapter 74 NSMetadataQueryAttributeValueTuple Class Reference 891

Overview 891
Tasks 891
Instance Methods 892

Chapter 75 NSMetadataQueryResultGroup Class Reference 893

Overview 893
Tasks 893
Instance Methods 894

Chapter 76 NSMethodSignature Class Reference 897

Overview 897
Tasks 898
Class Methods 898
Instance Methods 899

Chapter 77 NSMiddleSpecifier Class Reference 903

Overview 903

Chapter 78 NSMoveCommand Class Reference 905

Overview 905
Tasks 905
Instance Methods 906

Chapter 79 NSMutableArray Class Reference 907

Overview 907
Tasks 908
Class Methods 910
Instance Methods 911

15
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 80 NSMutableAttributedString Class Reference 929

Overview 929
Tasks 930
Instance Methods 931
Constants 938

Chapter 81 NSMutableCharacterSet Class Reference 939

Overview 939
Tasks 939
Instance Methods 940

Chapter 82 NSMutableData Class Reference 945

Overview 945
Tasks 946
Class Methods 947
Instance Methods 948

Chapter 83 NSMutableDictionary Class Reference 955

Class at a Glance 955
Overview 956
Tasks 956
Class Methods 957
Instance Methods 958

Chapter 84 NSMutableIndexSet Class Reference 963

Overview 963
Tasks 963
Instance Methods 964

Chapter 85 NSMutableSet Class Reference 969

Overview 969
Tasks 970
Class Methods 971
Instance Methods 971

Chapter 86 NSMutableString Class Reference 977

Overview 977
Tasks 978
Class Methods 978

16
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 979

Chapter 87 NSMutableURLRequest Class Reference 985

Overview 985
Tasks 985
Instance Methods 986

Chapter 88 NSNameSpecifier Class Reference 993

Overview 993
Tasks 994
Instance Methods 994

Chapter 89 NSNetService Class Reference 997

Overview 997
Tasks 998
Class Methods 1000
Instance Methods 1001
Delegate Methods 1012
Constants 1015

Chapter 90 NSNetServiceBrowser Class Reference 1019

Overview 1019
Tasks 1020
Instance Methods 1021
Delegate Methods 1026

Chapter 91 NSNotification Class Reference 1031

Overview 1031
Adopted Protocols 1032
Tasks 1032
Class Methods 1033
Instance Methods 1034

Chapter 92 NSNotificationCenter Class Reference 1037

Class at a Glance 1037
Overview 1039
Tasks 1039
Class Methods 1040
Instance Methods 1041

17
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 93 NSNotificationQueue Class Reference 1045

Overview 1045
Tasks 1045
Class Methods 1046
Instance Methods 1046
Constants 1048

Chapter 94 NSNull Class Reference 1051

Overview 1051
Adopted Protocols 1051
Tasks 1052
Class Methods 1052

Chapter 95 NSNumber Class Reference 1053

Overview 1053
Tasks 1054
Class Methods 1057
Instance Methods 1064

Chapter 96 NSNumberFormatter Class Reference 1079

Overview 1079
Tasks 1080
Class Methods 1087
Instance Methods 1088
Constants 1141

Chapter 97 NSObject Class Reference 1145

Overview 1145
Adopted Protocols 1147
Tasks 1147
Class Methods 1152
Instance Methods 1168

Chapter 98 NSOperation Class Reference 1197

Overview 1197
Tasks 1200
Instance Methods 1201
Constants 1208

18
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 99 NSOperationQueue Class Reference 1211

Overview 1211
Tasks 1212
Instance Methods 1213
Constants 1216

Chapter 100 NSOutputStream Class Reference 1217

Overview 1217
Tasks 1218
Class Methods 1218
Instance Methods 1220

Chapter 101 NSPipe Class Reference 1225

Overview 1225
Tasks 1225
Class Methods 1226
Instance Methods 1226

Chapter 102 NSPointerArray Class Reference 1229

Overview 1229
Tasks 1229
Class Methods 1230
Instance Methods 1232

Chapter 103 NSPointerFunctions Class Reference 1239

Overview 1239
Tasks 1239
Properties 1240
Class Methods 1243
Instance Methods 1243
Constants 1244

Chapter 104 NSPort Class Reference 1247

Overview 1247
Adopted Protocols 1248
Tasks 1248
Class Methods 1249
Instance Methods 1250
Delegate Methods 1255
Notifications 1256

19
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 105 NSPortCoder Class Reference 1257

Overview 1257
Tasks 1257
Class Methods 1258
Instance Methods 1259

Chapter 106 NSPortMessage Class Reference 1263

Overview 1263
Tasks 1264
Instance Methods 1264

Chapter 107 NSPortNameServer Class Reference 1269

Overview 1269
Tasks 1269
Class Methods 1270
Instance Methods 1270

Chapter 108 NSPositionalSpecifier Class Reference 1273

Overview 1273
Tasks 1273
Instance Methods 1274
Constants 1277

Chapter 109 NSPredicate Class Reference 1279

Overview 1279
Tasks 1280
Class Methods 1281
Instance Methods 1283

Chapter 110 NSProcessInfo Class Reference 1285

Overview 1285
Tasks 1286
Class Methods 1287
Instance Methods 1287
Constants 1292

Chapter 111 NSPropertyListSerialization Class Reference 1295

Overview 1295
Tasks 1295

20
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Class Methods 1296
Constants 1298

Chapter 112 NSPropertySpecifier Class Reference 1301

Overview 1301

Chapter 113 NSProtocolChecker Class Reference 1303

Overview 1303
Tasks 1303
Class Methods 1304
Instance Methods 1304

Chapter 114 NSProxy Class Reference 1307

Overview 1307
Adopted Protocols 1307
Tasks 1308
Class Methods 1309
Instance Methods 1310

Chapter 115 NSQuitCommand Class Reference 1313

Overview 1313
Tasks 1313
Instance Methods 1313

Chapter 116 NSRandomSpecifier Class Reference 1315

Overview 1315

Chapter 117 NSRangeSpecifier Class Reference 1317

Overview 1317
Tasks 1317
Instance Methods 1318

Chapter 118 NSRecursiveLock Class Reference 1321

Overview 1321
Adopted Protocols 1321
Tasks 1322
Instance Methods 1322

21
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 119 NSRelativeSpecifier Class Reference 1325

Overview 1325
Tasks 1325
Instance Methods 1326
Constants 1327

Chapter 120 NSRunLoop Class Reference 1329

Overview 1329
Tasks 1330
Class Methods 1331
Instance Methods 1332
Constants 1340

Chapter 121 NSScanner Class Reference 1343

Overview 1343
Adopted Protocols 1344
Tasks 1344
Class Methods 1345
Instance Methods 1346

Chapter 122 NSScriptClassDescription Class Reference 1361

Overview 1361
Tasks 1362
Class Methods 1363
Instance Methods 1364

Chapter 123 NSScriptCoercionHandler Class Reference 1375

Overview 1375
Tasks 1375
Class Methods 1376
Instance Methods 1376

Chapter 124 NSScriptCommand Class Reference 1379

Overview 1379
Adopted Protocols 1380
Tasks 1380
Class Methods 1382
Instance Methods 1383
Constants 1393

22
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 125 NSScriptCommandDescription Class Reference 1397

Overview 1397
Adopted Protocols 1397
Tasks 1398
Instance Methods 1399

Chapter 126 NSScriptExecutionContext Class Reference 1405

Overview 1405
Tasks 1405
Class Methods 1406
Instance Methods 1406

Chapter 127 NSScriptObjectSpecifier Class Reference 1411

Overview 1411
Adopted Protocols 1412
Tasks 1412
Class Methods 1414
Instance Methods 1414
Constants 1424

Chapter 128 NSScriptSuiteRegistry Class Reference 1427

Overview 1427
Tasks 1428
Class Methods 1429
Instance Methods 1430

Chapter 129 NSScriptWhoseTest Class Reference 1437

Overview 1437
Adopted Protocols 1437
Tasks 1437
Instance Methods 1438

Chapter 130 NSSerializer Class Reference 1439

Overview 1439
Tasks 1439
Class Methods 1440

Chapter 131 NSSet Class Reference 1441

Overview 1441

23
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Adopted Protocols 1442
Tasks 1443
Class Methods 1445
Instance Methods 1449

Chapter 132 NSSetCommand Class Reference 1463

Overview 1463
Tasks 1463
Instance Methods 1464

Chapter 133 NSSocketPort Class Reference 1465

Overview 1465
Tasks 1465
Instance Methods 1466

Chapter 134 NSSocketPortNameServer Class Reference 1473

Overview 1473
Tasks 1473
Class Methods 1474
Instance Methods 1475

Chapter 135 NSSortDescriptor Class Reference 1479

Overview 1479
Adopted Protocols 1480
Tasks 1480
Instance Methods 1481

Chapter 136 NSSpecifierTest Class Reference 1485

Overview 1485
Tasks 1486
Instance Methods 1486
Constants 1486

Chapter 137 NSSpellServer Class Reference 1489

Overview 1489
Tasks 1489
Instance Methods 1490
Delegate Methods 1492
Constants 1496

24
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 138 NSStream Class Reference 1497

Overview 1497
Tasks 1498
Class Methods 1499
Instance Methods 1500
Delegate Methods 1504
Constants 1505

Chapter 139 NSString Class Reference 1513

Overview 1513
Adopted Protocols 1516
Tasks 1516
Class Methods 1526
Instance Methods 1538
Constants 1615

Chapter 140 NSTask Class Reference 1623

Overview 1623
Tasks 1623
Class Methods 1625
Instance Methods 1626
Notifications 1636

Chapter 141 NSThread Class Reference 1637

Overview 1637
Tasks 1638
Class Methods 1640
Instance Methods 1645
Notifications 1651

Chapter 142 NSTimer Class Reference 1653

Overview 1653
Tasks 1654
Class Methods 1655
Instance Methods 1658

Chapter 143 NSTimeZone Class Reference 1663

Overview 1663
Adopted Protocols 1664
Tasks 1664

25
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Class Methods 1666
Instance Methods 1671
Constants 1678
Notifications 1679

Chapter 144 NSUnarchiver Class Reference 1681

Overview 1681
Tasks 1681
Class Methods 1682
Instance Methods 1685

Chapter 145 NSUndoManager Class Reference 1689

Overview 1689
Tasks 1690
Instance Methods 1692
Constants 1707
Notifications 1707

Chapter 146 NSUniqueIDSpecifier Class Reference 1711

Overview 1711
Tasks 1712
Instance Methods 1712

Chapter 147 NSURL Class Reference 1715

Overview 1715
Adopted Protocols 1716
Tasks 1716
Class Methods 1718
Instance Methods 1721
Constants 1733

Chapter 148 NSURLAuthenticationChallenge Class Reference 1737

Overview 1737
Tasks 1737
Instance Methods 1738

Chapter 149 NSURLCache Class Reference 1743

Overview 1743
Tasks 1743
Class Methods 1744

26
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 1746

Chapter 150 NSURLConnection Class Reference 1753

Overview 1753
Tasks 1754
Class Methods 1756
Instance Methods 1758
Delegate Methods 1761

Chapter 151 NSURLCredential Class Reference 1767

Overview 1767
Adopted Protocols 1767
Tasks 1767
Class Methods 1768
Instance Methods 1769
Constants 1771

Chapter 152 NSURLCredentialStorage Class Reference 1773

Overview 1773
Tasks 1773
Class Methods 1774
Instance Methods 1774
Notifications 1777

Chapter 153 NSURLDownload Class Reference 1779

Overview 1779
Tasks 1780
Class Methods 1782
Instance Methods 1782
Delegate Methods 1786

Chapter 154 NSURLHandle Class Reference 1793

Overview 1793
Tasks 1793
Class Methods 1795
Instance Methods 1797
Constants 1805

Chapter 155 NSURLProtectionSpace Class Reference 1807

Overview 1807

27
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Adopted Protocols 1807
Tasks 1807
Instance Methods 1808
Constants 1812

Chapter 156 NSURLProtocol Class Reference 1815

Overview 1815
Tasks 1816
Class Methods 1817
Instance Methods 1821

Chapter 157 NSURLRequest Class Reference 1825

Overview 1825
Adopted Protocols 1825
Tasks 1826
Class Methods 1827
Instance Methods 1828
Constants 1833

Chapter 158 NSURLResponse Class Reference 1835

Overview 1835
Adopted Protocols 1835
Tasks 1836
Instance Methods 1836
Constants 1839

Chapter 159 NSUserDefaults Class Reference 1841

Overview 1841
Tasks 1842
Class Methods 1844
Instance Methods 1845
Constants 1862
Notifications 1870

Chapter 160 NSValue Class Reference 1871

Overview 1871
Adopted Protocols 1871
Tasks 1872
Class Methods 1873
Instance Methods 1877

28
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 161 NSValueTransformer Class Reference 1883

Overview 1883
Tasks 1884
Class Methods 1884
Instance Methods 1887
Constants 1888

Chapter 162 NSWhoseSpecifier Class Reference 1891

Overview 1891
Tasks 1892
Instance Methods 1892
Constants 1896

Chapter 163 NSXMLDocument Class Reference 1899

Overview 1899
Tasks 1901
Class Methods 1903
Instance Methods 1904
Constants 1919

Chapter 164 NSXMLDTD Class Reference 1923

Overview 1923
Tasks 1924
Class Methods 1925
Instance Methods 1925

Chapter 165 NSXMLDTDNode Class Reference 1935

Overview 1935
Tasks 1935
Instance Methods 1936
Constants 1940

Chapter 166 NSXMLElement Class Reference 1945

Overview 1945
Tasks 1946
Instance Methods 1948

Chapter 167 NSXMLNode Class Reference 1963

Overview 1963

29
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Adopted Protocols 1964
Tasks 1965
Class Methods 1968
Instance Methods 1975
Constants 1992

Chapter 168 NSXMLParser Class Reference 1997

Overview 1997
Tasks 1997
Instance Methods 2000
Delegate Methods 2007
Constants 2017

Part II Protocols 2031

Chapter 169 NSCoding Protocol Reference 2033

Overview 2033
Tasks 2033
Instance Methods 2034

Chapter 170 NSComparisonMethods Protocol Reference 2035

Overview 2035
Tasks 2035
Instance Methods 2036

Chapter 171 NSCopying Protocol Reference 2041

Overview 2041
Tasks 2042
Instance Methods 2042

Chapter 172 NSDecimalNumberBehaviors Protocol Reference 2043

Overview 2043
Tasks 2043
Instance Methods 2044
Constants 2045

Chapter 173 NSErrorRecoveryAttempting Protocol Reference 2049

Overview 2049
Tasks 2049

30
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 2049

Chapter 174 NSFastEnumeration Protocol Reference 2053

Overview 2053
Tasks 2053
Instance Methods 2053
Constants 2054

Chapter 175 NSKeyValueCoding Protocol Reference 2057

Overview 2057
Tasks 2057
Class Methods 2059
Instance Methods 2060
Constants 2072

Chapter 176 NSKeyValueObserving Protocol Reference 2075

Overview 2075
Tasks 2075
Class Methods 2076
Instance Methods 2079
Constants 2085

Chapter 177 NSLocking Protocol Reference 2091

Overview 2091
Tasks 2091
Instance Methods 2091

Chapter 178 NSMutableCopying Protocol Reference 2093

Overview 2093
Tasks 2093
Instance Methods 2094

Chapter 179 NSObjCTypeSerializationCallBack Protocol Reference 2095

Overview 2095
Tasks 2095
Instance Methods 2096

Chapter 180 NSObject Protocol Reference 2097

Overview 2097

31
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 2097
Instance Methods 2099

Chapter 181 NSScriptingComparisonMethods Protocol Reference 2113

Overview 2113
Tasks 2113
Instance Methods 2114

Chapter 182 NSScriptKeyValueCoding Protocol Reference 2117

Overview 2117
Tasks 2117
Instance Methods 2118
Constants 2121

Chapter 183 NSScriptObjectSpecifiers Protocol Reference 2123

Overview 2123
Tasks 2123
Instance Methods 2123

Chapter 184 NSURLAuthenticationChallengeSender Protocol Reference 2125

Overview 2125
Tasks 2125
Instance Methods 2126

Chapter 185 NSURLClient Protocol Reference (Not Recommended) 2129

Overview 2129
Tasks 2129
Instance Methods 2129

Chapter 186 NSURLHandleClient Protocol Reference 2133

Overview 2133
Tasks 2133
Instance Methods 2134

Chapter 187 NSURLProtocolClient Protocol Reference 2137

Overview 2137
Tasks 2137
Instance Methods 2138

32
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Part III Functions 2143

Chapter 188 Foundation Functions Reference 2145

Overview 2145
Functions by Task 2145
Functions 2157

Part IV Data Types 2265

Chapter 189 Foundation Data Types Reference 2267

Overview 2267
Data Types 2267

Part V Constants 2285

Chapter 190 Foundation Constants Reference 2287

Overview 2287
Constants 2287

Document Revision History 2315

Index 2317

33
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

34
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Introduction The Foundation Framework 37

Figure I-1 Cocoa Objective-C Hierarchy for Foundation 40

Chapter 56 NSIndexPath Class Reference 737

Figure 56-1 Index path 1.4.3.2 737

Chapter 92 NSNotificationCenter Class Reference 1037

Table 92-1 Types of dispatch table entries 1038
Table 92-2 Example notification dispatch table 1038

35
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

36
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

Framework /System/Library/Frameworks/Foundation.framework

Header file directories /System/Library/Frameworks/Foundation.framework/Headers

Declared in FoundationErrors.h
IKPictureTaker.h
NSAffineTransform.h
NSAppleEventDescriptor.h
NSAppleEventManager.h
NSAppleScript.h
NSArchiver.h
NSArray.h
NSAttributedString.h
NSAutoreleasePool.h
NSBundle.h
NSByteOrder.h
NSCalendar.h
NSCalendarDate.h
NSCharacterSet.h
NSClassDescription.h
NSCoder.h
NSComparisonPredicate.h
NSCompoundPredicate.h
NSConnection.h
NSData.h
NSDate.h
NSDateFormatter.h
NSDecimal.h
NSDecimalNumber.h
NSDictionary.h
NSDistantObject.h
NSDistributedLock.h
NSDistributedNotificationCenter.h
NSEnumerator.h
NSError.h
NSException.h
NSExpression.h
NSFileHandle.h
NSFileManager.h
NSFormatter.h
NSGarbageCollector.h
NSGeometry.h
NSHFSFileTypes.h
NSHTTPCookie.h
NSHTTPCookieStorage.h
NSHashTable.h
NSHost.h

37
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

NSIndexPath.h
NSIndexSet.h
NSInvocation.h
NSJavaSetup.h
NSKeyValueCoding.h
NSKeyValueObserving.h
NSKeyedArchiver.h
NSLocale.h
NSLock.h
NSMapTable.h
NSMetadata.h
NSMethodSignature.h
NSNetServices.h
NSNotification.h
NSNotificationQueue.h
NSNull.h
NSNumberFormatter.h
NSObjCRuntime.h
NSObject.h
NSObjectScripting.h
NSOperation.h
NSPathUtilities.h
NSPointerArray.h
NSPointerFunctions.h
NSPort.h
NSPortCoder.h
NSPortMessage.h
NSPortNameServer.h
NSPredicate.h
NSProcessInfo.h
NSPropertyList.h
NSProtocolChecker.h
NSProxy.h
NSRange.h
NSRunLoop.h
NSScanner.h
NSScriptClassDescription.h
NSScriptCoercionHandler.h
NSScriptCommand.h
NSScriptCommandDescription.h
NSScriptExecutionContext.h
NSScriptKeyValueCoding.h
NSScriptObjectSpecifiers.h
NSScriptStandardSuiteCommands.h
NSScriptSuiteRegistry.h
NSScriptWhoseTests.h
NSSerialization.h
NSSet.h
NSSortDescriptor.h
NSSpellServer.h
NSStream.h
NSString.h
NSTask.h

38
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

NSThread.h
NSTimeZone.h
NSTimer.h
NSURL.h
NSURLAuthenticationChallenge.h
NSURLCache.h
NSURLConnection.h
NSURLCredential.h
NSURLCredentialStorage.h
NSURLDownload.h
NSURLError.h
NSURLHandle.h
NSURLProtectionSpace.h
NSURLProtocol.h
NSURLRequest.h
NSURLResponse.h
NSUndoManager.h
NSUserDefaults.h
NSValue.h
NSValueTransformer.h
NSXMLDTD.h
NSXMLDTDNode.h
NSXMLDocument.h
NSXMLElement.h
NSXMLNode.h
NSXMLNodeOptions.h
NSXMLParser.h
NSZone.h
QTKitDefines.h

Introduction

The Foundation framework defines a base layer of Objective-C classes. In addition to providing a set of useful
primitive object classes, it introduces several paradigms that define functionality not covered by the Objective-C
language. The Foundation framework is designed with these goals in mind:

 ■ Provide a small set of basic utility classes.

 ■ Make software development easier by introducing consistent conventions for things such as deallocation.

 ■ Support Unicode strings, object persistence, and object distribution.

 ■ Provide a level of OS independence, to enhance portability.

The Foundation framework includes the root object class, classes representing basic data types such as strings
and byte arrays, collection classes for storing other objects, classes representing system information such as
dates, and classes representing communication ports. See Figure I-1 (page 40) for a list of those classes that
make up the Foundation framework.

Introduction 39
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

The Foundation framework introduces several paradigms to avoid confusion in common situations, and to
introduce a level of consistency across class hierarchies. This consistency is done with some standard policies,
such as that for object ownership (that is, who is responsible for disposing of objects), and with abstract
classes like NSEnumerator. These new paradigms reduce the number of special and exceptional cases in an
API and allow you to code more efficiently by reusing the same mechanisms with various kinds of objects.

Foundation Framework Classes

The Foundation class hierarchy is rooted in the Foundation framework’s NSObject class (see Figure I-1 (page
40)). The remainder of the Foundation framework consists of several related groups of classes as well as a
few individual classes. Many of the groups form what are called class clusters—abstract classes that work as
umbrella interfaces to a versatile set of private subclasses. NSString and NSMutableString, for example,
act as brokers for instances of various private subclasses optimized for different kinds of storage needs.
Depending on the method you use to create a string, an instance of the appropriate optimized class will be
returned to you.

Note: In the following class-hierarchy diagrams, blue-shaded areas include classes that are available in Mac
OS X and iPhone OS; gray-shaded areas include classes that are available in Mac OS X only.

Figure I-1 Cocoa Objective-C Hierarchy for Foundation

Value Objects

NSValue NSNumber

NSDate
NSDateComponents

NSCalendarDate

NSDecimalNumberHandler
NSLocale

NSDecimalNumber
NSTimeZone

NSData NSMutableData

NSNull

Collections

NSEnumerator NSDirectoryEnumerator

NSSet NSMutableSet NSCountedSet

NSDictionary NSMutableDictionary
NSArray NSMutableArray

Strings

NSFormatter NSDateFormatter
NSNumberFormatter

NSMutableStringNSString

NSMutableAttributedStringNSAttributedString

NSScanner

NSObject
NSValueTransformer

NSAffineTransform
NSCalendar

NSSortDescriptor

NSIndexSet
NSIndexPath

NSPointerArray
NSPointerFunctions

NSMutableIndexSet

XML
NSXMLDocument
NSXMLDTD
NSXMLDTDNode
NSXMLElement

NSExpression NSComparisonPredicate
NSCompoundPredicate

Predicates

NSMapTable

NSPredicate

NSHashTable

NSMutableCharacterSetNSCharacterSet

NSXMLNode
NSXMLParser

40 Introduction
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

Operating-System Services

Interprocess Communication

NSHost
NSNetService
NSNetServiceBrowser
NSProcessInfo
NSRunLoop

File System
NSBundle
NSFileHandle
NSFileManager

NSPort
NSMachPort
NSMessagePort
NSSocketPort

NSPipe

NSTimer
NSUserDefaults

URL
NSCachedURLResponse
NSHTTPCookie

Locking/Threading
NSConditionLock
NSDistributedLock
NSLock
NSOperation
NSOperationQueue
NSRecursiveLock
NSTask
NSThread

NSHTTPCookieStorage
NSURL
NSURLAuthorizationChallenge
NSURLCache
NSURLConnection

NSURLProtocol
NSURLRequest
NSURLResponse

NSURLCredential
NSURLCredentialStorage
NSURLDownload
NSURLProtectionSpace

NSObject

NSError

NSMutableURLRequest
NSHTTPURLResponse

NSInvocationOperation

NSStream
NSInputStream
NSOutputStream

Objective-C Foundation Continued

NSSpellServer

NSMetadataItem
NSMetadataQuery
NSMetadataQueryAttributeValueTuple
NSMetadataQueryResultGroup

NSPortNameServer NSMachBootstrapServer
NSMessagePortNameServer
NSSocketPortNameServer

NSPortMessage

Introduction 41
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

NSProxy

Notifications
NSNotification
NSNotificationCenter
NSNotificationQueue

NSDistributedNotificationCenter

Archiving and Serialization
NSCoder
NSPropertyListSerialization

NSArchiver
NSKeyedArchiver
NSKeyedUnarchiver

NSUnarchiver

Objective-C Language Services

NSMethodSignature
NSInvocation

NSException
NSClassDescription
NSAutoreleasePool
NSAssertionHandler

Scripting
NSScriptClassDescription

NSAppleScript

NSScriptObjectSpecifier

NSScriptCommandDescription

NSPositionalSpecifier

NSScriptCoercionHandler

NSScriptCommand

NSCloneCommand
NSCloseCommand
NSCountCommand
NSCreateCommand
NSDeleteCommand
NSExistsCommand
NSGetCommand
NSMoveCommand
NSQuitCommand
NSSetCommand

NSScriptExecutionContext

NSScriptSuiteRegistry

NSIndexSpecifier
NSMiddleSpecifier
NSNameSpecifier
NSPropertySpecifier
NSRandomSpecifier
NSRangeSpecifier
NSRelativeSpecifier
NSUniqueIDSpecifier
NSWhoseSpecifier

NSScriptWhoseTest NSLogicalTest
NSSpecifierTest

NSAppleEventManager

NSAppleEventDescriptor

NSObject

Objective-C Foundation Continued

NSPortCoder

NSUndoManager

NSGarbageCollector

Distributed Objects

NSDistantObjectRequest
NSConnection

NSDistantObject
NSProtocolChecker

Many of these classes have closely related functionality:

 ■ Data storage. NSData and NSString provide object-oriented storage for arrays of bytes. NSValue and
NSNumber provide object-oriented storage for arrays of simple C data values. NSArray, NSDictionary,
and NSSet provide storage for Objective-C objects of any class.

 ■ Text and strings. NSCharacterSet represents various groupings of characters that are used by the
NSString and NSScanner classes. The NSString classes represent text strings and provide methods
for searching, combining, and comparing strings. An NSScanner object is used to scan numbers and
words from an NSString object.

 ■ Dates and times. The NSDate, NSTimeZone, and NSCalendar classes store times and dates and represent
calendrical information. They offer methods for calculating date and time differences. Together with
NSLocale, they provide methods for displaying dates and times in many formats, and for adjusting
times and dates based on location in the world.

42 Introduction
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

 ■ Application coordination and timing. NSNotification, NSNotificationCenter, and
NSNotificationQueue provide systems that an object can use to notify all interested observers of
changes that occur. You can use an NSTimer object to send a message to another object at specific
intervals.

 ■ Object creation and disposal. NSAutoreleasePool is used to implement the delayed-release feature
of the Foundation framework.

 ■ Object distribution and persistence. The data that an object contains can be represented in an
architecture-independent way using NSPropertyListSerialization. The NSCoder and its subclasses
take this process a step further by allowing class information to be stored along with the data. The
resulting representations are used for archiving and for object distribution.

 ■ Operating-system services. Several classes are designed to insulate you from the idiosyncrasies of various
operating systems. NSFileManager provides a consistent interface for file operations (creating, renaming,
deleting, and so on). NSThread and NSProcessInfo let you create multithreaded applications and
query the environment in which an application runs.

 ■ URL loading system. A set of classes and protocols provide access to common Internet protocols.

Introduction 43
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

44 Introduction
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

45
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART I

Classes

46
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSAffineTransform.h

Companion guide Cocoa Drawing Guide

Related sample code DockTile
SpeedometerView
Transformed Image
WebKitPluginStarter
WebKitPluginWithJavaScript

Overview

The NSAffineTransform class provides methods for creating, concatenating, and applying affine
transformations.

A transformation specifies how points in one coordinate system are transformed to points in another coordinate
system. An affine transformation is a special type of transformation that preserves parallel lines in a path but
does not necessarily preserve lengths or angles. Scaling, rotation, and translation are the most commonly
used manipulations supported by affine transforms, but shearing is also possible.

Note: In Mac OS X v10.3 and earlier the NSAffineTransform class was declared and implemented entirely
in the Application Kit framework. As of Mac OS X v10.4 the NSAffineTransform class has been split across
the Foundation Kit and Application Kit frameworks.

Methods for applying affine transformations to the current graphics context and a method for applying an
affine transformation to an NSBezierPath object are described in NSAffineTransform Additions in the
Application Kit.

Overview 47
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

Tasks

Creating an NSAffineTransform Object

+ transform (page 49)
Creates and returns a new NSAffineTransform object initialized to the identity matrix.

– initWithTransform: (page 50)
Initializes the receiver’s matrix using another transform object and returns the receiver.

Accumulating Transformations

– rotateByDegrees: (page 51)
Applies a rotation factor (measured in degrees) to the receiver’s transformation matrix.

– rotateByRadians: (page 52)
Applies a rotation factor (measured in radians) to the receiver’s transformation matrix.

– scaleBy: (page 53)
Applies the specified scaling factor along both x and y axes to the receiver’s transformation matrix.

– scaleXBy:yBy: (page 53)
Applies scaling factors to each axis of the receiver’s transformation matrix.

– translateXBy:yBy: (page 56)
Applies the specified translation factors to the receiver’s transformation matrix.

– appendTransform: (page 49)
Appends the specified matrix to the receiver’s matrix.

– prependTransform: (page 51)
Prepends the specified matrix to the receiver’s matrix.

– invert (page 50)
Replaces the receiver’s matrix with its inverse matrix.

Transforming Data and Objects

– transformPoint: (page 54)
Applies the receiver’s transform to the specified NSPoint data type and returns the results.

48 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

– transformSize: (page 55)
Applies the receiver’s transform to the specified NSSize data type and returns the results.

Accessing the Transformation Structure

– transformStruct (page 55)
Returns the matrix coefficients stored in the receiver’s matrix.

– setTransformStruct: (page 54)
Replaces the receiver’s transformation matrix with the specified values.

Class Methods

transform
Creates and returns a new NSAffineTransform object initialized to the identity matrix.

+ (NSAffineTransform *)transform

Return Value
A new identity transform object. This matrix transforms any point to the same point.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithTransform: (page 50)

Related Sample Code
DockTile
Sketch-112
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

Instance Methods

appendTransform:
Appends the specified matrix to the receiver’s matrix.

- (void)appendTransform:(NSAffineTransform *)aTransform

Class Methods 49
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Parameters
aTransform

The matrix to append to the receiver.

Discussion
This method multiplies the receiver's matrix by the matrix in aTransform and replaces the receiver's matrix
with the results. This type of operation is the same as applying the transformations in the receiver followed
by the transformations in aTransform.

Availability
Available in Mac OS X v10.0 and later.

See Also
– prependTransform: (page 51)

Declared In
NSAffineTransform.h

initWithTransform:
Initializes the receiver’s matrix using another transform object and returns the receiver.

- (id)initWithTransform:(NSAffineTransform *)aTransform

Parameters
aTransform

The transform object whose matrix values should be copied to this object.

Return Value
A new transform object initialized with the matrix values of aTransform.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ transform (page 49)

Related Sample Code
DockTile
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

invert
Replaces the receiver’s matrix with its inverse matrix.

- (void)invert

50 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Discussion
Inverse matrices are useful for undoing the effects of a matrix. If a previous point (x,y) was transformed to
(x’,y’), inverting the matrix and applying it to point (x’,y’) yields the point (x,y).

You can also use inverse matrices in conjunction with the concat method to remove the effects of
concatenating the matrix to the current transformation matrix of the current graphic context.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

prependTransform:
Prepends the specified matrix to the receiver’s matrix.

- (void)prependTransform:(NSAffineTransform *)aTransform

Parameters
aTransform

The matrix to prepend to the receiver.

Discussion
This method multiplies the matrix in aTransform by the receiver’s matrix and replaces the receiver’s matrix
with the result. This type of operation is the same as applying the transformations in aTransform followed
by the transformations in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendTransform: (page 49)

Declared In
NSAffineTransform.h

rotateByDegrees:
Applies a rotation factor (measured in degrees) to the receiver’s transformation matrix.

- (void)rotateByDegrees:(CGFloat)angle

Parameters
angle

The rotation angle, measured in degrees.

Instance Methods 51
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Discussion
After invoking this method, applying the receiver’s matrix turns the axes counterclockwise about the current
origin by angle degrees, in addition to performing all previous transformations.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rotateByRadians: (page 52)
– scaleBy: (page 53)
– scaleXBy:yBy: (page 53)
– translateXBy:yBy: (page 56)

Related Sample Code
DockTile
PDF Annotation Editor
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

rotateByRadians:
Applies a rotation factor (measured in radians) to the receiver’s transformation matrix.

- (void)rotateByRadians:(CGFloat)angle

Parameters
angle

The rotation angle, measured in radians.

Discussion
After invoking this method, applying the receiver’s matrix turns the axes counterclockwise about the current
origin by angle radians, in addition to performing all previous transformations.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rotateByDegrees: (page 51)
– scaleBy: (page 53)
– scaleXBy:yBy: (page 53)
– translateXBy:yBy: (page 56)

Related Sample Code
Polygons
TextLayoutDemo

Declared In
NSAffineTransform.h

52 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

scaleBy:
Applies the specified scaling factor along both x and y axes to the receiver’s transformation matrix.

- (void)scaleBy:(CGFloat)scale

Parameters
scale

The scaling factor to apply to both axes. Specifying a negative value has the effect of inverting the
direction of the axes in addition to scaling them. A scaling factor of 1.0 scales the content to exactly
the same size.

Discussion
After invoking this method, applying the receiver’s matrix modifies the unit lengths along the current x and
y axes by a factor of scale, in addition to performing all previous transformations.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rotateByDegrees: (page 51)
– rotateByRadians: (page 52)
– scaleXBy:yBy: (page 53)
– translateXBy:yBy: (page 56)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CIAnnotation
Polygons
Transformed Image

Declared In
NSAffineTransform.h

scaleXBy:yBy:
Applies scaling factors to each axis of the receiver’s transformation matrix.

- (void)scaleXBy:(CGFloat)scaleX yBy:(CGFloat)scaleY

Parameters
scaleX

The scaling factor to apply to the x axis.

scaleY
The scaling factor to apply to the y axis.

Discussion
After invoking this method, applying the receiver’s matrix modifies the unit length on the x axis by a factor
of scaleX and the y axis by a factor of scaleY, in addition to performing all previous transformations. A
value of 1.0 for either axis scales the content on that axis to the same size.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 53
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

See Also
– rotateByDegrees: (page 51)
– rotateByRadians: (page 52)
– scaleBy: (page 53)
– translateXBy:yBy: (page 56)

Related Sample Code
Sketch-112

Declared In
NSAffineTransform.h

setTransformStruct:
Replaces the receiver’s transformation matrix with the specified values.

- (void)setTransformStruct:(NSAffineTransformStruct)aTransformStruct

Parameters
aTransformStruct

The structure containing the six transform values you want the receiver to use.

Discussion
The matrix is of the form shown in “Manipulating Transform Values”, and the six-element structure defined
by the NSAffineTransformStruct structure is of the form:

{m11, m12, m21, m22, tX, tY}

The NSAffineTransformStruct structure is an alternate representation of a transformation matrix that
can be used to specify matrix values directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithTransform: (page 50)
– transformStruct (page 55)

Related Sample Code
Transformed Image

Declared In
NSAffineTransform.h

transformPoint:
Applies the receiver’s transform to the specified NSPoint data type and returns the results.

- (NSPoint)transformPoint:(NSPoint)aPoint

54 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Parameters
aPoint

The point in the current coordinate system to which you want to apply the matrix.

Return Value
The resulting point after applying the receiver's transformations.

Availability
Available in Mac OS X v10.0 and later.

See Also
– transformSize: (page 55)

Declared In
NSAffineTransform.h

transformSize:
Applies the receiver’s transform to the specified NSSize data type and returns the results.

- (NSSize)transformSize:(NSSize)aSize

Parameters
aSize

The size data to which you want to apply the matrix.

Return Value
The resulting size after applying the receiver's transformations.

Discussion
This method applies the current rotation and scaling factors to aSize; it does not apply translation factors.
You can think of this method as transforming a vector whose origin is (0, 0) and whose end point is specified
by the value in aSize. After the rotation and scaling factors are applied, this method effectively returns the
end point of the new vector.

This method is useful for transforming delta or distance values when you need to take scaling and rotation
factors into account.

Availability
Available in Mac OS X v10.0 and later.

See Also
– transformPoint: (page 54)

Declared In
NSAffineTransform.h

transformStruct
Returns the matrix coefficients stored in the receiver’s matrix.

- (NSAffineTransformStruct)transformStruct

Instance Methods 55
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Return Value
The structure containing the receiver's six matrix values.

Discussion
The matrix is of the form shown in “Manipulating Transform Values”, and the six-element structure defined
by the NSAffineTransformStruct structure is of the form:

{m11, m12, m21, m22, tX, tY}

The NSAffineTransformStruct structure is an alternate representation of a transformation matrix that
can be used to specify matrix values directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithTransform: (page 50)
– setTransformStruct: (page 54)

Related Sample Code
Transformed Image

Declared In
NSAffineTransform.h

translateXBy:yBy:
Applies the specified translation factors to the receiver’s transformation matrix.

- (void)translateXBy:(CGFloat)deltaX yBy:(CGFloat)deltaY

Parameters
deltaX

The number of units to move along the x axis.

deltaY
The number of units to move along the y axis.

Discussion
Subsequent transformations cause coordinates to be shifted by deltaX units along the x axis and by deltaY
units along the y axis. Translation factors do not affect NSSize values, which specify a differential between
points.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rotateByDegrees: (page 51)
– rotateByRadians: (page 52)
– scaleBy: (page 53)
– scaleXBy:yBy: (page 53)

Related Sample Code
Cropped Image

56 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

PDF Annotation Editor
Sketch-112
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

Constants

NSAffineTransformStruct
This type defines the three-by-three matrix that performs an affine transform between two coordinate systems.

typedef struct _NSAffineTransformStruct {
 float m11, m12, m21, m22;
 float tX, tY;
} NSAffineTransformStruct;

Fields
m11 , m12, m21, m22

Elements of a two-by-two matrix for rotation, scale, and shear transformations.

tX, tY
x and y translation elements

Discussion
For more details, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAffineTransform.h

Constants 57
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

58 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

NSAffineTransform Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSAppleEventDescriptor.h

Companion guide Cocoa Scripting Guide

Related sample code Apply Firmware Password
AttachAScript
CoreRecipes
SimpleCarbonAppleScript
Sketch-112

Overview

An instance of NSAppleEventDescriptor represents a descriptor—the basic building block for Apple
events. This class is a wrapper for the underlying Apple event descriptor data type, AEDesc. Scriptable Cocoa
applications frequently work with instances of NSAppleEventDescriptor, but should rarely need to work
directly with the AEDesc data structure.

A descriptor is a data structure that stores data and an accompanying four-character code. A descriptor can
store a value, or it can store a list of other descriptors (which may also be lists). All the information in an Apple
event is stored in descriptors and lists of descriptors, and every Apple event is itself a descriptor list that
matches certain criteria.

Important: An instance of NSAppleEventDescriptor can represent any kind of descriptor, from a simple
value descriptor, to a descriptor list, to a full-fledged Apple event.

Descriptors can be used to build arbitrarily complex containers, so that one Apple event can represent a
script statement such as tell application "TextEdit" to get word 3 of paragraph 6 of
document 3.

In working with Apple event descriptors, it can be useful to understand some of the underlying data types.
You’ll find terms such as descriptor, descriptor list, Apple event record, and Apple event defined in Building
an Apple Event in Apple Events Programming Guide. You’ll also find information on the four-character codes

Overview 59
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

used to identify information within a descriptor. Apple event data types are defined in Apple Event Manager
Reference. The values of many four-character codes used by Apple (and in some cases reused by developers)
can be found in AppleScript Terminology and Apple Event Codes.

The most common reason to construct an Apple event with an instance of NSAppleEventDescriptor is
to supply information in a return Apple event. The most common situation where you might need to extract
information from an Apple event (as an instance of NSAppleEventDescriptor) is when an Apple event
handler installed by your application is invoked, as described in “Installing an Apple Event Handler” in How
Cocoa Applications Handle Apple Events. In addition, if you execute an AppleScript script using the
NSAppleScript class, you get an instance of NSAppleEventDescriptor as the return value, from which
you can extract any required information.

When you work with an instance of NSAppleEventDescriptor, you can access the underlying descriptor
directly, if necessary, with the aeDesc (page 68) method. Other methods, including
descriptorWithDescriptorType:bytes:length: (page 64) make it possible to create and initialize
instances of NSAppleEventDescriptor without creating temporary instances of NSData.

The designated initializer for NSAppleEventDescriptor is initWithAEDescNoCopy: (page 73). However,
it is unlikely that you will need to create a subclass of NSAppleEventDescriptor.

Cocoa doesn’t currently provide a mechanism for applications to directly send raw Apple events (though
compiling and executing an AppleScript script with NSAppleScript may result in Apple events being sent).
However, Cocoa applications have full access to the Apple Event Manager C APIs for working with Apple
events. So, for example, you might use an instance of NSAppleEventDescriptor to assemble an Apple
event and call the Apple Event Manager function AESend to send it.

If you need to send Apple events, or if you need more information on some of the Apple event concepts
described here, see Apple Events Programming Guide and Apple Event Manager Reference.

Adopted Protocols

NSCopying
– copyWithZone: (page 2042)

Tasks

Creating and Initializing Descriptors

+ appleEventWithEventClass:eventID:targetDescriptor:returnID:transactionID: (page
63)

Creates a descriptor that represents an Apple event, initialized according to the specified information.

+ descriptorWithBoolean: (page 64)
Creates a descriptor initialized with type typeBoolean that stores the specified Boolean value.

+ descriptorWithDescriptorType:bytes:length: (page 64)
Creates a descriptor initialized with the specified event type that stores the specified data (from a
series of bytes).

60 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

http://developer.apple.com/releasenotes/AppleScript/ASTerminology_AppleEventCodes/TermsAndCodes.html

+ descriptorWithDescriptorType:data: (page 65)
Creates a descriptor initialized with the specified event type that stores the specified data (from an
instance of NSData).

+ descriptorWithEnumCode: (page 65)
Creates a descriptor initialized with type typeEnumerated that stores the specified enumerator data
type value.

+ descriptorWithInt32: (page 66)
Creates a descriptor initialized with Apple event type typeSInt32 that stores the specified integer
value.

+ descriptorWithString: (page 66)
Creates a descriptor initialized with type typeUnicodeText that stores the text from the specified
string.

+ descriptorWithTypeCode: (page 67)
Creates a descriptor initialized with type typeType that stores the specified type value.

+ listDescriptor (page 67)
Creates and initializes an empty list descriptor.

+ nullDescriptor (page 67)
Creates and initializes a descriptor with no parameter or attribute values set.

+ recordDescriptor (page 68)
Creates and initializes a descriptor for an Apple event record whose data has yet to be set.

– initListDescriptor (page 72)
Initializes a newly allocated instance as an empty list descriptor.

– initRecordDescriptor (page 73)
Initializes a newly allocated instance as a descriptor that is an Apple event record.

– initWithAEDescNoCopy: (page 73)
Initializes a newly allocated instance as a descriptor for the specified Carbon AEDesc structure.

– initWithDescriptorType:bytes:length: (page 74)
Initializes a newly allocated instance as a descriptor with the specified descriptor type and data (from
an arbitrary sequence of bytes and a length count).

– initWithDescriptorType:data: (page 74)
Initializes a newly allocated instance as a descriptor with the specified descriptor type and data (from
an instance of NSData).

– initWithEventClass:eventID:targetDescriptor:returnID:transactionID: (page 74)
Initializes a newly allocated instance as a descriptor for an Apple event, initialized with the specified
values.

Getting Information About a Descriptor

– aeDesc (page 68)
Returns a pointer to the AEDesc structure that is encapsulated by the receiver, if it has one.

– booleanValue (page 69)
Returns the contents of the receiver as a Boolean value, coercing (to typeBoolean) if necessary.

– coerceToDescriptorType: (page 69)
Returns a descriptor obtained by coercing the receiver to the specified type.

Tasks 61
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

– data (page 70)
Returns the receiver’s data as an NSData object.

– descriptorType (page 71)
Returns the descriptor type of the receiver.

– enumCodeValue (page 71)
Returns the contents of the receiver as an enumeration type, coercing (to typeEnumerated) if
necessary.

– int32Value (page 76)
Returns the contents of the receiver as an integer, coercing (to typeSInt32) if necessary.

– numberOfItems (page 77)
Returns the number of descriptors in the receiver’s descriptor list.

– stringValue (page 80)
Returns the contents of the receiver as a Unicode text string, coercing (to typeUnicodeText) if
necessary.

– typeCodeValue (page 81)
Returns the contents of the receiver as a type, coercing (to typeType) if necessary.

Working With List Descriptors

– descriptorAtIndex: (page 70)
Returns the descriptor at the specified (one-based) position in the receiving descriptor list.

– insertDescriptor:atIndex: (page 75)
Inserts a descriptor at the specified (one-based) position in the receiving descriptor list, replacing the
existing descriptor, if any, at that position.

– removeDescriptorAtIndex: (page 77)
Removes the descriptor at the specified (one-based) position in the receiving descriptor list.

Working With Record Descriptors

– descriptorForKeyword: (page 70)
Returns the receiver’s descriptor for the specified keyword.

– keywordForDescriptorAtIndex: (page 76)
Returns the keyword for the descriptor at the specified (one-based) position in the receiver.

– removeDescriptorWithKeyword: (page 78)
Removes the receiver’s descriptor identified by the specified keyword.

– setDescriptor:forKeyword: (page 79)
Adds a descriptor, identified by a keyword, to the receiver.

Working With Apple Event Descriptors

– attributeDescriptorForKeyword: (page 69)
Returns a descriptor for the receiver’s Apple event attribute identified by the specified keyword.

62 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

– eventClass (page 71)
Returns the event class for the receiver.

– eventID (page 72)
Returns the event ID for the receiver.

– paramDescriptorForKeyword: (page 77)
Returns a descriptor for the receiver’s Apple event parameter identified by the specified keyword.

– removeParamDescriptorWithKeyword: (page 78)
Removes the receiver’s parameter descriptor identified by the specified keyword.

– returnID (page 79)
Returns the receiver’s return ID (the ID for a reply Apple event).

– setAttributeDescriptor:forKeyword: (page 79)
Adds a descriptor to the receiver as an attribute identified by the specified keyword.

– setParamDescriptor:forKeyword: (page 80)
Adds a descriptor to the receiver as an Apple event parameter identified by the specified keyword.

– transactionID (page 81)
Returns the receiver’s transaction ID, if any.

Class Methods

appleEventWithEventClass:eventID:targetDescriptor:returnID:transactionID:
Creates a descriptor that represents an Apple event, initialized according to the specified information.

+ (NSAppleEventDescriptor *)appleEventWithEventClass:(AEEventClass)eventClass
eventID:(AEEventID)eventID targetDescriptor:(NSAppleEventDescriptor
*)addressDescriptor returnID:(AEReturnID)returnID
transactionID:(AETransactionID)transactionID

Parameters
eventClass

The event class to be set in the returned descriptor.

eventID
The event ID to be set in the returned descriptor.

addressDescriptor
A pointer to a descriptor that identifies the target application for the Apple event. Passing nil results
in an Apple event descriptor that has no keyAddressAttr attribute (it is valid for an Apple event to
have no target address attribute).

returnID
The return ID to be set in the returned descriptor. If you pass a value of kAutoGenerateReturnID,
the Apple Event Manager assigns the created Apple event a return ID that is unique to the current
session. If you pass any other value, the Apple Event Manager assigns that value for the ID.

Class Methods 63
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

transactionID
The transaction ID to be set in the returned descriptor. A transaction is a sequence of Apple events
that are sent back and forth between client and server applications, beginning with the client’s initial
request for a service. All Apple events that are part of a transaction must have the same transaction
ID. You can specify kAnyTransactionID if the Apple event is not one of a series of interdependent
Apple events.

Return Value
A descriptor for an Apple event, initialized according to the specified parameter values, or nil if an error
occurs.

Discussion
Constants such as kAutoGenerateReturnID and kAnyTransactionID are defined in AE.framework, a
subframework of ApplicationServices.framework.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

descriptorWithBoolean:
Creates a descriptor initialized with type typeBoolean that stores the specified Boolean value.

+ (NSAppleEventDescriptor *)descriptorWithBoolean:(Boolean)boolean

Parameters
boolean

The Boolean value to be set in the returned descriptor.

Return Value
A descriptor with the specified Boolean value, or nil if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

descriptorWithDescriptorType:bytes:length:
Creates a descriptor initialized with the specified event type that stores the specified data (from a series of
bytes).

+ (NSAppleEventDescriptor *)descriptorWithDescriptorType:(DescType)descriptorType
bytes:(const void *)bytes length:(NSUInteger)byteCount

Parameters
descriptorType

The descriptor type to be set in the returned descriptor.

bytes
The data, as a sequence of bytes, to be set in the returned descriptor.

64 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

byteCount
The length, in bytes, of the data to be set in the returned descriptor.

Return Value
A descriptor with the specified type and data, or nil if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

descriptorWithDescriptorType:data:
Creates a descriptor initialized with the specified event type that stores the specified data (from an instance
of NSData).

+ (NSAppleEventDescriptor *)descriptorWithDescriptorType:(DescType)descriptorType
data:(NSData *)data

Parameters
descriptorType

The descriptor type to be set in the returned descriptor.

data
The data, as an instance of NSData, to be set in the returned descriptor.

Return Value
A descriptor with the specified type and data, or nil if an error occurs.

Discussion
You can use this method to create a descriptor that you can build into a complete Apple event by calling
methods such as setAttributeDescriptor:forKeyword: (page 79),
setDescriptor:forKeyword: (page 79), and setParamDescriptor:forKeyword: (page 80).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

descriptorWithEnumCode:
Creates a descriptor initialized with type typeEnumerated that stores the specified enumerator data type
value.

+ (NSAppleEventDescriptor *)descriptorWithEnumCode:(OSType)enumerator

Parameters
enumerator

A type code that identifies the type of enumerated data to be stored in the returned descriptor.

Return Value
A descriptor with the specified enumerator data type value, or nil if an error occurs.

Class Methods 65
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

descriptorWithInt32:
Creates a descriptor initialized with Apple event type typeSInt32 that stores the specified integer value.

+ (NSAppleEventDescriptor *)descriptorWithInt32:(SInt32)signedInt

Parameters
signedInt

The integer value to be stored in the returned descriptor.

Return Value
A descriptor containing the specified integer value, or nil if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
AttachAScript
SimpleCarbonAppleScript
Sketch-112

Declared In
NSAppleEventDescriptor.h

descriptorWithString:
Creates a descriptor initialized with type typeUnicodeText that stores the text from the specified string.

+ (NSAppleEventDescriptor *)descriptorWithString:(NSString *)string

Parameters
string

A string that specifies the text to be stored in the returned descriptor.

Return Value
A descriptor that contains the text from the specified string, or nil if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
AttachAScript
SimpleCarbonAppleScript

Declared In
NSAppleEventDescriptor.h

66 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

descriptorWithTypeCode:
Creates a descriptor initialized with type typeType that stores the specified type value.

+ (NSAppleEventDescriptor *)descriptorWithTypeCode:(OSType)typeCode

Parameters
typeCode

The type value to be set in the returned descriptor.

Return Value
A descriptor with the specified type, or nil if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

listDescriptor
Creates and initializes an empty list descriptor.

+ (NSAppleEventDescriptor *)listDescriptor

Return Value
An empty list descriptor, or nil if an error occurs.

Discussion
A list descriptor is a descriptor whose data consists of one or more descriptors. You can add items to the list
by calling insertDescriptor:atIndex: (page 75) or remove them with
removeDescriptorAtIndex: (page 77).

Invoking this method is equivalent to allocating an instance of NSAppleEventDescriptor and invoking
initListDescriptor (page 72).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AttachAScript

Declared In
NSAppleEventDescriptor.h

nullDescriptor
Creates and initializes a descriptor with no parameter or attribute values set.

+ (NSAppleEventDescriptor *)nullDescriptor

Return Value
A descriptor with no parameter or attribute values set, or nil if an error occurs.

Class Methods 67
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

Discussion
You don’t typically call this method, as most NSAppleEventDescriptor instance methods can’t be safely
called on the returned empty descriptor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

recordDescriptor
Creates and initializes a descriptor for an Apple event record whose data has yet to be set.

+ (NSAppleEventDescriptor *)recordDescriptor

Return Value
An Apple event descriptor whose data has yet to be set, or nil if an error occurs.

Discussion
An Apple event record is a descriptor whose data is a set of descriptors keyed by four-character codes. You
can add information to the descriptor with methods such assetAttributeDescriptor:forKeyword: (page
79), setDescriptor:forKeyword: (page 79), and setParamDescriptor:forKeyword: (page 80).

Invoking this method is equivalent to allocating an instance of NSAppleEventDescriptor and invoking
initRecordDescriptor (page 73).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

Instance Methods

aeDesc
Returns a pointer to the AEDesc structure that is encapsulated by the receiver, if it has one.

- (const AEDesc *)aeDesc

Return Value
If the receiver has a valid AEDesc structure, returns a pointer to it; otherwise returns nil.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

68 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

attributeDescriptorForKeyword:
Returns a descriptor for the receiver’s Apple event attribute identified by the specified keyword.

- (NSAppleEventDescriptor *)attributeDescriptorForKeyword:(AEKeyword)keyword

Parameters
keyword

A keyword (a four-character code) that identifies the descriptor to obtain.

Return Value
The attribute descriptor for the specified keyword, or nil if an error occurs.

Discussion
The receiver must be an Apple event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

booleanValue
Returns the contents of the receiver as a Boolean value, coercing (to typeBoolean) if necessary.

- (Boolean)booleanValue

Return Value
The contents of the descriptor, as a Boolean value, or false if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Apply Firmware Password

Declared In
NSAppleEventDescriptor.h

coerceToDescriptorType:
Returns a descriptor obtained by coercing the receiver to the specified type.

- (NSAppleEventDescriptor *)coerceToDescriptorType:(DescType)descriptorType

Parameters
descriptorType

The descriptor type to coerce the receiver to.

Return Value
A descriptor of the specified type, or nil if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 69
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

Declared In
NSAppleEventDescriptor.h

data
Returns the receiver’s data as an NSData object.

- (NSData *)data

Return Value
An instance of NSData containing the receiver’s data, or nil if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Apply Firmware Password

Declared In
NSAppleEventDescriptor.h

descriptorAtIndex:
Returns the descriptor at the specified (one-based) position in the receiving descriptor list.

- (NSAppleEventDescriptor *)descriptorAtIndex:(NSInteger)anIndex

Parameters
anIndex

The one-based descriptor list position of the descriptor to return.

Return Value
The descriptor from the specified position (one-based) in the descriptor list, or nil if the specified descriptor
cannot be obtained.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertDescriptor:atIndex: (page 75)
– removeDescriptorAtIndex: (page 77)

Related Sample Code
Apply Firmware Password
AttachAScript

Declared In
NSAppleEventDescriptor.h

descriptorForKeyword:
Returns the receiver’s descriptor for the specified keyword.

70 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

- (NSAppleEventDescriptor *)descriptorForKeyword:(AEKeyword)keyword

Parameters
keyword

A keyword (a four-character code) that identifies the descriptor to obtain.

Return Value
A descriptor for the specified keyword, or nil if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

descriptorType
Returns the descriptor type of the receiver.

- (DescType)descriptorType

Return Value
The descriptor type of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

enumCodeValue
Returns the contents of the receiver as an enumeration type, coercing (to typeEnumerated) if necessary.

- (OSType)enumCodeValue

Return Value
The contents of the descriptor, as an enumeration type, or 0 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Apply Firmware Password

Declared In
NSAppleEventDescriptor.h

eventClass
Returns the event class for the receiver.

- (AEEventClass)eventClass

Instance Methods 71
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

Return Value
The event class (a four-character code) for the receiver, or 0 if an error occurs.

Discussion
The receiver must be an Apple event. An Apple event is identified by its event class and event ID, a pair of
four-character codes stored as 32-bit integers. For example, most events in the Standard suite have the
four-character code 'core' (defined as the constant kAECoreSuite in AE.framework, a subframework of
ApplicationServices.framework). For more information on event classes and event IDs, see Building
an Apple Event in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

eventID
Returns the event ID for the receiver.

- (AEEventID)eventID

Return Value
The event ID (a four-character code) for the receiver, or 0 if an error occurs.

Discussion
The receiver must be an Apple event. An Apple event is identified by its event class and event ID, a pair of
four-character codes stored as 32-bit integers. For example, the open Apple event from the Standard suite
has the four-character code 'odoc' (defined as the constant kAEOpen in AE.framework, a subframework
of ApplicationServices.framework).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

initListDescriptor
Initializes a newly allocated instance as an empty list descriptor.

- (id)initListDescriptor

Return Value
An empty list descriptor, or nil if an error occurs.

Discussion
You can add items to the empty list descriptor with insertDescriptor:atIndex: (page 75). The list
indices are one-based.

Availability
Available in Mac OS X v10.0 and later.

72 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

See Also
+ listDescriptor (page 67)

Declared In
NSAppleEventDescriptor.h

initRecordDescriptor
Initializes a newly allocated instance as a descriptor that is an Apple event record.

- (id)initRecordDescriptor

Return Value
The initialized Apple event record, or nil if an error occurs.

Discussion
An Apple event record is a descriptor whose data is a set of descriptors keyed by four-character codes. You
can add information to the descriptor with methods such assetAttributeDescriptor:forKeyword: (page
79), setDescriptor:forKeyword: (page 79), and setParamDescriptor:forKeyword: (page 80).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ recordDescriptor (page 68)

Declared In
NSAppleEventDescriptor.h

initWithAEDescNoCopy:
Initializes a newly allocated instance as a descriptor for the specified Carbon AEDesc structure.

- (id)initWithAEDescNoCopy:(const AEDesc *)aeDesc

Parameters
aeDesc

A pointer to the AEDesc structure to associate with the descriptor.

Return Value
An instance of NSAppleEventDescriptor that is associated with the structure pointed to by aeDesc, or
nil if an error occurs.

Discussion
The initialized object takes responsibility for calling the AEDisposeDesc function on the AEDesc at object
deallocation time. This is the designated initializer for this class.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

Instance Methods 73
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

initWithDescriptorType:bytes:length:
Initializes a newly allocated instance as a descriptor with the specified descriptor type and data (from an
arbitrary sequence of bytes and a length count).

- (id)initWithDescriptorType:(DescType)descriptorType bytes:(const void *)bytes
length:(NSUInteger)byteCount

Parameters
descriptorType

The descriptor type to be set in the returned descriptor.

bytes
The data, as a sequence of bytes, to be set in the returned descriptor.

byteCount
The length, in bytes, of the data to be set in the returned descriptor.

Return Value
An instance of NSAppleEventDescriptor with the specified type and data. Returns nil if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleEventDescriptor.h

initWithDescriptorType:data:
Initializes a newly allocated instance as a descriptor with the specified descriptor type and data (from an
instance of NSData).

- (id)initWithDescriptorType:(DescType)descriptorType data:(NSData *)data

Parameters
descriptorType

The descriptor type to be set in the initialized descriptor.

data
The data to be set in the initialized descriptor.

Return Value
An instance of NSAppleEventDescriptor with the specified type and data. Returns nil if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ descriptorWithDescriptorType:data: (page 65)

Declared In
NSAppleEventDescriptor.h

initWithEventClass:eventID:targetDescriptor:returnID:transactionID:
Initializes a newly allocated instance as a descriptor for an Apple event, initialized with the specified values.

74 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

- (id)initWithEventClass:(AEEventClass)eventClass eventID:(AEEventID)eventID
targetDescriptor:(NSAppleEventDescriptor *)addressDescriptor
returnID:(AEReturnID)returnID transactionID:(AETransactionID)transactionID

Parameters
eventClass

The event class to be set in the returned descriptor.

eventID
The event ID to be set in the returned descriptor.

addressDescriptor
A pointer to a descriptor that identifies the target application for the Apple event. Passing nil results
in an Apple event descriptor that has no keyAddressAttr attribute (it is valid for an Apple event to
have no target address attribute).

returnID
The return ID to be set in the returned descriptor. If you pass a value of kAutoGenerateReturnID,
the Apple Event Manager assigns the created Apple event a return ID that is unique to the current
session. If you pass any other value, the Apple Event Manager assigns that value for the ID.

transactionID
The transaction ID to be set in the returned descriptor. A transaction is a sequence of Apple events
that are sent back and forth between client and server applications, beginning with the client’s initial
request for a service. All Apple events that are part of a transaction must have the same transaction
ID. You can specify kAnyTransactionID if the Apple event is not one of a series of interdependent
Apple events.

Return Value
The initialized Apple event (an instance of NSAppleEventDescriptor), or nil if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

insertDescriptor:atIndex:
Inserts a descriptor at the specified (one-based) position in the receiving descriptor list, replacing the existing
descriptor, if any, at that position.

- (void)insertDescriptor:(NSAppleEventDescriptor *)descriptor
atIndex:(NSInteger)anIndex

Parameters
descriptor

The descriptor to insert in the receiver. Specifying an index of 0 or count + 1 causes appending to
the end of the list.

anIndex
The one-based descriptor list position at which to insert the descriptor.

Discussion
Because it actually replaces the descriptor, if any, at the specified position, this method might better be called
replaceDescriptor:atIndex:. The receiver must be a list descriptor. The indices are one-based. Currently
provides no indication if an error occurs.

Instance Methods 75
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– descriptorAtIndex: (page 70)
– removeDescriptorAtIndex: (page 77)

Related Sample Code
AttachAScript

Declared In
NSAppleEventDescriptor.h

int32Value
Returns the contents of the receiver as an integer, coercing (to typeSInt32) if necessary.

- (SInt32)int32Value

Return Value
The contents of the descriptor, as an integer value, or 0 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Apply Firmware Password
AttachAScript

Declared In
NSAppleEventDescriptor.h

keywordForDescriptorAtIndex:
Returns the keyword for the descriptor at the specified (one-based) position in the receiver.

- (AEKeyword)keywordForDescriptorAtIndex:(NSInteger)anIndex

Parameters
anIndex

The one-based descriptor list position of the descriptor to get the keyword for.

Return Value
The keyword (a four-character code) for the descriptor at the one-based location specified by anIndex, or
0 if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

76 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

numberOfItems
Returns the number of descriptors in the receiver’s descriptor list.

- (NSInteger)numberOfItems

Return Value
The number of descriptors in the receiver’s descriptor list (possibly 0); returns 0 if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Apply Firmware Password

Declared In
NSAppleEventDescriptor.h

paramDescriptorForKeyword:
Returns a descriptor for the receiver’s Apple event parameter identified by the specified keyword.

- (NSAppleEventDescriptor *)paramDescriptorForKeyword:(AEKeyword)keyword

Parameters
keyword

A keyword (a four-character code) that identifies the parameter descriptor to obtain.

Return Value
A descriptor for the specified keyword, or nil if an error occurs.

Discussion
The receiver must be an Apple event.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes

Declared In
NSAppleEventDescriptor.h

removeDescriptorAtIndex:
Removes the descriptor at the specified (one-based) position in the receiving descriptor list.

- (void)removeDescriptorAtIndex:(NSInteger)anIndex

Parameters
anIndex

The one-based position of the descriptor to remove.

Instance Methods 77
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

Discussion
The receiver must be a list descriptor. The indices are one-based. Currently provides no indication if an error
occurs.

Availability
Available in Mac OS X v10.2 and later.

See Also
– descriptorAtIndex: (page 70)
– insertDescriptor:atIndex: (page 75)

Declared In
NSAppleEventDescriptor.h

removeDescriptorWithKeyword:
Removes the receiver’s descriptor identified by the specified keyword.

- (void)removeDescriptorWithKeyword:(AEKeyword)keyword

Parameters
keyword

A keyword (a four-character code) that identifies the descriptor to remove.

Discussion
The receiver must be an Apple event or Apple event record. Currently provides no indication if an error
occurs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

removeParamDescriptorWithKeyword:
Removes the receiver’s parameter descriptor identified by the specified keyword.

- (void)removeParamDescriptorWithKeyword:(AEKeyword)keyword

Parameters
keyword

A keyword (a four-character code) that identifies the parameter descriptor to remove. Currently
provides no indication if an error occurs.

Discussion
The receiver must be an Apple event or Apple event record, both of which can contain parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

78 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

returnID
Returns the receiver’s return ID (the ID for a reply Apple event).

- (AEReturnID)returnID

Return Value
The receiver’s return ID (an integer value), or 0 if an error occurs.

Discussion
The receiver must be an Apple event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

setAttributeDescriptor:forKeyword:
Adds a descriptor to the receiver as an attribute identified by the specified keyword.

- (void)setAttributeDescriptor:(NSAppleEventDescriptor *)descriptor
forKeyword:(AEKeyword)keyword

Parameters
descriptor

The attribute descriptor to add to the receiver.

keyword
A keyword (a four-character code) that identifies the attribute descriptor to add. If a descriptor with
that keyword already exists in the receiver, it is replaced.

Discussion
The receiver must be an Apple event. Currently provides no indication if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

setDescriptor:forKeyword:
Adds a descriptor, identified by a keyword, to the receiver.

- (void)setDescriptor:(NSAppleEventDescriptor *)descriptor
forKeyword:(AEKeyword)keyword

Parameters
descriptor

The descriptor to add to the receiver.

Instance Methods 79
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

keyword
A keyword (a four-character code) that identifies the descriptor to add. If a descriptor with that keyword
already exists in the receiver, it is replaced.

Discussion
The receiver must be an Apple event or Apple event record. Currently provides no indication if an error
occurs.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AttachAScript
SimpleCarbonAppleScript
Sketch-112

Declared In
NSAppleEventDescriptor.h

setParamDescriptor:forKeyword:
Adds a descriptor to the receiver as an Apple event parameter identified by the specified keyword.

- (void)setParamDescriptor:(NSAppleEventDescriptor *)descriptor
forKeyword:(AEKeyword)keyword

Parameters
descriptor

The parameter descriptor to add to the receiver.

keyword
A keyword (a four-character code) that identifies the parameter descriptor to add. If a descriptor with
that keyword already exists in the receiver, it is replaced.

Discussion
The receiver must be an Apple event or Apple event record, both of which can contain parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

stringValue
Returns the contents of the receiver as a Unicode text string, coercing (to typeUnicodeText) if necessary.

- (NSString *)stringValue

Return Value
The contents of the descriptor, as a string, or nil if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

80 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

Related Sample Code
Apply Firmware Password
AttachAScript
CoreRecipes

Declared In
NSAppleEventDescriptor.h

transactionID
Returns the receiver’s transaction ID, if any.

- (AETransactionID)transactionID

Return Value
The receiver’s transaction ID (an integer value), or 0 if an error occurs.

Discussion
The receiver must be an Apple event. Currently provides no indication if an error occurs. For more information
on transactions, see the description for
appleEventWithEventClass:eventID:targetDescriptor:returnID:transactionID: (page 63).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventDescriptor.h

typeCodeValue
Returns the contents of the receiver as a type, coercing (to typeType) if necessary.

- (OSType)typeCodeValue

Return Value
The contents of the descriptor, as a type, or 0 if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Apply Firmware Password

Declared In
NSAppleEventDescriptor.h

Instance Methods 81
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

82 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

NSAppleEventDescriptor Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSAppleEventManager.h

Companion guide Cocoa Scripting Guide

Related sample code CoreRecipes
SimpleCarbonAppleScript
Sketch-112

Overview

Provides a mechanism for registering handler routines for specific types of Apple events and dispatching
events to those handlers.

Cocoa provides built-in scriptability support that uses scriptability information supplied by an application to
automatically convert Apple events into script command objects that perform the desired operation. However,
some applications may want to perform more basic Apple event handling, in which an application registers
handlers for the Apple events it can process, then calls on the Apple Event Manager to dispatch received
Apple events to the appropriate handler. NSAppleEventManager supports these mechanisms by providing
methods to register and remove handlers and to dispatch Apple events to the appropriate handler, if one
exists. For related information, see “How Cocoa Applications Handle Apple Events.”

Each application has at most one instance of NSAppleEventManager. To obtain a reference to it, you call
the class method sharedAppleEventManager (page 85), which creates the instance if it doesn’t already
exist.

For information about the Apple Event Manager, see Apple Event Manager Reference and Apple Events
Programming Guide.

Overview 83
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAppleEventManager Class Reference

Tasks

Getting an Event Manager

+ sharedAppleEventManager (page 85)
Returns the single instance of NSAppleEventManager, creating it first if it doesn’t exist.

Working with Event Handlers

– removeEventHandlerForEventClass:andEventID: (page 87)
If an Apple event handler has been registered for the event specified by eventClass and eventID,
removes it.

– setEventHandler:andSelector:forEventClass:andEventID: (page 89)
Registers the Apple event handler specified by handler for the event specified by eventClass and
eventID.

Working with Events

– dispatchRawAppleEvent:withRawReply:handlerRefCon: (page 87)
Causes the Apple event specified by theAppleEvent to be dispatched to the appropriate Apple
event handler, if one has been registered by calling
setEventHandler:andSelector:forEventClass:andEventID: (page 89).

Suspending and Resuming Apple Events

– appleEventForSuspensionID: (page 85)
Given a nonzero suspensionID returned by an invocation of suspendCurrentAppleEvent (page
89), returns the descriptor for the event whose handling was suspended.

– currentAppleEvent (page 86)
Returns the descriptor for currentAppleEvent if an Apple event is being handled on the current
thread.

– currentReplyAppleEvent (page 86)
Returns the corresponding reply event descriptor if an Apple event is being handled on the current
thread.

– replyAppleEventForSuspensionID: (page 87)
Given a nonzero suspensionID returned by an invocation of suspendCurrentAppleEvent (page
89), returns the corresponding reply event descriptor.

– resumeWithSuspensionID: (page 88)
Given a nonzero suspensionID returned by an invocation of suspendCurrentAppleEvent (page
89), signal that handling of the suspended event may now continue.

– setCurrentAppleEventAndReplyEventWithSuspensionID: (page 88)
Given a nonzero suspensionID returned by an invocation of suspendCurrentAppleEvent (page
89), sets the values that will be returned by subsequent invocations of currentAppleEvent (page

84 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAppleEventManager Class Reference

86) and currentReplyAppleEvent (page 86) to be the event whose handling was suspended and
its corresponding reply event, respectively.

– suspendCurrentAppleEvent (page 89)
Suspends the handling of the current event and returns an ID that must be used to resume the
handling of the event if an Apple event is being handled on the current thread.

Class Methods

sharedAppleEventManager
Returns the single instance of NSAppleEventManager, creating it first if it doesn’t exist.

+ (NSAppleEventManager *)sharedAppleEventManager

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
SimpleCarbonAppleScript
Sketch-112

Declared In
NSAppleEventManager.h

Instance Methods

appleEventForSuspensionID:
Given a nonzero suspensionID returned by an invocation of suspendCurrentAppleEvent (page 89),
returns the descriptor for the event whose handling was suspended.

- (NSAppleEventDescriptor
*)appleEventForSuspensionID:(NSAppleEventManagerSuspensionID)suspensionID

Discussion
The effects of mutating or retaining the returned descriptor are undefined, although it may be copied.
appleEventForSuspensionID:may be invoked in any thread, not just the one in which the corresponding
invocation of suspendCurrentAppleEvent occurred.

Availability
Available in Mac OS X v10.3 and later.

See Also
– currentAppleEvent (page 86)
– currentReplyAppleEvent (page 86)

Class Methods 85
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAppleEventManager Class Reference

Declared In
NSAppleEventManager.h

currentAppleEvent
Returns the descriptor for currentAppleEvent if an Apple event is being handled on the current thread.

- (NSAppleEventDescriptor *)currentAppleEvent

Discussion
An Apple event is being handled on the current thread if a handler that was registered with
setEventHandler:andSelector:forEventClass:andEventID: (page 89) is being messaged at this
instant or setCurrentAppleEventAndReplyEventWithSuspensionID: (page 88) has just been invoked.
Returns nil otherwise. The effects of mutating or retaining the returned descriptor are undefined, although
it may be copied.

Availability
Available in Mac OS X v10.3 and later.

See Also
– currentReplyAppleEvent (page 86)

Declared In
NSAppleEventManager.h

currentReplyAppleEvent
Returns the corresponding reply event descriptor if an Apple event is being handled on the current thread.

- (NSAppleEventDescriptor *)currentReplyAppleEvent

Discussion
An Apple event is being handled on the current thread if currentAppleEvent (page 86) does not return
nil. Returns nil otherwise. This descriptor, including any mutations, will be returned to the sender of the
current event when all handling of the event has been completed, if the sender has requested a reply. The
effects of retaining the descriptor are undefined; it may be copied, but mutations of the copy are not returned
to the sender of the current event.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setCurrentAppleEventAndReplyEventWithSuspensionID: (page 88)

Related Sample Code
SimpleCarbonAppleScript
Sketch-112

Declared In
NSAppleEventManager.h

86 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAppleEventManager Class Reference

dispatchRawAppleEvent:withRawReply:handlerRefCon:
Causes the Apple event specified by theAppleEvent to be dispatched to the appropriate Apple event
handler, if one has been registered by calling
setEventHandler:andSelector:forEventClass:andEventID: (page 89).

- (OSErr)dispatchRawAppleEvent:(const AppleEvent *)theAppleEvent
withRawReply:(AppleEvent *)theReply handlerRefCon:(UInt32)handlerRefcon

Discussion
The theReply parameter always specifies a reply Apple event, never nil. However, the handler should not
fill out the reply if the descriptor type for the reply event is typeNull, indicating the sender does not want
a reply.

The handlerRefcon parameter provides 4 bytes of data to the handler; a common use for this parameter
is to pass a pointer to additional data.

This method is primarily intended for Cocoa’s internal use. Note that dispatching an event means routing an
event to an appropriate handler in the current application. You cannot use this method to send an event to
other applications.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventManager.h

removeEventHandlerForEventClass:andEventID:
If an Apple event handler has been registered for the event specified by eventClass and eventID, removes
it.

- (void)removeEventHandlerForEventClass:(AEEventClass)eventClass
andEventID:(AEEventID)eventID

Discussion
Otherwise does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEventHandler:andSelector:forEventClass:andEventID: (page 89)

Declared In
NSAppleEventManager.h

replyAppleEventForSuspensionID:
Given a nonzero suspensionID returned by an invocation of suspendCurrentAppleEvent (page 89),
returns the corresponding reply event descriptor.

- (NSAppleEventDescriptor
*)replyAppleEventForSuspensionID:(NSAppleEventManagerSuspensionID)suspensionID

Instance Methods 87
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAppleEventManager Class Reference

Discussion
This descriptor, including any mutations, will be returned to the sender of the suspended event when handling
of the event is resumed, if the sender has requested a reply. The effects of retaining the descriptor are
undefined; it may be copied, but mutations of the copy are returned to the sender of the suspended event.
replyAppleEventForSuspensionID: may be invoked in any thread, not just the one in which the
corresponding invocation of suspendCurrentAppleEvent occurred.

Availability
Available in Mac OS X v10.3 and later.

See Also
– appleEventForSuspensionID: (page 85)
– currentAppleEvent (page 86)
– currentReplyAppleEvent (page 86)
– setCurrentAppleEventAndReplyEventWithSuspensionID: (page 88)

Declared In
NSAppleEventManager.h

resumeWithSuspensionID:
Given a nonzero suspensionID returned by an invocation of suspendCurrentAppleEvent (page 89),
signal that handling of the suspended event may now continue.

- (void)resumeWithSuspensionID:(NSAppleEventManagerSuspensionID)suspensionID

Discussion
This may result in the immediate sending of the reply event to the sender of the suspended event, if the
sender has requested a reply. If suspensionID has been used in a previous invocation of
setCurrentAppleEventAndReplyEventWithSuspensionID: (page 88) the effects of that invocation
are completely undone. Redundant invocations of resumeWithSuspensionID: are ignored. Subsequent
invocations of other NSAppleEventManager methods using the same suspension ID are invalid.
resumeWithSuspensionID: may be invoked in any thread, not just the one in which the corresponding
invocation of suspendCurrentAppleEvent occurred.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAppleEventManager.h

setCurrentAppleEventAndReplyEventWithSuspensionID:
Given a nonzero suspensionID returned by an invocation of suspendCurrentAppleEvent (page 89),
sets the values that will be returned by subsequent invocations of currentAppleEvent (page 86) and
currentReplyAppleEvent (page 86) to be the event whose handling was suspended and its corresponding
reply event, respectively.

-
(void)setCurrentAppleEventAndReplyEventWithSuspensionID:(NSAppleEventManagerSuspensionID)suspensionID

88 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAppleEventManager Class Reference

Discussion
Redundant invocations of setCurrentAppleEventAndReplyEventWithSuspensionID: are ignored.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAppleEventManager.h

setEventHandler:andSelector:forEventClass:andEventID:
Registers the Apple event handler specified by handler for the event specified by eventClass and eventID.

- (void)setEventHandler:(id)handler andSelector:(SEL)handleEventSelector
forEventClass:(AEEventClass)eventClass andEventID:(AEEventID)eventID

Discussion
If an event handler is already registered for the specified event class and event ID, removes it. The signature
for handler should match the following:

- (void)handleAppleEvent:(NSAppleEventDescriptor *)event withReplyEvent:
(NSAppleEventDescriptor *)replyEvent;

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeEventHandlerForEventClass:andEventID: (page 87)

Related Sample Code
CoreRecipes

Declared In
NSAppleEventManager.h

suspendCurrentAppleEvent
Suspends the handling of the current event and returns an ID that must be used to resume the handling of
the event if an Apple event is being handled on the current thread.

- (NSAppleEventManagerSuspensionID)suspendCurrentAppleEvent

Discussion
An Apple event is being handled on the current thread if currentAppleEvent (page 86) does not return
nil. Returns zero otherwise. The suspended event is no longer the current event after this method returns.

Availability
Available in Mac OS X v10.3 and later.

See Also
– currentReplyAppleEvent (page 86)
– resumeWithSuspensionID: (page 88)

Instance Methods 89
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAppleEventManager Class Reference

Declared In
NSAppleEventManager.h

Constants

NSAppleEvent Timeouts
The following constants should not be used and may eventually be removed.

extern const double NSAppleEventTimeOutDefault;
extern const double NSAppleEventTimeOutNone;

Constants
NSAppleEventTimeOutDefault

Specifies that an event-processing operation should continue until a timeout occurs based on a value
determined by the Apple Event Manager (about 1 minute). Not currently used by applications.

Available in Mac OS X v10.0 and later.

Declared in NSAppleEventManager.h.

NSAppleEventTimeOutNone
Specifies that the application is willing to wait indefinitely for the current operation to complete. Not
currently used by applications.

Available in Mac OS X v10.0 and later.

Declared in NSAppleEventManager.h.

Declared In
NSAppleEventManager.h

Notifications

NSAppleEventManagerWillProcessFirstEventNotification
Posted by NSAppleEventManager before it first dispatches an Apple event. Your application can use this
notification to avoid registering any Apple event handlers until the first time at which they may be needed.
The notification object is the NSAppleEventManager. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAppleEventManager.h

90 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSAppleEventManager Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSAppleScript.h
AppKit/NSAppleScriptExtensions.h

Availability Available in Mac OS X v10.2 and later.

Companion guide Cocoa Scripting Guide

Related sample code AttachAScript

Overview

The NSAppleScript class provides the ability to load, compile, and execute scripts.

Important: You should access NSAppleScript only from the main thread.

This class provides applications with the ability to

 ■ load a script from a URL or from a text string

 ■ compile or execute a script or an individual Apple event

 ■ obtain an NSAppleEventDescriptor containing the reply from an executed script or event

 ■ obtain an attributed string for a compiled script, suitable for display in a script editor

 ■ obtain various kinds of information about any errors that may occur

Overview 91
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAppleScript Class Reference

Important: NSAppleScript provides the executeAppleEvent:error: (page 94) method so that you
can send an Apple event to invoke a handler in a script. (In an AppleScript script, a handler is the equivalent
of a function.) However, you cannot use this method to send Apple events to other applications.

When you create an instance of NSAppleScript object, you can use a URL to specify a script that can be in
either text or compiled form, or you can supply the script as a string. Should an error occur when compiling
or executing the script, several of the methods return a dictionary containing error information. The keys for
obtaining error information, such as NSAppleScriptErrorMessage (page 96), are described in the Constants
section.

See also NSAppleScript Additions in the Application Kit framework, which defines a method that returns the
syntax-highlighted source code for a script.

Adopted Protocols

NSCopying
– copyWithZone: (page 2042)

Tasks

Initializing a Script

– initWithContentsOfURL:error: (page 94)
Initializes a newly allocated script instance from the source identified by the passed URL.

– initWithSource: (page 95)
Initializes a newly allocated script instance from the passed source.

Getting Information About a Script

– isCompiled (page 95)
Returns a Boolean value that indicates whether the receiver's script has been compiled.

– source (page 95)
Returns the script source for the receiver.

Compiling and Executing a Script

– compileAndReturnError: (page 93)
Compiles the receiver, if it is not already compiled.

– executeAndReturnError: (page 93)
Executes the receiver, compiling it first if it is not already compiled.

92 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAppleScript Class Reference

– executeAppleEvent:error: (page 94)
Executes an Apple event in the context of the receiver, as a means of allowing the application to
invoke a handler in the script.

Instance Methods

compileAndReturnError:
Compiles the receiver, if it is not already compiled.

- (BOOL)compileAndReturnError:(NSDictionary **)errorInfo

Parameters
errorInfo

On return, if an error occurs, a pointer to an error information dictionary.

Return Value
YES for success or if the script was already compiled, NO otherwise.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

executeAndReturnError:
Executes the receiver, compiling it first if it is not already compiled.

- (NSAppleEventDescriptor *)executeAndReturnError:(NSDictionary **)errorInfo

Parameters
errorInfo

On return, if an error occurs, a pointer to an error information dictionary.

Return Value
The result of executing the event, or nil if an error occurs.

Discussion
Any changes to property values caused by executing the script do not persist.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

Instance Methods 93
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAppleScript Class Reference

executeAppleEvent:error:
Executes an Apple event in the context of the receiver, as a means of allowing the application to invoke a
handler in the script.

- (NSAppleEventDescriptor *)executeAppleEvent:(NSAppleEventDescriptor *)event
error:(NSDictionary **)errorInfo

Parameters
event

The Apple event to execute.

errorInfo
On return, if an error occurs, a pointer to an error information dictionary.

Return Value
The result of executing the event, or nil if an error occurs.

Discussion
Compiles the receiver before executing it if it is not already compiled.

Important: You cannot use this method to send Apple events to other applications.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

initWithContentsOfURL:error:
Initializes a newly allocated script instance from the source identified by the passed URL.

- (id)initWithContentsOfURL:(NSURL *)url error:(NSDictionary **)errorInfo

Parameters
url

A URL that locates a script, in either text or compiled form.

errorInfo
On return, if an error occurs, a pointer to an error information dictionary.

Return Value
The initialized script object, nil if an error occurs.

Discussion
This method is a designated initializer for NSAppleScript.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

94 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAppleScript Class Reference

initWithSource:
Initializes a newly allocated script instance from the passed source.

- (id)initWithSource:(NSString *)source

Parameters
source

A string containing the source code of a script.

Return Value
The initialized script object, nil if an error occurs.

Discussion
This method is a designated initializer for NSAppleScript.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

isCompiled
Returns a Boolean value that indicates whether the receiver's script has been compiled.

- (BOOL)isCompiled

Return Value
YES if the receiver is already compiled, NO otherwise.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

source
Returns the script source for the receiver.

- (NSString *)source

Return Value
The script source code of the receiver if it is available, nil otherwise.

Discussion
It is possible for anNSAppleScript that has been instantiated withinitWithContentsOfURL:error: (page
94) to be a script for which the source code is not available but is nonetheless executable.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScript.h

Instance Methods 95
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAppleScript Class Reference

Constants

Error Dictionary Keys
If the result of initWithContentsOfURL:error: (page 94), compileAndReturnError: (page 93),
executeAndReturnError: (page 93), or executeAppleEvent:error: (page 94), signals failure (nil,
NO, nil, or nil, respectively), a pointer to an autoreleased dictionary is put at the location pointed to by the
error parameter. The error info dictionary may contain entries that use any combination of the following
keys, including no entries at all.

extern NSString *NSAppleScriptErrorMessage;
extern NSString *NSAppleScriptErrorNumber;
extern NSString *NSAppleScriptErrorAppName;
extern NSString *NSAppleScriptErrorBriefMessage;
extern NSString *NSAppleScriptErrorRange;

Constants
NSAppleScriptErrorMessage

An NSString that supplies a detailed description of the error condition.

Available in Mac OS X v10.2 and later.

Declared in NSAppleScript.h.

NSAppleScriptErrorNumber
An NSNumber that specifies the error number.

Available in Mac OS X v10.2 and later.

Declared in NSAppleScript.h.

NSAppleScriptErrorAppName
An NSString that specifies the name of the application that generated the error.

Available in Mac OS X v10.2 and later.

Declared in NSAppleScript.h.

NSAppleScriptErrorBriefMessage
An NSString that provides a brief description of the error.

Available in Mac OS X v10.2 and later.

Declared in NSAppleScript.h.

NSAppleScriptErrorRange
An NSValue that specifies a range.

Available in Mac OS X v10.2 and later.

Declared in NSAppleScript.h.

Declared In
NSAppleScript.h

96 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAppleScript Class Reference

Inherits from NSCoder : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSArchiver.h

Companion guide Archives and Serializations Programming Guide for Cocoa

Related sample code Departments and Employees
MenuItemView
QTMetadataEditor
Sketch-112
StickiesExample

Overview

NSArchiver, a concrete subclass of NSCoder, provides a way to encode objects into an
architecture-independent format that can be stored in a file. When you archive a graph of objects, the class
information and instance variables for each object are written to the archive. NSArchiver's companion class,
NSUnarchiver, decodes the data in an archive and creates a graph of objects equivalent to the original set.

NSArchiver stores the archive data in a mutable data object (NSMutableData). After encoding the objects,
you can have the NSArchiver object write this mutable data object immediately to a file, or you can retrieve
the mutable data object for some other use.

In Mac OS X v10.2 and later, NSArchiver and NSUnarchiver have been replaced by NSKeyedArchiver
and NSKeyedUnarchiver respectively—see Archives and Serializations Programming Guide for Cocoa.

Tasks

Initializing an NSArchiver

– initForWritingWithMutableData: (page 102)
Returns an archiver, initialized to encode stream and version information into a given mutable data
object.

Overview 97
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Archiving Data

+ archivedDataWithRootObject: (page 98)
Returns a data object containing the encoded form of the object graph whose root object is given.

+ archiveRootObject:toFile: (page 99)
Creates a temporary instance of NSArchiver and archives an object graph by encoding it into a data
object and writing the resulting data object to a specified file.

– encodeRootObject: (page 101)
Archives a given object along with all the objects to which it is connected.

– encodeConditionalObject: (page 101)
Conditionally archives a given object.

Getting the Archived Data

– archiverData (page 100)
Returns the receiver's archive data.

Substituting Classes or Objects

– classNameEncodedForTrueClassName: (page 100)
Returns the name of the class used to archive instances of the class with a given true name.

– encodeClassName:intoClassName: (page 100)
Encodes a substitute name for the class with a given true name.

– replaceObject:withObject: (page 102)
Causes the receiver to treat subsequent requests to encode a given object as though they were
requests to encode another given object.

Class Methods

archivedDataWithRootObject:
Returns a data object containing the encoded form of the object graph whose root object is given.

+ (NSData *)archivedDataWithRootObject:(id)rootObject

Parameters
rootObject

The root object of the object graph to archive.

Return Value
A data object containing the encoded form of the object graph whose root object is rootObject.

Discussion
This method invokes initForWritingWithMutableData: (page 102) and encodeRootObject: (page
101) to create a temporary archiver that encodes the object graph.

98 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– initForWritingWithMutableData: (page 102)
– encodeRootObject: (page 101)

Related Sample Code
Departments and Employees
MenuItemView
QTMetadataEditor
Sketch-112
StickiesExample

Declared In
NSArchiver.h

archiveRootObject:toFile:
Creates a temporary instance of NSArchiver and archives an object graph by encoding it into a data object
and writing the resulting data object to a specified file.

+ (BOOL)archiveRootObject:(id)rootObject toFile:(NSString *)path

Parameters
rootObject

The root object of the object graph to archive.

path
The location of the the file into which to write the archive.

Return Value
YES if the archive was written successfully, otherwise NO.

Discussion
This convenience method invokes archivedDataWithRootObject: (page 98) to get the encoded data,
and then sends that data object the message writeToFile:atomically: (page 384), using path for the
first argument and YES for the second.

The archived data should be retrieved from the archive by an NSUnarchiver object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ archivedDataWithRootObject: (page 98)
– writeToFile:atomically: (page 384) (NSData)

Declared In
NSArchiver.h

Class Methods 99
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Instance Methods

archiverData
Returns the receiver's archive data.

- (NSMutableData *)archiverData

Return Value
The receiver's archive data.

Discussion
The returned data object is the same one specified as the argument to
initForWritingWithMutableData: (page 102). It contains whatever data has been encoded thus far by
invocations of the various encoding methods. It is safest not to invoke this method until after
encodeRootObject: (page 101) has returned. In other words, although it is possible for a class to invoke
this method from within its encodeWithCoder: (page 2034) method, that method must not alter the data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

classNameEncodedForTrueClassName:
Returns the name of the class used to archive instances of the class with a given true name.

- (NSString *)classNameEncodedForTrueClassName:(NSString *)trueName

Parameters
trueName

The real name of an encoded class.

Return Value
The name of the class used to archive instances of the class trueName.

Availability
Available in Mac OS X v10.0 and later.

See Also
– encodeClassName:intoClassName: (page 100)

Declared In
NSArchiver.h

encodeClassName:intoClassName:
Encodes a substitute name for the class with a given true name.

- (void)encodeClassName:(NSString *)trueName intoClassName:(NSString *)inArchiveName

100 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Parameters
trueName

The real name of a class in the object graph being archived.

inArchiveName
The name of the class to use in the archive in place of trueName.

Discussion
Any subsequently encountered objects of class trueName are archived as instances of class inArchiveName.
It is safest not to invoke this method during the archiving process (that is, within an encodeWithCoder: (page
2034) method). Instead, invoke it before encodeRootObject: (page 101).

Availability
Available in Mac OS X v10.0 and later.

See Also
– classNameEncodedForTrueClassName: (page 100)

Declared In
NSArchiver.h

encodeConditionalObject:
Conditionally archives a given object.

- (void)encodeConditionalObject:(id)object

Parameters
object

The object to archive.

Discussion
This method overrides the superclass implementation to allow object to be encoded only if it is also encoded
unconditionally by another object in the object graph. Conditional encoding lets you encode one part of a
graph detached from the rest. (See Archives and Serializations Programming Guide for Cocoa for more
information.)

This method should be invoked only from within an encodeWithCoder: (page 2034) method. If object is
nil, the NSArchiver object encodes it unconditionally as nil. This method raises an
NSInvalidArgumentException if no root object has been encoded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

encodeRootObject:
Archives a given object along with all the objects to which it is connected.

- (void)encodeRootObject:(id)rootObject

Instance Methods 101
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Parameters
rootObject

The root object of the object graph to archive.

Discussion
If any object is encountered more than once while traversing the graph, it is encoded only once, but the
multiple references to it are stored. (See Archives and Serializations Programming Guide for Cocoa for more
information.)

This message must not be sent more than once to a given NSArchiver object; an
NSInvalidArgumentException is raised if a root object has already been encoded. If you need to encode
multiple object graphs, therefore, don’t attempt to reuse an NSArchiver instance; instead, create a new
one for each graph.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

initForWritingWithMutableData:
Returns an archiver, initialized to encode stream and version information into a given mutable data object.

- (id)initForWritingWithMutableData:(NSMutableData *)data

Parameters
data

The mutable data object into which to write the archive. This value must not be nil.

Return Value
An archiver object, initialized to encode stream and version information into data.

Discussion
Raises an NSInvalidArgumentException if data is nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– archiverData (page 100)

Declared In
NSArchiver.h

replaceObject:withObject:
Causes the receiver to treat subsequent requests to encode a given object as though they were requests to
encode another given object.

- (void)replaceObject:(id)object withObject:(id)newObject

102 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Parameters
object

An object in the object graph being archived.

newObject
The object with which to replace object in the archive.

Discussion
Both object and newObject must be valid objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

Constants

Archiving Exception Names
Raised by NSArchiver if there are problems initializing or encoding.

extern NSString *NSInconsistentArchiveException;

Constants
NSInconsistentArchiveException

The name of an exception raised by NSArchiver if there are problems initializing or encoding.

Available in Mac OS X v10.0 and later.

Declared in NSArchiver.h.

Declared In
NSArchiver.h

Constants 103
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

104 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSArchiver Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSArray.h
Foundation/NSKeyValueCoding.h
Foundation/NSKeyValueObserving.h
Foundation/NSPathUtilities.h
Foundation/NSPredicate.h
Foundation/NSSortDescriptor.h

Companion guides Collections Programming Topics for Cocoa
Key-Value Coding Programming Guide
Property List Programming Guide
Predicate Programming Guide

Related sample code CoreRecipes
iSpend
Quartz Composer WWDC 2005 TextEdit
Sketch-112
StickiesExample

Overview

NSArray and its subclass NSMutableArray manage collections of objects called arrays. NSArray creates
static arrays, and NSMutableArray creates dynamic arrays.

The NSArray and NSMutableArray classes adopt the NSCopying and NSMutableCopying protocols,
making it convenient to convert an array of one type to the other.

NSArray and NSMutableArray are part of a class cluster, so arrays are not actual instances of the NSArray
or NSMutableArray classes but of one of their private subclasses. Although an array’s class is private, its
interface is public, as declared by these abstract superclasses, NSArray and NSMutableArray.

Overview 105
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

NSArray’s two primitive methods—count (page 119) and objectAtIndex: (page 131)—provide the basis
for all other methods in its interface. The count method returns the number of elements in the array;
objectAtIndex: gives you access to the array elements by index, with index values starting at 0.

The methods objectEnumerator (page 131) and reverseObjectEnumerator (page 134) also grant
sequential access to the elements of the array, differing only in the direction of travel through the elements.
These methods are provided so that arrays can be traversed in a manner similar to that used for objects of
other collection classes, such as NSDictionary. See the objectEnumerator method description for a code
excerpt that shows how to use these methods to access the elements of an array. In Mac OS X v10.5 and
later, it is more efficient to use the fast enumeration protocol (see NSFastEnumeration).

NSArray provides methods for querying the elements of the array. The indexOfObject: (page 123) method
searches the array for the object that matches its argument. To determine whether the search is successful,
each element of the array is sent an isEqual: (page 2101) message, as declared in the NSObject protocol.
Another method, indexOfObjectIdenticalTo: (page 124), is provided for the less common case of
determining whether a specific object is present in the array. The indexOfObjectIdenticalTo: method
tests each element in the array to see whether its id matches that of the argument.

NSArray’s filteredArrayUsingPredicate: (page 121) method allows you to create a new array from
an existing array filtered using a predicate (see Predicate Programming Guide).

NSArray’s makeObjectsPerformSelector: (page 129) and
makeObjectsPerformSelector:withObject: (page 130) methods let you send messages to all objects
in the array. To act on the array as a whole, a variety of other methods are defined. You can create a sorted
version of the array (sortedArrayUsingSelector: (page 138) and
sortedArrayUsingFunction:context: (page 136), extract a subset of the array
(subarrayWithRange: (page 138)), or concatenate the elements of an array of NSString objects into a
single string (componentsJoinedByString: (page 118)). In addition, you can compare two arrays using
the isEqualToArray: (page 129) and firstObjectCommonWithArray: (page 122) methods. Finally, you
can create new arrays that contain the objects in an existing array and one or more additional objects with
arrayByAddingObject: (page 117) and arrayByAddingObjectsFromArray: (page 117).

Arrays maintain strong references to their contents—in a managed memory environment, each object receives
a retain message before its id is added to the array and a release message when it is removed from the
array or when the array is deallocated. If you want a collection with different object ownership semantics,
consider using CFArray Reference, NSPointerArray, or NSHashTable instead.

NSArray is “toll-free bridged” with its Core Foundation counterpart, CFArray Reference. What this means is
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object, providing you cast one type to the other. Therefore, in an API where you see an NSArray * parameter,
you can pass in a CFArrayRef, and in an API where you see a CFArrayRef parameter, you can pass in an
NSArray instance. This arrangement also applies to your concrete subclasses of NSArray. See Carbon-Cocoa
Integration Guide for more information on toll-free bridging.

Subclassing Notes

Most developers would not have any reason to subclass NSArray. The class does well what it is designed to
do—maintain an ordered collection of objects. But there are situations where a custom NSArray object
might come in handy. Here are a few possibilities:

 ■ Changing how NSArray stores the elements of its collection. You might do this for performance reasons
or for better compatibility with legacy code.

106 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

 ■ Changing how NSArray retains and releases its elements.

 ■ Acquiring more information about what is happening to the collection (for example, statistics gathering).

Methods to Override

Any subclass of NSArray must override the primitive instance methods count (page 119) and
objectAtIndex: (page 131). These methods must operate on the backing store that you provide for the
elements of the collection. For this backing store you can use a static array, a standard NSArray object, or
some other data type or mechanism. You may also choose to override, partially or fully, any other NSArray
method for which you want to provide an alternative implementation.

You might want to implement an initializer for your subclass that is suited to the backing store that the
subclass is managing. The NSArray class does not have a designated initializer, so your initializer need only
invoke theinit (page 1178) method ofsuper. TheNSArray class adopts theNSCopying,NSMutableCopying,
and NSCoding protocols; if you want instances of your own custom subclass created from copying or coding,
override the methods in these protocols.

Remember that NSArray is the public interface for a class cluster and what this entails for your subclass. The
primitive methods of NSArray do not include any designated initializers. This means that you must provide
the storage for your subclass and implement the primitive methods that directly act on that storage.

Special Considerations

In most cases your custom NSArray class should conform to Cocoa’s object-ownership conventions. Thus
you must send retain (page 2108) to each object that you add to your collection and release (page 2106) to
each object that you remove from the collection. Of course, if the reason for subclassing NSArray is to
implement object-retention behavior different from the norm (for example, a non-retaining array), then you
can ignore this requirement.

Alternatives to Subclassing

Before making a custom class of NSArray, investigate NSPointerArray, NSHashTable, and the
corresponding Core Foundation type, CFArray Reference. Because NSArray and CFArray are “toll-free bridged,”
you can substitute a CFArray object for a NSArray object in your code (with appropriate casting). Although
they are corresponding types, CFArray and NSArray do not have identical interfaces or implementations,
and you can sometimes do things with CFArray that you cannot easily do with NSArray. For example, CFArray
provides a set of callbacks, some of which are for implementing custom retain-release behavior. If you specify
NULL implementations for these callbacks, you can easily get a non-retaining array.

If the behavior you want to add supplements that of the existing class, you could write a category on NSArray.
Keep in mind, however, that this category will be in effect for all instances of NSArray that you use, and this
might have unintended consequences.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

Adopted Protocols 107
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

NSCopying
– copyWithZone: (page 2042)

NSMutableCopying
– mutableCopyWithZone: (page 2094)

Tasks

Creating an Array

+ array (page 111)
Creates and returns an empty array.

+ arrayWithArray: (page 112)
Creates and returns an array containing the objects in another given array.

+ arrayWithContentsOfFile: (page 113)
Creates and returns an array containing the contents of the file specified by a given path.

+ arrayWithContentsOfURL: (page 113)
Creates and returns an array containing the contents specified by a given URL.

+ arrayWithObject: (page 114)
Creates and returns an array containing a given object.

+ arrayWithObjects: (page 114)
Creates and returns an array containing the objects in the argument list.

+ arrayWithObjects:count: (page 115)
Creates and returns an array that includes a given number of objects from a given C array.

Initializing an Array

– initWithArray: (page 125)
Initializes a newly allocated array by placing in it the objects contained in a given array.

– initWithArray:copyItems: (page 126)
Initializes a newly allocated array using anArray as the source of data objects for the array.

– initWithContentsOfFile: (page 126)
Initializes a newly allocated array with the contents of the file specified by a given path.

– initWithContentsOfURL: (page 127)
Initializes a newly allocated array with the contents of the location specified by a given URL.

– initWithObjects: (page 127)
Initializes a newly allocated array by placing in it the objects in the argument list.

– initWithObjects:count: (page 128)
Initializes a newly allocated array to include a given number of objects from a given C array.

108 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Querying an Array

– containsObject: (page 119)
Returns a Boolean value that indicates whether a given object is present in the receiver.

– count (page 119)
Returns the number of objects currently in the receiver.

– getObjects: (page 122)
Copies all the objects contained in the receiver to aBuffer.

– getObjects:range: (page 123)
Copies the objects contained in the receiver that fall within the specified range to aBuffer.

– indexOfObject: (page 123)
Returns the lowest index whose corresponding array value is equal to a given object.

– indexOfObject:inRange: (page 123)
Returns the lowest index within a specified range whose corresponding array value is equal to a given
object .

– indexOfObjectIdenticalTo: (page 124)
Returns the lowest index whose corresponding array value is identical to a given object.

– indexOfObjectIdenticalTo:inRange: (page 125)
Returns the lowest index within a specified range whose corresponding array value is equal to a given
object .

– lastObject (page 129)
Returns the object in the array with the highest index value.

– objectAtIndex: (page 131)
Returns the object located at index.

– objectsAtIndexes: (page 132)
Returns an array containing the objects in the receiver at the indexes specified by a given index set.

– objectEnumerator (page 131)
Returns an enumerator object that lets you access each object in the receiver.

– reverseObjectEnumerator (page 134)
Returns an enumerator object that lets you access each object in the receiver, in reverse order.

Sending Messages to Elements

– makeObjectsPerformSelector: (page 129)
Sends to each object in the receiver the message identified by a given selector, starting with the first
object and continuing through the array to the last object.

– makeObjectsPerformSelector:withObject: (page 130)
Sends the aSelectormessage to each object in the array, starting with the first object and continuing
through the array to the last object.

Comparing Arrays

– firstObjectCommonWithArray: (page 122)
Returns the first object contained in the receiver that’s equal to an object in another given array.

Tasks 109
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

– isEqualToArray: (page 129)
Compares the receiving array to another array.

Deriving New Arrays

– arrayByAddingObject: (page 117)
Returns a new array that is a copy of the receiver with a given object added to the end.

– arrayByAddingObjectsFromArray: (page 117)
Returns a new array that is a copy of the receiver with the objects contained in another array added
to the end.

– filteredArrayUsingPredicate: (page 121)
Evaluates a given predicate against each object in the receiver and returns a new array containing
the objects for which the predicate returns true.

– subarrayWithRange: (page 138)
Returns a new array containing the receiver’s elements that fall within the limits specified by a given
range.

Sorting

– sortedArrayHint (page 135)
Analyzes the receiver and returns a “hint” that speeds the sorting of the array when the hint is supplied
to sortedArrayUsingFunction:context:hint: (page 137).

– sortedArrayUsingFunction:context: (page 136)
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison
function comparator.

– sortedArrayUsingFunction:context:hint: (page 137)
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison
function comparator.

– sortedArrayUsingDescriptors: (page 135)
Returns a copy of the receiver sorted as specified by a given array of sort descriptors.

– sortedArrayUsingSelector: (page 138)
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by a given selector.

Working with String Elements

– componentsJoinedByString: (page 118)
Constructs and returns an NSString object that is the result of interposing a given separator between
the elements of the receiver’s array.

Creating a Description

– description (page 120)
Returns a string that represents the contents of the receiver, formatted as a property list.

110 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

– descriptionWithLocale: (page 120)
Returns a string that represents the contents of the receiver, formatted as a property list.

– descriptionWithLocale:indent: (page 121)
Returns a string that represents the contents of the receiver, formatted as a property list.

– writeToFile:atomically: (page 139)
Writes the contents of the receiver to a file at a given path.

– writeToURL:atomically: (page 140)
Writes the contents of the receiver to the location specified by a given URL.

Collecting Paths

– pathsMatchingExtensions: (page 133)
Returns an array containing all the pathname elements in the receiver that have filename extensions
from a given array.

Key-Value Observing

– addObserver:forKeyPath:options:context: (page 116)
Raises an exception.

– removeObserver:forKeyPath: (page 133)
Raises an exception.

– addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 116)
Registers anObserver to receive key value observer notifications for the specified keypath relative
to the objects at indexes.

– removeObserver:fromObjectsAtIndexes:forKeyPath: (page 134)
Removes anObserver from all key value observer notifications associated with the specified keyPath
relative to the receiver’s objects at indexes.

Key-Value Coding

– setValue:forKey: (page 135)
Invokes setValue:forKey: on each of the receiver's items using the specified value and key.

– valueForKey: (page 139)
Returns an array containing the results of invoking valueForKey: using key on each of the receiver's
objects.

Class Methods

array
Creates and returns an empty array.

+ (id)array

Class Methods 111
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Return Value
An empty array.

Discussion
This method is used by mutable subclasses of NSArray.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithObject: (page 114)
+ arrayWithObjects: (page 114)

Related Sample Code
CoreRecipes
Dicey
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSArray.h

arrayWithArray:
Creates and returns an array containing the objects in another given array.

+ (id)arrayWithArray:(NSArray *)anArray

Parameters
anArray

An array.

Return Value
An array containing the objects in anArray.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithObjects: (page 114)
– initWithObjects: (page 127)

Related Sample Code
CoreRecipes
iSpend
QTKitMovieShuffler
Reminders
Squiggles

Declared In
NSArray.h

112 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

arrayWithContentsOfFile:
Creates and returns an array containing the contents of the file specified by a given path.

+ (id)arrayWithContentsOfFile:(NSString *)aPath

Parameters
aPath

The path to a file containing a string representation of an array produced by the
writeToFile:atomically: (page 139) method.

Return Value
An array containing the contents of the file specified by aPath. Returns nil if the file can’t be opened or if
the contents of the file can’t be parsed into an array.

Discussion
The array representation in the file identified by aPath must contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in Mac OS X v10.0 and later.

See Also
– writeToFile:atomically: (page 139)

Related Sample Code
LSMSmartCategorizer
Mountains
URL CacheInfo

Declared In
NSArray.h

arrayWithContentsOfURL:
Creates and returns an array containing the contents specified by a given URL.

+ (id)arrayWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The location of a file containing a string representation of an array produced by the
writeToURL:atomically: (page 140) method.

Return Value
An array containing the contents specified by aURL. Returns nil if the location can’t be opened or if the
contents of the location can’t be parsed into an array.

Discussion
The array representation at the location identified by aURLmust contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in Mac OS X v10.0 and later.

Class Methods 113
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

See Also
– writeToURL:atomically: (page 140)

Declared In
NSArray.h

arrayWithObject:
Creates and returns an array containing a given object.

+ (id)arrayWithObject:(id)anObject

Parameters
anObject

An object.

Return Value
An array containing the single element anObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ array (page 111)
+ arrayWithObjects: (page 114)

Related Sample Code
CoreRecipes
Dicey
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Declared In
NSArray.h

arrayWithObjects:
Creates and returns an array containing the objects in the argument list.

+ (id)arrayWithObjects:(id)firstObj, ...

Parameters
firstObj, ...

A comma-separated list of objects ending with nil.

Return Value
An array containing the objects in the argument list.

Discussion
This code example creates an array containing three different types of element:

NSArray *myArray;

114 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

NSDate *aDate = [NSDate distantFuture];
NSValue *aValue = [NSNumber numberWithInt:5];
NSString *aString = @"a string";

myArray = [NSArray arrayWithObjects:aDate, aValue, aString, nil];

Availability
Available in Mac OS X v10.0 and later.

See Also
+ array (page 111)
+ arrayWithObject: (page 114)

Related Sample Code
CoreRecipes
iSpend
QTCoreVideo301
Sketch-112
TimelineToTC

Declared In
NSArray.h

arrayWithObjects:count:
Creates and returns an array that includes a given number of objects from a given C array.

+ (id)arrayWithObjects:(const id *)objects count:(NSUInteger)count

Parameters
objects

A C array of objects.

count
The number of values from the objects C array to include in the new array. This number will be the
count of the new array—it must not be negative or greater than the number of elements in objects.

Return Value
A new array including the first count objects from objects.

Discussion
Elements are added to the new array in the same order they appear in objects, up to but not including
index count.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getObjects: (page 122)
– getObjects:range: (page 123)

Declared In
NSArray.h

Class Methods 115
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Instance Methods

addObserver:forKeyPath:options:context:
Raises an exception.

- (void)addObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath
options:(NSKeyValueObservingOptions)options context:(void *)context

Parameters
observer

The object to register for KVO notifications. The observer must implement the key-value observing
method observeValueForKeyPath:ofObject:change:context: (page 2081).

keyPath
The key path, relative to the receiver, of the property to observe. This value must not be nil.

options
A combination of the NSKeyValueObservingOptions (page 2086) values that specifies what is
included in observation notifications. For possible values, see NSKeyValueObservingOptions.

context
Arbitrary data that is passed to observer in
observeValueForKeyPath:ofObject:change:context: (page 2081).

Special Considerations

NSArray objects are not observable, so this method raises an exception when invoked on an NSArray object.
Instead of observing an array, observe the to-many relationship for which the array is the collection of related
objects.

Availability
Available in Mac OS X v10.4 and later.

See Also
– removeObserver:forKeyPath: (page 133)
– addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 116)

Declared In
NSKeyValueObserving.h

addObserver:toObjectsAtIndexes:forKeyPath:options:context:
Registers anObserver to receive key value observer notifications for the specified keypath relative to the
objects at indexes.

- (void)addObserver:(NSObject *)anObserver toObjectsAtIndexes:(NSIndexSet *)indexes
forKeyPath:(NSString *)keyPath options:(NSKeyValueObservingOptions)options
context:(void *)context

Discussion
The options determine what is included in the notifications, and the context is passed in the notifications.

116 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

This is not merely a convenience method; invoking this method is potentially much faster than repeatedly
invoking addObserver:forKeyPath:options:context: (page 2079).

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeObserver:fromObjectsAtIndexes:forKeyPath: (page 134)

Related Sample Code
iSpend

Declared In
NSKeyValueObserving.h

arrayByAddingObject:
Returns a new array that is a copy of the receiver with a given object added to the end.

- (NSArray *)arrayByAddingObject:(id)anObject

Parameters
anObject

An object.

Return Value
A new array that is a copy of the receiver with anObject added to the end.

Discussion
If anObject is nil, an NSInvalidArgumentException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addObject: (page 911) (NSMutableArray)

Related Sample Code
UIElementInspector

Declared In
NSArray.h

arrayByAddingObjectsFromArray:
Returns a new array that is a copy of the receiver with the objects contained in another array added to the
end.

- (NSArray *)arrayByAddingObjectsFromArray:(NSArray *)otherArray

Parameters
otherArray

An array.

Instance Methods 117
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Return Value
A new array that is a copy of the receiver with the objects contained in otherArray added to the end.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addObjectsFromArray: (page 911) (NSMutableArray)

Related Sample Code
QTRecorder

Declared In
NSArray.h

componentsJoinedByString:
Constructs and returns an NSString object that is the result of interposing a given separator between the
elements of the receiver’s array.

- (NSString *)componentsJoinedByString:(NSString *)separator

Parameters
separator

The string to interpose between the elements of the receiver’s array.

Return Value
An NSString object that is the result of interposing separator between the elements of the receiver’s
array. If the receiver has no elements, returns an NSString object representing an empty string.

Discussion
For example, this code excerpt writes "here be dragons" to the console:

NSArray *pathArray = [NSArray arrayWithObjects:@"here",
 @"be", @"dragons", nil];
NSLog(@"%@",
 [pathArray componentsJoinedByString:@" "]);

Special Considerations

Each element in the receiver’s array must handle description.

Availability
Available in Mac OS X v10.0 and later.

See Also
– componentsSeparatedByString: (page 1547) (NSString)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
AttachAScript
CoreRecipes
Sproing
TipWrapper

118 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Declared In
NSArray.h

containsObject:
Returns a Boolean value that indicates whether a given object is present in the receiver.

- (BOOL)containsObject:(id)anObject

Parameters
anObject

An object.

Return Value
YES if anObject is present in the receiver, otherwise NO.

Discussion
This method determines whether anObject is present in the receiver by sending an isEqual: (page 2101)
message to each of the receiver’s objects (and passing anObject as the parameter to each isEqual:
message).

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfObject: (page 123)
– indexOfObjectIdenticalTo: (page 124)

Related Sample Code
TimelineToTC

Declared In
NSArray.h

count
Returns the number of objects currently in the receiver.

- (NSUInteger)count

Return Value
The number of objects currently in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectAtIndex: (page 131)

Related Sample Code
CoreRecipes
iSpend
Quartz Composer WWDC 2005 TextEdit

Instance Methods 119
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Sketch-112
TextEditPlus

Declared In
NSArray.h

description
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)description

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– descriptionWithLocale: (page 120)
– descriptionWithLocale:indent: (page 121)

Declared In
NSArray.h

descriptionWithLocale:
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale

Parameters
locale

An NSLocale object or an NSDictionary object that specifies options used for formatting each of
the receiver’s elements (where recognized). Specify nil if you don’t want the elements formatted.

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
For a description of how locale is applied to each element in the receiving array, see
descriptionWithLocale:indent: (page 121).

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 120)
– descriptionWithLocale:indent: (page 121)

Declared In
NSArray.h

120 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

descriptionWithLocale:indent:
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale indent:(NSUInteger)level

Parameters
locale

An NSLocale object or an NSDictionary object that specifies options used for formatting each of
the receiver’s elements (where recognized). Specify nil if you don’t want the elements formatted.

level
A level of indent, to make the output more readable: set level to 0 to use four spaces to indent, or
1 to indent the output with a tab character.

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
The returned NSString object contains the string representations of each of the receiver’s elements, in
order, from first to last. To obtain the string representation of a given element,
descriptionWithLocale:indent: proceeds as follows:

 ■ If the element is an NSString object, it is used as is.

 ■ If the element responds to descriptionWithLocale:indent:, that method is invoked to obtain the
element’s string representation.

 ■ If the element responds to descriptionWithLocale: (page 120), that method is invoked to obtain
the element’s string representation.

 ■ If none of the above conditions is met, the element’s string representation is obtained by invoking its
description (page 120) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 120)
– descriptionWithLocale: (page 120)

Declared In
NSArray.h

filteredArrayUsingPredicate:
Evaluates a given predicate against each object in the receiver and returns a new array containing the objects
for which the predicate returns true.

- (NSArray *)filteredArrayUsingPredicate:(NSPredicate *)predicate

Parameters
predicate

The predicate against which to evaluate the receiver’s elements.

Instance Methods 121
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Return Value
A new array containing the objects in the receiver for which predicate returns true.

Discussion
For more details, see Predicate Programming Guide.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSPredicate.h

firstObjectCommonWithArray:
Returns the first object contained in the receiver that’s equal to an object in another given array.

- (id)firstObjectCommonWithArray:(NSArray *)otherArray

Parameters
otherArray

An array.

Return Value
Returns the first object contained in the receiver that’s equal to an object in otherArray. If no such object
is found, returns nil.

Discussion
This method uses isEqual: (page 2101) to check for object equality.

Availability
Available in Mac OS X v10.0 and later.

See Also
– containsObject: (page 119)

Declared In
NSArray.h

getObjects:
Copies all the objects contained in the receiver to aBuffer.

- (void)getObjects:(id *)aBuffer

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithObjects:count: (page 115)

Declared In
NSArray.h

122 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

getObjects:range:
Copies the objects contained in the receiver that fall within the specified range to aBuffer.

- (void)getObjects:(id *)aBuffer range:(NSRange)aRange

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithObjects:count: (page 115)

Declared In
NSArray.h

indexOfObject:
Returns the lowest index whose corresponding array value is equal to a given object.

- (NSUInteger)indexOfObject:(id)anObject

Parameters
anObject

An object.

Return Value
The lowest index whose corresponding array value is equal to anObject. If none of the objects in the receiver
is equal to anObject, returns NSNotFound.

Discussion
Objects are considered equal if isEqual: (page 2101) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– containsObject: (page 119)
– indexOfObjectIdenticalTo: (page 124)

Related Sample Code
Core Data HTML Store
NewsReader
WhackedTV

Declared In
NSArray.h

indexOfObject:inRange:
Returns the lowest index within a specified range whose corresponding array value is equal to a given object
.

- (NSUInteger)indexOfObject:(id)anObject inRange:(NSRange)range

Instance Methods 123
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Parameters
anObject

An object.

range
The range of indexes in the receiver within which to search for anObject.

Return Value
The lowest index within rangewhose corresponding array value is equal to anObject. If none of the objects
within range is equal to anObject, returns NSNotFound.

Discussion
Objects are considered equal if isEqual: (page 2101) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– containsObject: (page 119)
– indexOfObjectIdenticalTo:inRange: (page 125)

Declared In
NSArray.h

indexOfObjectIdenticalTo:
Returns the lowest index whose corresponding array value is identical to a given object.

- (NSUInteger)indexOfObjectIdenticalTo:(id)anObject

Parameters
anObject

An object.

Return Value
The lowest index whose corresponding array value is identical to anObject. If none of the objects in the
receiver is identical to anObject, returns NSNotFound.

Discussion
Objects are considered identical if their object addresses are the same.

Availability
Available in Mac OS X v10.0 and later.

See Also
– containsObject: (page 119)
– indexOfObject: (page 123)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSArray.h

124 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

indexOfObjectIdenticalTo:inRange:
Returns the lowest index within a specified range whose corresponding array value is equal to a given object
.

- (NSUInteger)indexOfObjectIdenticalTo:(id)anObject inRange:(NSRange)range

Parameters
anObject

An object.

range
The range of indexes in the receiver within which to search for anObject.

Return Value
The lowest index within range whose corresponding array value is identical to anObject. If none of the
objects within range is identical to anObject, returns NSNotFound.

Discussion
Objects are considered identical if their object addresses are the same.

Availability
Available in Mac OS X v10.0 and later.

See Also
– containsObject: (page 119)
– indexOfObject:inRange: (page 123)

Declared In
NSArray.h

initWithArray:
Initializes a newly allocated array by placing in it the objects contained in a given array.

- (id)initWithArray:(NSArray *)anArray

Parameters
anArray

An array.

Return Value
An array initialized to contain the objects in anArray. The returned object might be different than the original
receiver.

Discussion
After an immutable array has been initialized in this way, it cannot be modified.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithObject: (page 114)
– initWithObjects: (page 127)

Instance Methods 125
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Declared In
NSArray.h

initWithArray:copyItems:
Initializes a newly allocated array using anArray as the source of data objects for the array.

- (id)initWithArray:(NSArray *)array copyItems:(BOOL)flag

Parameters
array

An array.

flag
If YES, each object in array receives a copyWithZone: message to create a copy of the object. In a
managed memory environment, this is instead of the retain message the object would otherwise
receive. The object copy is then added to the returned array.

If NO, then in a managed memory environment each object in array simply receives a retain
message as it’s added to the returned array.

Return Value
An array initialized to contain the objects—or if flag is YES, copies of the objects—in array. The returned
object might be different than the original receiver.

Discussion
After an immutable array has been initialized in this way, it cannot be modified.

Availability
Available in Mac OS X v10.2 and later.

See Also
– initWithArray: (page 125)
+ arrayWithObject: (page 114)
– initWithObjects: (page 127)

Declared In
NSArray.h

initWithContentsOfFile:
Initializes a newly allocated array with the contents of the file specified by a given path.

- (id)initWithContentsOfFile:(NSString *)aPath

Parameters
aPath

The path to a file containing a string representation of an array produced by the
writeToFile:atomically: (page 139) method.

Return Value
An array initialized to contain the contents of the file specified by aPath or nil if the file can’t be opened
or the contents of the file can’t be parsed into an array. The returned object might be different than the
original receiver.

126 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Discussion
The array representation in the file identified by aPath must contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithContentsOfFile: (page 113)
– writeToFile:atomically: (page 139)

Declared In
NSArray.h

initWithContentsOfURL:
Initializes a newly allocated array with the contents of the location specified by a given URL.

- (id)initWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The location of a file containing a string representation of an array produced by the
writeToURL:atomically: (page 140) method.

Return Value
An array initialized to contain the contents specified by aURL. Returns nil if the location can’t be opened
or if the contents of the location can’t be parsed into an array. The returned object might be different than
the original receiver.

Discussion
The array representation at the location identified by aURLmust contain only property list objects (NSString,
NSData, NSArray, or NSDictionary objects).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithContentsOfURL: (page 113)
– writeToURL:atomically: (page 140)

Declared In
NSArray.h

initWithObjects:
Initializes a newly allocated array by placing in it the objects in the argument list.

- (id)initWithObjects:(id)firstObj, ...

Parameters
firstObj, ...

A comma-separated list of objects ending with nil.

Instance Methods 127
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Return Value
An array initialized to include the objects in the argument list. The returned object might be different than
the original receiver.

Discussion
After an immutable array has been initialized in this way, it can’t be modified.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithObjects:count: (page 128)
+ arrayWithObjects: (page 114)
– initWithArray: (page 125)

Declared In
NSArray.h

initWithObjects:count:
Initializes a newly allocated array to include a given number of objects from a given C array.

- (id)initWithObjects:(const id *)objects
count:(NSUInteger)count

Parameters
objects

A C array of objects.

count
The number of values from the objects C array to include in the new array. This number will be the
count of the new array—it must not be negative or greater than the number of elements in objects.

Return Value
A newly allocated array including the first count objects from objects. The returned object might be
different than the original receiver.

Discussion
Elements are added to the new array in the same order they appear in objects, up to but not including
index count.

After an immutable array has been initialized in this way, it can’t be modified.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithObjects: (page 127)
+ arrayWithObjects: (page 114)
– initWithArray: (page 125)

Declared In
NSArray.h

128 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

isEqualToArray:
Compares the receiving array to another array.

- (BOOL)isEqualToArray:(NSArray *)otherArray

Parameters
otherArray

An array.

Return Value
YES if the contents of otherArray are equal to the contents of the receiver, otherwise NO.

Discussion
Two arrays have equal contents if they each hold the same number of objects and objects at a given index
in each array satisfy the isEqual: (page 2101) test.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArray.h

lastObject
Returns the object in the array with the highest index value.

- (id)lastObject

Return Value
The object in the array with the highest index value. If the array is empty, returns nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeLastObject (page 916) (NSMutableArray)

Related Sample Code
Core Data HTML Store
CoreRecipes
QTKitAdvancedDocument
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSArray.h

makeObjectsPerformSelector:
Sends to each object in the receiver the message identified by a given selector, starting with the first object
and continuing through the array to the last object.

Instance Methods 129
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

- (void)makeObjectsPerformSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies the message to send to the objects in the receiver. The method must not
take any arguments, and must not have the side effect of modifying the receiving array.

Discussion
This method raises an NSInvalidArgumentException if aSelector is NULL.

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeObjectsPerformSelector:withObject: (page 130)

Related Sample Code
EnhancedDataBurn
QTKitMovieShuffler
Sketch-112
WhackedTV

Declared In
NSArray.h

makeObjectsPerformSelector:withObject:
Sends the aSelector message to each object in the array, starting with the first object and continuing
through the array to the last object.

- (void)makeObjectsPerformSelector:(SEL)aSelector withObject:(id)anObject

Parameters
aSelector

A selector that identifies the message to send to the objects in the receiver. The method must take
a single argument of type id, and must not have the side effect of modifying the receiving array.

anObject
The object to send as the argument to each invocation of the aSelector method.

Discussion
This method raises an NSInvalidArgumentException if aSelector is NULL.

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeObjectsPerformSelector: (page 129)

Related Sample Code
EnhancedDataBurn
ImageBackground
iSpend
QTKitMovieShuffler

130 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Sketch-112

Declared In
NSArray.h

objectAtIndex:
Returns the object located at index.

- (id)objectAtIndex:(NSUInteger)index

Parameters
index

An index within the bounds of the receiver.

Return Value
The object located at index.

Discussion
If index is beyond the end of the array (that is, if index is greater than or equal to the value returned by
count), an NSRangeException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
– count (page 119)
– objectsAtIndexes: (page 132)

Related Sample Code
CoreRecipes
MyPhoto
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSArray.h

objectEnumerator
Returns an enumerator object that lets you access each object in the receiver.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver, in order, from the element at the
lowest index upwards.

Discussion
Returns an enumerator object that lets you access each object in the receiver, in order, starting with the
element at index 0, as in:

Instance Methods 131
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

NSEnumerator *enumerator = [myArray objectEnumerator];
id anObject;

while (anObject = [enumerator nextObject]) {
 /* code to act on each element as it is returned */
}

Special Considerations

When you use this method with mutable subclasses of NSArray, you must not modify the array during
enumeration.

On Mac OS X v10.5 and later, it is more efficient to use the fast enumeration protocol (see
NSFastEnumeration).

Availability
Available in Mac OS X v10.0 and later.

See Also
– reverseObjectEnumerator (page 134)
– nextObject (page 558) (NSEnumerator)

Related Sample Code
CoreRecipes
GridCalendar
iSpend
SimpleCalendar
StickiesExample

Declared In
NSArray.h

objectsAtIndexes:
Returns an array containing the objects in the receiver at the indexes specified by a given index set.

- (NSArray *)objectsAtIndexes:(NSIndexSet *)indexes

Return Value
An array containing the objects in the receiver at the indexes specified by indexes.

Discussion
The returned objects are in the ascending order of their indexes in indexes, so that object in returned array
with higher index in indexes will follow the object with smaller index in indexes.

Raises an NSRangeException exception if any location in indexes exceeds the bounds of the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– count (page 119)
– objectAtIndex: (page 131)

132 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Declared In
NSArray.h

pathsMatchingExtensions:
Returns an array containing all the pathname elements in the receiver that have filename extensions from
a given array.

- (NSArray *)pathsMatchingExtensions:(NSArray *)filterTypes

Parameters
filterTypes

An array of NSString objects containing filename extensions. The extensions should not include the
dot (“.”) character.

Return Value
An array containing all the pathname elements in the receiver that have filename extensions from the
filterTypes array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPathUtilities.h

removeObserver:forKeyPath:
Raises an exception.

- (void)removeObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath

Parameters
observer

The object to remove as an observer.

keyPath
A key-path, relative to the receiver, for which observer is registered to receive KVO change
notifications. This value must not be nil.

Special Considerations

NSArray objects are not observable, so this method raises an exception when invoked on an NSArray object.
Instead of observing an array, observe the to-many relationship for which the array is the collection of related
objects.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addObserver:forKeyPath:options:context: (page 116)
– removeObserver:fromObjectsAtIndexes:forKeyPath: (page 134)

Declared In
NSKeyValueObserving.h

Instance Methods 133
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

removeObserver:fromObjectsAtIndexes:forKeyPath:
Removes anObserver from all key value observer notifications associated with the specified keyPath relative
to the receiver’s objects at indexes.

- (void)removeObserver:(NSObject *)anObserver fromObjectsAtIndexes:(NSIndexSet
*)indexes forKeyPath:(NSString *)keyPath

Discussion
This is not merely a convenience method; invoking this method is potentially much faster than repeatedly
invoking removeObserver:forKeyPath: (page 2082).

Availability
Available in Mac OS X v10.3 and later.

See Also
– addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 116)

Related Sample Code
iSpend

Declared In
NSKeyValueObserving.h

reverseObjectEnumerator
Returns an enumerator object that lets you access each object in the receiver, in reverse order.

- (NSEnumerator *)reverseObjectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver, in order, from the element at the
highest index down to the element at index 0.

Special Considerations

When you use this method with mutable subclasses of NSArray, you must not modify the array during
enumeration.

On Mac OS X v10.5 and later, it is more efficient to use the fast enumeration protocol (see
NSFastEnumeration).

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectEnumerator (page 131)
– nextObject (page 558) (NSEnumerator)

Related Sample Code
EnhancedAudioBurn
QTKitMovieShuffler

Declared In
NSArray.h

134 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

setValue:forKey:
Invokes setValue:forKey: on each of the receiver's items using the specified value and key.

- (void)setValue:(id)value forKey:(NSString *)key

Availability
Available in Mac OS X v10.3 and later.

See Also
– valueForKey: (page 139)

Related Sample Code
CoreRecipes

Declared In
NSKeyValueCoding.h

sortedArrayHint
Analyzes the receiver and returns a “hint” that speeds the sorting of the array when the hint is supplied to
sortedArrayUsingFunction:context:hint: (page 137).

- (NSData *)sortedArrayHint

Availability
Available in Mac OS X v10.0 and later.

See Also
– sortedArrayUsingFunction:context:hint: (page 137)

Declared In
NSArray.h

sortedArrayUsingDescriptors:
Returns a copy of the receiver sorted as specified by a given array of sort descriptors.

- (NSArray *)sortedArrayUsingDescriptors:(NSArray *)sortDescriptors

Parameters
sortDescriptors

An array of NSSortDescriptor objects.

Return Value
A copy of the receiver sorted as specified by sortDescriptors.

Discussion
The first descriptor specifies the primary key path to be used in sorting the receiver’s contents. Any subsequent
descriptors are used to further refine sorting of objects with duplicate values. See NSSortDescriptor for
additional information.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 135
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

See Also
– sortedArrayUsingSelector: (page 138)
– sortedArrayUsingFunction:context: (page 136)
– sortedArrayUsingFunction:context:hint: (page 137)

Related Sample Code
CoreRecipes

Declared In
NSSortDescriptor.h

sortedArrayUsingFunction:context:
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison function
comparator.

- (NSArray *)sortedArrayUsingFunction:(NSInteger (*)(id, id, void *))comparator
context:(void *)context

Discussion
The new array contains references to the receiver’s elements, not copies of them.

The comparison function is used to compare two elements at a time and should return NSOrderedAscending
if the first element is smaller than the second, NSOrderedDescending if the first element is larger than the
second, and NSOrderedSame if the elements are equal. Each time the comparison function is called, it’s
passed context as its third argument. This allows the comparison to be based on some outside parameter,
such as whether character sorting is case-sensitive or case-insensitive.

Given anArray (an array of NSNumber objects) and a comparison function of this type:

NSInteger intSort(id num1, id num2, void *context)
{
 int v1 = [num1 intValue];
 int v2 = [num2 intValue];
 if (v1 < v2)
 return NSOrderedAscending;
 else if (v1 > v2)
 return NSOrderedDescending;
 else
 return NSOrderedSame;
}

A sorted version of anArray is created in this way:

NSArray *sortedArray; sortedArray = [anArray sortedArrayUsingFunction:intSort
context:NULL];

Availability
Available in Mac OS X v10.0 and later.

See Also
– sortedArrayUsingDescriptors: (page 135)
– sortedArrayUsingFunction:context:hint: (page 137)
– sortedArrayUsingSelector: (page 138)

136 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Related Sample Code
Birthdays
NewsReader

Declared In
NSArray.h

sortedArrayUsingFunction:context:hint:
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison function
comparator.

- (NSArray *)sortedArrayUsingFunction:(NSInteger (*)(id, id, void *))comparator
context:(void *)context hint:(NSData *)hint

Discussion
The new array contains references to the receiver’s elements, not copies of them.

This method is similar to sortedArrayUsingFunction:context: (page 136), except that it uses the
supplied hint to speed the sorting process. When you know the array is nearly sorted, this method is faster
than sortedArrayUsingFunction:context:. If you sorted a large array (N entries) once, and you don’t
change it much (P additions and deletions, where P is much smaller than N), then you can reuse the work
you did in the original sort by conceptually doing a merge sort between the N “old” items and the P “new”
items.

To obtain an appropriate hint, use sortedArrayHint (page 135). You should obtain this hint when the
original array has been sorted, and keep hold of it until you need it, after the array has been modified. The
hint is computed by sortedArrayHint (page 135) in O(N) (where N is the number of items). This assumes
that items in the array implement a -hashmethod. Given a suitable hint, and assuming that the hash function
is a “good” hash function, -sortedArrayUsingFunction:context:hint: (page 137) sorts the array in
O(P*LOG(P)+N) where P is the number of adds or deletes. This is an improvement over the unhinted sort,
O(N*LOG(N)), when P is small.

The hint is simply an array of size N containing the N hashes. To re-sort you need internally to create a map
table mapping a hash to the index. Using this map table on the new array, you can get a first guess for the
indices, and then sort that. For example, a sorted array {A, B, D, E, F} with corresponding hash values {25, 96,
78, 32, 17}, may be subject to small changes that result in contents {E, A, C, B, F}. The mapping table maps
the hashes {25, 96, 78, 32, 17} to the indices {#0, #1, #2, #3, #4}. If the hashes for {E, A, C, B, F} are {32, 25, 99,
96, 17}, then by using the mapping table you can get a first order sort {#3, #0, ?, #1, #4}, so therefore create
an initial semi-sorted array {A, B, E, F}, and then perform a cheap merge sort with {C} that yields {A, B, C, E, F}.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sortedArrayUsingDescriptors: (page 135)
– sortedArrayUsingFunction:context: (page 136)
– sortedArrayUsingSelector: (page 138)

Declared In
NSArray.h

Instance Methods 137
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

sortedArrayUsingSelector:
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by a given selector.

- (NSArray *)sortedArrayUsingSelector:(SEL)comparator

Parameters
comparator

A selector that identifies the method to use to compare two elements at a time. The method should
return NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending
if the receiver is larger than the argument, and NSOrderedSame if they are equal.

Return Value
An array that lists the receiver’s elements in ascending order, as determined by the comparison method
specified by the selector comparator.

Discussion
The new array contains references to the receiver’s elements, not copies of them.

The comparator message is sent to each object in the array and has as its single argument another object
in the array.

For example, an array of NSString objects can be sorted by using the caseInsensitiveCompare: (page
1540) method declared in the NSString class. Assuming anArray exists, a sorted version of the array can be
created in this way:

NSArray *sortedArray =
 [anArray sortedArrayUsingSelector:@selector(caseInsensitiveCompare:)];

Availability
Available in Mac OS X v10.0 and later.

See Also
– sortedArrayUsingDescriptors: (page 135)
– sortedArrayUsingFunction:context: (page 136)
– sortedArrayUsingFunction:context:hint: (page 137)

Related Sample Code
CoreRecipes
EnhancedAudioBurn
QTSSInspector

Declared In
NSArray.h

subarrayWithRange:
Returns a new array containing the receiver’s elements that fall within the limits specified by a given range.

- (NSArray *)subarrayWithRange:(NSRange)range

138 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Parameters
range

A range within the receiver’s range of elements.

Return Value
A new array containing the receiver’s elements that fall within the limits specified by range.

Discussion
If range isn’t within the receiver’s range of elements, an NSRangeException is raised.

For example, the following code example creates an array containing the elements found in the first half of
wholeArray (assuming wholeArray exists).

NSArray *halfArray;
NSRange theRange;

theRange.location = 0;
theRange.length = [wholeArray count] / 2;

halfArray = [wholeArray subarrayWithRange:theRange];

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArray.h

valueForKey:
Returns an array containing the results of invoking valueForKey: using key on each of the receiver's objects.

- (id)valueForKey:(NSString *)key

Discussion
The returned array contains NSNull elements for each object that returns nil.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setValue:forKey: (page 135)

Related Sample Code
Core Data HTML Store
CoreRecipes
StickiesExample

Declared In
NSKeyValueCoding.h

writeToFile:atomically:
Writes the contents of the receiver to a file at a given path.

Instance Methods 139
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag

Parameters
path

The path at which to write the contents of the receiver.

If path contains a tilde (~) character, you must expand it with
stringByExpandingTildeInPath (page 1602) before invoking this method.

flag
If YES, the array is written to an auxiliary file, and then the auxiliary file is renamed to path. If NO, the
array is written directly to path. The YES option guarantees that path, if it exists at all, won’t be
corrupted even if the system should crash during writing.

Return Value
YES if the file is written successfully, otherwise NO.

Discussion
If the receiver’s contents are all property list objects (NSString, NSData, NSArray, or NSDictionary objects),
the file written by this method can be used to initialize a new array with the class method
arrayWithContentsOfFile: (page 113) or the instance method initWithContentsOfFile: (page 126).
This method recursively validates that all the contained objects are property list objects before writing out
the file, and returns NO if all the objects are not property list objects, since the resultant file would not be a
valid property list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithContentsOfFile: (page 126)

Declared In
NSArray.h

writeToURL:atomically:
Writes the contents of the receiver to the location specified by a given URL.

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)flag

Parameters
aURL

The location at which to write the receiver.

flag
If YES, the array is written to an auxiliary location, and then the auxiliary location is renamed to aURL.
If NO, the array is written directly to aURL. The YES option guarantees that aURL, if it exists at all, won’t
be corrupted even if the system should crash during writing.

Return Value
YES if the location is written successfully, otherwise NO.

Discussion
If the receiver’s contents are all property list objects (NSString, NSData, NSArray, or NSDictionary objects),
the location written by this method can be used to initialize a new array with the class method
arrayWithContentsOfURL: (page 113) or the instance method initWithContentsOfURL: (page 127).

140 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithContentsOfURL: (page 127)

Declared In
NSArray.h

Instance Methods 141
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

142 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSArray Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSException.h

Companion guide Assertions and Logging

Overview

NSAssertionHandler objects are automatically created to handle false assertions. Assertion macros, such
as NSAssert and NSCAssert, are used to evaluate a condition, and, if the condition evaluates to false, the
macros pass a string to an NSAssertionHandler object describing the failure. Each thread has its own
NSAssertionHandler object. When invoked, an assertion handler prints an error message that includes
the method and class (or function) containing the assertion and raises an
NSInternalInconsistencyException.

You create assertions only using the assertion macros—you rarely need to invoke NSAssertionHandler
methods directly. The macros for use inside methods and functions send
handleFailureInMethod:object:file:lineNumber:description: (page 145) and
handleFailureInFunction:file:lineNumber:description: (page 144) messages respectively to the
current assertion handler. The assertion handler for the current thread is obtained using the
currentHandler (page 144) class method. If you need to customize the behavior of NSAssertionHandler,
create a subclass, overriding the above two methods, and install your instance into the current thread’s
attributes dictionary with the key NSAssertionHandler.

Tasks

Handling Assertion Failures

+ currentHandler (page 144)
Returns the NSAssertionHandler object associated with the current thread.

– handleFailureInFunction:file:lineNumber:description: (page 144)
Logs (using NSLog) an error message that includes the name of the function, the name of the file,
and the line number.

Overview 143
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAssertionHandler Class Reference

– handleFailureInMethod:object:file:lineNumber:description: (page 145)
Logs (using NSLog) an error message that includes the name of the method that failed, the class name
of the object, the name of the source file, and the line number.

Class Methods

currentHandler
Returns the NSAssertionHandler object associated with the current thread.

+ (NSAssertionHandler *)currentHandler

Return Value
The NSAssertionHandler object associated with the current thread.

Discussion
If no assertion handler is associated with the current thread, this method creates one and assigns it to the
thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSException.h

Instance Methods

handleFailureInFunction:file:lineNumber:description:
Logs (using NSLog) an error message that includes the name of the function, the name of the file, and the
line number.

- (void)handleFailureInFunction:(NSString *)functionName file:(NSString *)fileName
lineNumber:(NSInteger)line description:(NSString *)format, ...

Parameters
functionName

The function that failed.

object
The object that failed.

fileName
The name of the source file.

line
The line in which the failure occurred.

144 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAssertionHandler Class Reference

format,...
A format string followed by a comma-separated list of arguments to substitute into the format string.
See Formatting String Objects for more information.

Discussion
Raises NSInternalInconsistencyException.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSException.h

handleFailureInMethod:object:file:lineNumber:description:
Logs (using NSLog) an error message that includes the name of the method that failed, the class name of
the object, the name of the source file, and the line number.

- (void)handleFailureInMethod:(SEL)selector object:(id)object file:(NSString
*)fileName lineNumber:(NSInteger)line description:(NSString *)format, ...

Parameters
selector

The selector for the method that failed

object
The object that failed.

fileName
The name of the source file.

line
The line in which the failure occurred.

format,...
A format string followed by a comma-separated list of arguments to substitute into the format string.
See Formatting String Objects for more information.

Discussion
Raises NSInternalInconsistencyException.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSException.h

Instance Methods 145
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAssertionHandler Class Reference

146 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAssertionHandler Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSAttributedString.h

Companion guide Attributed Strings Programming Guide

Related sample code CIAnnotation
CoreRecipes
iSpend
OpenGL Screensaver
Sketch-112

Overview

NSAttributedString objects manage character strings and associated sets of attributes (for example, font
and kerning) that apply to individual characters or ranges of characters in the string. An association of
characters and their attributes is called an attributed string. The cluster’s two public classes,
NSAttributedString andNSMutableAttributedString, declare the programmatic interface for read-only
attributed strings and modifiable attributed strings, respectively. The Foundation framework defines only
the basic functionality for attributed strings; additional methods supporting RTF, graphics attributes, and
drawing attributed strings are described in NSAttributedString Additions, found in the Application Kit. The
Application Kit also uses a subclass of NSMutableAttributedString, called NSTextStorage, to provide the
storage for the Application Kit’s extended text-handling system.

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to encapsulate
the paragraph or ruler attributes used by the NSAttributedString classes.

An attributed string identifies attributes by name, storing a value under the name in an NSDictionary
object. Standard attribute keys are described in the “Constants” section of NSAttributedString Application Kit
Additions Reference. You can also assign any attribute name/value pair you wish to a range of characters—it
is up to your application to interpret custom attributes (see Attributed Strings Programming Guide).

Overview 147
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAttributedString Class Reference

Note that the default font for NSAttributedString objects is Helvetica 12-point, which differs from the
Mac OS X system font Lucida Grande, so you may wish to create the string with non-default attributes suitable
for your application using, for example, initWithString:attributes: (page 154).

Be aware that isEqual: comparison among NSAttributedString objects compares for exact equality,
including not only literal character-by-character string equality but also equality of all attributes, which is
not likely to be achieved in the case of many attributes such as attachments, lists, and tables, for example.

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

NSCopying
copyWithZone: (page 2042)

NSMutableCopying
mutableCopyWithZone: (page 2094)

Tasks

Creating an NSAttributedString Object

– initWithString: (page 153)
Returns an NSAttributedString object initialized with the characters of a given string and no
attribute information.

– initWithAttributedString: (page 153)
Returns an NSAttributedString object initialized with the characters and attributes of another
given attributed string.

– initWithString:attributes: (page 154)
Returns an NSAttributedString object initialized with a given string and attributes.

Retrieving Character Information

– string (page 155)
Returns the character contents of the receiver as an NSString object.

– length (page 155)
Returns the length of the receiver’s string object.

148 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAttributedString Class Reference

Retrieving Attribute Information

– attributesAtIndex:effectiveRange: (page 152)
Returns the attributes for the character at a given index.

– attributesAtIndex:longestEffectiveRange:inRange: (page 152)
Returns the attributes for the character at a given index, and by reference the range over which the
attributes apply.

– attribute:atIndex:effectiveRange: (page 149)
Returns the value for an attribute with a given name of the character at a given index, and by reference
the range over which the attribute applies.

– attribute:atIndex:longestEffectiveRange:inRange: (page 150)
Returns the value for the attribute with a given name of the character at a given index, and by reference
the range over which the attribute applies.

Comparing Attributed Strings

– isEqualToAttributedString: (page 154)
Returns a Boolean value that indicates whether the receiver is equal to another given attributed string.

Extracting a Substring

– attributedSubstringFromRange: (page 151)
Returns an NSAttributedString object consisting of the characters and attributes within a given
range in the receiver.

Instance Methods

attribute:atIndex:effectiveRange:
Returns the value for an attribute with a given name of the character at a given index, and by reference the
range over which the attribute applies.

- (id)attribute:(NSString *)attributeName atIndex:(NSUInteger)index
effectiveRange:(NSRangePointer)aRange

Parameters
attributeName

The name of an attribute.

index
The index for which to return attributes. This value must not exceed the bounds of the receiver.

Instance Methods 149
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAttributedString Class Reference

aRange
If non-NULL:

 ■ If the named attribute exists at index, upon return aRange contains a range over which the
named attribute’s value applies.

 ■ If the named attribute does not exist at index, upon return aRange contains the range over
which the attribute does not exist.

The range isn’t necessarily the maximum range covered by attributeName, and its extent is
implementation-dependent. If you need the maximum range, use
attribute:atIndex:longestEffectiveRange:inRange: (page 150). If you don't need this value,
pass NULL.

Return Value
The value for the attribute named attributeName of the character at index index, or nil if there is no
such attribute.

Discussion
Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributesAtIndex:effectiveRange: (page 152)

Related Sample Code
iSpend
TextLinks

Declared In
NSAttributedString.h

attribute:atIndex:longestEffectiveRange:inRange:
Returns the value for the attribute with a given name of the character at a given index, and by reference the
range over which the attribute applies.

- (id)attribute:(NSString *)attributeName atIndex:(NSUInteger)index
longestEffectiveRange:(NSRangePointer)aRange inRange:(NSRange)rangeLimit

Parameters
attributeName

The name of an attribute.

index
The index at which to test for attributeName.

150 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAttributedString Class Reference

aRange
If non-NULL:

 ■ If the named attribute exists at index, upon return aRange contains the full range over which
the value of the named attribute is the same as that at index, clipped to rangeLimit.

 ■ If the named attribute does not exist at index, upon return aRange contains the full range over
which the attribute does not exist, clipped to rangeLimit.

If you don't need this value, pass NULL.

rangeLimit
The range over which to search for continuous presence of attributeName. This value must not
exceed the bounds of the receiver.

Return Value
The value for the attribute named attributeName of the character at index, or nil if there is no such
attribute.

Discussion
Raises an NSRangeException if index or any part of rangeLimit lies beyond the end of the receiver’s
characters.

If you don’t need the longest effective range, it’s far more efficient to use the
attribute:atIndex:effectiveRange: (page 149) method to retrieve the attribute value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributesAtIndex:longestEffectiveRange:inRange: (page 152)

Declared In
NSAttributedString.h

attributedSubstringFromRange:
Returns an NSAttributedString object consisting of the characters and attributes within a given range
in the receiver.

- (NSAttributedString *)attributedSubstringFromRange:(NSRange)aRange

Parameters
aRange

The range from which to create a new attributed string. aRange must lie within the bounds of the
receiver.

Return Value
An NSAttributedString object consisting of the characters and attributes within aRange in the receiver.

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters. This
method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 151
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAttributedString Class Reference

Declared In
NSAttributedString.h

attributesAtIndex:effectiveRange:
Returns the attributes for the character at a given index.

- (NSDictionary *)attributesAtIndex:(NSUInteger)index
effectiveRange:(NSRangePointer)aRange

Parameters
index

The index for which to return attributes. This value must lie within the bounds of the receiver.

aRange
Upon return, the range over which the attributes and values are the same as those at index. This
range isn’t necessarily the maximum range covered, and its extent is implementation-dependent. If
you need the maximum range, use
attributesAtIndex:longestEffectiveRange:inRange: (page 152). If you don't need this value,
pass NULL.

Return Value
The attributes for the character at index.

Discussion
Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attribute:atIndex:effectiveRange: (page 149)

Declared In
NSAttributedString.h

attributesAtIndex:longestEffectiveRange:inRange:
Returns the attributes for the character at a given index, and by reference the range over which the attributes
apply.

- (NSDictionary *)attributesAtIndex:(NSUInteger)index
longestEffectiveRange:(NSRangePointer)aRange inRange:(NSRange)rangeLimit

Parameters
index

The index for which to return attributes. This value must not exceed the bounds of the receiver.

aRange
If non-NULL, upon return contains the maximum range over which the attributes and values are the
same as those at index, clipped to rangeLimit.

152 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAttributedString Class Reference

rangeLimit
The range over which to search for continuous presence of the attributes at index. This value must
not exceed the bounds of the receiver.

Discussion
Raises an NSRangeException if index or any part of rangeLimit lies beyond the end of the receiver’s
characters.

If you don’t need the range information, it’s far more efficient to use the
attributesAtIndex:effectiveRange: (page 152) method to retrieve the attribute value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attribute:atIndex:longestEffectiveRange:inRange: (page 150)

Declared In
NSAttributedString.h

initWithAttributedString:
Returns an NSAttributedString object initialized with the characters and attributes of another given
attributed string.

- (id)initWithAttributedString:(NSAttributedString *)attributedString

Parameters
attributedString

An attributed string.

Return Value
An NSAttributedString object initialized with the characters and attributes of attributedString. The
returned object might be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithRTF:documentAttributes: (NSAttributedString Additions)

Related Sample Code
Sketch-112

Declared In
NSAttributedString.h

initWithString:
Returns an NSAttributedString object initialized with the characters of a given string and no attribute
information.

- (id)initWithString:(NSString *)aString

Instance Methods 153
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAttributedString Class Reference

Parameters
aString

The characters for the new object.

Return Value
An NSAttributedString object initialized with the characters of aString and no attribute information
The returned object might be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithRTF:documentAttributes: (NSAttributedString Additions)

Declared In
NSAttributedString.h

initWithString:attributes:
Returns an NSAttributedString object initialized with a given string and attributes.

- (id)initWithString:(NSString *)aString attributes:(NSDictionary *)attributes

Parameters
aString

The string for the new attributed string.

attributes
The attributes for the new attributed string. You can assign to a range of characters any attribute
name/value pairs you wish, in addition to the standard attributes described in the “Constants” section
of NSAttributedString Application Kit Additions Reference.

Discussion
Returns an NSAttributedString object initialized with the characters of aString and the attributes of
attributes. The returned object might be different from the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
- initWithRTF:documentAttributes: (NSAttributedString Additions)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CIAnnotation
OpenGL Screensaver

Declared In
NSAttributedString.h

isEqualToAttributedString:
Returns a Boolean value that indicates whether the receiver is equal to another given attributed string.

154 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAttributedString Class Reference

- (BOOL)isEqualToAttributedString:(NSAttributedString *)otherString

Parameters
otherString

The attributed string with which to compare the receiver.

Return Value
YES if the receiver is equal to otherString, otherwise NO.

Discussion
Attributed strings must match in both characters and attributes to be equal.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

length
Returns the length of the receiver’s string object.

- (NSUInteger)length

Availability
Available in Mac OS X v10.0 and later.

See Also
length (page 1580) (NSString)
- size (NSAttributedString Additions)

Related Sample Code
NumberInput_IMKit_Sample
VertexPerformanceTest

Declared In
NSAttributedString.h

string
Returns the character contents of the receiver as an NSString object.

- (NSString *)string

Return Value
The character contents of the receiver as an NSString object.

Discussion
This method doesn’t strip out attachment characters; use NSText's string method to extract just the
linguistically significant characters.

Instance Methods 155
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAttributedString Class Reference

For performance reasons, this method returns the current backing store of the attributed string object. If you
want to maintain a snapshot of this as you manipulate the returned string, you should make a copy of the
appropriate substring.

This primitive method must guarantee efficient access to an attributed string’s characters; subclasses should
implement it to execute in O(1) time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend
NumberInput_IMKit_Sample
Spotlight

Declared In
NSAttributedString.h

Constants

Standard attribute keys are described in the “Constants” section of NSAttributedString Application Kit Additions
Reference.

156 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAttributedString Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSAutoreleasePool.h

Companion guide Memory Management Programming Guide for Cocoa

Related sample code CocoaSpeechSynthesisExample
NumberInput_IMKit_Sample
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
SpellingChecker-CocoaCarbon

Overview

The NSAutoreleasePool class is used to support Cocoa’s reference-counted memory management system.
An autorelease pool stores objects that are sent a release message when the pool itself is drained.

In a reference-counted environment (as opposed to one which uses garbage collection), an
NSAutoreleasePool object contains objects that have received an autorelease (page 2099) message and
when drained it sends a release (page 2106) message to each of those objects. Thus, sending
autorelease (page 2099) instead of release (page 2106) to an object extends the lifetime of that object at
least until the pool itself is drained (it may be longer if the object is subsequently retained). An object can
be put into the same pool several times, in which case it receives a release (page 2106) message for each
time it was put into the pool.

In a reference counted environment, Cocoa expects there to be an autorelease pool always available. If a
pool is not available, autoreleased objects do not get released and you leak memory. In this situation, your
program will typically log suitable warning messages.

The Application Kit creates an autorelease pool on the main thread at the beginning of every cycle of the
event loop, and drains it at the end, thereby releasing any autoreleased objects generated while processing
an event. If you use the Application Kit, you therefore typically don’t have to create your own pools. If your
application creates a lot of temporary autoreleased objects within the event loop, however, it may be beneficial
to create “local” autorelease pools to help to minimize the peak memory footprint.

Overview 157
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSAutoreleasePool Class Reference

You create an NSAutoreleasePool object with the usual alloc and init messages and dispose of it with
drain (page 160) (or release (page 161)—to understand the difference, see “Garbage Collection” (page
158)). Since you cannot retain an autorelease pool (or autorelease it—see retain (page 161) and
autorelease (page 160)), draining a pool ultimately has the effect of deallocating it. You should always
drain an autorelease pool in the same context (invocation of a method or function, or body of a loop) that
it was created. See Autorelease Pools for more details.

Each thread (including the main thread) maintains its own stack of NSAutoreleasePool objects (see
“Threads” (page 158)). As new pools are created, they get added to the top of the stack. When pools are
deallocated, they are removed from the stack. Autoreleased objects are placed into the top autorelease pool
for the current thread. When a thread terminates, it automatically drains all of the autorelease pools associated
with itself.

Threads

If you are making Cocoa calls outside of the Application Kit’s main thread—for example if you create a
Foundation-only application or if you detach a thread—you need to create your own autorelease pool.

If your application or thread is long-lived and potentially generates a lot of autoreleased objects, you should
periodically drain and create autorelease pools (like the Application Kit does on the main thread); otherwise,
autoreleased objects accumulate and your memory footprint grows. If, however, your detached thread does
not make Cocoa calls, you do not need to create an autorelease pool.

Note: If you are creating secondary threads using the POSIX thread APIs instead of NSThread objects, you
cannot use Cocoa, including NSAutoreleasePool, unless Cocoa is in multithreading mode. Cocoa enters
multithreading mode only after detaching its first NSThread object. To use Cocoa on secondary POSIX
threads, your application must first detach at least one NSThread object, which can immediately exit. You
can test whether Cocoa is in multithreading mode with the NSThread class method isMultiThreaded (page
1642).

Garbage Collection

In a garbage-collected environment, there is no need for autorelease pools. You may, however, write a
framework that is designed to work in both a garbage-collected and reference-counted environment. In this
case, you can use autorelease pools to hint to the collector that collection may be appropriate. In a
garbage-collected environment, sending a drain (page 160) message to a pool triggers garbage collection
if necessary; release (page 161), however, is a no-op. In a reference-counted environment, drain (page 160)
has the same effect as release (page 161). Typically, therefore, you should use drain (page 160) instead of
release (page 161).

Tasks

Managing a Pool

– release (page 161)
Releases and pops the receiver.

158 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSAutoreleasePool Class Reference

– drain (page 160)
In a reference-counted environment, releases and pops the receiver; in a garbage-collected
environment, triggers garbage collection if the memory allocated since the last collection is greater
than the current threshold.

– autorelease (page 160)
Raises an exception.

– retain (page 161)
Raises an exception.

Adding an Object to a Pool

+ addObject: (page 159)
Adds a given object to the active autorelease pool in the current thread.

– addObject: (page 160)
Adds a given object to the receiver

Class Methods

addObject:
Adds a given object to the active autorelease pool in the current thread.

+ (void)addObject:(id)object

Parameters
object

The object to add to the active autorelease pool in the current thread.

Discussion
The same object may be added several times to the active pool and, when the pool is deallocated, it will
receive a release (page 2106) message for each time it was added.

Normally you don’t invoke this method directly—you send autorelease (page 2099) to object instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addObject: (page 160)

Declared In
NSAutoreleasePool.h

Class Methods 159
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSAutoreleasePool Class Reference

Instance Methods

addObject:
Adds a given object to the receiver

- (void)addObject:(id)object

Parameters
object

The object to add to the receiver.

Discussion
The same object may be added several times to the same pool; when the pool is deallocated, the object will
receive a release (page 2106) message for each time it was added.

Normally you don’t invoke this method directly—you send autorelease (page 2099) to object instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ addObject: (page 159)

Declared In
NSAutoreleasePool.h

autorelease
Raises an exception.

- (id)autorelease

Return Value
self.

Discussion
In a reference-counted environment, this method raises an exception.

drain
In a reference-counted environment, releases and pops the receiver; in a garbage-collected environment,
triggers garbage collection if the memory allocated since the last collection is greater than the current
threshold.

- (void)drain

160 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSAutoreleasePool Class Reference

Discussion
In a reference-counted environment, this method behaves the same as release (page 2106). Since an
autorelease pool cannot be retained (see retain (page 161)), this therefore causes the receiver to be
deallocated. When an autorelease pool is deallocated, it sends a release (page 2106) message to all its
autoreleased objects. If an object is added several times to the same pool, when the pool is deallocated it
receives a release (page 2106) message for each time it was added.

In a garbage-collected environment, this method ultimately calls objc_collect_if_needed.

Special Considerations

In a garbage-collected environment, release is a no-op, so unless you do not want to give the collector a
hint it is important to use drain in any code that may be compiled for a garbage-collected environment.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Core Data HTML Store
MassiveImage
VideoViewer

Declared In
NSAutoreleasePool.h

release
Releases and pops the receiver.

- (void)release

Discussion
In a reference-counted environment, since an autorelease pool cannot be retained (see retain (page 161)),
this method causes the receiver to be deallocated. When an autorelease pool is deallocated, it sends a
release (page 2106) message to all its autoreleased objects. If an object is added several times to the same
pool, when the pool is deallocated it receives a release (page 2106) message for each time it was added.

In a garbage-collected environment, this method is a no-op.

Special Considerations

You should typically use drain (page 160) instead of release.

See Also
– drain (page 160)

retain
Raises an exception.

- (id)retain

Return Value
self.

Instance Methods 161
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSAutoreleasePool Class Reference

Discussion
In a reference-counted environment, this method raises an exception.

162 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSAutoreleasePool Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSBundle.h

Companion guides Bundle Programming Guide
Resource Programming Guide

Related sample code CoreRecipes
GLSLShowpiece
NumberInput_IMKit_Sample
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Overview

An NSBundle object represents a location in the file system that groups code and resources that can be used
in a program. NSBundle objects locate program resources, dynamically load and unload executable code,
and assist in localization. You build a bundle in Xcode using one of these project types: Application, Framework,
Loadable Bundle, Palette.

See also NSBundle Additions in the Application Kit framework, which defines methods for loading nib files
and locating image resources.

Unlike some other Foundation classes with corresponding Core Foundation names (such as NSString and
CFString), NSBundle objects cannot be cast (“toll-free bridged”) to CFBundle references. If you need
functionality provided in CFBundle, you can still create a CFBundle and use the CFBundle API. See
Interchangeable Data Types for more information on toll-free bridging.

Overview 163
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Tasks

Initializing an NSBundle

– initWithPath: (page 176)
Returns an NSBundle object initialized to correspond to a given directory.

Getting an NSBundle

+ bundleForClass: (page 167)
Returns the NSBundle object with which a given class is associated.

+ bundleWithIdentifier: (page 168)
Returns the previously created NSBundle instance that has a given bundle identifier.

+ bundleWithPath: (page 169)
Returns an NSBundle object that corresponds to the specified directory.

+ mainBundle (page 169)
Returns the NSBundle object that corresponds to the directory where the current application
executable is located.

+ allBundles (page 167)
Returns an array of all the application’s non-framework bundles.

+ allFrameworks (page 167)
Returns an array of all of the application’s bundles that represent frameworks.

Getting a Bundled Class

– classNamed: (page 174)
Returns the Class object for the specified name.

– principalClass (page 187)
Returns the receiver’s principal class.

Finding a Resource

+ pathForResource:ofType:inDirectory: (page 170)
Returns the full pathname for the resource file identified by a given name and extension and residing
in a given bundle directory.

– pathForResource:ofType: (page 182)
Returns the full pathname for the resource identified by a given name and specified file extension.

– pathForResource:ofType:inDirectory: (page 183)
Returns the full pathname for the resource identified by the given name and file extension and located
in the specified bundle subdirectory.

164 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

– pathForResource:ofType:inDirectory:forLocalization: (page 184)
Returns the full pathname for the resource identified by the given name and file extension, located
in the specified bundle subdirectory, and limited to global resources and those associated with the
specified localization.

+ pathsForResourcesOfType:inDirectory: (page 171)
Returns an array containing the pathnames for all bundle resources having a given extension and
residing in the bundle directory specified by a given path.

– pathsForResourcesOfType:inDirectory: (page 185)
Returns an array containing the pathnames for all bundle resources having the specified filename
extension and residing in the resource subdirectory.

– pathsForResourcesOfType:inDirectory:forLocalization: (page 186)
Returns an array containing the pathnames for all bundle resources having the specified filename
extension, residing in the specified resource subdirectory, and limited to global resources and those
associated with the specified localization.

– resourcePath (page 189)
Returns the full pathname of the receiving bundle’s subdirectory containing resources.

Getting the Bundle Directory

– bundlePath (page 174)
Returns the full pathname of the receiver’s bundle directory.

Getting Bundle Information

– builtInPlugInsPath (page 173)
Returns the full pathname of the receiver's subdirectory containing plug-ins.

– bundleIdentifier (page 173)
Returns the receiver’s bundle identifier.

– executablePath (page 175)
Returns the full pathname of the receiver's executable file.

– infoDictionary (page 176)
Returns a dictionary that contains information about the receiver.

– objectForInfoDictionaryKey: (page 181)
Returns the value associated with a given key in the receiver's property list.

– pathForAuxiliaryExecutable: (page 182)
Returns the full pathname of the executable with a given name in the receiver’s bundle.

– privateFrameworksPath (page 188)
Returns the full pathname of the receiver's subdirectory containing private frameworks.

– sharedFrameworksPath (page 189)
Returns the full pathname of the receiver's subdirectory containing shared frameworks.

– sharedSupportPath (page 190)
Returns the full pathname of the receiver's subdirectory containing shared support files.

Tasks 165
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Managing Localized Resources

– localizedStringForKey:value:table: (page 180)
Returns a localized version of the string designated by a given key in a given table.

Loading a Bundle’s Code

– executableArchitectures (page 175)
Returns an array of numbers indicating the architecture types supported by the bundle’s executable.

– preflightAndReturnError: (page 187)
Returns a Boolean value indicating whether the bundle’s executable code could be loaded successfully.

– load (page 177)
Dynamically loads the bundle’s executable code into a running program, if the code has not already
been loaded.

– loadAndReturnError: (page 178)
Loads the bundle’s executable code and returns any errors.

– isLoaded (page 177)
Obtains information about the load status of a bundle.

– unload (page 190)
Unloads the code associated with the receiver.

Managing Localizations

+ preferredLocalizationsFromArray: (page 172)
Returns one or more localizations from the specified list that a bundle object would use to locate
resources for the current user.

+ preferredLocalizationsFromArray:forPreferences: (page 172)
Returns the localizations that a bundle object would prefer, given the specified bundle and user
preference localizations.

– localizations (page 179)
Returns a list of all the localizations contained within the receiver’s bundle.

– developmentLocalization (page 175)
Returns the localization used to create the bundle.

– preferredLocalizations (page 186)
Returns one or more localizations contained in the receiver’s bundle that the receiver uses to locate
resources based on the user’s preferences.

– localizedInfoDictionary (page 179)
Returns a dictionary with the keys from the bundle’s localized property list.

166 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Class Methods

allBundles
Returns an array of all the application’s non-framework bundles.

+ (NSArray *)allBundles

Return Value
An array of all the application’s non-framework bundles.

Discussion
The returned array includes the main bundle and all bundles that have been dynamically created but doesn’t
contain any bundles that represent frameworks.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

allFrameworks
Returns an array of all of the application’s bundles that represent frameworks.

+ (NSArray *)allFrameworks

Return Value
An array of all of the application’s bundles that represent frameworks. Only frameworks with one or more
Objective-C classes in them are included.

Discussion
The returned array includes frameworks that are linked into an application when the application is built and
bundles for frameworks that have been dynamically created.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Core Data HTML Store
CoreRecipes

Declared In
NSBundle.h

bundleForClass:
Returns the NSBundle object with which a given class is associated.

+ (NSBundle *)bundleForClass:(Class)aClass

Class Methods 167
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Parameters
aClass

A class.

Return Value
The NSBundle object that dynamically loaded aClass (a loadable bundle), the NSBundle object for the
framework in which aClass is defined, or the main bundle object if aClass was not dynamically loaded or
is not defined in a framework.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ mainBundle (page 169)
+ bundleWithPath: (page 169)

Related Sample Code
BundleLoader
CIAnnotation
Core Data HTML Store
CoreRecipes
GLSLShowpiece

Declared In
NSBundle.h

bundleWithIdentifier:
Returns the previously created NSBundle instance that has a given bundle identifier.

+ (NSBundle *)bundleWithIdentifier:(NSString *)identifier

Parameters
identifier

The identifier for an existing NSBundle instance.

Return Value
The previously created NSBundle instance that has the bundle identifier identifier. Returns nil if the
requested bundle is not found.

Discussion
This method is typically used by frameworks and plug-ins to locate their own bundle at runtime. This method
may be somewhat more efficient than trying to locate the bundle using the bundleForClass: (page 167)
method.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
JavaSplashScreen
PrefsPane

Declared In
NSBundle.h

168 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

bundleWithPath:
Returns an NSBundle object that corresponds to the specified directory.

+ (NSBundle *)bundleWithPath:(NSString *)fullPath

Parameters
fullPath

The path to a directory. This must be a full pathname for a directory; if it contains any symbolic links,
they must be resolvable.

Return Value
The NSBundle object that corresponds to fullPath, or nil if fullPath does not identify an accessible
bundle directory.

Discussion
This method allocates and initializes the returned object if there is no existing NSBundle associated with
fullPath, in which case it returns the existing object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ mainBundle (page 169)
+ bundleForClass: (page 167)
– initWithPath: (page 176)

Related Sample Code
BundleLoader
Core Data HTML Store

Declared In
NSBundle.h

mainBundle
Returns the NSBundle object that corresponds to the directory where the current application executable is
located.

+ (NSBundle *)mainBundle

Return Value
The NSBundle object that corresponds to the directory where the application executable is located, or nil
if a bundle object could not be created.

Discussion
This method allocates and initializes a bundle object if one doesn’t already exist. The new object corresponds
to the directory where the application executable is located. Be sure to check the return value to make sure
you have a valid bundle. This method may return a valid bundle object even for unbundled applications.

In general, the main bundle corresponds to an application file package or application wrapper: a directory
that bears the name of the application and is marked by a “.app” extension.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 169
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

See Also
+ bundleForClass: (page 167)
+ bundleWithPath: (page 169)

Related Sample Code
CITransitionSelectorSample2
CoreRecipes
NewsReader
NumberInput_IMKit_Sample
StickiesExample

Declared In
NSBundle.h

pathForResource:ofType:inDirectory:
Returns the full pathname for the resource file identified by a given name and extension and residing in a
given bundle directory.

+ (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension
inDirectory:(NSString *)bundlePath

Parameters
name

The name of a resource file contained in the bundle specified by bundlePath.

extension
If extension is an empty string or nil, the returned pathname is the first one encountered that
exactly matches name.

bundlePath
The path of a top-level bundle directory. This must be a valid path. For example, to specify the bundle
directory for an application, you might specify the path /Applications/MyApp.app.

Return Value
The full pathname for the resource file or nil if the file could not be located. This method also returns nil
if the bundle specified by the bundlePath parameter does not exist or is not a readable directory.

Discussion
The method first looks for a matching resource file in the nonlocalized resource directory (typically Resources)
of the specified bundle. If a matching resource file is not found, it then looks in the top level of any available
language-specific “.lproj” directories. (The search order for the language-specific directories corresponds
to the user’s preferences.) It does not recurse through other subdirectories at any of these locations. For more
details see Bundles and Localization.

Note: This method is best suited only for the occasional retrieval of resource files. In most cases where you
need to retrieve bundle resources, it is preferable to use the NSBundle instance methods instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– localizedStringForKey:value:table: (page 180)

170 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

– pathForResource:ofType: (page 182)
– pathForResource:ofType:inDirectory: (page 183)
+ pathsForResourcesOfType:inDirectory: (page 171)
– pathsForResourcesOfType:inDirectory: (page 185)

Declared In
NSBundle.h

pathsForResourcesOfType:inDirectory:
Returns an array containing the pathnames for all bundle resources having a given extension and residing
in the bundle directory specified by a given path.

+ (NSArray *)pathsForResourcesOfType:(NSString *)extension inDirectory:(NSString
*)bundlePath

Parameters
extension

If extension is an empty string or nil, all bundle resources in the top-level resource directories are
returned.

bundlePath
The top-level directory of a bundle. This must represent a valid path.

Return Value
An array containing the full pathnames for all bundle resources with the specified extension. This method
returns an empty array of no matching resource files are found. It also returns an empty array if the bundle
specified by the bundlePath parameter does not exist or is not a readable directory.

Discussion
This method provides a means for dynamically discovering multiple bundle resources of the same type.

The method first looks for matching resource files in the nonlocalized resource directory (typically Resources)
of the specified bundle. It then looks in the top level of any available language-specific “.lproj” directories.
It does not recurse through other subdirectories at any of these locations. For more details see Bundles and
Localization.

Note: This method is best suited only for the occasional retrieval of resource files. In most cases where you
need to retrieve bundle resources, it is preferable to use the NSBundle instance methods instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– localizedStringForKey:value:table: (page 180)
– pathForResource:ofType: (page 182)
– pathForResource:ofType:inDirectory: (page 183)
+ pathForResource:ofType:inDirectory: (page 170)

Declared In
NSBundle.h

Class Methods 171
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

preferredLocalizationsFromArray:
Returns one or more localizations from the specified list that a bundle object would use to locate resources
for the current user.

+ (NSArray *)preferredLocalizationsFromArray:(NSArray *)localizationsArray

Parameters
localizationsArray

An array of NSString objects, each of which specifies the name of a localization that the bundle
supports.

Return Value
An array of NSString objects containing the preferred localizations. These strings are ordered in the array
according to the current user's language preferences and are taken from the strings in the
localizationsArray parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

preferredLocalizationsFromArray:forPreferences:
Returns the localizations that a bundle object would prefer, given the specified bundle and user preference
localizations.

+ (NSArray *)preferredLocalizationsFromArray:(NSArray *)localizationsArray
forPreferences:(NSArray *)preferencesArray

Parameters
localizationsArray

An array of NSString objects, each of which specifies the name of a localization that the bundle
supports.

preferencesArray
An array of NSString objects containing the user's preferred localizations. If this parameter is nil,
the method uses the current user's localization preferences.

Return Value
An array of NSString objects containing the preferred localizations. These strings are ordered in the array
according to the specified preferences and are taken from the strings in the localizationsArray parameter.

Discussion
Use the argument localizationsArray to specify the supported localizations of the bundle and use
preferencesArray to specify the user’s localization preferences.

If none of the user-preferred localizations are available in the bundle, this method chooses one of the bundle
localizations and returns it.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSBundle.h

172 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Instance Methods

builtInPlugInsPath
Returns the full pathname of the receiver's subdirectory containing plug-ins.

- (NSString *)builtInPlugInsPath

Return Value
The full pathname of the receiving bundle’s subdirectory containing plug-ins.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BundleLoader
CIAnnotation
Core Data HTML Store

Declared In
NSBundle.h

bundleIdentifier
Returns the receiver’s bundle identifier.

- (NSString *)bundleIdentifier

Return Value
The receiver’s bundle identifier, which is defined by the CFBundleIdentifier key in the bundle’s information
property list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– infoDictionary (page 176)

Related Sample Code
CoreRecipes
MungSaver
NumberInput_IMKit_Sample

Declared In
NSBundle.h

Instance Methods 173
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

bundlePath
Returns the full pathname of the receiver’s bundle directory.

- (NSString *)bundlePath

Return Value
The full pathname of the receiver’s bundle directory.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
JavaSplashScreen
NSGLImage

Declared In
NSBundle.h

classNamed:
Returns the Class object for the specified name.

- (Class)classNamed:(NSString *)className

Parameters
className

The name of a class.

Return Value
The Class object for className. Returns NIL if className is not one of the classes associated with the
receiver or if there is an error loading the executable code containing the class implementation.

Discussion
If the bundle’s executable code is not yet loaded, this method dynamically loads it into memory. Classes (and
categories) are loaded from just one file within the bundle directory; this code file has the same name as the
directory, but without the extension (“.bundle”, “.app”, “.framework”). As a side effect of code loading,
the receiver posts NSBundleDidLoadNotification (page 192) after all classes and categories have been
loaded; see “Notifications” (page 192) for details.

The following example loads a bundle’s executable code containing the class “FaxWatcher”:

- (void)loadBundle:(id)sender
{
 Class exampleClass;
 id newInstance;
 NSString *str = @"~/BundleExamples/BundleExample.bundle";
 NSBundle *bundleToLoad = [NSBundle bundleWithPath:str];
 if (exampleClass = [bundleToLoad classNamed:@"FaxWatcher"]) {
 newInstance = [[exampleClass alloc] init];
 // [newInstance doSomething];
 }
}

Availability
Available in Mac OS X v10.0 and later.

174 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

See Also
– principalClass (page 187)
– load (page 177)

Declared In
NSBundle.h

developmentLocalization
Returns the localization used to create the bundle.

- (NSString *)developmentLocalization

Return Value
The localization used to create the bundle.

Discussion
The returned localization corresponds to the value in the CFBundleDevelopmentRegion key of the bundle’s
property list (Info.plist).

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSBundle.h

executableArchitectures
Returns an array of numbers indicating the architecture types supported by the bundle’s executable.

- (NSArray *)executableArchitectures

Return Value
An array of NSNumber objects, each of which contains an integer value corresponding to a supported processor
architecture. For a list of common architecture types, see the constants in “Mach-O Architecture” (page 191).
If the bundle does not contain a Mach-O executable, this method returns nil.

Discussion
This method scans the bundle’s Mach-O executable and returns all of the architecture types it finds. Because
they are taken directly from the executable, the returned values may not always correspond to one of the
well-known CPU types defined in “Mach-O Architecture” (page 191).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSBundle.h

executablePath
Returns the full pathname of the receiver's executable file.

Instance Methods 175
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

- (NSString *)executablePath

Return Value
The full pathname of the receiving bundle’s executable file.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

infoDictionary
Returns a dictionary that contains information about the receiver.

- (NSDictionary *)infoDictionary

Return Value
A dictionary, constructed from the bundle's Info.plist file, that contains information about the receiver.
If the bundle does not contain an Info.plist file, a valid dictionary is returned but this dictionary contains
only private keys that are used internally by the NSBundle class.

Discussion
Common keys for accessing the values of the dictionary are CFBundleIdentifier, NSMainNibFile, and
NSPrincipalClass.

Availability
Available in Mac OS X v10.0 and later.

See Also
– principalClass (page 187)

Related Sample Code
JavaSplashScreen
PrefsPane
VertexPerformanceTest

Declared In
NSBundle.h

initWithPath:
Returns an NSBundle object initialized to correspond to a given directory.

- (id)initWithPath:(NSString *)fullPath

Parameters
fullPath

The path to a directory. This must be a full pathname for a directory; if it contains any symbolic links,
they must be resolvable.

176 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Return Value
An NSBundle object initialized to correspond to fullPath. This method initializes and returns a new instance
only if there is no existing bundle associated with fullPath, otherwise it deallocates self and returns the
existing object. If fullPath doesn’t exist or the user doesn’t have access to it, returns nil.

Discussion
It’s not necessary to allocate and initialize an instance for the main bundle; use the mainBundle (page 169)
class method to get this instance. You can also use the bundleWithPath: (page 169) class method to obtain
a bundle identified by its directory path.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ bundleForClass: (page 167)

Declared In
NSBundle.h

isLoaded
Obtains information about the load status of a bundle.

- (BOOL)isLoaded

Return Value
YES if the bundle’s code is currently loaded, otherwise NO.

Availability
Available in Mac OS X v10.2 and later.

See Also
– load (page 177)

Declared In
NSBundle.h

load
Dynamically loads the bundle’s executable code into a running program, if the code has not already been
loaded.

- (BOOL)load

Return Value
YES if the method successfully loads the bundle’s code or if the code has already been loaded, otherwise
NO.

Discussion
You can use this method to load the code associated with a dynamically loaded bundle, such as a plug-in or
framework. Prior to Mac OS X version 10.5, a bundle would attempt to load its code—if it had any—only
once. Once loaded, you could not unload that code. In Mac OS X version 10.5 and later, you can unload a
bundle’s executable code using the unload (page 190) method.

Instance Methods 177
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

You don’t need to load a bundle’s executable code to search the bundle’s resources.

Availability
Available in Mac OS X v10.0 and later.

See Also
– loadAndReturnError: (page 178)
– isLoaded (page 177)
– unload (page 190)
– classNamed: (page 174)
– principalClass (page 187)

Related Sample Code
Core Data HTML Store

Declared In
NSBundle.h

loadAndReturnError:
Loads the bundle’s executable code and returns any errors.

- (BOOL)loadAndReturnError:(NSError **)error

Parameters
error

On input, a pointer to an error object variable. On output, this variable may contain an error object
indicating why the bundle’s executable could not be loaded. If no error occurred, this parameter is
left unmodified. You may specify nil for this parameter if you are not interested in the error
information.

Return Value
YES if the bundle’s executable code was loaded successfully or was already loaded; otherwise, NO if the code
could not be loaded.

Discussion
If this method returns NO and you pass a value for the error parameter, a suitable error object is returned
in that parameter. Potential errors returned are in the Cocoa error domain and include the types that follow.
For a full list of error types, see FoundationErrors.h.

 ■ NSFileNoSuchFileError - returned if the bundle’s executable file was not located.

 ■ NSExecutableNotLoadableError - returned if the bundle’s executable file exists but could not be
loaded. This error is returned if the executable is not recognized as a loadable executable. It can also be
returned if the executable is a PEF/CFM executable but the current process does not support that type
of executable.

 ■ NSExecutableArchitectureMismatchError - returned if the bundle executable does not include
code that matches the processor architecture of the current processor.

 ■ NSExecutableRuntimeMismatchError - returned if the bundle’s required Objective-C runtime
information is not compatible with the runtime of the current process.

178 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

 ■ NSExecutableLoadError - returned if the bundle’s executable failed to load for some detectable
reason prior to linking. This error might occur if the bundle depends on a framework or library that is
missing or if the required framework or library is not compatible with the current architecture or runtime
version.

 ■ NSExecutableLinkError - returned if the executable failed to load due to link errors but is otherwise
alright.

The error object may contain additional debugging information in its description that you can use to identify
the cause of the error. (This debugging information should not be displayed to the user.) You can obtain the
debugging information by invoking the error object’s description method in your code or by using the
print-object command on the error object in gdb.

Availability
Available in Mac OS X v10.5 and later.

See Also
– load (page 177)
– unload (page 190)

Declared In
NSBundle.h

localizations
Returns a list of all the localizations contained within the receiver’s bundle.

- (NSArray *)localizations

Return Value
An array, containing NSString objects, that specifies all the localizations contained within the receiver’s
bundle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

localizedInfoDictionary
Returns a dictionary with the keys from the bundle’s localized property list.

- (NSDictionary *)localizedInfoDictionary

Return Value
A dictionary with the keys from the bundle’s localized property list (InfoPlist.strings).

Discussion
This method uses the preferred localization for the current user when determining which resources to return.
If the preferred localization is not available, this method chooses the most appropriate localization found in
the bundle.

Instance Methods 179
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
PrefsPane

Declared In
NSBundle.h

localizedStringForKey:value:table:
Returns a localized version of the string designated by a given key in a given table.

- (NSString *)localizedStringForKey:(NSString *)key value:(NSString *)value
table:(NSString *)tableName

Parameters
key

The key for a string in the table identified by tableName.

value
The value to return if key is nil or if a localized string for key can’t be found in the table.

tableName
The receiver’s string table to search. If tableName is nil or is an empty string, the method attempts
to use the table in Localizable.strings.

Return Value
A localized version of the string designated by key in table tableName. If value is nil or an empty string,
and a localized string is not found in the table, returns key. If key and value are both nil, returns the empty
string.

Discussion
For more details about string localization and the specification of a .strings file, see “Working With Localized
Strings.”

Using the user default NSShowNonLocalizedStrings, you can alter the behavior of
localizedStringForKey:value:table: (page 180) to log a message when the method can’t find a
localized string. If you set this default to YES (in the global domain or in the application’s domain), then when
the method can’t find a localized string in the table, it logs a message to the console and capitalizes key
before returning it.

The following example cycles through a static array of keys when a button is clicked, gets the value for each
key from a strings table named Buttons.strings, and sets the button title with the returned value:

- (void)changeTitle:(id)sender
{
 static int keyIndex = 0;
 NSBundle *thisBundle = [NSBundle bundleForClass:[self class]];

 NSString *locString = [thisBundle
 localizedStringForKey:assortedKeys[keyIndex++]
 value:@"No translation" table:@"Buttons"];
 [sender setTitle:locString];
 if (keyIndex == MAXSTRINGS) keyIndex=0;
}

180 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– pathForResource:ofType: (page 182)
– pathForResource:ofType:inDirectory: (page 183)
– pathsForResourcesOfType:inDirectory: (page 185)
+ pathForResource:ofType:inDirectory: (page 170)
+ pathsForResourcesOfType:inDirectory: (page 171)

Related Sample Code
BundleLoader
CocoaDVDPlayer
InstallerPluginSample
NewsReader
Sketch-112

Declared In
NSBundle.h

objectForInfoDictionaryKey:
Returns the value associated with a given key in the receiver's property list.

- (id)objectForInfoDictionaryKey:(NSString *)key

Parameters
key

A key in the receiver's property list.

Return Value
The value associated with key in the receiver's property list (Info.plist). The localized value of a key is
returned when one is available.

Discussion
Use of this method is preferred over other access methods because it returns the localized value of a key
when one is available.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
AutoUpdater
BundleLoader
FancyAbout
GridCalendar

Declared In
NSBundle.h

Instance Methods 181
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

pathForAuxiliaryExecutable:
Returns the full pathname of the executable with a given name in the receiver’s bundle.

- (NSString *)pathForAuxiliaryExecutable:(NSString *)executableName

Parameters
executableName

The name of an executable file.

Return Value
The full pathname of the executable executableName in the receiver’s bundle.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

pathForResource:ofType:
Returns the full pathname for the resource identified by a given name and specified file extension.

- (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension

Parameters
name

The name of the resource file.

extension
The file extension of a resource with the name name.

Return Value
The full pathname for the resource file or nil if the file could not be located.

Discussion
If extension is an empty string or nil, the returned pathname is the first one encountered where the file
name exactly matches name.

The method first looks for a matching resource file in the nonlocalized resource directory (typically Resources)
of the specified bundle. If a matching resource file is not found, it then looks in the top level of any available
language-specific “.lproj” directories. (The search order for the language-specific directories corresponds
to the user’s preferences.) It does not recurse through other subdirectories at any of these locations. For more
details see Bundles and Localization.

The following code fragment gets the path to a localized sound, creates an NSSound instance from it, and
plays the sound.

NSString *soundPath;
NSSound *thisSound;
NSBundle *thisBundle = [NSBundle bundleForClass:[self class]];
if (soundPath = [thisBundle pathForResource:@"Hello" ofType:@"snd"]) {

182 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

 thisSound = [[[NSSound alloc] initFromSoundfile:soundPath] autorelease];
 [thisSound play];
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– localizedStringForKey:value:table: (page 180)
– pathForResource:ofType: (page 182)
– pathForResource:ofType:inDirectory: (page 183)
+ pathForResource:ofType:inDirectory: (page 170)
+ pathsForResourcesOfType:inDirectory: (page 171)

Related Sample Code
AttachAScript
CIAnnotation
CITransitionSelectorSample2
GLSLShowpiece
StickiesExample

Declared In
NSBundle.h

pathForResource:ofType:inDirectory:
Returns the full pathname for the resource identified by the given name and file extension and located in
the specified bundle subdirectory.

- (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension
inDirectory:(NSString *)subpath

Parameters
name

The name of the resource file.

extension
The file extension of the specified resource file.

subpath
The name of the bundle subdirectory.

Return Value
The full pathname for the resource file or nil if the file could not be located.

Discussion
If extension is an empty string or nil, the returned pathname is the first one encountered where the file
name exactly matches name.

If subpath is nil, this method searches the top-level nonlocalized resource directory (typically Resources)
and the top-level of any language-specific directories. For example, suppose you have a modern bundle and
specify @"Documentation" for the subpath parameter. This method would first look in the
Contents/Resources/Documentation directory of the bundle, followed by the Documentation

Instance Methods 183
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

subdirectories of each language-specific .lproj directory. (The search order for the language-specific
directories corresponds to the user’s preferences.) This method does not recurse through any other
subdirectories at any of these locations. For more details see Bundles and Localization.

Availability
Available in Mac OS X v10.0 and later.

See Also
– localizedStringForKey:value:table: (page 180)
– pathForResource:ofType: (page 182)
– pathsForResourcesOfType:inDirectory: (page 185)
+ pathForResource:ofType:inDirectory: (page 170)
+ pathsForResourcesOfType:inDirectory: (page 171)

Declared In
NSBundle.h

pathForResource:ofType:inDirectory:forLocalization:
Returns the full pathname for the resource identified by the given name and file extension, located in the
specified bundle subdirectory, and limited to global resources and those associated with the specified
localization.

- (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension
inDirectory:(NSString *)subpath forLocalization:(NSString *)localizationName

Parameters
name

The name of the resource file.

extension
The file extension of the specified resource file.

subpath
The name of the bundle subdirectory to search.

localizationName
The name of the localization. This parameter should correspond to the name of one of the bundle's
language-specific resource directories without the .lproj extension.

Return Value
The full pathname for the resource file or nil if the file could not be located.

Discussion
This method is equivalent to pathForResource:ofType:inDirectory: (page 183), except that only
nonlocalized resources and those in the language-specific .lproj directory specified by localizationName
are searched.

There should typically be little reason to use this method—see Getting the Current Language and Locale.
See also preferredLocalizationsFromArray:forPreferences: (page 172) for how to determine what localizations
are available.

Availability
Available in Mac OS X v10.0 and later.

184 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Declared In
NSBundle.h

pathsForResourcesOfType:inDirectory:
Returns an array containing the pathnames for all bundle resources having the specified filename extension
and residing in the resource subdirectory.

- (NSArray *)pathsForResourcesOfType:(NSString *)extension inDirectory:(NSString
*)subpath

Parameters
extension

The file extension of the files to retrieve.

subpath
The name of the bundle subdirectory to search.

Return Value
An array containing the full pathnames for all bundle resources matching the specified criteria. This method
returns an empty array of no matching resource files are found.

Discussion
This method provides a means for dynamically discovering multiple bundle resources of the same type. If
extension is an empty string or nil, all bundle resources in the specified resource directory are returned.

The argument subpath specifies the name of a specific subdirectory to search within the current bundle’s
resource directory hierarchy. If subpath is nil, this method searches the top-level nonlocalized resource
directory (typically Resources) and the top-level of any language-specific directories. For example, suppose
you have a modern bundle and specify @"Documentation" for the subpath parameter. This method would
first look in the Contents/Resources/Documentation directory of the bundle, followed by the
Documentation subdirectories of each language-specific .lproj directory. (The search order for the
language-specific directories corresponds to the user’s preferences.) This method does not recurse through
any other subdirectories at any of these locations. For more details see Bundles and Localization.

Availability
Available in Mac OS X v10.0 and later.

See Also
– localizedStringForKey:value:table: (page 180)
– pathForResource:ofType: (page 182)
– pathForResource:ofType:inDirectory: (page 183)
+ pathForResource:ofType:inDirectory: (page 170)
+ pathsForResourcesOfType:inDirectory: (page 171)

Related Sample Code
AutoSample
CocoaCreateMovie
QTKitCreateMovie

Declared In
NSBundle.h

Instance Methods 185
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

pathsForResourcesOfType:inDirectory:forLocalization:
Returns an array containing the pathnames for all bundle resources having the specified filename extension,
residing in the specified resource subdirectory, and limited to global resources and those associated with
the specified localization.

- (NSArray *)pathsForResourcesOfType:(NSString *)extension inDirectory:(NSString
*)subpath forLocalization:(NSString *)localizationName

Parameters
extension

The file extension of the files to retrieve.

subpath
The name of the bundle subdirectory to search.

localizationName
The name of the localization. This parameter should correspond to the name of one of the bundle's
language-specific resource directories without the .lproj extension.

Return Value
An array containing the full pathnames for all bundle resources matching the specified criteria. This method
returns an empty array of no matching resource files are found.

Discussion
This method is equivalent to pathsForResourcesOfType:inDirectory: (page 185), except that only
nonlocalized resources and those in the language-specific .lproj directory specified by localizationName
are searched.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

preferredLocalizations
Returns one or more localizations contained in the receiver’s bundle that the receiver uses to locate resources
based on the user’s preferences.

- (NSArray *)preferredLocalizations

Return Value
One or more localizations contained in the receiver’s bundle that the receiver uses to locate resources based
on the user’s preferences.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ preferredLocalizationsFromArray: (page 172)
– localizations (page 179)

Declared In
NSBundle.h

186 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

preflightAndReturnError:
Returns a Boolean value indicating whether the bundle’s executable code could be loaded successfully.

- (BOOL)preflightAndReturnError:(NSError **)error

Parameters
error

On input, a pointer to an error object variable. On output, this variable may contain an error object
indicating why the bundle’s executable could not be loaded. If no error would occur, this parameter
is left unmodified. You may specify nil for this parameter if you are not interested in the error
information.

Return Value
YES if the bundle’s executable code could be loaded successfully or is already loaded; otherwise, NO if the
code could not be loaded.

Discussion
This method does not actually load the bundle’s executable code. Instead, it performs several checks to see
if the code could be loaded and with one exception returns the same errors that would occur during an
actual load operation. The one exception is the NSExecutableLinkError error, which requires the actual
loading of the code to verify link errors.

For a list of possible load errors, see the discussion for the loadAndReturnError: (page 178) method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– loadAndReturnError: (page 178)

Declared In
NSBundle.h

principalClass
Returns the receiver’s principal class.

- (Class)principalClass

Return Value
The receiver’s principal class—after ensuring that the code containing the definition of that class is dynamically
loaded. If the receiver encounters errors in loading or if it can’t find the executable code file in the bundle
directory, returns NIL.

Discussion
The principal class typically controls all the other classes in the bundle; it should mediate between those
classes and classes external to the bundle. Classes (and categories) are loaded from just one file within the
bundle directory. NSBundle obtains the name of the code file to load from the dictionary returned from
infoDictionary (page 176), using “NSExecutable” as the key. The bundle determines its principal class
in one of two ways:

Instance Methods 187
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

 ■ It first looks in its own information dictionary, which extracts the information encoded in the bundle’s
property list (Info.plist). NSBundle obtains the principal class from the dictionary using the key
NSPrincipalClass. For nonloadable bundles (applications and frameworks), if the principal class is
not specified in the property list, the method returns NIL.

 ■ If the principal class is not specified in the information dictionary, NSBundle identifies the first class
loaded as the principal class. When several classes are linked into a dynamically loadable file, the default
principal class is the first one listed on the ld command line. In the following example, Reporter would
be the principal class:

ld -o myBundle -r Reporter.o NotePad.o QueryList.o

The order of classes in Xcode’s project browser is the order in which they will be linked. To designate the
principal class, control-drag the file containing its implementation to the top of the list.

As a side effect of code loading, the receiver posts NSBundleDidLoadNotification (page 192) after all
classes and categories have been loaded; see “Notifications” (page 192) for details.

The following method obtains a bundle by specifying its path (bundleWithPath: (page 169)), then loads
the bundle with principalClass (page 187) and uses the returned class object to allocate and initialize an
instance of that class:

- (void)loadBundle:(id)sender
{
 Class exampleClass;
 id newInstance;
 NSString *path = @"/tmp/Projects/BundleExample/BundleExample.bundle";
 NSBundle *bundleToLoad = [NSBundle bundleWithPath:path];
 if (exampleClass = [bundleToLoad principalClass]) {
 newInstance = [[exampleClass alloc] init];
 [newInstance doSomething];
 }
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– classNamed: (page 174)
– infoDictionary (page 176)
– load (page 177)

Related Sample Code
BundleLoader

Declared In
NSBundle.h

privateFrameworksPath
Returns the full pathname of the receiver's subdirectory containing private frameworks.

- (NSString *)privateFrameworksPath

188 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Return Value
The full pathname of the receiver's subdirectory containing private frameworks.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MP3 Player

Declared In
NSBundle.h

resourcePath
Returns the full pathname of the receiving bundle’s subdirectory containing resources.

- (NSString *)resourcePath

Return Value
The full pathname of the receiving bundle’s subdirectory containing resources.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bundlePath (page 174)

Related Sample Code
NURBSSurfaceVertexProg
StickiesExample
SurfaceVertexProgram
TextureRange
VertexPerformanceDemo

Declared In
NSBundle.h

sharedFrameworksPath
Returns the full pathname of the receiver's subdirectory containing shared frameworks.

- (NSString *)sharedFrameworksPath

Return Value
The full pathname of the receiver's subdirectory containing shared frameworks.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Instance Methods 189
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

sharedSupportPath
Returns the full pathname of the receiver's subdirectory containing shared support files.

- (NSString *)sharedSupportPath

Return Value
The full pathname of the receiver's subdirectory containing shared support files.

Discussion
This method returns the appropriate path for modern application and framework bundles. This method may
not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

unload
Unloads the code associated with the receiver.

- (BOOL)unload

Return Value
YES if the bundle was successfully unloaded or was not already loaded; otherwise, NO if the bundle could
not be unloaded.

Discussion
This method attempts to unload a bundle’s executable code using the underlying dynamic loader (typically
dyld). You may use this method to unload plug-in and framework bundles when you no longer need the
code they contain. You should use this method to unload bundles that were loaded using the methods of
the NSBundle class only. Do not use this method to unload bundles that were originally loaded using the
bundle-manipulation functions in Core Foundation.

It is the responsibility of the caller to ensure that no in-memory objects or data structures refer to the code
being unloaded. For example, if you have an object whose class is defined in a bundle, you must release that
object prior to unloading the bundle. Similarly, your code should not attempt to access any symbols defined
in an unloaded bundle.

Special Considerations

Prior to Mac OS X version 10.5, code could not be unloaded once loaded, and this method would always
return NO. In Mac OS X version 10.5 and later, you can unload a bundle’s executable code using this method.

Availability
Available in Mac OS X v10.5 and later.

190 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

See Also
– loadAndReturnError: (page 178)
– load (page 177)

Declared In
NSBundle.h

Constants

Mach-O Architecture
These constants describe the CPU types that a bundle’s executable code may support.

enum {
 NSBundleExecutableArchitectureI386 = 0x00000007,
 NSBundleExecutableArchitecturePPC = 0x00000012,
 NSBundleExecutableArchitectureX86_64 = 0x01000007,
 NSBundleExecutableArchitecturePPC64 = 0x01000012
};

Constants
NSBundleExecutableArchitectureI386

Specifies the 32-bit Intel architecture.

Available in Mac OS X v10.5 and later.

Declared in NSBundle.h.

NSBundleExecutableArchitecturePPC
Specifies the 32-bit PowerPC architecture.

Available in Mac OS X v10.5 and later.

Declared in NSBundle.h.

NSBundleExecutableArchitectureX86_64
Specifies the 64-bit Intel architecture.

Available in Mac OS X v10.5 and later.

Declared in NSBundle.h.

NSBundleExecutableArchitecturePPC64
Specifies the 64-bit PowerPC architecture.

Available in Mac OS X v10.5 and later.

Declared in NSBundle.h.

Declared In
NSBundle.h

Constants 191
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Notifications

NSBundleDidLoadNotification
NSBundle posts NSBundleDidLoadNotification to notify observers which classes and categories have
been dynamically loaded. When a request is made to an NSBundle object for a class (classNamed: (page
174) or principalClass (page 187)), the bundle dynamically loads the executable code file that contains
the class implementation and all other class definitions contained in the file. After the module is loaded, the
bundle posts the NSBundleDidLoadNotification.

The notification object is the NSBundle instance that dynamically loads classes. The userInfo dictionary
contains the following information:

ValueKey

An NSArray object containing the names (as
NSString objects) of each class that was loaded

@"NSLoadedClasses"

In a typical use of this notification, an object might want to enumerate the userInfo array to check if each
loaded class conformed to a certain protocol (say, an protocol for a plug-and-play tool set); if a class does
conform, the object would create an instance of that class and add the instance to another NSArray object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

192 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSBundle Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLCache.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Related sample code URL CacheInfo

Overview

An NSCachedURLResponse object encapsulates an NSURLResponse object, an NSData object containing
the content corresponding to the response, and an NSDictionary containing application specific information.

The NSURLCache system stores and retrieves instances of NSCachedURLResponse.

Tasks

Creating a Cached URL Response

– initWithResponse:data: (page 194)
Initializes an NSCachedURLResponse object.

– initWithResponse:data:userInfo:storagePolicy: (page 195)
Initializes an NSCachedURLResponse object.

Getting Cached URL Response Properties

– data (page 194)
Returns the receiver’s cached data.

Overview 193
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCachedURLResponse Class Reference

– response (page 195)
Returns the NSURLResponse object associated with the receiver.

– storagePolicy (page 196)
Returns the receiver’s cache storage policy.

– userInfo (page 196)
Returns the receiver’s user info dictionary.

Instance Methods

data
Returns the receiver’s cached data.

- (NSData *)data

Return Value
The receiver’s cached data.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

initWithResponse:data:
Initializes an NSCachedURLResponse object.

- (id)initWithResponse:(NSURLResponse *)response data:(NSData *)data

Parameters
response

The response to cache.

data
The data to cache.

Return Value
The NSCachedURLResponse object, initialized using the given data.

Discussion
The cache storage policy is set to the default, NSURLCacheStorageAllowed, and the user info dictionary
is set to nil.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.

194 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCachedURLResponse Class Reference

Available in Mac OS X v10.2.7 and later.

See Also
– initWithResponse:data:userInfo:storagePolicy: (page 195)

Declared In
NSURLCache.h

initWithResponse:data:userInfo:storagePolicy:
Initializes an NSCachedURLResponse object.

- (id)initWithResponse:(NSURLResponse *)response data:(NSData *)data
userInfo:(NSDictionary *)userInfo
storagePolicy:(NSURLCacheStoragePolicy)storagePolicy

Parameters
response

The response to cache.

data
The data to cache.

userInfo
An optional dictionary of user information. May be nil.

storagePolicy
The storage policy for the cached response.

Return Value
The NSCachedURLResponse object, initialized using the given data.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– initWithResponse:data: (page 194)

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

response
Returns the NSURLResponse object associated with the receiver.

- (NSURLResponse *)response

Return Value
The NSURLResponse object associated with the receiver.

Instance Methods 195
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCachedURLResponse Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

storagePolicy
Returns the receiver’s cache storage policy.

- (NSURLCacheStoragePolicy)storagePolicy

Return Value
The receiver’s cache storage policy.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

userInfo
Returns the receiver’s user info dictionary.

- (NSDictionary *)userInfo

Return Value
An NSDictionary object containing the receiver’s user info, or nil if there is no such object.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLCache.h

196 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCachedURLResponse Class Reference

Constants

NSURLCacheStoragePolicy
These constants specify the caching strategy used by an NSCachedURLResponse object.

typedef enum
{
 NSURLCacheStorageAllowed,
 NSURLCacheStorageAllowedInMemoryOnly,
 NSURLCacheStorageNotAllowed,
} NSURLCacheStoragePolicy;

Constants
NSURLCacheStorageAllowed

Specifies that storage in NSURLCache is allowed without restriction.

Important: iPhone OS ignores this cache policy, and instead treats it as
NSURLCacheStorageAllowedInMemoryOnly.

Available in Mac OS X v10.2 and later.

Declared in NSURLCache.h.

NSURLCacheStorageAllowedInMemoryOnly
Specifies that storage in NSURLCache is allowed; however storage should be restricted to memory
only.

Available in Mac OS X v10.2 and later.

Declared in NSURLCache.h.

NSURLCacheStorageNotAllowed
Specifies that storage in NSURLCache is not allowed in any fashion, either in memory or on disk.

Available in Mac OS X v10.2 and later.

Declared in NSURLCache.h.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLCache.h

Constants 197
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCachedURLResponse Class Reference

198 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

NSCachedURLResponse Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.4 and later.

Declared in Foundation/NSCalendar.h

Companion guides Date and Time Programming Guide for Cocoa
Data Formatting Programming Guide for Cocoa

Related sample code Birthdays
Mountains
Reminders

Overview

Calendars encapsulate information about systems of reckoning time in which the beginning, length, and
divisions of a year are defined. They provide information about the calendar and support for calendrical
computations such as determining the range of a given calendrical unit and adding units to a given absolute
time.

In a calendar, day, week, weekday, month, and year numbers are generally 1-based, but there may be
calendar-specific exceptions. Ordinal numbers, where they occur, are 1-based. Some calendars represented
by this API may have to map their basic unit concepts into year/month/week/day/… nomenclature. For
example, a calendar composed of 4 quarters in a year instead of 12 months uses the month unit to represent
quarters. The particular values of the unit are defined by each calendar, and are not necessarily consistent
with values for that unit in another calendar.

To do calendar arithmetic, you use NSDate objects in conjunction with a calendar. For example, to convert
between a decomposed date in one calendar and another calendar, you must first convert the decomposed
elements into a date using the first calendar, then decompose it using the second. NSDate provides the
absolute scale and epoch (reference point) for dates and times, which can then be rendered into a particular
calendar, for calendrical computations or user display.

Two NSCalendar methods that return a date object, dateFromComponents: (page 206),
dateByAddingComponents:toDate:options: (page 205), take as a parameter an NSDateComponents
object that describes the calendrical components required for the computation. You can provide as many
components as you need (or choose to). When there is incomplete information to compute an absolute time,

Overview 199
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

default values similar to 0 and 1 are usually chosen by a calendar, but this is a calendar-specific choice. If you
provide inconsistent information, calendar-specific disambiguation is performed (which may involve ignoring
one or more of the parameters). Related methods (components:fromDate: (page 203) and
components:fromDate:toDate:options: (page 204)) take a bit mask parameter that specifies which
components to calculate when returning an NSDateComponents object. The bit mask is composed of
NSCalendarUnit constants (see “Constants” (page 213)).

NSCalendar is “toll-free bridged” with its Core Foundation counterpart, CFCalendar. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSCalendar * parameter, you can pass in a CFCalendarRef,
and in a function where you see a CFCalendarRef parameter, you can pass in an NSCalendar instance.
See Interchangeable Data Types for more information on toll-free bridging.

Tasks

System Locale Information

+ currentCalendar (page 202)
Returns the logical calendar for the current user.

+ autoupdatingCurrentCalendar (page 201)
Returns the current logical calendar for the current user.

Initializing a Calendar

– initWithCalendarIdentifier: (page 207)
Initializes a newly-allocated NSCalendar object for the calendar specified by a given identifier.

– setFirstWeekday: (page 211)
Sets the index of the first weekday for the receiver.

– setLocale: (page 211)
Sets the locale for the receiver.

– setMinimumDaysInFirstWeek: (page 212)
Sets the minimum number of days in the first week of the receiver.

– setTimeZone: (page 212)
Sets the time zone for the receiver.

Getting Information About a Calendar

– calendarIdentifier (page 202)
Returns the identifier for the receiver.

– firstWeekday (page 207)
Returns the index of the first weekday of the receiver.

– locale (page 207)
Returns the locale for the receiver.

200 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

– maximumRangeOfUnit: (page 208)
The maximum range limits of the values that a given unit can take on in the receive

– minimumDaysInFirstWeek (page 208)
Returns the minimum number of days in the first week of the receiver.

– minimumRangeOfUnit: (page 209)
Returns the minimum range limits of the values that a given unit can take on in the receiver.

– ordinalityOfUnit:inUnit:forDate: (page 209)
Returns, for a given absolute time, the ordinal number of a smaller calendar unit (such as a day) within
a specified larger calendar unit (such as a week).

– rangeOfUnit:inUnit:forDate: (page 210)
Returns the range of absolute time values that a smaller calendar unit (such as a day) can take on in
a larger calendar unit (such as a month) that includes a specified absolute time.

– rangeOfUnit:startDate:interval:forDate: (page 210)
Returns by reference the starting time and duration of a given calendar unit that contains a given
date.

– timeZone (page 213)
Returns the time zone for the receiver.

Calendrical Calculations

– components:fromDate: (page 203)
Returns a NSDateComponents object containing a given date decomposed into specified components.

– components:fromDate:toDate:options: (page 204)
Returns, as an NSDateComponents object using specified components, the difference between two
supplied dates.

– dateByAddingComponents:toDate:options: (page 205)
Returns a new NSDate object representing the absolute time calculated by adding given components
to a given date.

– dateFromComponents: (page 206)
Returns a new NSDate object representing the absolute time calculated from given components.

Class Methods

autoupdatingCurrentCalendar
Returns the current logical calendar for the current user.

+ (id)autoupdatingCurrentCalendar

Return Value
The current logical calendar for the current user.

Discussion
Settings you get from this calendar do change as the user’s settings change (contrast with
currentCalendar (page 202)).

Class Methods 201
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Note that if you cache values based on the calendar or related information those caches will of course not
be automatically updated by the updating of the calendar object.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ currentCalendar (page 202)
– initWithCalendarIdentifier: (page 207)
– calendarIdentifier (page 202)

Declared In
NSCalendar.h

currentCalendar
Returns the logical calendar for the current user.

+ (id)currentCalendar

Return Value
The logical calendar for the current user.

Discussion
The returned calendar is formed from the settings for the current user’s chosen system locale overlaid with
any custom settings the user has specified in System Preferences. Settings you get from this calendar do not
change as System Preferences are changed, so that your operations are consistent (contrast with
autoupdatingCurrentCalendar (page 201)).

Availability
Available in Mac OS X v10.4 and later.

See Also
+ autoupdatingCurrentCalendar (page 201)
– initWithCalendarIdentifier: (page 207)
– calendarIdentifier (page 202)

Declared In
NSCalendar.h

Instance Methods

calendarIdentifier
Returns the identifier for the receiver.

- (NSString *)calendarIdentifier

Return Value
The identifier for the receiver. For valid identifiers, see NSLocale.

202 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
+ autoupdatingCurrentCalendar (page 201)
– initWithCalendarIdentifier: (page 207)

Related Sample Code
Mountains

Declared In
NSCalendar.h

components:fromDate:
Returns a NSDateComponents object containing a given date decomposed into specified components.

- (NSDateComponents *)components:(NSUInteger)unitFlags fromDate:(NSDate *)date

Parameters
unitFlags

The components into which to decompose date—a bitwise OR of NSCalendarUnit constants.

date
The date for which to perform the calculation.

Return Value
An NSDateComponents object containing date decomposed into the components specified by unitFlags.
Returns nil if date falls outside of the defined range of the receiver or if the computation cannot be
performed

Discussion
The Weekday ordinality, when requested, refers to the next larger (than Week) of the requested units. Some
computations can take a relatively long time.

The following example shows how to use this method to determine the current year, month, and day, using
an existing calendar (gregorian):

unsigned unitFlags = NSYearCalendarUnit | NSMonthCalendarUnit |
NSDayCalendarUnit;
NSDate *date = [NSDate date];
NSDateComponents *comps = [gregorian components:unitFlags fromDate:date];

Availability
Available in Mac OS X v10.4 and later.

See Also
– dateFromComponents: (page 206)
– components:fromDate:toDate:options: (page 204)
– dateByAddingComponents:toDate:options: (page 205)

Related Sample Code
Birthdays

Instance Methods 203
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Declared In
NSCalendar.h

components:fromDate:toDate:options:
Returns, as an NSDateComponents object using specified components, the difference between two supplied
dates.

- (NSDateComponents *)components:(NSUInteger)unitFlags fromDate:(NSDate
*)startingDate toDate:(NSDate *)resultDate options:(NSUInteger)opts

Parameters
unitFlags

Specifies the components for the returned NSDateComponents object—a bitwise OR of
NSCalendarUnit constants.

startingDate
The start date for the calculation.

resultDate
The end date for the calculation.

opts
Options for the calculation.

If you specify a “wrap” option (NSWrapCalendarComponents), the specified components are
incremented and wrap around to zero/one on overflow, but do not cause higher units to be
incremented. When the wrap option is false, overflow in a unit carries into the higher units, as in
typical addition.

Return Value
An NSDateComponents object whose components are specified by unitFlags and calculated from the
difference between the resultDate and startDate using the options specified by opts. Returns nil if
either date falls outside the defined range of the receiver or if the computation cannot be performed.

Discussion
The result is lossy if there is not a small enough unit requested to hold the full precision of the difference.
Some operations can be ambiguous, and the behavior of the computation is calendar-specific, but generally
larger components will be computed before smaller components; for example, in the Gregorian calendar a
result might be 1 month and 5 days instead of, for example, 0 months and 35 days. The resulting component
values may be negative if resultDate is before startDate.

The following example shows how to get the approximate number of months and days between two dates
using an existing calendar (gregorian):

NSDate *startDate = ...;
NSDate *endDate = ...;
unsigned int unitFlags = NSMonthCalendarUnit | NSDayCalendarUnit;
NSDateComponents *comps = [gregorian components:unitFlags fromDate:startDate
toDate:endDate options:0];
int months = [comps month];
int days = [comps day];

Note that some computations can take a relatively long time.

Availability
Available in Mac OS X v10.4 and later.

204 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

See Also
– dateByAddingComponents:toDate:options: (page 205)
– dateFromComponents: (page 206)

Declared In
NSCalendar.h

dateByAddingComponents:toDate:options:
Returns a new NSDate object representing the absolute time calculated by adding given components to a
given date.

- (NSDate *)dateByAddingComponents:(NSDateComponents *)comps toDate:(NSDate *)date
options:(NSUInteger)opts

Parameters
comps

The components to add to date.

date
The date to which comps are added.

opts
Options for the calculation. See “NSDateComponents wrapping behavior” (page 215) for possible
values. Pass 0 to specify no options.

If you specify no options (you pass 0), overflow in a unit carries into the higher units (as in typical
addition).

Return Value
A new NSDate object representing the absolute time calculated by adding to date the calendrical components
specified by comps using the options specified by opts. Returns nil if date falls outside the defined range
of the receiver or if the computation cannot be performed.

Discussion
Some operations can be ambiguous, and the behavior of the computation is calendar-specific, but generally
components are added in the order specified.

The following example shows how to add 2 months and 3 days to the current date and time using an existing
calendar (gregorian):

NSDate *currentDate = [NSDate date];
NSDateComponents *comps = [[NSDateComponents alloc] init];
[comps setMonth:2];
[comps setDay:3];
NSDate *date = [gregorian dateByAddingComponents:comps toDate:currentDate
options:0];
[comps release];

Note that some computations can take a relatively long time.

Availability
Available in Mac OS X v10.4 and later.

See Also
– dateFromComponents: (page 206)

Instance Methods 205
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

– components:fromDate:toDate:options: (page 204)

Declared In
NSCalendar.h

dateFromComponents:
Returns a new NSDate object representing the absolute time calculated from given components.

- (NSDate *)dateFromComponents:(NSDateComponents *)comps

Parameters
comps

The components from which to calculate the returned date.

Return Value
A new NSDate object representing the absolute time calculated from comps. Returns nil if the receiver
cannot convert the components given in comps into an absolute time. The method also returns nil and for
out-of-range values.

Discussion
When there are insufficient components provided to completely specify an absolute time, a calendar uses
default values of its choice. When there is inconsistent information, a calendar may ignore some of the
components parameters or the method may return nil. Unnecessary components are ignored (for example,
Day takes precedence over Weekday and Weekday ordinals).

The following example shows how to use this method to create a date object to represent 14:10:00 on 6
January 1965, for a given calendar (gregorian).

NSDateComponents *comps = [[NSDateComponents alloc] init];
[comps setYear:1965];
[comps setMonth:1];
[comps setDay:6];
[comps setHour:14];
[comps setMinute:10];
[comps setSecond:0];
NSDate *date = [gregorian dateFromComponents:comps];
[comps release];

Note that some computations can take a relatively long time to perform.

Availability
Available in Mac OS X v10.4 and later.

See Also
– components:fromDate: (page 203)
– dateFromComponents: (page 206)

Related Sample Code
Reminders

Declared In
NSCalendar.h

206 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

firstWeekday
Returns the index of the first weekday of the receiver.

- (NSUInteger)firstWeekday

Return Value
The index of the first weekday of the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setFirstWeekday: (page 211)

Declared In
NSCalendar.h

initWithCalendarIdentifier:
Initializes a newly-allocated NSCalendar object for the calendar specified by a given identifier.

- (id)initWithCalendarIdentifier:(NSString *)string

Parameters
string

The identifier for the new calendar. For valid identifiers, see NSLocale.

Return Value
The initialized calendar, or nil if the identifier is unknown (if, for example, it is either an unrecognized string
or the calendar is not supported by the current version of the operating system).

Availability
Available in Mac OS X v10.4 and later.

See Also
+ autoupdatingCurrentCalendar (page 201)
– calendarIdentifier (page 202)

Related Sample Code
Birthdays
Mountains
Reminders

Declared In
NSCalendar.h

locale
Returns the locale for the receiver.

- (NSLocale *)locale

Instance Methods 207
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Return Value
The locale for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLocale: (page 211)

Declared In
NSCalendar.h

maximumRangeOfUnit:
The maximum range limits of the values that a given unit can take on in the receive

- (NSRange)maximumRangeOfUnit:(NSCalendarUnit)unit

Parameters
unit

The unit for which the maximum range is returned.

Return Value
The maximum range limits of the values that the unit specified by unit can take on in the receiver.

Discussion
As an example, in the Gregorian calendar the maximum range of values for the Day unit is 1-31.

Availability
Available in Mac OS X v10.4 and later.

See Also
– minimumRangeOfUnit: (page 209)

Declared In
NSCalendar.h

minimumDaysInFirstWeek
Returns the minimum number of days in the first week of the receiver.

- (NSUInteger)minimumDaysInFirstWeek

Return Value
The minimum number of days in the first week of the receiver

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMinimumDaysInFirstWeek: (page 212)

Declared In
NSCalendar.h

208 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

minimumRangeOfUnit:
Returns the minimum range limits of the values that a given unit can take on in the receiver.

- (NSRange)minimumRangeOfUnit:(NSCalendarUnit)unit

Parameters
unit

The unit for which the maximum range is returned.

Return Value
The minimum range limits of the values that the unit specified by unit can take on in the receiver.

Discussion
As an example, in the Gregorian calendar the minimum range of values for the Day unit is 1-28.

Availability
Available in Mac OS X v10.4 and later.

See Also
– maximumRangeOfUnit: (page 208)

Declared In
NSCalendar.h

ordinalityOfUnit:inUnit:forDate:
Returns, for a given absolute time, the ordinal number of a smaller calendar unit (such as a day) within a
specified larger calendar unit (such as a week).

- (NSUInteger)ordinalityOfUnit:(NSCalendarUnit)smaller inUnit:(NSCalendarUnit)larger
forDate:(NSDate *)date

Parameters
smaller

The smaller calendar unit

larger
The larger calendar unit

date
The absolute time for which the calculation is performed

Return Value
The ordinal number of smallerwithin larger at the time specified by date. Returns NSNotFound if larger
is not logically bigger than smaller in the calendar, or the given combination of units does not make sense
(or is a computation which is undefined).

Discussion
The ordinality is in most cases not the same as the decomposed value of the unit. Typically return values are
1 and greater. For example, the time 00:45 is in the first hour of the day, and for units Hour and Day
respectively, the result would be 1. An exception is the week-in-month calculation, which returns 0 for days
before the first week in the month containing the date.

Note that some computations can take a relatively long time.

Instance Methods 209
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– rangeOfUnit:inUnit:forDate: (page 210)
– rangeOfUnit:startDate:interval:forDate: (page 210)

Declared In
NSCalendar.h

rangeOfUnit:inUnit:forDate:
Returns the range of absolute time values that a smaller calendar unit (such as a day) can take on in a larger
calendar unit (such as a month) that includes a specified absolute time.

- (NSRange)rangeOfUnit:(NSCalendarUnit)smaller inUnit:(NSCalendarUnit)larger
forDate:(NSDate *)date

Parameters
smaller

The smaller calendar unit.

larger
The larger calendar unit.

date
The absolute time for which the calculation is performed.

Return Value
The range of absolute time values smaller can take on in larger at the time specified by date. Returns
{NSNotFound, NSNotFound} if larger is not logically bigger than smaller in the calendar, or the given
combination of units does not make sense (or is a computation which is undefined).

Discussion
You can use this method to calculate, for example, the range the Day unit can take on in the Month in which
date lies.

Availability
Available in Mac OS X v10.4 and later.

See Also
– rangeOfUnit:startDate:interval:forDate: (page 210)
– ordinalityOfUnit:inUnit:forDate: (page 209)

Related Sample Code
Birthdays

Declared In
NSCalendar.h

rangeOfUnit:startDate:interval:forDate:
Returns by reference the starting time and duration of a given calendar unit that contains a given date.

210 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

- (BOOL)rangeOfUnit:(NSCalendarUnit)unit startDate:(NSDate **)datep
interval:(NSTimeInterval *)tip forDate:(NSDate *)date

Parameters
unit

A calendar unit (see “Calendar Units” (page 213) for possible values).

datep
Upon return, contains the starting time of the calendar unit unit that contains the date date

tip
Upon return, contains the duration of the calendar unit unit that contains the date date

date
A date.

Return Value
YES if the starting time and duration of a unit could be calculated, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– rangeOfUnit:inUnit:forDate: (page 210)
– ordinalityOfUnit:inUnit:forDate: (page 209)

Declared In
NSCalendar.h

setFirstWeekday:
Sets the index of the first weekday for the receiver.

- (void)setFirstWeekday:(NSUInteger)weekday

Parameters
weekday

The first weekday for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– firstWeekday (page 207)

Declared In
NSCalendar.h

setLocale:
Sets the locale for the receiver.

- (void)setLocale:(NSLocale *)locale

Instance Methods 211
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Parameters
locale

The locale for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– locale (page 207)

Declared In
NSCalendar.h

setMinimumDaysInFirstWeek:
Sets the minimum number of days in the first week of the receiver.

- (void)setMinimumDaysInFirstWeek:(NSUInteger)mdw

Parameters
mdw

The minimum number of days in the first week of the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– minimumDaysInFirstWeek (page 208)

Declared In
NSCalendar.h

setTimeZone:
Sets the time zone for the receiver.

- (void)setTimeZone:(NSTimeZone *)tz

Parameters
tz

The time zone for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– timeZone (page 213)

Declared In
NSCalendar.h

212 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

timeZone
Returns the time zone for the receiver.

- (NSTimeZone *)timeZone

Return Value
The time zone for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTimeZone: (page 212)

Declared In
NSCalendar.h

Constants

NSCalendarUnit
Defines a type used to specify calendrical units such as day and month.

typedef NSUInteger NSCalendarUnit;

Discussion
See “Calendar Units” (page 213) for possible values.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCalendar.h

Calendar Units
Specify calendrical units such as day and month.

Constants 213
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

enum {
 NSEraCalendarUnit = kCFCalendarUnitEra,
 NSYearCalendarUnit = kCFCalendarUnitYear,
 NSMonthCalendarUnit = kCFCalendarUnitMonth,
 NSDayCalendarUnit = kCFCalendarUnitDay,
 NSHourCalendarUnit = kCFCalendarUnitHour,
 NSMinuteCalendarUnit = kCFCalendarUnitMinute,
 NSSecondCalendarUnit = kCFCalendarUnitSecond,
 NSWeekCalendarUnit = kCFCalendarUnitWeek,
 NSWeekdayCalendarUnit = kCFCalendarUnitWeekday,
 NSWeekdayOrdinalCalendarUnit = kCFCalendarUnitWeekdayOrdinal
};

Constants
NSEraCalendarUnit

Specifies the era unit.

The corresponding value is an int. Equal to kCFCalendarUnitEra.

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

NSYearCalendarUnit
Specifies the year unit.

The corresponding value is an int. Equal to kCFCalendarUnitYear.

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

NSMonthCalendarUnit
Specifies the month unit.

The corresponding value is an int. Equal to kCFCalendarUnitMonth.

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

NSDayCalendarUnit
Specifies the day unit.

The corresponding value is an int. Equal to kCFCalendarUnitDay.

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

NSHourCalendarUnit
Specifies the hour unit.

The corresponding value is an int. Equal to kCFCalendarUnitHour.

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

NSMinuteCalendarUnit
Specifies the minute unit.

The corresponding value is an int. Equal to kCFCalendarUnitMinute.

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

214 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

NSSecondCalendarUnit
Specifies the second unit.

The corresponding value is a double. Equal to kCFCalendarUnitSecond.

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

NSWeekCalendarUnit
Specifies the week unit.

The corresponding value is an int. Equal to kCFCalendarUnitWeek.

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

NSWeekdayCalendarUnit
Specifies the weekday unit.

The corresponding value is an int. Equal to kCFCalendarUnitWeekday. The weekday units are the
numbers 1 through N (where for the Gregorian calendar N=7 and 1 is Sunday).

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

NSWeekdayOrdinalCalendarUnit
Specifies the ordinal weekday unit.

The corresponding value is an int. Equal to kCFCalendarUnitWeekdayOrdinal. The weekday
ordinal unit describes ordinal position within the month unit of the corresponding weekday unit. For
example, in the Gregorian calendar a weekday ordinal unit of 2 for a weekday unit 3 indicates "the
second Tuesday in the month".

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

Discussion
Calendar units may be used as a bit mask to specify a combination of units. Values in this enum are equal to
the corresponding constants in the CFCalendarUnit enum.

Declared In
NSCalendar.h

NSDateComponents wrapping behavior
The wrapping option specifies wrapping behavior for calculations involving NSDateComponents objects.

enum
{
 NSWrapCalendarComponents = kCFCalendarComponentsWrap,
};

Constants
NSWrapCalendarComponents

Specifies that the components specified for an NSDateComponents object should be incremented
and wrap around to zero/one on overflow, but should not cause higher units to be incremented.

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

Constants 215
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Declared In
NSCalendar.h

216 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSCalendar Class Reference

Inherits from NSDate : NSObject

Conforms to NSCoding (NSDate)
NSCopying (NSDate)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSCalendarDate.h

Companion guides Date and Time Programming Guide for Cocoa
Data Formatting Programming Guide for Cocoa

Related sample code Clock Control
CoreRecipes
GridCalendar
NewsReader
SimpleCalendar

Overview

NSCalendarDate is a public subclass of NSDate that represents concrete date objects and performs date
computations based on the Gregorian calendar. These objects associate a time interval with a time zone and
are especially suited for representing and manipulating dates according to western calendrical systems.

Important: Use of NSCalendarDate strongly discouraged. It is not deprecated yet, however it may be in
the next major OS release after Mac OS X v10.5. For calendrical calculations, you should use suitable
combinations of NSCalendar, NSDate, and NSDateComponents, as described in Calendars in Date and Time
Programming Guide for Cocoa.

An NSCalendarDate object stores a date as the number of seconds relative to the absolute reference date
(the first instance of 1 January 2001, GMT). Use the associated time zone to change how the NSCalendarDate
object prints its time interval. The time zone does not change how the time interval is stored. Because the
value is stored independently of the time zone, you can accurately compare NSCalendarDate objects with
any other NSDate objects or use them to create other NSDate objects. It also means that you can track a
date across different time zones; that is, you can create a new NSCalendarDate object with a different time
zone to see how the particular date is represented in that time zone.

Overview 217
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Important: NSCalendarDate uses the Gregorian calendar for all of time, even before it was actually adopted.

NSCalendar's version of the Gregorian calendar uses the Julian calendar before October 4, 1582. If you need
to accurately deal with dates prior to October 4, 1582, you should use NSCalendar.

NSCalendarDate provides both class and instance methods for creating objects. Some of these methods
allow you to initialize NSCalendarDate objects from strings, while others create objects from sets of integers
corresponding to the standard time values (months, hours, seconds, and so on).

To retrieve conventional elements of an NSCalendarDate object, use the ...Of... methods. For example,
dayOfWeek (page 227) returns a number that indicates the day of the week (0 is Sunday). The
monthOfYear (page 234) method returns a number from 1 through 12 that indicates the month.

The Calendar Format

Each NSCalendarDate object has a calendar format associated with it. This format is a string that contains
date conversion specifiers that are very similar to those used in the standard C library function strftime().
NSCalendarDate interprets dates that are represented as strings conforming to this format. You can set
the default format for an NSCalendarDate object at initialization time or using the
setCalendarFormat: (page 235) method. Several methods allow you to specify formats other than the one
bound to the object.

The date conversion specifiers cover a range of date conventions. See Converting Dates to Strings in Date
and Time Programming Guide for Cocoa for the list of specifiers.

Locales and String Representations of Calendar Dates

NSCalendarDate provides several description... methods for representing dates as strings. These
methods—description (page 228), descriptionWithLocale: (page 230),
descriptionWithCalendarFormat: (page 228), anddescriptionWithCalendarFormat:locale: (page
229)—take an implicit or explicit calendar format. The locale information affects the returned string. If you
use descriptionWithLocale: or descriptionWithCalendarFormat:locale:, you may specify a
locale dictionary. NSCalendarDate accesses the locale information as an NSDictionary object. The following
keys in the locale dictionary affect NSCalendarDate:

A format string that specifies how dates with times are printed. The
default is to use full month names and days with a 24-hour clock, as in
“Sunday, January 01, 2001 23:00:00 Pacific Standard Time.”

NSTimeDateFormatString

An array of strings that specify how the morning and afternoon
designations are printed. The defaults are AM and PM.

NSAMPMDesignation

An array that specifies the full names for the months.NSMonthNameArray

An array that specifies the abbreviations for the months.NSShortMonthNameArray

An array that gives the names for the days of the week. Sunday should
be the first day of the week.

NSWeekDayNameArray

218 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

An array that specifies the abbreviations for the days of the week. Sunday
should be the first day of the week.

NSShortWeekDayNameArray

If a description... method does not have a locale parameter or if you pass nil as the locale to a method
that takes a locale argument, NSCalendarDate uses the system default locale. The default locale—sometimes
called the "root" locale—is a generic English-like locale. Typically you should instead use the user’s preferences.
You can obtain a dictionary representation of the user’s standard user defaults using the NSUserDefaults
method dictionaryRepresentation (page 1849), as illustrated in the following example:

NSCalendarDate *calendarDate = [[NSCalendarDate alloc]
initWithTimeIntervalSinceReferenceDate:uploadedTime];
[calendarDate descriptionWithLocale:[[NSUserDefaults standardUserDefaults]
dictionaryRepresentation]];
// ...
[calendarDate release];

Subclassing Notes

If you subclass NSCalendarDate and override description (page 228), you should also override
descriptionWithLocale: (page 230). The stringWithFormat: (page 1536) method of NSString uses
descriptionWithLocale: (page 230) instead of description when you use the %@ conversion specifier
to get a string representation of an NSCalendarDate object. That is, this message:

[NSString stringWithFormat:@"The current date and time are %@",
 [MyNSCalendarDateSubclass date]]

invokes descriptionWithLocale: (page 230).

Tasks

Creating an NSCalendarDate Instance

+ calendarDate (page 221)
Creates and returns a calendar date initialized to the current date and time.

+ dateWithString:calendarFormat: (page 222)
Creates and returns a calendar date initialized with the date given as a string in a specified format.

+ dateWithString:calendarFormat:locale: (page 222)
Creates and returns a calendar date initialized with the date given as a string in a specified format
and interpreted using a given locale.

+ dateWithYear:month:day:hour:minute:second:timeZone: (page 223)
Creates and returns a calendar date initialized with specified values for year, month, day, hour, minute,
second, and time zone.

Tasks 219
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Initializing an NSCalendarDate Instance

– initWithString: (page 231)
Returns a calendar date initialized with the date specified as a string in the default calendar format.

– initWithString:calendarFormat: (page 231)
Returns a calendar date initialized with the date given as a string in a specified format.

– initWithString:calendarFormat:locale: (page 232)
Returns a calendar date initialized with the date given as a string in a specified format and interpreted
using a given locale.

– initWithYear:month:day:hour:minute:second:timeZone: (page 233)
Returns a calendar date initialized with specified values for year, month, day, hour, minute, second,
and time zone.

Retrieving Date Elements

– dayOfCommonEra (page 226)
Returns the number of days between the receiver and the beginning of the Common Era.

– dayOfMonth (page 226)
Returns the day of the month (1 through 31) of the receiver.

– dayOfWeek (page 227)
Returns the day of the week (0 through 6) of the receiver.

– dayOfYear (page 227)
Returns the day of the year (1 through 366) of the receiver.

– hourOfDay (page 231)
Returns the hour (0 through 23) of the receiver.

– minuteOfHour (page 234)
Returns the minute (0 through 59) of the receiver.

– monthOfYear (page 234)
Returns the month of the year (1 through 12) of the receiver.

– secondOfMinute (page 235)
Returns the second (0 through 59) of the receiver.

– yearOfCommonEra (page 237)
Returns the year, including the century, of the receiver.

Adjusting a Date

– dateByAddingYears:months:days:hours:minutes:seconds: (page 225)
Returns a new calendar date that represents the date of the receiver updated with given offsets.

Computing Date Intervals

– years:months:days:hours:minutes:seconds:sinceDate: (page 237)
Computes the calendrical time difference between the receiver and a given date.

220 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Representing Dates as Strings

– description (page 228)
Returns a string representation of the receiver formatted as specified by the receiver’s default calendar
format.

– descriptionWithCalendarFormat: (page 228)
Returns a string representation of the receiver.

– descriptionWithCalendarFormat:locale: (page 229)
Returns a string representation of the receiver formatted according to given conversion specifiers
and represented according to given locale information.

– descriptionWithLocale: (page 230)
Returns a string representation of the receiver formatted as specified by the receiver’s default calendar
format and represented according to the given locale information.

Getting and Setting Calendar Formats

– calendarFormat (page 224)
Returns the receiver’s default calendar format.

– setCalendarFormat: (page 235)
Sets the default calendar format for the receiver.

Managing the Time Zone

– setTimeZone: (page 236)
Sets the time zone for the receiver.

– timeZone (page 236)
Returns the time zone object associated with the receiver.

Class Methods

calendarDate
Creates and returns a calendar date initialized to the current date and time.

+ (id)calendarDate

Return Value
A new calendar date initialized to the current date and time.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ date (page 393) (NSDate)

Class Methods 221
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

dateWithString:calendarFormat:
Creates and returns a calendar date initialized with the date given as a string in a specified format.

+ (id)dateWithString:(NSString *)description calendarFormat:(NSString *)format

Parameters
description

A string containing a description of a date in the format specified by format.

format
A string used to interpret description and as the default calendar format for the new object. format
consists of conversion specifiers similar to those used in strftime(). See Converting Dates to Strings,
in Date and Time Programming Guide for Cocoa for more details.

Return Value
A new calendar date initialized with the date specified in description. Returns nil if description does
not match format exactly.

Discussion
The following example shows how to get a calendar date with a temporal value corresponding to the form
“Friday, 1 July 2001, 11:45 AM.”:

NSCalendarDate *today = [NSCalendarDate
 dateWithString:@"Friday, 1 July 2001, 11:45 AM"
 calendarFormat:@"%A, %d %B %Y, %I:%M %p"];

If you include a time zone in the description parameter, this method verifies it and can substitute an
alternative time zone. If the method does supply a new time zone, it applies the difference in offsets-from-GMT
values between the substituted and the original time zones to the calendar date being created.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithString:calendarFormat:locale: (page 222)
– calendarFormat (page 224)
– initWithString:calendarFormat: (page 231)

Declared In
NSCalendarDate.h

dateWithString:calendarFormat:locale:
Creates and returns a calendar date initialized with the date given as a string in a specified format and
interpreted using a given locale.

222 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

+ (id)dateWithString:(NSString *)description calendarFormat:(NSString *)format
locale:(id)localeDictionary

Parameters
description

A string containing a description of a date in the format specified by format.

format
A string used to interpret description and as the default calendar format for the new object. format
consists of conversion specifiers similar to those used in strftime(). See Converting Dates to Strings,
in Date and Time Programming Guide for Cocoa for more details.

localeDictionary
A dictionary that contains keys and values to represent the locale data to use when parsing
description. See “Locales and String Representations of Calendar Dates” (page 218) for a list of the
appropriate keys.

Return Value
A new calendar date initialized with the date specified by description and interpreted using the locale
data in localeDictionary. Returns nil if description does not exactly match format.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithString:calendarFormat: (page 222)
– calendarFormat (page 224)
– initWithString:calendarFormat:locale: (page 232)

Declared In
NSCalendarDate.h

dateWithYear:month:day:hour:minute:second:timeZone:
Creates and returns a calendar date initialized with specified values for year, month, day, hour, minute, second,
and time zone.

+ (id)dateWithYear:(NSInteger)year month:(NSUInteger)month day:(NSUInteger)day
hour:(NSUInteger)hour minute:(NSUInteger)minute second:(NSUInteger)second
timeZone:(NSTimeZone *)aTimeZone

Parameters
year

The year for the new date. The value must include the century (for example, 1999 instead of 99).

month
The month for the new date. Valid values are 1 through 12.

day
The day for the new date. Valid values are 1 through 31.

hour
The hour for the new date. Valid values are 0 through 23.

minute
The minute for the new date. Valid values are 0 through 59.

Class Methods 223
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

second
The second for the new date. Valid values are 0 through 59.

aTimeZone
The time zone for the new date.

Return Value
A new calendar date initialized with the specified values for year, month, day, hour, minute, second, and time
zone.

Discussion
On days when daylight savings time “falls back,” there are two 1:30 AMs. If you use this method, there is no
way to create the second 1:30 AM. Instead, you should create the first and then use
dateByAddingYears:months:days:hours:minutes:seconds: (page 225) to add an hour.

The following code fragment shows a calendar date created for 4 July 2001, 9 PM, Eastern Standard Time
(timeZoneWithName: (page 1670) returns the NSTimeZone object that represents the time zone with the
specified name):

NSCalendarDate *fireworks = [NSCalendarDate dateWithYear:2001
 month:7 day:4 hour:21 minute:0 second:0
 timeZone:[NSTimeZone timeZoneWithAbbreviation:@"EST"]];

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithYear:month:day:hour:minute:second:timeZone: (page 233)

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

Instance Methods

calendarFormat
Returns the receiver’s default calendar format.

- (NSString *)calendarFormat

Return Value
The receiver’s default calendar format (used when the format is unspecified).

Discussion
You can set this format when you create the calendar date using one of the class methods
dateWithString:calendarFormat: (page 222) or dateWithString:calendarFormat:locale: (page
222), or you can change the format using the instance method setCalendarFormat: (page 235). If you do
not specify a default calendar format, NSCalendarDate substitutes its own default: an international format

224 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

of “%Y-%m-%d %H:%M:%S %z” (for example, 2001-03-24 16:45:12 +0900). See Converting Dates to
Strings, in Date and Time Programming Guide for Cocoa for more information on what a calendar format
contains.

Availability
Available in Mac OS X v10.0 and later.

See Also
– descriptionWithLocale: (page 230)

Declared In
NSCalendarDate.h

dateByAddingYears:months:days:hours:minutes:seconds:
Returns a new calendar date that represents the date of the receiver updated with given offsets.

- (NSCalendarDate *)dateByAddingYears:(NSInteger)year months:(NSInteger)month
days:(NSInteger)day hours:(NSInteger)hour minutes:(NSInteger)minute
seconds:(NSInteger)second

Parameters
year

The number of years to add to the receiver. The value may be negative to indicate a time in the past.

month
The number of months to add to the receiver. The value may be negative to indicate a time in the
past.

day
The number of days to add to the receiver. The value may be negative to indicate a time in the past.

hour
The number of hours to add to the receiver. The value may be negative to indicate a time in the past.

minute
The number of minutes to add to the receiver. The value may be negative to indicate a time in the
past.

second
The number of seconds to add to the receiver. The value may be negative to indicate a time in the
past.

Return Value
A new calendar date that represents the date of the receiver updated with the year, month, day, hour, minute,
and second offsets specified in the parameters.

Discussion
The parameter values are applied in a left-to-right order: year first, then month, then day, and so on. So,
adding one month, four days to 27 April results in 31 May, not 1 June.

This method preserves “clock time” across changes in daylight saving time zones and leap years. If you add
one day to 2:30 AM on the day before daylight saving time “springs ahead,” it will actually result in 1:30 AM
on the next day (which is one day, or 24 hours, later).

The following code fragment shows a calendar date created with a date a week later than an existing calendar
date:

Instance Methods 225
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

NSCalendarDate *now = [NSCalendarDate calendarDate];
NSCalendarDate *nextWeek = [now dateByAddingYears:0 months:0
 days:7 hours:0 minutes:0 seconds:0];

Availability
Available in Mac OS X v10.0 and later.

See Also
– years:months:days:hours:minutes:seconds:sinceDate: (page 237)

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

dayOfCommonEra
Returns the number of days between the receiver and the beginning of the Common Era.

- (NSInteger)dayOfCommonEra

Return Value
The number of days between the receiver and the beginning of the Common Era.

Discussion
The base year of the Common Era is 1 C.E. (which is the same as 1 A.D.).

Availability
Available in Mac OS X v10.0 and later.

See Also
– yearOfCommonEra (page 237)

Related Sample Code
NewsReader

Declared In
NSCalendarDate.h

dayOfMonth
Returns the day of the month (1 through 31) of the receiver.

- (NSInteger)dayOfMonth

Return Value
The day of the month (1 through 31) of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dayOfWeek (page 227)

226 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

– dayOfYear (page 227)
– hourOfDay (page 231)
– minuteOfHour (page 234)
– monthOfYear (page 234)
– secondOfMinute (page 235)

Related Sample Code
Birthdays
SimpleCalendar

Declared In
NSCalendarDate.h

dayOfWeek
Returns the day of the week (0 through 6) of the receiver.

- (NSInteger)dayOfWeek

Return Value
The day of the week (0 through 6) of the receiver. 0 indicates Sunday.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dayOfMonth (page 226)
– dayOfYear (page 227)
– hourOfDay (page 231)
– minuteOfHour (page 234)
– monthOfYear (page 234)
– secondOfMinute (page 235)

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

dayOfYear
Returns the day of the year (1 through 366) of the receiver.

- (NSInteger)dayOfYear

Return Value
The day of the year (1 through 366) of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 227
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

See Also
– dayOfMonth (page 226)
– dayOfWeek (page 227)
– hourOfDay (page 231)
– minuteOfHour (page 234)
– monthOfYear (page 234)
– secondOfMinute (page 235)

Declared In
NSCalendarDate.h

description
Returns a string representation of the receiver formatted as specified by the receiver’s default calendar format.

- (NSString *)description

Return Value
A string representation of the receiver, formatted as specified by the receiver’s default calendar format.

Discussion
You can find out what the default calendar format is using the method calendarFormat (page 224). See
“Locales and String Representations of Calendar Dates” (page 218) for information on locales and this method.

BecauseNSCalendarDate implementsdescriptionWithLocale: (page 230),descriptionWithLocale:
is used to print the date when you use the %@ conversion specifier. That is, the following statement invokes
descriptionWithLocale:, not description:

NSLog(@"The current date and time is %@", [NSCalendarDate date]);

Availability
Available in Mac OS X v10.0 and later.

See Also
– descriptionWithCalendarFormat: (page 228)
– descriptionWithCalendarFormat:locale: (page 229)
– descriptionWithLocale: (page 230)
– setCalendarFormat: (page 235)

Declared In
NSCalendarDate.h

descriptionWithCalendarFormat:
Returns a string representation of the receiver.

- (NSString *)descriptionWithCalendarFormat:(NSString *)format

228 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Parameters
format

The format for the description. See Converting Dates to Strings, in Date and Time Programming Guide
for Cocoa for a listing of specifiers.

Return Value
A string representation of the receiver, formatted as specified by the conversion specifiers in the calendar
format string format.

Discussion
See “Locales and String Representations of Calendar Dates” (page 218) for information on locales and this
method.

The following example shows how to create a description of the current date in the same format as “Tues
3/24/01 3:30 PM”:

NSCalendarDate *now = [NSCalendarDate calendarDate];
NSString *nowAsString =
 [now descriptionWithCalendarFormat:@"%a %m/%d/%y %I:%M %p"];

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 228)
– descriptionWithCalendarFormat:locale: (page 229)
– descriptionWithLocale: (page 230)

Related Sample Code
Clock Control
SimpleCalendar

Declared In
NSCalendarDate.h

descriptionWithCalendarFormat:locale:
Returns a string representation of the receiver formatted according to given conversion specifiers and
represented according to given locale information.

- (NSString *)descriptionWithCalendarFormat:(NSString *)format
locale:(id)localeDictionary

Parameters
format

The format for the description. See Converting Dates to Strings, in Date and Time Programming Guide
for Cocoa for a list of specifiers.

localeDictionary
A dictionary that contains keys and values to represent the locale data to use when creating the
description. See “Locales and String Representations of Calendar Dates” (page 218) for further details.

Return Value
A string representation of the receiver, formatted according to the conversion specifiers in format and
represented according to the locale information in localeDictionary.

Instance Methods 229
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 228)
– descriptionWithCalendarFormat: (page 228)
– descriptionWithLocale: (page 230)

Related Sample Code
NewsReader

Declared In
NSCalendarDate.h

descriptionWithLocale:
Returns a string representation of the receiver formatted as specified by the receiver’s default calendar format
and represented according to the given locale information.

- (NSString *)descriptionWithLocale:(id)localeDictionary

Parameters
localeDictionary

A dictionary that contains keys and values to represent the locale data to use when creating the
description. See “Locales and String Representations of Calendar Dates” (page 218) for further details.

Return Value
A string representation of the receiver formatted as specified by the receiver’s default calendar format and
represented according to the locale information in localeDictionary.

Discussion
You can find out what the default calendar format is using the method calendarFormat (page 224).

This method is used to print an NSCalendarDate object when the %@ conversion specifier is used. That is,
this statement invokes descriptionWithLocale::

NSLog(@"The current date and time is %@", [NSCalendarDate date]);

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 228)
– descriptionWithCalendarFormat: (page 228)
– descriptionWithCalendarFormat:locale: (page 229)
– setCalendarFormat: (page 235)

Declared In
NSCalendarDate.h

230 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

hourOfDay
Returns the hour (0 through 23) of the receiver.

- (NSInteger)hourOfDay

Return Value
The hour (0 through 23) of the receiver.

Discussion
On daylight saving time “fall back” days, a value of 1 is returned for two consecutive hours, but with a different
time zone (the first in daylight saving time and the second in standard time).

Availability
Available in Mac OS X v10.0 and later.

See Also
– dayOfMonth (page 226)
– dayOfWeek (page 227)
– dayOfYear (page 227)
– minuteOfHour (page 234)
– monthOfYear (page 234)
– secondOfMinute (page 235)

Declared In
NSCalendarDate.h

initWithString:
Returns a calendar date initialized with the date specified as a string in the default calendar format.

- (id)initWithString:(NSString *)description

Parameters
description

The description of the new date. The string must conform to the default calendar format “%Y-%m-%d
%H:%M:%S %z” (for example, 2001-03-24 16:45:12 +0900). See Converting Dates to Strings, in
Date and Time Programming Guide for Cocoa for a discussion of date conversion specifiers.

Return Value
A calendar date initialized with the date specified by description. Returns nil if description does not
exactly match the default calendar format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCalendarDate.h

initWithString:calendarFormat:
Returns a calendar date initialized with the date given as a string in a specified format.

Instance Methods 231
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

- (id)initWithString:(NSString *)description calendarFormat:(NSString *)format

Parameters
description

A string containing a description of a date in the format specified by format.

format
A string used to interpret description and as the default calendar format for the new object. format
consists of conversion specifiers similar to those used in strftime(). See Converting Dates to Strings,
in Date and Time Programming Guide for Cocoa for more details.

Discussion
The following example shows how to initialize a calendar date with a string of the form “03.24.01 22:00 PST”:

NSCalendarDate *newDate = [[NSCalendarDate alloc]
 initWithString:@"03.24.01 22:00 PST"
 calendarFormat:@"%m.%d.%y %H:%M %Z"];

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithString:calendarFormat: (page 222)
– calendarFormat (page 224)

Related Sample Code
Clock Control

Declared In
NSCalendarDate.h

initWithString:calendarFormat:locale:
Returns a calendar date initialized with the date given as a string in a specified format and interpreted using
a given locale.

- (id)initWithString:(NSString *)description calendarFormat:(NSString *)format
locale:(id)localeDictionary

Parameters
description

A string containing a description of a date in the format specified by format.

format
A string used to interpret description and as the default calendar format for the new object. format
consists of conversion specifiers similar to those used in strftime(). See Converting Dates to Strings,
in Date and Time Programming Guide for Cocoa for more details.

localeDictionary
A dictionary that contains keys and values to represent the locale data to use when parsing
description. See “Locales and String Representations of Calendar Dates” (page 218) for a list of the
appropriate keys.

232 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Return Value
A calendar date initialized with the date specified in the string description. Returns nil if you specify a
locale dictionary that has a month name array with more than 12 elements or a day name array with more
than 7 arguments.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithString:calendarFormat:locale: (page 222)
– calendarFormat (page 224)

Declared In
NSCalendarDate.h

initWithYear:month:day:hour:minute:second:timeZone:
Returns a calendar date initialized with specified values for year, month, day, hour, minute, second, and time
zone.

- (id)initWithYear:(NSInteger)year month:(NSUInteger)month day:(NSUInteger)day
hour:(NSUInteger)hour minute:(NSUInteger)minute second:(NSUInteger)second
timeZone:(NSTimeZone *)aTimeZone

Parameters
year

The year for the new date. The value must include the century (for example, 1999 instead of 99).

month
The month for the new date. Valid values are 1 through 12.

day
The day for the new date. Valid values are 1 through 31.

hour
The hour for the new date. Valid values are 0 through 23.

minute
The minute for the new date. Valid values are 0 through 59.

second
The second for the new date. Valid values are 0 through 59.

aTimeZone
The time zone for the new date.

Return Value
A calendar date initialized with the specified values for year, month, day, hour, minute, second, and time
zone.

Discussion
On days when daylight saving time “falls back,” there are two 1:30 AMs. If you use this method there is no
way to create the second 1:30 AM. Instead, you should create the first and then use
dateByAddingYears:months:days:hours:minutes:seconds: (page 225) to add an hour.

Instance Methods 233
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

The following code fragment shows a calendar date created with a date of 4 July 2001, 9 PM, Eastern Standard
Time (timeZoneWithName: (page 1670) returns the NSTimeZone object that represents the time zone with
the specified name):

NSCalendarDate *fireworks = [[[NSCalendarDate alloc] initWithYear:2001
 month:7 day:4 hour:21 minute:0 second:0
 timeZone:[NSTimeZone timeZoneWithAbbreviation:@"EST"]] autorelease];

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithYear:month:day:hour:minute:second:timeZone: (page 223)

Related Sample Code
GridCalendar

Declared In
NSCalendarDate.h

minuteOfHour
Returns the minute (0 through 59) of the receiver.

- (NSInteger)minuteOfHour

Return Value
The minute (0 through 59) of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dayOfMonth (page 226)
– dayOfWeek (page 227)
– dayOfYear (page 227)
– hourOfDay (page 231)
– monthOfYear (page 234)
– secondOfMinute (page 235)

Declared In
NSCalendarDate.h

monthOfYear
Returns the month of the year (1 through 12) of the receiver.

- (NSInteger)monthOfYear

Return Value
The month of the year (1 through 12) of the receiver.

234 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– dayOfMonth (page 226)
– dayOfWeek (page 227)
– dayOfYear (page 227)
– hourOfDay (page 231)
– minuteOfHour (page 234)
– secondOfMinute (page 235)

Related Sample Code
Birthdays
GridCalendar
SimpleCalendar

Declared In
NSCalendarDate.h

secondOfMinute
Returns the second (0 through 59) of the receiver.

- (NSInteger)secondOfMinute

Return Value
The seconds value (0 through 59) of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dayOfMonth (page 226)
– dayOfWeek (page 227)
– dayOfYear (page 227)
– hourOfDay (page 231)
– minuteOfHour (page 234)
– monthOfYear (page 234)

Declared In
NSCalendarDate.h

setCalendarFormat:
Sets the default calendar format for the receiver.

- (void)setCalendarFormat:(NSString *)format

Instance Methods 235
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Parameters
format

The default calendar format for the receiver. See Converting Dates to Strings, in Date and Time
Programming Guide for Cocoa for a list of the date conversion specifiers.

Discussion
A calendar format is a string formatted with date conversion specifiers. If you do not specify a calendar format
for an object, NSCalendarDate substitutes its own default. The default is the international format of
“%Y-%m-%d %H:%M:%S %z” (for example, 2001-03-24 16:45:12 +0900).

Availability
Available in Mac OS X v10.0 and later.

See Also
– calendarFormat (page 224)
– description (page 228)
– descriptionWithLocale: (page 230)

Declared In
NSCalendarDate.h

setTimeZone:
Sets the time zone for the receiver.

- (void)setTimeZone:(NSTimeZone *)aTimeZone

Parameters
aTimeZone

The time zone for the receiver.

Discussion
If you do not specify a time zone for an object at initialization time, NSCalendarDate uses the default time
zone for the locale.

Availability
Available in Mac OS X v10.0 and later.

See Also
– timeZone (page 236)

Declared In
NSCalendarDate.h

timeZone
Returns the time zone object associated with the receiver.

- (NSTimeZone *)timeZone

Return Value
The time zone object associated with the receiver.

236 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Discussion
You can set the time zone when you create the calendar date using the class methods
dateWithString:calendarFormat: (page 222) or dateWithString:calendarFormat:locale: (page
222) by including the time zone in the description and format parameters. Or you can explicitly set the time
zone to anNSTimeZoneobject usingdateWithYear:month:day:hour:minute:second:timeZone: (page
223). If you do not specify a time zone for an object at initialization time, NSCalendarDate uses the default
time zone for the locale.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTimeZone: (page 236)

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

yearOfCommonEra
Returns the year, including the century, of the receiver.

- (NSInteger)yearOfCommonEra

Return Value
The year, including the century, of the receiver (for example, 1995). The base year of the Common Era is 1
C.E. (which is the same as 1 A.D.).

Availability
Available in Mac OS X v10.0 and later.

See Also
– dayOfCommonEra (page 226)

Related Sample Code
GridCalendar
Reminders
SimpleCalendar

Declared In
NSCalendarDate.h

years:months:days:hours:minutes:seconds:sinceDate:
Computes the calendrical time difference between the receiver and a given date.

- (void)years:(NSInteger *)yearsPointer months:(NSInteger *)monthsPointer
days:(NSInteger *)daysPointer hours:(NSInteger *)hoursPointer minutes:(NSInteger
 *)minutesPointer seconds:(NSInteger *)secondsPointer sinceDate:(NSCalendarDate
 *)date

Instance Methods 237
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Parameters
yearsPointer

Upon return, contains the number of years between the receiver and date. Pass NULL to ignore this
component.

monthsPointer
Upon return, contains the number of months between the receiver and date. Pass NULL to ignore
this component.

daysPointer
Upon return, contains the number of days between the receiver and date. Pass NULL to ignore this
component.

hoursPointer
Upon return, contains the number of hours between the receiver and date. Pass NULL to ignore this
component.

minutesPointer
Upon return, contains the number of minutes between the receiver and date. Pass NULL to ignore
this component.

secondsPointer
Upon return, contains the number of seconds between the receiver and date. Pass NULL to ignore
this component.

date
The date with which to compare the receiver. The value must not be nil, otherwise an exception is
raised.

Discussion
You can choose any representation you wish for the time difference by passing NULL for arguments you
want to ignore, other than date. The following example illustrates how to compute the difference in months,
days, and years between two dates.

NSCalendarDate *momsBDay = [NSCalendarDate dateWithYear:1936
 month:1 day:8 hour:7 minute:30 second:0
 timeZone:[NSTimeZone timeZoneWithAbbreviation:@"EST"]];
NSCalendarDate *dateOfBirth = [NSCalendarDate dateWithYear:1965
 month:12 day:7 hour:17 minute:25 second:0
 timeZone:[NSTimeZone timeZoneWithAbbreviation:@"EST"]];
int years, months, days;

[dateOfBirth years:&years months:&months days:&days hours:NULL
 minutes:NULL seconds:NULL sinceDate:momsBDay];

This returns 29 years, 10 months, and 29 days. To express the years in terms of months, pass NULL for the
years argument:

[dateOfBirth years:NULL months:&months days:&days hours:NULL
 minutes:NULL seconds:NULL sinceDate:momsBDay];

This returns 358 months and 29 days.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dateByAddingYears:months:days:hours:minutes:seconds: (page 225)

238 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Related Sample Code
SimpleCalendar

Declared In
NSCalendarDate.h

Instance Methods 239
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

240 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSCalendarDate Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSCharacterSet.h

Companion guide String Programming Guide for Cocoa

Related sample code ImageClient
iSpend
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
VertexPerformanceTest

Overview

An NSCharacterSet object represents a set of Unicode-compliant characters. NSString and NSScanner
objects use NSCharacterSet objects to group characters together for searching operations, so that they
can find any of a particular set of characters during a search. The cluster’s two public classes, NSCharacterSet
and NSMutableCharacterSet, declare the programmatic interface for static and dynamic character sets,
respectively.

The objects you create using these classes are referred to as character set objects (and when no confusion
will result, merely as character sets). Because of the nature of class clusters, character set objects aren’t actual
instances of the NSCharacterSet or NSMutableCharacterSet classes but of one of their private subclasses.
Although a character set object’s class is private, its interface is public, as declared by these abstract
superclasses, NSCharacterSet and NSMutableCharacterSet. The character set classes adopt the
NSCopying and NSMutableCopying protocols, making it convenient to convert a character set of one type
to the other.

The NSCharacterSet class declares the programmatic interface for an object that manages a set of Unicode
characters (see the NSString class cluster specification for information on Unicode). NSCharacterSet’s
principal primitive method, characterIsMember: (page 253), provides the basis for all other instance
methods in its interface. A subclass of NSCharacterSet needs only to implement this method, plus

Overview 241
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

mutableCopyWithZone: (page 2094), for proper behavior. For optimal performance, a subclass should also
override bitmapRepresentation (page 253), which otherwise works by invoking
characterIsMember: (page 253) for every possible Unicode value.

NSCharacterSet is “toll-free bridged” with its Cocoa Foundation counterpart, CFCharacterSet Reference.
This means that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSCharacterSet * parameter, you can pass
a CFCharacterSetRef, and in a function where you see a CFCharacterSetRef parameter, you can pass
an NSCharacterSet instance (you cast one type to the other to suppress compiler warnings). See
Interchangeable Data Types for more information on toll-free bridging.

The mutable subclass of NSCharacterSet is NSMutableCharacterSet.

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

NSCopying
copyWithZone: (page 2042)

NSMutableCopying
mutableCopyWithZone: (page 2094)

Tasks

Creating a Standard Character Set

+ alphanumericCharacterSet (page 244)
Returns a character set containing the characters in the categories Letters, Marks, and Numbers.

+ capitalizedLetterCharacterSet (page 244)
Returns a character set containing the characters in the category of Titlecase Letters.

+ controlCharacterSet (page 247)
Returns a character set containing the characters in the categories of Control or Format Characters.

+ decimalDigitCharacterSet (page 247)
Returns a character set containing the characters in the category of Decimal Numbers.

+ decomposableCharacterSet (page 248)
Returns a character set containing all individual Unicode characters that can also be represented as
composed character sequences.

+ illegalCharacterSet (page 248)
Returns a character set containing values in the category of Non-Characters or that have not yet been
defined in version 3.2 of the Unicode standard.

242 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

+ letterCharacterSet (page 249)
Returns a character set containing the characters in the categories Letters and Marks.

+ lowercaseLetterCharacterSet (page 249)
Returns a character set containing the characters in the category of Lowercase Letters.

+ newlineCharacterSet (page 250)
Returns a character set containing the newline characters.

+ nonBaseCharacterSet (page 250)
Returns a character set containing the characters in the category of Marks.

+ punctuationCharacterSet (page 250)
Returns a character set containing the characters in the category of Punctuation.

+ symbolCharacterSet (page 251)
Returns a character set containing the characters in the category of Symbols.

+ uppercaseLetterCharacterSet (page 251)
Returns a character set containing the characters in the categories of Uppercase Letters and Titlecase
Letters.

+ whitespaceAndNewlineCharacterSet (page 252)
Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009)
and the newline and nextline characters (U+000A–U+000D, U+0085).

+ whitespaceCharacterSet (page 252)
Returns a character set containing only the in-line whitespace characters space (U+0020) and tab
(U+0009).

Creating a Custom Character Set

+ characterSetWithCharactersInString: (page 245)
Returns a character set containing the characters in a given string.

+ characterSetWithRange: (page 246)
Returns a character set containing characters with Unicode values in a given range.

– invertedSet (page 254)
Returns a character set containing only characters that don’t exist in the receiver.

Creating and Managing Character Sets as Bitmap Representations

+ characterSetWithBitmapRepresentation: (page 245)
Returns a character set containing characters determined by a given bitmap representation.

+ characterSetWithContentsOfFile: (page 246)
Returns a character set read from the bitmap representation stored in the file a given path.

– bitmapRepresentation (page 253)
Returns an NSData object encoding the receiver in binary format.

Tasks 243
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Testing Set Membership

– characterIsMember: (page 253)
Returns a Boolean value that indicates whether a given character is in the receiver.

– hasMemberInPlane: (page 254)
Returns a Boolean value that indicates whether the receiver has at least one member in a given
character plane.

– isSupersetOfSet: (page 254)
Returns a Boolean value that indicates whether the receiver is a superset of another given character
set.

– longCharacterIsMember: (page 255)
Returns a Boolean value that indicates whether a given long character is a member of the receiver.

Class Methods

alphanumericCharacterSet
Returns a character set containing the characters in the categories Letters, Marks, and Numbers.

+ (id)alphanumericCharacterSet

Return Value
A character set containing the characters in the categories Letters, Marks, and Numbers.

Discussion
Informally, this set is the set of all characters used as basic units of alphabets, syllabaries, ideographs, and
digits.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ letterCharacterSet (page 249)
+ decimalDigitCharacterSet (page 247)

Declared In
NSCharacterSet.h

capitalizedLetterCharacterSet
Returns a character set containing the characters in the category of Titlecase Letters.

+ (id)capitalizedLetterCharacterSet

Return Value
A character set containing the characters in the category of Titlecase Letters.

Availability
Available in Mac OS X v10.2 and later.

244 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

See Also
+ letterCharacterSet (page 249)
+ uppercaseLetterCharacterSet (page 251)

Declared In
NSCharacterSet.h

characterSetWithBitmapRepresentation:
Returns a character set containing characters determined by a given bitmap representation.

+ (id)characterSetWithBitmapRepresentation:(NSData *)data

Parameters
data

A bitmap representation of a character set.

Return Value
A character set containing characters determined by data.

Discussion
This method is useful for creating a character set object with data from a file or other external data source.

A raw bitmap representation of a character set is a byte array of 2^16 bits (that is, 8192 bytes). The value of
the bit at position n represents the presence in the character set of the character with decimal Unicode value
n. To add a character with decimal Unicode value n to a raw bitmap representation, use a statement such as
the following:

unsigned char bitmapRep[8192];
bitmapRep[n >> 3] |= (((unsigned int)1) << (n & 7));

To remove that character:

bitmapRep[n >> 3] &= ~(((unsigned int)1) << (n & 7));

Availability
Available in Mac OS X v10.0 and later.

See Also
– bitmapRepresentation (page 253)
+ characterSetWithContentsOfFile: (page 246)

Declared In
NSCharacterSet.h

characterSetWithCharactersInString:
Returns a character set containing the characters in a given string.

+ (id)characterSetWithCharactersInString:(NSString *)aString

Class Methods 245
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Parameters
aString

A string containing characters for the new character set.

Return Value
A character set containing the characters in aString. Returns an empty character set if aString is empty.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend
QTAudioExtractionPanel
Quartz Composer QCTV

Declared In
NSCharacterSet.h

characterSetWithContentsOfFile:
Returns a character set read from the bitmap representation stored in the file a given path.

+ (id)characterSetWithContentsOfFile:(NSString *)path

Parameters
path

A path to a file containing a bitmap representation of a character set. The path name must end with
the extension .bitmap.

Return Value
A character set read from the bitmap representation stored in the file at path.

Discussion
To read a bitmap representation from any file, use the NSData
methoddataWithContentsOfFile:options:error: (page 373) and pass the result to
characterSetWithBitmapRepresentation: (page 245).

This method doesn’t use filenames to check for the uniqueness of the character sets it creates. To prevent
duplication of character sets in memory, cache them and make them available through an API that checks
whether the requested set has already been loaded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCharacterSet.h

characterSetWithRange:
Returns a character set containing characters with Unicode values in a given range.

+ (id)characterSetWithRange:(NSRange)aRange

246 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Parameters
aRange

A range of Unicode values.

aRange.location is the value of the first character to return; aRange.location +
aRange.length– 1 is the value of the last.

Return Value
A character set containing characters whose Unicode values are given by aRange. If aRange.length is 0,
returns an empty character set.

Discussion
This code excerpt creates a character set object containing the lowercase English alphabetic characters:

NSRange lcEnglishRange;
NSCharacterSet *lcEnglishLetters;

lcEnglishRange.location = (unsigned int)'a';
lcEnglishRange.length = 26;
lcEnglishLetters = [NSCharacterSet characterSetWithRange:lcEnglishRange];

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCharacterSet.h

controlCharacterSet
Returns a character set containing the characters in the categories of Control or Format Characters.

+ (id)controlCharacterSet

Return Value
A character set containing the characters in the categories of Control or Format Characters.

Discussion
These characters are specifically the Unicode values U+0000 to U+001F and U+007F to U+009F.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ illegalCharacterSet (page 248)

Related Sample Code
Link Snoop

Declared In
NSCharacterSet.h

decimalDigitCharacterSet
Returns a character set containing the characters in the category of Decimal Numbers.

Class Methods 247
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

+ (id)decimalDigitCharacterSet

Return Value
A character set containing the characters in the category of Decimal Numbers.

Discussion
Informally, this set is the set of all characters used to represent the decimal values 0 through 9. These characters
include, for example, the decimal digits of the Indic scripts and Arabic.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ alphanumericCharacterSet (page 244)

Declared In
NSCharacterSet.h

decomposableCharacterSet
Returns a character set containing all individual Unicode characters that can also be represented as composed
character sequences.

+ (id)decomposableCharacterSet

Return Value
A character set containing all individual Unicode characters that can also be represented as composed
character sequences (such as for letters with accents), by the definition of “standard decomposition” in version
3.2 of the Unicode character encoding standard.

Discussion
These characters include compatibility characters as well as pre-composed characters.

Note: This character set doesn’t currently include the Hangul characters defined in version 2.0 of the Unicode
standard.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ nonBaseCharacterSet (page 250)

Declared In
NSCharacterSet.h

illegalCharacterSet
Returns a character set containing values in the category of Non-Characters or that have not yet been defined
in version 3.2 of the Unicode standard.

+ (id)illegalCharacterSet

248 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Return Value
A character set containing values in the category of Non-Characters or that have not yet been defined in
version 3.2 of the Unicode standard.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ controlCharacterSet (page 247)

Declared In
NSCharacterSet.h

letterCharacterSet
Returns a character set containing the characters in the categories Letters and Marks.

+ (id)letterCharacterSet

Return Value
A character set containing the characters in the categories Letters and Marks.

Discussion
Informally, this set is the set of all characters used as letters of alphabets and ideographs.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ alphanumericCharacterSet (page 244)
+ lowercaseLetterCharacterSet (page 249)
+ uppercaseLetterCharacterSet (page 251)

Declared In
NSCharacterSet.h

lowercaseLetterCharacterSet
Returns a character set containing the characters in the category of Lowercase Letters.

+ (id)lowercaseLetterCharacterSet

Return Value
A character set containing the characters in the category of Lowercase Letters.

Discussion
Informally, this set is the set of all characters used as lowercase letters in alphabets that make case distinctions.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ uppercaseLetterCharacterSet (page 251)

Class Methods 249
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

+ letterCharacterSet (page 249)

Declared In
NSCharacterSet.h

newlineCharacterSet
Returns a character set containing the newline characters.

+ (id)newlineCharacterSet

Return Value
A character set containing the newline characters (U+000A–U+000D, U+0085).

Availability
Available in Mac OS X v10.5 and later.

See Also
+ whitespaceAndNewlineCharacterSet (page 252)
+ whitespaceCharacterSet (page 252)

Declared In
NSCharacterSet.h

nonBaseCharacterSet
Returns a character set containing the characters in the category of Marks.

+ (id)nonBaseCharacterSet

Return Value
A character set containing the characters in the category of Marks.

Discussion
This set is also defined as all legal Unicode characters with a non-spacing priority greater than 0. Informally,
this set is the set of all characters used as modifiers of base characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ decomposableCharacterSet (page 248)

Declared In
NSCharacterSet.h

punctuationCharacterSet
Returns a character set containing the characters in the category of Punctuation.

+ (id)punctuationCharacterSet

250 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Return Value
A character set containing the characters in the category of Punctuation.

Discussion
Informally, this set is the set of all non-whitespace characters used to separate linguistic units in scripts, such
as periods, dashes, parentheses, and so on.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCharacterSet.h

symbolCharacterSet
Returns a character set containing the characters in the category of Symbols.

+ (id)symbolCharacterSet

Return Value
A character set containing the characters in the category of Symbols.

Discussion
These characters include, for example, the dollar sign ($) and the plus (+) sign.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSCharacterSet.h

uppercaseLetterCharacterSet
Returns a character set containing the characters in the categories of Uppercase Letters and Titlecase Letters.

+ (id)uppercaseLetterCharacterSet

Return Value
A character set containing the characters in the categories of Uppercase Letters and Titlecase Letters.

Discussion
Informally, this set is the set of all characters used as uppercase letters in alphabets that make case distinctions.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ capitalizedLetterCharacterSet (page 244)
+ lowercaseLetterCharacterSet (page 249)
+ letterCharacterSet (page 249)

Declared In
NSCharacterSet.h

Class Methods 251
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

whitespaceAndNewlineCharacterSet
Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009) and the
newline and nextline characters (U+000A–U+000D, U+0085).

+ (id)whitespaceAndNewlineCharacterSet

Return Value
A character set containing only the whitespace characters space (U+0020) and tab (U+0009) and the newline
and nextline characters (U+000A–U+000D, U+0085).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ newlineCharacterSet (page 250)
+ whitespaceCharacterSet (page 252)

Related Sample Code
ImageMapExample
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
TextLinks
VertexPerformanceTest

Declared In
NSCharacterSet.h

whitespaceCharacterSet
Returns a character set containing only the in-line whitespace characters space (U+0020) and tab (U+0009).

+ (id)whitespaceCharacterSet

Return Value
A character set containing only the in-line whitespace characters space (U+0020) and tab (U+0009).

Discussion
This set doesn’t contain the newline or carriage return characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ whitespaceAndNewlineCharacterSet (page 252)
+ newlineCharacterSet (page 250)

Related Sample Code
CoreRecipes
ImageClient

Declared In
NSCharacterSet.h

252 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Instance Methods

bitmapRepresentation
Returns an NSData object encoding the receiver in binary format.

- (NSData *)bitmapRepresentation

Return Value
An NSData object encoding the receiver in binary format.

Discussion
This format is suitable for saving to a file or otherwise transmitting or archiving.

A raw bitmap representation of a character set is a byte array of 2^16 bits (that is, 8192 bytes). The value of
the bit at position n represents the presence in the character set of the character with decimal Unicode value
n. To test for the presence of a character with decimal Unicode value n in a raw bitmap representation, use
an expression such as the following:

unsigned char bitmapRep[8192];
if (bitmapRep[n >> 3] & (((unsigned int)1) << (n & 7))) {
 /* Character is present. */
}

Availability
Available in Mac OS X v10.0 and later.

See Also
+ characterSetWithBitmapRepresentation: (page 245)

Declared In
NSCharacterSet.h

characterIsMember:
Returns a Boolean value that indicates whether a given character is in the receiver.

- (BOOL)characterIsMember:(unichar)aCharacter

Parameters
aCharacter

The character to test for membership of the receiver.

Return Value
YES if aCharacter is in the receiving character set, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– longCharacterIsMember: (page 255)

Instance Methods 253
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Declared In
NSCharacterSet.h

hasMemberInPlane:
Returns a Boolean value that indicates whether the receiver has at least one member in a given character
plane.

- (BOOL)hasMemberInPlane:(uint8_t)thePlane

Parameters
thePlane

A character plane.

Return Value
YES if the receiver has at least one member in thePlane, otherwise NO.

Discussion
This method makes it easier to find the plane containing the members of the current character set. The Basic
Multilingual Plane is plane 0.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSCharacterSet.h

invertedSet
Returns a character set containing only characters that don’t exist in the receiver.

- (NSCharacterSet *)invertedSet

Return Value
A character set containing only characters that don’t exist in the receiver.

Discussion
Inverting an immutable character set is much more efficient than inverting a mutable character set.

Availability
Available in Mac OS X v10.0 and later.

See Also
invert (page 942) (NSMutableCharacterSet)

Declared In
NSCharacterSet.h

isSupersetOfSet:
Returns a Boolean value that indicates whether the receiver is a superset of another given character set.

- (BOOL)isSupersetOfSet:(NSCharacterSet *)theOtherSet

254 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Parameters
theOtherSet

A character set.

Return Value
YES if the receiver is a superset of theOtherSet, otherwise NO.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSCharacterSet.h

longCharacterIsMember:
Returns a Boolean value that indicates whether a given long character is a member of the receiver.

- (BOOL)longCharacterIsMember:(UTF32Char)theLongChar

Parameters
theLongChar

A UTF32 character.

Return Value
YES if theLongChar is in the receiver, otherwise NO.

Discussion
This method supports the specification of 32-bit characters.

Availability
Available in Mac OS X v10.2 and later.

See Also
– characterIsMember: (page 253)

Declared In
NSCharacterSet.h

Constants

NSOpenStepUnicodeReservedBase
Specifies lower bound for a Unicode character range reserved for Apple’s corporate use.

Constants 255
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

enum {
 NSOpenStepUnicodeReservedBase = 0xF400
};

Constants
NSOpenStepUnicodeReservedBase

Specifies lower bound for a Unicode character range reserved for Apple’s corporate use (the range is
0xF400–0xF8FF).

Available in Mac OS X v10.0 and later.

Declared in NSCharacterSet.h.

Declared In
NSCharacterSet.h

256 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSCharacterSet Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSClassDescription.h

Companion guides Cocoa Scripting Guide
Key-Value Coding Programming Guide

Overview

NSClassDescription is an abstract class that provides the interface for querying the relationships and
properties of a class. Concrete subclasses of NSClassDescription provide the available attributes of objects
of a particular class and the relationships between that class and other classes. Defining these relationships
between classes allows for more intelligent and flexible manipulation of objects with key-value coding.

It is important to note that there are no class descriptions by default. To use NSClassDescription objects
in your code you have to implement them for your model classes. For all concrete subclasses, you must
provide implementations for all instance methods of NSClassDescription. (NSClassDescription
provides only the implementation for the class methods that maintain the cache of registered class
descriptions.) Once created, you must register a class description with the NSClassDescription method
registerClassDescription:forClass: (page 259).

You can use the NSString objects in the arrays returned by methods such as attributeKeys (page 260) and
toManyRelationshipKeys (page 261) to access—using key-value coding—the properties of an instance of the
class to which a class description object corresponds. For more about attributes and relationships, see Cocoa
Fundamentals Guide. For more about key-value coding, see Key-Value Coding Programming Guide.

NSScriptClassDescription, which is used to map the relationships between scriptable classes, is the
only concrete subclass of NSClassDescription provided as part of the Cocoa framework.

Overview 257
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSClassDescription Class Reference

Tasks

Working with Class Descriptions

+ classDescriptionForClass: (page 258)
Returns the class description for a given class.

+ invalidateClassDescriptionCache (page 259)
Removes all NSClassDescription objects from the cache.

+ registerClassDescription:forClass: (page 259)
Registers an NSClassDescription object for a given class in the NSClassDescription cache.

Attribute Keys

– attributeKeys (page 260)
Overridden by subclasses to return the names of attributes of instances of the described class.

Relationship Keys

– inverseForRelationshipKey: (page 260)
Overridden by subclasses to return the name of the inverse relationship from a relationship specified
by a given key.

– toManyRelationshipKeys (page 261)
Overridden by subclasses to return the keys for the to-many relationship properties of instances of
the described class.

– toOneRelationshipKeys (page 261)
Overridden by subclasses to return the keys for the to-one relationship properties of instances of the
described class.

Class Methods

classDescriptionForClass:
Returns the class description for a given class.

+ (NSClassDescription *)classDescriptionForClass:(Class)aClass

Parameters
aClass

The class for which to return a class description.

Return Value
The class description for aClass, or nil if a class description cannot be found.

258 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSClassDescription Class Reference

Discussion
If a class description for aClass is not found, the method posts an
NSClassDescriptionNeededForClassNotification on behalf of aClass, allowing an observer to
register a class description. The method then checks for a class description again. Returns nil if a class
description is still not found.

If you have an instance of the receiver’s class, you can use the NSObject instance method
classDescription (page 1170) instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSClassDescription.h

invalidateClassDescriptionCache
Removes all NSClassDescription objects from the cache.

+ (void)invalidateClassDescriptionCache

Discussion
You should rarely need to invoke this method. Use it whenever a registered NSClassDescription object
might be replaced by a different version, such as when you have loaded a new provider of
NSClassDescription objects, or when you are about to remove a provider of NSClassDescription
objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSClassDescription.h

registerClassDescription:forClass:
Registers an NSClassDescription object for a given class in the NSClassDescription cache.

+ (void)registerClassDescription:(NSClassDescription *)description
forClass:(Class)aClass

Parameters
description

The class description to register.

aClass
The class for which to register description.

Discussion
You should rarely need to directly invoke this method.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 259
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSClassDescription Class Reference

Declared In
NSClassDescription.h

Instance Methods

attributeKeys
Overridden by subclasses to return the names of attributes of instances of the described class.

- (NSArray *)attributeKeys

Return Value
An array of NSString objects containing the names of attributes of instances of the described class.

Discussion
For example, a class description that describes Movie objects could return the attribute keys title,
dateReleased, and rating.

If you have an instance of the class the receiver describes, you can use the NSObject instance method
attributeKeys (page 1168) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– toManyRelationshipKeys (page 261)
– toOneRelationshipKeys (page 261)

Declared In
NSClassDescription.h

inverseForRelationshipKey:
Overridden by subclasses to return the name of the inverse relationship from a relationship specified by a
given key.

- (NSString *)inverseForRelationshipKey:(NSString *)relationshipKey

Return Value
The name of the inverse relationship from the relationship specified by relationshipKey.

Discussion
For a given key that defines the name of the relationship from the receiver’s class to another class, returns
the name of the relationship from the other class to the receiver’s class. For example, suppose an Employee
class has a relationship named department to a Department class, and that Department has a relationship
named employees to Employee. The statement:

[employee inverseForRelationshipKey:@"department"];

returns the string employees.

260 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSClassDescription Class Reference

If you have an instance of the class the receiver describes, you can use the NSObject instance method
inverseForRelationshipKey: (page 1180) instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSClassDescription.h

toManyRelationshipKeys
Overridden by subclasses to return the keys for the to-many relationship properties of instances of the
described class.

- (NSArray *)toManyRelationshipKeys

Return Value
An array of NSString objects containing the names of the to-many relationship properties of instances of
the described class.

Discussion
To-many relationship properties are arrays of objects.

If you have an instance of the class the receiver describes, you can use the NSObject instance method
toManyRelationshipKeys (page 1194) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributeKeys (page 260)
– toOneRelationshipKeys (page 261)

Declared In
NSClassDescription.h

toOneRelationshipKeys
Overridden by subclasses to return the keys for the to-one relationship properties of instances of the described
class.

- (NSArray *)toOneRelationshipKeys

Return Value
An array of NSString objects containing the names of the to-one relationship properties of instances of the
described class.

Discussion
To-one relationship properties are single objects.

If you have an instance of the class the receiver describes, you can use the NSObject instance method
toOneRelationshipKeys (page 1195) instead.

Instance Methods 261
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSClassDescription Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributeKeys (page 260)
– toManyRelationshipKeys (page 261)

Declared In
NSClassDescription.h

Notifications

NSClassDescriptionNeededForClassNotification
Posted by classDescriptionForClass: (page 258) when a class description cannot be found for a class.

After the notification is processed, classDescriptionForClass: (page 258) checks for a class description
again. This checking allows an observer to register class descriptions lazily. The notification is posted only
once for any given class, even if the class description remains undefined.

The notification object is the class object for which the class description is requested. This notification does
not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSClassDescription.h

262 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSClassDescription Class Reference

Inherits from NSScriptCommand : NSObject

Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptStandardSuiteCommands.h

Companion guide Cocoa Scripting Guide

Overview

An instance of NSCloneCommand clones the specified scriptable object or objects (such as words, paragraphs,
images, and so on) and inserts them in the specified location, or the default location if no location is specified.
The cloned scriptable objects typically correspond to objects in the application, but aren’t required to. This
command corresponds to AppleScript’s duplicate command.

NSCloneCommand is part of Cocoa’s built-in scripting support. It works automatically to support the duplicate
command through key-value coding. Most applications don’t need to subclass NSCloneCommand or invoke
its methods.

When an instance of NSCloneCommand is executed, it clones the specified objects by sending them
copyWithZone: (page 1157) messages.

Tasks

Working with Specifiers

– keySpecifier (page 264)
Returns a specifier for the object or objects to be cloned.

– setReceiversSpecifier: (page 264)
Sets the receiver’s object specifier;.

Overview 263
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCloneCommand Class Reference

Instance Methods

keySpecifier
Returns a specifier for the object or objects to be cloned.

- (NSScriptObjectSpecifier *)keySpecifier

Return Value
A specifier for the object or objects to be cloned.

Discussion
For example, the specifier may indicate that a document’s third rectangle should be cloned. The returned
specifier is valid only in the context of the NSCloneCommand object; for example, if you send the specifier a
containerSpecifier (page 1416) message, the result is nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

setReceiversSpecifier:
Sets the receiver’s object specifier;.

- (void)setReceiversSpecifier:(NSScriptObjectSpecifier *)receiversRef

Parameters
receiversRef

The object specifier for the receiver.

Discussion
When evaluated, the specifier indicates the receiver or receivers of the clone command.

This method overrides setReceiversSpecifier: (page 1390) in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRef is a specifier for the third
rectangle of the first document, the receiver specifier is the first document while the key
specifier is the third rectangle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

264 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSCloneCommand Class Reference

Inherits from NSScriptCommand : NSObject

Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptStandardSuiteCommands.h

Companion guide Cocoa Scripting Guide

Related sample code Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Overview

An instance of NSCloseCommand closes the specified scriptable object or objects—typically a document or
window (and its associated document, if any). The command may optionally specify a location to save in and
how to handle modified documents (by automatically saving changes, not saving them, or asking the user).

NSCloseCommand is part of Cocoa’s built-in scripting support. It works automatically to support the close
command through key-value coding. Most applications don’t need to subclass NSCloseCommand or call its
methods.

Tasks

Accessing Save Options

– saveOptions (page 266)
Returns a constant indicating how to deal with closing any modified documents.

Overview 265
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCloseCommand Class Reference

Instance Methods

saveOptions
Returns a constant indicating how to deal with closing any modified documents.

- (NSSaveOptions)saveOptions

Return Value
A constant indicating how to deal with closing any modified documents. The default value returned is
NSSaveOptionsAsk. See “Constants” (page 266) for a list of possible return values.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSScriptStandardSuiteCommands.h

Constants

NSSaveOptions
The saveOptions (page 266) method returns one of the following constants to indicate how to deal with
saving any modified documents:

typedef enum {
 NSSaveOptionsYes = 0,
 NSSaveOptionsNo,
 NSSaveOptionsAsk
} NSSaveOptions;

Constants
NSSaveOptionsYes

Indicates a modified document should be saved on closing without asking the user.

Available in Mac OS X v10.0 and later.

Declared in NSScriptStandardSuiteCommands.h.

NSSaveOptionsNo
Indicates a modified document should not be saved on closing.

Available in Mac OS X v10.0 and later.

Declared in NSScriptStandardSuiteCommands.h.

266 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCloseCommand Class Reference

NSSaveOptionsAsk
Indicates the user should be asked before saving any modified documents on closing. When no option
is specified, this is the default.

Available in Mac OS X v10.0 and later.

Declared in NSScriptStandardSuiteCommands.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

Constants 267
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCloseCommand Class Reference

268 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSCloseCommand Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSCoder.h
Foundation/NSKeyedArchiver.h
Foundation/NSGeometry.h

Companion guide Archives and Serializations Programming Guide for Cocoa

Related sample code bMoviePaletteCocoa
iSpend
Mountains
Reducer
StickiesExample

Overview

The NSCoder abstract class declares the interface used by concrete subclasses to transfer objects and other
Objective-C data items between memory and some other format. This capability provides the basis for
archiving (where objects and data items are stored on disk) and distribution (where objects and data items
are copied between different processes or threads). The concrete subclasses provided by Foundation for
these purposes are NSArchiver, NSUnarchiver, NSKeyedArchiver, NSKeyedUnarchiver, and
NSPortCoder. Concrete subclasses of NSCoder are referred to in general as coder classes, and instances of
these classes as coder objects (or simply coders). A coder object that can only encode values is referred to
as an encoder object, and one that can only decode values as a decoder object.

NSCoder operates on objects, scalars, C arrays, structures, and strings, and on pointers to these types. It does
not handle types whose implementation varies across platforms, such as union, void *, function pointers,
and long chains of pointers. A coder object stores object type information along with the data, so an object
decoded from a stream of bytes is normally of the same class as the object that was originally encoded into
the stream. An object can change its class when encoded, however; this is described in Archives and
Serializations Programming Guide for Cocoa.

Overview 269
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Tasks

Testing Coder

– allowsKeyedCoding (page 273)
Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.

– containsValueForKey: (page 274)
Returns a Boolean value that indicates whether an encoded value is available for a string.

Encoding Data

– encodeArrayOfObjCType:count:at: (page 283)
Encodes an array of count items, whose Objective-C type is given by itemType.

– encodeBool:forKey: (page 283)
Encodes boolv and associates it with the string key.

– encodeBycopyObject: (page 284)
Can be overridden by subclasses to encode object so that a copy, rather than a proxy, is created
upon decoding.

– encodeByrefObject: (page 284)
Can be overridden by subclasses to encode object so that a proxy, rather than a copy, is created
upon decoding.

– encodeBytes:length: (page 284)
Encodes a buffer of data whose types are unspecified.

– encodeBytes:length:forKey: (page 285)
Encodes a buffer of data, bytesp, whose length is specified by lenv, and associates it with the string
key.

– encodeConditionalObject: (page 285)
Can be overridden by subclasses to conditionally encode object, preserving common references to
that object.

– encodeConditionalObject:forKey: (page 286)
Conditionally encodes a reference to objv and associates it with the string key only if objv has been
unconditionally encoded with encodeObject:forKey: (page 290).

– encodeDataObject: (page 286)
Encodes a given NSData object.

– encodeDouble:forKey: (page 287)
Encodes realv and associates it with the string key.

– encodeFloat:forKey: (page 287)
Encodes realv and associates it with the string key.

– encodeInt:forKey: (page 288)
Encodes intv and associates it with the string key.

– encodeInteger:forKey: (page 289)
Encodes a given NSInteger and associates it with a given key.

270 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

– encodeInt32:forKey: (page 287)
Encodes the 32-bit integer intv and associates it with the string key.

– encodeInt64:forKey: (page 288)
Encodes the 64-bit integer intv and associates it with the string key.

– encodeObject: (page 289)
Encodes object.

– encodeObject:forKey: (page 290)
Encodes the object objv and associates it with the string key.

– encodePoint: (page 291)
Encodes point.

– encodePoint:forKey: (page 291)
Encodes point and associates it with the string key.

– encodePropertyList: (page 291)
Encodes the property list aPropertyList.

– encodeRect: (page 291)
Encodes rect.

– encodeRect:forKey: (page 292)
Encodes rect and associates it with the string key.

– encodeRootObject: (page 292)
Can be overridden by subclasses to encode an interconnected group of Objective-C objects, starting
with rootObject.

– encodeSize: (page 293)
Encodes size.

– encodeSize:forKey: (page 293)
Encodes size and associates it with the string key.

– encodeValueOfObjCType:at: (page 293)
Must be overridden by subclasses to encode a single value residing at address, whose Objective-C
type is given by valueType.

– encodeValuesOfObjCTypes: (page 294)
Encodes a series of values of potentially differing Objective-C types.

– encodeNXObject: (page 289) Deprecated in Mac OS X v10.5
Encodes an old-style object onto the coder.

Decoding Data

– decodeArrayOfObjCType:count:at: (page 274)
Decodes an array of count items, whose Objective-C type is given by itemType.

– decodeBoolForKey: (page 274)
Decodes and returns a boolean value that was previously encoded with encodeBool:forKey: (page
283) and associated with the string key.

– decodeBytesForKey:returnedLength: (page 275)
Decodes a buffer of data that was previously encoded with encodeBytes:length:forKey: (page
285) and associated with the string key.

Tasks 271
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

– decodeBytesWithReturnedLength: (page 275)
Decodes a buffer of data whose types are unspecified.

– decodeDataObject (page 276)
Decodes and returns an NSData object that was previously encoded with encodeDataObject: (page
286). Subclasses must override this method.

– decodeDoubleForKey: (page 276)
Decodes and returns a double value that was previously encoded with either
encodeFloat:forKey: (page 287) or encodeDouble:forKey: (page 287) and associated with the
string key.

– decodeFloatForKey: (page 276)
Decodes and returns a float value that was previously encoded with encodeFloat:forKey: (page
287) or encodeDouble:forKey: (page 287) and associated with the string key.

– decodeIntForKey: (page 278)
Decodes and returns an int value that was previously encoded with encodeInt:forKey: (page
288), encodeInteger:forKey: (page 289), encodeInt32:forKey: (page 287), or
encodeInt64:forKey: (page 288) and associated with the string key.

– decodeIntegerForKey: (page 278)
Decodes and returns an NSInteger value that was previously encoded with
encodeInt:forKey: (page 288),encodeInteger:forKey: (page 289),encodeInt32:forKey: (page
287), or encodeInt64:forKey: (page 288) and associated with the string key.

– decodeInt32ForKey: (page 277)
Decodes and returns a 32-bit integer value that was previously encoded with
encodeInt:forKey: (page 288),encodeInteger:forKey: (page 289),encodeInt32:forKey: (page
287), or encodeInt64:forKey: (page 288) and associated with the string key.

– decodeInt64ForKey: (page 277)
Decodes and returns a 64-bit integer value that was previously encoded with
encodeInt:forKey: (page 288),encodeInteger:forKey: (page 289),encodeInt32:forKey: (page
287), or encodeInt64:forKey: (page 288) and associated with the string key.

– decodeObject (page 279)
Decodes an Objective-C object that was previously encoded with any of the encode...Object:
methods.

– decodeObjectForKey: (page 279)
Decodes and returns an autoreleased Objective-C object that was previously encoded with
encodeObject:forKey: (page 290) or encodeConditionalObject:forKey: (page 286) and
associated with the string key.

– decodePoint (page 280)
Decodes and returns an NSPoint structure that was previously encoded with encodePoint: (page
291).

– decodePointForKey: (page 280)
Decodes and returns an NSPoint structure that was previously encoded with
encodePoint:forKey: (page 291).

– decodePropertyList (page 280)
Decodes a property list that was previously encoded with encodePropertyList: (page 291).

– decodeRect (page 280)
Decodes and returns an NSRect structure that was previously encoded with encodeRect: (page
291).

272 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

– decodeRectForKey: (page 281)
Decodes and returns an NSRect structure that was previously encoded with
encodeRect:forKey: (page 292).

– decodeSize (page 281)
Decodes and returns an NSSize structure that was previously encoded with encodeSize: (page
293).

– decodeSizeForKey: (page 281)
Decodes and returns an NSSize structure that was previously encoded with
encodeSize:forKey: (page 293).

– decodeValueOfObjCType:at: (page 282)
Decodes a single value, whose Objective-C type is given by valueType.

– decodeValuesOfObjCTypes: (page 282)
Decodes a series of potentially different Objective-C types.

– decodeNXObject (page 278) Deprecated in Mac OS X v10.5
Decodes an object previously written with encodeNXObject: (page 289).

Managing Zones

– objectZone (page 294)
Returns the memory zone used to allocate decoded objects.

– setObjectZone: (page 295)
NSCoder’s implementation of this method does nothing.

Getting Version Information

– systemVersion (page 295)
During encoding, this method should return the system version currently in effect.

– versionForClassName: (page 295)
Returns the version in effect for the class with a given name.

Instance Methods

allowsKeyedCoding
Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.

- (BOOL)allowsKeyedCoding

Discussion
The default implementation returns NO. Concrete subclasses that support keyed coding, such as
NSKeyedArchiver, need to override this method to return YES.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 273
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Declared In
NSCoder.h

containsValueForKey:
Returns a Boolean value that indicates whether an encoded value is available for a string.

- (BOOL)containsValueForKey:(NSString *)key

Discussion
The string is passed as key. Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSCoder.h

decodeArrayOfObjCType:count:at:
Decodes an array of count items, whose Objective-C type is given by itemType.

- (void)decodeArrayOfObjCType:(const char *)itemType count:(NSUInteger)count at:(void
 *)address

Discussion
The items are decoded into the buffer beginning at address, which must be large enough to contain them
all. itemType must contain exactly one type code. NSCoder’s implementation invokes
decodeValueOfObjCType:at: (page 282) to decode the entire array of items. If you use this method to
decode an array of Objective-C objects, you are responsible for releasing each object.

This method matches an encodeArrayOfObjCType:count:at: (page 283) message used during encoding.

For information on creating an Objective-C type code suitable for itemType, see the “Type Encodings”
section in the “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in Mac OS X v10.0 and later.

See Also
– decodeValuesOfObjCTypes: (page 282)

Declared In
NSCoder.h

decodeBoolForKey:
Decodes and returns a boolean value that was previously encoded with encodeBool:forKey: (page 283)
and associated with the string key.

- (BOOL)decodeBoolForKey:(NSString *)key

274 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
iSpend
Reducer

Declared In
NSCoder.h

decodeBytesForKey:returnedLength:
Decodes a buffer of data that was previously encoded with encodeBytes:length:forKey: (page 285) and
associated with the string key.

- (const uint8_t *)decodeBytesForKey:(NSString *)key returnedLength:(NSUInteger
*)lengthp

Discussion
The buffer’s length is returned by reference in lengthp. The returned bytes are immutable. Subclasses must
override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
– encodeBytes:length:forKey: (page 285)

Declared In
NSCoder.h

decodeBytesWithReturnedLength:
Decodes a buffer of data whose types are unspecified.

- (void *)decodeBytesWithReturnedLength:(NSUInteger *)numBytes

Discussion
NSCoder’s implementation invokes decodeValueOfObjCType:at: (page 282) to decode the data as a series
of bytes, which this method then places into a buffer and returns. The buffer’s length is returned by reference
in numBytes. If you need the bytes beyond the scope of the current autorelease pool, you must copy them.

This method matches an encodeBytes:length: (page 284) message used during encoding.

Availability
Available in Mac OS X v10.0 and later.

See Also
– encodeArrayOfObjCType:count:at: (page 283)

Instance Methods 275
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Declared In
NSCoder.h

decodeDataObject
Decodes and returns an NSData object that was previously encoded with encodeDataObject: (page 286).
Subclasses must override this method.

- (NSData *)decodeDataObject

Discussion
The implementation of your overriding method must match the implementation of your
encodeDataObject: (page 286) method. For example, a typical encodeDataObject: (page 286) method
encodes the number of bytes of data followed by the bytes themselves. Your override of this method must
read the number of bytes, create an NSData object of the appropriate size, and decode the bytes into the
new NSData object. Your overriding method should return an autoreleased NSData object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

decodeDoubleForKey:
Decodes and returns a double value that was previously encoded with either encodeFloat:forKey: (page
287) or encodeDouble:forKey: (page 287) and associated with the string key.

- (double)decodeDoubleForKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
QTQuartzPlayer
Squiggles

Declared In
NSCoder.h

decodeFloatForKey:
Decodes and returns a float value that was previously encoded with encodeFloat:forKey: (page 287)
or encodeDouble:forKey: (page 287) and associated with the string key.

- (float)decodeFloatForKey:(NSString *)key

276 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Discussion
If the value was encoded as a double, the extra precision is lost. Also, if the encoded real value does not fit
into a float, the method raises an NSRangeException. Subclasses must override this method if they
perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
iSpend

Declared In
NSCoder.h

decodeInt32ForKey:
Decodes and returns a 32-bit integer value that was previously encoded with encodeInt:forKey: (page
288), encodeInteger:forKey: (page 289), encodeInt32:forKey: (page 287), or
encodeInt64:forKey: (page 288) and associated with the string key.

- (int32_t)decodeInt32ForKey:(NSString *)key

Discussion
If the encoded integer does not fit into a 32-bit integer, the method raises an NSRangeException. Subclasses
must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSCoder.h

decodeInt64ForKey:
Decodes and returns a 64-bit integer value that was previously encoded with encodeInt:forKey: (page
288), encodeInteger:forKey: (page 289), encodeInt32:forKey: (page 287), or
encodeInt64:forKey: (page 288) and associated with the string key.

- (int64_t)decodeInt64ForKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSCoder.h

Instance Methods 277
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

decodeIntegerForKey:
Decodes and returns an NSInteger value that was previously encoded with encodeInt:forKey: (page
288), encodeInteger:forKey: (page 289), encodeInt32:forKey: (page 287), or
encodeInt64:forKey: (page 288) and associated with the string key.

- (NSInteger)decodeIntegerForKey:(NSString *)key

Discussion
If the encoded integer does not fit into the NSInteger size, the method raises an NSRangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCoder.h

decodeIntForKey:
Decodes and returns an int value that was previously encoded with encodeInt:forKey: (page 288),
encodeInteger:forKey: (page 289),encodeInt32:forKey: (page 287), orencodeInt64:forKey: (page
288) and associated with the string key.

- (int)decodeIntForKey:(NSString *)key

Discussion
If the encoded integer does not fit into the default integer size, the method raises an NSRangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Reducer

Declared In
NSCoder.h

decodeNXObject
Decodes an object previously written with encodeNXObject: (page 289). (Deprecated in Mac OS X v10.5.)

- (id)decodeNXObject

Discussion
No sharing is done across separate decodeNXObject invocations. Callers must have implemented an
initWithCoder: (page 2034), which parallels the read:methods, on all of their classes that may be touched
by this operation. The returned object is autoreleased.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

278 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Declared In
NSCoder.h

decodeObject
Decodes an Objective-C object that was previously encoded with any of the encode...Object: methods.

- (id)decodeObject

Discussion
NSCoder’s implementation invokes decodeValueOfObjCType:at: (page 282) to decode the object data.

Subclasses may need to override this method if they override any of the corresponding encode...Object:
methods. For example, if an object was encoded conditionally using the encodeConditionalObject: (page
285) method, this method needs to check whether the object had actually been encoded.

The implementation for the concrete subclass NSUnarchiver returns an object that is retained by the
unarchiver and is released when the unarchiver is deallocated. Therefore, you must retain the returned object
before releasing the unarchiver. NSKeyedUnarchiver’s implementation, however, returns an autoreleased
object, so its life is the same as the current autorelease pool instead of the keyed unarchiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– encodeBycopyObject: (page 284)
– encodeByrefObject: (page 284)
– encodeObject: (page 289)

Related Sample Code
bMoviePalette
bMoviePaletteCocoa
Clock Control
StickiesExample

Declared In
NSCoder.h

decodeObjectForKey:
Decodes and returns an autoreleased Objective-C object that was previously encoded with
encodeObject:forKey: (page 290) or encodeConditionalObject:forKey: (page 286) and associated
with the string key.

- (id)decodeObjectForKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 279
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Related Sample Code
IBFragmentView
iSpend
Mountains
Reducer
StickiesExample

Declared In
NSCoder.h

decodePoint
Decodes and returns an NSPoint structure that was previously encoded with encodePoint: (page 291).

- (NSPoint)decodePoint

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

decodePointForKey:
Decodes and returns an NSPoint structure that was previously encoded with encodePoint:forKey: (page
291).

- (NSPoint)decodePointForKey:(NSString *)key

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

decodePropertyList
Decodes a property list that was previously encoded with encodePropertyList: (page 291).

- (id)decodePropertyList

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

decodeRect
Decodes and returns an NSRect structure that was previously encoded with encodeRect: (page 291).

280 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

- (NSRect)decodeRect

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

decodeRectForKey:
Decodes and returns an NSRect structure that was previously encoded with encodeRect:forKey: (page
292).

- (NSRect)decodeRectForKey:(NSString *)key

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

decodeSize
Decodes and returns an NSSize structure that was previously encoded with encodeSize: (page 293).

- (NSSize)decodeSize

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

decodeSizeForKey:
Decodes and returns an NSSize structure that was previously encoded with encodeSize:forKey: (page
293).

- (NSSize)decodeSizeForKey:(NSString *)key

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Reducer

Declared In
NSKeyedArchiver.h

Instance Methods 281
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

decodeValueOfObjCType:at:
Decodes a single value, whose Objective-C type is given by valueType.

- (void)decodeValueOfObjCType:(const char *)valueType at:(void *)data

Discussion
valueType must contain exactly one type code, and the buffer specified by data must be large enough to
hold the value corresponding to that type code. For information on creating an Objective-C type code suitable
for valueType, see the “Type Encodings” section in “The Objective-C Runtime System” chapter of The
Objective-C 2.0 Programming Language.

Subclasses must override this method and provide an implementation to decode the value. In your overriding
implementation, decode the value into the buffer beginning at data. If your overriding method is capable
of decoding an Objective-C object, your method must also retain that object. Clients of this method are then
responsible for releasing the object.

This method matches an encodeValueOfObjCType:at: (page 293) message used during encoding.

Availability
Available in Mac OS X v10.0 and later.

See Also
– decodeArrayOfObjCType:count:at: (page 274)
– decodeValuesOfObjCTypes: (page 282)
– decodeObject (page 279)

Declared In
NSCoder.h

decodeValuesOfObjCTypes:
Decodes a series of potentially different Objective-C types.

- (void)decodeValuesOfObjCTypes:(const char *)valueTypes, ...

Discussion
valueTypes is a single string containing any number of type codes. The variable arguments to this method
consist of one or more pointer arguments, each of which specifies the buffer in which to place a single
decoded value. For each type code in valueTypes, you must specify a corresponding pointer argument
whose buffer is large enough to hold the decoded value. If you use this method to decode Objective-C
objects, you are responsible for releasing them.

This method matches an encodeValuesOfObjCTypes: (page 294) message used during encoding.

NSCoder’s implementation invokes decodeValueOfObjCType:at: (page 282) to decode individual types.
Subclasses that implement the decodeValueOfObjCType:at: (page 282) method do not need to override
this method.

For information on creating Objective-C type codes suitable for valueTypes, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in Mac OS X v10.0 and later.

282 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

See Also
– decodeArrayOfObjCType:count:at: (page 274)

Declared In
NSCoder.h

encodeArrayOfObjCType:count:at:
Encodes an array of count items, whose Objective-C type is given by itemType.

- (void)encodeArrayOfObjCType:(const char *)itemType count:(NSUInteger)count
at:(const void *)address

Discussion
The values are encoded from the buffer beginning at address. itemType must contain exactly one type
code. NSCoder’s implementation invokes encodeValueOfObjCType:at: (page 293) to encode the entire
array of items. Subclasses that implement the encodeValueOfObjCType:at: (page 293) method do not
need to override this method.

This method must be matched by a subsequent decodeArrayOfObjCType:count:at: (page 274) message.

For information on creating an Objective-C type code suitable for itemType, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C Programming Language.

Availability
Available in Mac OS X v10.0 and later.

See Also
– encodeValueOfObjCType:at: (page 293)
– encodeValuesOfObjCTypes: (page 294)
– encodeBytes:length: (page 284)

Declared In
NSCoder.h

encodeBool:forKey:
Encodes boolv and associates it with the string key.

- (void)encodeBool:(BOOL)boolv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
– decodeBoolForKey: (page 274)

Related Sample Code
iSpend
Reducer

Instance Methods 283
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Declared In
NSCoder.h

encodeBycopyObject:
Can be overridden by subclasses to encode object so that a copy, rather than a proxy, is created upon
decoding.

- (void)encodeBycopyObject:(id)object

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 289).

This method must be matched by a corresponding decodeObject (page 279) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– encodeRootObject: (page 292)
– encodeConditionalObject: (page 285)
– encodeByrefObject: (page 284)

Declared In
NSCoder.h

encodeByrefObject:
Can be overridden by subclasses to encode object so that a proxy, rather than a copy, is created upon
decoding.

- (void)encodeByrefObject:(id)object

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 289).

This method must be matched by a corresponding decodeObject (page 279) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– encodeBycopyObject: (page 284)

Declared In
NSCoder.h

encodeBytes:length:
Encodes a buffer of data whose types are unspecified.

- (void)encodeBytes:(const void *)address length:(NSUInteger)numBytes

284 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Discussion
The buffer to be encoded begins at address, and its length in bytes is given by numBytes.

This method must be matched by a correspondingdecodeBytesWithReturnedLength: (page 275) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– encodeArrayOfObjCType:count:at: (page 283)

Declared In
NSCoder.h

encodeBytes:length:forKey:
Encodes a buffer of data, bytesp, whose length is specified by lenv, and associates it with the string key.

- (void)encodeBytes:(const uint8_t *)bytesp length:(NSUInteger)lenv forKey:(NSString
 *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
– decodeBytesForKey:returnedLength: (page 275)

Declared In
NSCoder.h

encodeConditionalObject:
Can be overridden by subclasses to conditionally encode object, preserving common references to that
object.

- (void)encodeConditionalObject:(id)object

Discussion
In the overriding method, object should be encoded only if it’s unconditionally encoded elsewhere (with
any other encode...Object: method).

This method must be matched by a subsequent decodeObject (page 279) message. Upon decoding, if
object was never encoded unconditionally, decodeObject returns nil in place of object. However, if
object was encoded unconditionally, all references to object must be resolved.

NSCoder’s implementation simply invokes encodeObject: (page 289).

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 285
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

See Also
– encodeRootObject: (page 292)
– encodeObject: (page 289)
– encodeBycopyObject: (page 284)
– encodeConditionalObject: (page 101) (NSArchiver)

Declared In
NSCoder.h

encodeConditionalObject:forKey:
Conditionally encodes a reference to objv and associates it with the string key only if objv has been
unconditionally encoded with encodeObject:forKey: (page 290).

- (void)encodeConditionalObject:(id)objv forKey:(NSString *)key

Discussion
Subclasses must override this method if they support keyed coding.

The encoded object is decoded with the decodeObjectForKey: (page 279) method. If objv was never
encoded unconditionally, decodeObjectForKey: (page 279) returns nil in place of objv.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
IBFragmentView
Reducer

Declared In
NSCoder.h

encodeDataObject:
Encodes a given NSData object.

- (void)encodeDataObject:(NSData *)data

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeDataObject (page 276) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– encodeObject: (page 289)

Declared In
NSCoder.h

286 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

encodeDouble:forKey:
Encodes realv and associates it with the string key.

- (void)encodeDouble:(double)realv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
– decodeDoubleForKey: (page 276)
– decodeFloatForKey: (page 276)

Related Sample Code
QTQuartzPlayer
Squiggles

Declared In
NSCoder.h

encodeFloat:forKey:
Encodes realv and associates it with the string key.

- (void)encodeFloat:(float)realv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
– decodeFloatForKey: (page 276)
– decodeDoubleForKey: (page 276)

Related Sample Code
iSpend

Declared In
NSCoder.h

encodeInt32:forKey:
Encodes the 32-bit integer intv and associates it with the string key.

- (void)encodeInt32:(int32_t)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Instance Methods 287
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
– decodeIntForKey: (page 278)
– decodeIntegerForKey: (page 278)
– decodeInt32ForKey: (page 277)
– decodeInt64ForKey: (page 277)

Declared In
NSCoder.h

encodeInt64:forKey:
Encodes the 64-bit integer intv and associates it with the string key.

- (void)encodeInt64:(int64_t)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
– decodeIntForKey: (page 278)
– decodeIntegerForKey: (page 278)
– decodeInt32ForKey: (page 277)
– decodeInt64ForKey: (page 277)

Declared In
NSCoder.h

encodeInt:forKey:
Encodes intv and associates it with the string key.

- (void)encodeInt:(int)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
– decodeIntForKey: (page 278)
– decodeIntegerForKey: (page 278)
– decodeInt32ForKey: (page 277)
– decodeInt64ForKey: (page 277)

288 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Related Sample Code
Reducer

Declared In
NSCoder.h

encodeInteger:forKey:
Encodes a given NSInteger and associates it with a given key.

- (void)encodeInteger:(NSInteger)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.5 and later.

See Also
– decodeIntForKey: (page 278)
– decodeIntegerForKey: (page 278)
– decodeInt32ForKey: (page 277)
– decodeInt64ForKey: (page 277)

Declared In
NSCoder.h

encodeNXObject:
Encodes an old-style object onto the coder. (Deprecated in Mac OS X v10.5.)

- (void)encodeNXObject:(id)object

Discussion
No sharing is done across separate encodeNXObject: invocations. Callers must have implemented an
encodeWithCoder: (page 2034), which parallels the write: methods, on all of their classes that may be
touched by this operation.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSCoder.h

encodeObject:
Encodes object.

- (void)encodeObject:(id)object

Instance Methods 289
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Discussion
NSCoder’s implementation simply invokes encodeValueOfObjCType:at: (page 293) to encode object.
Subclasses can override this method to encode a reference to object instead of object itself. For example,
NSArchiver detects duplicate objects and encodes a reference to the original object rather than encode
the same object twice.

This method must be matched by a subsequent decodeObject (page 279) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– encodeRootObject: (page 292)
– encodeConditionalObject: (page 285)
– encodeBycopyObject: (page 284)

Related Sample Code
bMoviePalette
bMoviePaletteCocoa
Clock Control
StickiesExample

Declared In
NSCoder.h

encodeObject:forKey:
Encodes the object objv and associates it with the string key.

- (void)encodeObject:(id)objv forKey:(NSString *)key

Discussion
Subclasses must override this method to identify multiple encodings of objv and encode a reference to
objv instead. For example, NSKeyedArchiver detects duplicate objects and encodes a reference to the
original object rather than encode the same object twice.

Availability
Available in Mac OS X v10.2 and later.

See Also
– decodeObjectForKey: (page 279)

Related Sample Code
IBFragmentView
iSpend
Mountains
Squiggles
StickiesExample

Declared In
NSCoder.h

290 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

encodePoint:
Encodes point.

- (void)encodePoint:(NSPoint)point

Discussion
NSCoder’s implementation invokes encodeValueOfObjCType:at: (page 293) to encode point.

This method must be matched by a subsequent decodePoint (page 280) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

encodePoint:forKey:
Encodes point and associates it with the string key.

- (void)encodePoint:(NSPoint)point forKey:(NSString *)key

Availability
Available in Mac OS X v10.2 and later.

See Also
– decodePointForKey: (page 280)

Declared In
NSKeyedArchiver.h

encodePropertyList:
Encodes the property list aPropertyList.

- (void)encodePropertyList:(id)aPropertyList

Discussion
NSCoder’s implementation invokes encodeValueOfObjCType:at: (page 293) to encode aPropertyList.

This method must be matched by a subsequent decodePropertyList (page 280) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

encodeRect:
Encodes rect.

Instance Methods 291
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

- (void)encodeRect:(NSRect)rect

Discussion
NSCoder’s implementation invokes encodeValueOfObjCType:at: (page 293) to encode rect.

This method must be matched by a subsequent decodeRect (page 280) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

encodeRect:forKey:
Encodes rect and associates it with the string key.

- (void)encodeRect:(NSRect)rect forKey:(NSString *)key

Availability
Available in Mac OS X v10.2 and later.

See Also
– decodeRectForKey: (page 281)

Declared In
NSKeyedArchiver.h

encodeRootObject:
Can be overridden by subclasses to encode an interconnected group of Objective-C objects, starting with
rootObject.

- (void)encodeRootObject:(id)rootObject

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 289).

This method must be matched by a subsequent decodeObject (page 279) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– encodeObject: (page 289)
– encodeConditionalObject: (page 285)
– encodeBycopyObject: (page 284)
– encodeRootObject: (page 101) (NSArchiver)

Declared In
NSCoder.h

292 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

encodeSize:
Encodes size.

- (void)encodeSize:(NSSize)size

Discussion
NSCoder’s implementation invokes encodeValueOfObjCType:at: (page 293) to encode size.

This method must be matched by a subsequent decodeSize (page 281) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

encodeSize:forKey:
Encodes size and associates it with the string key.

- (void)encodeSize:(NSSize)size forKey:(NSString *)key

Availability
Available in Mac OS X v10.2 and later.

See Also
– decodeSizeForKey: (page 281)

Related Sample Code
Reducer

Declared In
NSKeyedArchiver.h

encodeValueOfObjCType:at:
Must be overridden by subclasses to encode a single value residing at address, whose Objective-C type is
given by valueType.

- (void)encodeValueOfObjCType:(const char *)valueType at:(const void *)address

Discussion
valueType must contain exactly one type code.

This method must be matched by a subsequent decodeValueOfObjCType:at: (page 282) message.

For information on creating an Objective-C type code suitable for valueType, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 293
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

See Also
– encodeArrayOfObjCType:count:at: (page 283)
– encodeValuesOfObjCTypes: (page 294)

Declared In
NSCoder.h

encodeValuesOfObjCTypes:
Encodes a series of values of potentially differing Objective-C types.

- (void)encodeValuesOfObjCTypes:(const char *)valueTypes, ...

Discussion
valueTypes is a single string containing any number of type codes. The variable arguments to this method
consist of one or more pointer arguments, each of which specifies a buffer containing the value to be encoded.
For each type code in valueTypes, you must specify a corresponding pointer argument.

This method must be matched by a subsequent decodeValuesOfObjCTypes: (page 282) message.

NSCoder’s implementation invokes encodeValueOfObjCType:at: (page 293) to encode individual types.
Subclasses that implement the encodeValueOfObjCType:at: (page 293) method do not need to override
this method. However, subclasses that provide a more efficient approach for encoding a series of values may
override this method to implement that approach.

For information on creating Objective-C type codes suitable for valueTypes, see the “Type Encodings” section
in “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in Mac OS X v10.0 and later.

See Also
– encodeArrayOfObjCType:count:at: (page 283)
– encodeValueOfObjCType:at: (page 293)

Declared In
NSCoder.h

objectZone
Returns the memory zone used to allocate decoded objects.

- (NSZone *)objectZone

Discussion
NSCoder’s implementation simply returns the default memory zone, as given by NSDefaultMallocZone().

Subclasses must override this method and the setObjectZone: (page 295) method to allow objects to be
decoded into a zone other than the default zone. In its overriding implementation of this method, your
subclass should return the current memory zone (if one has been set) or the default zone (if no other zone
has been set).

294 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

setObjectZone:
NSCoder’s implementation of this method does nothing.

- (void)setObjectZone:(NSZone *)zone

Discussion
Can be overridden by subclasses to set the memory zone used to allocate decoded objects.

Subclasses must override this method and objectZone (page 294) to allow objects to be decoded into a
zone other than the default zone. In its overriding implementation of this method, your subclass should store
a reference to the current memory zone.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

systemVersion
During encoding, this method should return the system version currently in effect.

- (unsigned)systemVersion

Discussion
During decoding, this method should return the version that was in effect when the data was encoded.

By default, this method returns the current system version, which is appropriate for encoding but not for
decoding. Subclasses that implement decoding must override this method to return the system version of
the data being decoded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCoder.h

versionForClassName:
Returns the version in effect for the class with a given name.

- (NSInteger)versionForClassName:(NSString *)className

Return Value
The version in effect for the class named className or NSNotFound if no class named className exists.

Instance Methods 295
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Discussion
When encoding, this method returns the current version number of the class. When decoding, this method
returns the version number of the class being decoded. Subclasses must override this method.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setVersion: (page 1166) (NSObject)
+ version (page 1167) (NSObject)

Declared In
NSCoder.h

296 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSCoder Class Reference

Inherits from NSPredicate : NSObject

Conforms to NSCoding (NSPredicate)
NSCopying (NSPredicate)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.4 and later.

Declared in Foundation/NSComparisonPredicate.h

Companion guide Predicate Programming Guide

Related sample code CoreRecipes
iSpend
PredicateEditorSample

Overview

NSComparisonPredicate is a subclass of NSPredicate used to compare expressions.

Comparison predicates are predicates used to compare the results of two expressions. Comparison predicates
take an operator, a left expression, and a right expression, and return as a BOOL the result of invoking the
operator with the results of evaluating the expressions. Expressions are represented by instances of the
NSExpression class.

Tasks

Constructors

+ predicateWithLeftExpression:rightExpression:customSelector: (page 298)
Returns a new predicate formed by combining the left and right expressions using a given selector.

+ predicateWithLeftExpression:rightExpression:modifier:type:options: (page 299)
Creates and returns a predicate of a given type formed by combining given left and right expressions
using a given modifier and options.

– initWithLeftExpression:rightExpression:customSelector: (page 300)
Initializes a predicate formed by combining given left and right expressions using a given selector.

Overview 297
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

– initWithLeftExpression:rightExpression:modifier:type:options: (page 301)
Initializes a predicate to a given type formed by combining given left and right expressions using a
given modifier and options.

Getting Information About a Comparison Predicate

– comparisonPredicateModifier (page 299)
Returns the comparison predicate modifier for the receiver.

– customSelector (page 300)
Returns the selector for the receiver.

– leftExpression (page 301)
Returns the left expression for the receiver.

– options (page 301)
Returns the options that are set for the receiver.

– predicateOperatorType (page 302)
Returns the predicate type for the receiver.

– rightExpression (page 302)
Returns the right expression for the receiver.

Class Methods

predicateWithLeftExpression:rightExpression:customSelector:
Returns a new predicate formed by combining the left and right expressions using a given selector.

+ (NSPredicate *)predicateWithLeftExpression:(NSExpression *)lhs
rightExpression:(NSExpression *)rhs customSelector:(SEL)selector

Parameters
lhs

The left hand side expression.

rhs
The right hand side expression.

selector
The selector to use for comparison. The method defined by the selector must take a single argument
and return a BOOL value.

Return Value
A new predicate formed by combining the left and right expressions using selector.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSComparisonPredicate.h

298 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

predicateWithLeftExpression:rightExpression:modifier:type:options:
Creates and returns a predicate of a given type formed by combining given left and right expressions using
a given modifier and options.

+ (NSPredicate *)predicateWithLeftExpression:(NSExpression *)lhs
rightExpression:(NSExpression *)rhs
modifier:(NSComparisonPredicateModifier)modifier
type:(NSPredicateOperatorType)type options:(NSUInteger)options

Parameters
lhs

The left hand expression.

rhs
The right hand expression.

modifier
The modifier to apply.

type
The predicate operator type.

options
The options to apply (see NSComparisonPredicate Options (page 303)).

Return Value
A new predicate of type type formed by combining the given left and right expressions using the modifier
and options.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
iSpend
PredicateEditorSample

Declared In
NSComparisonPredicate.h

Instance Methods

comparisonPredicateModifier
Returns the comparison predicate modifier for the receiver.

- (NSComparisonPredicateModifier)comparisonPredicateModifier

Return Value
The comparison predicate modifier for the receiver.

Discussion
The default value is NSDirectPredicateModifier (page 303).

Instance Methods 299
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
PredicateEditorSample

Declared In
NSComparisonPredicate.h

customSelector
Returns the selector for the receiver.

- (SEL)customSelector

Return Value
The selector for the receiver, or NULL if there is none.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSComparisonPredicate.h

initWithLeftExpression:rightExpression:customSelector:
Initializes a predicate formed by combining given left and right expressions using a given selector.

- (id)initWithLeftExpression:(NSExpression *)lhs rightExpression:(NSExpression
*)rhs customSelector:(SEL)selector

Parameters
lhs

The left hand expression.

rhs
The right hand expression.

selector
The selector to use. The method defined by the selector must take a single argument and return a
BOOL value.

Return Value
The receiver, initialized by combining the left and right expressions using selector.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSComparisonPredicate.h

300 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

initWithLeftExpression:rightExpression:modifier:type:options:
Initializes a predicate to a given type formed by combining given left and right expressions using a given
modifier and options.

- (id)initWithLeftExpression:(NSExpression *)lhs rightExpression:(NSExpression
*)rhs modifier:(NSComparisonPredicateModifier)modifier
type:(NSPredicateOperatorType)type options:(NSUInteger)options

Parameters
lhs

The left hand expression.

rhs
The right hand expression.

modifier
The modifier to apply.

type
The predicate operator type.

options
The options to apply (see NSComparisonPredicate Options (page 303)).

Return Value
The receiver, initialized to a predicate of type type formed by combining the left and right expressions using
the modifier and options.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSComparisonPredicate.h

leftExpression
Returns the left expression for the receiver.

- (NSExpression *)leftExpression

Return Value
The left expression for the receiver, or nil if there is none.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
PredicateEditorSample

Declared In
NSComparisonPredicate.h

options
Returns the options that are set for the receiver.

Instance Methods 301
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

- (NSUInteger)options

Return Value
The options that are set for the receiver.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
PredicateEditorSample

Declared In
NSComparisonPredicate.h

predicateOperatorType
Returns the predicate type for the receiver.

- (NSPredicateOperatorType)predicateOperatorType

Return Value
The predicate type for the receiver.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreRecipes
PredicateEditorSample

Declared In
NSComparisonPredicate.h

rightExpression
Returns the right expression for the receiver.

- (NSExpression *)rightExpression

Return Value
The right expression for the receiver, or nil if there is none.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
PredicateEditorSample

Declared In
NSComparisonPredicate.h

302 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

Constants

NSComparisonPredicateModifier
These constants describe the possible types of modifier for NSComparisonPredicate.

typedef enum {
 NSDirectPredicateModifier = 0,
 NSAllPredicateModifier,
 NSAnyPredicateModifier,
} NSComparisonPredicateModifier;

Constants
NSDirectPredicateModifier

A predicate to compare directly the left and right hand sides.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSAllPredicateModifier
A predicate to compare all entries in the destination of a to-many relationship.

The left hand side must be a collection. The corresponding predicate compares each value in the left
hand side with the right hand side, and returns NO when it finds the first mismatch—or YES if all
match.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSAnyPredicateModifier
A predicate to match with any entry in the destination of a to-many relationship.

The left hand side must be a collection. The corresponding predicate compares each value in the left
hand side against the right hand side and returns YESwhen it finds the first match—or NO if no match
is found

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

Declared In
NSComparisonPredicate.h

NSComparisonPredicate Options
These constants describe the possible types of string comparison for NSComparisonPredicate.

Constants 303
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

enum {
 NSCaseInsensitivePredicateOption = 0x01,
 NSDiacriticInsensitivePredicateOption = 0x02,
};

Constants
NSCaseInsensitivePredicateOption

A case-insensitive predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSDiacriticInsensitivePredicateOption
A diacritic-insensitive predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

Declared In
NSComparisonPredicate.h

NSPredicateOperatorType
Defines the type of comparison for NSComparisonPredicate.

typedef enum {
 NSLessThanPredicateOperatorType = 0,
 NSLessThanOrEqualToPredicateOperatorType,
 NSGreaterThanPredicateOperatorType,
 NSGreaterThanOrEqualToPredicateOperatorType,
 NSEqualToPredicateOperatorType,
 NSNotEqualToPredicateOperatorType,
 NSMatchesPredicateOperatorType,
 NSLikePredicateOperatorType,
 NSBeginsWithPredicateOperatorType,
 NSEndsWithPredicateOperatorType,
 NSInPredicateOperatorType,
 NSCustomSelectorPredicateOperatorType,
 NSContainsPredicateOperatorType,
 NSBetweenPredicateOperatorType
} NSPredicateOperatorType;

Constants
NSLessThanPredicateOperatorType

A less-than predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSLessThanOrEqualToPredicateOperatorType
A less-than-or-equal-to predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

304 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

NSGreaterThanPredicateOperatorType
A greater-than predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSGreaterThanOrEqualToPredicateOperatorType
A greater-than-or-equal-to predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSEqualToPredicateOperatorType
An equal-to predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSNotEqualToPredicateOperatorType
A not-equal-to predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSMatchesPredicateOperatorType
A full regular expression matching predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSLikePredicateOperatorType
A simple subset of the matches predicate, similar in behavior to SQL LIKE.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSBeginsWithPredicateOperatorType
A begins-with predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSEndsWithPredicateOperatorType
An ends-with predicate.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSInPredicateOperatorType
A predicate to determine if the left hand side is in the right hand side.

For strings, returns YES if the left hand side is a substring of the right hand side . For collections,
returns YES if the left hand side is in the right hand side .

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

NSCustomSelectorPredicateOperatorType
Predicate that uses a custom selector that takes a single argument and returns a BOOL value.

The selector is invoked on the left hand side with the right hand side.

Available in Mac OS X v10.4 and later.

Declared in NSComparisonPredicate.h.

Constants 305
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

NSContainsPredicateOperatorType
A predicate to determine if the left hand side contains the right hand side.

Returns YES if [lhs contains rhs]; the left hand side must be an NSExpression object that
evaluates to a collection

Available in Mac OS X v10.5 and later.

Declared in NSComparisonPredicate.h.

NSBetweenPredicateOperatorType
A predicate to determine if the right hand side lies between bounds specified by the left hand side.

Returns YES if [lhs between rhs]; the right hand side must be an array in which the first element
sets the lower bound and the second element the upper, inclusive. Comparison is performed using
compare: or the class-appropriate equivalent.

Available in Mac OS X v10.5 and later.

Declared in NSComparisonPredicate.h.

Declared In
NSComparisonPredicate.h

306 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSComparisonPredicate Class Reference

Inherits from NSPredicate : NSObject

Conforms to NSCoding (NSPredicate)
NSCopying (NSPredicate)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.4 and later.

Declared in Foundation/NSCompoundPredicate.h

Companion guide Predicate Programming Guide

Related sample code CoreRecipes
iSpend
PredicateEditorSample
SpotlightFortunes

Overview

NSCompoundPredicate is a subclass of NSPredicate used to represent logical “gate” operations
(AND/OR/NOT) and comparison operations.

Comparison operations are based on two expressions, as represented by instances of the NSExpression
class. Expressions are created for constant values, key paths, and so on.

On Mac OS X v10.5 and later, NSCompoundPredicate allows you to create an AND or OR compound predicate
(but not a NOT compound predicate) using an array with 0,1, or more elements. A compound predicate with
0 elements evaluates to TRUE, and a compound predicate with a single sub-predicate evaluates to the truth
of its sole subpredicate.

Tasks

Constructors

+ andPredicateWithSubpredicates: (page 308)
Returns a new predicate formed by AND-ing the predicates in a given array.

Overview 307
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSCompoundPredicate Class Reference

+ notPredicateWithSubpredicate: (page 308)
Returns a new predicate formed by NOT-ing a given predicate.

+ orPredicateWithSubpredicates: (page 309)
Returns a new predicate formed by OR-ing the predicates in a given array.

– initWithType:subpredicates: (page 310)
Returns the receiver initialized to a given type using predicates from a given array.

Getting Information About a Compound Predicate

– compoundPredicateType (page 309)
Returns the predicate type for the receiver.

– subpredicates (page 310)
Returns the array of the receiver’s subpredicates.

Class Methods

andPredicateWithSubpredicates:
Returns a new predicate formed by AND-ing the predicates in a given array.

+ (NSPredicate *)andPredicateWithSubpredicates:(NSArray *)subpredicates

Parameters
subpredicates

An array of NSPredicate objects.

Return Value
A new predicate formed by AND-ing the predicates specified by subpredicates.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
iSpend
PredicateEditorSample
SpotlightFortunes

Declared In
NSCompoundPredicate.h

notPredicateWithSubpredicate:
Returns a new predicate formed by NOT-ing a given predicate.

+ (NSPredicate *)notPredicateWithSubpredicate:(NSPredicate *)predicate

308 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSCompoundPredicate Class Reference

Parameters
predicate

A predicate.

Return Value
A new predicate formed by NOT-ing the predicate specified by predicate.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCompoundPredicate.h

orPredicateWithSubpredicates:
Returns a new predicate formed by OR-ing the predicates in a given array.

+ (NSPredicate *)orPredicateWithSubpredicates:(NSArray *)subpredicates

Parameters
subpredicates

An array of NSPredicate objects.

Return Value
A new predicate formed by OR-ing the predicates specified by subpredicates.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
iSpend

Declared In
NSCompoundPredicate.h

Instance Methods

compoundPredicateType
Returns the predicate type for the receiver.

- (NSCompoundPredicateType)compoundPredicateType

Return Value
The predicate type for the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCompoundPredicate.h

Instance Methods 309
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSCompoundPredicate Class Reference

initWithType:subpredicates:
Returns the receiver initialized to a given type using predicates from a given array.

- (id)initWithType:(NSCompoundPredicateType)type subpredicates:(NSArray
*)subpredicates

Parameters
type

The type of the new predicate.

subpredicates
An array of NSPredicate objects.

Return Value
The receiver initialized with its type set to type and subpredicates array to subpredicates.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
PredicateEditorSample

Declared In
NSCompoundPredicate.h

subpredicates
Returns the array of the receiver’s subpredicates.

- (NSArray *)subpredicates

Return Value
The array of the receiver’s subpredicates.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCompoundPredicate.h

Constants

Compound Predicate Types
These constants describe the possible types of NSCompoundPredicate.

310 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSCompoundPredicate Class Reference

typedef enum {
 NSNotPredicateType = 0,
 NSAndPredicateType,
 NSOrPredicateType,
} NSCompoundPredicateType;

Constants
NSNotPredicateType

A logical NOT predicate.

Available in Mac OS X v10.4 and later.

Declared in NSCompoundPredicate.h.

NSAndPredicateType
A logical AND predicate.

Available in Mac OS X v10.4 and later.

Declared in NSCompoundPredicate.h.

NSOrPredicateType
A logical OR predicate.

Available in Mac OS X v10.4 and later.

Declared in NSCompoundPredicate.h.

Declared In
NSCompoundPredicate.h

Constants 311
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSCompoundPredicate Class Reference

312 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSCompoundPredicate Class Reference

Inherits from NSObject

Conforms to NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.5 and later.

Declared in Foundation/NSLock.h

Companion guide Threading Programming Guide

Overview

The NSCondition class implements a condition variable whose semantics follow those used for POSIX-style
conditions. A condition object acts as both a lock and a checkpoint in a given thread. The lock protects your
code while it tests the condition and performs the task triggered by the condition. The checkpoint behavior
requires that the condition be true before the thread proceeds with its task. While the condition is not true,
the thread blocks. It remains blocked until another thread signals the condition object.

The semantics for using an NSCondition object are as follows:

1. Lock the condition object.

2. Test a boolean predicate. (This predicate is a boolean flag or other variable in your code that indicates
whether it is safe to perform the task protected by the condition.)

3. If the boolean predicate is false, call the condition object’s wait or waitUntilDate: method to block
the thread. Upon returning from these methods, go to step 2 to retest your boolean predicate. (Continue
waiting and retesting the predicate until it is true.)

4. If the boolean predicate is true, perform the task.

5. Optionally update any predicates (or signal any conditions) affected by your task.

6. When your task is done, unlock the condition object.

The pseudocode for performing the preceding steps would therefore look something like the following:

lock the condition
while (!(boolean_predicate)) {
 wait on condition

Overview 313
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCondition Class Reference

}
do protected work
(optionally, signal or broadcast the condition again or change a predicate value)
unlock the condition

Whenever you use a condition object, the first step is to lock the condition. Locking the condition ensures
that your predicate and task code are protected from interference by other threads using the same condition.
Once you have completed your task, you can set other predicates or signal other conditions based on the
needs of your code. You should always set predicates and signal conditions while holding the condition
object’s lock.

When a thread waits on a condition, the condition object unlocks its lock and blocks the thread. When the
condition is signaled, the system wakes up the thread. The condition object then reacquires its lock before
returning from the wait or waitUntilDate: method. Thus, from the point of view of the thread, it is as if
it always held the lock.

A boolean predicate is an important part of the semantics of using conditions because of the way signaling
works. Signaling a condition does not guarantee that the condition itself is true. There are timing issues
involved in signaling that may cause false signals to appear. Using a predicate ensures that these spurious
signals do not cause you to perform work before it is safe to do so. The predicate itself is simply a flag or
other variable in your code that you test in order to acquire a Boolean result.

For more information on how to use conditions, see Using POSIX Thread Locks in Threading Programming
Guide.

Tasks

Waiting for the Lock

– wait (page 316)
Blocks the current thread until the condition is signaled.

– waitUntilDate: (page 317)
Blocks the current thread until the condition is signaled or the specified time limit is reached.

Signaling Waiting Threads

– signal (page 316)
Signals the condition, waking up one thread waiting on it.

– broadcast (page 315)
Signals the condition, waking up all threads waiting on it.

Accessor Methods

– setName: (page 315)
Assigns a name to the receiver.

314 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCondition Class Reference

– name (page 315)
Returns the name associated with the receiver.

Instance Methods

broadcast
Signals the condition, waking up all threads waiting on it.

- (void)broadcast

Discussion
If no threads are waiting on the condition, this method does nothing.

To avoid race conditions, you should invoke this method only while the receiver is locked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLock.h

name
Returns the name associated with the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setName: (page 315)

Declared In
NSLock.h

setName:
Assigns a name to the receiver.

- (void)setName:(NSString *)newName

Parameters
newName

The new name for the receiver. This method makes a copy of the specified string.

Instance Methods 315
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCondition Class Reference

Discussion
You can use a name string to identify a condition object within your code. Cocoa also uses this name as part
of any error descriptions involving the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– name (page 315)

Declared In
NSLock.h

signal
Signals the condition, waking up one thread waiting on it.

- (void)signal

Discussion
You use this method to wake up one thread that is waiting on the condition. You may call this method
multiple times to wake up multiple threads. If no threads are waiting on the condition, this method does
nothing.

To avoid race conditions, you should invoke this method only while the receiver is locked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLock.h

wait
Blocks the current thread until the condition is signaled.

- (void)wait

Discussion
You must lock the receiver prior to calling this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– lock (page 2091) (NSLocking)

Declared In
NSLock.h

316 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCondition Class Reference

waitUntilDate:
Blocks the current thread until the condition is signaled or the specified time limit is reached.

- (BOOL)waitUntilDate:(NSDate *)limit

Parameters
limit

The time at which to wake up the thread if the condition has not been signaled.

Return Value
YES if the condition was signaled; otherwise, NO if the time limit was reached.

Discussion
You must lock the receiver prior to calling this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– lock (page 2091) (NSLocking)

Declared In
NSLock.h

Instance Methods 317
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCondition Class Reference

318 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCondition Class Reference

Inherits from NSObject

Conforms to NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSLock.h

Companion guide Threading Programming Guide

Related sample code QTAudioExtractionPanel
Vertex Optimization

Overview

The NSConditionLock class defines objects whose locks can be associated with specific, user-defined
conditions. Using an NSConditionLock object, you can ensure that a thread can acquire a lock only if a
certain condition is met. Once it has acquired the lock and executed the critical section of code, the thread
can relinquish the lock and set the associated condition to something new. The conditions themselves are
arbitrary: you define them as needed for your application.

Adopted Protocols

NSLocking
lock (page 2091)
unlock (page 2092)

Tasks

Initializing an NSConditionLock Object

– initWithCondition: (page 321)
Initializes a newly allocated NSConditionLock object and sets its condition.

Overview 319
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

NSConditionLock Class Reference

Returning the Condition

– condition (page 320)
Returns the condition associated with the receiver.

Acquiring and Releasing a Lock

– lockBeforeDate: (page 321)
Attempts to acquire a lock before a specified moment in time.

– lockWhenCondition: (page 321)
Attempts to acquire a lock.

– lockWhenCondition:beforeDate: (page 322)
Attempts to acquire a lock before a specified moment in time.

– tryLock (page 323)
Attempts to acquire a lock without regard to the receiver’s condition.

– tryLockWhenCondition: (page 324)
Attempts to acquire a lock if the receiver’s condition is equal to the specified condition.

– unlockWithCondition: (page 324)
Relinquishes the lock and sets the receiver’s condition.

Accessor Methods

– setName: (page 323)
Assigns a name to the receiver.

– name (page 322)
Returns the name associated with the receiver.

Instance Methods

condition
Returns the condition associated with the receiver.

- (NSInteger)condition

Return Value
The condition associated with the receiver. If no condition has been set, returns 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLock.h

320 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

NSConditionLock Class Reference

initWithCondition:
Initializes a newly allocated NSConditionLock object and sets its condition.

- (id)initWithCondition:(NSInteger)condition

Parameters
condition

The user-defined condition for the lock. The value of condition is user-defined; see the class
description for more information.

Return Value
An initialized condition lock object; may be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTAudioExtractionPanel
Vertex Optimization

Declared In
NSLock.h

lockBeforeDate:
Attempts to acquire a lock before a specified moment in time.

- (BOOL)lockBeforeDate:(NSDate *)limit

Parameters
limit

The date by which the lock must be acquired or the attempt will time out.

Return Value
YES if the lock is acquired within the time limit, NO otherwise.

Discussion
The condition associated with the receiver isn’t taken into account in this operation. This method blocks the
thread’s execution until the receiver acquires the lock or limit is reached.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lockWhenCondition:beforeDate: (page 322)

Declared In
NSLock.h

lockWhenCondition:
Attempts to acquire a lock.

Instance Methods 321
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

NSConditionLock Class Reference

- (void)lockWhenCondition:(NSInteger)condition

Parameters
condition

The condition to match on.

Discussion
The receiver’s condition must be equal to condition before the locking operation will succeed. This method
blocks the thread’s execution until the lock can be acquired.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lockWhenCondition:beforeDate: (page 322)
– unlockWithCondition: (page 324)

Declared In
NSLock.h

lockWhenCondition:beforeDate:
Attempts to acquire a lock before a specified moment in time.

- (BOOL)lockWhenCondition:(NSInteger)condition beforeDate:(NSDate *)limit

Parameters
condition

The condition to match on.

limit
The date by which the lock must be acquired or the attempt will time out.

Return Value
YES if the lock is acquired within the time limit, NO otherwise.

Discussion
The receiver’s condition must be equal to condition before the locking operation will succeed. This method
blocks the thread’s execution until the lock can be acquired or limit is reached.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lockBeforeDate: (page 321)
– lockWhenCondition: (page 321)

Declared In
NSLock.h

name
Returns the name associated with the receiver.

322 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

NSConditionLock Class Reference

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setName: (page 323)

Declared In
NSLock.h

setName:
Assigns a name to the receiver.

- (void)setName:(NSString *)newName

Parameters
newName

The new name for the receiver. This method makes a copy of the specified string.

Discussion
You can use a name string to identify a condition lock within your code. Cocoa also uses this name as part
of any error descriptions involving the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– name (page 322)

Declared In
NSLock.h

tryLock
Attempts to acquire a lock without regard to the receiver’s condition.

- (BOOL)tryLock

Return Value
YES if the lock could be acquired, NO otherwise.

Discussion
This method returns immediately.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tryLockWhenCondition: (page 324)

Instance Methods 323
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

NSConditionLock Class Reference

Declared In
NSLock.h

tryLockWhenCondition:
Attempts to acquire a lock if the receiver’s condition is equal to the specified condition.

- (BOOL)tryLockWhenCondition:(NSInteger)condition

Return Value
YES if the lock could be acquired, NO otherwise.

Discussion
As part of its implementation, this method invokes lockWhenCondition:beforeDate: (page 322). This
method returns immediately.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tryLock (page 323)

Declared In
NSLock.h

unlockWithCondition:
Relinquishes the lock and sets the receiver’s condition.

- (void)unlockWithCondition:(NSInteger)condition

Parameters
condition

The user-defined condition for the lock. The value of condition is user-defined; see the class
description for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lockWhenCondition: (page 321)

Declared In
NSLock.h

324 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 22

NSConditionLock Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSConnection.h

Companion guide Distributed Objects Programming Topics

Related sample code SimpleThreads
TrivialThreads

Overview

An NSConnection object manages the communication between objects in different threads or between a
thread and a process running on a local or remote system. Connection objects form the backbone of the
distributed objects mechanism and normally operate in the background. You use the methods of
NSConnection explicitly when vending an object to other applications, when accessing such a vended
object through a proxy, and when altering default communication parameters. At other times, you simply
interact with a vended object or its proxy.

In Mac OS X v10.5 and later, a single connection object may be shared by multiple threads and used to access
a vended object by default. Prior to Mac OS X v10.5, a separate connection object must be maintained by
each thread by default; however, an application can enable sharing by invoking the enableMultipleThreads
method of the object.

Tasks

Getting the Default Instance

+ defaultConnection (page 331)
Returns the default NSConnection object for the current thread.

Overview 325
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Creating Instances

+ connectionWithReceivePort:sendPort: (page 329)
Returns an NSConnection object that communicates using given send and receive ports.

– initWithReceivePort:sendPort: (page 337)
Returns an NSConnection object initialized with given send and receive ports.

Running the Connection in a New Thread

– runInNewThread (page 345)
Creates and starts a new NSThread object and then runs the receiving connection in the new thread.

– enableMultipleThreads (page 336)
Configures the receiver to allow requests from multiple threads to the remote object, without requiring
each thread to each maintain its own connection.

– multipleThreadsEnabled (page 339)
Returns a Boolean value that indicates whether the receiver supports requests from multiple threads.

– addRunLoop: (page 335)
Adds the specified run loop to the list of run loops the receiver monitors and from which it responds
to requests.

– removeRunLoop: (page 342)
Removes a given NSRunLoop object from the list of run loops the receiver monitors and from which
it responds to requests.

Vending a Service

+ serviceConnectionWithName:rootObject:usingNameServer: (page 334)
Creates and returns a new connection object representing a vended service on the specified port
name server.

+ serviceConnectionWithName:rootObject: (page 333)
Creates and returns a new connection object representing a vended service on the default system
port name server.

– registerName: (page 340)
Registers the specified service using with the default system port name server.

– registerName:withNameServer: (page 341)
Registers a service with the specified port name server.

– setRootObject: (page 347)
Sets the object that the receiver makes available to other applications or threads.

– rootObject (page 344)
Returns the object that the receiver (or its parent) makes available to other applications or threads.

326 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Getting a Remote Object

+ connectionWithRegisteredName:host: (page 330)
Returns the NSConnection object whose send port links it to the NSConnection object registered
with the default NSPortNameServer under a given name on a given host.

+ connectionWithRegisteredName:host:usingNameServer: (page 331)
Returns the NSConnection object whose send port links it to the NSConnection object registered
under a given name with a given server on a given host.

– rootProxy (page 344)
Returns the proxy for the root object of the receiver’s peer in another application or thread.

+ rootProxyForConnectionWithRegisteredName:host: (page 332)
Returns a proxy for the root object of the NSConnection object registered with the default
NSPortNameServer under a given name on a given host.

+ rootProxyForConnectionWithRegisteredName:host:usingNameServer: (page 333)
Returns a proxy for the root object of the NSConnection object registered with server under name
on a given host.

– remoteObjects (page 342)
Returns all the local proxies for remote objects that have been received over the connection but not
deallocated yet.

– localObjects (page 339)
Returns the local objects that have been sent over the connection and still have proxies at the other
end.

Getting a Conversation

+ currentConversation (page 331)
Returns a token object representing any conversation in progress in the current thread.

Getting All NSConnection Objects

+ allConnections (page 329)
Returns all valid NSConnection objects in the process.

Configuring Instances

– setRequestTimeout: (page 347)
Sets the timeout interval for outgoing remote messages.

– requestTimeout (page 344)
Returns the timeout interval for outgoing remote messages.

– setReplyTimeout: (page 347)
Sets the timeout interval for replies to outgoing remote messages

– replyTimeout (page 343)
Returns the timeout interval for replies to outgoing remote messages.

Tasks 327
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

– setIndependentConversationQueueing: (page 346)
Sets a Boolean value that specifies whether the receiver handles remote messages atomically.

– independentConversationQueueing (page 336)
Returns a Boolean value that indicates whether the receiver handles remote messages atomically.

– addRequestMode: (page 335)
Adds mode to the set of run-loop input modes that the receiver uses for connection requests.

– removeRequestMode: (page 342)
Removes mode from the set of run-loop input modes the receiver uses for connection requests.

– requestModes (page 343)
Returns the set of request modes the receiver’s receive port is registered for with its NSRunLoop
object.

– invalidate (page 338)
Invalidates (but doesn’t release) the receiver.

– isValid (page 338)
Returns a Boolean value that indicates whether the receiver is known to be valid.

Getting Ports

– receivePort (page 340)
Returns the NSPort object on which the receiver receives incoming network messages.

– sendPort (page 345)
Returns the NSPort object that the receiver sends outgoing network messages through.

Getting Statistics

– statistics (page 348)
Returns an NSDictionary object containing various statistics for the receiver.

Setting the Delegate

– setDelegate: (page 346)
Sets the receiver’s delegate.

– delegate (page 336)
Returns the receiver’s delegate.

Authenticating

– authenticateComponents:withData: (page 348) delegate method
Returns a Boolean value that indicates whether given authentication data is valid for a given set of
components.

– authenticationDataForComponents: (page 349) delegate method
Returns an NSData object to be used as an authentication stamp for an outgoing message.

328 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Responding to a Connection

– connection:shouldMakeNewConnection: (page 350) delegate method
Returns a Boolean value that indicates whether the parent connection should allow a given new
connection to be created.

– connection:handleRequest: (page 350) delegate method
This method should be implemented by NSConnection object delegates that want to intercept
distant object requests.

– createConversationForConnection: (page 351) delegate method
Returns an arbitrary object identifying a new conversation being created for the connection in the
current thread.

– makeNewConnection:sender: (page 351) delegate method
Returns a Boolean value that indicates whether the parent should allow a given new connection to
be created and configured.

Class Methods

allConnections
Returns all valid NSConnection objects in the process.

+ (NSArray *)allConnections

Return Value
An array containing all valid NSConnection objects in the process.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isValid (page 338)

Declared In
NSConnection.h

connectionWithReceivePort:sendPort:
Returns an NSConnection object that communicates using given send and receive ports.

+ (id)connectionWithReceivePort:(NSPort *)receivePort sendPort:(NSPort *)sendPort

Parameters
receivePort

A receive port.

sendPort
A send port.

Return Value
An NSConnection object that communicates using receivePort and sendPort.

Class Methods 329
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Discussion
See initWithReceivePort:sendPort: (page 337) for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultConnection (page 331)

Related Sample Code
SimpleThreads
TrivialThreads

Declared In
NSConnection.h

connectionWithRegisteredName:host:
Returns the NSConnection object whose send port links it to the NSConnection object registered with the
default NSPortNameServer under a given name on a given host.

+ (id)connectionWithRegisteredName:(NSString *)name host:(NSString *)hostName

Parameters
name

The name of an NSConnection object.

hostName
The name of the host. The domain name hostName is an Internet domain name (for example,
“sales.anycorp.com”). If hostName is nil or empty, then only the local host is searched for the
named NSConnection object.

Return Value
The NSConnection object whose send port links it to the NSConnection object registered with the default
NSPortNameServer under name on the host named hostName. Returns nil if no NSConnection object
can be found for name and hostName.

The returned NSConnection object is a child of the default NSConnection object for the current thread
(that is, it shares the default NSConnection object's receive port).

Discussion
To get the object vended by the NSConnection object, use the rootProxy (page 344) instance method.
TherootProxyForConnectionWithRegisteredName:host: (page 332) class method immediately returns
this object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultConnection (page 331)
+ connectionWithRegisteredName:host:usingNameServer: (page 331)

Declared In
NSConnection.h

330 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

connectionWithRegisteredName:host:usingNameServer:
Returns the NSConnection object whose send port links it to the NSConnection object registered under
a given name with a given server on a given host.

+ (id)connectionWithRegisteredName:(NSString *)name host:(NSString *)hostName
usingNameServer:(NSPortNameServer *)server

Parameters
name

The connection name.

hostName
The host name.

server
The name server.

Return Value
The NSConnection object whose send port links it to the NSConnection object registered with server
under name on the host named hostName.

Discussion
See connectionWithRegisteredName:host: (page 330) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

currentConversation
Returns a token object representing any conversation in progress in the current thread.

+ (id)currentConversation

Return Value
A token object representing any conversation in progress in the current thread, or nil if there is no
conversation in progress.

Availability
Available in Mac OS X v10.0 and later.

See Also
– createConversationForConnection: (page 351)

Declared In
NSConnection.h

defaultConnection
Returns the default NSConnection object for the current thread.

+ (NSConnection *)defaultConnection

Class Methods 331
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Return Value
The default NSConnection object for the current thread, creating it if necessary.

Discussion
The default NSConnection object uses a single NSPort object for both receiving and sending and is useful
only for vending an object; use the setRootObject: (page 347) and registerName: (page 340) methods
to do this.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

rootProxyForConnectionWithRegisteredName:host:
Returns a proxy for the root object of the NSConnection object registered with the default
NSPortNameServer under a given name on a given host.

+ (NSDistantObject *)rootProxyForConnectionWithRegisteredName:(NSString *)name
host:(NSString *)hostName

Parameters
name

The name under which the connection is registered.

hostName
The host name. The domain name hostName is an Internet domain name (for example,
"sales.anycorp.com"). If hostName is nil or empty, then only the local host is searched for the
named NSConnection object.

Return Value
a proxy for the root object of the NSConnection object registered with the default NSPortNameServer
under name on the host named hostName, or nil if that NSConnection object has no root object set. Also
returns nil if no NSConnection object can be found for name and hostName.

Discussion
The NSConnection object of the returned proxy is a child of the default NSConnection object for the
current thread (that is, it shares the default NSConnection object's receive port).

This method invokes connectionWithRegisteredName:host: (page 330) and sends the resulting
NSConnection object a rootProxy (page 344) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRootObject: (page 347)
+ rootProxyForConnectionWithRegisteredName:host:usingNameServer: (page 333)

Declared In
NSConnection.h

332 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

rootProxyForConnectionWithRegisteredName:host:usingNameServer:
Returns a proxy for the root object of the NSConnection object registered with server under name on a
given host.

+ (NSDistantObject *)rootProxyForConnectionWithRegisteredName:(NSString *)name
host:(NSString *)hostName usingNameServer:(NSPortNameServer *)server

Parameters
name

The name of an NSConnection object .

hostName
A host name.

server
The server.

Return Value
A proxy for the root object of the NSConnection object registered with server under name on the host
named hostName, or nil if that NSConnection object has no root object set.

Discussion
See rootProxyForConnectionWithRegisteredName:host: (page 332) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

serviceConnectionWithName:rootObject:
Creates and returns a new connection object representing a vended service on the default system port name
server.

+ (id)serviceConnectionWithName:(NSString *)name rootObject:(id)root

Parameters
name

The name of the service you want to publish.

root
The object to use as the root object for the published service. This is the object vended by the
connection.

Return Value
An NSConnection object representing the vended service or nil if there was a problem setting up the
connection object.

Discussion
This method creates the server-side of a connection object and registers it with the default system port name
server. Clients wishing to connect to this service can request a communications port from the same port
server and use that port to to communicate.

Availability
Available in Mac OS X v10.5 and later.

Class Methods 333
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

See Also
+ serviceConnectionWithName:rootObject:usingNameServer: (page 334)
+ connectionWithRegisteredName:host: (page 330)
– rootObject (page 344)
+ systemDefaultPortNameServer (page 1270) (NSPortNameServer)

Declared In
NSConnection.h

serviceConnectionWithName:rootObject:usingNameServer:
Creates and returns a new connection object representing a vended service on the specified port name
server.

+ (id)serviceConnectionWithName:(NSString *)name rootObject:(id)root
usingNameServer:(NSPortNameServer *)server

Parameters
name

The name of the service you want to publish.

root
The object to use as the root object for the published service. This is the object vended by the
connection.

server
The port name server with which to register your service.

Return Value
An NSConnection object representing the vended service or nil if there was a problem setting up the
connection object.

Discussion
This method creates the server-side of a connection object and registers it with the specified port name
server. Clients wishing to connect to this service can request a communications port from the same port
server and use that port to communicate.

If the specified service name corresponds to a service that is autolaunched by launchd, this method allows
the service to check in with the launchd process. If the service is not autolaunched by launchd, this method
registers the new connection with the specified name. For more information about launchd and its role in
launching services, see System Startup Programming Topics

Availability
Available in Mac OS X v10.5 and later.

See Also
+ connectionWithRegisteredName:host:usingNameServer: (page 331)
– rootObject (page 344)

Declared In
NSConnection.h

334 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Instance Methods

addRequestMode:
Adds mode to the set of run-loop input modes that the receiver uses for connection requests.

- (void)addRequestMode:(NSString *)mode

Parameters
mode

The mode to add to the receiver.

Discussion
The default input mode is NSDefaultRunLoopMode. See the NSRunLoop class specification for more
information on input modes.

Availability
Available in Mac OS X v10.0 and later.

See Also
addPort:forMode: (page 1333) (NSRunLoop)

Declared In
NSConnection.h

addRunLoop:
Adds the specified run loop to the list of run loops the receiver monitors and from which it responds to
requests.

- (void)addRunLoop:(NSRunLoop *)runloop

Parameters
runloop

The run loop to add to the receiver.

Discussion
This method is invoked automatically when a request comes in from a new run loop if
enableMultipleThreads (page 336) has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableMultipleThreads (page 336)
– removeRunLoop: (page 342)

Declared In
NSConnection.h

Instance Methods 335
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 346)

Declared In
NSConnection.h

enableMultipleThreads
Configures the receiver to allow requests from multiple threads to the remote object, without requiring each
thread to each maintain its own connection.

- (void)enableMultipleThreads

Discussion
In Mac OS X v10.5 and later, multiple thread support is enabled by default and this method does nothing.

Prior to Mac OS X v10.5, multiple thread support is disabled by default and must be enabled explicitly. When
disabled, each thread must create its own NSConnection object in order to access a given remote object.
When enabled, threads may use the same NSConnection object to access the remote object. If this feature
is disabled and an attempt is made to connect to the receiver from a thread other than the one that created
it, the receiver raises an NSObjectInaccessibleException.

Availability
Available in Mac OS X v10.0 and later.

See Also
– multipleThreadsEnabled (page 339)

Declared In
NSConnection.h

independentConversationQueueing
Returns a Boolean value that indicates whether the receiver handles remote messages atomically.

- (BOOL)independentConversationQueueing

Return Value
YES if the receiver handles remote messages atomically, otherwise NO.

Discussion
See Configuring an NSConnection for more information on independent conversation queueing.

336 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIndependentConversationQueueing: (page 346)

Declared In
NSConnection.h

initWithReceivePort:sendPort:
Returns an NSConnection object initialized with given send and receive ports.

- (id)initWithReceivePort:(NSPort *)receivePort sendPort:(NSPort *)sendPort

Parameters
receivePort

The receive port for the new connection.

sendPort
The send port for the new connection.

Return Value
An NSConnection object initialized with receivePort and sendPort. The returned object might be
different than the original receiver.

Discussion
The new NSConnection object adds receivePort to the current NSRunLoop object with
NSDefaultRunLoopMode as the mode. If the application doesn’t use an NSApplication object to handle
events, it needs to run the NSRunLoop object with one of its various run... messages.

This method posts an NSConnectionDidInitializeNotification (page 353) once the connection is
initialized.

The receivePort and sendPort parameters affect initialization as follows:

 ■ If an NSConnection object with the same ports already exists, releases the receiver, retains the existing
connection, and returns it.

 ■ If an NSConnection object exists that uses the same ports, but switched in role, then the new
NSConnection object communicates with it. Messages sent to a proxy held by either connection are
forwarded through the other NSConnection object. This rule applies both within and across address
spaces.

This behavior is useful for setting up distributed object connections between threads within an application.
See Communicating With Distributed Objects for more information.

 ■ If receivePort and sendPort are nil, deallocates the receiver and returns nil.

 ■ If receivePort is nil, the NSConnection object allocates and uses a new port of the same class as
sendPort.

 ■ If sendPort is nil or if both ports are the same, the NSConnection object uses receivePort for both
sending and receiving and is useful only for vending an object. Use the registerName: (page 340) and
setRootObject: (page 347) instance methods to vend an object.

Instance Methods 337
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

 ■ If an NSConnection object exists that uses receivePort as both of its ports, it’s treated as the parent
of the new NSConnection object, and its root object and all its configuration settings are applied to
the new NSConnection object. You should neither register a name for nor set the root object of the
new NSConnection object. See Configuring an NSConnection for more information.

 ■ If receivePort and sendPort are different and neither is shared with another NSConnection object,
the receiver can be used to vend an object as well as to communicate with other NSConnection objects.
However, it has no other NSConnection object to communicate with until one is set up.

 ■ The receivePort parameter can’t be shared by NSConnection objects in different threads.

This method is the designated initializer for the NSConnection class.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultConnection (page 331)

Related Sample Code
SimpleThreads
TrivialThreads

Declared In
NSConnection.h

invalidate
Invalidates (but doesn’t release) the receiver.

- (void)invalidate

Discussion
After withdrawing the ports the receiver has registered with the current run loop, invalidate posts an
NSConnectionDidDieNotification (page 352) and then invalidates all remote objects and exported local
proxies.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isValid (page 338)
removePort:forMode: (page 1337) (NSRunLoop)
– requestModes (page 343)

Declared In
NSConnection.h

isValid
Returns a Boolean value that indicates whether the receiver is known to be valid.

- (BOOL)isValid

338 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Return Value
YES if the receiver is known to be valid, otherwise NO.

Discussion
An NSConnection object becomes invalid when either of its ports becomes invalid, but only notes that it
has become invalid when it tries to send or receive a message. When this happens it posts an
NSConnectionDidDieNotification (page 352) to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– invalidate (page 338)
isValid (page 1252) (NSPort)

Declared In
NSConnection.h

localObjects
Returns the local objects that have been sent over the connection and still have proxies at the other end.

- (NSArray *)localObjects

Return Value
An array containing the local objects that have been sent over the connection and still have proxies at the
other end.

Discussion
When an object’s remote proxy is deallocated, a message is sent back to the receiver to notify it that the
local object is no longer shared over the connection.

Availability
Available in Mac OS X v10.0 and later.

See Also
– remoteObjects (page 342)

Declared In
NSConnection.h

multipleThreadsEnabled
Returns a Boolean value that indicates whether the receiver supports requests from multiple threads.

- (BOOL)multipleThreadsEnabled

Return Value
YES if the receiver supports requests from multiple threads.

Discussion
In Mac OS X v10.5 and later, multiple threads are enabled by default.

Instance Methods 339
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableMultipleThreads (page 336)

Declared In
NSConnection.h

receivePort
Returns the NSPort object on which the receiver receives incoming network messages.

- (NSPort *)receivePort

Return Value
The NSPort object on which the receiver receives incoming network messages.

Discussion
You can inspect this object for debugging purposes or use it to create another NSConnection object, but
shouldn’t use it to send or receive messages explicitly. Don’t set the delegate of the receive port; it already
has a delegate established by the NSConnection object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendPort (page 345)
– initWithReceivePort:sendPort: (page 337)

Declared In
NSConnection.h

registerName:
Registers the specified service using with the default system port name server.

- (BOOL)registerName:(NSString *)name

Parameters
name

The name under which to register the receiver.

Return Value
YES if the operation was successful, otherwise NO (for example, if another NSConnection object on the same
host is already registered under name).

Discussion
This method connects the receive port of the receiving NSConnection object with the specified service
name. It registers the name using the port name server returned by the
systemDefaultPortNameServer (page 1270) method of NSPortNameServer. If the operation is successful,

340 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

other NSConnection objects can contact the receiver using the
connectionWithRegisteredName:host: (page 330) and
rootProxyForConnectionWithRegisteredName:host: (page 332) class methods.

If the receiver was already registered under a name and this method returns NO, the old name remains in
effect. If this method is successful, it also unregisters the old name.

To unregister an NSConnection object, simply invoke registerName: and supply nil as the connection
name.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRootObject: (page 347)
– registerName:withNameServer: (page 341)
+ systemDefaultPortNameServer (page 1270) (NSPortNameServer)

Declared In
NSConnection.h

registerName:withNameServer:
Registers a service with the specified port name server.

- (BOOL)registerName:(NSString *)name withNameServer:(NSPortNameServer *)server

Parameters
name

The name under which to register the receiver.

server
The name server.

Return Value
YES if the operation was successful, otherwise NO (for example, if another NSConnection object on the same
host is already registered under name).

Discussion
This method connects the receive port of the receiving NSConnection object with the specified service
name. If the operation is successful, other NSConnection objects can contact the receiver using the
connectionWithRegisteredName:host: (page 330) and
rootProxyForConnectionWithRegisteredName:host: (page 332) class methods.

If the receiver was already registered under a name and this method returns NO, the old name remains in
effect. If this method is successful, it also unregisters the old name.

To unregister an NSConnection object, simply invoke registerName: and supply nil as the connection
name.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

Instance Methods 341
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

remoteObjects
Returns all the local proxies for remote objects that have been received over the connection but not
deallocated yet.

- (NSArray *)remoteObjects

Return Value
An array containing all the local proxies for remote objects that have been received over the connection but
not deallocated yet.

Availability
Available in Mac OS X v10.0 and later.

See Also
– localObjects (page 339)

Declared In
NSConnection.h

removeRequestMode:
Removes mode from the set of run-loop input modes the receiver uses for connection requests.

- (void)removeRequestMode:(NSString *)mode

Parameters
mode

The mode to remove from the set of run-loop input modes the receiver uses for connection requests.

Availability
Available in Mac OS X v10.0 and later.

See Also
– requestModes (page 343)
removePort:forMode: (page 1337) (NSRunLoop)

Declared In
NSConnection.h

removeRunLoop:
Removes a given NSRunLoop object from the list of run loops the receiver monitors and from which it
responds to requests.

- (void)removeRunLoop:(NSRunLoop *)runloop

Parameters
runloop

The run loop to remove from the receiver.

Availability
Available in Mac OS X v10.0 and later.

342 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

See Also
– addRunLoop: (page 335)

Declared In
NSConnection.h

replyTimeout
Returns the timeout interval for replies to outgoing remote messages.

- (NSTimeInterval)replyTimeout

Return Value
The timeout interval for replies to outgoing remote messages.

Discussion
If a non-oneway remote message is sent and no reply is received by the timeout, an
NSPortTimeoutException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
– requestTimeout (page 344)
– setReplyTimeout: (page 347)

Declared In
NSConnection.h

requestModes
Returns the set of request modes the receiver’s receive port is registered for with its NSRunLoop object.

- (NSArray *)requestModes

Return Value
An array of NSString objects that represents the set of request modes the receiver’s receive port is registered
for with its NSRunLoop object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addRequestMode: (page 335)
addPort:forMode: (page 1333) (NSRunLoop)
– removeRequestMode: (page 342)

Declared In
NSConnection.h

Instance Methods 343
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

requestTimeout
Returns the timeout interval for outgoing remote messages.

- (NSTimeInterval)requestTimeout

Return Value
The timeout interval for outgoing remote messages.

Discussion
If a remote message can’t be sent before the timeout, an NSPortTimeoutException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replyTimeout (page 343)
– setRequestTimeout: (page 347)

Declared In
NSConnection.h

rootObject
Returns the object that the receiver (or its parent) makes available to other applications or threads.

- (id)rootObject

Return Value
The object that the receiver (or its parent) makes available to other applications or threads, or nil if there
is no root object.

Discussion
To get a proxy to this object in another application or thread, invoke the
rootProxyForConnectionWithRegisteredName:host: (page 332) class method with the appropriate
arguments.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rootProxy (page 344)
– setRootObject: (page 347)

Declared In
NSConnection.h

rootProxy
Returns the proxy for the root object of the receiver’s peer in another application or thread.

- (NSDistantObject *)rootProxy

344 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Return Value
The proxy for the root object of the receiver’s peer in another application or thread.

Discussion
The proxy returned can change between invocations if the peer NSConnection object's root object is
changed.

Note: If the NSConnection object uses separate send and receive ports and has no peer, when you invoke
rootProxy it will block for the duration of the reply timeout interval, waiting for a reply.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rootObject (page 344)

Related Sample Code
SimpleThreads
TrivialThreads

Declared In
NSConnection.h

runInNewThread
Creates and starts a new NSThread object and then runs the receiving connection in the new thread.

- (void)runInNewThread

Discussion
If the newly created thread is the first to be detached from the current thread, this method posts an
NSWillBecomeMultiThreadedNotification with nil to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

sendPort
Returns the NSPort object that the receiver sends outgoing network messages through.

- (NSPort *)sendPort

Return Value
The NSPort object that the receiver sends outgoing network messages through.

Discussion
You can inspect this object for debugging purposes or use it to create another NSConnection object, but
shouldn’t use it to send or receive messages explicitly. Don’t set the delegate of the send port; it already has
a delegate established by the NSConnection object.

Instance Methods 345
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– receivePort (page 340)
– initWithReceivePort:sendPort: (page 337)

Declared In
NSConnection.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)anObject

Parameters
anObject

The receiver’s delegate.

Discussion
A connection’s delegate can process incoming messages itself instead of letting NSConnection object
handle them. The delegate can also authenticate messages and accept, deny, or modify new connections.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

setIndependentConversationQueueing:
Sets a Boolean value that specifies whether the receiver handles remote messages atomically.

- (void)setIndependentConversationQueueing:(BOOL)flag

Parameters
flag

YES if the receiver handles remote messages atomically, otherwise NO.

Discussion
The default is NO. An NSConnection object normally forwards remote message to the intended recipients
as they come in. See Configuring an NSConnection for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– independentConversationQueueing (page 336)

Declared In
NSConnection.h

346 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

setReplyTimeout:
Sets the timeout interval for replies to outgoing remote messages

- (void)setReplyTimeout:(NSTimeInterval)seconds

Parameters
seconds

The timeout interval for replies to outgoing remote messages.

Discussion
If a non-oneway remote message is sent and no reply is received by the timeout, an
NSPortTimeoutException is raised. The default timeout is the maximum possible value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRequestTimeout: (page 347)
– replyTimeout (page 343)

Declared In
NSConnection.h

setRequestTimeout:
Sets the timeout interval for outgoing remote messages.

- (void)setRequestTimeout:(NSTimeInterval)seconds

Parameters
seconds

The timeout interval for outgoing remote messages.

Discussion
If a remote message can’t be sent before the timeout, an NSPortTimeoutException is raised. The default
timeout is the maximum possible value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setReplyTimeout: (page 347)
– requestTimeout (page 344)

Declared In
NSConnection.h

setRootObject:
Sets the object that the receiver makes available to other applications or threads.

- (void)setRootObject:(id)anObject

Instance Methods 347
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Parameters
anObject

The root object for the receiver.

Discussion
This only affects new connection requests and rootProxy (page 344) messages to established NSConnection
objects; applications that have proxies to the old root object can still send messages through it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rootObject (page 344)

Related Sample Code
SimpleThreads

Declared In
NSConnection.h

statistics
Returns an NSDictionary object containing various statistics for the receiver.

- (NSDictionary *)statistics

Return Value
An NSDictionary object containing various statistics for the receiver, such as the number of vended objects,
the number of requests and replies, and so on.

Discussion
The statistics dictionary should be used only for debugging purposes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

Delegate Methods

authenticateComponents:withData:
Returns a Boolean value that indicates whether given authentication data is valid for a given set of components.

- (BOOL)authenticateComponents:(NSArray *)components withData:(NSData
*)authenticationData

348 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Parameters
components

An array that contains NSData and NSPort objects belonging to an NSPortMessage object. See the
NSPortMessage class specification for more information.

authenticationData
Authentication data created by the delegate of the peer NSConnection object with
authenticationDataForComponents: (page 349).

Return Value
YES if the authenticationData provided is valid for components, otherwise NO.

Discussion
Use this message for validation of incoming messages. An NSConnection object raises an
NSFailedAuthenticationException on receipt of a remote message the delegate doesn’t authenticate.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

authenticationDataForComponents:
Returns an NSData object to be used as an authentication stamp for an outgoing message.

- (NSData *)authenticationDataForComponents:(NSArray *)components

Parameters
components

An array containing the elements of a network message, in the form of NSPort and NSData objects.

Return Value
An NSData object to be used as an authentication stamp for an outgoing message.

Discussion
The delegate should use only the NSData elements to create the authentication stamp. See the
NSPortMessage class specification for more information on the components.

If authenticationDataForComponents: (page 349) returns nil, an NSGenericExceptionwill be raised.
If the delegate determines that the message shouldn’t be authenticated, it should return an empty NSData
object. The delegate on the other side of the connection must then be prepared to accept an empty NSData
object as the second parameter to authenticateComponents:withData: (page 348) and to handle the
situation appropriately.

The components parameter will be validated on receipt by the delegate of the peer NSConnection object
with authenticateComponents:withData: (page 348).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

Delegate Methods 349
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

connection:handleRequest:
This method should be implemented by NSConnection object delegates that want to intercept distant
object requests.

- (BOOL)connection:(NSConnection *)conn handleRequest:(NSDistantObjectRequest
*)doReq

Parameters
conn

The connection object for which the receiver is the delegate.

doReq
The distant object request.

Return Value
YES if the request was handled by the delegate, NO if the request should proceed as if the delegate did not
intercept it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

connection:shouldMakeNewConnection:
Returns a Boolean value that indicates whether the parent connection should allow a given new connection
to be created.

- (BOOL)connection:(NSConnection *)parentConnection
shouldMakeNewConnection:(NSConnection *)newConnnection

Parameters
parentConnection

The connection object for which the receiver is the delegate.

newConnnection
The new connection.

Return Value
YES ifparentConnection should allownewConnnection to be created and set up,NO ifparentConnection
should refuse and immediately release newConnection.

Discussion
Use this method to limit the amount of NSConnection objects created in your application or to change the
parameters of child NSConnection objects.

Use NSConnectionDidInitializeNotification (page 353) instead of this delegate method if possible.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

350 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

createConversationForConnection:
Returns an arbitrary object identifying a new conversation being created for the connection in the current
thread.

- (id)createConversationForConnection:(NSConnection *)conn

Parameters
conn

The connection object for which the receiver is the delegate.

Return Value
An arbitrary object identifying a new conversation being created for the connection in the current thread.

Discussion
New conversations are created only if independentConversationQueueing (page 336) is YES for conn. If
you do not implement this method, NSConnection object creates an instance of NSObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentConversation (page 331)
conversation (page 536) (NSDistantObjectRequest)

Declared In
NSConnection.h

makeNewConnection:sender:
Returns a Boolean value that indicates whether the parent should allow a given new connection to be created
and configured.

- (BOOL)makeNewConnection:(NSConnection *)newConnection sender:(NSConnection
*)parentConnection

Parameters
newConnection

The new connection.

parentConnection
The parent connection.

Return Value
YES if parentConnection should allow newConnnection to be created and configured, NO if
parentConnection should refuse and immediately release newConnection.

Discussion
Use this method to limit the amount of NSConnection objects created in your application or to change the
parameters of child NSConnection objects.

Use NSConnectionDidInitializeNotification (page 353) instead of this delegate method if possible.

Availability
Available in Mac OS X v10.0 and later.

Delegate Methods 351
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Declared In
NSConnection.h

Constants

NSConnection run loop mode
NSConnection defines the following run loop mode—see NSRunLoop for more details.

extern NSString *NSConnectionReplyMode;

Constants
NSConnectionReplyMode

The mode to indicate an NSConnection object waiting for replies.

You should rarely need to use this mode.

Declared in NSConnection.h.

Available in Mac OS X v10.0 and later.

Declared In
Foundation/NSConnection.h

Connection Exception Names
The name of an exception raised in case of authentication failure.

extern NSString *NSFailedAuthenticationException;

Constants
NSFailedAuthenticationException

Raised by NSConnection on receipt of a remote message the delegate doesn’t authenticate.

Available in Mac OS X v10.0 and later.

Declared in NSConnection.h.

Declared In
Foundation/NSConnection.h

Notifications

NSConnectionDidDieNotification
Posted when an NSConnection object is deallocated or when it’s notified that its NSPort object has become
invalid. The notification object is the NSConnection object. This notification does not contain a userInfo
dictionary.

An NSConnection object attached to a remote NSSocketPort object cannot detect when the remote port
becomes invalid, even if the remote port is on the same machine. Therefore, it cannot post this notification
when the connection is lost. Instead, you must detect the timeout error when the next message is sent.

352 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

The NSConnection object posting this notification is no longer useful, so all receivers should unregister
themselves for any notifications involving the NSConnection object.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSPortDidBecomeInvalidNotification (NSPort notification)

Declared In
NSConnection.h

NSConnectionDidInitializeNotification
Posted when an NSConnection object is initialized using initWithReceivePort:sendPort: (page 337)
(the designated initializer for NSConnection). The notification object is the NSConnection object. This
notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithReceivePort:sendPort: (page 337)

Declared In
NSConnection.h

Notifications 353
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

354 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 23

NSConnection Class Reference

Inherits from NSScriptCommand : NSObject

Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptStandardSuiteCommands.h

Companion guide Cocoa Scripting Guide

Overview

An instance of NSCountCommand counts the number of objects of a specified class in the specified object
container (such as the number of words in a paragraph or document) and returns the result.

NSCountCommand is part of Cocoa’s built-in scripting support. It works automatically to support the count
command through key-value coding. Most applications don’t need to subclass NSCountCommand or call its
methods.

Overview 355
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 24

NSCountCommand Class Reference

356 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 24

NSCountCommand Class Reference

Inherits from NSMutableSet : NSSet : NSObject

Conforms to NSCoding (NSSet)
NSCopying (NSSet)
NSMutableCopying (NSSet)
NSFastEnumeration (NSSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSSet.h

Companion guide Collections Programming Topics for Cocoa

Related sample code Dicey

Overview

The NSCountedSet class declares the programmatic interface to an object that manages a mutable set of
objects. NSCountedSet provides support for the mathematical concept of a counted set. A counted set,
both in its mathematical sense and in the implementation of NSCountedSet, is an unordered collection of
elements, just as in a regular set, but the elements of the set aren’t necessarily distinct. A counted set is also
known as a bag.

Each distinct object inserted into an NSCountedSet object has a counter associated with it.
NSCountedSetkeeps track of the number of times objects are inserted and requires that objects be removed
the same number of times. Thus, there is only one instance of an object in an NSSet object even if the object
has been added to the set multiple times. The count (page 1451) method defined by the superclass NSSet
has special significance; it returns the number of distinct objects, not the total number of times objects are
represented in the set. The NSSet and NSMutableSet classes are provided for static and dynamic sets
(respectively) whose elements are distinct.

You add objects to or remove objects from a counted set using the addObject: (page 358) and
removeObject: (page 361) methods. You can traverse elements of an NSCountedSet object using the
enumerator returned by objectEnumerator (page 361). The countForObject: (page 359) method returns
the number of times a given object has been added to this set.

While NSCountedSet and CFBag are not toll-free bridged, they provide similar functionality. For more
information on CFBag, consult the CFBag Reference.

Overview 357
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

NSCountedSet Class Reference

Tasks

Initializing a Counted Set

– initWithArray: (page 359)
Returns a counted set object initialized with the contents of a given array.

– initWithSet: (page 360)
Returns a counted set object initialized with the contents of a given set.

– initWithCapacity: (page 360)
Returns a counted set object initialized with enough memory to hold a given number of objects.

Adding and Removing Entries

– addObject: (page 358)
Adds a given object to the receiver.

– removeObject: (page 361)
Removes a given object from the receiver.

Examining a Counted Set

– countForObject: (page 359)
Returns the count associated with a given object in the receiver.

– objectEnumerator (page 361)
Returns an enumerator object that lets you access each object in the set once, independent of its
count.

Instance Methods

addObject:
Adds a given object to the receiver.

- (void)addObject:(id)anObject

Parameters
anObject

The object to add to the receiver.

Discussion
If anObject is already a member, addObject: increments the count associated with the object. If anObject
is not already a member, it is sent a retain (page 2108) message.

Availability
Available in Mac OS X v10.0 and later.

358 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

NSCountedSet Class Reference

Declared In
NSSet.h

countForObject:
Returns the count associated with a given object in the receiver.

- (NSUInteger)countForObject:(id)anObject

Parameters
anObject

The object for which to return the count.

Return Value
The count associated with anObject in the receiver, which can be thought of as the number of occurrences
of anObject present in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– count (page 1451) (NSSet)

Related Sample Code
Dicey

Declared In
NSSet.h

initWithArray:
Returns a counted set object initialized with the contents of a given array.

- (id)initWithArray:(NSArray *)anArray

Parameters
anArray

An array of objects to add to the new set.

Return Value
An initialized counted set object with the contents of anArray. The returned object might be different than
the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
initWithArray: (page 1452) (NSSet)
setWithArray: (page 1445) (NSSet)

Declared In
NSSet.h

Instance Methods 359
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

NSCountedSet Class Reference

initWithCapacity:
Returns a counted set object initialized with enough memory to hold a given number of objects.

- (id)initWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the new counted set.

Return Value
A counted set object initialized with enough memory to hold numItems objects

Discussion
The method is the designated initializer for NSCountedSet.

Note that the capacity is simply a hint to help initial memory allocation—the initial count of the object is 0,
and the set still grows and shrinks as you add and remove objects. The hint is typically useful if the set will
become large.

Availability
Available in Mac OS X v10.0 and later.

See Also
initWithCapacity: (page 973) (NSMutableSet)
setWithCapacity: (page 971) (NSMutableSet)

Declared In
NSSet.h

initWithSet:
Returns a counted set object initialized with the contents of a given set.

- (id)initWithSet:(NSSet *)aSet

Parameters
aSet

An set of objects to add to the new set.

Return Value
An initialized counted set object with the contents of aSet. The returned object might be different than the
original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
initWithSet: (page 1454) (NSSet)
setWithSet: (page 1448) (NSSet)

Declared In
NSSet.h

360 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

NSCountedSet Class Reference

objectEnumerator
Returns an enumerator object that lets you access each object in the set once, independent of its count.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the set once, independent of its count.

Discussion
If you add a given object to the counted set multiple times, an enumeration of the set will produce that
object only once.

You shouldn’t modify the set during enumeration. If you intend to modify the set, use the allObjects (page
1449) method to create a “snapshot,” then enumerate the snapshot and modify the original set.

Availability
Available in Mac OS X v10.0 and later.

See Also
nextObject (page 558) (NSEnumerator)

Declared In
NSSet.h

removeObject:
Removes a given object from the receiver.

- (void)removeObject:(id)anObject

Parameters
anObject

The object to remove from the receiver.

Discussion
If anObject is present in the set, decrements the count associated with it. If the count is decremented to 0,
anObject is removed from the set and sent a release (page 2106) message. removeObject: does nothing
if anObject is not present in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– countForObject: (page 359)

Declared In
NSSet.h

Instance Methods 361
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

NSCountedSet Class Reference

362 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 25

NSCountedSet Class Reference

Inherits from NSScriptCommand : NSObject

Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptStandardSuiteCommands.h

Companion guide Cocoa Scripting Guide

Overview

An instance of NSCreateCommand creates the specified scriptable object (such as a document), optionally
supplying the new object with the specified attributes. This command corresponds to AppleScript’s make
command.

NSCreateCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSCreateCommand or invoke its methods.

When an instance of NSCreateCommand is executed, it creates a new object using [[theClassToBeCreated
allocWithZone:NULL] init] (where theClassToBeCreated is the class of the object to be created),
unless the command has a with data argument. In the latter case, the new object is created by invoking
[[NSScriptCoercionHandler sharedCoercionHandler] coerceValue:theDataAsAnObject
toClass:theClassToBeCreated]. Any properties specified by a with properties argument are then
set in the new object using -setScriptingProperties:.

If an NSCreateCommand object with no argument corresponding to the at parameter is executed (for
example, tell application "Mail" to make new mailbox with properties
{name:"testFolder"}), and the receiver of the command (not necessarily the application object) has a
to-many relationship to objects of the class to be instantiated, and the class description for the receiving
class returns NO when sent an isLocationRequiredToCreateForKey: message, the NSCreateCommand
object creates a new object and sends the receiver an insertValue:atIndex:inPropertyWithKey: (page
2118) message to place the new object in the container. This is part of Cocoa’s scripting support for inserting
newly-created objects into containers without explicitly specifying a location.

Overview 363
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCreateCommand Class Reference

Tasks

Getting Information About a Create Command

– createClassDescription (page 364)
Returns the class description for the class that is to be created.

– resolvedKeyDictionary (page 364)
Returns a dictionary that contains the properties that were specified in the makeApple event command
that has been converted to this NSCreateCommand object.

Instance Methods

createClassDescription
Returns the class description for the class that is to be created.

- (NSScriptClassDescription *)createClassDescription

Return Value
The class description for the class that is to be created.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

resolvedKeyDictionary
Returns a dictionary that contains the properties that were specified in the make Apple event command that
has been converted to this NSCreateCommand object.

- (NSDictionary *)resolvedKeyDictionary

Return Value
A dictionary that contains the properties that were specified in the make Apple event script command that
has been converted to this NSCreateCommand object.

Discussion
The keys in the returned dictionary are the names of properties (attributes or relationships, in the script suite)
that have been specified for the command, and the corresponding values in the dictionary are the values
that those properties should take. The required and optional arguments for the make command are specified
in the core suite definition, NSCoreSuite.scriptSuite.

Availability
Available in Mac OS X v10.0 and later.

364 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCreateCommand Class Reference

Declared In
NSScriptStandardSuiteCommands.h

Instance Methods 365
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCreateCommand Class Reference

366 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCreateCommand Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSData.h
Foundation/NSSerialization.h (Deprecated)

Companion guides Binary Data Programming Guide for Cocoa
Property List Programming Guide

Related sample code CocoaHTTPServer
CocoaSOAP
iSpend
Sketch-112
StickiesExample

Overview

NSData and its mutable subclass NSMutableData provide data objects, object-oriented wrappers for byte
buffers. Data objects let simple allocated buffers (that is, data with no embedded pointers) take on the
behavior of Foundation objects.

NSData creates static data objects, and NSMutableData creates dynamic data objects. NSData and
NSMutableData are typically used for data storage and are also useful in Distributed Objects applications,
where data contained in data objects can be copied or moved between applications.

Using 32-bit Cocoa, the size of the data is subject to a theoretical 2GB limit (in practice, because memory will
be used by other objects this limit will be smaller); using 64-bit Cocoa, the size of the data is subject to a
theoretical limit of about 8EB (in practice, the limit should not be a factor).

NSData is “toll-free bridged” with its Core Foundation counterpart, CFData. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. Therefore,
in a method where you see an NSData * parameter, you can pass a CFDataRef, and in a function where
you see a CFDataRef parameter, you can pass an NSData instance (you cast one type to the other to suppress
compiler warnings). This also applies to your concrete subclasses of NSData. See Interchangeable Data Types
for more information on toll-free bridging.

Overview 367
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

NSMutableCopying
– mutableCopyWithZone: (page 2094)

Tasks

Creating Data Objects

+ data (page 370)
Creates and returns an empty data object.

+ dataWithBytes:length: (page 370)
Creates and returns a data object containing a given number of bytes copied from a given buffer.

+ dataWithBytesNoCopy:length: (page 371)
Creates and returns a data object that holds length bytes from the buffer bytes.

+ dataWithBytesNoCopy:length:freeWhenDone: (page 371)
Creates and returns a data object that holds a given number of bytes from a given buffer.

+ dataWithContentsOfFile: (page 372)
Creates and returns a data object by reading every byte from the file specified by a given path.

+ dataWithContentsOfFile:options:error: (page 373)
Creates and returns a data object by reading every byte from the file specified by a given path.

+ dataWithContentsOfMappedFile: (page 373)
Creates and returns a data object from the mapped file specified by path.

+ dataWithContentsOfURL: (page 374)
Returns a data object containing the data from the location specified by a given URL.

+ dataWithContentsOfURL:options:error: (page 375)
Creates and returns a data object containing the data from the location specified by aURL.

+ dataWithData: (page 375)
Creates and returns a data object containing the contents of another data object.

– initWithBytes:length: (page 378)
Returns a data object initialized by adding to it a given number of bytes of data copied from a given
buffer.

– initWithBytesNoCopy:length: (page 379)
Returns a data object initialized by adding to it a given number of bytes of data from a given buffer.

– initWithBytesNoCopy:length:freeWhenDone: (page 379)
Initializes a newly allocated data object by adding to it length bytes of data from the buffer bytes.

368 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

– initWithContentsOfFile: (page 380)
Returns a data object initialized by reading into it the data from the file specified by a given path.

– initWithContentsOfFile:options:error: (page 381)
Returns a data object initialized by reading into it the data from the file specified by a given path.

– initWithContentsOfMappedFile: (page 381)
Returns a data object initialized by reading into it the mapped file specified by a given path.

– initWithContentsOfURL: (page 382)
Initializes a newly allocated data object initialized with the data from the location specified by aURL.

– initWithContentsOfURL:options:error: (page 382)
Returns a data object initialized with the data from the location specified by a given URL.

– initWithData: (page 383)
Returns a data object initialized with the contents of another data object.

Accessing Data

– bytes (page 376)
Returns a pointer to the receiver’s contents.

– description (page 376)
Returns an NSString object that contains a hexadecimal representation of the receiver’s contents.

– getBytes: (page 377)
Copies a data object’s contents into a given buffer.

– getBytes:length: (page 377)
Copies a number of bytes from the start of the receiver's data into a given buffer.

– getBytes:range: (page 378)
Copies a range of bytes from the receiver’s data into a given buffer.

– subdataWithRange: (page 384)
Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by
a given range.

Testing Data

– isEqualToData: (page 383)
Compares the receiving data object to otherData.

– length (page 383)
Returns the number of bytes contained in the receiver.

Storing Data

– writeToFile:atomically: (page 384)
Writes the bytes in the receiver to the file specified by a given path.

– writeToFile:options:error: (page 385)
Writes the bytes in the receiver to the file specified by a given path.

Tasks 369
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

– writeToURL:atomically: (page 385)
Writes the bytes in the receiver to the location specified by aURL.

– writeToURL:options:error: (page 386)
Writes the bytes in the receiver to the location specified by a given URL.

Class Methods

data
Creates and returns an empty data object.

+ (id)data

Return Value
An empty data object.

Discussion
This method is declared primarily for the use of mutable subclasses of NSData.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedDataBurn
QTKitMovieShuffler

Declared In
NSData.h

dataWithBytes:length:
Creates and returns a data object containing a given number of bytes copied from a given buffer.

+ (id)dataWithBytes:(const void *)bytes length:(NSUInteger)length

Parameters
bytes

A buffer containing data for the new object.

length
The number of bytes to copy from bytes. This value must not exceed the length of bytes.

Return Value
A data object containing length bytes copied from the buffer bytes. Returns nil if the data object could
not be created.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithBytesNoCopy:length: (page 371)

370 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

+ dataWithBytesNoCopy:length:freeWhenDone: (page 371)

Related Sample Code
CocoaHTTPServer
CocoaSOAP
EnhancedDataBurn
QTCoreVideo301
QTMetadataEditor

Declared In
NSData.h

dataWithBytesNoCopy:length:
Creates and returns a data object that holds length bytes from the buffer bytes.

+ (id)dataWithBytesNoCopy:(void *)bytes length:(NSUInteger)length

Parameters
bytes

A buffer containing data for the new object. bytes must point to a memory block allocated with
malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

Return Value
A data object that holds length bytes from the buffer bytes. Returns nil if the data object could not be
created.

Discussion
The returned object takes ownership of the bytes pointer and frees it on deallocation. Therefore, bytes
must point to a memory block allocated with malloc.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithBytes:length: (page 370)
+ dataWithBytesNoCopy:length:freeWhenDone: (page 371)

Declared In
NSData.h

dataWithBytesNoCopy:length:freeWhenDone:
Creates and returns a data object that holds a given number of bytes from a given buffer.

+ (id)dataWithBytesNoCopy:(void *)bytes length:(NSUInteger)length
freeWhenDone:(BOOL)freeWhenDone

Class Methods 371
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Parameters
bytes

A buffer containing data for the new object. If freeWhenDone is YES, bytes must point to a memory
block allocated with malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

freeWhenDone
If YES, the returned object takes ownership of the bytes pointer and frees it on deallocation.

Return Value
A data object that holds length bytes from the buffer bytes. Returns nil if the data object could not be
created.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ dataWithBytes:length: (page 370)
+ dataWithBytesNoCopy:length: (page 371)

Related Sample Code
CocoaSpeechSynthesisExample

Declared In
NSData.h

dataWithContentsOfFile:
Creates and returns a data object by reading every byte from the file specified by a given path.

+ (id)dataWithContentsOfFile:(NSString *)path

Parameters
path

The absolute path of the file from which to read data.

Return Value
A data object by reading every byte from the file specified by path. Returns nil if the data object could not
be created.

Discussion
This method is equivalent to dataWithContentsOfFile:options:error: (page 373) with no options. If
you need to know what was the reason for failure, use dataWithContentsOfFile:options:error: (page
373).

A sample using this method can be found in Working With Binary Data.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfFile:options:error: (page 373)
+ dataWithContentsOfMappedFile: (page 373)

372 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Related Sample Code
CarbonCocoaCoreImageTab
iSpend
LiveVideoMixer2
Reducer
WhackedTV

Declared In
NSData.h

dataWithContentsOfFile:options:error:
Creates and returns a data object by reading every byte from the file specified by a given path.

+ (id)dataWithContentsOfFile:(NSString *)path options:(NSUInteger)mask error:(NSError
 **)errorPtr

Parameters
path

The absolute path of the file from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in “Options
for NSData Reading Methods” (page 387).

errorPtr
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
A data object by reading every byte from the file specified by path. Returns nil if the data object could not
be created.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSData.h

dataWithContentsOfMappedFile:
Creates and returns a data object from the mapped file specified by path.

+ (id)dataWithContentsOfMappedFile:(NSString *)path

Parameters
path

The absolute path of the file from which to read data.

Return Value
A data object from the mapped file specified by path. Returns nil if the data object could not be created.

Class Methods 373
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Discussion
Because of file mapping restrictions, this method should only be used if the file is guaranteed to exist for the
duration of the data object’s existence. It is generally safer to use the dataWithContentsOfFile: (page
372) method.

This methods assumes mapped files are available from the underlying operating system. A mapped file uses
virtual memory techniques to avoid copying pages of the file into memory until they are actually needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfFile: (page 372)

Related Sample Code
Quartz EB

Declared In
NSData.h

dataWithContentsOfURL:
Returns a data object containing the data from the location specified by a given URL.

+ (id)dataWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The URL from which to read data.

Return Value
A data object containing the data from the location specified by aURL. Returns nil if the data object could
not be created.

Discussion
If you need to know what was the reason for failure, use dataWithContentsOfURL:options:error: (page
375).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfURL:options:error: (page 375)
– initWithContentsOfURL: (page 382)

Related Sample Code
CocoaSpeechSynthesisExample
Core Data HTML Store
CustomAtomicStoreSubclass
QTKitFrameStepper
WebKitCIPlugIn

Declared In
NSData.h

374 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

dataWithContentsOfURL:options:error:
Creates and returns a data object containing the data from the location specified by aURL.

+ (id)dataWithContentsOfURL:(NSURL *)aURL options:(NSUInteger)mask error:(NSError
 **)errorPtr

Parameters
aURL

The URL from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in “Options
for NSData Reading Methods” (page 387).

errorPtr
If there is an error reading in the data, upon return contains an NSError object that describes the
problem.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithContentsOfURL: (page 382)

Declared In
NSData.h

dataWithData:
Creates and returns a data object containing the contents of another data object.

+ (id)dataWithData:(NSData *)aData

Parameters
aData

A data object.

Return Value
A data object containing the contents of aData. Returns nil if the data object could not be created.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithData: (page 383)

Related Sample Code
Core Data HTML Store

Declared In
NSData.h

Class Methods 375
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Instance Methods

bytes
Returns a pointer to the receiver’s contents.

- (const void *)bytes

Return Value
A read-only pointer to the receiver’s contents.

Discussion
If the length (page 383) of the receiver is 0, this method returns nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 376)
– getBytes: (page 377)
– getBytes:length: (page 377)
– getBytes:range: (page 378)

Related Sample Code
AudioBurn
CocoaHTTPServer
CocoaSOAP
EnhancedDataBurn
QTSSConnectionMonitor

Declared In
NSData.h

description
Returns an NSString object that contains a hexadecimal representation of the receiver’s contents.

- (NSString *)description

Return Value
An NSString object that contains a hexadecimal representation of the receiver’s contents in NSData property
list format.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bytes (page 376)
– getBytes: (page 377)
– getBytes:length: (page 377)

376 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

– getBytes:range: (page 378)

Related Sample Code
Fiendishthngs

Declared In
NSData.h

getBytes:
Copies a data object’s contents into a given buffer.

- (void)getBytes:(void *)buffer

Parameters
buffer

A buffer into which to copy the receiver's data. The buffer must be at least length (page 383) bytes.

Discussion
You can see a sample using this method in Working With Binary Data.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bytes (page 376)
– description (page 376)
– getBytes:length: (page 377)
– getBytes:range: (page 378)

Related Sample Code
JavaSplashScreen
OpenGLCaptureToMovie
QTCoreVideo301
QTMetadataEditor
Quartz Composer QCTV

Declared In
NSData.h

getBytes:length:
Copies a number of bytes from the start of the receiver's data into a given buffer.

- (void)getBytes:(void *)buffer length:(NSUInteger)length

Parameters
buffer

A buffer into which to copy data.

length
The number of bytes from the start of the receiver's data to copy to buffer.

Instance Methods 377
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Discussion
The number of bytes copied is the smaller of the length parameter and the length of the data encapsulated
in the object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bytes (page 376)
– description (page 376)
– getBytes: (page 377)
– getBytes:range: (page 378)

Declared In
NSData.h

getBytes:range:
Copies a range of bytes from the receiver’s data into a given buffer.

- (void)getBytes:(void *)buffer range:(NSRange)range

Parameters
buffer

A buffer into which to copy data.

range
The range of bytes in the receiver's data to copy to buffer. The range must lie within the range of
bytes of the receiver's data.

Discussion
If range isn’t within the receiver’s range of bytes, an NSRangeException is raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bytes (page 376)
– description (page 376)
– getBytes: (page 377)
– getBytes:length: (page 377)

Declared In
NSData.h

initWithBytes:length:
Returns a data object initialized by adding to it a given number of bytes of data copied from a given buffer.

- (id)initWithBytes:(const void *)bytes length:(NSUInteger)length

378 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Discussion
A data object initialized by adding to it length bytes of data copied from the buffer bytes. The returned
object might be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithBytes:length: (page 370)
– initWithBytesNoCopy:length: (page 379)
– initWithBytesNoCopy:length:freeWhenDone: (page 379)

Declared In
NSData.h

initWithBytesNoCopy:length:
Returns a data object initialized by adding to it a given number of bytes of data from a given buffer.

- (id)initWithBytesNoCopy:(void *)bytes length:(NSUInteger)length

Parameters
bytes

A buffer containing data for the new object. bytes must point to a memory block allocated with
malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

Return Value
A data object initialized by adding to it length bytes of data from the buffer bytes. The returned object
might be different than the original receiver.

Discussion
The returned object takes ownership of the bytes pointer and frees it on deallocation. Therefore, bytes
must point to a memory block allocated with malloc.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithBytes:length: (page 370)
– initWithBytes:length: (page 378)
– initWithBytesNoCopy:length:freeWhenDone: (page 379)

Declared In
NSData.h

initWithBytesNoCopy:length:freeWhenDone:
Initializes a newly allocated data object by adding to it length bytes of data from the buffer bytes.

Instance Methods 379
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

- (id)initWithBytesNoCopy:(void *)bytes length:(NSUInteger)length
freeWhenDone:(BOOL)flag

Parameters
bytes

A buffer containing data for the new object. If flag is YES, bytes must point to a memory block
allocated with malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

flag
If YES, the returned object takes ownership of the bytes pointer and frees it on deallocation.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ dataWithBytesNoCopy:length:freeWhenDone: (page 371)
– initWithBytes:length: (page 378)
– initWithBytesNoCopy:length: (page 379)

Declared In
NSData.h

initWithContentsOfFile:
Returns a data object initialized by reading into it the data from the file specified by a given path.

- (id)initWithContentsOfFile:(NSString *)path

Parameters
path

The absolute path of the file from which to read data.

Return Value
A data object initialized by reading into it the data from the file specified by path. The returned object might
be different than the original receiver.

Discussion
This method is equivalent to initWithContentsOfFile:options:error: (page 381) with no options.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfFile: (page 372)
– initWithContentsOfMappedFile: (page 381)

Declared In
NSData.h

380 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

initWithContentsOfFile:options:error:
Returns a data object initialized by reading into it the data from the file specified by a given path.

- (id)initWithContentsOfFile:(NSString *)path options:(NSUInteger)mask error:(NSError
 **)errorPtr

Parameters
path

The absolute path of the file from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in “Options
for NSData Reading Methods” (page 387).

errorPtr
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
A data object initialized by reading into it the data from the file specified by path. The returned object might
be different than the original receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ dataWithContentsOfFile:options:error: (page 373)

Declared In
NSData.h

initWithContentsOfMappedFile:
Returns a data object initialized by reading into it the mapped file specified by a given path.

- (id)initWithContentsOfMappedFile:(NSString *)path

Parameters
path

The absolute path of the file from which to read data.

Return Value
A data object initialized by reading into it the mapped file specified by path. The returned object might be
different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfMappedFile: (page 373)
– initWithContentsOfFile: (page 380)

Declared In
NSData.h

Instance Methods 381
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

initWithContentsOfURL:
Initializes a newly allocated data object initialized with the data from the location specified by aURL.

- (id)initWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The URL from which to read data

Return Value
An NSData object initialized with the data from the location specified by aURL. The returned object might
be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithContentsOfURL: (page 374)

Declared In
NSData.h

initWithContentsOfURL:options:error:
Returns a data object initialized with the data from the location specified by a given URL.

- (id)initWithContentsOfURL:(NSURL *)aURL options:(NSUInteger)mask error:(NSError
 **)errorPtr

Parameters
aURL

The URL from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in “Options
for NSData Reading Methods” (page 387).

errorPtr
If there is an error reading in the data, upon return contains an NSError object that describes the
problem.

Return Value
A data object initialized with the data from the location specified by aURL. The returned object might be
different than the original receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ dataWithContentsOfURL:options:error: (page 375)

Declared In
NSData.h

382 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

initWithData:
Returns a data object initialized with the contents of another data object.

- (id)initWithData:(NSData *)data

Parameters
data

A data object.

Return Value
A data object initialized with the contents data. The returned object might be different than the original
receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithData: (page 375)

Declared In
NSData.h

isEqualToData:
Compares the receiving data object to otherData.

- (BOOL)isEqualToData:(NSData *)otherData

Parameters
otherData

The data object with which to compare the receiver.

Return Value
YES if the contents of otherData are equal to the contents of the receiver, otherwise NO.

Discussion
Two data objects are equal if they hold the same number of bytes, and if the bytes at the same position in
the objects are the same.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSData.h

length
Returns the number of bytes contained in the receiver.

- (NSUInteger)length

Return Value
The number of bytes contained in the receiver.

Instance Methods 383
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioBurn
CocoaHTTPServer
CocoaSOAP
QTMetadataEditor
WhackedTV

Declared In
NSData.h

subdataWithRange:
Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by a given
range.

- (NSData *)subdataWithRange:(NSRange)range

Parameters
range

The range in the receiver from which to copy bytes. The range must not exceed the bounds of the
receiver.

Return Value
A data object containing a copy of the receiver’s bytes that fall within the limits specified by range.

Discussion
If range isn’t within the receiver’s range of bytes, an NSRangeException is raised.

A sample using this method can be found in Working With Binary Data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSData.h

writeToFile:atomically:
Writes the bytes in the receiver to the file specified by a given path.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag

Parameters
path

The location to which to write the receiver's bytes. If path contains a tilde (~) character, you must
expand it with stringByExpandingTildeInPath (page 1602) before invoking this method.

atomically
If YES, the data is written to a backup file, and then—assuming no errors occur—the backup file is
renamed to the name specified by path; otherwise, the data is written directly to path.

384 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Return Value
YES if the operation succeeds, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– writeToURL:atomically: (page 385)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
Quartz Composer WWDC 2005 TextEdit
Reducer
TextEditPlus
WhackedTV

Declared In
NSData.h

writeToFile:options:error:
Writes the bytes in the receiver to the file specified by a given path.

- (BOOL)writeToFile:(NSString *)path options:(NSUInteger)mask error:(NSError
**)errorPtr

Parameters
path

The location to which to write the receiver's bytes.

mask
A mask that specifies options for writing the data. Constant components are described in “Options
for NSData Writing Methods” (page 387).

errorPtr
If there is an error writing out the data, upon return contains an NSError object that describes the
problem.

Return Value
YES if the operation succeeds, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– writeToURL:options:error: (page 386)

Declared In
NSData.h

writeToURL:atomically:
Writes the bytes in the receiver to the location specified by aURL.

Instance Methods 385
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)atomically

Parameters
aURL

The location to which to write the receiver's bytes. Only file:// URLs are supported.

atomically
If YES, the data is written to a backup location, and then—assuming no errors occur—the backup
location is renamed to the name specified by aURL; otherwise, the data is written directly to aURL.
atomically is ignored if aURL is not of a type the supports atomic writes.

Return Value
YES if the operation succeeds, otherwise NO.

Discussion
Since at present only file:// URLs are supported, there is no difference between this method and
writeToFile:atomically: (page 384), except for the type of the first argument.

Availability
Available in Mac OS X v10.0 and later.

See Also
– writeToFile:atomically: (page 384)

Related Sample Code
Core Data HTML Store
CoreRecipes
CustomAtomicStoreSubclass

Declared In
NSData.h

writeToURL:options:error:
Writes the bytes in the receiver to the location specified by a given URL.

- (BOOL)writeToURL:(NSURL *)aURL options:(NSUInteger)mask error:(NSError **)errorPtr

Parameters
aURL

The location to which to write the receiver's bytes.

mask
A mask that specifies options for writing the data. Constant components are described in “Options
for NSData Writing Methods” (page 387).

errorPtr
If there is an error writing out the data, upon return contains an NSError object that describes the
problem.

Return Value
YES if the operation succeeds, otherwise NO.

Discussion
Since at present only file:// URLs are supported, there is no difference between this method and
writeToFile:options:error: (page 385), except for the type of the first argument.

386 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– writeToFile:options:error: (page 385)

Declared In
NSData.h

Constants

Options for NSData Reading Methods
Options for methods used to read NSData objects.

enum {
 NSMappedRead = 1,
 NSUncachedRead = 2
};

Constants
NSMappedRead

A hint indicating the file should be mapped into virtual memory, if possible.

Available in Mac OS X v10.4 and later.

Declared in NSData.h.

NSUncachedRead
A hint indicating the file should not be stored in the file-system caches.

For data being read once and discarded, this option can improve performance.

Available in Mac OS X v10.4 and later.

Declared in NSData.h.

Declared In
NSData.h

Options for NSData Writing Methods
Options for methods used to write NSData objects.

enum {
 NSAtomicWrite = 1
};

Constants
NSAtomicWrite

A hint to use an auxiliary file when saving data and then exchange the files.

Available in Mac OS X v10.4 and later.

Declared in NSData.h.

Constants 387
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Declared In
NSData.h

388 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 27

NSData Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDate.h
Foundation/NSCalendarDate.h

Companion guides Date and Time Programming Guide for Cocoa
Property List Programming Guide

Related sample code iSpend
NewsReader
Quartz Composer WWDC 2005 TextEdit
Reminders
TextEditPlus

Overview

NSDate objects represent a single point in time. NSDate is a class cluster; its single public superclass, NSDate,
declares the programmatic interface for specific and relative time values. The objects you create using NSDate
are referred to as date objects. They are immutable objects. Because of the nature of class clusters, objects
returned by the NSDate class are instances not of that abstract class but of one of its private subclasses.
Although a date object’s class is private, its interface is public, as declared by the abstract superclass NSDate.
Generally, you instantiate a suitable date object by invoking one of the date... class methods.

NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing dates,
computing intervals, and similar functionality. NSDate presents a programmatic interface through which
suitable date objects are requested and returned. Date objects returned from NSDate are lightweight and
immutable since they represent an invariant point in time. This class is designed to provide the foundation
for arbitrary calendrical representations.

The sole primitive method of NSDate, timeIntervalSinceReferenceDate (page 408), provides the basis
for all the other methods in the NSDate interface. This method returns a time value relative to an absolute
reference date—the first instant of 1 January 2001, GMT.

Overview 389
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

NSDate provides several methods to interpret and to create string representations of dates (for example,
dateWithNaturalLanguageString:locale: (page 394) and descriptionWithLocale: (page 402)). In general, on Mac
OS X v10.4 and later you should use an instance of NSDateFormatter to parse and generate strings using
the methods dateFromString: (page 431) and stringFromDate: (page 456)—see NSDateFormatter on
Mac OS X 10.4 for more details.

NSDate models the change from the Julian to the Gregorian calendar in October 1582, and calendrical
calculations performed in conjunction with NSCalendar take this transition into account. Note, however,
that some locales adopted the Gregorian calendar at other times; for example, Great Britain didn't switch
over until September 1752.

NSDate is “toll-free bridged” with its Cocoa Foundation counterpart, CFDate Reference. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSDate * parameter, you can pass a CFDateRef, and in a function
where you see a CFDateRef parameter, you can pass an NSDate instance (you cast one type to the other
to suppress compiler warnings). See Interchangeable Data Types for more information on toll-free bridging.

Subclassing Notes

The major reason for subclassing NSDate is to create a class with convenience methods for working with a
particular calendrical system. But you could also require a custom NSDate class for other reasons, such as to
get a date and time value that provides a finer temporal granularity.

Methods to Override

If you want to subclass NSDate to obtain behavior different than that provided by the private or public
subclasses, you must do these things:

 ■ Declare a suitable instance variable to hold the date and time value (relative to an absolute reference
date).

 ■ Override the timeIntervalSinceReferenceDate (page 408) instance method to provide the correct
date and time value based on your instance variable.

 ■ OverrideinitWithTimeIntervalSinceReferenceDate: (page 406), the designated initializer method.

If you are creating a subclass that represents a calendrical system, you must also define methods that partition
past and future periods into the units of this calendar.

Because the NSDate class adopts the NSCopying and NSCodingprotocols, your subclass must also implement
all of the methods in these protocols.

Special Considerations

Your subclass may use a different reference date than the absolute reference date used by NSDate (the first
instance of 1 January 2001, GMT). If it does, it must still use the absolute reference date in its implementations
of the methods timeIntervalSinceReferenceDate (page 408) and
initWithTimeIntervalSinceReferenceDate: (page 406). That is, the reference date referred to in the
titles of these methods is the absolute reference date. If you do not use the absolute reference date in these
methods, comparisons between NSDate objects of your subclass and NSDate objects of a private subclass
will not work.

390 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

NSCopying
copyWithZone: (page 2042)

Tasks

Creating and Initializing Date Objects

+ date (page 393)
Creates and returns a new date set to the current date and time.

+ dateWithNaturalLanguageString: (page 394)
Creates and returns an NSDate object set to the date and time specified by a given string.

+ dateWithNaturalLanguageString:locale: (page 394)
Creates and returns an NSDate object set to the date and time specified by a given string.

+ dateWithString: (page 395)
Creates and returns an NSDate object with a date and time value specified by a given string in the
international string representation format (YYYY-MM-DD HH:MM:SS ±HHMM).

+ dateWithTimeIntervalSinceNow: (page 396)
Creates and returns an NSDate object set to a given number of seconds from the current date and
time.

+ dateWithTimeIntervalSinceReferenceDate: (page 397)
Creates and returns an NSDate object set to a given number of seconds from the first instant of 1
January 2001, GMT.

+ dateWithTimeIntervalSince1970: (page 396)
Creates and returns an NSDate object set to the given number of seconds from the first instant of 1
January 1970, GMT.

– init (page 404)
Returns an NSDate object initialized to the current date and time.

– initWithString: (page 404)
Returns an NSDate object initialized with a date and time value specified by a given string in the
international string representation format.

– initWithTimeIntervalSinceNow: (page 405)
Returns an NSDate object initialized relative to the current date and time by a given number of
seconds.

– initWithTimeInterval:sinceDate: (page 405)
Returns an NSDate object initialized relative to another given date by a given number of seconds.

Adopted Protocols 391
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

– initWithTimeIntervalSinceReferenceDate: (page 406)
Returns an NSDate object initialized relative the first instant of 1 January 2001, GMT by a given number
of seconds.

Getting Temporal Boundaries

+ distantFuture (page 397)
Creates and returns an NSDate object representing a date in the distant future.

+ distantPast (page 398)
Creates and returns an NSDate object representing a date in the distant past.

Comparing Dates

– isEqualToDate: (page 406)
Returns a Boolean value that indicates whether a given object is an NSDate object and exactly equal
the receiver.

– earlierDate: (page 403)
Returns the earlier of the receiver and another given date.

– laterDate: (page 407)
Returns the later of the receiver and another given date.

– compare: (page 400)
Returns an NSComparisonResult value that indicates the temporal ordering of the receiver and
another given date.

Getting Time Intervals

– timeIntervalSinceDate: (page 408)
Returns the interval between the receiver and another given date.

– timeIntervalSinceNow (page 408)
Returns the interval between the receiver and the current date and time.

+ timeIntervalSinceReferenceDate (page 398)
Returns the interval between the first instant of 1 January 2001, GMT and the current date and time.

– timeIntervalSinceReferenceDate (page 408)
Returns the interval between the receiver and the first instant of 1 January 2001, GMT.

– timeIntervalSince1970 (page 407)
Returns the interval between the receiver and the first instant of 1 January 1970, GMT.

Adding a Time Interval

– addTimeInterval: (page 399)
Returns a new NSDate object that is set to a given number of seconds relative to the receiver.

392 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Representing Dates as Strings

– description (page 401)
Returns a string representation of the receiver.

– descriptionWithCalendarFormat:timeZone:locale: (page 401)
Returns a string representation of the receiver, formatted as specified by given conversion specifiers.

– descriptionWithLocale: (page 402)
Returns a string representation of the receiver using the given locale.

Converting to an NSCalendarDate Object

– dateWithCalendarFormat:timeZone: (page 400)
Converts the receiver to an NSCalendarDate object with a given format string and time zone.

Class Methods

date
Creates and returns a new date set to the current date and time.

+ (id)date

Return Value
A new date object set to the current date and time.

Discussion
This method uses the default initializer method for the class, init (page 404).

The following code sample shows how to use date to get the current date:

NSDate *today = [NSDate date];

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Clock Control
DatePicker
iSpend
Reminders
StickiesExample

Declared In
NSDate.h

Class Methods 393
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

dateWithNaturalLanguageString:
Creates and returns an NSDate object set to the date and time specified by a given string.

+ (id)dateWithNaturalLanguageString:(NSString *)string

Parameters
string

A string that contains a colloquial specification of a date, such as “last Tuesday at dinner,” “3pm
December 31, 2001,” “12/31/01,” or “31/12/01.”

Return Value
A new NSDate object set to the current date and time specified by string.

Discussion
This method supports only a limited set of colloquial phrases, primarily in English. It may give unexpected
results, and its use is strongly discouraged.

In parsing the string, this method uses the date and time preferences stored in the user’s defaults database.
(See dateWithNaturalLanguageString:locale: (page 394) for a list of the specific items used.)

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Core Data HTML Store
Reminders

Declared In
NSCalendarDate.h

dateWithNaturalLanguageString:locale:
Creates and returns an NSDate object set to the date and time specified by a given string.

+ (id)dateWithNaturalLanguageString:(NSString *)string locale:(id)localeDictionary

Parameters
string

A string that contains a colloquial specification of a date, such as “last Tuesday at dinner,” “3pm
December 31, 2001,” “12/31/01,” or “31/12/01.”

localeDictionary
An NSDictionary object containing locale data. To use the user's preferences, you can use
[[NSUserDefaults standardUserDefaults] dictionaryRepresentation].

If you pass nil or an instance of NSLocale, NSDate uses the system default locale—this is not the
same as the current user's locale.

Return Value
A new NSDate object set to the date and time specified by string as interpreted according to
localeDictionary.

Discussion
This method supports only a limited set of colloquial phrases, primarily in English. It may give unexpected
results, and its use is strongly discouraged.

394 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

The keys and values that represent the locale data from localeDictionary are used when parsing the
string. In addition to the locale keys listed in the class description, these keys are used when parsing natural
language strings:

NSDateTimeOrdering

NSEarlierTimeDesignations

NSHourNameDesignations

NSLaterTimeDesignations

NSNextDayDesignations

NSNextNextDayDesignations

NSPriorDayDesignations

NSThisDayDesignations

NSYearMonthWeekDesignations

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithNaturalLanguageString: (page 394)

Declared In
NSCalendarDate.h

dateWithString:
Creates and returns an NSDate object with a date and time value specified by a given string in the international
string representation format (YYYY-MM-DD HH:MM:SS ±HHMM).

+ (id)dateWithString:(NSString *)aString

Parameters
aString

A string that specifies a date and time value in the international string representation
format—YYYY-MM-DD HH:MM:SS ±HHMM, where ±HHMM is a time zone offset in hours and minutes
from GMT (for example, “2001-03-24 10:45:32 +0600”).

You must specify all fields of the format string, including the time zone offset, which must have a plus
or minus sign prefix.

Return Value
An NSDate object with a date and time value specified by aString.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithString: (page 404)

Declared In
NSCalendarDate.h

Class Methods 395
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

dateWithTimeIntervalSince1970:
Creates and returns an NSDate object set to the given number of seconds from the first instant of 1 January
1970, GMT.

+ (id)dateWithTimeIntervalSince1970:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds from the reference date, 1 January 1970, GMT, for the new date. Use a negative
argument to specify a date before this date.

Return Value
An NSDate object set to seconds seconds from the reference date.

Discussion
This method is useful for creating NSDate objects from time_t values returned by BSD system functions.

Availability
Available in Mac OS X v10.0 and later.

See Also
– timeIntervalSince1970 (page 407)

Related Sample Code
SharedMemory

Declared In
NSDate.h

dateWithTimeIntervalSinceNow:
Creates and returns an NSDate object set to a given number of seconds from the current date and time.

+ (id)dateWithTimeIntervalSinceNow:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds from the current date and time for the new date. Use a negative value to
specify a date before the current date.

Return Value
An NSDate object set to seconds seconds from the current date and time.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithTimeIntervalSinceNow: (page 405)

Related Sample Code
IdentitySample
SimpleThreads
StickiesExample
TrivialThreads

396 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

WhackedTV

Declared In
NSDate.h

dateWithTimeIntervalSinceReferenceDate:
Creates and returns an NSDate object set to a given number of seconds from the first instant of 1 January
2001, GMT.

+ (id)dateWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds from the absolute reference date (the first instant of 1 January 2001, GMT)
for the new date. Use a negative argument to specify a date and time before the reference date.

Return Value
An NSDate object set to seconds seconds from the absolute reference date.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithTimeIntervalSinceReferenceDate: (page 406)

Related Sample Code
GridCalendar
NewsReader

Declared In
NSDate.h

distantFuture
Creates and returns an NSDate object representing a date in the distant future.

+ (id)distantFuture

Return Value
An NSDate object representing a date in the distant future (in terms of centuries).

Discussion
You can pass this value when an NSDate object is required to have the date argument essentially ignored.
For example, the NSWindow method nextEventMatchingMask:untilDate:inMode:dequeue: returns
nil if an event specified in the event mask does not happen before the specified date. You can use the
object returned by distantFuture as the date argument to wait indefinitely for the event to occur.

myEvent = [myWindow nextEventMatchingMask:myEventMask
 untilDate:[NSDate distantFuture]
 inMode:NSDefaultRunLoopMode
 dequeue:YES];

Class Methods 397
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ distantPast (page 398)

Related Sample Code
CIAnnotation
Core Data HTML Store
DatePicker
LiveVideoMixer2
SeeMyFriends

Declared In
NSDate.h

distantPast
Creates and returns an NSDate object representing a date in the distant past.

+ (id)distantPast

Return Value
An NSDate object representing a date in the distant past (in terms of centuries).

Discussion
You can use this object as a control date, a guaranteed temporal boundary.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ distantFuture (page 397)

Related Sample Code
CIVideoDemoGL
DatePicker
GLChildWindowDemo
ThreadsExportMovie
Vertex Optimization

Declared In
NSDate.h

timeIntervalSinceReferenceDate
Returns the interval between the first instant of 1 January 2001, GMT and the current date and time.

+ (NSTimeInterval)timeIntervalSinceReferenceDate

398 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Return Value
The interval between the system’s absolute reference date (the first instant of 1 January 2001, GMT) and the
current date and time.

Discussion
This method is the primitive method for NSDate. If you subclass NSDate, you must override this method
with your own implementation for it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– timeIntervalSinceReferenceDate (page 408)
– timeIntervalSinceDate: (page 408)
– timeIntervalSince1970 (page 407)
– timeIntervalSinceNow (page 408)

Declared In
NSDate.h

Instance Methods

addTimeInterval:
Returns a new NSDate object that is set to a given number of seconds relative to the receiver.

- (id)addTimeInterval:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds to add to the receiver. Use a negative value for seconds to have the returned
object specify a date before the receiver.

Return Value
A new NSDate object that is set to seconds seconds relative to the receiver. The date returned might have
a representation different from the receiver’s.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithTimeInterval:sinceDate: (page 405)
– timeIntervalSinceDate: (page 408)

Declared In
NSDate.h

Instance Methods 399
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

compare:
Returns an NSComparisonResult value that indicates the temporal ordering of the receiver and another
given date.

- (NSComparisonResult)compare:(NSDate *)anotherDate

Parameters
anotherDate

The date with which to compare the receiver.

This value must not be nil. If the value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
If:

 ■ The receiver and anotherDate are exactly equal to each other, NSOrderedSame

 ■ The receiver is later in time than anotherDate, NSOrderedDescending

 ■ The receiver is earlier in time than anotherDate, NSOrderedAscending.

Discussion
This method detects sub-second differences between dates. If you want to compare dates with a less fine
granularity, use timeIntervalSinceDate: (page 408) to compare the two dates.

Availability
Available in Mac OS X v10.0 and later.

See Also
– earlierDate: (page 403)
– isEqual: (page 2101) (NSObject protocol)
– laterDate: (page 407)

Related Sample Code
Reminders

Declared In
NSDate.h

dateWithCalendarFormat:timeZone:
Converts the receiver to an NSCalendarDate object with a given format string and time zone.

- (NSCalendarDate *)dateWithCalendarFormat:(NSString *)formatString
timeZone:(NSTimeZone *)timeZone

Parameters
formatString

The format for the returned string (see Converting Dates to Strings for a discussion of how to create
the format string). Pass nil to use the default format string, “%Y-%m-%d %H:%M:%S %z” (this conforms
to the international format YYYY-MM-DD HH:MM:SS ±HHMM.)

400 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

timeZone
The time zone for the new calendar date. Pass nil to use the default time zone—specific to the
current locale.

Return Value
A new NSCalendarDate object bound to formatString and the time zone timeZone.

Special Considerations

Important: NSCalendarDate is slated for deprecation, and its use is strongly discouraged.

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 401)
– descriptionWithCalendarFormat:timeZone:locale: (page 401)
– descriptionWithLocale: (page 402)
dateWithString:calendarFormat: (page 222) (NSCalendarDate)

Declared In
NSCalendarDate.h

description
Returns a string representation of the receiver.

- (NSString *)description

Return Value
A string representation of the receiver in the international format YYYY-MM-DD HH:MM:SS ±HHMM, where
±HHMM represents the time zone offset in hours and minutes from GMT (for example, “2001-03-24 10:45:32
+0600”).

Availability
Available in Mac OS X v10.0 and later.

See Also
– descriptionWithLocale: (page 402)

Declared In
NSDate.h

descriptionWithCalendarFormat:timeZone:locale:
Returns a string representation of the receiver, formatted as specified by given conversion specifiers.

- (NSString *)descriptionWithCalendarFormat:(NSString *)formatString
timeZone:(NSTimeZone *)aTimeZone locale:(id)localeDictionary

Instance Methods 401
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Parameters
formatString

The format for the returned string (see Converting Dates to Strings for a discussion of how to create
the format string). Pass nil to use the default format string, “%Y-%m-%d %H:%M:%S %z” (this conforms
to the international format YYYY-MM-DD HH:MM:SS ±HHMM.)

aTimeZone
The time zone in which to represent the receiver. Pass nil to use the default time zone—specific to
the current locale.

localeDictionary
An NSDictionary object containing locale data. To use the user's preferences, you can use
[[NSUserDefaults standardUserDefaults] dictionaryRepresentation].

If you pass nil or an instance of NSLocale, NSDate uses the system default locale—this is not the
same as the current user's locale.

Return Value
A string representation of the receiver, formatted as specified by the given conversion specifiers.

Discussion
There are several problems with the implementation of this method that cannot be fixed for compatibility
reasons. To format a date correctly, you should consider using a date formatter object instead (see
NSDateFormatter and Data Formatting Programming Guide for Cocoa).

You could use this method to print the current time as follows:

sprintf(aString, "The current time is %s\n", [[[NSDate date]
 descriptionWithCalendarFormat:@"%H:%M:%S %Z" timeZone:nil
 locale:[[NSUserDefaults standardUserDefaults] dictionaryRepresentation]]
 UTF8String]);

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 401)
descriptionWithCalendarFormat:locale: (page 229) (NSCalendarDate)
– descriptionWithLocale: (page 402)

Related Sample Code
SharedMemory

Declared In
NSCalendarDate.h

descriptionWithLocale:
Returns a string representation of the receiver using the given locale.

- (NSString *)descriptionWithLocale:(id)locale

402 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Parameters
locale

An NSLocale object.

If you pass nil, NSDate formats the date in the same way as the description (page 401) method.

On Mac OS X v10.4 and earlier, this parameter was an NSDictionary object. If you pass in an
NSDictionary object on Mac OS X v10.5, NSDate uses the default user locale—the same as if you
passed in [NSLocale currentLocale].

Return Value
A string representation of the receiver, using the given locale, or if the locale argument is nil, in the
international format YYYY-MM-DD HH:MM:SS ±HHMM, where ±HHMM represents the time zone offset in hours
and minutes from GMT (for example, “2001-03-24 10:45:32 +0600”)

Special Considerations

On Mac OS X v10.4 and earlier, localeDictionary is an NSDictionary object containing locale data. To
use the user's preferences, you can use [[NSUserDefaults standardUserDefaults]
dictionaryRepresentation].

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 401)

Declared In
NSCalendarDate.h

earlierDate:
Returns the earlier of the receiver and another given date.

- (NSDate *)earlierDate:(NSDate *)anotherDate

Parameters
anotherDate

The date with which to compare the receiver.

Return Value
The earlier of the receiver and anotherDate, determined using timeIntervalSinceDate: (page 408). If
the receiver and anotherDate represent the same date, returns the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– compare: (page 400)
– isEqual: (page 2101) (NSObject protocol)
– laterDate: (page 407)

Declared In
NSDate.h

Instance Methods 403
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

init
Returns an NSDate object initialized to the current date and time.

- (id)init

Return Value
An NSDate object initialized to the current date and time.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page 406).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ date (page 393)
– initWithTimeIntervalSinceReferenceDate: (page 406)

Declared In
NSDate.h

initWithString:
Returns an NSDate object initialized with a date and time value specified by a given string in the international
string representation format.

- (id)initWithString:(NSString *)description

Parameters
description

A string that specifies a date and time value in the international string representation
format—YYYY-MM-DD HH:MM:SS ±HHMM, where ±HHMM is a time zone offset in hours and minutes
from GMT (for example, “2001-03-24 10:45:32 +0600”).

You must specify all fields of the format string, including the time zone offset, which must have a plus
or minus sign prefix.

Return Value
An NSDate object initialized with a date and time value specified by aString.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page 406).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithString: (page 395)
– description (page 401)

Declared In
NSCalendarDate.h

404 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

initWithTimeInterval:sinceDate:
Returns an NSDate object initialized relative to another given date by a given number of seconds.

- (id)initWithTimeInterval:(NSTimeInterval)seconds sinceDate:(NSDate *)refDate

Parameters
seconds

The number of seconds to add to refDate. A negative value means the receiver will be earlier than
refDate.

refDate
The reference date.

Return Value
An NSDate object initialized relative to refDate by seconds seconds.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page 406).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDate.h

initWithTimeIntervalSinceNow:
Returns an NSDate object initialized relative to the current date and time by a given number of seconds.

- (id)initWithTimeIntervalSinceNow:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds from relative to the current date and time to which the receiver should be
initialized. A negative value means the returned object will represent a date in the past.

Return Value
An NSDate object initialized relative to the current date and time by seconds seconds.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page 406).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithTimeIntervalSinceNow: (page 396)

Related Sample Code
PDFKitLinker2
SimpleScriptingProperties
Vertex Optimization

Declared In
NSDate.h

Instance Methods 405
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

initWithTimeIntervalSinceReferenceDate:
Returns an NSDate object initialized relative the first instant of 1 January 2001, GMT by a given number of
seconds.

- (id)initWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds

Parameters
seconds

The number of seconds to add to the reference date (the first instant of 1 January 2001, GMT). A
negative value means the receiver will be earlier than the reference date.

Return Value
An NSDate object initialized relative to the absolute reference date by seconds seconds.

Discussion
This method is the designated initializer for the NSDate class and is declared primarily for the use of subclasses
of NSDate. When you subclass NSDate to create a concrete date class, you must override this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dateWithTimeIntervalSinceReferenceDate: (page 397)

Declared In
NSDate.h

isEqualToDate:
Returns a Boolean value that indicates whether a given object is an NSDate object and exactly equal the
receiver.

- (BOOL)isEqualToDate:(NSDate *)anotherDate

Parameters
anotherDate

The date to compare with the receiver.

Return Value
YES if the anotherDate is an NSDate object and is exactly equal to the receiver, otherwise NO.

Discussion
This method detects sub-second differences between dates. If you want to compare dates with a less fine
granularity, use timeIntervalSinceDate: (page 408) to compare the two dates.

Availability
Available in Mac OS X v10.0 and later.

See Also
– compare: (page 400)
– earlierDate: (page 403)
– isEqual: (page 2101) (NSObject protocol)
– laterDate: (page 407)

406 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Declared In
NSDate.h

laterDate:
Returns the later of the receiver and another given date.

- (NSDate *)laterDate:(NSDate *)anotherDate

Parameters
anotherDate

The date with which to compare the receiver.

Return Value
The later of the receiver and anotherDate, determined using timeIntervalSinceDate: (page 408). If the
receiver and anotherDate represent the same date, returns the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– compare: (page 400)
– earlierDate: (page 403)
– isEqual: (page 2101) (NSObject protocol)

Declared In
NSDate.h

timeIntervalSince1970
Returns the interval between the receiver and the first instant of 1 January 1970, GMT.

- (NSTimeInterval)timeIntervalSince1970

Return Value
The interval between the receiver and the reference date, 1 January 1970, GMT. If the receiver is earlier than
the reference date, the value is negative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– timeIntervalSinceDate: (page 408)
– timeIntervalSinceNow (page 408)
– timeIntervalSinceReferenceDate (page 408)
+ timeIntervalSinceReferenceDate (page 398)

Declared In
NSDate.h

Instance Methods 407
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

timeIntervalSinceDate:
Returns the interval between the receiver and another given date.

- (NSTimeInterval)timeIntervalSinceDate:(NSDate *)anotherDate

Parameters
anotherDate

The date with which to compare the receiver.

Return Value
The interval between the receiver and anotherDate. If the receiver is earlier than anotherDate, the return
value is negative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– timeIntervalSince1970 (page 407)
– timeIntervalSinceNow (page 408)
– timeIntervalSinceReferenceDate (page 408)

Related Sample Code
URL CacheInfo

Declared In
NSDate.h

timeIntervalSinceNow
Returns the interval between the receiver and the current date and time.

- (NSTimeInterval)timeIntervalSinceNow

Return Value
The interval between the receiver and the current date and time. If the receiver is earlier than the current
date and time, the return value is negative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– timeIntervalSinceDate: (page 408)
– timeIntervalSince1970 (page 407)
– timeIntervalSinceReferenceDate (page 408)

Declared In
NSDate.h

timeIntervalSinceReferenceDate
Returns the interval between the receiver and the first instant of 1 January 2001, GMT.

408 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

- (NSTimeInterval)timeIntervalSinceReferenceDate

Return Value
The interval between the receiver and the system’s absolute reference date (the first instant of 1 January
2001, GMT). If the receiver is earlier than the reference date, the value is negative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– timeIntervalSinceDate: (page 408)
– timeIntervalSinceNow (page 408)
+ timeIntervalSinceReferenceDate (page 398)

Related Sample Code
CITransitionSelectorSample2
NewsReader
OpenGLCaptureToMovie
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSDate.h

Constants

NSTimeIntervalSince1970
NSDate provides a constant that specifies the number of seconds from 1 January 1970 to the reference date,
1 January 2001.

#define NSTimeIntervalSince1970 978307200.0

Constants
NSTimeIntervalSince1970

The number of seconds from 1 January 1970 to the reference date, 1 January 2001.

Available in Mac OS X v10.0 and later.

Declared in NSDate.h.

Discussion
1 January 1970 is the epoch (or starting point) for Unix time.

Declared In
NSDate.h

Constants 409
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

410 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 28

NSDate Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.4 and later.

Declared in Foundation/NSCalendar.h

Companion guide Date and Time Programming Guide for Cocoa

Related sample code Birthdays
Reminders

Overview

NSDateComponents encapsulates the components of a date in an extendable, object-oriented manner. It
is used to specify a date by providing the temporal components that make up a date and time: hour, minutes,
seconds, day, month, year, and so on. It can also be used to specify a duration of time, for example, 5 hours
and 16 minutes. An NSDateComponents object is not required to define all the component fields. When a
new instance ofNSDateComponents is created the date components are set toNSUndefinedDateComponent.

Important: An NSDateComponents object is meaningless in itself; you need to know what calendar it is
interpreted against, and you need to know whether the values are absolute values of the units, or quantities
of the units.

An instance of NSDateComponents is not responsible for answering questions about a date beyond the
information with which it was initialized. For example, if you initialize one with May 6, 2004, its weekday is
NSUndefinedDateComponent, not Thursday. To get the correct day of the week, you must create a suitable
instance of NSCalendar, create an NSDate object using dateFromComponents: and then use
components:fromDate: to retrieve the weekday—as illustrated in the following example.

NSDateComponents *comps = [[NSDateComponents alloc] init];
[comps setDay:6];
[comps setMonth:5];
[comps setYear:2004];
NSCalendar *gregorian = [[NSCalendar alloc]
 initWithCalendarIdentifier:NSGregorianCalendar];
NSDate *date = [gregorian dateFromComponents:comps];

Overview 411
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

[comps release];
NSDateComponents *weekdayComponents =
 [gregorian components:NSWeekdayCalendarUnit fromDate:date];
int weekday = [weekdayComponents weekday];

For more details, see Calendars in Date and Time Programming Guide for Cocoa.

Tasks

Getting Information About an NSDateComponents Object

– era (page 413)
Returns the number of era units for the receiver.

– year (page 422)
Returns the number of year units for the receiver.

– month (page 415)
Returns the number of month units for the receiver.

– day (page 413)
Returns the number of day units for the receiver.

– hour (page 414)
Returns the number of hour units for the receiver.

– minute (page 414)
Returns the number of minute units for the receiver.

– second (page 415)
Returns the number of second units for the receiver.

– week (page 420)
Returns the number of week units for the receiver.

– weekday (page 421)
Returns the number of weekday units for the receiver.

– weekdayOrdinal (page 421)
Returns the ordinal number of weekday units for the receiver.

Setting Information for an NSDateComponents Object

– setEra: (page 416)
Sets the number of era units for the receiver.

– setYear: (page 420)
Sets the number of year units for the receiver.

– setMonth: (page 417)
Sets the number of month units for the receiver.

– setDay: (page 415)
Sets the number of day units for the receiver.

412 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

– setHour: (page 416)
Sets the number of hour units for the receiver.

– setMinute: (page 417)
Sets the number of minute units for the receiver.

– setSecond: (page 418)
Sets the number of second units for the receiver.

– setWeek: (page 418)
Sets the number of week units for the receiver.

– setWeekday: (page 419)
Sets the number of weekday units for the receiver.

– setWeekdayOrdinal: (page 419)
Sets the ordinal number of weekday units for the receiver.

Instance Methods

day
Returns the number of day units for the receiver.

- (NSInteger)day

Return Value
The number of day units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDay: (page 415)

Related Sample Code
Birthdays

Declared In
NSCalendar.h

era
Returns the number of era units for the receiver.

- (NSInteger)era

Return Value
The number of era units for the receiver.

Instance Methods 413
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setEra: (page 416)

Declared In
NSCalendar.h

hour
Returns the number of hour units for the receiver.

- (NSInteger)hour

Return Value
The number of hour units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setHour: (page 416)

Declared In
NSCalendar.h

minute
Returns the number of minute units for the receiver.

- (NSInteger)minute

Return Value
The number of minute units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMinute: (page 417)

414 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Declared In
NSCalendar.h

month
Returns the number of month units for the receiver.

- (NSInteger)month

Return Value
The number of month units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMonth: (page 417)

Declared In
NSCalendar.h

second
Returns the number of second units for the receiver.

- (NSInteger)second

Return Value
The number of second units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setSecond: (page 418)

Declared In
NSCalendar.h

setDay:
Sets the number of day units for the receiver.

- (void)setDay:(NSInteger)v

Instance Methods 415
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Parameters
v

The number of day units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– day (page 413)

Related Sample Code
Reminders

Declared In
NSCalendar.h

setEra:
Sets the number of era units for the receiver.

- (void)setEra:(NSInteger)v

Parameters
v

The number of era units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– era (page 413)

Declared In
NSCalendar.h

setHour:
Sets the number of hour units for the receiver.

- (void)setHour:(NSInteger)v

Parameters
v

The number of hour units for the receiver.

416 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– hour (page 414)

Related Sample Code
Reminders

Declared In
NSCalendar.h

setMinute:
Sets the number of minute units for the receiver.

- (void)setMinute:(NSInteger)v

Parameters
v

The number of minute units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– minute (page 414)

Related Sample Code
Reminders

Declared In
NSCalendar.h

setMonth:
Sets the number of month units for the receiver.

- (void)setMonth:(NSInteger)v

Parameters
v

The number of month units for the receiver.

Instance Methods 417
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– month (page 415)

Related Sample Code
Reminders

Declared In
NSCalendar.h

setSecond:
Sets the number of second units for the receiver.

- (void)setSecond:(NSInteger)v

Parameters
v

The number of second units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– second (page 415)

Related Sample Code
Reminders

Declared In
NSCalendar.h

setWeek:
Sets the number of week units for the receiver.

- (void)setWeek:(NSInteger)v

Parameters
v

The number of week units for the receiver.

418 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– week (page 420)

Declared In
NSCalendar.h

setWeekday:
Sets the number of weekday units for the receiver.

- (void)setWeekday:(NSInteger)v

Parameters
v

The number of weekday units for the receiver.

Discussion
Weekday units are the numbers 1 through n, where n is the number of days in the week. For example, in the
Gregorian calendar, n is 7 and Sunday is represented by 1.

This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– weekday (page 421)

Declared In
NSCalendar.h

setWeekdayOrdinal:
Sets the ordinal number of weekday units for the receiver.

- (void)setWeekdayOrdinal:(NSInteger)v

Parameters
v

The ordinal number of weekday units for the receiver.

Discussion
Weekday ordinal units represent the position of the weekday within the next larger calendar unit, such as
the month. For example, 2 is the weekday ordinal unit for the second Friday of the month.

Instance Methods 419
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– weekdayOrdinal (page 421)

Declared In
NSCalendar.h

setYear:
Sets the number of year units for the receiver.

- (void)setYear:(NSInteger)v

Parameters
v

The number of year units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in Date and
Time Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– year (page 422)

Related Sample Code
Reminders

Declared In
NSCalendar.h

week
Returns the number of week units for the receiver.

- (NSInteger)week

Return Value
The number of week units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

420 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

See Also
– setWeek: (page 418)

Declared In
NSCalendar.h

weekday
Returns the number of weekday units for the receiver.

- (NSInteger)weekday

Return Value
The number of weekday units for the receiver.

Discussion
Weekday units are the numbers 1 through n, where n is the number of days in the week. For example, in the
Gregorian calendar, n is 7 and Sunday is represented by 1.

This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setWeekday: (page 419)

Related Sample Code
Birthdays

Declared In
NSCalendar.h

weekdayOrdinal
Returns the ordinal number of weekday units for the receiver.

- (NSInteger)weekdayOrdinal

Return Value
The ordinal number of weekday units for the receiver.

Discussion
Weekday ordinal units represent the position of the weekday within the next larger calendar unit, such as
the month. For example, 2 is the weekday ordinal unit for the second Friday of the month.

This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 421
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

See Also
– setWeekdayOrdinal: (page 419)

Declared In
NSCalendar.h

year
Returns the number of year units for the receiver.

- (NSInteger)year

Return Value
The number of year units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date and Time
Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setYear: (page 420)

Declared In
NSCalendar.h

Constants

NSDateComponents undefined component identifier
This constant specifies that an NSDateComponents component is undefined.

enum {
 NSUndefinedDateComponent = 0x7fffffff
};

Constants
NSUndefinedDateComponent

Specifies that the component is undefined.

Available in Mac OS X v10.4 and later.

Declared in NSCalendar.h.

Declared In
NSCalendar.h

422 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 29

NSDateComponents Class Reference

Inherits from NSFormatter : NSObject

Conforms to NSCoding (NSFormatter)
NSCopying (NSFormatter)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDateFormatter.h

Companion guide Data Formatting Programming Guide for Cocoa

Related sample code Core Data HTML Store
DatePicker
iSpend
Mountains
Reminders

Overview

Instances of NSDateFormatter create string representations of NSDate (and NSCalendarDate) objects,
and convert textual representations of dates and times into NSDate objects. You can express the representation
of dates and times flexibly: “Thu 22 Dec 1994” is just as acceptable as “12/22/94.”

With Mac OS X v10.4 and later, NSDateFormatter has two modes of operation (or behaviors). By default,
instances of NSDateFormatter have the same behavior as they did on Mac OS X versions 10.0 to 10.3. You
can, however, configure instances (or set a default for all instances) to adopt a new behavior implemented
for Mac OS X version 10.4. See Data Formatting Programming Guide for Cocoa for a full description of the old
and new behaviors.

iPhone OS Note: iPhone OS supports only the modern 10.4+ behavior. 10.0-style methods and format strings
are not available on iPhone OS.

If you initialize a formatter using initWithDateFormat:allowNaturalLanguage: (page 435), you are (for
backwards compatibility reasons) creating an “old-style” date formatter. To use the new behavior, you initialize
the formatter with init (page 434). If you have not set the default class behavior (see
setDefaultFormatterBehavior: (page 429)), you send the instance a setFormatterBehavior: (page
441) message with the argument NSDateFormatterBehavior10_4. You can then set the date format as
appropriate, typically using a format style as illustrated in the following code fragment.

Overview 423
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

// assume default behavior set for class using
// [NSDateFormatter setDefaultFormatterBehavior:NSDateFormatterBehavior10_4];

NSDateFormatter *dateFormatter = [[[NSDateFormatter alloc] init] autorelease];
[dateFormatter setDateStyle:NSDateFormatterMediumStyle];
[dateFormatter setTimeStyle:NSDateFormatterNoStyle];

NSDate *date = [NSDate dateWithTimeIntervalSinceReferenceDate:118800];
NSString *formattedDateString = [dateFormatter stringFromDate:date];
NSLog(@"formattedDateString for locale %@: %@",
 [[dateFormatter locale] localeIdentifier], formattedDateString);

// Output: formattedDateString for locale en_US: Jan 2, 2001

Note that the format for a given style is dependent on a user’s preferences, including the locale setting.

Note also that by default the new-style formatter returns NSDate objects instead of NSCalendarDate objects.
You can change this behavior using setGeneratesCalendarDates: (page 441).

Tasks

Initializing a Date Formatter

– init (page 434)
Initializes and returns an NSDateFormatter instance.

– initWithDateFormat:allowNaturalLanguage: (page 435)
Initializes and returns an NSDateFormatter instance that uses the Mac OS X v10.0 formatting behavior
and the given date format string in its conversions.

Managing Behavior

– allowsNaturalLanguage (page 429)
Returns a Boolean value that indicates whether the receiver attempts to process dates entered as a
vernacular string.

– formatterBehavior (page 432)
Returns the formatter behavior for the receiver.

– setFormatterBehavior: (page 441)
Sets the formatter behavior for the receiver.

+ defaultFormatterBehavior (page 428)
Returns the default formatting behavior for instances of the class.

+ setDefaultFormatterBehavior: (page 429)
Sets the default formatting behavior for instances of the class.

– generatesCalendarDates (page 433)
Returns a Boolean value that indicates whether the receiver generates calendar dates.

– setGeneratesCalendarDates: (page 441)
Sets whether the receiver generates calendar dates.

424 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

– isLenient (page 436)
Returns a Boolean value that indicates whether the receiver uses heuristics when parsing a string.

– setLenient: (page 442)
Sets whether the receiver uses heuristics when parsing a string.

Converting Objects

– dateFromString: (page 431)
Returns a date representation of a given string interpreted using the receiver’s current settings.

– stringFromDate: (page 456)
Returns a string representation of a given date formatted using the receiver’s current settings.

– getObjectValue:forString:range:error: (page 433)
Returns by reference a date representation of a given string and the range of the string used, and
returns a Boolean value that indicates whether the string could be parsed.

Managing Formats and Styles

– dateFormat (page 430)
Returns the date format string used by the receiver.

– setDateFormat: (page 439)
Sets the date format for the receiver.

– dateStyle (page 431)
Returns the date style of the receiver.

– setDateStyle: (page 439)
Sets the date style of the receiver.

– timeStyle (page 456)
Returns the time style of the receiver.

– setTimeStyle: (page 448)
Sets the time style of the receiver.

Managing Attributes

– calendar (page 430)
Returns the calendar for the receiver.

– setCalendar: (page 439)
Sets the calendar for the receiver.

– defaultDate (page 432)
Returns the default date for the receiver.

– setDefaultDate: (page 440)
Sets the default date for the receiver.

– locale (page 436)
Returns the locale for the receiver.

Tasks 425
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

– setLocale: (page 442)
Sets the locale for the receiver.

– timeZone (page 457)
Returns the time zone for the receiver.

– setTimeZone: (page 449)
Sets the time zone for the receiver.

– twoDigitStartDate (page 457)
Returns the earliest date that can be denoted by a two-digit year specifier.

– setTwoDigitStartDate: (page 449)
Sets the two-digit start date for the receiver.

– gregorianStartDate (page 434)
Returns the start date of the Gregorian calendar for the receiver.

– setGregorianStartDate: (page 441)
Sets the start date of the Gregorian calendar for the receiver.

Managing AM and PM Symbols

– AMSymbol (page 430)
Returns the AM symbol for the receiver.

– setAMSymbol: (page 438)
Sets the AM symbol for the receiver.

– PMSymbol (page 437)
Returns the PM symbol for the receiver.

– setPMSymbol: (page 443)
Sets the PM symbol for the receiver.

Managing Weekday Symbols

– weekdaySymbols (page 459)
Returns the array of weekday symbols for the receiver.

– setWeekdaySymbols: (page 451)
Sets the weekday symbols for the receiver.

– shortWeekdaySymbols (page 454)
Returns the array of short weekday symbols for the receiver.

– setShortWeekdaySymbols: (page 447)
Sets the short weekday symbols for the receiver.

– veryShortWeekdaySymbols (page 459)
Returns the array of very short weekday symbols for the receiver.

– setVeryShortWeekdaySymbols: (page 451)
Sets the vert short weekday symbols for the receiver

– standaloneWeekdaySymbols (page 455)
Returns the array of standalone weekday symbols for the receiver.

426 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

– setStandaloneWeekdaySymbols: (page 448)
Sets the standalone weekday symbols for the receiver.

– shortStandaloneWeekdaySymbols (page 454)
Returns the array of short standalone weekday symbols for the receiver.

– setShortStandaloneWeekdaySymbols: (page 446)
Sets the short standalone weekday symbols for the receiver.

– veryShortStandaloneWeekdaySymbols (page 458)
Returns the array of very short standalone weekday symbols for the receiver.

– setVeryShortStandaloneWeekdaySymbols: (page 450)
Sets the very short standalone weekday symbols for the receiver.

Managing Month Symbols

– monthSymbols (page 437)
Returns the month symbols for the receiver.

– setMonthSymbols: (page 443)
Sets the month symbols for the receiver.

– shortMonthSymbols (page 452)
Returns the array of short month symbols for the receiver.

– setShortMonthSymbols: (page 444)
Sets the short month symbols for the receiver.

– veryShortMonthSymbols (page 458)
Returns the very short month symbols for the receiver.

– setVeryShortMonthSymbols: (page 450)
Sets the very short month symbols for the receiver.

– standaloneMonthSymbols (page 455)
Returns the standalone month symbols for the receiver.

– setStandaloneMonthSymbols: (page 447)
Sets the standalone month symbols for the receiver.

– shortStandaloneMonthSymbols (page 453)
Returns the short standalone month symbols for the receiver.

– setShortStandaloneMonthSymbols: (page 445)
Sets the short standalone month symbols for the receiver.

– veryShortStandaloneMonthSymbols (page 458)
Returns the very short month symbols for the receiver.

– setVeryShortStandaloneMonthSymbols: (page 450)
Sets the very short standalone month symbols for the receiver.

Managing Quarter Symbols

– quarterSymbols (page 438)
Returns the quarter symbols for the receiver.

Tasks 427
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

– setQuarterSymbols: (page 444)
Sets the quarter symbols for the receiver.

– shortQuarterSymbols (page 452)
Returns the short quarter symbols for the receiver.

– setShortQuarterSymbols: (page 445)
Sets the short quarter symbols for the receiver.

– standaloneQuarterSymbols (page 455)
Returns the standalone quarter symbols for the receiver.

– setStandaloneQuarterSymbols: (page 447)
Sets the standalone quarter symbols for the receiver.

– shortStandaloneQuarterSymbols (page 453)
Returns the short standalone quarter symbols for the receiver.

– setShortStandaloneQuarterSymbols: (page 446)
Sets the short standalone quarter symbols for the receiver.

Managing Era Symbols

– eraSymbols (page 432)
Returns the era symbols for the receiver.

– setEraSymbols: (page 440)
Sets the era symbols for the receiver.

– longEraSymbols (page 437)
Returns the long era symbols for the receiver

– setLongEraSymbols: (page 443)
Sets the long era symbols for the receiver.

Class Methods

defaultFormatterBehavior
Returns the default formatting behavior for instances of the class.

+ (NSDateFormatterBehavior)defaultFormatterBehavior

Return Value
The default formatting behavior for instances of the class. For possible values, see
NSDateFormatterBehavior (page 461).

Discussion
The default is NSDateFormatterBehavior10_0.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ setDefaultFormatterBehavior: (page 429).

428 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

– formatterBehavior (page 432)
– setFormatterBehavior: (page 441)

Declared In
NSDateFormatter.h

setDefaultFormatterBehavior:
Sets the default formatting behavior for instances of the class.

+ (void)setDefaultFormatterBehavior:(NSDateFormatterBehavior)behavior

Parameters
behavior

The default formatting behavior for instances of the class. For possible values, see
NSDateFormatterBehavior (page 461).

Availability
Available in Mac OS X v10.4 and later.

See Also
+ defaultFormatterBehavior (page 428)
– formatterBehavior (page 432)
– setFormatterBehavior: (page 441)

Related Sample Code
DatePicker

Declared In
NSDateFormatter.h

Instance Methods

allowsNaturalLanguage
Returns a Boolean value that indicates whether the receiver attempts to process dates entered as a vernacular
string.

- (BOOL)allowsNaturalLanguage

Return Value
YES if the receiver attempts to process dates entered as a vernacular string ("today," "next week," "dinner
time," and so on), otherwise NO.

Discussion
Natural-language processing supports only a limited set of colloquial phrases, primarily in English. It may
give unexpected results, and its use is strongly discouraged.

Special Considerations

This method is for use with formatters using NSDateFormatterBehavior10_0 behavior.

Instance Methods 429
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDateFormatter.h

AMSymbol
Returns the AM symbol for the receiver.

- (NSString *)AMSymbol

Return Value
The AM symbol for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAMSymbol: (page 438)
– PMSymbol (page 437)
– setPMSymbol: (page 443)

Declared In
NSDateFormatter.h

calendar
Returns the calendar for the receiver.

- (NSCalendar *)calendar

Return Value
The calendar for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCalendar: (page 439)

Declared In
NSDateFormatter.h

dateFormat
Returns the date format string used by the receiver.

- (NSString *)dateFormat

Return Value
The date format string used by the receiver.

430 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Discussion
See Date Format String Syntax (MacÂ OSÂ X Versions 10.0 to 10.3) for a list of the conversion specifiers
permitted in date format strings.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDateFormat: (page 439)

Declared In
NSDateFormatter.h

dateFromString:
Returns a date representation of a given string interpreted using the receiver’s current settings.

- (NSDate *)dateFromString:(NSString *)string

Parameters
string

The string to parse.

Return Value
A date representation of string interpreted using the receiver’s current settings.

Availability
Available in Mac OS X v10.4 and later.

See Also
– getObjectValue:forString:range:error: (page 433)
– stringFromDate: (page 456)

Related Sample Code
Reminders

Declared In
NSDateFormatter.h

dateStyle
Returns the date style of the receiver.

- (NSDateFormatterStyle)dateStyle

Return Value
The date style of the receiver. For possible values, see NSDateFormatterStyle (page 460).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDateStyle: (page 439)

Instance Methods 431
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

defaultDate
Returns the default date for the receiver.

- (NSDate *)defaultDate

Return Value
The default date for the receiver.

Discussion
The default default date is nil.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDefaultDate: (page 440)

Declared In
NSDateFormatter.h

eraSymbols
Returns the era symbols for the receiver.

- (NSArray *)eraSymbols

Return Value
An array containing NSString objects representing the era symbols for the receiver (for example, {“B.C.E.”,
“C.E.”}).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setEraSymbols: (page 440)
– longEraSymbols (page 437)

Declared In
NSDateFormatter.h

formatterBehavior
Returns the formatter behavior for the receiver.

- (NSDateFormatterBehavior)formatterBehavior

Return Value
The formatter behavior for the receiver. For possible values, see NSDateFormatterBehavior (page 461).

432 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
+ defaultFormatterBehavior (page 428).
+ setDefaultFormatterBehavior: (page 429)
– setFormatterBehavior: (page 441)

Declared In
NSDateFormatter.h

generatesCalendarDates
Returns a Boolean value that indicates whether the receiver generates calendar dates.

- (BOOL)generatesCalendarDates

Return Value
YES if the receiver generates calendar dates, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setGeneratesCalendarDates: (page 441)

Declared In
NSDateFormatter.h

getObjectValue:forString:range:error:
Returns by reference a date representation of a given string and the range of the string used, and returns a
Boolean value that indicates whether the string could be parsed.

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string range:(inout NSRange
 *)rangep error:(NSError **)error

Parameters
obj

If the receiver is able to parse string, upon return contains a date representation of string.

string
The string to parse.

rangep
If the receiver is able to parse string, upon return contains the range of string used to create the
date.

error
If the receiver is unable to create a date by parsing string, upon return contains an NSError object
that describes the problem.

Return Value
YES if the receiver can create a date by parsing string, otherwise NO.

Instance Methods 433
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– dateFromString: (page 431)
– stringForObjectValue: (page 680)

Related Sample Code
iSpend

Declared In
NSDateFormatter.h

gregorianStartDate
Returns the start date of the Gregorian calendar for the receiver.

- (NSDate *)gregorianStartDate

Return Value
The start date of the Gregorian calendar for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setGregorianStartDate: (page 441)

Declared In
NSDateFormatter.h

init
Initializes and returns an NSDateFormatter instance.

- (id)init

Return Value
An NSDateFormatter instance initialized with locale, time zone, calendar, and behavior set to the appropriate
default values.

Discussion
There are many new attributes you can get and set on a 10.4-style date formatter, including the locale, time
zone, calendar, format string, the two-digit-year cross-over date, the default date which provides unspecified
components, and there is also access to the various textual strings, like the month names. You are encouraged,
however, not to change individual settings. Instead you should accept the default settings established on
initialization and specify the format using setDateStyle: (page 439), setTimeStyle: (page 448), and
appropriate style constants (see NSDateFormatterStyle (page 460)—these are styles that the user can
configure in the International preferences panel in System Preferences).

434 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Special Considerations

If you want the Mac OS X 10.4 behavior but have not set the class’s default behavior to
NSDateFormatterBehavior10_4, you also need to send the new instance a
setFormatterBehavior: (page 441) message with the argument NSDateFormatterBehavior10_4.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithDateFormat:allowNaturalLanguage: (page 435)
– setDateStyle: (page 439)
– setTimeStyle: (page 448)

Declared In
NSDateFormatter.h

initWithDateFormat:allowNaturalLanguage:
Initializes and returns an NSDateFormatter instance that uses the Mac OS X v10.0 formatting behavior and
the given date format string in its conversions.

- (id)initWithDateFormat:(NSString *)format allowNaturalLanguage:(BOOL)flag

Parameters
format

The format for the receiver. See Date Format String Syntax (MacÂ OSÂ X Versions 10.0 to 10.3) for a
list of conversion specifiers permitted in date format strings.

flag
A flag that specifies whether the receiver should process dates entered as expressions in the vernacular
(for example, "tomorrow")—YES means that it should.

Return Value
An initialized NSDateFormatter instance that uses format in its conversions and that uses the Mac OS X
v10.0 formatting behavior.

Discussion
NSDateFormatter attempts natural-language processing only after it fails to interpret an entered string
according to format. Natural-language processing supports only a limited set of colloquial phrases, primarily
in English. It may give unexpected results, and its use is strongly discouraged.

The following example creates a date formatter with the format string (for example) “Mar 15 1994” and then
associates the formatter with the cells of a form (contactsForm):

NSDateFormatter *dateFormat = [[NSDateFormatter alloc]
 initWithDateFormat:@"%b %d %Y" allowNaturalLanguage:NO];
[[contactsForm cells] makeObjectsPerformSelector:@selector(setFormatter:)
 withObject:dateFormat];

Instance Methods 435
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Important: You cannot use this method to initialize a formatter with the Mac OS X v10.4 formatting behavior,
you must use init (page 434).

Availability
Available in Mac OS X v10.0 and later.

See Also
– init (page 434)

Declared In
NSDateFormatter.h

isLenient
Returns a Boolean value that indicates whether the receiver uses heuristics when parsing a string.

- (BOOL)isLenient

Return Value
YES if the receiver has been set to use heuristics when parsing a string to guess at the date which is intended,
otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLenient: (page 442)

Declared In
NSDateFormatter.h

locale
Returns the locale for the receiver.

- (NSLocale *)locale

Return Value
The locale for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLocale: (page 442)

Declared In
NSDateFormatter.h

436 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

longEraSymbols
Returns the long era symbols for the receiver

- (NSArray *)longEraSymbols

Return Value
An array containing NSString objects representing the era symbols for the receiver (for example, {“Before
Common Era”, “Common Era”}).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setLongEraSymbols: (page 443)
– eraSymbols (page 432)

Declared In
NSDateFormatter.h

monthSymbols
Returns the month symbols for the receiver.

- (NSArray *)monthSymbols

Return Value
An array of NSString objects that specify the month symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMonthSymbols: (page 443)
– shortMonthSymbols (page 452)
– veryShortMonthSymbols (page 458)
– standaloneMonthSymbols (page 455)
– shortStandaloneMonthSymbols (page 453)
– veryShortStandaloneMonthSymbols (page 458)

Declared In
NSDateFormatter.h

PMSymbol
Returns the PM symbol for the receiver.

- (NSString *)PMSymbol

Return Value
The PM symbol for the receiver.

Instance Methods 437
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPMSymbol: (page 443)
– AMSymbol (page 430)
– setAMSymbol: (page 438)

Declared In
NSDateFormatter.h

quarterSymbols
Returns the quarter symbols for the receiver.

- (NSArray *)quarterSymbols

Return Value
An array containing NSString objects representing the quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setQuarterSymbols: (page 444)
– shortQuarterSymbols (page 452)
– standaloneQuarterSymbols (page 455)
– shortStandaloneQuarterSymbols (page 453)

Declared In
NSDateFormatter.h

setAMSymbol:
Sets the AM symbol for the receiver.

- (void)setAMSymbol:(NSString *)string

Parameters
string

The AM symbol for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– AMSymbol (page 430)
– PMSymbol (page 437)
– setPMSymbol: (page 443)

Declared In
NSDateFormatter.h

438 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

setCalendar:
Sets the calendar for the receiver.

- (void)setCalendar:(NSCalendar *)calendar

Parameters
calendar

The calendar for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– calendar (page 430)

Declared In
NSDateFormatter.h

setDateFormat:
Sets the date format for the receiver.

- (void)setDateFormat:(NSString *)string

Parameters
string

The date format for the receiver. See Data Formatting Programming Guide for Cocoa for a list of the
conversion specifiers permitted in date format strings.

Availability
Available in Mac OS X v10.4 and later.

See Also
– dateFormat (page 430).

Declared In
NSDateFormatter.h

setDateStyle:
Sets the date style of the receiver.

- (void)setDateStyle:(NSDateFormatterStyle)style

Parameters
style

The date style of the receiver. For possible values, see NSDateFormatterStyle (page 460).

Availability
Available in Mac OS X v10.4 and later.

See Also
– dateStyle (page 431).

Instance Methods 439
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Related Sample Code
DatePicker
iSpend
Mountains
NSOperationSample
Reminders

Declared In
NSDateFormatter.h

setDefaultDate:
Sets the default date for the receiver.

- (void)setDefaultDate:(NSDate *)date

Parameters
date

The default date for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– defaultDate (page 432)

Declared In
NSDateFormatter.h

setEraSymbols:
Sets the era symbols for the receiver.

- (void)setEraSymbols:(NSArray *)array

Parameters
array

An array containing NSString objects representing the era symbols for the receiver (for example,
{“B.C.E.”, “C.E.”}).

Availability
Available in Mac OS X v10.4 and later.

See Also
– eraSymbols (page 432)
– longEraSymbols (page 437)

Declared In
NSDateFormatter.h

440 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

setFormatterBehavior:
Sets the formatter behavior for the receiver.

- (void)setFormatterBehavior:(NSDateFormatterBehavior)behavior

Parameters
behavior

The formatter behavior for the receiver. For possible values, see NSDateFormatterBehavior (page
461).

Availability
Available in Mac OS X v10.4 and later.

See Also
+ defaultFormatterBehavior (page 428).
+ setDefaultFormatterBehavior: (page 429)
– formatterBehavior (page 432)

Declared In
NSDateFormatter.h

setGeneratesCalendarDates:
Sets whether the receiver generates calendar dates.

- (void)setGeneratesCalendarDates:(BOOL)b

Parameters
b

A Boolean value that specifies whether the receiver generates calendar dates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– generatesCalendarDates (page 433).

Declared In
NSDateFormatter.h

setGregorianStartDate:
Sets the start date of the Gregorian calendar for the receiver.

- (void)setGregorianStartDate:(NSDate *)array

Parameters
array

The start date of the Gregorian calendar for the receiver.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 441
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

See Also
– gregorianStartDate (page 434)

Declared In
NSDateFormatter.h

setLenient:
Sets whether the receiver uses heuristics when parsing a string.

- (void)setLenient:(BOOL)b

Parameters
b

YES to use heuristics when parsing a string to guess at the date which is intended, otherwise NO.

Discussion
If a formatter is set to be lenient, when parsing a string it uses heuristics to guess at the date which is intended.
As with any guessing, it may get the result date wrong (that is, a date other than that which was intended).

Availability
Available in Mac OS X v10.4 and later.

See Also
– isLenient (page 436)

Declared In
NSDateFormatter.h

setLocale:
Sets the locale for the receiver.

- (void)setLocale:(NSLocale *)locale

Parameters
locale

The locale for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– locale (page 436)

Related Sample Code
Mountains

Declared In
NSDateFormatter.h

442 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

setLongEraSymbols:
Sets the long era symbols for the receiver.

- (void)setLongEraSymbols:(NSArray *)array

Parameters
array

An array containing NSString objects representing the era symbols for the receiver (for example,
{“Before Common Era”, “Common Era”}).

Availability
Available in Mac OS X v10.5 and later.

See Also
– longEraSymbols (page 437)
– eraSymbols (page 432)

Declared In
NSDateFormatter.h

setMonthSymbols:
Sets the month symbols for the receiver.

- (void)setMonthSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the month symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– monthSymbols (page 437)
– setShortMonthSymbols: (page 444)
– setVeryShortMonthSymbols: (page 450)
– setStandaloneMonthSymbols: (page 447)
– setShortStandaloneMonthSymbols: (page 445)
– setVeryShortStandaloneMonthSymbols: (page 450)

Declared In
NSDateFormatter.h

setPMSymbol:
Sets the PM symbol for the receiver.

- (void)setPMSymbol:(NSString *)string

Instance Methods 443
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Parameters
string

The PM symbol for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– PMSymbol (page 437)
– AMSymbol (page 430)
– setAMSymbol: (page 438)

Declared In
NSDateFormatter.h

setQuarterSymbols:
Sets the quarter symbols for the receiver.

- (void)setQuarterSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– quarterSymbols (page 438)
– setShortQuarterSymbols: (page 445)
– setStandaloneQuarterSymbols: (page 447)
– setShortStandaloneQuarterSymbols: (page 446)

Declared In
NSDateFormatter.h

setShortMonthSymbols:
Sets the short month symbols for the receiver.

- (void)setShortMonthSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short month symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– shortMonthSymbols (page 452)

444 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

– setMonthSymbols: (page 443)
– setVeryShortMonthSymbols: (page 450)
– setStandaloneMonthSymbols: (page 447)
– setShortStandaloneMonthSymbols: (page 445)
– setVeryShortStandaloneMonthSymbols: (page 450)

Declared In
NSDateFormatter.h

setShortQuarterSymbols:
Sets the short quarter symbols for the receiver.

- (void)setShortQuarterSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– shortQuarterSymbols (page 452)
– setQuarterSymbols: (page 444)
– setStandaloneQuarterSymbols: (page 447)
– setShortStandaloneQuarterSymbols: (page 446)

Declared In
NSDateFormatter.h

setShortStandaloneMonthSymbols:
Sets the short standalone month symbols for the receiver.

- (void)setShortStandaloneMonthSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– shortStandaloneMonthSymbols (page 453)
– setMonthSymbols: (page 443)
– setShortMonthSymbols: (page 444)
– setVeryShortMonthSymbols: (page 450)
– setStandaloneMonthSymbols: (page 447)
– setVeryShortStandaloneMonthSymbols: (page 450)

Instance Methods 445
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

setShortStandaloneQuarterSymbols:
Sets the short standalone quarter symbols for the receiver.

- (void)setShortStandaloneQuarterSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short standalone quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– shortStandaloneQuarterSymbols (page 453)
– setQuarterSymbols: (page 444)
– setShortQuarterSymbols: (page 445)
– setStandaloneQuarterSymbols: (page 447)

Declared In
NSDateFormatter.h

setShortStandaloneWeekdaySymbols:
Sets the short standalone weekday symbols for the receiver.

- (void)setShortStandaloneWeekdaySymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short standalone weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– shortStandaloneWeekdaySymbols (page 454)
– setWeekdaySymbols: (page 451)
– setShortWeekdaySymbols: (page 447)
– setVeryShortWeekdaySymbols: (page 451)
– setStandaloneWeekdaySymbols: (page 448)
– setVeryShortStandaloneWeekdaySymbols: (page 450)

Declared In
NSDateFormatter.h

446 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

setShortWeekdaySymbols:
Sets the short weekday symbols for the receiver.

- (void)setShortWeekdaySymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the short weekday symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– shortWeekdaySymbols (page 454)
– setWeekdaySymbols: (page 451)
– setVeryShortWeekdaySymbols: (page 451)
– setStandaloneWeekdaySymbols: (page 448)
– setShortStandaloneWeekdaySymbols: (page 446)
– setVeryShortStandaloneWeekdaySymbols: (page 450)

Declared In
NSDateFormatter.h

setStandaloneMonthSymbols:
Sets the standalone month symbols for the receiver.

- (void)setStandaloneMonthSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– standaloneMonthSymbols (page 455)
– setMonthSymbols: (page 443)
– setShortMonthSymbols: (page 444)
– setVeryShortMonthSymbols: (page 450)
– setShortStandaloneMonthSymbols: (page 445)
– setVeryShortStandaloneMonthSymbols: (page 450)

Declared In
NSDateFormatter.h

setStandaloneQuarterSymbols:
Sets the standalone quarter symbols for the receiver.

Instance Methods 447
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

- (void)setStandaloneQuarterSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the standalone quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setStandaloneQuarterSymbols: (page 447)
– setQuarterSymbols: (page 444)
– setShortQuarterSymbols: (page 445)
– setShortStandaloneQuarterSymbols: (page 446)

Declared In
NSDateFormatter.h

setStandaloneWeekdaySymbols:
Sets the standalone weekday symbols for the receiver.

- (void)setStandaloneWeekdaySymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the standalone weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– standaloneWeekdaySymbols (page 455)
– setWeekdaySymbols: (page 451)
– setShortWeekdaySymbols: (page 447)
– setVeryShortWeekdaySymbols: (page 451)
– setShortStandaloneWeekdaySymbols: (page 446)
– setVeryShortStandaloneWeekdaySymbols: (page 450)

Declared In
NSDateFormatter.h

setTimeStyle:
Sets the time style of the receiver.

- (void)setTimeStyle:(NSDateFormatterStyle)style

Parameters
style

The time style for the receiver. For possible values, see NSDateFormatterStyle (page 460).

448 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– timeStyle (page 456)

Related Sample Code
DatePicker
Mountains
NSOperationSample
Reminders

Declared In
NSDateFormatter.h

setTimeZone:
Sets the time zone for the receiver.

- (void)setTimeZone:(NSTimeZone *)tz

Parameters
tz

The time zone for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– timeZone (page 457)

Declared In
NSDateFormatter.h

setTwoDigitStartDate:
Sets the two-digit start date for the receiver.

- (void)setTwoDigitStartDate:(NSDate *)date

Parameters
date

The earliest date that can be denoted by a two-digit year specifier.

Availability
Available in Mac OS X v10.4 and later.

See Also
– twoDigitStartDate (page 457)

Declared In
NSDateFormatter.h

Instance Methods 449
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

setVeryShortMonthSymbols:
Sets the very short month symbols for the receiver.

- (void)setVeryShortMonthSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the very short month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– veryShortMonthSymbols (page 458)
– setMonthSymbols: (page 443)
– setShortMonthSymbols: (page 444)
– setStandaloneMonthSymbols: (page 447)
– setShortStandaloneMonthSymbols: (page 445)
– setVeryShortStandaloneMonthSymbols: (page 450)

Declared In
NSDateFormatter.h

setVeryShortStandaloneMonthSymbols:
Sets the very short standalone month symbols for the receiver.

- (void)setVeryShortStandaloneMonthSymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the very short standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– veryShortStandaloneMonthSymbols (page 458)
– setMonthSymbols: (page 443)
– setShortMonthSymbols: (page 444)
– setVeryShortMonthSymbols: (page 450)
– setStandaloneMonthSymbols: (page 447)
– setShortStandaloneMonthSymbols: (page 445)

Declared In
NSDateFormatter.h

setVeryShortStandaloneWeekdaySymbols:
Sets the very short standalone weekday symbols for the receiver.

450 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

- (void)setVeryShortStandaloneWeekdaySymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the very short standalone weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– veryShortStandaloneWeekdaySymbols (page 458)
– setWeekdaySymbols: (page 451)
– setShortWeekdaySymbols: (page 447)
– setVeryShortWeekdaySymbols: (page 451)
– setStandaloneWeekdaySymbols: (page 448)
– setShortStandaloneWeekdaySymbols: (page 446)

Declared In
NSDateFormatter.h

setVeryShortWeekdaySymbols:
Sets the vert short weekday symbols for the receiver

- (void)setVeryShortWeekdaySymbols:(NSArray *)array

Parameters
array

An array of NSString objects that specify the very short weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– veryShortWeekdaySymbols (page 459)
– setWeekdaySymbols: (page 451)
– setShortWeekdaySymbols: (page 447)
– setStandaloneWeekdaySymbols: (page 448)
– setShortStandaloneWeekdaySymbols: (page 446)
– setVeryShortStandaloneWeekdaySymbols: (page 450)

Declared In
NSDateFormatter.h

setWeekdaySymbols:
Sets the weekday symbols for the receiver.

- (void)setWeekdaySymbols:(NSArray *)array

Instance Methods 451
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Parameters
array

An array of NSString objects that specify the weekday symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– weekdaySymbols (page 459)
– setShortWeekdaySymbols: (page 447)
– setVeryShortWeekdaySymbols: (page 451)
– setStandaloneWeekdaySymbols: (page 448)
– setShortStandaloneWeekdaySymbols: (page 446)
– setVeryShortStandaloneWeekdaySymbols: (page 450)

Declared In
NSDateFormatter.h

shortMonthSymbols
Returns the array of short month symbols for the receiver.

- (NSArray *)shortMonthSymbols

Return Value
An array containing NSString objects representing the short month symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setShortMonthSymbols: (page 444)
– monthSymbols (page 437)
– veryShortMonthSymbols (page 458)
– standaloneMonthSymbols (page 455)
– shortStandaloneMonthSymbols (page 453)
– veryShortStandaloneMonthSymbols (page 458)

Declared In
NSDateFormatter.h

shortQuarterSymbols
Returns the short quarter symbols for the receiver.

- (NSArray *)shortQuarterSymbols

Return Value
An array containing NSString objects representing the short quarter symbols for the receiver.

452 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– setShortQuarterSymbols: (page 445)
– quarterSymbols (page 438)
– standaloneQuarterSymbols (page 455)
– shortStandaloneQuarterSymbols (page 453)

Declared In
NSDateFormatter.h

shortStandaloneMonthSymbols
Returns the short standalone month symbols for the receiver.

- (NSArray *)shortStandaloneMonthSymbols

Return Value
An array of NSString objects that specify the short standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setShortStandaloneMonthSymbols: (page 445)
– monthSymbols (page 437)
– shortMonthSymbols (page 452)
– veryShortMonthSymbols (page 458)
– standaloneMonthSymbols (page 455)
– veryShortStandaloneMonthSymbols (page 458)

Declared In
NSDateFormatter.h

shortStandaloneQuarterSymbols
Returns the short standalone quarter symbols for the receiver.

- (NSArray *)shortStandaloneQuarterSymbols

Return Value
An array containing NSString objects representing the short standalone quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setShortStandaloneQuarterSymbols: (page 446)
– quarterSymbols (page 438)
– shortQuarterSymbols (page 452)

Instance Methods 453
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

– standaloneQuarterSymbols (page 455)

Declared In
NSDateFormatter.h

shortStandaloneWeekdaySymbols
Returns the array of short standalone weekday symbols for the receiver.

- (NSArray *)shortStandaloneWeekdaySymbols

Return Value
An array of NSString objects that specify the short standalone weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setShortStandaloneWeekdaySymbols: (page 446)
– weekdaySymbols (page 459)
– shortWeekdaySymbols (page 454)
– veryShortWeekdaySymbols (page 459)
– standaloneWeekdaySymbols (page 455)
– veryShortStandaloneWeekdaySymbols (page 458)

Declared In
NSDateFormatter.h

shortWeekdaySymbols
Returns the array of short weekday symbols for the receiver.

- (NSArray *)shortWeekdaySymbols

Return Value
An array of NSString objects that specify the short weekday symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setShortWeekdaySymbols: (page 447)
– weekdaySymbols (page 459)
– veryShortWeekdaySymbols (page 459)
– standaloneWeekdaySymbols (page 455)
– shortStandaloneWeekdaySymbols (page 454)
– veryShortStandaloneWeekdaySymbols (page 458)

Declared In
NSDateFormatter.h

454 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

standaloneMonthSymbols
Returns the standalone month symbols for the receiver.

- (NSArray *)standaloneMonthSymbols

Return Value
An array of NSString objects that specify the standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– monthSymbols (page 437)
– setStandaloneMonthSymbols: (page 447)
– shortMonthSymbols (page 452)
– veryShortMonthSymbols (page 458)
– shortStandaloneMonthSymbols (page 453)
– veryShortStandaloneMonthSymbols (page 458)

Declared In
NSDateFormatter.h

standaloneQuarterSymbols
Returns the standalone quarter symbols for the receiver.

- (NSArray *)standaloneQuarterSymbols

Return Value
An array containing NSString objects representing the standalone quarter symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setStandaloneQuarterSymbols: (page 447)
– quarterSymbols (page 438)
– shortQuarterSymbols (page 452)
– shortStandaloneQuarterSymbols (page 453)

Declared In
NSDateFormatter.h

standaloneWeekdaySymbols
Returns the array of standalone weekday symbols for the receiver.

- (NSArray *)standaloneWeekdaySymbols

Return Value
An array of NSString objects that specify the standalone weekday symbols for the receiver.

Instance Methods 455
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– setStandaloneWeekdaySymbols: (page 448)
– weekdaySymbols (page 459)
– shortWeekdaySymbols (page 454)
– veryShortWeekdaySymbols (page 459)
– shortStandaloneWeekdaySymbols (page 454)
– veryShortStandaloneWeekdaySymbols (page 458)

Declared In
NSDateFormatter.h

stringFromDate:
Returns a string representation of a given date formatted using the receiver’s current settings.

- (NSString *)stringFromDate:(NSDate *)date

Parameters
date

The date to format.

Return Value
A string representation of date formatted using the receiver’s current settings.

Availability
Available in Mac OS X v10.4 and later.

See Also
– dateFromString: (page 431)

Related Sample Code
DatePicker
iSpend
Mountains
NSOperationSample
Reminders

Declared In
NSDateFormatter.h

timeStyle
Returns the time style of the receiver.

- (NSDateFormatterStyle)timeStyle

Return Value
The time style of the receiver. For possible values, see NSDateFormatterStyle (page 460).

456 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTimeStyle: (page 448)

Declared In
NSDateFormatter.h

timeZone
Returns the time zone for the receiver.

- (NSTimeZone *)timeZone

Return Value
The time zone for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTimeZone: (page 449)

Declared In
NSDateFormatter.h

twoDigitStartDate
Returns the earliest date that can be denoted by a two-digit year specifier.

- (NSDate *)twoDigitStartDate

Return Value
The earliest date that can be denoted by a two-digit year specifier.

Discussion
If the two-digit start date is set to January 6, 1976, then “January 1, 76” is interpreted as New Year's Day in
2076, whereas “February 14, 76” is interpreted as Valentine's Day in 1976.

The default date is December 31, 1949.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTwoDigitStartDate: (page 449)

Declared In
NSDateFormatter.h

Instance Methods 457
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

veryShortMonthSymbols
Returns the very short month symbols for the receiver.

- (NSArray *)veryShortMonthSymbols

Return Value
An array of NSString objects that specify the very short month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setVeryShortMonthSymbols: (page 450)
– monthSymbols (page 437)
– shortMonthSymbols (page 452)
– standaloneMonthSymbols (page 455)
– shortStandaloneMonthSymbols (page 453)
– veryShortStandaloneMonthSymbols (page 458)

Declared In
NSDateFormatter.h

veryShortStandaloneMonthSymbols
Returns the very short month symbols for the receiver.

- (NSArray *)veryShortStandaloneMonthSymbols

Return Value
An array of NSString objects that specify the very short standalone month symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setVeryShortStandaloneMonthSymbols: (page 450)
– monthSymbols (page 437)
– shortMonthSymbols (page 452)
– veryShortMonthSymbols (page 458)
– standaloneMonthSymbols (page 455)
– shortStandaloneMonthSymbols (page 453)

Declared In
NSDateFormatter.h

veryShortStandaloneWeekdaySymbols
Returns the array of very short standalone weekday symbols for the receiver.

- (NSArray *)veryShortStandaloneWeekdaySymbols

458 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Return Value
An array of NSString objects that specify the very short standalone weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setShortStandaloneWeekdaySymbols: (page 446)
– weekdaySymbols (page 459)
– shortWeekdaySymbols (page 454)
– veryShortWeekdaySymbols (page 459)
– standaloneWeekdaySymbols (page 455)
– shortStandaloneWeekdaySymbols (page 454)

Declared In
NSDateFormatter.h

veryShortWeekdaySymbols
Returns the array of very short weekday symbols for the receiver.

- (NSArray *)veryShortWeekdaySymbols

Return Value
An array of NSString objects that specify the very short weekday symbols for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setVeryShortWeekdaySymbols: (page 451)
– weekdaySymbols (page 459)
– shortWeekdaySymbols (page 454)
– standaloneWeekdaySymbols (page 455)
– shortStandaloneWeekdaySymbols (page 454)
– veryShortStandaloneWeekdaySymbols (page 458)

Declared In
NSDateFormatter.h

weekdaySymbols
Returns the array of weekday symbols for the receiver.

- (NSArray *)weekdaySymbols

Return Value
An array of NSString objects that specify the weekday symbols for the receiver.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 459
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

See Also
– setWeekdaySymbols: (page 451)
– shortWeekdaySymbols (page 454)
– veryShortWeekdaySymbols (page 459)
– standaloneWeekdaySymbols (page 455)
– shortStandaloneWeekdaySymbols (page 454)
– veryShortStandaloneWeekdaySymbols (page 458)

Declared In
NSDateFormatter.h

Constants

NSDateFormatterStyle
The following constants specify predefined date and time format styles.

typedef enum {
 NSDateFormatterNoStyle = kCFDateFormatterNoStyle,
 NSDateFormatterShortStyle = kCFDateFormatterShortStyle,
 NSDateFormatterMediumStyle = kCFDateFormatterMediumStyle,
 NSDateFormatterLongStyle = kCFDateFormatterLongStyle,
 NSDateFormatterFullStyle = kCFDateFormatterFullStyle
} NSDateFormatterStyle;

Constants
NSDateFormatterNoStyle

Specifies no style.

Equal to kCFDateFormatterNoStyle.

Available in Mac OS X v10.4 and later.

Declared in NSDateFormatter.h.

NSDateFormatterShortStyle
Specifies a short style, typically numeric only, such as “11/23/37” or “3:30pm”.

Equal to kCFDateFormatterShortStyle.

Available in Mac OS X v10.4 and later.

Declared in NSDateFormatter.h.

NSDateFormatterMediumStyle
Specifies a medium style, typically with abbreviated text, such as “Nov 23, 1937”.

Equal to kCFDateFormatterMediumStyle.

Available in Mac OS X v10.4 and later.

Declared in NSDateFormatter.h.

460 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

NSDateFormatterLongStyle
Specifies a long style, typically with full text, such as “November 23, 1937” or “3:30:32pm”.

Equal to kCFDateFormatterLongStyle.

Available in Mac OS X v10.4 and later.

Declared in NSDateFormatter.h.

NSDateFormatterFullStyle
Specifies a full style with complete details, such as “Tuesday, April 12, 1952 AD” or “3:30:42pm PST”.

Equal to kCFDateFormatterFullStyle.

Available in Mac OS X v10.4 and later.

Declared in NSDateFormatter.h.

Discussion
The format for these date and time styles is not exact because they depend on the locale, user preference
settings, and the operating system version. Do not use these constants if you want an exact format.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDateFormatter.h

NSDateFormatterBehavior
Constants that specify the behavior NSDateFormatter should exhibit.

typedef enum {
 NSDateFormatterBehaviorDefault = 0,
 NSDateFormatterBehavior10_0 = 1000,
 NSDateFormatterBehavior10_4 = 1040,
} NSDateFormatterBehavior;

Constants
NSDateFormatterBehaviorDefault

Specifies default formatting behavior.

Available in Mac OS X v10.4 and later.

Declared in NSDateFormatter.h.

NSDateFormatterBehavior10_0
Specifies formatting behavior equivalent to that in Mac OS X 10.0.

Available in Mac OS X v10.4 and later.

Declared in NSDateFormatter.h.

NSDateFormatterBehavior10_4
Specifies formatting behavior equivalent for Mac OS X 10.4.

Available in Mac OS X v10.4 and later.

Declared in NSDateFormatter.h.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDateFormatter.h

Constants 461
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

462 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 30

NSDateFormatter Class Reference

Inherits from NSNumber : NSValue : NSObject

Conforms to NSCoding (NSValue)
NSCopying (NSValue)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDecimalNumber.h

Companion guide Number and Value Programming Topics for Cocoa

Related sample code BindingsJoystick
Calculator
Core Data HTML Store

Overview

NSDecimalNumber, an immutable subclass of NSNumber, provides an object-oriented wrapper for doing
base-10 arithmetic. An instance can represent any number that can be expressed as mantissa x
10^exponent where mantissa is a decimal integer up to 38 digits long, and exponent is an integer from
–128 through 127.

Tasks

Creating a Decimal Number

+ decimalNumberWithDecimal: (page 466)
Creates and returns an NSDecimalNumber object equivalent to a given NSDecimal structure.

+ decimalNumberWithMantissa:exponent:isNegative: (page 466)
Creates and returns anNSDecimalNumber object equivalent to the number specified by the arguments.

+ decimalNumberWithString: (page 467)
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given numeric
string.

Overview 463
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

+ decimalNumberWithString:locale: (page 468)
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given numeric
string, interpreted using a given locale.

+ one (page 470)
Returns an NSDecimalNumber object equivalent to the number 1.0.

+ zero (page 471)
Returns an NSDecimalNumber object equivalent to the number 0.0.

+ notANumber (page 470)
Returns an NSDecimalNumber object that specifies no number.

Initializing a Decimal Number

– initWithDecimal: (page 478)
Returns an NSDecimalNumber object initialized to represent a given decimal.

– initWithMantissa:exponent:isNegative: (page 478)
Returns an NSDecimalNumber object initialized using the given mantissa, exponent, and sign.

– initWithString: (page 479)
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given
numeric string.

– initWithString:locale: (page 480)
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given
numeric string, interpreted using a given locale.

Performing Arithmetic

– decimalNumberByAdding: (page 472)
Returns a new NSDecimalNumber object whose value is the sum of the receiver and another given
NSDecimalNumber object.

– decimalNumberBySubtracting: (page 476)
Returns a new NSDecimalNumber object whose value is that of another given NSDecimalNumber
object subtracted from the value of the receiver.

– decimalNumberByMultiplyingBy: (page 473)
Returns a new NSDecimalNumber object whose value is the value of the receiver multiplied by that
of another given NSDecimalNumber object.

– decimalNumberByDividingBy: (page 473)
Returns a new NSDecimalNumber object whose value is the value of the receiver divided by that of
another given NSDecimalNumber object.

– decimalNumberByRaisingToPower: (page 475)
Returns a new NSDecimalNumber object whose value is the value of the receiver raised to a given
power.

– decimalNumberByMultiplyingByPowerOf10: (page 474)
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber
object.

464 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

– decimalNumberByAdding:withBehavior: (page 472)
Adds decimalNumber to the receiver and returns the sum, a newly created NSDecimalNumber
object.

– decimalNumberBySubtracting:withBehavior: (page 477)
Subtracts decimalNumber from the receiver and returns the difference, a newly created
NSDecimalNumber object.

– decimalNumberByMultiplyingBy:withBehavior: (page 474)
Multiplies the receiver bydecimalNumber and returns the product, a newly createdNSDecimalNumber
object.

– decimalNumberByDividingBy:withBehavior: (page 473)
Divides the receiver by decimalNumber and returns the quotient, a newly created NSDecimalNumber
object.

– decimalNumberByRaisingToPower:withBehavior: (page 475)
Raises the receiver to power and returns the result, a newly created NSDecimalNumber object.

– decimalNumberByMultiplyingByPowerOf10:withBehavior: (page 475)
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber
object.

Rounding Off

– decimalNumberByRoundingAccordingToBehavior: (page 476)
Rounds the receiver off in the way specified by behavior and returns the result, a newly created
NSDecimalNumber object.

Accessing the Value

– decimalValue (page 477)
Returns the receiver’s value, expressed as an NSDecimal structure.

– doubleValue (page 478)
Returns the approximate value of the receiver as a double.

– descriptionWithLocale: (page 477)
Returns a string, specified according to a given locale, that represents the contents of the receiver.

– objCType (page 480)
Returns a C string containing the Objective-C type of the data contained in the receiver, which for an
NSDecimalNumber object is always “d” (for double).

Managing Behavior

+ defaultBehavior (page 468)
Returns the way arithmetic methods, like decimalNumberByAdding: (page 472), round off and
handle error conditions.

+ setDefaultBehavior: (page 470)
Specifies the way that arithmetic methods, like decimalNumberByAdding: (page 472), round off
and handle error conditions.

Tasks 465
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Comparing Decimal Numbers

– compare: (page 471)
Returns an NSComparisonResult value that indicates the numerical ordering of the receiver and
another given NSDecimalNumber object.

Getting Maximum and Minimum Possible Values

+ maximumDecimalNumber (page 469)
Returns the largest possible value of an NSDecimalNumber object.

+ minimumDecimalNumber (page 469)
Returns the smallest possible value of an NSDecimalNumber object.

Class Methods

decimalNumberWithDecimal:
Creates and returns an NSDecimalNumber object equivalent to a given NSDecimal structure.

+ (NSDecimalNumber *)decimalNumberWithDecimal:(NSDecimal)decimal

Parameters
decimal

An NSDecimal structure that specifies the value for the new decimal number object.

Return Value
An NSDecimalNumber object equivalent to decimal.

Discussion
You can initialize decimal programmatically or generate it using the NSScanner method,
scanDecimal: (page 1349)

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberWithMantissa:exponent:isNegative:
Creates and returns an NSDecimalNumber object equivalent to the number specified by the arguments.

+ (NSDecimalNumber *)decimalNumberWithMantissa:(unsigned long long)mantissa
exponent:(short)exponent isNegative:(BOOL)isNegative

Parameters
mantissa

The mantissa for the new decimal number object.

466 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

exponent
The exponent for the new decimal number object.

isNegative
A Boolean value that specifies whether the sign of the number is negative.

Discussion
The arguments express a number in a kind of scientific notation that requires the mantissa to be an integer.
So, for example, if the number to be represented is –12.345, it is expressed as 12345x10^–3—mantissa
is 12345; exponent is –3; and isNegative is YES, as illustrated by the following example.

NSDecimalNumber *number = [NSDecimalNumber decimalNumberWithMantissa:12345
 exponent:-3
 isNegative:YES];

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberWithString:
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given numeric string.

+ (NSDecimalNumber *)decimalNumberWithString:(NSString *)numericString

Parameters
numericString

A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate the
exponent of a number in scientific notation; and a single NSDecimalSeparator to divide the fractional
from the integral part of the number.

Return Value
An NSDecimalNumber object whose value is equivalent to numericString.

Discussion
Whether the NSDecimalSeparator is a period (as is used, for example, in the United States) or a comma
(as is used, for example, in France) depends on the default locale.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ decimalNumberWithString:locale: (page 468)

Related Sample Code
Calculator
Core Data HTML Store

Declared In
NSDecimalNumber.h

Class Methods 467
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

decimalNumberWithString:locale:
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given numeric string,
interpreted using a given locale.

+ (NSDecimalNumber *)decimalNumberWithString:(NSString *)numericString
locale:(NSDictionary *)locale

Parameters
numericString

A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate the
exponent of a number in scientific notation; and a single NSDecimalSeparator to divide the fractional
from the integral part of the number.

locale
A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to interpret the
number in numericString.

Return Value
An NSDecimalNumber object whose value is equivalent to numericString.

Discussion
The locale parameter determines whether the NSDecimalSeparator is a period (as is used, for example,
in the United States) or a comma (as is used, for example, in France).

The following strings show examples of acceptable values for numericString:

“2500.6” (or “2500,6”, depending on locale)
“–2500.6” (or “–2500.6”)
“–2.5006e3” (or “–2,5006e3”)
“–2.5006E3” (or “–2,5006E3”)

The following strings are unacceptable:

“2,500.6”
“2500 3/5”
“2.5006x10e3”
“two thousand five hundred and six tenths”

Availability
Available in Mac OS X v10.0 and later.

See Also
+ decimalNumberWithString: (page 467)

Declared In
NSDecimalNumber.h

defaultBehavior
Returns the way arithmetic methods, like decimalNumberByAdding: (page 472), round off and handle error
conditions.

468 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

+ (id < NSDecimalNumberBehaviors >)defaultBehavior

Discussion
By default, the arithmetic methods use the NSRoundPlain behavior; that is, the methods round to the closest
possible return value. The methods assume your need for precision does not exceed 38 significant digits and
raise exceptions when they try to divide by 0 or produce a number too big or too small to be represented.

If this default behavior doesn’t suit your application, you should use methods that let you specify the behavior,
like decimalNumberByAdding:withBehavior: (page 472). If you find yourself using a particular behavior
consistently, you can specify a different default behavior with setDefaultBehavior: (page 470).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

maximumDecimalNumber
Returns the largest possible value of an NSDecimalNumber object.

+ (NSDecimalNumber *)maximumDecimalNumber

Return Value
The largest possible value of an NSDecimalNumber object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ minimumDecimalNumber (page 469)

Declared In
NSDecimalNumber.h

minimumDecimalNumber
Returns the smallest possible value of an NSDecimalNumber object.

+ (NSDecimalNumber *)minimumDecimalNumber

Return Value
The smallest possible value of an NSDecimalNumber object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ maximumDecimalNumber (page 469)

Declared In
NSDecimalNumber.h

Class Methods 469
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

notANumber
Returns an NSDecimalNumber object that specifies no number.

+ (NSDecimalNumber *)notANumber

Return Value
An NSDecimalNumber object that specifies no number.

Discussion
Any arithmetic method receiving notANumber as an argument returns notANumber.

This value can be a useful way of handling non-numeric data in an input file. This method can also be a useful
response to calculation errors. For more information on calculation errors, see the
exceptionDuringOperation:error:leftOperand:rightOperand: (page 2044) method description in
the NSDecimalNumberBehaviors protocol specification.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Calculator

Declared In
NSDecimalNumber.h

one
Returns an NSDecimalNumber object equivalent to the number 1.0.

+ (NSDecimalNumber *)one

Return Value
An NSDecimalNumber object equivalent to the number 1.0.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ zero (page 471)

Declared In
NSDecimalNumber.h

setDefaultBehavior:
Specifies the way that arithmetic methods, like decimalNumberByAdding: (page 472), round off and handle
error conditions.

+ (void)setDefaultBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior must conform to the NSDecimalNumberBehaviors protocol.

470 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

zero
Returns an NSDecimalNumber object equivalent to the number 0.0.

+ (NSDecimalNumber *)zero

Return Value
An NSDecimalNumber object equivalent to the number 0.0.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ one (page 470)

Related Sample Code
BindingsJoystick
Calculator

Declared In
NSDecimalNumber.h

Instance Methods

compare:
Returns an NSComparisonResult value that indicates the numerical ordering of the receiver and another
given NSDecimalNumber object.

- (NSComparisonResult)compare:(NSNumber *)decimalNumber

Parameters
decimalNumber

The number with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending if the value of decimalNumber is greater than the receiver; NSOrderedSame if
they’re equal; and NSOrderedDescending if the value of decimalNumber is less than the receiver.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 471
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Declared In
NSDecimalNumber.h

decimalNumberByAdding:
Returns a new NSDecimalNumber object whose value is the sum of the receiver and another given
NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber

Parameters
decimalNumber

The number to add to the receiver.

Return Value
A new NSDecimalNumber object whose value is the sum of the receiver and decimalNumber.

Discussion
This method uses the default behavior when handling calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also
– decimalNumberByAdding:withBehavior: (page 472)
+ defaultBehavior (page 468)

Related Sample Code
Calculator

Declared In
NSDecimalNumber.h

decimalNumberByAdding:withBehavior:
Adds decimalNumber to the receiver and returns the sum, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

472 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

decimalNumberByDividingBy:
Returns a new NSDecimalNumber object whose value is the value of the receiver divided by that of another
given NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber

Parameters
decimalNumber

The number by which to divide the receiver.

Return Value
A new NSDecimalNumber object whose value is the value of the receiver divided by decimalNumber.

Discussion
This method uses the default behavior when handling calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also
– decimalNumberByDividingBy:withBehavior: (page 473)
+ defaultBehavior (page 468)

Related Sample Code
Calculator

Declared In
NSDecimalNumber.h

decimalNumberByDividingBy:withBehavior:
Divides the receiver by decimalNumber and returns the quotient, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingBy:
Returns a new NSDecimalNumber object whose value is the value of the receiver multiplied by that of
another given NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByMultiplyingBy:(NSDecimalNumber *)decimalNumber

Instance Methods 473
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Parameters
decimalNumber

The number by which to multiply the receiver.

Return Value
A new NSDecimalNumber object whose value is decimalNumber multiplied by the receiver.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also
– decimalNumberByMultiplyingBy:withBehavior: (page 474)
+ defaultBehavior (page 468)

Related Sample Code
Calculator

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingBy:withBehavior:
Multiplies the receiver by decimalNumber and returns the product, a newly created NSDecimalNumber
object.

- (NSDecimalNumber *)decimalNumberByMultiplyingBy:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingByPowerOf10:
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10:(short)power

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also
– decimalNumberByMultiplyingByPowerOf10:withBehavior: (page 475)

474 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

+ defaultBehavior (page 468)

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingByPowerOf10:withBehavior:
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10:(short)power
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByRaisingToPower:
Returns a new NSDecimalNumber object whose value is the value of the receiver raised to a given power.

- (NSDecimalNumber *)decimalNumberByRaisingToPower:(NSUInteger)power

Parameters
power

The power to which to raise the receiver.

Return Value
A new NSDecimalNumber object whose value is the value of the receiver raised to the power power.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also
– decimalNumberByRaisingToPower:withBehavior: (page 475)
+ defaultBehavior (page 468)

Declared In
NSDecimalNumber.h

decimalNumberByRaisingToPower:withBehavior:
Raises the receiver to power and returns the result, a newly created NSDecimalNumber object.

Instance Methods 475
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

- (NSDecimalNumber *)decimalNumberByRaisingToPower:(NSUInteger)power withBehavior:(id
 < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByRoundingAccordingToBehavior:
Rounds the receiver off in the way specified by behavior and returns the result, a newly created
NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByRoundingAccordingToBehavior:(id <
NSDecimalNumberBehaviors >)behavior

Discussion
For a description of the different ways of rounding, see the roundingMode (page 1109) method in the
NSDecimalNumberBehaviors protocol specification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberBySubtracting:
Returns a new NSDecimalNumber object whose value is that of another given NSDecimalNumber object
subtracted from the value of the receiver.

- (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber

Parameters
decimalNumber

The number to subtract from the receiver.

Return Value
A new NSDecimalNumber object whose value is decimalNumber subtracted from the receiver.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in Mac OS X v10.0 and later.

See Also
– decimalNumberBySubtracting:withBehavior: (page 477)
+ defaultBehavior (page 468)

476 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Related Sample Code
Calculator

Declared In
NSDecimalNumber.h

decimalNumberBySubtracting:withBehavior:
Subtracts decimalNumber from the receiver and returns the difference, a newly created NSDecimalNumber
object.

- (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

decimalValue
Returns the receiver’s value, expressed as an NSDecimal structure.

- (NSDecimal)decimalValue

Return Value
The receiver’s value, expressed as an NSDecimal structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

descriptionWithLocale:
Returns a string, specified according to a given locale, that represents the contents of the receiver.

- (NSString *)descriptionWithLocale:(NSDictionary *)locale

Parameters
locale

A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to generate the
returned string.

Return Value
A string that represents the contents of the receiver, according to locale.

Instance Methods 477
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

doubleValue
Returns the approximate value of the receiver as a double.

- (double)doubleValue

Return Value
The approximate value of the receiver as a double.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

initWithDecimal:
Returns an NSDecimalNumber object initialized to represent a given decimal.

- (id)initWithDecimal:(NSDecimal)decimal

Parameters
decimal

The value of the new object.

Return Value
An NSDecimalNumber object initialized to represent decimal.

Discussion
This method is the designated initializer for NSDecimalNumber.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

initWithMantissa:exponent:isNegative:
Returns an NSDecimalNumber object initialized using the given mantissa, exponent, and sign.

- (id)initWithMantissa:(unsigned long long)mantissa exponent:(short)exponent
isNegative:(BOOL)flag

478 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Parameters
mantissa

The mantissa for the new decimal number object.

exponent
The exponent for the new decimal number object.

flag
A Boolean value that specifies whether the sign of the number is negative.

Return Value
An NSDecimalNumber object initialized using the given mantissa, exponent, and sign.

Discussion
The arguments express a number in a type of scientific notation that requires the mantissa to be an integer.
So, for example, if the number to be represented is 1.23, it is expressed as 123x10^–2—mantissa is 123;
exponent is –2; and isNegative, which refers to the sign of the mantissa, is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ decimalNumberWithMantissa:exponent:isNegative: (page 466)

Declared In
NSDecimalNumber.h

initWithString:
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given numeric
string.

- (id)initWithString:(NSString *)numericString

Parameters
numericString

A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate the
exponent of a number in scientific notation; and a single NSDecimalSeparator to divide the fractional
from the integral part of the number. For a listing of acceptable and unacceptable strings, see the
class method decimalNumberWithString:locale: (page 468).

Return Value
An NSDecimalNumber object initialized so that its value is equivalent to that in numericString.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

Instance Methods 479
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

initWithString:locale:
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given numeric
string, interpreted using a given locale.

- (id)initWithString:(NSString *)numericString locale:(NSDictionary *)locale

Parameters
numericString

A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate the
exponent of a number in scientific notation; and a single NSDecimalSeparator to divide the fractional
from the integral part of the number.

locale
A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to interpret the
number in numericString.

Return Value
An NSDecimalNumber object initialized so that its value is equivalent to that in numericString, interpreted
using locale.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ decimalNumberWithString:locale: (page 468)

Declared In
NSDecimalNumber.h

objCType
Returns a C string containing the Objective-C type of the data contained in the receiver, which for an
NSDecimalNumber object is always “d” (for double).

- (const char *)objCType

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

Constants

NSDecimalNumber Exception Names
Names of the various exceptions raised by NSDecimalNumber to indicate computational errors.

480 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

extern NSString *NSDecimalNumberExactnessException;
extern NSString *NSDecimalNumberOverflowException;
extern NSString *NSDecimalNumberUnderflowException;
extern NSString *NSDecimalNumberDivideByZeroException;

Constants
NSDecimalNumberExactnessException

The name of the exception raised if there is an exactness error.

Available in Mac OS X v10.0 and later.

Declared in NSDecimalNumber.h.

NSDecimalNumberOverflowException
The name of the exception raised on overflow.

Available in Mac OS X v10.0 and later.

Declared in NSDecimalNumber.h.

NSDecimalNumberUnderflowException
The name of the exception raised on underflow.

Available in Mac OS X v10.0 and later.

Declared in NSDecimalNumber.h.

NSDecimalNumberDivideByZeroException
The name of the exception raised on divide by zero.

Available in Mac OS X v10.0 and later.

Declared in NSDecimalNumber.h.

Declared In
NSDecimalNumber.h

Constants 481
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

482 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 31

NSDecimalNumber Class Reference

Inherits from NSObject

Conforms to NSCoding
NSDecimalNumberBehaviors
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDecimalNumber.h

Companion guide Number and Value Programming Topics for Cocoa

Overview

NSDecimalNumberHandler is a class that adopts the NSDecimalNumberBehaviors protocol. This class
allows you to set the way an NSDecimalNumber object rounds off and handles errors, without having to
create a custom class.

You can use an instance of this class as an argument to any of the NSDecimalNumber methods that end
with ...Behavior:. If you don’t think you need special behavior, you probably don’t need this class—it is
likely that NSDecimalNumber's default behavior will suit your needs.

For more information, see the NSDecimalNumberBehaviors protocol specification.

Adopted Protocols

NSDecimalNumberBehaviors
– roundingMode (page 2044)
– scale (page 2045)
– exceptionDuringOperation:error:leftOperand:rightOperand: (page 2044)

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

Overview 483
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDecimalNumberHandler Class Reference

Tasks

Creating a Decimal Number Handler

+ defaultDecimalNumberHandler (page 485)
Returns the default instance of NSDecimalNumberHandler.

+ decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:raiseOnDivideByZero: (page
484)

Returns an NSDecimalNumberHandler object with customized behavior.

Initializing a Decimal Number Handler

– initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:raiseOnDivideByZero: (page
485)

Returns an NSDecimalNumberHandler object initialized so it behaves as specified by the method’s
arguments.

Class Methods

decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:
raiseOnUnderflow:raiseOnDivideByZero:
Returns an NSDecimalNumberHandler object with customized behavior.

+ (id)decimalNumberHandlerWithRoundingMode:(NSRoundingMode)roundingMode
scale:(short)scale raiseOnExactness:(BOOL)raiseOnExactness
raiseOnOverflow:(BOOL)raiseOnOverflow raiseOnUnderflow:(BOOL)raiseOnUnderflow
raiseOnDivideByZero:(BOOL)raiseOnDivideByZero

Parameters
roundingMode

The rounding mode to use. There are four possible values: NSRoundUp, NSRoundDown, NSRoundPlain,
and NSRoundBankers.

scale
The number of digits a rounded value should have after its decimal point.

raiseOnExactness
If YES, in the event of an exactness error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method.

raiseOnOverflow
If YES, in the event of an overflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

raiseOnUnderflow
If YES, in the event of an underflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

484 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDecimalNumberHandler Class Reference

raiseOnDivideByZero
If YES, in the event of a divide by zero error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

Return Value
An NSDecimalNumberHandler object with customized behavior.

Discussion
See the NSDecimalNumberBehaviors protocol specification for a complete explanation of the possible
behaviors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

defaultDecimalNumberHandler
Returns the default instance of NSDecimalNumberHandler.

+ (id)defaultDecimalNumberHandler

Return Value
The default instance of NSDecimalNumberHandler.

Discussion
This default decimal number handler rounds to the closest possible return value. It assumes your need for
precision does not exceed 38 significant digits, and it raises an exception when its NSDecimalNumber object
tries to divide by 0 or when its NSDecimalNumber object produces a number too big or too small to be
represented.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

Instance Methods

initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:
raiseOnDivideByZero:
Returns an NSDecimalNumberHandler object initialized so it behaves as specified by the method’s arguments.

- (id)initWithRoundingMode:(NSRoundingMode)roundingMode scale:(short)scale
raiseOnExactness:(BOOL)raiseOnExactness raiseOnOverflow:(BOOL)raiseOnOverflow
raiseOnUnderflow:(BOOL)raiseOnUnderflow
raiseOnDivideByZero:(BOOL)raiseOnDivideByZero

Instance Methods 485
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDecimalNumberHandler Class Reference

Parameters
roundingMode

The rounding mode to use. There are four possible values: NSRoundUp, NSRoundDown, NSRoundPlain,
and NSRoundBankers.

scale
The number of digits a rounded value should have after its decimal point.

raiseOnExactness
If YES, in the event of an exactness error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method.

raiseOnOverflow
If YES, in the event of an overflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

raiseOnUnderflow
If YES, in the event of an underflow error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

raiseOnDivideByZero
If YES, in the event of a divide by zero error the handler will raise an exception, otherwise it will ignore
the error and return control to the calling method

Return Value
An initialized NSDecimalNumberHandler object initialized with customized behavior. The returned object
might be different than the original receiver.

Discussion
See the NSDecimalNumberBehaviors protocol specification for a complete explanation of the possible
behaviors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

486 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 32

NSDecimalNumberHandler Class Reference

Inherits from NSScriptCommand : NSObject

Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptStandardSuiteCommands.h

Companion guides Cocoa Scripting Guide
Key-Value Coding Programming Guide

Overview

An instance of NSDeleteCommanddeletes the specified scriptable object or objects (such as words, paragraphs,
and so on).

Suppose, for example, a user executes a script that sends the command delete the third rectangle
in the first document to the Sketch sample application (located in /Developer/Examples/AppKit).
Cocoa creates an NSDeleteCommand object to perform the operation. When the command is executed, it
uses the key-value coding mechanism (by invoking removeValueAtIndex:fromPropertyWithKey:) to
remove the specified object or objects from their container. See the description for
removeValueAtIndex:fromPropertyWithKey: (page 2119) for related information.

NSDeleteCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSDeleteCommand or call its methods.

Tasks

Working with Specifiers

– keySpecifier (page 488)
Returns a specifier for the object or objects to be deleted.

– setReceiversSpecifier: (page 488)
Sets the receiver’s object specifier.

Overview 487
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDeleteCommand Class Reference

Instance Methods

keySpecifier
Returns a specifier for the object or objects to be deleted.

- (NSScriptObjectSpecifier *)keySpecifier

Return Value
A specifier for the object or objects to be deleted.

Discussion
Note that this may be different than the specifier or specifiers set by setReceiversSpecifier: (page 488).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

setReceiversSpecifier:
Sets the receiver’s object specifier.

- (void)setReceiversSpecifier:(NSScriptObjectSpecifier *)receiversRef

Parameters
receiversRef

The receiver’s object specifier.

Discussion
This method overrides setReceiversSpecifier: (page 1390) in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRef is a specifier for the third
rectangle of the first document, the receiver specifier is the first document while the key
specifier is the third rectangle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

488 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 33

NSDeleteCommand Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSSerialization.h

Availability Deprecated in Mac OS X v10.2.

Companion guide Archives and Serializations Programming Guide for Cocoa

Overview

Note: NSDeserializer is obsolete and has been deprecated. Instead use NSPropertyListSerialization.

The NSDeserializer class declares methods that convert a representation of a property list (as contained
in an NSData object) into a structure of property list objects in memory. The NSDeserializer class object
itself provides these methods—you don’t create instances of NSDeserializer. Options to these methods
allow you to specify that container objects (arrays or dictionaries) in the resulting graph be mutable or
immutable; that deserialization begin at the start of the data or from some position within it; or that
deserialization occur lazily, so a property list is deserialized only if it is actually going to be accessed.

Tasks

Deserializing a Property List

+ deserializePropertyListFromData:atCursor:mutableContainers: (page 490) Deprecated in
Mac OS X v10.2

Returns a property list object from a given location in a given serialized representation of a property
list.

+ deserializePropertyListFromData:mutableContainers: (page 490) Deprecated in Mac OS X v10.2
Returns a property list object from given serialized data, optionally making the list elements mutable.

+ deserializePropertyListLazilyFromData:atCursor:length:mutableContainers: (page 491)
Deprecated in Mac OS X v10.2

Returns a property list from a given location in a given serialized representation of a property list.

Overview 489
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDeserializer Class Reference

Class Methods

deserializePropertyListFromData:atCursor:mutableContainers:
Returns a property list object from a given location in a given serialized representation of a property list.
(Deprecated in Mac OS X v10.2.)

+ (id)deserializePropertyListFromData:(NSData *)data atCursor:(unsigned *)cursor
mutableContainers:(BOOL)mutable

Parameters
data

A serialized representation of a property list.

cursor

mutable
If YES and the property list object is a dictionary or an array, the recomposed object is made mutable

Return Value
A property list object corresponding to the representation in data at the location cursor. Returns nil if
the property list object is not valid for property lists.

Availability
Deprecated in Mac OS X v10.2.

Declared In
NSSerialization.h

deserializePropertyListFromData:mutableContainers:
Returns a property list object from given serialized data, optionally making the list elements mutable.
(Deprecated in Mac OS X v10.2.)

+ (id)deserializePropertyListFromData:(NSData *)serialization
mutableContainers:(BOOL)mutable

Parameters
serialization

A serialized representation of a property list.

mutable
If YES and the property list object is a dictionary or an array, the recomposed object is made mutable.

Return Value
A property list object corresponding to the representation in serialization, or nil if serialization
does not represent a property list.

Availability
Deprecated in Mac OS X v10.2.

Declared In
NSSerialization.h

490 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDeserializer Class Reference

deserializePropertyListLazilyFromData:atCursor:length:mutableContainers:
Returns a property list from a given location in a given serialized representation of a property list. (Deprecated
in Mac OS X v10.2.)

+ (id)deserializePropertyListLazilyFromData:(NSData *)data atCursor:(unsigned
*)cursor length:(unsigned)length mutableContainers:(BOOL)mutable

Parameters
data

A serialized representation of a property list.

cursor
The cursor location.

length
The number of bytes to read.

mutable
If YES and the object is a dictionary or an array, the recomposed object is made mutable.

Return Value
A property list from data at location cursor, or nil if data does not represent a property list.

Discussion
The deserialization proceeds lazily—that is, if the data at cursor has a length greater than length, a proxy
is substituted for the actual property list as long as the constituent objects of that property list are not
accessed.

Availability
Deprecated in Mac OS X v10.2.

Declared In
NSSerialization.h

Class Methods 491
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDeserializer Class Reference

492 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 34

NSDeserializer Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDictionary.h
Foundation/NSFileManager.h
Foundation/NSKeyValueCoding.h

Companion guides Collections Programming Topics for Cocoa
Property List Programming Guide

Related sample code MyPhoto
QTCoreVideo301
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Overview

The NSDictionary class declares the programmatic interface to objects that manage immutable associations
of keys and values. Use this class or its subclass NSMutableDictionary when you need a convenient and
efficient way to retrieve data associated with an arbitrary key. (For convenience, we use the term dictionary
to refer to any instance of one of these classes without specifying its exact class membership.)

A key-value pair within a dictionary is called an entry. Each entry consists of one object that represents the
key and a second object that is that key’s value. Within a dictionary, the keys are unique. That is, no two keys
in a single dictionary are equal (as determined by isEqual: (page 2101)). In general, a key can be any object
(provided that it conforms to the NSCopying protocol—see below), but note that when using key-value
coding the key must be a string (see Key-Value Coding Fundamentals). Neither a key nor a value can be nil;
if you need to represent a null value in a dictionary, you should use NSNull.

Overview 493
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

An instance of NSDictionary is an immutable dictionary: you establish its entries when it’s created and
cannot modify them afterward. An instance of NSMutableDictionary is a mutable dictionary: you can add
or delete entries at any time, and the object automatically allocates memory as needed. The dictionary classes
adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert a dictionary of
one type to the other.

NSDictionary and NSMutableDictionary are part of a class cluster, so the objects you create with this
interface are not actual instances of the these two classes. Rather, the instances belong to one of their private
subclasses. Although a dictionary’s class is private, its interface is public, as declared by these abstract
superclasses, NSDictionary and NSMutableDictionary.

Internally, a dictionary uses a hash table to organize its storage and to provide rapid access to a value given
the corresponding key. However, the methods defined in this cluster insulate you from the complexities of
working with hash tables, hashing functions, or the hashed value of keys. The methods described below take
keys directly, not their hashed form.

Methods that add entries to dictionaries—whether as part of initialization (for all dictionaries) or during
modification (for mutable dictionaries)—copy each key argument (keys must conform to the NSCopying
protocol) and add the copies to the dictionary. Each corresponding value object receives a retain (page
2108) message to ensure that it won’t be deallocated before the dictionary is through with it.

Enumeration

You can enumerate the contents of a dictionary by key or by value using the NSEnumerator object returned
by keyEnumerator (page 519) and objectEnumerator (page 520) respectively. On Mac OS X v10.5 and later,
NSDictionary supports the NSFastEnumerationprotocol. You can use the for…in construct to enumerate
the keys of a dictionary, as illustrated in the following example.

NSArray *keys = [NSArray arrayWithObjects:@"key1", @"key2", @"key3", nil];
NSArray *objects = [NSArray arrayWithObjects:@"value1", @"value2", @"value3",
nil];
NSDictionary *dictionary = [NSDictionary dictionaryWithObjects:objects
forKeys:keys];

for (id key in dictionary) {
 NSLog(@"key: %@, value: %@", key, [dictionary objectForKey:key]);
}

Primitive Methods

Three primitive methods of NSDictionary—count (page 505), objectForKey: (page 521), and
keyEnumerator (page 519)—provide the basis for all of the other methods in its interface. The count (page
505) method returns the number of entries in the dictionary. objectForKey: (page 521) returns the value
associated with a given key. keyEnumerator (page 519) returns an object that lets you iterate through each
of the keys in the dictionary. The other methods declared here operate by invoking one or more of these
primitives. The non-primitive methods provide convenient ways of accessing multiple entries at once.

494 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Descriptions and Persistence

You can use the description... and writeToFile:atomically: (page 523) methods to write a property
list representation of a dictionary to a string or to a file, respectively. These are not intended to be used for
general persistent storage of your custom data objects—see instead Archives and Serializations Programming
Guide for Cocoa.

Toll-Free Bridging

NSDictionary is “toll-free bridged” with its Core Foundation counterpart, CFDictionary Reference. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSDictionary * parameter, you can pass in a
CFDictionaryRef, and where you see a CFDictionaryRef parameter, you can pass in an NSDictionary
instance (you cast one type to the other to suppress compiler warnings). This bridging also applies to concrete
subclasses of NSDictionary. See Interchangeable Data Types for more information on toll-free bridging.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

NSMutableCopying
– mutableCopyWithZone: (page 2094)

NSFastEnumeration
– countByEnumeratingWithState:objects:count: (page 2053)

Tasks

Creating a Dictionary

+ dictionary (page 498)
Creates and returns an empty dictionary.

+ dictionaryWithContentsOfFile: (page 499)
Creates and returns a dictionary using the keys and values found in a file specified by a given path.

+ dictionaryWithContentsOfURL: (page 500)
Creates and returns a dictionary using the keys and values found in a resource specified by a given
URL.

Adopted Protocols 495
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

+ dictionaryWithDictionary: (page 500)
Creates and returns a dictionary containing the keys and values from another given dictionary.

+ dictionaryWithObject:forKey: (page 500)
Creates and returns a dictionary containing a given key and value.

+ dictionaryWithObjects:forKeys: (page 501)
Creates and returns a dictionary containing entries constructed from the contents of an array of keys
and an array of values.

+ dictionaryWithObjects:forKeys:count: (page 502)
Creates and returns a dictionary containing count objects from the objects array.

+ dictionaryWithObjectsAndKeys: (page 503)
Creates and returns a dictionary containing entries constructed from the specified set of values and
keys.

Initializing an NSDictionary Instance

– initWithContentsOfFile: (page 515)
Initializes a newly allocated dictionary using the keys and values found in a file at a given path.

– initWithContentsOfURL: (page 515)
Initializes a newly allocated dictionary using the keys and values found at a given URL.

– initWithDictionary: (page 516)
Initializes a newly allocated dictionary by placing in it the keys and values contained in another given
dictionary.

– initWithDictionary:copyItems: (page 516)
Initializes a newly allocated dictionary using the objects contained in another given dictionary.

– initWithObjects:forKeys: (page 517)
Initializes a newly allocated dictionary with entries constructed from the contents of the objects
and keys arrays.

– initWithObjects:forKeys:count: (page 517)
Initializes a newly allocated dictionary with count entries.

– initWithObjectsAndKeys: (page 518)
Initializes a newly allocated dictionary with entries constructed from the specified set of values and
keys.

Counting Entries

– count (page 505)
Returns the number of entries in the receiver.

Comparing Dictionaries

– isEqualToDictionary: (page 519)
Returns a Boolean value that indicates whether the contents of the receiver are equal to the contents
of another given dictionary.

496 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Accessing Keys and Values

– allKeys (page 504)
Returns a new array containing the receiver’s keys.

– allKeysForObject: (page 504)
Returns a new array containing the keys corresponding to all occurrences of a given object in the
receiver.

– allValues (page 505)
Returns a new array containing the receiver’s values.

– getObjects:andKeys: (page 514)
Returns by reference C arrays of the keys and values in the receiver.

– keyEnumerator (page 519)
Returns an enumerator object that lets you access each key in the receiver.

– keysSortedByValueUsingSelector: (page 520)
Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted by its
values.

– objectEnumerator (page 520)
Returns an enumerator object that lets you access each value in the receiver.

– objectForKey: (page 521)
Returns the value associated with a given key.

– objectsForKeys:notFoundMarker: (page 522)
Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.

– valueForKey: (page 522)
Returns the value associated with a given key.

Storing Dictionaries

– writeToFile:atomically: (page 523)
Writes a property list representation of the contents of the receiver to a given path.

– writeToURL:atomically: (page 524)
Writes a property list representation of the contents of the receiver to a given URL.

Accessing File Attributes

– fileCreationDate (page 508)
Returns the value for the NSFileCreationDate key.

– fileExtensionHidden (page 508)
Returns the value for the NSFileExtensionHidden key.

– fileGroupOwnerAccountID (page 508)
Returns the value for the NSFileGroupOwnerAccountID key.

– fileGroupOwnerAccountName (page 509)
Returns the value for the NSFileGroupOwnerAccountName key.

– fileHFSCreatorCode (page 509)
Returns the value for the NSFileHFSCreatorCode key.

Tasks 497
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

– fileHFSTypeCode (page 510)
Returns the value for the NSFileHFSTypeCode key.

– fileIsAppendOnly (page 510)
Returns the value for the NSFileAppendOnly key.

– fileIsImmutable (page 510)
Returns the value for the NSFileImmutable key.

– fileModificationDate (page 511)
Returns the value for the key NSFileModificationDate.

– fileOwnerAccountID (page 511)
Returns the value for the NSFileOwnerAccountID key.

– fileOwnerAccountName (page 512)
Returns the value for the key NSFileOwnerAccountName.

– filePosixPermissions (page 512)
Returns the value for the key NSFilePosixPermissions.

– fileSize (page 512)
Returns the value for the key NSFileSize.

– fileSystemFileNumber (page 513)
Returns the value for the key NSFileSystemFileNumber.

– fileSystemNumber (page 513)
Returns the value for the key NSFileSystemNumber.

– fileType (page 514)
Returns the value for the key NSFileType.

Creating a Description

– description (page 505)
Returns a string that represents the contents of the receiver, formatted as a property list.

– descriptionInStringsFileFormat (page 506)
Returns a string that represents the contents of the receiver, formatted in .strings file format.

– descriptionWithLocale: (page 506)
Returns a string object that represents the contents of the receiver, formatted as a property list.

– descriptionWithLocale:indent: (page 507)
Returns a string object that represents the contents of the receiver, formatted as a property list.

Class Methods

dictionary
Creates and returns an empty dictionary.

+ (id)dictionary

498 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Return Value
A new empty dictionary.

Discussion
This method is declared primarily for use with mutable subclasses of NSDictionary.

If you don’t want a temporary object, you can also create an empty dictionary using alloc... and init.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitMovieShuffler
QTSSInspector
StickiesExample

Declared In
NSDictionary.h

dictionaryWithContentsOfFile:
Creates and returns a dictionary using the keys and values found in a file specified by a given path.

+ (id)dictionaryWithContentsOfFile:(NSString *)path

Parameters
path

A full or relative pathname. The file identified by path must contain a string representation of a
property list whose root object is a dictionary. The dictionary must contain only property list objects
(instances of NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details,
see Property List Programming Guide.

Return Value
A new dictionary that contains the dictionary at path, or nil if there is a file error or if the contents of the
file are an invalid representation of a dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithContentsOfFile: (page 515)

Related Sample Code
CapabilitiesSample
Cocoa - SGDataProc
LSMSmartCategorizer
Spotlight
SpotlightFortunes

Declared In
NSDictionary.h

Class Methods 499
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

dictionaryWithContentsOfURL:
Creates and returns a dictionary using the keys and values found in a resource specified by a given URL.

+ (id)dictionaryWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

An URL that identifies a resource containing a string representation of a property list whose root
object is a dictionary. The dictionary must contain only property list objects (instances of NSData,
NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details, see Property List
Programming Guide.

Return Value
A new dictionary that contains the dictionary at aURL, or nil if there is an error or if the contents of the
resource are an invalid representation of a dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithContentsOfURL: (page 515)

Declared In
NSDictionary.h

dictionaryWithDictionary:
Creates and returns a dictionary containing the keys and values from another given dictionary.

+ (id)dictionaryWithDictionary:(NSDictionary *)otherDictionary

Parameters
otherDictionary

A dictionary containing keys and values for the new dictionary.

Return Value
A new dictionary containing the keys and values found in otherDictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithDictionary: (page 516)

Related Sample Code
QTSSInspector

Declared In
NSDictionary.h

dictionaryWithObject:forKey:
Creates and returns a dictionary containing a given key and value.

500 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

+ (id)dictionaryWithObject:(id)anObject forKey:(id)aKey

Parameters
anObject

The value corresponding to aKey.

aKey
The key for anObject.

Return Value
A new dictionary containing a single object, anObject, for a single key, aKey.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithObjects:forKeys: (page 501)
+ dictionaryWithObjects:forKeys:count: (page 502)
+ dictionaryWithObjectsAndKeys: (page 503)

Related Sample Code
iSpend
PDF Annotation Editor
QTCoreVideo301
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSDictionary.h

dictionaryWithObjects:forKeys:
Creates and returns a dictionary containing entries constructed from the contents of an array of keys and an
array of values.

+ (id)dictionaryWithObjects:(NSArray *)objects forKeys:(NSArray *)keys

Parameters
objects

An array containing the values for the new dictionary.

keys
An array containing the keys for the new dictionary. Each key is copied (using copyWithZone: (page
2042); keys must conform to the NSCopying protocol), and the copy is added to the dictionary.

Return Value
A new dictionary containing entries constructed from the contents of objects and keys.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.
An NSInvalidArgumentException is raised if objects and keys don’t have the same number of elements.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 501
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

See Also
– initWithObjects:forKeys: (page 517)
+ dictionaryWithObject:forKey: (page 500)
+ dictionaryWithObjects:forKeys:count: (page 502)
+ dictionaryWithObjectsAndKeys: (page 503)

Related Sample Code
ImageMapExample
TimelineToTC

Declared In
NSDictionary.h

dictionaryWithObjects:forKeys:count:
Creates and returns a dictionary containing count objects from the objects array.

+ (id)dictionaryWithObjects:(id *)objects forKeys:(id *)keys count:(NSUInteger)count

Parameters
objects

A C array of values for the new dictionary.

keys
A C array of keys for the new dictionary. Each key is copied (using copyWithZone: (page 2042); keys
must conform to the NSCopying protocol), and the copy is added to the new dictionary.

count
The number of elements to use from the keys and objects arrays. count must not exceed the
number of elements in objects or keys.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.
An NSInvalidArgumentException is raised if a key or value object is nil.

The following code fragment illustrates how to create a dictionary that associates the alphabetic characters
with their ASCII values:

static const NSInteger N_ENTRIES = 26;
NSDictionary *asciiDict;
NSString *keyArray[N_ENTRIES];
NSNumber *valueArray[N_ENTRIES];
NSInteger i;

for (i = 0; i < N_ENTRIES; i++) {

 char charValue = 'a' + i;
 keyArray[i] = [NSString stringWithFormat:@"%c", charValue];
 valueArray[i] = [NSNumber numberWithChar:charValue];
}

asciiDict = [NSDictionary dictionaryWithObjects:(id *)valueArray
 forKeys:(id *)keyArray count:N_ENTRIES];

502 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithObjects:forKeys:count: (page 517)
+ dictionaryWithObject:forKey: (page 500)
+ dictionaryWithObjects:forKeys: (page 501)
+ dictionaryWithObjectsAndKeys: (page 503)

Declared In
NSDictionary.h

dictionaryWithObjectsAndKeys:
Creates and returns a dictionary containing entries constructed from the specified set of values and keys.

+ (id)dictionaryWithObjectsAndKeys:(id)firstObject , ...

Parameters
firstObject

The first value to add to the new dictionary.

...
First the key for firstObject, then a null-terminated list of alternating values and keys. If any key
is nil, an NSInvalidArgumentException is raised.

Discussion
This method is similar to dictionaryWithObjects:forKeys: (page 501), differing only in the way key-value
pairs are specified.

For example:

NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
 @"value1", @"key1", @"value2", @"key2", nil];

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithObjectsAndKeys: (page 518)
+ dictionaryWithObject:forKey: (page 500)
+ dictionaryWithObjects:forKeys: (page 501)
+ dictionaryWithObjects:forKeys:count: (page 502)

Related Sample Code
CIAnnotation
iSpend
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Declared In
NSDictionary.h

Class Methods 503
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Instance Methods

allKeys
Returns a new array containing the receiver’s keys.

- (NSArray *)allKeys

Return Value
A new array containing the receiver’s keys, or an empty array if the receiver has no entries.

Discussion
The order of the elements in the array is not defined.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allValues (page 505)
– allKeysForObject: (page 504)
– getObjects:andKeys: (page 514)

Related Sample Code
Core Data HTML Store
CoreRecipes
EnhancedAudioBurn
ImageMapExample
StickiesExample

Declared In
NSDictionary.h

allKeysForObject:
Returns a new array containing the keys corresponding to all occurrences of a given object in the receiver.

- (NSArray *)allKeysForObject:(id)anObject

Parameters
anObject

The value to look for in the receiver.

Return Value
A new array containing the keys corresponding to all occurrences of anObject in the receiver. If no object
matching anObject is found, returns an empty array.

Discussion
Each object in the receiver is sent an isEqual: (page 2101) message to determine if it’s equal to anObject.

Availability
Available in Mac OS X v10.0 and later.

504 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

See Also
– allKeys (page 504)
– keyEnumerator (page 519)

Declared In
NSDictionary.h

allValues
Returns a new array containing the receiver’s values.

- (NSArray *)allValues

Return Value
A new array containing the receiver’s values, or an empty array if the receiver has no entries.

Discussion
The order of the values in the array isn’t defined.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allKeys (page 504)
– getObjects:andKeys: (page 514)
– objectEnumerator (page 520)

Related Sample Code
ImageMapExample

Declared In
NSDictionary.h

count
Returns the number of entries in the receiver.

- (NSUInteger)count

Return Value
The number of entries in the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDictionary.h

description
Returns a string that represents the contents of the receiver, formatted as a property list.

Instance Methods 505
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

- (NSString *)description

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
If each key in the receiver is an NSString object, the entries are listed in ascending order by key, otherwise
the order in which the entries are listed is undefined. This method is intended to produce readable output
for debugging purposes, not for serializing data. If you want to store dictionary data for later retrieval, see
Property List Programming Guide and Archives and Serializations Programming Guide for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

See Also
– descriptionWithLocale: (page 506)
– descriptionWithLocale:indent: (page 507)

Related Sample Code
Sketch-112
TextLinks

Declared In
NSDictionary.h

descriptionInStringsFileFormat
Returns a string that represents the contents of the receiver, formatted in .strings file format.

- (NSString *)descriptionInStringsFileFormat

Return Value
A string that represents the contents of the receiver, formatted in .strings file format.

Discussion
The order in which the entries are listed is undefined.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDictionary.h

descriptionWithLocale:
Returns a string object that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale

506 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Parameters
locale

An object that specifies options used for formatting each of the receiver’s keys and values; pass nil
if you don’t want them formatted.

Prior to Mac OS X v10.5, locale must be an instance of NSDictionary. With Mac OS X v10.5 and later,
it may also be an NSLocale object.

Discussion
For a description of how locale is applied to each element in the receiver, see
descriptionWithLocale:indent: (page 507).

If each key in the dictionary responds to compare:, the entries are listed in ascending order by key, otherwise
the order in which the entries are listed is undefined.

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 505)
– descriptionWithLocale:indent: (page 507)

Declared In
NSDictionary.h

descriptionWithLocale:indent:
Returns a string object that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale indent:(NSUInteger)level

Parameters
locale

An object that specifies options used for formatting each of the receiver’s keys and values; pass nil
if you don’t want them formatted.

Prior to Mac OS X v10.5, locale must be an instance of NSDictionary. With Mac OS X v10.5 and later,
it may also be an NSLocale object.

level
Specifies a level of indent, to make the output more readable: set level to 0 to use four spaces to
indent, or 1 to indent the output with a tab character

Return Value
A string object that represents the contents of the receiver, formatted as a property list.

Discussion
The returned NSString object contains the string representations of each of the receiver’s entries.
descriptionWithLocale:indent: obtains the string representation of a given key or value as follows:

 ■ If the object is an NSString object, it is used as is.

 ■ If the object responds to descriptionWithLocale:indent:, that method is invoked to obtain the
object’s string representation.

 ■ If the object responds to descriptionWithLocale:, that method is invoked to obtain the object’s
string representation.

Instance Methods 507
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

 ■ If none of the above conditions is met, the object’s string representation is obtained by invoking its
description method.

If each key in the dictionary responds to compare:, the entries are listed in ascending order, by key. Otherwise,
the order in which the entries are listed is undefined.

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 505)
– descriptionWithLocale: (page 506)

Declared In
NSDictionary.h

fileCreationDate
Returns the value for the NSFileCreationDate key.

- (NSDate *)fileCreationDate

Return Value
The value for the NSFileCreationDate key, or nil if the receiver doesn’t have an entry for the key.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSFileManager.h

fileExtensionHidden
Returns the value for the NSFileExtensionHidden key.

- (BOOL)fileExtensionHidden

Return Value
The value for the NSFileExtensionHidden key, or NO if the receiver doesn’t have an entry for the key.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSFileManager.h

fileGroupOwnerAccountID
Returns the value for the NSFileGroupOwnerAccountID key.

- (NSNumber *)fileGroupOwnerAccountID

508 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Return Value
The value for the NSFileGroupOwnerAccountID key, or nil if the receiver doesn’t have an entry for the
key.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSFileManager.h

fileGroupOwnerAccountName
Returns the value for the NSFileGroupOwnerAccountName key.

- (NSString *)fileGroupOwnerAccountName

Return Value
The value for the key NSFileGroupOwnerAccountName, or nil if the receiver doesn’t have an entry for the
key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator), and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the name of the corresponding
file’s group.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

fileHFSCreatorCode
Returns the value for the NSFileHFSCreatorCode key.

- (OSType)fileHFSCreatorCode

Return Value
The value for the NSFileHFSCreatorCode key, or 0 if the receiver doesn’t have an entry for the key.

Discussion
See HFS File Types for details on the OSType data type.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSFileManager.h

Instance Methods 509
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

fileHFSTypeCode
Returns the value for the NSFileHFSTypeCode key.

- (OSType)fileHFSTypeCode

Return Value
The value for the NSFileHFSTypeCode key, or 0 if the receiver doesn’t have an entry for the key.

Discussion
See HFS File Types for details on the OSType data type.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSFileManager.h

fileIsAppendOnly
Returns the value for the NSFileAppendOnly key.

- (BOOL)fileIsAppendOnly

Return Value
The value for the NSFileAppendOnly key, or NO if the receiver doesn’t have an entry for the key.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSFileManager.h

fileIsImmutable
Returns the value for the NSFileImmutable key.

- (BOOL)fileIsImmutable

Return Value
The value for the NSFileImmutable key, or NO if the receiver doesn’t have an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator), and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

510 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Declared In
NSFileManager.h

fileModificationDate
Returns the value for the key NSFileModificationDate.

- (NSDate *)fileModificationDate

Return Value
The value for the key NSFileModificationDate, or nil if the receiver doesn’t have an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator), and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the date that the file’s data was
last modified.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSFileManager.h

fileOwnerAccountID
Returns the value for the NSFileOwnerAccountID key.

- (NSNumber *)fileOwnerAccountID

Return Value
The value for the NSFileOwnerAccountID key, or nil if the receiver doesn’t have an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator), and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the account name of the file’s
owner.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSFileManager.h

Instance Methods 511
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

fileOwnerAccountName
Returns the value for the key NSFileOwnerAccountName.

- (NSString *)fileOwnerAccountName

Return Value
The value for the key NSFileOwnerAccountName, or nil if the receiver doesn’t have an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator), and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the account name of the file’s
owner.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

filePosixPermissions
Returns the value for the key NSFilePosixPermissions.

- (NSUInteger)filePosixPermissions

Return Value
The value, as an unsigned long, for the key NSFilePosixPermissions, or 0 if the receiver doesn’t have
an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator), and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file’s permissions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

fileSize
Returns the value for the key NSFileSize.

- (unsigned long long)fileSize

Return Value
The value, as an unsigned long long, for the key NSFileSize, or 0 if the receiver doesn’t have an entry
for the key.

512 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Discussion
This and the other file... methods are for use with a dictionary such, as those returned from the methods
fileAttributesAtPath:traverseLink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator), and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file’s size.

Special Considerations

If the file has a resource fork, the returned value does not include the size of the resource fork.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

fileSystemFileNumber
Returns the value for the key NSFileSystemFileNumber.

- (NSUInteger)fileSystemFileNumber

Return Value
The value, as an unsigned long, for the key NSFileSystemFileNumber, or 0 if the receiver doesn’t have
an entry for the key

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator), and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file’s inode.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

fileSystemNumber
Returns the value for the key NSFileSystemNumber.

- (NSInteger)fileSystemNumber

Return Value
The value, as an unsigned long, for the key NSFileSystemNumber, or 0 if the receiver doesn’t have an
entry for the key

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator), and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the ID of the device containing the
file.

Instance Methods 513
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

fileType
Returns the value for the key NSFileType.

- (NSString *)fileType

Return Value
The value for the key NSFileType, or nil if the receiver doesn’t have an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the methods
fileAttributesAtPath:traverseLink: (page 645) (NSFileManager), directoryAttributes (page
526) (NSDirectoryEnumerator), and fileAttributes (page 526) (NSDirectoryEnumerator), that
represents the POSIX attributes of a file or directory. This method returns the file’s type. Possible return values
are described in the “Constants” section of NSFileManager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

getObjects:andKeys:
Returns by reference C arrays of the keys and values in the receiver.

- (void)getObjects:(id *)objects andKeys:(id *)keys

Parameters
objects

Upon return, contains a C array of the values in the receiver.

keys
Upon return, contains a C array of the keys in the receiver.

Discussion
The elements in the returned arrays are ordered such that the first element in objects is the value for the
first key in keys and so on.

Availability
Available in Mac OS X v10.5 and later.

See Also
– allKeys (page 504)
– allValues (page 505)
– objectForKey: (page 521)
– objectsForKeys:notFoundMarker: (page 522)

514 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Declared In
NSDictionary.h

initWithContentsOfFile:
Initializes a newly allocated dictionary using the keys and values found in a file at a given path.

- (id)initWithContentsOfFile:(NSString *)path

Parameters
path

A full or relative pathname. The file identified by path must contain a string representation of a
property list whose root object is a dictionary. The dictionary must contain only property list objects
(instances of NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details,
see Property List Programming Guide.

Return Value
An initialized object—which might be different than the original receiver—that contains the dictionary at
path, or nil if there is a file error or if the contents of the file are an invalid representation of a dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithContentsOfFile: (page 499)

Declared In
NSDictionary.h

initWithContentsOfURL:
Initializes a newly allocated dictionary using the keys and values found at a given URL.

- (id)initWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

An URL that identifies a resource containing a string representation of a property list whose root
object is a dictionary. The dictionary must contain only property list objects (instances of NSData,
NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details, see Property List
Programming Guide.

Return Value
An initialized object—which might be different than the original receiver—that contains the dictionary at
aURL, or nil if there is an error or if the contents of the resource are an invalid representation of a dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithContentsOfURL: (page 500)

Declared In
NSDictionary.h

Instance Methods 515
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

initWithDictionary:
Initializes a newly allocated dictionary by placing in it the keys and values contained in another given
dictionary.

- (id)initWithDictionary:(NSDictionary *)otherDictionary

Parameters
otherDictionary

A dictionary containing keys and values for the new dictionary.

Return Value
An initialized object—which might be different than the original receiver—containing the keys and values
found in otherDictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithDictionary: (page 500)

Declared In
NSDictionary.h

initWithDictionary:copyItems:
Initializes a newly allocated dictionary using the objects contained in another given dictionary.

- (id)initWithDictionary:(NSDictionary *)otherDictionary copyItems:(BOOL)flag

Parameters
otherDictionary

A dictionary containing keys and values for the new dictionary.

flag
A flag that specifies whether values in otherDictionary should be copied. If YES, the members of
otherDictionary are copied, and the copies are added to the receiver. If NO, the values of
otherDictionary are retained by the new dictionary.

Return Value
An initialized object—which might be different than the original receiver—containing the keys and values
found in otherDictionary.

Discussion
Note that copyWithZone: (page 2042) is used to make copies. Thus, the receiver’s new member objects may
be immutable, even though their counterparts in otherDictionary were mutable. Also, members must
conform to the NSCopying protocol.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithDictionary: (page 516)

Declared In
NSDictionary.h

516 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

initWithObjects:forKeys:
Initializes a newly allocated dictionary with entries constructed from the contents of the objects and keys
arrays.

- (id)initWithObjects:(NSArray *)objects forKeys:(NSArray *)keys

Parameters
objects

An array containing the values for the new dictionary.

keys
An array containing the keys for the new dictionary. Each key is copied (using copyWithZone: (page
2042); keys must conform to the NSCopying protocol), and the copy is added to the new dictionary.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.
An NSInvalidArgumentException is raised if the objects and keys arrays do not have the same number
of elements.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithObjects:forKeys: (page 501)
– initWithObjects:forKeys:count: (page 517)
– initWithObjectsAndKeys: (page 518)

Related Sample Code
QTCoreVideo301

Declared In
NSDictionary.h

initWithObjects:forKeys:count:
Initializes a newly allocated dictionary with count entries.

- (id)initWithObjects:(id *)objects forKeys:(id *)keys count:(NSUInteger)count

Parameters
objects

A C array of values for the new dictionary.

keys
A C array of keys for the new dictionary. Each key is copied (using copyWithZone: (page 2042); keys
must conform to the NSCopying protocol), and the copy is added to the new dictionary.

count
The number of elements to use from the keys and objects arrays. count must not exceed the
number of elements in objects or keys.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it goes.
An NSInvalidArgumentException is raised if a key or value object is nil.

Instance Methods 517
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithObjects:forKeys:count: (page 502)
– initWithObjects:forKeys: (page 517)
– initWithObjectsAndKeys: (page 518)

Declared In
NSDictionary.h

initWithObjectsAndKeys:
Initializes a newly allocated dictionary with entries constructed from the specified set of values and keys.

- (id)initWithObjectsAndKeys:(id)firstObject , ...

Parameters
firstObject

The first value to add to the new dictionary.

...
First the key for firstObject, then a null-terminated list of alternating values and keys. If any key
is nil, an NSInvalidArgumentException is raised.

Discussion
This method is similar to initWithObjects:forKeys: (page 517), differing only in the way in which the
key-value pairs are specified.

For example:

NSDictionary *dict = [[NSDictionary alloc] initWithObjectsAndKeys:
 @"value1", @"key1", @"value2", @"key2", nil];

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithObjectsAndKeys: (page 503)
– initWithObjects:forKeys: (page 517)
– initWithObjects:forKeys:count: (page 517)

Related Sample Code
GLChildWindowDemo
QTRecorder
Quartz Composer WWDC 2005 TextEdit
SpeedometerView
TextEditPlus

Declared In
NSDictionary.h

518 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

isEqualToDictionary:
Returns a Boolean value that indicates whether the contents of the receiver are equal to the contents of
another given dictionary.

- (BOOL)isEqualToDictionary:(NSDictionary *)otherDictionary

Parameters
otherDictionary

The dictionary with which to compare the receiver.

Return Value
YES if the contents of otherDictionary are equal to the contents of the receiver, otherwise NO.

Discussion
Two dictionaries have equal contents if they each hold the same number of entries and, for a given key, the
corresponding value objects in each dictionary satisfy the isEqual: (page 2101) test.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEqual: (page 2101) (NSObject protocol)

Declared In
NSDictionary.h

keyEnumerator
Returns an enumerator object that lets you access each key in the receiver.

- (NSEnumerator *)keyEnumerator

Return Value
An enumerator object that lets you access each key in the receiver.

Discussion
The following code fragment illustrates how you might use this method.

NSEnumerator *enumerator = [myDictionary keyEnumerator];
id key;

while ((key = [enumerator nextObject])) {
 /* code that uses the returned key */
}

If you use this method with instances of mutable subclasses of NSDictionary, your code should not modify
the entries during enumeration. If you intend to modify the entries, use the allKeys (page 504) method to
create a “snapshot” of the dictionary’s keys. Then use this snapshot to traverse the entries, modifying them
along the way.

Note that the objectEnumerator (page 520) method provides a convenient way to access each value in
the dictionary.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 519
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

See Also
– allKeys (page 504)
– allKeysForObject: (page 504)
– getObjects:andKeys: (page 514)
– objectEnumerator (page 520)
– nextObject (page 558) (NSEnumerator)

Related Sample Code
ColorSyncDevices-Cocoa
LSMSmartCategorizer
StickiesExample

Declared In
NSDictionary.h

keysSortedByValueUsingSelector:
Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted by its values.

- (NSArray *)keysSortedByValueUsingSelector:(SEL)comparator

Parameters
comparator

A selector that specifies the method to use to compare the values in the receiver.

The comparator method should return NSOrderedAscending if the receiver is smaller than the
argument, NSOrderedDescending if the receiver is larger than the argument, and NSOrderedSame
if they are equal.

Return Value
An array of the receiver’s keys, in the order they would be in if the receiver were sorted by its values.

Discussion
Pairs of dictionary values are compared using the comparison method specified by comparator; the
comparator message is sent to one of the values and has as its single argument the other value from the
dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allKeys (page 504)
– sortedArrayUsingSelector: (page 138) (NSArray)

Declared In
NSDictionary.h

objectEnumerator
Returns an enumerator object that lets you access each value in the receiver.

- (NSEnumerator *)objectEnumerator

520 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Return Value
An enumerator object that lets you access each value in the receiver.

Discussion
The following code fragment illustrates how you might use the method.

NSEnumerator *enumerator = [myDictionary objectEnumerator];
id value;

while ((value = [enumerator nextObject])) {
 /* code that acts on the dictionary’s values */
}

If you use this method with instances of mutable subclasses of NSDictionary, your code should not modify
the entries during enumeration. If you intend to modify the entries, use the allValues (page 505) method
to create a “snapshot” of the dictionary’s values. Work from this snapshot to modify the values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyEnumerator (page 519)
– nextObject (page 558) (NSEnumerator)

Declared In
NSDictionary.h

objectForKey:
Returns the value associated with a given key.

- (id)objectForKey:(id)aKey

Parameters
aKey

The key for which to return the corresponding value.

Return Value
The value associated with aKey, or nil if no value is associated with aKey.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allKeys (page 504)
– allValues (page 505)
– getObjects:andKeys: (page 514)

Related Sample Code
iSpend
People
QTCoreVideo301
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Instance Methods 521
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Declared In
NSDictionary.h

objectsForKeys:notFoundMarker:
Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.

- (NSArray *)objectsForKeys:(NSArray *)keys notFoundMarker:(id)anObject

Parameters
keys

The keys for which to return corresponding values.

anObject
The marker object to place in the corresponding element of the returned array if an object isn’t found
in the receiver to correspond to a given key.

Discussion
The objects in the returned array and the keys array have a one-for-one correspondence, so that the nth
object in the returned array corresponds to the nth key in keys.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allKeys (page 504)
– allValues (page 505)
– getObjects:andKeys: (page 514)

Declared In
NSDictionary.h

valueForKey:
Returns the value associated with a given key.

- (id)valueForKey:(NSString *)key

Parameters
key

The key for which to return the corresponding value. Note that when using key-value coding, the key
must be a string (see Key-Value Coding Fundamentals).

Return Value
The value associated with key.

Discussion
If key does not start with “@”, invokes objectForKey: (page 521). If key does start with “@”, strips the “@”
and invokes [super valueForKey:] with the rest of the key.

Availability
Available in Mac OS X v10.3 and later.

522 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

See Also
– setValue:forKey: (page 962) (NSMutableDictionary)
– getObjects:andKeys: (page 514)

Related Sample Code
CustomAtomicStoreSubclass
ImageMapExample
NSOperationSample
SimpleCalendar
StickiesExample

Declared In
NSKeyValueCoding.h

writeToFile:atomically:
Writes a property list representation of the contents of the receiver to a given path.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag

Parameters
path

The path at which to write the file.

If path contains a tilde (~) character, you must expand it with
stringByExpandingTildeInPath (page 1602) before invoking this method.

flag
A flag that specifies whether the file should be written atomically.

If flag is YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed to path.
If flag is NO, the dictionary is written directly to path. The YES option guarantees that path, if it
exists at all, won’t be corrupted even if the system should crash during writing.

Return Value
YES if the file is written successfully, otherwise NO.

Discussion
This method recursively validates that all the contained objects are property list objects (instances of NSData,
NSDate, NSNumber, NSString, NSArray, or NSDictionary) before writing out the file, and returns NO if
all the objects are not property list objects, since the resultant file would not be a valid property list.

If the receiver’s contents are all property list objects, the file written by this method can be used to initialize
a new dictionary with the class method dictionaryWithContentsOfFile: (page 499) or the instance
method initWithContentsOfFile: (page 515).

For more information about property lists, see Property List Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDictionary.h

Instance Methods 523
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

writeToURL:atomically:
Writes a property list representation of the contents of the receiver to a given URL.

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)flag

Parameters
aURL

The URL to which to write the receiver.

flag
A flag that specifies whether the output should be written atomically.

If flag is YES, the receiver is written to an auxiliary location, and then the auxiliary location is renamed
to aURL. If flag is NO, the dictionary is written directly to aURL. The YES option guarantees that aURL,
if it exists at all, won’t be corrupted even if the system should crash during writing. flag is ignored
if aURL is of a type that cannot be written atomically.

Return Value
YES if the location is written successfully, otherwise NO.

Discussion
This method recursively validates that all the contained objects are property list objects (instances of NSData,
NSDate, NSNumber, NSString, NSArray, or NSDictionary) before writing out the file, and returns NO if
all the objects are not property list objects, since the resultant output would not be a valid property list.

If the receiver’s contents are all property list objects, the location written by this method can be used to
initialize a new dictionary with the class method dictionaryWithContentsOfURL: (page 500) or the
instance method initWithContentsOfURL: (page 515).

For more information about property lists, see Property List Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDictionary.h

524 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 35

NSDictionary Class Reference

Inherits from NSEnumerator : NSObject

Conforms to NSFastEnumeration (NSEnumerator)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSFileManager.h

Companion guide Low-Level File Management Programming Topics

Related sample code BundleLoader
DeskPictAppDockMenu
NSOperationSample

Overview

An NSDirectoryEnumerator object enumerates the contents of a directory, returning the pathnames of
all files and directories contained within that directory. These pathnames are relative to the directory.

You obtain a directory enumerator using NSFileManager’s enumeratorAtPath: (page 644) method. For
more details, see Low-Level File Management Programming Topics.

An enumeration is recursive, including the files of all subdirectories, and crosses device boundaries. An
enumeration does not resolve symbolic links, or attempt to traverse symbolic links that point to directories.

Tasks

Getting File and Directory Attributes

– directoryAttributes (page 526)
Returns an NSDictionary object that contains the attributes of the directory at which enumeration
started.

– fileAttributes (page 526)
Returns an NSDictionary object that contains the attributes of the most recently returned file or
subdirectory (as referenced by the pathname).

Overview 525
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

NSDirectoryEnumerator Class Reference

Skipping Subdirectories

– skipDescendents (page 527)
Causes the receiver to skip recursion into the most recently obtained subdirectory.

Instance Methods

directoryAttributes
Returns an NSDictionary object that contains the attributes of the directory at which enumeration started.

- (NSDictionary *)directoryAttributes

Return Value
An NSDictionary object that contains the attributes of the directory at which enumeration started.

Discussion
See the description of thefileAttributesAtPath:traverseLink: (page 645) method ofNSFileManager
for details on obtaining the attributes from the dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
createDirectoryAtPath:attributes: (page 637) (NSFileManager)

Declared In
NSFileManager.h

fileAttributes
Returns an NSDictionary object that contains the attributes of the most recently returned file or subdirectory
(as referenced by the pathname).

- (NSDictionary *)fileAttributes

Return Value
An NSDictionary object that contains the attributes of the most recently returned file or subdirectory (as
referenced by the pathname).

Discussion
See the description of thefileAttributesAtPath:traverseLink: (page 645) method ofNSFileManager
for details on obtaining the attributes from the dictionary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NSOperationSample

526 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

NSDirectoryEnumerator Class Reference

Declared In
NSFileManager.h

skipDescendents
Causes the receiver to skip recursion into the most recently obtained subdirectory.

- (void)skipDescendents

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

Instance Methods 527
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

NSDirectoryEnumerator Class Reference

528 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 36

NSDirectoryEnumerator Class Reference

Inherits from NSProxy

Conforms to NSCoding
NSObject (NSProxy)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDistantObject.h

Companion guide Distributed Objects Programming Topics

Overview

NSDistantObject is a concrete subclass of NSProxy that defines proxies for objects in other applications
or threads. When a distant object receives a message, in most cases it forwards the message through its
NSConnection object to the real object in another application, supplying the return value to the sender of
the message if one is received, and propagating any exception back to the invoker of the method that raised
it.

NSDistantObject adds two useful instance methods to those defined by NSProxy:
connectionForProxy (page 532) returns the NSConnection object that handles the receiver;
setProtocolForProxy: (page 533) establishes the set of methods the real object is known to respond to,
saving the network traffic required to determine the argument and return types the first time a particular
selector is forwarded to the remote proxy.

There are two kinds of distant object: local proxies and remote proxies. A local proxy is created by an
NSConnection object the first time an object is sent to another application. It is used by the connection for
bookkeeping purposes and should be considered private. The local proxy is transmitted over the network
using the NSCoding protocol to create the remote proxy, which is the object that the other application uses.
NSDistantObject defines methods for an NSConnection object to create instances, but they’re intended
only for subclasses to override—you should never invoke them directly. Use the
rootProxyForConnectionWithRegisteredName:host: (page 332) method of NSConnection, which
sets up all the required state for an object-proxy pair.

Overview 529
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDistantObject Class Reference

Important: NSDistantObject conforms to the NSCoding protocol, but only supports coding by an
NSPortCoder. NSDistantObject and its subclasses do not support archiving.

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

Tasks

Creating a Local Proxy

+ proxyWithLocal:connection: (page 531)
Returns a local proxy for a given object and connection, creating the proxy if necessary.

– initWithLocal:connection: (page 532)
Initializes an NSDistantObject object as a local proxy for a given object.

Creating a Remote Proxy

+ proxyWithTarget:connection: (page 531)
Returns a remote proxy for a given object and connection, creating the proxy if necessary.

– initWithTarget:connection: (page 533)
Initializes a newly allocated NSDistantObject as a remote proxy for remoteObject, which is an id in
another thread or another application’s address space.

Getting a Proxy’s NSConnection

– connectionForProxy (page 532)
Returns the connection used by the receiver.

Setting a Proxy’s Protocol

– setProtocolForProxy: (page 533)
Sets the methods known to be handled by the receiver to those in a given protocol.

530 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDistantObject Class Reference

Class Methods

proxyWithLocal:connection:
Returns a local proxy for a given object and connection, creating the proxy if necessary.

+ (NSDistantObject *)proxyWithLocal:(id)anObject connection:(NSConnection
*)aConnection

Parameters
anObject

An object in the receiver’s address space.

aConnection
The connection for the returned proxy.

Return Value
A local proxy for anObject and aConnection, creating it if necessary.

Discussion
Other applications connect to the proxy using the NSConnection
connectionWithRegisteredName:host: (page 330) class method.

Local proxies should be considered private to their NSConnection objects. Only an NSConnection object
should use this method to create them, and your code shouldn’t retain or otherwise use local proxies.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithLocal:connection: (page 532)

Declared In
NSDistantObject.h

proxyWithTarget:connection:
Returns a remote proxy for a given object and connection, creating the proxy if necessary.

+ (NSDistantObject *)proxyWithTarget:(id)remoteObject connection:(NSConnection
*)aConnection

Parameters
remoteObject

An object in another thread or another application’s address space.

aConnection
The connection to set as the NSConnection object for the returned proxy—it should have been
created using the NSConnection connectionWithRegisteredName:host: (page 330) class
method.

Return Value
A remote proxy for remoteObject and aConnection, creating the proxy if necessary

Class Methods 531
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDistantObject Class Reference

Discussion
A remote proxy cannot be used until its connection's peer has a local proxy representing remoteObject in
the other application.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithTarget:connection: (page 533)

Declared In
NSDistantObject.h

Instance Methods

connectionForProxy
Returns the connection used by the receiver.

- (NSConnection *)connectionForProxy

Return Value
The connection used by the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDistantObject.h

initWithLocal:connection:
Initializes an NSDistantObject object as a local proxy for a given object.

- (id)initWithLocal:(id)anObject connection:(NSConnection *)aConnection

Parameters
anObject

An object in the receiver’s address space.

aConnection
The connection for the returned proxy.

Return Value
An initialized NSDistantObject object that serves as a local proxy for anObject. If a proxy for anObject
and aConnection already exists, the receiver is released and the existing proxy is retained and returned.

Discussion
Other applications connect to the proxy using the
NSConnectionconnectionWithRegisteredName:host: (page 330) class method.

532 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDistantObject Class Reference

Local proxies should be considered private to their NSConnection objects. Only an NSConnection object
should use this method to create them, and your code shouldn’t retain or otherwise use local proxies.

This is the designated initializer for local proxies. It returns an initialized object, which might be different
than the original receiver

Availability
Available in Mac OS X v10.0 and later.

See Also
+ proxyWithLocal:connection: (page 531)

Declared In
NSDistantObject.h

initWithTarget:connection:
Initializes a newly allocated NSDistantObject as a remote proxy for remoteObject, which is an id in another
thread or another application’s address space.

- (id)initWithTarget:(id)remoteObject connection:(NSConnection *)aConnection

Parameters
remoteObject

An object in another thread or another application’s address space.

aConnection
The connection to set as the NSConnection object for the returned proxy—it should have been
created using theNSConnectionconnectionWithRegisteredName:host: (page 330) class method.

Return Value
An NSDistantObject object initialized as a remote proxy for remoteObject. If a proxy for remoteObject
and aConnection already exists, the receiver is released and the existing proxy is retained and returned.

Discussion
A remote proxy can’t be used until its connection’s peer has a local proxy representing remoteObject in
the other application.

This is the designated initializer for remote proxies. It returns an initialized object, which might be different
than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ proxyWithTarget:connection: (page 531)

Declared In
NSDistantObject.h

setProtocolForProxy:
Sets the methods known to be handled by the receiver to those in a given protocol.

Instance Methods 533
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDistantObject Class Reference

- (void)setProtocolForProxy:(Protocol *)aProtocol

Parameters
aProtocol

The protocol for the receiver.

Discussion
Setting a protocol for a remote proxy reduces network traffic needed to determine method argument and
return types.

In order to encode a message’s arguments for transmission over the network, the types of those arguments
must be known in advance. When they’re not known, the distributed objects system must send an initial
message just to get those types, doubling the network traffic for every new message sent. Setting a protocol
alleviates this need for methods defined by the protocol. You can still send messages that aren’t declared in
aProtocol—in this case the initial message is sent to determine the types, and then the real message is
sent.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SimpleThreads

Declared In
NSDistantObject.h

534 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 37

NSDistantObject Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSConnection.h

Companion guide Distributed Objects Programming Topics

Overview

NSDistantObjectRequest objects are used by the distributed objects system to help handle invocations
between different processes. You should never create NSDistantObjectRequest objects directly. Unless
you are getting involved with the low-level details of distributed objects, there should never be a need to
access an NSDistantObjectRequest. To intercept and possibly process requests yourself, implement the
NSConnection delegate method connection:handleRequest: (page 350).

Tasks

Getting Information About a Request

– connection (page 536)
Returns the NSConnection object involved in the request.

– conversation (page 536)
Returns the token object representing the conversation in which the receiver was created.

– invocation (page 536)
Returns the NSInvocation object for the request.

Raising a Remote Exception

– replyWithException: (page 537)
Sends a reply back to the remote object making the distant object request.

Overview 535
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDistantObjectRequest Class Reference

Instance Methods

connection
Returns the NSConnection object involved in the request.

- (NSConnection *)connection

Return Value
The NSConnection object involved in the request.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

conversation
Returns the token object representing the conversation in which the receiver was created.

- (id)conversation

Return Value
The token object representing the conversation in which the receiver was created.

Discussion
If both ends of the distributed objects connection has independentConversationQueueing (page 336)
set to NO (the default), the conversation object is always nil. Otherwise, it is either a proxy (or a copy) of the
object created by the sender of the message or a locally created object, depending which end of the
connection has independent queueing on.

Availability
Available in Mac OS X v10.0 and later.

See Also
createConversationForConnection: (page 351) (NSConnection)

Declared In
NSConnection.h

invocation
Returns the NSInvocation object for the request.

- (NSInvocation *)invocation

Return Value
The NSInvocation object for the request.

536 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDistantObjectRequest Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

replyWithException:
Sends a reply back to the remote object making the distant object request.

- (void)replyWithException:(NSException *)exception

Parameters
exception

The exception to send.

Discussion
If exception is nil, the return value of the receiver’s invocation is sent; otherwise, exception is sent and
is automatically raised when it arrives at its destination.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSConnection.h

Instance Methods 537
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDistantObjectRequest Class Reference

538 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 38

NSDistantObjectRequest Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDistributedLock.h

Companion guide Threading Programming Guide

Overview

The NSDistributedLock class defines an object that multiple applications on multiple hosts can use to
restrict access to some shared resource, such as a file.

The lock is implemented by an entry (such as a file or directory) in the file system. For multiple applications
to use an NSDistributedLock object to coordinate their activities, the lock must be writable on a file system
accessible to all hosts on which the applications might be running.

Use the tryLock (page 542) method to attempt to acquire a lock. You should generally use the unlock (page
543) method to release the lock rather than breakLock (page 541).

NSDistributedLock doesn’t conform to the NSLocking protocol, nor does it have a lock method. The
protocol’s lock (page 2091) method is intended to block the execution of the thread until successful. For an
NSDistributedLock object, this could mean polling the file system at some predetermined rate. A better
solution is to provide the tryLock (page 542) method and let you determine the polling frequency that
makes sense for your application.

Tasks

Creating an NSDistributedLock

+ lockWithPath: (page 540)
Returns an NSDistributedLock object initialized to use as the locking object the file-system entry
specified by a given path.

Overview 539
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 39

NSDistributedLock Class Reference

– initWithPath: (page 541)
Initializes an NSDistributedLock object to use as the lock the file-system entry specified by a given
path.

Acquiring a Lock

– tryLock (page 542)
Attempts to acquire the receiver and immediately returns a Boolean value that indicates whether the
attempt was successful.

Relinquishing a Lock

– breakLock (page 541)
Forces the lock to be relinquished.

– unlock (page 543)
Relinquishes the receiver.

Getting Lock Information

– lockDate (page 542)
Returns the time the receiver was acquired by any of the NSDistributedLock objects using the
same path.

Class Methods

lockWithPath:
Returns an NSDistributedLock object initialized to use as the locking object the file-system entry specified
by a given path.

+ (NSDistributedLock *)lockWithPath:(NSString *)aPath

Parameters
aPath

All of aPath up to the last component itself must exist. You can use NSFileManager to create (and
set permissions) for any nonexistent intermediate directories.

Return Value
An NSDistributedLock object initialized to use as the locking object the file-system entry specified by
aPath.

Discussion
For applications to use the lock, aPath must be accessible to—and writable by—all hosts on which the
applications might be running.

540 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 39

NSDistributedLock Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithPath: (page 541)

Declared In
NSDistributedLock.h

Instance Methods

breakLock
Forces the lock to be relinquished.

- (void)breakLock

Discussion
This method always succeeds unless the lock has been damaged. If another process has already unlocked
or broken the lock, this method has no effect. You should generally use unlock (page 543) rather than
breakLock to relinquish a lock.

Warning: Because breakLock can release another process’s lock, it should be used with great caution.

Even if you break a lock, there’s no guarantee that you will then be able to acquire the lock—another process
might get it before your tryLock (page 542) is invoked.

Raises an NSGenericException if the lock could not be removed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– unlock (page 543)

Declared In
NSDistributedLock.h

initWithPath:
Initializes an NSDistributedLock object to use as the lock the file-system entry specified by a given path.

- (id)initWithPath:(NSString *)aPath

Parameters
aPath

All of aPath up to the last component itself must exist. You can use NSFileManager to create (and
set permissions) for any nonexistent intermediate directories.

Instance Methods 541
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 39

NSDistributedLock Class Reference

Return Value
An NSDistributedLock object initialized to use as the locking object the file-system entry specified by
aPath.

Discussion
For applications to use the lock, aPath must be accessible to—and writable by—all hosts on which the
applications might be running.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ lockWithPath: (page 540)

Declared In
NSDistributedLock.h

lockDate
Returns the time the receiver was acquired by any of the NSDistributedLock objects using the same path.

- (NSDate *)lockDate

Return Value
The time the receiver was acquired by any of the NSDistributedLock objects using the same path. Returns
nil if the lock doesn’t exist.

Discussion
This method is potentially useful to applications that want to use an age heuristic to decide if a lock is too
old and should be broken.

If the creation date on the lock isn’t the date on which you locked it, you’ve lost the lock: it’s been broken
since you last checked it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDistributedLock.h

tryLock
Attempts to acquire the receiver and immediately returns a Boolean value that indicates whether the attempt
was successful.

- (BOOL)tryLock

Return Value
YES if the attempt to acquire the receiver was successful, otherwise NO.

Discussion
Raises NSGenericException if a file-system error occurs.

542 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 39

NSDistributedLock Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– unlock (page 543)

Declared In
NSDistributedLock.h

unlock
Relinquishes the receiver.

- (void)unlock

Discussion
You should generally use the unlock method rather than breakLock (page 541) to release a lock.

An NSGenericException is raised if the receiver doesn’t already exist.

Availability
Available in Mac OS X v10.0 and later.

See Also
– breakLock (page 541)

Declared In
NSDistributedLock.h

Instance Methods 543
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 39

NSDistributedLock Class Reference

544 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 39

NSDistributedLock Class Reference

Inherits from NSNotificationCenter : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDistributedNotificationCenter.h

Companion guide Notification Programming Topics for Cocoa

Related sample code StickiesExample

Class at a Glance

The NSDistributedNotificationCenter class provides a way to send notifications to objects in other
tasks. It takes NSNotification objects and broadcasts them to any objects in other tasks that have registered
for the notification with their task’s default distributed notification center.

Principal Attributes

 ■ Notification dispatch table. See “Class at a Glance” > “Principal Attributes” in NSNotificationCenter Class
Reference for information about the dispatch table.

In addition to the notification name and sender, dispatch table entries for distributed notification centers
specify when the notification center delivers notifications to its observers. See the
postNotificationName:object:userInfo:deliverImmediately: (page 551) method, “Suspending
and Resuming Notification Delivery” (page 547), and NSNotificationSuspensionBehavior (page
555) for details.

Commonly Used Methods

defaultCenter (page 547)
Accesses the default distributed notification center.

addObserver:selector:name:object:suspensionBehavior: (page 549)
Registers an object to receive a notification with a specified behavior when notification delivery is
suspended.

Class at a Glance 545
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class
Reference

postNotificationName:object:userInfo:deliverImmediately: (page 551)
Creates and posts a notification.

removeObserver:name:object: (page 552)
Specifies that an object no longer wants to receive certain notifications.

Overview

The NSDistributedNotificationCenter class implements a notification center that can distribute
notifications asynchronously to tasks other than the one in which the notification was posted. An instance
of this class are known as a distributed notification center.

Each task has a default distributed notification center that you access with the defaultCenter (page 547)
class method. There may be different types of distributed notification centers. Currently there is a single
type—NSLocalNotificationCenterType. This type of distributed notification center handles notifications
that can be sent between tasks on a single computer. For communication between tasks on different
computers, use Distributed Objects Programming Topics.

Posting a distributed notification is an expensive operation. The notification gets sent to a system-wide server
that distributes it to all the tasks that have objects registered for distributed notifications. The latency between
posting the notification and the notification’s arrival in another task is unbounded. In fact, when too many
notifications are posted and the server’s queue fills up, notifications may be dropped.

Distributed notifications are delivered via a task’s run loop. A task must be running a run loop in one of the
“common” modes, such as NSDefaultRunLoopMode, to receive a distributed notification. For multithreaded
applications running in Mac OS X v10.3 and later, distributed notifications are always delivered to the main
thread. For multithreaded applications running in Mac OS X v10.2.8 and earlier, notifications are delivered
to the thread that first used the distributed notifications API, which in most cases is the main thread.

Note: NSDistributedNotificationCenter objects should not be used to send notifications between
threads within the same task. Use Distributed Objects Programming Topics or the NSObject method
performSelectorOnMainThread:withObject:waitUntilDone: (page 1188), instead. You can also setup
an NSPort object to receive and distribute messages from other threads.

Tasks

Getting Distributed Notification Centers

+ defaultCenter (page 547)
Returns the default distributed notification center, representing the local notification center for the
computer.

+ notificationCenterForType: (page 548)
Returns the distributed notification center for a particular notification center type.

546 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

Managing Observers

– addObserver:selector:name:object: (page 548)
Adds an entry to the receiver’s dispatch table with an observer, a notification selector and optional
criteria: notification name and sender.

– addObserver:selector:name:object:suspensionBehavior: (page 549)
Adds an entry to the receiver’s dispatch table with a specific observer and suspended-notifications
behavior, and optional notification name and sender.

– removeObserver:name:object: (page 552)
Removes matching entries from the receiver’s dispatch table.

Posting Notifications

– postNotificationName:object: (page 550)
Creates a notification, and posts it to the receiver.

– postNotificationName:object:userInfo: (page 550)
Creates a notification with information, and posts it to the receiver.

– postNotificationName:object:userInfo:deliverImmediately: (page 551)
Creates a notification with information and an immediate-delivery specifier, and posts it to the receiver.

– postNotificationName:object:userInfo:options: (page 552)
Creates a notification with information, and posts it to the receiver.

Suspending and Resuming Notification Delivery

– suspended (page 553)
Returns a Boolean value that indicates whether notification delivery is suspended.

– setSuspended: (page 553)
Suspends or resumes notification delivery.

Class Methods

defaultCenter
Returns the default distributed notification center, representing the local notification center for the computer.

+ (id)defaultCenter

Return Value
Default distributed notification center for the computer.

Discussion
This method calls notificationCenterForType: (page 548) with an argument of
NSLocalNotificationCenterType.

Class Methods 547
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
StickiesExample

Declared In
NSDistributedNotificationCenter.h

notificationCenterForType:
Returns the distributed notification center for a particular notification center type.

+ (NSDistributedNotificationCenter *)notificationCenterForType:(NSString
*)notificationCenterType

Parameters
notificationCenterType

Notification center type being inquired about.

Return Value
Distributed notification center for notificationCenterType.

Discussion
Currently only one type, NSLocalNotificationCenterType, is supported.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDistributedNotificationCenter.h

Instance Methods

addObserver:selector:name:object:
Adds an entry to the receiver’s dispatch table with an observer, a notification selector and optional criteria:
notification name and sender.

- (void)addObserver:(id)notificationObserver selector:(SEL)notificationSelector
name:(NSString *)notificationName object:(NSString *)notificationSender

Parameters
notificationObserver

Object registering as an observer. Must not be nil.

notificationSelector
Selector that specifies the message the receiver sends notificationObserver to notify it of the
notification posting. Must not be 0.

548 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

notificationName
The name of the notification for which to register the observer; that is, only notifications with this
name are delivered to the observer. When nil, the notification center doesn’t use a notification’s
name to decide whether to deliver it to the observer.

notificationSender
The object whose notifications the observer wants to receive; that is, only notifications sent by this
sender are delivered to the observer. When nil, the notification center doesn’t use a notification’s
sender to decide whether to deliver it to the observer.

Discussion
This method calls addObserver:selector:name:object:suspensionBehavior: (page 549) with
suspensionBehavior:NSNotificationSuspensionBehaviorCoalesce (described in “Constants” (page
554)).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDistributedNotificationCenter.h

addObserver:selector:name:object:suspensionBehavior:
Adds an entry to the receiver’s dispatch table with a specific observer and suspended-notifications behavior,
and optional notification name and sender.

- (void)addObserver:(id)notificationObserver selector:(SEL)notificationSelector
name:(NSString *)notificationName object:(NSString *)notificationSender
suspensionBehavior:(NSNotificationSuspensionBehavior)suspendedDeliveryBehavior

Parameters
notificationObserver

Object registering as an observer. Must not be nil.

notificationSelector
Selector that specifies the message the receiver sends notificationObserver to notify it of the
notification posting. Must not be 0.

notificationName
The name of the notification for which to register the observer; that is, only notifications with this
name are delivered to the observer. When nil, the notification center doesn’t use a notification’s
name to decide whether to deliver it to the observer.

notificationSender
The object whose notifications the observer wants to receive; that is, only notifications sent by this
sender are delivered to the observer. When nil, the notification center doesn’t use a notification’s
sender to decide whether to deliver it to the observer.

suspendedDeliveryBehavior
Notification posting behavior when notification delivery is suspended.

Discussion
The receiver does not retain notificationObserver. Therefore, you should always send
removeObserver: (page 1043) orremoveObserver:name:object: (page 552) to the receiver before releasing
notificationObserver.

Instance Methods 549
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– postNotificationName:object:userInfo:deliverImmediately: (page 551)

Declared In
NSDistributedNotificationCenter.h

postNotificationName:object:
Creates a notification, and posts it to the receiver.

- (void)postNotificationName:(NSString *)notificationName object:(NSString
*)notificationSender

Parameters
notificationName

Name of the notification to post. Must not be nil.

notificationSender
Sender of the notification. May be nil.

Discussion
This method invokes postNotificationName:object:userInfo:deliverImmediately: (page 551)
with userInfo:nil deliverImmediately:NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– postNotificationName:object:userInfo: (page 550)
– postNotificationName:object:userInfo:deliverImmediately: (page 551)
– postNotificationName:object:userInfo:options: (page 552)

Declared In
NSDistributedNotificationCenter.h

postNotificationName:object:userInfo:
Creates a notification with information, and posts it to the receiver.

- (void)postNotificationName:(NSString *)notificationName object:(NSString
*)notificationSender userInfo:(NSDictionary *)notificationInfo

Parameters
notificationName

Name of the notification to post. Must not be nil.

notificationSender
Sender of the notification. May be nil.

notificationInfo
Dictionary containing additional information. May be nil.

550 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

Discussion
This method invokes postNotificationName:object:userInfo:deliverImmediately: (page 551)
with deliverImmediately:NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– postNotificationName:object: (page 550)
– postNotificationName:object:userInfo:deliverImmediately: (page 551)
– postNotificationName:object:userInfo:options: (page 552)

Declared In
NSDistributedNotificationCenter.h

postNotificationName:object:userInfo:deliverImmediately:
Creates a notification with information and an immediate-delivery specifier, and posts it to the receiver.

- (void)postNotificationName:(NSString *)notificationName object:(NSString
*)notificationSender userInfo:(NSDictionary *)userInfo
deliverImmediately:(BOOL)deliverImmediately

Parameters
notificationName

Name of the notification to post. Must not be nil.

notificationSender
Sender of the notification. May be nil.

userInfo
Dictionary containing additional information. May be nil.

deliverImmediately
Specifies when to deliver the notification. When NO, the receiver delivers notifications to their observers
according to the suspended-notification behavior specified in the corresponding dispatch table entry.
When YES, the receiver delivers the notification immediately to its observers.

Discussion
This is the preferred method for posting notifications.

The notificationInfo dictionary is serialized as a property list, so it can be passed to another task. In the
receiving task, it is deserialized back into a dictionary. This serialization imposes some restrictions on the
objects that can be placed in the notificationInfo dictionary. See XML Property Lists for details.

Availability
Available in Mac OS X v10.0 and later.

See Also
– postNotificationName:object: (page 550)
– postNotificationName:object:userInfo: (page 550)
– postNotificationName:object:userInfo:options: (page 552)
– encodeRootObject: (page 101) (NSArchiver)
+ unarchiveObjectWithData: (page 1684) (NSUnarchiver)

Instance Methods 551
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

Declared In
NSDistributedNotificationCenter.h

postNotificationName:object:userInfo:options:
Creates a notification with information, and posts it to the receiver.

- (void)postNotificationName:(NSString *)notificationName object:(NSString
*)notificationSender userInfo:(NSDictionary *)userInfo
options:(NSUInteger)notificationOptions

Parameters
notificationName

Name of the notification to post. Must not be nil.

notificationSender
Sender of the notification. May be nil.

userInfo
Dictionary containing additional information. May be nil.

notificationOptions
Specifies how the notification is posted to the task and when to deliver it to its observers. See
“Notification Posting Behavior” (page 554) for details.

Discussion
The userInfo dictionary is serialized as a property list, so it can be passed to another task. In the receiving
task, it is deserialized back into a dictionary. This serialization imposes some restrictions on the objects that
can be placed in the notificationInfo dictionary. See XML Property Lists for details.

Availability
Available in Mac OS X v10.3 and later.

See Also
– postNotificationName:object: (page 550)
– postNotificationName:object:userInfo: (page 550)
– postNotificationName:object:userInfo:deliverImmediately: (page 551)

Declared In
NSDistributedNotificationCenter.h

removeObserver:name:object:
Removes matching entries from the receiver’s dispatch table.

- (void)removeObserver:(id)notificationObserver name:(NSString *)notificationName
object:(NSString *)notificationSender

Parameters
notificationObserver

Observer to remove from the dispatch table. Specify an observer to remove only entries for this
observer. When nil, the receiver does not use notification observers as criteria for removal.

552 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

notificationName
Name of the notification to remove from dispatch table. Specify a notification name to remove only
entries that specify this notification name. When nil, the receiver does not use notification names
as criteria for removal.

notificationSender
Sender to remove from the dispatch table. Specify a notification sender to remove only entries that
specify this sender. When nil, the receiver does not use notification senders as criteria for removal.

Discussion
Be sure to invoke this method with notificationName:nil notificationSender:nil (or
removeObserver: (page 1043)) before deallocating the observer object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDistributedNotificationCenter.h

setSuspended:
Suspends or resumes notification delivery.

- (void)setSuspended:(BOOL)suspended

Parameters
suspended

YES suspends notification delivery, NO resumes it.

Discussion
See NSNotificationSuspensionBehavior (page 555) for details on how the receiver delivers notifications
to their observers when normal notification delivery is suspended.

The NSApplication class automatically suspends distributed notification delivery when the application is
not active. Applications based on the Application Kit framework should let AppKit manage the suspension
of notification delivery. Foundation-only programs may have occasional need to use this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addObserver:selector:name:object:suspensionBehavior: (page 549)
– postNotificationName:object:userInfo:deliverImmediately: (page 551)
– suspended (page 553)

Declared In
NSDistributedNotificationCenter.h

suspended
Returns a Boolean value that indicates whether notification delivery is suspended.

- (BOOL)suspended

Instance Methods 553
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

Return Value
YES when notification delivery is suspended, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSuspended: (page 553)

Declared In
NSDistributedNotificationCenter.h

Constants

Notification Center Type
This constant specifies the notification center type.

FOUNDATION_EXPORT NSString * const NSLocalNotificationCenterType;

Constants
NSLocalNotificationCenterType

Distributes notifications to all tasks on the sender’s computer.

Available in Mac OS X v10.0 and later.

Declared in NSDistributedNotificationCenter.h.

Declared In
NSDistributedNotificationCenter.h

Notification Posting Behavior
These constants specify the behavior of notifications posted using the
postNotificationName:object:userInfo:options: (page 552) method.

enum {
 NSNotificationDeliverImmediately = (1 << 0),
 NSNotificationPostToAllSessions = (1 << 1)
};

Constants
NSNotificationDeliverImmediately

When set, the notification is delivered immediately to all observers, regardless of their suspension
behavior or suspension state. When not set, allows the normal suspension behavior of notification
observers to take place.

Available in Mac OS X v10.3 and later.

Declared in NSDistributedNotificationCenter.h.

554 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

NSNotificationPostToAllSessions
When set, the notification is posted to all sessions. When not set, the notification is sent only to
applications within the same login session as the posting task.

Available in Mac OS X v10.3 and later.

Declared in NSDistributedNotificationCenter.h.

Declared In
NSDistributedNotificationCenter.h

NSNotificationSuspensionBehavior
These constants specify the types of notification delivery suspension behaviors.

typedef enum {
 NSNotificationSuspensionBehaviorDrop = 1,
 NSNotificationSuspensionBehaviorCoalesce = 2,
 NSNotificationSuspensionBehaviorHold = 3,
 NSNotificationSuspensionBehaviorDeliverImmediately = 4
} NSNotificationSuspensionBehavior;

Constants
NSNotificationSuspensionBehaviorDrop

The server does not queue any notifications with this name and object until setSuspended: (page
553) with an argument of NO is called.

Available in Mac OS X v10.0 and later.

Declared in NSDistributedNotificationCenter.h.

NSNotificationSuspensionBehaviorCoalesce
The server only queues the last notification of the specified name and object; earlier notifications are
dropped. In cover methods for which suspension behavior is not an explicit argument,
NSNotificationSuspensionBehaviorCoalesce is the default.

Available in Mac OS X v10.0 and later.

Declared in NSDistributedNotificationCenter.h.

NSNotificationSuspensionBehaviorHold
The server holds all matching notifications until the queue has been filled (queue size determined by
the server), at which point the server may flush queued notifications.

Available in Mac OS X v10.0 and later.

Declared in NSDistributedNotificationCenter.h.

NSNotificationSuspensionBehaviorDeliverImmediately
The server delivers notifications matching this registration irrespective of whether
setSuspended: (page 553) with an argument of YES has been called. When a notification with this
suspension behavior is matched, it has the effect of first flushing any queued notifications. The effect
is as if setSuspended: (page 553) with an argument of NO were first called if the application is
suspended, followed by the notification in question being delivered, followed by a transition back to
the previous suspended or unsuspended state.

Available in Mac OS X v10.0 and later.

Declared in NSDistributedNotificationCenter.h.

Availability
Available in Mac OS X v10.0 and later.

Constants 555
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

Declared In
NSDistributedNotificationCenter.h

556 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDistributedNotificationCenter Class Reference

Inherits from NSObject

Conforms to NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSEnumerator.h

Companion guide Collections Programming Topics for Cocoa

Related sample code CoreRecipes
iSpend
LSMSmartCategorizer
SimpleCalendar
StickiesExample

Overview

NSEnumerator is an abstract class, instances of whose subclasses enumerate collections of other objects,
such as arrays and dictionaries.

All creation methods are defined in the collection classes—such as NSArray, NSSet, and
NSDictionary—which provide special NSEnumerator objects with which to enumerate their contents.
For example, NSArray has two methods that return an NSEnumerator object: objectEnumerator (page
1458) and reverseObjectEnumerator (page 134). NSDictionary also has two methods that return an
NSEnumerator object: keyEnumerator (page 519) and objectEnumerator (page 520). These methods let
you enumerate the contents of a dictionary by key or by value, respectively.

You send nextObject (page 558) repeatedly to a newly created NSEnumerator object to have it return the
next object in the original collection. When the collection is exhausted, nil is returned. You cannot “reset”
an enumerator after it has exhausted its collection. To enumerate a collection again, you need a new
enumerator.

The enumerator subclasses used by NSArray, NSDictionary, and NSSet retain the collection during
enumeration. When the enumeration is exhausted, the collection is released.

Overview 557
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 41

NSEnumerator Class Reference

Note: It is not safe to modify a mutable collection while enumerating through it. Some enumerators may
currently allow enumeration of a collection that is modified, but this behavior is not guaranteed to be
supported in the future.

Tasks

Getting the Enumerated Objects

– allObjects (page 558)
Returns an array of objects the receiver has yet to enumerate.

– nextObject (page 558)
Returns the next object from the collection being enumerated.

Instance Methods

allObjects
Returns an array of objects the receiver has yet to enumerate.

- (NSArray *)allObjects

Return Value
An array of objects the receiver has yet to enumerate.

Discussion
Put another way, the array returned by this method does not contain objects that have already been
enumerated with previous nextObject (page 558) messages.

Invoking this method exhausts the enumerator’s collection so that subsequent invocations of nextObject
return nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSEnumerator.h

nextObject
Returns the next object from the collection being enumerated.

- (id)nextObject

Return Value
The next object from the collection being enumerated, or nil when all objects have been enumerated.

558 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 41

NSEnumerator Class Reference

Discussion
The following code illustrates how this method works using an array:

NSArray *anArray = // ... ;
NSEnumerator *enumerator = [anArray objectEnumerator];
id object;

while ((object = [enumerator nextObject])) {
 // do something with object...
}

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ColorSyncDevices-Cocoa
QTAudioExtractionPanel
SillyFrequencyLevels
SimpleCalendar
StickiesExample

Declared In
NSEnumerator.h

Instance Methods 559
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 41

NSEnumerator Class Reference

560 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 41

NSEnumerator Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSError.h
Foundation/NSURLError.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.
Available in iPhone OS 2.0 and later.

Companion guide Error Handling Programming Guide For Cocoa

Related sample code CoreRecipes
CustomAtomicStoreSubclass
iSpend
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Overview

An NSError object encapsulates richer and more extensible error information than is possible using only
an error code or error string. The core attributes of an NSError object are an error domain (represented by
a string), a domain-specific error code and a user info dictionary containing application specific information.

Several well-known domains are defined corresponding to Mach, POSIX, and OSStatus errors. Foundation
error codes are found in the Cocoa error domain and documented in the Foundation Constants Reference. In
addition, NSError allows you to attach an arbitrary user info dictionary to an error object, and provides the
means to return a human-readable description for the error.

NSError is not an abstract class, and can be used directly. Applications may choose to create subclasses of
NSError to provide better localized error strings by overriding localizedDescription (page 565).

In general, a method should signal an error condition by—for example—returning NO or nil rather than by
the simple presence of an error object. The method can then optionally return an NSError object by reference,
in order to further describe the error.

Overview 561
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

NSCopying
copyWithZone: (page 2042)

Tasks

Creating Error Objects

+ errorWithDomain:code:userInfo: (page 563)
Creates and initializes an NSError object for a given domain and code with a given userInfo
dictionary.

– initWithDomain:code:userInfo: (page 565)
Returns an NSError object initialized for a given domain and code with a given userInfo dictionary.

Getting Error Properties

– code (page 563)
Returns the receiver’s error code.

– domain (page 564)
Returns the receiver’s error domain.

– userInfo (page 568)
Returns the receiver's user info dictionary.

Getting a Localized Error Description

– localizedDescription (page 565)
Returns a string containing the localized description of the error.

– localizedRecoveryOptions (page 567)
Returns an array containing the localized titles of buttons appropriate for displaying in an alert panel.

– localizedRecoverySuggestion (page 567)
Returns a string containing the localized recovery suggestion for the error.

– localizedFailureReason (page 566)
Returns a string containing the localized explanation of the reason for the error.

562 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

Getting the Error Recovery Attempter

– recoveryAttempter (page 567)
Returns an object that conforms to the NSErrorRecoveryAttempting informal protocol.

Class Methods

errorWithDomain:code:userInfo:
Creates and initializes an NSError object for a given domain and code with a given userInfo dictionary.

+ (id)errorWithDomain:(NSString *)domain code:(NSInteger)code userInfo:(NSDictionary
 *)dict

Parameters
domain

The error domain—this can be one of the predefined NSError domains, or an arbitrary string
describing a custom domain. domain must not be nil.

code
The error code for the error.

dict
The userInfo dictionary for the error. userInfo may be nil.

Return Value
An NSError object for domain with the specified error code and the dictionary of arbitrary data userInfo.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.
Available in iPhone OS 2.0 and later.

Related Sample Code
CoreRecipes
CustomAtomicStoreSubclass
iSpend
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSError.h

Instance Methods

code
Returns the receiver’s error code.

Class Methods 563
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

- (NSInteger)code

Return Value
The receiver’s error code.

Discussion
Note that errors are domain specific.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.
Available in iPhone OS 2.0 and later.

See Also
– localizedDescription (page 565)
– domain (page 564)
– userInfo (page 568)

Related Sample Code
Core Data HTML Store
Departments and Employees
ExtractMovieAudioToAIFF
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
NSError.h

domain
Returns the receiver’s error domain.

- (NSString *)domain

Return Value
A string containing the receiver’s error domain.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.
Available in iPhone OS 2.0 and later.

See Also
– code (page 563)
– localizedDescription (page 565)
– userInfo (page 568)

Related Sample Code
Departments and Employees

Declared In
NSError.h

564 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

initWithDomain:code:userInfo:
Returns an NSError object initialized for a given domain and code with a given userInfo dictionary.

- (id)initWithDomain:(NSString *)domain code:(NSInteger)code userInfo:(NSDictionary
 *)dict

Parameters
domain

The error domain—this can be one of the predefined NSError domains, or an arbitrary string
describing a custom domain. domain must not be nil.

code
The error code for the error.

dict
The userInfo dictionary for the error. userInfo may be nil.

Return Value
An NSError object initialized for domain with the specified error code and the dictionary of arbitrary data
userInfo.

Discussion
This is the designated initializer for NSError.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.
Available in iPhone OS 2.0 and later.

See Also
+ errorWithDomain:code:userInfo: (page 563)

Related Sample Code
BindingsJoystick
CocoaEcho
CocoaHTTPServer
CocoaSOAP

Declared In
NSError.h

localizedDescription
Returns a string containing the localized description of the error.

- (NSString *)localizedDescription

Return Value
A string containing the localized description of the error.

By default this method returns the object in the user info dictionary for the key
NSLocalizedDescriptionKey. If the user info dictionary doesn’t contain a value for
NSLocalizedDescriptionKey, a default string is constructed from the domain and code.

Instance Methods 565
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

Discussion
This method can be overridden by subclasses to present customized error strings.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.
Available in iPhone OS 2.0 and later.

See Also
– code (page 563)
– domain (page 564)
– userInfo (page 568)

Related Sample Code
CoreRecipes
Departments and Employees
NewsReader

Declared In
NSError.h

localizedFailureReason
Returns a string containing the localized explanation of the reason for the error.

- (NSString *)localizedFailureReason

Return Value
A string containing the localized explanation of the reason for the error. By default this method returns the
object in the user info dictionary for the key NSLocalizedFailureReasonErrorKey.

Discussion
This method can be overridden by subclasses to present customized error strings.

Availability
Available in Mac OS X v10.4 and later.

See Also
– code (page 563)
– domain (page 564)
– userInfo (page 568)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSError.h

566 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

localizedRecoveryOptions
Returns an array containing the localized titles of buttons appropriate for displaying in an alert panel.

- (NSArray *)localizedRecoveryOptions

Return Value
An array containing the localized titles of buttons appropriate for displaying in an alert panel. By default this
method returns the object in the user info dictionary for the key NSLocalizedRecoveryOptionsErrorKey.
If the user info dictionary doesn’t contain a value for NSLocalizedRecoveryOptionsErrorKey, nil is
returned.

Discussion
The first string is the title of the right-most and default button, the second the one to the left of that, and so
on. The recovery options should be appropriate for the recovery suggestion returned by
localizedRecoverySuggestion (page 567). If the user info dictionary doesn’t contain a value for
NSLocalizedRecoveryOptionsErrorKey, only an OK button is displayed.

This method can be overridden by subclasses to present customized recovery suggestion strings.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSError.h

localizedRecoverySuggestion
Returns a string containing the localized recovery suggestion for the error.

- (NSString *)localizedRecoverySuggestion

Return Value
A string containing the localized recovery suggestion for the error. By default this method returns the object
in the user info dictionary for the key NSLocalizedRecoverySuggestionErrorKey. If the user info
dictionary doesn’t contain a value for NSLocalizedRecoverySuggestionErrorKey, nil is returned.

Discussion
The returned string is suitable for displaying as the secondary message in an alert panel.

This method can be overridden by subclasses to present customized recovery suggestion strings.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSError.h

recoveryAttempter
Returns an object that conforms to the NSErrorRecoveryAttempting informal protocol.

- (id)recoveryAttempter

Instance Methods 567
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

Return Value
An object that conforms to the NSErrorRecoveryAttempting informal protocol. By default this method
returns the object for the user info dictionary for the key NSRecoveryAttempterErrorKey. If the user info
dictionary doesn’t contain a value for NSRecoveryAttempterErrorKey, nil is returned.

Discussion
The recovery attempter must be an object that can correctly interpret an index into the array returned by
localizedRecoveryOptions (page 567).

Availability
Available in Mac OS X v10.4 and later.

See Also
– localizedRecoveryOptions (page 567)

Declared In
NSError.h

userInfo
Returns the receiver's user info dictionary.

- (NSDictionary *)userInfo

Return Value
The receiver's user info dictionary, or nil if the user info dictionary has not been set.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.
Available in iPhone OS 2.0 and later.

See Also
– code (page 563)
– domain (page 564)
– localizedDescription (page 565)

Related Sample Code
CoreRecipes
Departments and Employees
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSError.h

568 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

Constants

User info dictionary keys
These keys may exist in the user info dictionary.

extern NSString *NSLocalizedDescriptionKey;
extern NSString *NSErrorFailingURLStringKey;
const NSString *NSFilePathErrorKey;
const NSString *NSStringEncodingErrorKey;
const NSString *NSUnderlyingErrorKey;
const NSString *NSURLErrorKey;
const NSString *NSLocalizedFailureReasonErrorKey;
const NSString *NSLocalizedRecoverySuggestionErrorKey;
const NSString *NSLocalizedRecoveryOptionsErrorKey;
const NSString *NSRecoveryAttempterErrorKey;

Constants
NSLocalizedDescriptionKey

The corresponding value is a localized string representation of the error that, if present, will be returned
by localizedDescription (page 565).

Available in Mac OS X v10.2 and later.

Declared in NSError.h.

NSErrorFailingURLStringKey
The corresponding value is the URL that caused the error. This key is only present in the
NSURLErrorDomain.

Available in Mac OS X v10.2 with Safari 1.0 installed.

Available in Mac OS X v10.2.7 and later.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h.

NSFilePathErrorKey
Contains the file path of the error.

The corresponding value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in NSError.h.

NSStringEncodingErrorKey
The corresponding value is an NSNumber object containing the NSStringEncoding value.

Available in Mac OS X v10.4 and later.

Declared in NSError.h.

NSUnderlyingErrorKey
The corresponding value is an error that was encountered in an underlying implementation and
caused the error that the receiver represents to occur.

Available in Mac OS X v10.3 and later.

Declared in NSError.h.

Constants 569
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

NSURLErrorKey
The corresponding value is an NSURL object.

Available in Mac OS X v10.4 and later.

Declared in NSError.h.

NSLocalizedFailureReasonErrorKey
The corresponding value is a localized string representation containing the reason for the failure that,
if present, will be returned by localizedFailureReason (page 566).

This string provides a more detailed explanation of the error than the description.

Available in Mac OS X v10.4 and later.

Declared in NSError.h.

NSLocalizedRecoverySuggestionErrorKey
The corresponding value is a string containing the localized recovery suggestion for the error.

This string is suitable for displaying as the secondary message in an alert panel.

Available in Mac OS X v10.4 and later.

Declared in NSError.h.

NSLocalizedRecoveryOptionsErrorKey
The corresponding value is an array containing the localized titles of buttons appropriate for displaying
in an alert panel.

The first string is the title of the right-most and default button, the second the one to the left, and so
on. The recovery options should be appropriate for the recovery suggestion returned by
localizedRecoverySuggestion (page 567).

Available in Mac OS X v10.4 and later.

Declared in NSError.h.

NSRecoveryAttempterErrorKey
The corresponding value is an object that conforms to the NSErrorRecoveryAttempting informal
protocol.

The recovery attempter must be an object that can correctly interpret an index into the array returned
by recoveryAttempter (page 567).

Available in Mac OS X v10.4 and later.

Declared in NSError.h.

Declared In
NSError.h

Error Domains
The following error domains are predefined.

const NSString *NSPOSIXErrorDomain;
const NSString *NSOSStatusErrorDomain;
const NSString *NSMachErrorDomain;

Constants
NSPOSIXErrorDomain

POSIX/BSD errors

Available in Mac OS X v10.2 and later.

Declared in NSError.h.

570 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

NSOSStatusErrorDomain
Mac OS 9/Carbon errors

Available in Mac OS X v10.2 and later.

Declared in NSError.h.

NSMachErrorDomain
Mach errors

Available in Mac OS X v10.2 and later.

Declared in NSError.h.

Discussion
Additionally, the following error domain is defined by Core Foundation:

Defines constants for values returned in the domain field of the
CFStreamError structure.

CFStreamErrorDomain

Declared In
NSError.h

Constants 571
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

572 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 42

NSError Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSException.h

Companion guide Exception Programming Topics for Cocoa

Related sample code CoreRecipes
EnhancedAudioBurn
QTSSConnectionMonitor
QTSSInspector
Sketch-112

Overview

NSException is used to implement exception handling and contains information about an exception. An
exception is a special condition that interrupts the normal flow of program execution. Each application can
interrupt the program for different reasons. For example, one application might interpret saving a file in a
directory that is write-protected as an exception. In this sense, the exception is equivalent to an error. Another
application might interpret the user’s keypress (for example, Control-C) as an exception: an indication that
a long-running process should be aborted.

Note: The exception handling mechanism uses longjmp to control the flow of execution. Any code written
for an application that uses exception handling is therefore subject to the restrictions associated with this
functionality. See your compiler documentation for more information on the longjmp function.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

Overview 573
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 43

NSException Class Reference

NSCopying
– copyWithZone: (page 2042)

Tasks

Creating and Raising an NSException Object

+ exceptionWithName:reason:userInfo: (page 574)
Creates and returns an exception object .

+ raise:format: (page 575)
A convenience method that creates and raises an exception.

+ raise:format:arguments: (page 576)
Creates and raises an exception with the specified name, reason, and arguments.

– initWithName:reason:userInfo: (page 577)
Initializes and returns a newly allocated exception object.

– raise (page 578)
Raises the receiver, causing program flow to jump to the local exception handler.

Querying an NSException Object

– name (page 577)
Returns an NSString object used to uniquely identify the receiver.

– reason (page 578)
Returns an NSString object containing a “human-readable” reason for the receiver.

– userInfo (page 579)
Returns an NSDictionary object containing application-specific data pertaining to the receiver.

Getting Exception Stack Frames

– callStackReturnAddresses (page 576)
Returns the call return addresses related to a raised exception.

Class Methods

exceptionWithName:reason:userInfo:
Creates and returns an exception object .

+ (NSException *)exceptionWithName:(NSString *)name reason:(NSString *)reason
userInfo:(NSDictionary *)userInfo

574 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 43

NSException Class Reference

Parameters
name

The name of the exception.

reason
A human-readable message string summarizing the reason for the exception.

userInfo
A dictionary containing user-defined information relating to the exception

Return Value
The created NSException object or nil if the object couldn't be created.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithName:reason:userInfo: (page 577)
– name (page 577)
– reason (page 578)
– userInfo (page 579)

Related Sample Code
Core Data HTML Store
CoreRecipes

Declared In
NSException.h

raise:format:
A convenience method that creates and raises an exception.

+ (void)raise:(NSString *)name format:(NSString *)format, ...

Parameters
name

The name of the exception.

format,
A human-readable message string (that is, the exception reason) with conversion specifications for
the variable arguments that follow.

...
Variable information to be inserted into the formatted exception reason (in the manner of printf).

Discussion
The user-defined information is nil for the generated exception object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ raise:format:arguments: (page 576)
– raise (page 578)

Class Methods 575
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 43

NSException Class Reference

Related Sample Code
EnhancedAudioBurn
QTSSConnectionMonitor
QTSSInspector
Sketch-112
TemperatureTester

Declared In
NSException.h

raise:format:arguments:
Creates and raises an exception with the specified name, reason, and arguments.

+ (void)raise:(NSString *)name format:(NSString *)format arguments:(va_list)argList

Parameters
name

The name of the exception.

format
A human-readable message string (that is, the exception reason) with conversion specifications for
the variable arguments in argList.

argList
Variable information to be inserted into the formatted exception reason (in the manner of vprintf).

Discussion
The user-defined dictionary of the generated object is nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ raise:format: (page 575)
– raise (page 578)

Declared In
NSException.h

Instance Methods

callStackReturnAddresses
Returns the call return addresses related to a raised exception.

- (NSArray *)callStackReturnAddresses

576 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 43

NSException Class Reference

Return Value
An array of NSNumber objects encapsulating NSUInteger (page 2283) values. Each value is a call frame return
address. The array of stack frames starts at the point at which the exception was first raised, with the first
items being the most recent stack frames.

Discussion
NSException subclasses posing as the NSException class or subclasses or other API elements that interfere
with the exception-raising mechanism may not get this information.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSException.h

initWithName:reason:userInfo:
Initializes and returns a newly allocated exception object.

- (id)initWithName:(NSString *)name reason:(NSString *)reason userInfo:(NSDictionary
 *)userInfo

Parameters
name

The name of the exception.

reason
A human-readable message string summarizing the reason for the exception.

userInfo
A dictionary containing user-defined information relating to the exception

Return Value
The created NSException object or nil if the object couldn't be created.

Discussion
This is the designated initializer.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ exceptionWithName:reason:userInfo: (page 574)

Declared In
NSException.h

name
Returns an NSString object used to uniquely identify the receiver.

- (NSString *)name

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 577
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 43

NSException Class Reference

See Also
+ exceptionWithName:reason:userInfo: (page 574)
– initWithName:reason:userInfo: (page 577)

Declared In
NSException.h

raise
Raises the receiver, causing program flow to jump to the local exception handler.

- (void)raise

Discussion
All other methods that raise an exception invoke this method, so set a breakpoint here if you are debugging
exceptions. When there are no exception handlers in the exception handler stack, unless the exception is
raised during the posting of a notification, this method calls the uncaught exception handler, in which
last-minute logging can be performed. The program then terminates, regardless of the actions taken by the
uncaught exception handler.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ raise:format: (page 575)
+ raise:format:arguments: (page 576)

Related Sample Code
Core Data HTML Store

Declared In
NSException.h

reason
Returns an NSString object containing a “human-readable” reason for the receiver.

- (NSString *)reason

Availability
Available in Mac OS X v10.0 and later.

See Also
+ exceptionWithName:reason:userInfo: (page 574)
– initWithName:reason:userInfo: (page 577)

Declared In
NSException.h

578 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 43

NSException Class Reference

userInfo
Returns an NSDictionary object containing application-specific data pertaining to the receiver.

- (NSDictionary *)userInfo

Discussion
Returns nil if no application-specific data exists. As an example, if a method’s return value caused the
exception to be raised, the return value might be available to the exception handler through this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ exceptionWithName:reason:userInfo: (page 574)
– initWithName:reason:userInfo: (page 577)

Declared In
NSException.h

Constants

The string constants for exceptions are listed and described in the "Constants" (page 2287) chapter.

Constants 579
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 43

NSException Class Reference

580 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 43

NSException Class Reference

Inherits from NSScriptCommand : NSObject

Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptStandardSuiteCommands.h

Companion guide Cocoa Scripting Guide

Overview

An instance of NSExistsCommanddetermines whether a specified scriptable object, such as a word, paragraph,
or image, exists.

When an instance of NSExistsCommand is executed, it evaluates the receiver specifier for the command to
determine if it specifies any objects.

NSExistsCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSExistsCommand.

Overview 581
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 44

NSExistsCommand Class Reference

582 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 44

NSExistsCommand Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSExpression.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Predicate Programming Guide

Related sample code iSpend

Overview

NSExpression is used to represent expressions in a predicate.

Comparison operations in an NSPredicate are based on two expressions, as represented by instances of
the NSExpression class. Expressions are created for constant values, key paths, and so on.

Generally, anywhere in the NSExpression class hierarchy where there is composite API and subtypes that
may only reasonably respond to a subset of that API, invoking a method that does not make sense for that
subtype will cause an exception to be thrown.

Expression Types

In Mac OS X v10.5, NSExpression introduces several new expression types: NSSubqueryExpressionType,
NSAggregateExpressionType, NSUnionSetExpressionType, NSIntersectSetExpressionType, and
NSMinusSetExpressionType.

Aggregate Expressions

The aggregate expression allows you to create predicates containing expressions that evaluate to collections
that contain further expressions. The collection may be an NSArray, NSSet, or NSDictionary object.

Overview 583
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

For example, consider the BETWEEN operator (NSBetweenPredicateOperatorType); its right hand side
is a collection containing two elements. Using just the Mac OS X v10.4 API, these elements must be constants,
as there is no way to populate them using variable expressions. On Mac OS X v10.4, it is not possible to create
a predicate template to the effect of date between {$YESTERDAY, $TOMORROW}; instead you must create
a new predicate each time.

Aggregate expressions are not supported by Core Data.

Subquery Expressions

The NSSubqueryExpressionType (page 601) creates a sub-expression, evaluation of which returns a subset
of a collection of objects. It allows you to create sophisticated queries across relationships, such as a search
for multiple correlated values on the destination object of a relationship.

Set Expressions

The set expressions (NSUnionSetExpressionType (page 601), NSIntersectSetExpressionType (page
601), and NSMinusSetExpressionType (page 601)) combine results in a manner similar to the NSSet
methods.

Both sides of these expressions must evaluate to a collection; the left-hand side must evaluate to an NSSet
object, the right-hand side can be any other collection type.

(expression UNION expression)
(expression INTERSECT expression)
(expression MINUS expression)

Set expressions are not supported by Core Data.

Function Expressions

On Mac OS X v10.4, NSExpression only supported a predefined set of functions: sum, count, min, max, and
average. These predefined functions were accessed in the predicate syntax using custom keywords (for
example, MAX(1, 5, 10)).

In Mac OS X v10.5, function expressions have been extended to support arbitrary method invocations as
well. To use this extended functionality, you can now use the syntax FUNCTION(receiver, selectorName,
arguments, ...), for example:

FUNCTION(@"/Developer/Tools/otest", @"lastPathComponent") => @"otest"

All methods must take 0 or more id arguments and return an id value, although you can use the CAST
expression to convert datatypes with lossy string representations (for example, CAST(####, "NSDate")).
The CAST expression is extended in Mac OS X v10.5 to provide support for casting to classes for use in creating
receivers for function expressions.

Note that although Core Data supports evaluation of the predefined functions, it does not support the
evaluation of custom predicate functions in the persistent stores (during a fetch).

584 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

Tasks

Initializing an Expression

– initWithExpressionType: (page 597)
Initializes the receiver with the specified expression type.

Creating an Expression for a Value

+ expressionForConstantValue: (page 587)
Returns a new expression that represents a given constant value.

+ expressionForEvaluatedObject (page 587)
Returns a new expression that represents the object being evaluated.

+ expressionForKeyPath: (page 592)
Returns a new expression that invokes valueForKeyPath: with a given key path.

+ expressionForVariable: (page 595)
Returns a new expression that extracts a value from the variable bindings dictionary for a given key.

Creating a Collection Expression

+ expressionForAggregate: (page 586)
Returns a new aggregate expression for a given collection.

+ expressionForUnionSet:with: (page 594)
Returns a new NSExpression object that represent the union of a given set and collection.

+ expressionForIntersectSet:with: (page 592)
Returns a new NSExpression object that represent the intersection of a given set and collection.

+ expressionForMinusSet:with: (page 593)
Returns a new NSExpression object that represent the subtraction of a given collection from a given
set.

Creating a Subquery

+ expressionForSubquery:usingIteratorVariable:predicate: (page 593)
Returns an expression that filters a collection by storing elements in the collection in a given variable
and keeping the elements for which qualifier returns true.

Creating an Expression for a Function

+ expressionForFunction:arguments: (page 588)
Returns a new expression that will invoke one of the predefined functions.

Tasks 585
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

+ expressionForFunction:selectorName:arguments: (page 591)
Returns an expression which will return the result of invoking on a given target a selector with a given
name using given arguments.

Getting Information About an Expression

– arguments (page 595)
Returns the arguments for the receiver.

– collection (page 595)
Returns the collection of expressions in an aggregate expression, or the collection element of a
subquery expression.

– constantValue (page 596)
Returns the constant value of the receiver.

– expressionType (page 596)
Returns the expression type for the receiver.

– function (page 597)
Returns the function for the receiver.

– keyPath (page 598)
Returns the key path for the receiver.

– leftExpression (page 598)
Returns the left expression of an aggregate expression.

– operand (page 598)
Returns the operand for the receiver.

– predicate (page 599)
Return the predicate of a subquery expression.

– rightExpression (page 599)
Returns the right expression of an aggregate expression.

– variable (page 599)
Returns the variable for the receiver.

Evaluating an Expression

– expressionValueWithObject:context: (page 596)
Evaluates an expression using a given object and context.

Class Methods

expressionForAggregate:
Returns a new aggregate expression for a given collection.

+ (NSExpression *)expressionForAggregate:(NSArray *)collection

586 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

Parameters
collection

A collection object (an instance of NSArray, NSSet, or NSDictionary) that contains further
expressions.

Return Value
A new expression that contains the expressions in collection.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSExpression.h

expressionForConstantValue:
Returns a new expression that represents a given constant value.

+ (NSExpression *)expressionForConstantValue:(id)obj

Parameters
obj

The constant value the new expression is to represent.

Return Value
A new expression that represents the constant value, obj.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
iSpend

Declared In
NSExpression.h

expressionForEvaluatedObject
Returns a new expression that represents the object being evaluated.

+ (NSExpression *)expressionForEvaluatedObject

Return Value
A new expression that represents the object being evaluated.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSExpression.h

Class Methods 587
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

expressionForFunction:arguments:
Returns a new expression that will invoke one of the predefined functions.

+ (NSExpression *)expressionForFunction:(NSString *)name arguments:(NSArray
*)parameters

Parameters
name

The name of the function to invoke.

parameters
An array containing NSExpression objects that will be used as parameters during the invocation of
selector.

For a selector taking no parameters, the array should be empty. For a selector taking one or more
parameters, the array should contain one NSExpression object which will evaluate to an instance
of the appropriate type for each parameter.

If there is a mismatch between the number of parameters expected and the number you provide
during evaluation, an exception may be raised or missing parameters may simply be replaced by nil
(which occurs depends on how many parameters are provided, and whether you have over- or
underflow).

Return Value
A new expression that invokes the function name using the parameters in parameters.

Discussion
The name parameter can be one of the following predefined functions.

AvailabilityReturnsParameterFunction

Mac OS X v10.4
and later

An NSNumber object (the
average of values in the array)

An NSArray object containing
NSExpression objects
representing numbers

average:

Mac OS X v10.4
and later

An NSNumber object (the sum
of values in the array)

An NSArray object containing
NSExpression objects
representing numbers

sum:

Mac OS X v10.4
and later

An NSNumber object (the
number of elements in the
array)

An NSArray object containing
NSExpression objects
representing numbers

count:

Mac OS X v10.4
and later

An NSNumber object (the
minimum of the values in the
array)

An NSArray object containing
NSExpression objects
representing numbers

min:

Mac OS X v10.4
and later

An NSNumber object (the
maximum of the values in the
array)

An NSArray object containing
NSExpression objects
representing numbers

max:

Mac OS X v10.5
and later

An NSNumber object (the
median of the values in the
array)

An NSArray object containing
NSExpression objects
representing numbers

median:

588 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

AvailabilityReturnsParameterFunction

Mac OS X v10.5
and later

An NSArray object (the mode
of the values in the array)

An NSArray object containing
NSExpression objects
representing numbers

mode:

Mac OS X v10.5
and later

An NSNumber object (the
standard deviation of the values
in the array)

An NSArray object containing
NSExpression objects
representing numbers

stddev:

Mac OS X v10.5
and later

An NSNumber object (the sum
of the values in the array)

An NSArray object containing
two NSExpression objects
representing numbers

add:to:

Mac OS X v10.5
and later

An NSNumber object (the result
of subtracting the second value
in the array from the first value
in the array)

An NSArray object containing
two NSExpression objects
representing numbers

from:subtract:

Mac OS X v10.5
and later

An NSNumber object (the result
of multiplying the values in the
array)

An NSArray object containing
two NSExpression objects
representing numbers

multiply:by:

Mac OS X v10.5
and later

An NSNumber object (the result
of dividing the first value in the
array by the second value in the
array)

An NSArray object containing
two NSExpression objects
representing numbers

divide:by:

Mac OS X v10.5
and later

An NSNumber object (the
remainder of dividing the first
value in the array by the second
value in the array)

An NSArray object containing
two NSExpression objects
representing numbers

modulus:by:

Mac OS X v10.5
and later

AnNSNumberobject (the square
root of the value in the array)

An NSArray object containing
one NSExpression object
representing a number

sqrt:

Mac OS X v10.5
and later

An NSNumber object (the log of
the value in the array)

An NSArray object containing
one NSExpression object
representing a number

log:

Mac OS X v10.5
and later

An NSNumber object (the
natural log of the value in the
array)

An NSArray object containing
one NSExpression object
representing a number

ln:

Mac OS X v10.5
and later

An NSNumber object (the result
of raising the first value in the
array to the power of the
second value in the array)

An NSArray object containing
two NSExpression objects
representing numbers

raise:toPower:

Mac OS X v10.5
and later

AnNSNumberobject (the base-e
exponential of the value in the
aray)

An NSArray object containing
one NSExpression object
representing a number

exp:

Class Methods 589
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

AvailabilityReturnsParameterFunction

Mac OS X v10.5
and later

An NSNumber object (the
smallest integral value not less
than the value in the array)

An NSArray object containing
one NSExpression object
representing a number

ceiling:

Mac OS X v10.5
and later

An NSNumber object (the
absolute value of the value in
the array)

An NSArray object containing
one NSExpression object
representing a number

abs:

Mac OS X v10.5
and later

An NSNumber object (the
integral value nearest to but no
greater than the value in the
array)

An NSArray object containing
one NSExpression object
representing a number

trunc:

Mac OS X v10.5
and later

An NSNumber object (a random
integer value)

nilrandom

Mac OS X v10.5
and later

An NSNumber object (a random
integer value between 0 and
the value in the array
(exclusive))

An NSArray object containing
one NSExpression object
representing a number

random:

Mac OS X v10.5
and later

An [NSDate] object (the
current date and time)

nilnow

This method raises an exception immediately if the selector is invalid; it raises an exception at runtime if the
parameters are incorrect.

The parameters argument is a collection containing an expression which evaluates to a collection, as
illustrated in the following examples:

NSNumber *number1 = [NSNumber numberWithInteger:20];
NSNumber *number2 = [NSNumber numberWithInteger:40];
NSArray *numberArray = [NSArray arrayWithObjects: number1, number2, nil];

NSExpression *arrayExpression = [NSExpression expressionForConstantValue:
numberArray];
NSArray *argumentArray = [NSArray arrayWithObject: arrayExpression];

NSExpression* expression =
 [NSExpression expressionForFunction:@"sum:" arguments:argumentArray];
id result = [expression expressionValueWithObject: nil context: nil];

BOOL ok = [result isEqual: [NSNumber numberWithInt: 60]]; // ok == YES

[NSExpression expressionForFunction:@"random" arguments:nil];

[NSExpression expressionForFunction:@"max:"
 arguments: [NSArray arrayWithObject:
 [NSExpression expressionForConstantValue:
 [NSArray arrayWithObjects:
 [NSNumber numberWithInt: 5], [NSNumber numberWithInt: 10],
nil]]]];

590 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

[NSExpression expressionForFunction:@"subtract:from:"
 arguments: [NSArray arrayWithObjects:
 [NSExpression expressionForConstantValue: [NSNumber numberWithInt: 5]],
 [NSExpression expressionForConstantValue: [NSNumber numberWithInt: 10]],
 nil]];

Special Considerations

This method throws an exception immediately if the selector is unknown; it throws at runtime if the parameters
are incorrect.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ expressionForFunction:selectorName:arguments: (page 591)

Declared In
NSExpression.h

expressionForFunction:selectorName:arguments:
Returns an expression which will return the result of invoking on a given target a selector with a given name
using given arguments.

+ (NSExpression *)expressionForFunction:(NSExpression *)target selectorName:(NSString
 *)name arguments:(NSArray *)parameters

Parameters
target

An NSExpression object which will evaluate an object on which the selector identified by namemay
be invoked.

name
The name of the method to be invoked.

parameters
An array containing NSExpression objects which can be evaluated to provide parameters for the
method specified by name.

Return Value
An expression which will return the result of invoking the selector named name on the result of evaluating
the target expression with the parameters specified by evaluating the elements of parameters.

Discussion
See the description of expressionForFunction:arguments: (page 588) for examples of how to construct
the parameter array.

Special Considerations

This method throws an exception immediately if the selector is unknown; it throws at runtime if the parameters
are incorrect.

This expression effectively allows your application to invoke any method on any object it can navigate to at
runtime. You must consider the security implications of this type of evaluation.

Class Methods 591
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
+ expressionForFunction:arguments: (page 588)

Declared In
NSExpression.h

expressionForIntersectSet:with:
Returns a new NSExpression object that represent the intersection of a given set and collection.

+ (NSExpression *)expressionForIntersectSet:(NSExpression *)left with:(NSExpression
 *)right

Parameters
left

An expression that evaluates to an NSSet object.

right
An expression that evaluates to a collection object (an instance of NSArray, NSSet, or NSDictionary).

Return Value
A new NSExpression object that represents the intersection of left and right.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSExpression.h

expressionForKeyPath:
Returns a new expression that invokes valueForKeyPath: with a given key path.

+ (NSExpression *)expressionForKeyPath:(NSString *)keyPath

Parameters
keyPath

The key path that the new expression should evaluate.

Return Value
A new expression that invokes valueForKeyPath: (page 2071) with keyPath.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
iSpend

Declared In
NSExpression.h

592 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

expressionForMinusSet:with:
Returns a new NSExpression object that represent the subtraction of a given collection from a given set.

+ (NSExpression *)expressionForMinusSet:(NSExpression *)left with:(NSExpression
*)right

Parameters
left

An expression that evaluates to an NSSet object.

right
An expression that evaluates to a collection object (an instance of NSArray, NSSet, or NSDictionary).

Return Value
A new NSExpression object that represents the subtraction of right from left.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSExpression.h

expressionForSubquery:usingIteratorVariable:predicate:
Returns an expression that filters a collection by storing elements in the collection in a given variable and
keeping the elements for which qualifier returns true.

+ (NSExpression *)expressionForSubquery:(NSExpression *)expression
usingIteratorVariable:(NSString *)variable predicate:(id)predicate

Parameters
expression

A predicate expression that evaluates to a collection.

variable
Used as a local variable, and will shadow any instances of variable in the bindings dictionary. The
variable is removed or the old value replaced once evaluation completes.

predicate
The predicate used to determine whether the element belongs in the result collection.

Return Value
An expression that filters a collection by storing elements in the collection in the variable variable and keeping
the elements for which qualifier returns true

Discussion
This method creates a sub-expression, evaluation of which returns a subset of a collection of objects. It allows
you to create sophisticated queries across relationships, such as a search for multiple correlated values on
the destination object of a relationship.

For example, suppose you have an Apartment entity that has a to-many relationship to a Resident entity,
and that you want to create a query for all apartments inhabited by a resident whose first name is "Jane"
and whose last name is "Doe". Using only API available for Mac OS X v 10.4, you could try the predicate:

resident.firstname == "Jane" && resident.lastname == "Doe"

Class Methods 593
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

but this will always return false sinceresident.firstname andresident.lastnameboth return collections.
You could also try:

resident.firstname CONTAINS "Jane" && resident.lastname CONTAINS "Doe"

but this is also flawed—it returns true if there are two residents, one of whom is John Doe and one of whom
is Jane Smith. The only way to find the desired apartments is to do two passes: one through residents to find
"Jane Doe", and one through apartness to find the ones where our Jane Does reside.

Subquery expressions provide a way to encapsulate this type of qualification into a single query.

The string format for a subquery expression is:

SUBQUERY(collection_expression, variable_expression, predicate);

where expression is a predicate expression that evaluates to a collection, variableExpression is an
expression which will be used to contain each individual element of collection, and predicate is the
predicate used to determine whether the element belongs in the result collection.

Using subqueries, the apartment query could be reformulated as

(SUBQUERY(residents, $x, $x.firstname == "Jane" && $x.lastname == "Doe").@count
 != 0)

or

(SUBQUERY(residents, $x, $x.firstname == "Jane" && $x.lastname == "Doe")[size]
 != 0)

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSExpression.h

expressionForUnionSet:with:
Returns a new NSExpression object that represent the union of a given set and collection.

+ (NSExpression *)expressionForUnionSet:(NSExpression *)left with:(NSExpression
*)right

Parameters
left

An expression that evaluates to an NSSet object.

right
An expression that evaluates to a collection object (an instance of NSArray, NSSet, or NSDictionary).

Return Value
An new NSExpression object that represents the union of left and right.

Availability
Available in Mac OS X v10.5 and later.

594 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

Declared In
NSExpression.h

expressionForVariable:
Returns a new expression that extracts a value from the variable bindings dictionary for a given key.

+ (NSExpression *)expressionForVariable:(NSString *)string

Parameters
string

The key for the variable to extract from the variable bindings dictionary.

Return Value
A new expression that extracts from the variable bindings dictionary the value for the key string.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSExpression.h

Instance Methods

arguments
Returns the arguments for the receiver.

- (NSArray *)arguments

Return Value
The arguments for the receiver—that is, the array of expressions that will be passed as parameters during
invocation of the selector on the operand of a function expression.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSExpression.h

collection
Returns the collection of expressions in an aggregate expression, or the collection element of a subquery
expression.

- (id)collection

Instance Methods 595
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

Return Value
Returns the collection of expressions in an aggregate expression, or the collection element of a subquery
expression.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSExpression.h

constantValue
Returns the constant value of the receiver.

- (id)constantValue

Return Value
The constant value of the receiver.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSExpression.h

expressionType
Returns the expression type for the receiver.

- (NSExpressionType)expressionType

Return Value
The expression type for the receiver.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSExpression.h

expressionValueWithObject:context:
Evaluates an expression using a given object and context.

596 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

- (id)expressionValueWithObject:(id)object context:(NSMutableDictionary *)context

Parameters
object

The object against which the receiver is evaluated.

context
A dictionary that the expression can use to store temporary state for one predicate evaluation.

Note that context is mutable, and that it can only be accessed during the evaluation of the expression.
You must not attempt to retain it for use elsewhere.]

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSExpression.h

function
Returns the function for the receiver.

- (NSString *)function

Return Value
The function for the receiver.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSExpression.h

initWithExpressionType:
Initializes the receiver with the specified expression type.

- (id)initWithExpressionType:(NSExpressionType)type

Parameters
type

The type of the new expression, as defined by NSExpressionType (page 600).

Return Value
An initialized NSExpression object of the type type.

Special Considerations

This method is the designated initializer for NSExpression.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 597
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

Declared In
NSExpression.h

keyPath
Returns the key path for the receiver.

- (NSString *)keyPath

Return Value
The key path for the receiver.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSExpression.h

leftExpression
Returns the left expression of an aggregate expression.

- (NSExpression *)leftExpression

Return Value
The left expression of a set expression.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSExpression.h

operand
Returns the operand for the receiver.

- (NSExpression *)operand

Return Value
The operand for the receiver—that is, the object on which the selector will be invoked.

Discussion
The object is the result of evaluating a key path or one of the defined functions. This method raises an
exception if it is not applicable to the receiver.

598 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSExpression.h

predicate
Return the predicate of a subquery expression.

- (NSPredicate *)predicate

Return Value
The predicate of a subquery expression.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSExpression.h

rightExpression
Returns the right expression of an aggregate expression.

- (NSExpression *)rightExpression

Return Value
The right expression of a set expression.

Discussion
This method raises an exception if it is not applicable to the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSExpression.h

variable
Returns the variable for the receiver.

- (NSString *)variable

Return Value
The variable for the receiver.

Discussion
This method raises an exception if it is not applicable to the receiver.

Instance Methods 599
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSExpression.h

Constants

NSExpressionType
Defines the possible types of NSExpression.

typedef enum {
 NSConstantValueExpressionType = 0,
 NSEvaluatedObjectExpressionType,
 NSVariableExpressionType,
 NSKeyPathExpressionType,
 NSFunctionExpressionType,
 NSAggregateExpressionType,
 NSSubqueryExpressionType,
 NSUnionSetExpressionType,
 NSIntersectSetExpressionType,
 NSMinusSetExpressionType
} NSExpressionType;

Constants
NSConstantValueExpressionType

An expression that always returns the same value.

Available in Mac OS X v10.4 and later.

Declared in NSExpression.h.

NSEvaluatedObjectExpressionType
An expression that always returns the parameter object itself.

Available in Mac OS X v10.4 and later.

Declared in NSExpression.h.

NSVariableExpressionType
An expression that always returns whatever value is associated with the key specified by ‘variable’ in
the bindings dictionary.

Available in Mac OS X v10.4 and later.

Declared in NSExpression.h.

NSKeyPathExpressionType
An expression that returns something that can be used as a key path.

Available in Mac OS X v10.4 and later.

Declared in NSExpression.h.

NSFunctionExpressionType
An expression that returns the result of evaluating a function.

Available in Mac OS X v10.4 and later.

Declared in NSExpression.h.

600 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

NSAggregateExpressionType
An expression that defines an aggregate of NSExpression objects.

Available in Mac OS X v10.5 and later.

Declared in NSExpression.h.

NSSubqueryExpressionType
An expression that filters a collection using a subpredicate.

Available in Mac OS X v10.5 and later.

Declared in NSExpression.h.

NSUnionSetExpressionType
An expression that creates a union of the results of two nested expressions.

Available in Mac OS X v10.5 and later.

Declared in NSExpression.h.

NSIntersectSetExpressionType
An expression that creates an intersection of the results of two nested expressions.

Available in Mac OS X v10.5 and later.

Declared in NSExpression.h.

NSMinusSetExpressionType
An expression that combines two nested expression results by set subtraction.

Available in Mac OS X v10.5 and later.

Declared in NSExpression.h.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSExpression.h

Constants 601
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

602 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 45

NSExpression Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSFileHandle.h

Companion guide Low-Level File Management Programming Topics

Related sample code AudioBurn
PictureSharing
PictureSharingBrowser

Overview

NSFileHandle objects provide an object-oriented wrapper for accessing open files or communications
channels.

See the PictureSharing example project to examine code that creates an NSFileHandle object to listen for
incoming connections; the file-handle object is initialized from a socket obtained through BSD calls.

Note: The deallocation of an NSFileHandle object deletes its descriptor and closes the represented file or
channel unless the NSFileHandle object was created with initWithFileDescriptor: (page 612) or
initWithFileDescriptor:closeOnDealloc: (page 612) with NO as the parameter argument.

Tasks

Getting a File Handle

+ fileHandleForReadingAtPath: (page 606)
Returns a file handle initialized for reading the file, device, or named socket at the specified path.

+ fileHandleForWritingAtPath: (page 607)
Returns a file handle initialized for writing to the file, device, or named socket at the specified path.

Overview 603
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

+ fileHandleForUpdatingAtPath: (page 606)
Returns a file handle initialized for reading and writing to the file, device, or named socket at the
specified path.

+ fileHandleWithStandardError (page 608)
Returns the file handle associated with the standard error file.

+ fileHandleWithStandardInput (page 608)
Returns the file handle associated with the standard input file.

+ fileHandleWithStandardOutput (page 609)
Returns the file handle associated with the standard output file.

+ fileHandleWithNullDevice (page 607)
Returns a file handle associated with a null device.

Creating a File Handle

– initWithFileDescriptor: (page 612)
Returns a file handle initialized with a file descriptor.

– initWithFileDescriptor:closeOnDealloc: (page 612)
Returns a file handle initialized with a file handle, using a specified deallocation policy.

Getting a File Descriptor

– fileDescriptor (page 611)
Returns the file descriptor associated with the receiver.

Reading from a File Handle

– availableData (page 610)
Returns the data available through the receiver.

– readDataToEndOfFile (page 614)
Returns the data available through the receiver up to the end of file or maximum number of bytes.

– readDataOfLength: (page 613)
Reads data up to a specified number of bytes from the receiver.

Writing to a File Handle

– writeData: (page 619)
Synchronously writes data to the file, device, pipe, or socket represented by the receiver.

Communicating Asynchronously

– acceptConnectionInBackgroundAndNotify (page 609)
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle
for the “near” (client) end of the communications channel.

604 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

– acceptConnectionInBackgroundAndNotifyForModes: (page 610)
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle
for the “near” (client) end of the communications channel.

– readInBackgroundAndNotify (page 614)
Reads from the file or communications channel in the background and posts a notification when
finished.

– readInBackgroundAndNotifyForModes: (page 615)
Reads from the file or communications channel in the background and posts a notification when
finished.

– readToEndOfFileInBackgroundAndNotify (page 616)
Reads to the end of file from the file or communications channel in the background and posts a
notification when finished.

– readToEndOfFileInBackgroundAndNotifyForModes: (page 616)
Reads to the end of file from the file or communications channel in the background and posts a
notification when finished.

– waitForDataInBackgroundAndNotify (page 618)
Checks to see if data is available in a background thread.

– waitForDataInBackgroundAndNotifyForModes: (page 619)
Checks to see if data is available in a background thread.

Seeking Within a File

– offsetInFile (page 613)
Returns the position of the file pointer within the file represented by the receiver.

– seekToEndOfFile (page 617)
Puts the file pointer at the end of the file referenced by the receiver and returns the new file offset.

– seekToFileOffset: (page 617)
Moves the file pointer to the specified offset within the file represented by the receiver.

Operating on a File

– closeFile (page 611)
Disallows further access to the represented file or communications channel and signals end of file on
communications channels that permit writing.

– synchronizeFile (page 618)
Causes all in-memory data and attributes of the file represented by the receiver to be written to
permanent storage.

– truncateFileAtOffset: (page 618)
Truncates or extends the file represented by the receiver to a specified offset within the file and puts
the file pointer at that position.

Tasks 605
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Class Methods

fileHandleForReadingAtPath:
Returns a file handle initialized for reading the file, device, or named socket at the specified path.

+ (id)fileHandleForReadingAtPath:(NSString *)path

Parameters
path

The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

Discussion
The file pointer is set to the beginning of the file. The returned object responds only to NSFileHandle
read... messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableData (page 610)
– initWithFileDescriptor: (page 612)
– readDataOfLength: (page 613)
– readDataToEndOfFile (page 614)

Related Sample Code
AudioBurn

Declared In
NSFileHandle.h

fileHandleForUpdatingAtPath:
Returns a file handle initialized for reading and writing to the file, device, or named socket at the specified
path.

+ (id)fileHandleForUpdatingAtPath:(NSString *)path

Parameters
path

The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

Discussion
The file pointer is set to the beginning of the file. The returned object responds to both NSFileHandle
read... messages and writeData: (page 619).

606 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableData (page 610)
– initWithFileDescriptor: (page 612)
– readDataOfLength: (page 613)
– readDataToEndOfFile (page 614)

Declared In
NSFileHandle.h

fileHandleForWritingAtPath:
Returns a file handle initialized for writing to the file, device, or named socket at the specified path.

+ (id)fileHandleForWritingAtPath:(NSString *)path

Parameters
path

The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

Discussion
The file pointer is set to the beginning of the file. The returned object responds only to writeData: (page
619).

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFileDescriptor: (page 612)

Declared In
NSFileHandle.h

fileHandleWithNullDevice
Returns a file handle associated with a null device.

+ (id)fileHandleWithNullDevice

Return Value
A file handle associated with a null device.

Discussion
You can use null-device file handles as “placeholders” for standard-device file handles or in collection objects
to avoid exceptions and other errors resulting from messages being sent to invalid file handles. Read messages
sent to a null-device file handle return an end-of-file indicator (an empty NSData object) rather than raise
an exception. Write messages are no-ops, whereas fileDescriptor (page 611) returns an illegal value.
Other methods are no-ops or return “sensible” values.

Class Methods 607
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFileDescriptor: (page 612)

Declared In
NSFileHandle.h

fileHandleWithStandardError
Returns the file handle associated with the standard error file.

+ (id)fileHandleWithStandardError

Return Value
The shared file handle associated with the standard error file.

Discussion
Conventionally this is a terminal device to which error messages are sent. There is one standard error file
handle per process; it is a shared instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fileHandleWithNullDevice (page 607)
– initWithFileDescriptor: (page 612)

Declared In
NSFileHandle.h

fileHandleWithStandardInput
Returns the file handle associated with the standard input file.

+ (id)fileHandleWithStandardInput

Return Value
The shared file handle associated with the standard input file.

Discussion
Conventionally this is a terminal device on which the user enters a stream of data. There is one standard
input file handle per process; it is a shared instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fileHandleWithNullDevice (page 607)
– initWithFileDescriptor: (page 612)

608 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Declared In
NSFileHandle.h

fileHandleWithStandardOutput
Returns the file handle associated with the standard output file.

+ (id)fileHandleWithStandardOutput

Return Value
The shared file handle associated with the standard output file.

Discussion
Conventionally this is a terminal device that receives a stream of data from a program. There is one standard
output file handle per process; it is a shared instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fileHandleWithNullDevice (page 607)
– initWithFileDescriptor: (page 612)

Declared In
NSFileHandle.h

Instance Methods

acceptConnectionInBackgroundAndNotify
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle for
the “near” (client) end of the communications channel.

- (void)acceptConnectionInBackgroundAndNotify

Discussion
This method is asynchronous. In a separate “safe” thread it accepts a connection, creates a file handle for the
other end of the connection, and returns that object to the client by posting an
NSFileHandleConnectionAcceptedNotification (page 621) in the run loop of the client. The notification
includes as data a userInfo dictionary containing the created NSFileHandle object; access this object
using the NSFileHandleNotificationFileHandleItem key.

The receiver must be created by an initWithFileDescriptor: (page 612) message that takes as an
argument a stream-type socket created by the appropriate system routine. The object that will write data to
the returned file handle must add itself as an observer of
NSFileHandleConnectionAcceptedNotification (page 621).

Note that this method does not continue to listen for connection requests after it posts
NSFileHandleConnectionAcceptedNotification. If you want to keep getting notified, you need to
call acceptConnectionInBackgroundAndNotify again in your observer method.

Instance Methods 609
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 1047) (NSNotificationQueue)
– readInBackgroundAndNotify (page 614)
– readToEndOfFileInBackgroundAndNotify (page 616)

Related Sample Code
PictureSharing

Declared In
NSFileHandle.h

acceptConnectionInBackgroundAndNotifyForModes:
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle for
the “near” (client) end of the communications channel.

- (void)acceptConnectionInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the connection accepted notification can be posted.

Discussion
See acceptConnectionInBackgroundAndNotify (page 609) for details of how this method operates. This
method differs from acceptConnectionInBackgroundAndNotify (page 609) in that modes specifies the
run-loop mode (or modes) in which NSFileHandleConnectionAcceptedNotification (page 621) can
be posted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 1047) (NSNotificationQueue)
– readInBackgroundAndNotifyForModes: (page 615)
– readToEndOfFileInBackgroundAndNotifyForModes: (page 616)

Declared In
NSFileHandle.h

availableData
Returns the data available through the receiver.

- (NSData *)availableData

Return Value
The data currently available through the receiver.

610 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Discussion
If the receiver is a file, returns the data obtained by reading the file from the file pointer to the end of the
file. If the receiver is a communications channel, reads up to a buffer of data and returns it; if no data is
available, the method blocks. Returns an empty data object if the end of file is reached. Raises
NSFileHandleOperationException if attempts to determine file-handle type fail or if attempts to read
from the file or channel fail.

Availability
Available in Mac OS X v10.0 and later.

See Also
– readDataOfLength: (page 613)
– readDataToEndOfFile (page 614)

Declared In
NSFileHandle.h

closeFile
Disallows further access to the represented file or communications channel and signals end of file on
communications channels that permit writing.

- (void)closeFile

Discussion
The file or communications channel is available for other uses after the file handle represented by the receiver
is closed. Further read and write messages sent to a file handle to which closeFile has been sent raises an
exception.

Sending closeFile to a file handle does not cause its deallocation. The deallocation of an NSFileHandle
object deletes its descriptor and closes the represented file or channel unless the NSFileHandle object was
created with initWithFileDescriptor: (page 612) or
initWithFileDescriptor:closeOnDealloc: (page 612) with NO as the parameter argument.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
PictureSharing

Declared In
NSFileHandle.h

fileDescriptor
Returns the file descriptor associated with the receiver.

- (int)fileDescriptor

Return Value
The POSIX file descriptor associated with the receiver.

Instance Methods 611
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Discussion
You can send this message to file handles originating from both file descriptors and file handles and receive
a valid file descriptor so long as the file handle is open. If the file handle has been closed by sending it
closeFile (page 611), this method raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFileDescriptor: (page 612)

Declared In
NSFileHandle.h

initWithFileDescriptor:
Returns a file handle initialized with a file descriptor.

- (id)initWithFileDescriptor:(int)fileDescriptor

Parameters
fileDescriptor

The POSIX file descriptor with which to initialize the file handle.

Return Value
A file handle initialized with fileDescriptor.

Discussion
You can create a file handle for a socket by using the result of a socket call as fileDescriptor.

Special Considerations

The object creating a file handle using this method owns fileDescriptor and is responsible for its
disposition.

Availability
Available in Mac OS X v10.0 and later.

See Also
– closeFile (page 611)

Declared In
NSFileHandle.h

initWithFileDescriptor:closeOnDealloc:
Returns a file handle initialized with a file handle, using a specified deallocation policy.

- (id)initWithFileDescriptor:(int)fileDescriptor closeOnDealloc:(BOOL)flag

Parameters
fileDescriptor

The POSIX file descriptor with which to initialize the file handle.

612 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

flag
YES if the file descriptor should be closed when the receiver is deallocated, otherwise NO.

Return Value
A file handle initialized with fileDescriptor with a deallocation policy specified by flag.

Special Considerations

If flag is NO, the object creating a file handle using this method owns fileDescriptor and is responsible
for its disposition.

Availability
Available in Mac OS X v10.0 and later.

See Also
– closeFile (page 611)

Declared In
NSFileHandle.h

offsetInFile
Returns the position of the file pointer within the file represented by the receiver.

- (unsigned long long)offsetInFile

Return Value
The position of the file pointer within the file represented by the receiver.

Special Considerations

Raises an exception if the message is sent to a file handle representing a pipe or socket or if the file descriptor
is closed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– seekToEndOfFile (page 617)
– seekToFileOffset: (page 617)

Related Sample Code
AudioBurn

Declared In
NSFileHandle.h

readDataOfLength:
Reads data up to a specified number of bytes from the receiver.

- (NSData *)readDataOfLength:(NSUInteger)length

Instance Methods 613
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Parameters
length

The number of bytes to read from the receiver.

Return Value
The data available through the receiver up to a maximum of length bytes.

Discussion
If the receiver is a file, returns the data obtained by reading from the file pointer to length or to the end of
the file, whichever comes first. If the receiver is a communications channel, the method reads data from the
channel up to length. Returns an empty NSData object if the file is positioned at the end of the file or if an
end-of-file indicator is returned on a communications channel. Raises NSFileHandleOperationException
if attempts to determine file-handle type fail or if attempts to read from the file or channel fail.

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableData (page 610)
– readDataToEndOfFile (page 614)

Declared In
NSFileHandle.h

readDataToEndOfFile
Returns the data available through the receiver up to the end of file or maximum number of bytes.

- (NSData *)readDataToEndOfFile

Return Value
The data available through the receiver up to UINT_MAX bytes (the maximum value for unsigned integers)
or, if a communications channel, until an end-of-file indicator is returned.

Discussion
This method invokes readDataOfLength: (page 613) as part of its implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableData (page 610)

Declared In
NSFileHandle.h

readInBackgroundAndNotify
Reads from the file or communications channel in the background and posts a notification when finished.

- (void)readInBackgroundAndNotify

614 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Discussion
This method performs an asynchronous availableData (page 610) operation on a file or communications
channel and posts an NSFileHandleReadCompletionNotification (page 622) to the client process’s run
loop.

The length of the data is limited to the buffer size of the underlying operating system. The notification
includes a userInfo dictionary that contains the data read; access this object using the
NSFileHandleNotificationDataItem key.

Any object interested in receiving this data asynchronously must add itself as an observer of
NSFileHandleReadCompletionNotification (page 622). In communication via stream-type sockets, the
receiver is often the object returned in the userInfo dictionary of
NSFileHandleConnectionAcceptedNotification (page 621).

Note that this method does not cause a continuous stream of notifications to be sent. If you wish to keep
getting notified, you’ll also need to call readInBackgroundAndNotify in your observer method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– acceptConnectionInBackgroundAndNotify (page 609)
– readToEndOfFileInBackgroundAndNotifyForModes: (page 616)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 1047) (NSNotificationQueue)

Related Sample Code
Moriarity

Declared In
NSFileHandle.h

readInBackgroundAndNotifyForModes:
Reads from the file or communications channel in the background and posts a notification when finished.

- (void)readInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the read completion notification can be posted.

Discussion
See readInBackgroundAndNotify (page 614) for details of how this method operates. This method differs
from readInBackgroundAndNotify (page 614) in that modes specifies the run-loop mode (or modes) in
which NSFileHandleReadCompletionNotification (page 622) can be posted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– acceptConnectionInBackgroundAndNotifyForModes: (page 610)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 1047) (NSNotificationQueue)

Instance Methods 615
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Declared In
NSFileHandle.h

readToEndOfFileInBackgroundAndNotify
Reads to the end of file from the file or communications channel in the background and posts a notification
when finished.

- (void)readToEndOfFileInBackgroundAndNotify

Discussion
This method performs an asynchronous readToEndOfFile operation on a file or communications channel
and posts anNSFileHandleReadToEndOfFileCompletionNotification (page 623) to the client process’s
run loop.

The notification includes a userInfo dictionary that contains the data read; access this object using the
NSFileHandleNotificationDataItem key.

Any object interested in receiving this data asynchronously must add itself as an observer of
NSFileHandleReadToEndOfFileCompletionNotification (page 623). In communication via stream-type
sockets, the receiver is often the object returned in the userInfo dictionary of
NSFileHandleConnectionAcceptedNotification (page 621).

Availability
Available in Mac OS X v10.0 and later.

See Also
– acceptConnectionInBackgroundAndNotify (page 609)
– readToEndOfFileInBackgroundAndNotifyForModes: (page 616)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 1047) (NSNotificationQueue)

Related Sample Code
PictureSharingBrowser

Declared In
NSFileHandle.h

readToEndOfFileInBackgroundAndNotifyForModes:
Reads to the end of file from the file or communications channel in the background and posts a notification
when finished.

- (void)readToEndOfFileInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the read completion notification can be posted.

Discussion
See readToEndOfFileInBackgroundAndNotify (page 616) for details of this method's operation. The
method differs from readToEndOfFileInBackgroundAndNotify (page 616) in that modes specifies the
run-loop mode (or modes) in which NSFileHandleReadToEndOfFileCompletionNotification (page
623) can be posted.

616 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– acceptConnectionInBackgroundAndNotifyForModes: (page 610)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 1047) (NSNotificationQueue)

Declared In
NSFileHandle.h

seekToEndOfFile
Puts the file pointer at the end of the file referenced by the receiver and returns the new file offset.

- (unsigned long long)seekToEndOfFile

Return Value
The file offset with the file pointer at the end of the file. This is therefore equal to the size of the file.

Special Considerations

Raises an exception if the message is sent to an NSFileHandle object representing a pipe or socket or if
the file descriptor is closed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– offsetInFile (page 613)

Declared In
NSFileHandle.h

seekToFileOffset:
Moves the file pointer to the specified offset within the file represented by the receiver.

- (void)seekToFileOffset:(unsigned long long)offset

Parameters
offset

The offset to seek to.

Special Considerations

Raises an exception if the message is sent to an NSFileHandle object representing a pipe or socket, if the
file descriptor is closed, or if any other error occurs in seeking.

Availability
Available in Mac OS X v10.0 and later.

See Also
– offsetInFile (page 613)

Instance Methods 617
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Related Sample Code
AudioBurn

Declared In
NSFileHandle.h

synchronizeFile
Causes all in-memory data and attributes of the file represented by the receiver to be written to permanent
storage.

- (void)synchronizeFile

Discussion
This method should be invoked by programs that require the file to always be in a known state. An invocation
of this method does not return until memory is flushed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

truncateFileAtOffset:
Truncates or extends the file represented by the receiver to a specified offset within the file and puts the file
pointer at that position.

- (void)truncateFileAtOffset:(unsigned long long)offset

Parameters
offset

The offset within the file that will mark the new end of the file.

Discussion
If the file is extended (if offset is beyond the current end of file), the added characters are null bytes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

waitForDataInBackgroundAndNotify
Checks to see if data is available in a background thread.

- (void)waitForDataInBackgroundAndNotify

618 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Discussion
When the data becomes available, the thread notifies all observers with
NSFileHandleDataAvailableNotification (page 622). After the notification has been posted, the thread
is terminated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– waitForDataInBackgroundAndNotifyForModes: (page 619)

Declared In
NSFileHandle.h

waitForDataInBackgroundAndNotifyForModes:
Checks to see if data is available in a background thread.

- (void)waitForDataInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters
modes

The runloop modes in which the data available notification can be posted.

Discussion
When the data becomes available, the thread notifies all observers with
NSFileHandleDataAvailableNotification (page 622). After the notification has been posted, the thread
is terminated. This method differs from waitForDataInBackgroundAndNotify (page 618) in that modes
specifies the run-loop mode (or modes) in which NSFileHandleDataAvailableNotification (page 622)
can be posted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– waitForDataInBackgroundAndNotify (page 618)

Declared In
NSFileHandle.h

writeData:
Synchronously writes data to the file, device, pipe, or socket represented by the receiver.

- (void)writeData:(NSData *)data

Parameters
data

The data to be written.

Instance Methods 619
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Discussion
If the receiver is a file, writing takes place at the file pointer’s current position. After it writes the data, the
method advances the file pointer by the number of bytes written. Raises an exception if the file descriptor
is closed or is not valid, if the receiver represents an unconnected pipe or socket endpoint, if no free space
is left on the file system, or if any other writing error occurs.

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableData (page 610)
– readDataOfLength: (page 613)
– readDataToEndOfFile (page 614)

Related Sample Code
PictureSharing

Declared In
NSFileHandle.h

Constants

Keys for Notification UserInfo Dictionary
Strings that are used as keys in a userinfo dictionary in a file handle notification.

NSString * const NSFileHandleNotificationFileHandleItem;
NSString * const NSFileHandleNotificationDataItem;

Constants
NSFileHandleNotificationFileHandleItem

A key in the userinfo dictionary in a NSFileHandleConnectionAcceptedNotification (page 621)
notification.

The corresponding value is the NSFileHandle object representing the “near” end of a socket
connection.

Available in Mac OS X v10.0 and later.

Declared in NSFileHandle.h.

NSFileHandleNotificationDataItem
A key in the userinfo dictionary in a NSFileHandleReadCompletionNotification (page 622) and
NSFileHandleReadToEndOfFileCompletionNotification (page 623).

The corresponding value is an NSData object containing the available data read from a socket
connection.

Available in Mac OS X v10.0 and later.

Declared in NSFileHandle.h.

Declared In
NSFileHandle.h

620 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Exception Names
Constant that defines the name of a file operation exception.

extern NSString *NSFileHandleOperationException;

Constants
NSFileHandleOperationException

Raised by NSFileHandle if attempts to determine file-handle type fail or if attempts to read from a
file or channel fail.

Available in Mac OS X v10.0 and later.

Declared in NSFileHandle.h.

Declared In
NSFileHandle.h

Unused Constant
Constant that is currently unused.

NSString * const NSFileHandleNotificationMonitorModes;

Constants
NSFileHandleNotificationMonitorModes

Currently unused.

Available in Mac OS X v10.0 and later.

Declared in NSFileHandle.h.

Declared In
NSFileHandle.h

Notifications

NSFileHandle posts several notifications related to asynchronous background I/O operations. They are set
to post when the run loop of the thread that started the asynchronous operation is idle.

NSFileHandleConnectionAcceptedNotification
This notification is posted when an NSFileHandle object establishes a socket connection between two
processes, creates an NSFileHandle object for one end of the connection, and makes this object available
to observers by putting it in the userInfo dictionary. To cause the posting of this notification, you must
send either acceptConnectionInBackgroundAndNotify (page 609) or
acceptConnectionInBackgroundAndNotifyForModes: (page 610) to an NSFileHandle object
representing a server stream-type socket.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

Notifications 621
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

ValueKey

The NSFileHandle object representing the “near”
end of a socket connection

NSFileHandleNotificationFileHandleItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

NSFileHandleDataAvailableNotification
This notification is posted when the background thread determines that data is currently available for reading
in a file or at a communications channel. The observers can then issue the appropriate messages to begin
reading the data. To cause the posting of this notification, you must send either
waitForDataInBackgroundAndNotify (page 618) orwaitForDataInBackgroundAndNotifyForModes:
 (page 619) to an appropriate NSFileHandle object.

The notification object is the NSFileHandle object that sent the notification. This notification does not
contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

NSFileHandleReadCompletionNotification
This notification is posted when the background thread reads the data currently available in a file or at a
communications channel. It makes the data available to observers by putting it in the userInfo dictionary.
To cause the posting of this notification, you must send either readInBackgroundAndNotify (page 614)
or readInBackgroundAndNotifyForModes: (page 615) to an appropriate NSFileHandle object.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

ValueKey

An NSData object containing the available data read
from a socket connection

NSFileHandleNotificationDataItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

Availability
Available in Mac OS X v10.0 and later.

622 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Declared In
NSFileHandle.h

NSFileHandleReadToEndOfFileCompletionNotification
This notification is posted when the background thread reads all data in the file or, if a communications
channel, until the other process signals the end of data. It makes the data available to observers by putting
it in the userInfo dictionary. To cause the posting of this notification, you must send either
readToEndOfFileInBackgroundAndNotify (page 616) or
readToEndOfFileInBackgroundAndNotifyForModes: (page 616) to an appropriate NSFileHandle
object.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

ValueKey

An NSData object containing the available data read
from a socket connection

NSFileHandleNotificationDataItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

Notifications 623
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

624 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 46

NSFileHandle Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSFileManager.h

Companion guide Low-Level File Management Programming Topics

Related sample code Core Data HTML Store
CoreRecipes
MyPhoto
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Overview

NSFileManager enables you to perform many generic file-system operations and insulates an application
from the underlying file system.

Tasks

Getting the Default Manager

+ defaultManager (page 630)
Returns the default NSFileManager object for the file system.

Moving an Item

– movePath:toPath:handler: (page 654)
Moves the directory or file specified by a given path to a different location in the file system identified
by another path.

Overview 625
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

– fileManager:shouldMoveItemAtPath:toPath: (page 662) delegate method
An NSFileManager object sends this message immediately before attempting to move to a given
path.

– moveItemAtPath:toPath:error: (page 654)
Moves the directory or file specified by a given path to a different location in the file system identified
by another path.

– fileManager:shouldProceedAfterError:movingItemAtPath:toPath: (page 665) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to move to a
given path.

Copying an Item

– copyPath:toPath:handler: (page 636)
Copies the directory or file specified in a given path to a different location in the file system identified
by another path.

– fileManager:shouldCopyItemAtPath:toPath: (page 661) delegate method
An NSFileManager object sends this message immediately before attempting to copy to a given
path.

– copyItemAtPath:toPath:error: (page 635)
Copies the directory or file specified in a given path to a different location in the file system identified
by another path.

– fileManager:shouldProceedAfterError:copyingItemAtPath:toPath: (page 664) delegate
method

An NSFileManager object sends this message if an error occurs during an attempt to copy to a given
path.

Removing an Item

– removeFileAtPath:handler: (page 656)
Deletes the file, link, or directory (including, recursively, all subdirectories, files, and links in the directory)
identified by a given path.

– fileManager:shouldRemoveItemAtPath: (page 666) delegate method
An NSFileManager object sends this message immediately before attempting to delete an item at
a given path.

– removeItemAtPath:error: (page 657)
Deletes the file, link, or directory (including, recursively, all subdirectories, files, and links in the directory)
identified by a given path.

– fileManager:shouldProceedAfterError:removingItemAtPath: (page 666) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to delete a given
path.

Creating an Item

– createDirectoryAtPath:attributes: (page 637)
Creates a directory (without contents) at a given path with given attributes.

626 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

– createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 638)
Creates a directory with given attributes at a specified path.

– createFileAtPath:contents:attributes: (page 639)
Creates a file at a given path that has given attributes and contents.

Linking an Item

– linkPath:toPath:handler: (page 652)
Creates a link from a source to a destination.

– fileManager:shouldLinkItemAtPath:toPath: (page 662) delegate method
An NSFileManager object sends this message immediately before attempting to link to a given
path.

– linkItemAtPath:toPath:error: (page 651)
Creates a link from a source to a destination.

– fileManager:shouldProceedAfterError:linkingItemAtPath:toPath: (page 665) delegate
method

An NSFileManager object sends this message if an error occurs during an attempt to link to a given
path.

Symbolic-Link Operations

– createSymbolicLinkAtPath:pathContent: (page 640)
Creates a symbolic link identified by a given path that refers to a given location.

– createSymbolicLinkAtPath:withDestinationPath:error: (page 640)
Creates a symbolic link identified by a given path that refers to a given location.

– pathContentOfSymbolicLinkAtPath: (page 656)
Returns the path of the directory or file that a symbolic link at a given path refers to.

– destinationOfSymbolicLinkAtPath:error: (page 642)
Returns an NSString object containing the path of the item pointed at by the symlink specified by
a given path.

Handling File Operations
The methods described in this section are methods to be implemented by the callback handler passed to
several methods of NSFileManager.

– fileManager:shouldProceedAfterError: (page 663) delegate method
An NSFileManager object sends this message to its handler for each error it encounters when
copying, moving, removing, or linking files or directories.

– fileManager:willProcessPath: (page 667) delegate method
An NSFileManager object sends this message to a handler immediately before attempting to move,
copy, rename, or delete, or before attempting to link to a given path.

Tasks 627
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Getting and Comparing File Contents

– contentsAtPath: (page 633)
Returns as an NSData object the contents of the file at at given path.

– contentsEqualAtPath:andPath: (page 634)
Returns a Boolean value that indicates whether the files or directories in specified paths have the
same contents.

Discovering Directory Contents

– directoryContentsAtPath: (page 642)
Returns an array of NSString objects identifying the directories and files (including symbolic links)
contained in a given directory.

– contentsOfDirectoryAtPath:error: (page 634)
Returns an array of NSString objects identifying the directories and files (including symbolic links)
contained in a given directory.

– enumeratorAtPath: (page 644)
Creates and returns an NSDirectoryEnumerator object that enumerates the contents of the directory
at a given path.

– subpathsAtPath: (page 659)
Returns an array that contains (as NSString objects) the contents of the directory identified by a
given path.

– subpathsOfDirectoryAtPath:error: (page 660)
Returns an array that contains the filenames of the items in the directory specified by a given path
and all its subdirectories recursively.

Determining Access to Files

– fileExistsAtPath: (page 646)
Returns a Boolean value that indicates whether a file or directory exists at a specified path.

– fileExistsAtPath:isDirectory: (page 647)
Returns a Boolean value that indicates whether a file or directory exists at a specified path.

– isReadableFileAtPath: (page 650)
Returns a Boolean value that indicates whether the invoking object appears able to read a specified
file.

– isWritableFileAtPath: (page 651)
Returns a Boolean value that indicates whether the invoking object appears able to write to a specified
file.

– isExecutableFileAtPath: (page 650)
Returns a Boolean value that indicates whether the operating system appears able to execute a
specified file.

– isDeletableFileAtPath: (page 649)
Returns a Boolean value that indicates whether the invoking object appears able to delete a specified
file.

628 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Getting and Setting Attributes

– componentsToDisplayForPath: (page 633)
Returns an array of NSString objects representing the user-visible components of a given path.

– displayNameAtPath: (page 643)
Returns the name of the file or directory at a given path in a localized form appropriate for presentation
to the user.

– fileAttributesAtPath:traverseLink: (page 645)
Returns a dictionary that describes the POSIX attributes of the file specified at a given.

– attributesOfItemAtPath:error: (page 631)
An NSDictionary object containing the attributes of the item at a given path.

– fileSystemAttributesAtPath: (page 648)
Returns a dictionary that describes the attributes of the mounted file system on which a given path
resides.

– attributesOfFileSystemForPath:error: (page 630)
Returns a dictionary that describes the attributes of the mounted file system on which a given path
resides.

– changeFileAttributes:atPath: (page 632)
Changes the attributes of a given file or directory.

– setAttributes:ofItemAtPath:error: (page 658)
Sets the attributes of a given file or directory.

Getting Representations of File Paths

– fileSystemRepresentationWithPath: (page 649)
Returns a C-string representation of a given path that properly encodes Unicode strings for use by
the file system.

– stringWithFileSystemRepresentation:length: (page 659)
Returns an NSString object converted from the C-string representation of a pathname in the current
file system.

Managing the Delegate

– setDelegate: (page 659)
Sets the delegate for the receiver.

– delegate (page 641)
Returns the delegate for the receiver.

Managing the Current Directory

– changeCurrentDirectoryPath: (page 631)
Changes the path of the current directory for the current process to a given path.

– currentDirectoryPath (page 641)
Returns the path of the program’s current directory.

Tasks 629
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Class Methods

defaultManager
Returns the default NSFileManager object for the file system.

+ (NSFileManager *)defaultManager

Return Value
The default NSFileManager object for the file system.

Discussion
You invoke all NSFileManager instance methods with this object as the receiver.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Core Data HTML Store
CoreRecipes
ImageBrowser
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSFileManager.h

Instance Methods

attributesOfFileSystemForPath:error:
Returns a dictionary that describes the attributes of the mounted file system on which a given path resides.

- (NSDictionary *)attributesOfFileSystemForPath:(NSString *)path error:(NSError
**)error

Parameters
path

Any pathname within the mounted file system.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
An NSDictionary object that describes the attributes of the mounted file system on which path resides.
See “File-System Attribute Keys” (page 672) for a description of the keys available in the dictionary.

Discussion
This method does not traverse an initial symbolic link.

630 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– fileSystemAttributesAtPath: (page 648)
– fileAttributesAtPath:traverseLink: (page 645)
– changeFileAttributes:atPath: (page 632)

Declared In
NSFileManager.h

attributesOfItemAtPath:error:
An NSDictionary object containing the attributes of the item at a given path.

- (NSDictionary *)attributesOfItemAtPath:(NSString *)path error:(NSError **)error

Parameters
path

The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
An NSDictionary object that describes the attributes (file, directory, symlink, and so on) of the file specified
by path. The keys in the dictionary are described in “File Attribute Keys” (page 668).

Discussion
This method does not traverse an initial symbolic link.

Availability
Available in Mac OS X v10.5 and later.

See Also
– fileAttributesAtPath:traverseLink: (page 645)
– changeFileAttributes:atPath: (page 632)

Declared In
NSFileManager.h

changeCurrentDirectoryPath:
Changes the path of the current directory for the current process to a given path.

- (BOOL)changeCurrentDirectoryPath:(NSString *)path

Parameters
path

The path of the directory to which to change.

Return Value
YES if successful, otherwise NO.

Instance Methods 631
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Discussion
All relative pathnames refer implicitly to the current working directory. The current working directory is stored
per process.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentDirectoryPath (page 641)
– fileExistsAtPath:isDirectory: (page 647)
– directoryContentsAtPath: (page 642)
– createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 638)
– createDirectoryAtPath:attributes: (page 637)

Declared In
NSFileManager.h

changeFileAttributes:atPath:
Changes the attributes of a given file or directory.

- (BOOL)changeFileAttributes:(NSDictionary *)attributes atPath:(NSString *)path

Parameters
attributes

A dictionary containing as keys the attributes to set for path and as values the corresponding value
for the attribute. You can set following: NSFileBusy, NSFileCreationDate,
NSFileExtensionHidden, NSFileGroupOwnerAccountID, NSFileGroupOwnerAccountName,
NSFileHFSCreatorCode, NSFileHFSTypeCode, NSFileImmutable, NSFileModificationDate,
NSFileOwnerAccountID,NSFileOwnerAccountName,NSFilePosixPermissions. You can change
single attributes or any combination of attributes; you need not specify keys for all attributes.

For the NSFilePosixPermissions value, specify a file mode from the OR’d permission bit masks
defined in sys/stat.h. See the man page for the chmod function (man 2 chmod) for an explanation.

path
A path to a file or directory.

Return Value
YES if all changes succeed. If any change fails, returns NO, but it is undefined whether any changes actually
occurred.

Discussion
As in the POSIX standard, the application either must own the file or directory or must be running as superuser
for attribute changes to take effect. The method attempts to make all changes specified in attributes and
ignores any rejection of an attempted modification.

The NSFilePosixPermissions value must be initialized with the code representing the POSIX
file-permissions bit pattern. NSFileHFSCreatorCode and NSFileHFSTypeCode will only be heeded when
path specifies a file.

Special Considerations

On Mac OS X v10.5 and later, use setAttributes:ofItemAtPath:error: (page 658) instead.

632 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileAttributesAtPath:traverseLink: (page 645)
– setAttributes:ofItemAtPath:error: (page 658)

Related Sample Code
File Wrappers with Core Data Documents
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSFileManager.h

componentsToDisplayForPath:
Returns an array of NSString objects representing the user-visible components of a given path.

- (NSArray *)componentsToDisplayForPath:(NSString *)path

Parameters
path

A pathname.

Return Value
An array of NSString objects representing the user-visible (for the Finder, Open and Save panels, and so
on) components of path.

Discussion
These components cannot be used for path operations and are only suitable for display to the user.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
QTAudioExtractionPanel

Declared In
NSFileManager.h

contentsAtPath:
Returns as an NSData object the contents of the file at at given path.

- (NSData *)contentsAtPath:(NSString *)path

Parameters
path

The path of a file.

Instance Methods 633
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Return Value
The contents of the file specified by path as an NSData object. If path specifies a directory, or if some other
error occurs, returns nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentsEqualAtPath:andPath: (page 634)
– createFileAtPath:contents:attributes: (page 639)

Declared In
NSFileManager.h

contentsEqualAtPath:andPath:
Returns a Boolean value that indicates whether the files or directories in specified paths have the same
contents.

- (BOOL)contentsEqualAtPath:(NSString *)path1 andPath:(NSString *)path2

Parameters
path1

The path of a file or directory to compare with the contents of path2.

path2
The path of a file or directory to compare with the contents of path1.

Return Value
YES if file or directory specified in path1 has the same contents as that specified in path2, otherwise NO.

Discussion
If path1 and path2 are directories, the contents are the list of files and subdirectories each contains—contents
of subdirectories are also compared. For files, this method checks to see if they’re the same file, then compares
their size, and finally compares their contents. This method does not traverse symbolic links, but compares
the links themselves.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentsAtPath: (page 633)

Declared In
NSFileManager.h

contentsOfDirectoryAtPath:error:
Returns an array of NSString objects identifying the directories and files (including symbolic links) contained
in a given directory.

- (NSArray *)contentsOfDirectoryAtPath:(NSString *)path error:(NSError **)error

634 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Parameters
path

A path to a directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
An array of NSString objects identifying the directories and files (including symbolic links) contained in
path. Returns an empty array if the directory exists but has no contents. Returns nil if the directory specified
at path does not exist or there is some other error accessing it.

Discussion
The search is shallow and therefore does not return the contents of any subdirectories. This returned array
does not contain strings for the current directory (“.”), parent directory (“..”), or resource forks (begin with
“._”) and does not traverse symbolic links.

Availability
Available in Mac OS X v10.5 and later.

See Also
– directoryContentsAtPath: (page 642)
– currentDirectoryPath (page 641)
– fileExistsAtPath:isDirectory: (page 647)
– enumeratorAtPath: (page 644)
– subpathsAtPath: (page 659)

Declared In
NSFileManager.h

copyItemAtPath:toPath:error:
Copies the directory or file specified in a given path to a different location in the file system identified by
another path.

- (BOOL)copyItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath error:(NSError
 **)error

Parameters
srcPath

The path of a file or directory.

dstPath
The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the operation was successful, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 635
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

See Also
– fileManager:shouldCopyItemAtPath:toPath: (page 661)
– fileManager:shouldProceedAfterError:copyingItemAtPath:toPath: (page 664)
– linkItemAtPath:toPath:error: (page 651)
– moveItemAtPath:toPath:error: (page 654)
– removeItemAtPath:error: (page 657)
– copyPath:toPath:handler: (page 636)

Declared In
NSFileManager.h

copyPath:toPath:handler:
Copies the directory or file specified in a given path to a different location in the file system identified by
another path.

- (BOOL)copyPath:(NSString *)source toPath:(NSString *)destination
handler:(id)handler

Parameters
source

The location of the source file.

destination
The location to which to copy the file specified by source.

handler
An object that responds to the callback messages fileManager:willProcessPath: (page 667)
and fileManager:shouldProceedAfterError: (page 663). You can specify nil for handler; if
you do so and an error occurs, the method automatically returns NO.

Return Value
YES if the copy operation is successful. If the operation is not successful, but the callback handler of
fileManager:shouldProceedAfterError: (page 663) returns YES, copyPath:toPath:handler: also
returns YES. Otherwise this method returns NO. The method also attempts to make the attributes of the
directory or file at destination identical to source, but ignores any failure at this attempt.

Discussion
If source is a file, the method creates a file at destination that holds the exact contents of the original
file (this includes BSD special files). If source is a directory, the method creates a new directory at
destination and recursively populates it with duplicates of the files and directories contained in source,
preserving all links. The file specified in source must exist, while destination must not exist prior to the
operation. When a file is being copied, the destination path must end in a filename—there is no implicit
adoption of the source filename. Symbolic links are not traversed but are themselves copied. File or directory
attributes—that is, metadata such as owner and group numbers, file permissions, and modification date—are
also copied.

The handler callback mechanism is similar to delegation. NSFileManager sends
fileManager:willProcessPath: (page 667) when it begins a copy, move, remove, or link operation. It
sends fileManager:shouldProceedAfterError: (page 663) when it encounters any error in processing.

This code fragment verifies that the file to be copied exists and then copies that file to the user’s
~/Library/Reports directory:

636 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

NSString *source = @"/tmp/quarterly_report.rtf";
NSString *destination = [[[NSHomeDirectory()
 stringByAppendingPathComponent:@"Library"]
 stringByAppendingPathComponent:@"Reports"]
 stringByAppendingPathComponent:@"new_quarterly_report.rtf"];
NSFileManager *fileManager = [NSFileManager defaultManager];

if ([fileManager fileExistsAtPath:source]) {
 [fileManager copyPath:source toPath:destination handler:nil];
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– linkPath:toPath:handler: (page 652)
– movePath:toPath:handler: (page 654)
– fileManager:shouldProceedAfterError: (page 663)
– removeFileAtPath:handler: (page 656)
– fileManager:willProcessPath: (page 667)

Related Sample Code
Core Data HTML Store

Declared In
NSFileManager.h

createDirectoryAtPath:attributes:
Creates a directory (without contents) at a given path with given attributes.

- (BOOL)createDirectoryAtPath:(NSString *)path attributes:(NSDictionary *)attributes

Parameters
path

The path at which to create the new directory. The directory to be created must not yet exist, but its
parent directory must exist.

attributes
The file attributes for the new directory. The attributes you can set are owner and group numbers,
file permissions, and modification date. If you specify nil for attributes, default values for these
attributes are set (particularly write access for the creator and read access for others). The
“Constants” (page 668) section lists the global constants used as keys in the attributes dictionary.
Some of the keys, such as NSFileHFSCreatorCode and NSFileHFSTypeCode, do not apply to
directories.

Return Value
YES if the operation was successful, otherwise NO.

Special Considerations

On Mac OS X v10.5 and later, use
createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 638) instead.

Instance Methods 637
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 638)
– changeCurrentDirectoryPath: (page 631)
– changeFileAttributes:atPath: (page 632)
– createFileAtPath:contents:attributes: (page 639)
– currentDirectoryPath (page 641)

Related Sample Code
Core Data HTML Store
CoreRecipes
GridCalendar
MyPhoto
SpotlightFortunes

Declared In
NSFileManager.h

createDirectoryAtPath:withIntermediateDirectories:attributes:error:
Creates a directory with given attributes at a specified path.

- (BOOL)createDirectoryAtPath:(NSString *)path
withIntermediateDirectories:(BOOL)createIntermediates attributes:(NSDictionary
 *)attributes error:(NSError **)error

Parameters
path

The path at which to create the new directory. The directory to be created must not yet exist.

createIntermediates
If YES, then the method will also create any necessary intermediate directories; if NO, then the method
will fail if any parent of the directory to be created does not exist.

attributes
The file attributes for the new directory. The attributes you can set are owner and group numbers,
file permissions, and modification date. If you specify nil for attributes, the directory is created
according to the umask of the process. The “Constants” (page 668) section lists the global constants
used as keys in the attributes dictionary. Some of the keys, such as NSFileHFSCreatorCode and
NSFileHFSTypeCode, do not apply to directories.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the operation was successful, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

638 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

See Also
– createDirectoryAtPath:attributes: (page 637)
– changeCurrentDirectoryPath: (page 631)
– setAttributes:ofItemAtPath:error: (page 658)
– createFileAtPath:contents:attributes: (page 639)
– currentDirectoryPath (page 641)

Declared In
NSFileManager.h

createFileAtPath:contents:attributes:
Creates a file at a given path that has given attributes and contents.

- (BOOL)createFileAtPath:(NSString *)path contents:(NSData *)contents
attributes:(NSDictionary *)attributes

Parameters
path

The path for the new file.

contents
The contents for the new file.

attributes
A dictionary that describes the attributes of the new file. The file attributes you can set are owner and
group numbers, file permissions, and modification date. “File Attribute Keys” (page 668) lists the global
constants used as keys in the attributes dictionary. If you specify nil for attributes, the file is
given a default set of attributes.

Return Value
YES if the operation was successful, otherwise NO.

Discussion
If a file already exists at path, then if the file can be overwritten (subject to user privileges) it will be.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentsAtPath: (page 633)
– changeFileAttributes:atPath: (page 632)
– setAttributes:ofItemAtPath:error: (page 658)
– fileAttributesAtPath:traverseLink: (page 645)
– attributesOfItemAtPath:error: (page 631)

Related Sample Code
Core Data HTML Store
CustomAtomicStoreSubclass
TimelineToTC

Declared In
NSFileManager.h

Instance Methods 639
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

createSymbolicLinkAtPath:pathContent:
Creates a symbolic link identified by a given path that refers to a given location.

- (BOOL)createSymbolicLinkAtPath:(NSString *)path pathContent:(NSString *)otherPath

Parameters
path

The path for a symbolic link.

otherPath
The path to which path should refer.

Return Value
YES if the operation is successful, otherwise NO. Returns NO if a file, directory, or symbolic link identical to
path already exists.

Discussion
Creates a symbolic link identified by path that refers to the location otherPath in the file system.

Special Considerations

On Mac OS X v10.5 and later, use createSymbolicLinkAtPath:withDestinationPath:error: (page
640) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– createSymbolicLinkAtPath:withDestinationPath:error: (page 640)
– pathContentOfSymbolicLinkAtPath: (page 656)
– linkPath:toPath:handler: (page 652)

Declared In
NSFileManager.h

createSymbolicLinkAtPath:withDestinationPath:error:
Creates a symbolic link identified by a given path that refers to a given location.

- (BOOL)createSymbolicLinkAtPath:(NSString *)path withDestinationPath:(NSString
*)destPath error:(NSError **)error

Parameters
path

The path for a symbolic link.

destPath
The path to which path should refer.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the operation is successful, otherwise NO. Returns NO if a file, directory, or symbolic link identical to
path already exists.

640 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Discussion
Creates a symbolic link identified by path that refers to the location destPath in the file system.

This method does not traverse an initial symlink.

Availability
Available in Mac OS X v10.5 and later.

See Also
– createSymbolicLinkAtPath:pathContent: (page 640)
– pathContentOfSymbolicLinkAtPath: (page 656)
– linkPath:toPath:handler: (page 652)

Declared In
NSFileManager.h

currentDirectoryPath
Returns the path of the program’s current directory.

- (NSString *)currentDirectoryPath

Return Value
The path of the program’s current directory. If the program’s current working directory isn’t accessible, returns
nil.

Discussion
The string returned by this method is initialized to the current working directory; you can change the working
directory by invoking changeCurrentDirectoryPath: (page 631).

Relative pathnames refer implicitly to the current directory. For example, if the current directory is /tmp, and
the relative pathname reports/info.txt is specified, the resulting full pathname is
/tmp/reports/info.txt.

Availability
Available in Mac OS X v10.0 and later.

See Also
– changeCurrentDirectoryPath: (page 631)
– createDirectoryAtPath:attributes: (page 637)
– createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 638)

Declared In
NSFileManager.h

delegate
Returns the delegate for the receiver.

- (id)delegate

Return Value
The delegate for the receiver.

Instance Methods 641
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSFileManager.h

destinationOfSymbolicLinkAtPath:error:
Returns an NSString object containing the path of the item pointed at by the symlink specified by a given
path.

- (NSString *)destinationOfSymbolicLinkAtPath:(NSString *)path error:(NSError
**)error

Parameters
path

The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
An NSString object containing the path of the directory or file to which the symbolic link path refers, or
nil upon failure. If the symbolic link is specified as a relative path, that relative path is returned.

Discussion
This method does not traverse an initial symlink.

Availability
Available in Mac OS X v10.5 and later.

See Also
– pathContentOfSymbolicLinkAtPath: (page 656)
– createSymbolicLinkAtPath:withDestinationPath:error: (page 640)

Declared In
NSFileManager.h

directoryContentsAtPath:
Returns an array of NSString objects identifying the directories and files (including symbolic links) contained
in a given directory.

- (NSArray *)directoryContentsAtPath:(NSString *)path

Parameters
path

A path to a directory.

Return Value
An array of NSString objects identifying the directories and files (including symbolic links) contained in
path. Returns an empty array if the directory exists but has no contents. Returns nil if the directory specified
at path does not exist or there is some other error accessing it.

642 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Discussion
The search is shallow and therefore does not return the contents of any subdirectories. This returned array
does not contain strings for the current directory (“.”), parent directory (“..”), or resource forks (begin with
“._”) and does not traverse symbolic links.

Special Considerations

On Mac OS X v10.5 and later, use contentsOfDirectoryAtPath:error: (page 634) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentsOfDirectoryAtPath:error: (page 634)
– currentDirectoryPath (page 641)
– fileExistsAtPath:isDirectory: (page 647)
– enumeratorAtPath: (page 644)
– subpathsAtPath: (page 659)

Related Sample Code
Core Data HTML Store
IKSlideshowDemo
ImageBrowser
LSMSmartCategorizer
ThreadsImportMovie

Declared In
NSFileManager.h

displayNameAtPath:
Returns the name of the file or directory at a given path in a localized form appropriate for presentation to
the user.

- (NSString *)displayNameAtPath:(NSString *)path

Parameters
path

The path of a file or directory.

Return Value
The name of the file or directory at path in a localized form appropriate for presentation to the user. If there
is no file or directory at path, or if an error occurs, returns [path lastPathComponent].

Discussion
The returned value is localized where appropriate. For example, if you have selected French as your preferred
language, the following code fragment logs “Bibliothèque”:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSLibraryDirectory,
NSUserDomainMask, YES);
if ([paths count] > 0)
{
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSFileManager *fileManager = [NSFileManager defaultManager];

Instance Methods 643
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

 NSString *displayNameAtPath = [fileManager
displayNameAtPath:documentsDirectory];
 NSLog(@"%@", displayNameAtPath);
}

Availability
Available in Mac OS X v10.1 and later.

See Also
– lastPathComponent (page 1579) (NSString)

Related Sample Code
AlbumToSlideshow
AutomatorHandsOn
DeskPictAppDockMenu
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSFileManager.h

enumeratorAtPath:
Creates and returns an NSDirectoryEnumerator object that enumerates the contents of the directory at
a given path.

- (NSDirectoryEnumerator *)enumeratorAtPath:(NSString *)path

Parameters
path

The path of the directory to enumerate.

Return Value
An NSDirectoryEnumerator object that enumerates the contents of the directory at path. If path is a
symbolic link, this method evaluates the link and returns an enumerator for the file or directory the link points
to. If the link cannot be evaluated, the method returns nil.

If path is a filename, the method returns an enumerator object that enumerates no files—the first call to
nextObject (page 558) will return nil.

Discussion
Because the enumeration is deep—that is, it lists the contents of all subdirectories—this enumerator object
is useful for performing actions that involve large file-system subtrees. If the method is passed a directory
on which another file system is mounted (a mount point), it traverses the mount point. This method does
not resolve symbolic links encountered in the traversal process, nor does it recurse through them if they
point to a directory.

This code fragment enumerates the subdirectories and files under a user’s Documents directory and processes
all files with an extension of .doc:

NSString *file;
NSString *docsDir = [NSHomeDirectory() stringByAppendingPathComponent:
@"Documents"];
NSDirectoryEnumerator *dirEnum =

644 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

 [[NSFileManager defaultManager] enumeratorAtPath:docsDir];

while (file = [dirEnum nextObject]) {
 if ([[file pathExtension] isEqualToString: @"doc"]) {
 [self scanDocument: [docsDir stringByAppendingPathComponent:file]];
 }
}

The NSDirectoryEnumerator class has methods for obtaining the attributes of the existing path and of
the parent directory and for skipping descendants of the existing path.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentDirectoryPath (page 641)
– fileAttributesAtPath:traverseLink: (page 645)
– directoryContentsAtPath: (page 642)
– subpathsAtPath: (page 659)

Related Sample Code
BundleLoader
DeskPictAppDockMenu
NSOperationSample

Declared In
NSFileManager.h

fileAttributesAtPath:traverseLink:
Returns a dictionary that describes the POSIX attributes of the file specified at a given.

- (NSDictionary *)fileAttributesAtPath:(NSString *)path traverseLink:(BOOL)flag

Parameters
path

A file path.

flag
If path is not a symbolic link, this parameter has no effect. If path is a symbolic link, then:

 ■ If YES the attributes of the linked-to file are returned, or if the link points to a nonexistent file the
method returns nil.

 ■ If NO, the attributes of the symbolic link are returned.

Return Value
An NSDictionary object that describes the POSIX attributes of the file specified at path. The keys in the
dictionary are described in “File Attribute Keys” (page 668). If there is no item at path, returns nil.

Discussion
This code example gets several attributes of a file and logs them.

NSFileManager *fileManager = [NSFileManager defaultManager];
NSString *path = @"/tmp/List";

Instance Methods 645
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

NSDictionary *fileAttributes = [fileManager fileAttributesAtPath:path
traverseLink:YES];

if (fileAttributes != nil) {
 NSNumber *fileSize;
 NSString *fileOwner;
 NSDate *fileModDate;
 if (fileSize = [fileAttributes objectForKey:NSFileSize]) {
 NSLog(@"File size: %qi\n", [fileSize unsignedLongLongValue]);
 }
 if (fileOwner = [fileAttributes objectForKey:NSFileOwnerAccountName]) {
 NSLog(@"Owner: %@\n", fileOwner);
 }
 if (fileModDate = [fileAttributes objectForKey:NSFileModificationDate]) {
 NSLog(@"Modification date: %@\n", fileModDate);
 }
}
else {
 NSLog(@"Path (%@) is invalid.", path);
}

As a convenience, NSDictionary provides a set of methods (declared as a category in NSFileManager.h)
for quickly and efficiently obtaining attribute information from the returned dictionary:
fileGroupOwnerAccountName (page 509), fileModificationDate (page 511),
fileOwnerAccountName (page 512), filePosixPermissions (page 512), fileSize (page 512),
fileSystemFileNumber (page 513),fileSystemNumber (page 513), andfileType (page 514). For example,
you could rewrite the file modification statement in the code example above as:

if (fileModDate = [fileAttributes fileModificationDate])
 NSLog(@"Modification date: %@\n", fileModDate);

Special Considerations

On Mac OS X v10.5 and later, use attributesOfItemAtPath:error: (page 631) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributesOfItemAtPath:error: (page 631)
– changeFileAttributes:atPath: (page 632)

Related Sample Code
AudioBurn
DeskPictAppDockMenu
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
ThreadsImportMovie

Declared In
NSFileManager.h

fileExistsAtPath:
Returns a Boolean value that indicates whether a file or directory exists at a specified path.

646 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

- (BOOL)fileExistsAtPath:(NSString *)path

Parameters
path

The path of a file or directory. If path begins with a tilde (~), it must first be expanded with
stringByExpandingTildeInPath (page 1602), or this method will return NO.

Return Value
YES if a file specified in path exists, otherwise NO. If the final element in path specifies a symbolic link, this
method traverses the link and returns YES or NO based on the existence of the file at the link destination.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileExistsAtPath:isDirectory: (page 647)

Related Sample Code
CoreRecipes
QTKitCreateMovie
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSFileManager.h

fileExistsAtPath:isDirectory:
Returns a Boolean value that indicates whether a file or directory exists at a specified path.

- (BOOL)fileExistsAtPath:(NSString *)path isDirectory:(BOOL *)isDirectory

Parameters
path

The path of a file or directory. If path begins with a tilde (~), it must first be expanded with
stringByExpandingTildeInPath (page 1602), or this method will return NO.

isDirectory
Upon return, contains YES if path is a directory or if the final path element is a symbolic link that
points to a directory, otherwise contains NO. If path doesn’t exist, the return value is undefined. Pass
NULL if you do not need this information.

Return Value
YES if there is a file or directory at path, otherwise NO. If the final element in path specifies a symbolic link,
this method traverses the link and returns YES or NO based on the existence of the file or directory at the
link destination.

Discussion
If you need to further determine ifpath is a package, use theNSWorkspacemethodisFilePackageAtPath:.

This example gets an array that identifies the fonts in the user's fonts directory:

NSArray *subpaths;
BOOL isDir;

Instance Methods 647
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSLibraryDirectory, NSUserDomainMask, YES);

if ([paths count] == 1) {

 NSFileManager *fileManager = [NSFileManager defaultManager];
 NSString *fontPath = [[paths objectAtIndex:0]
stringByAppendingPathComponent:@"Fonts"];

 if ([fileManager fileExistsAtPath:fontPath isDirectory:&isDir] && isDir) {
 subpaths = [fileManager subpathsAtPath:fontPath];
// ...

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileExistsAtPath: (page 646)

Related Sample Code
ImageBrowser
LSMSmartCategorizer
QTKitAdvancedDocument
QTKitImport
QTKitPlayer

Declared In
NSFileManager.h

fileSystemAttributesAtPath:
Returns a dictionary that describes the attributes of the mounted file system on which a given path resides.

- (NSDictionary *)fileSystemAttributesAtPath:(NSString *)path

Parameters
path

Any pathname within the mounted file system.

Return Value
An NSDictionary object that describes the attributes of the mounted file system on which path resides.
See “File-System Attribute Keys” (page 672) for a description of the keys available in the dictionary.

Discussion
The following code example checks to see if there’s sufficient space on the file system before adding a new
file to it:

NSData *contents = [myImage TIFFRepresentation];
NSFileManager *fileManager = [NSFileManager defaultManager];
NSString *path = ...;
NSString *fileName = ...;
NSDictionary *fsAttributes =
 [fileManager fileSystemAttributesAtPath:path];
if ([[fsAttributes objectForKey:NSFileSystemFreeSize] unsignedLongLongValue]
>

648 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

 [contents length])
 [fileManager createFileAtPath:[path stringByAppendingPathComponent:fileName]
 contents:contents attributes:nil];

Special Considerations

On Mac OS X v10.5 and later, use attributesOfFileSystemForPath:error: (page 630) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributesOfFileSystemForPath:error: (page 630)
– fileAttributesAtPath:traverseLink: (page 645)
– changeFileAttributes:atPath: (page 632)

Declared In
NSFileManager.h

fileSystemRepresentationWithPath:
Returns a C-string representation of a given path that properly encodes Unicode strings for use by the file
system.

- (const char *)fileSystemRepresentationWithPath:(NSString *)path

Parameters
path

A file path.

Return Value
A C-string representation of path that properly encodes Unicode strings for use by the file system.

Discussion
If you need the C string beyond the scope of your autorelease pool, you must copy it. This method raises an
exception upon error. Use this method if your code calls system routines that expect C-string path arguments.

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringWithFileSystemRepresentation:length: (page 659)

Declared In
NSFileManager.h

isDeletableFileAtPath:
Returns a Boolean value that indicates whether the invoking object appears able to delete a specified file.

- (BOOL)isDeletableFileAtPath:(NSString *)path

Instance Methods 649
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Parameters
path

A file path.

Return Value
YES if the invoking object appears able to delete the file specified in path, otherwise NO. If the file at path
does not exist, this method returns NO.

Discussion
For a directory or file to be able to be deleted, either the parent directory of path must be writable or its
owner must be the same as the owner of the application process. If path is a directory, every item contained
in path must be able to be deleted.

This method does not traverse symbolic links.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

isExecutableFileAtPath:
Returns a Boolean value that indicates whether the operating system appears able to execute a specified
file.

- (BOOL)isExecutableFileAtPath:(NSString *)path

Parameters
path

A file path.

Return Value
YES if the operating system appears able to execute the file specified in path, otherwise NO. If the file at
path does not exist, this method returns NO.

Discussion
This method traverses symbolic links. This method uses the real user ID and group ID, as opposed to the
effective user and group IDs, to determine if the file is executable.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

isReadableFileAtPath:
Returns a Boolean value that indicates whether the invoking object appears able to read a specified file.

- (BOOL)isReadableFileAtPath:(NSString *)path

650 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Parameters
path

A file path.

Return Value
YES if the invoking object appears able to read the file specified in path, otherwise NO. If the file at path
does not exist, this method returns NO.

Discussion
This method traverses symbolic links. This method uses the real user ID and group ID, as opposed to the
effective user and group IDs, to determine if the file is readable.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTQuartzPlayer

Declared In
NSFileManager.h

isWritableFileAtPath:
Returns a Boolean value that indicates whether the invoking object appears able to write to a specified file.

- (BOOL)isWritableFileAtPath:(NSString *)path

Parameters
path

A file path.

Return Value
YES if the invoking object appears able to write to the file specified in path, otherwise NO. If the file at path
does not exist, this method returns NO.

Discussion
This method traverses symbolic links. This method uses the real user ID and group ID, as opposed to the
effective user and group IDs, to determine if the file is writable.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

linkItemAtPath:toPath:error:
Creates a link from a source to a destination.

- (BOOL)linkItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath error:(NSError
 **)error

Instance Methods 651
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Parameters
srcPath

A path that identifies a source file.

The file or link specified by srcPath must exist. srcPath must not identify a directory.

dstPath
A path that identifies a destination file or directory on the same filesystem as srcPath.

The destination should not yet exist. The destination path must end in a filename; there is no implicit
adoption of the source filename.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the link operation is successful, otherwise NO.

Discussion
If pathname srcPath identifies a file, this method hard-links the file specified in dstPath to it. If srcPath
is a symbolic link, this method copies it to dstPath instead of creating a hard link. Symbolic links in srcPath
are not traversed.

Amongst other reasons (such as the disk being full, permissions problems, and so on), this method will fail
if:

 ■ srcPath doesn't point to any file in the file system;

 ■ srcPath points to an existing symbolic link, but the symbolic link is “broken" (it doesn't in turn point
to an existing regular file in the file system);

 ■ srcPath points to a directory;

 ■ The computer has more than one file system (such as extra partitions, mounted disk images, or network
volumes), and srcPath and dstPath specify paths in different file systems.

Availability
Available in Mac OS X v10.5 and later.

See Also
– fileManager:shouldLinkItemAtPath:toPath: (page 662)
– fileManager:shouldProceedAfterError:linkingItemAtPath:toPath: (page 665)
– createSymbolicLinkAtPath:withDestinationPath:error: (page 640)
– copyItemAtPath:toPath:error: (page 635)
– moveItemAtPath:toPath:error: (page 654)
– linkPath:toPath:handler: (page 652)

Declared In
NSFileManager.h

linkPath:toPath:handler:
Creates a link from a source to a destination.

652 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

- (BOOL)linkPath:(NSString *)source toPath:(NSString *)destination
handler:(id)handler

Parameters
source

A path that identifies a source file or directory.

The file, link, or directory specified by source must exist.

destination
A path that identifies a destination file or directory.

The destination should not yet exist. The destination path must end in a filename; there is no implicit
adoption of the source filename.

handler
An object that responds to the callback messages fileManager:willProcessPath: (page 667)
and fileManager:shouldProceedAfterError: (page 663). You can specify nil for handler; if
you do so and an error occurs, the method automatically returns NO.

Return Value
YES if the link operation is successful. If the operation is not successful, but the handler method
fileManager:shouldProceedAfterError: (page 663) returns YES, also returns YES. Otherwise returns
NO.

Discussion
If pathname source identifies a file, this method hard-links the file specified in destination to it. If source
is a directory or symbolic link, this method copies it to destination instead of creating a hard link. Symbolic
links in source are not traversed.

The handler callback mechanism is similar to delegation. NSFileManager sends
fileManager:willProcessPath: (page 667) when it begins a copy, move, remove, or link operation. It
sends fileManager:shouldProceedAfterError: (page 663) when it encounters any error in processing

This code fragment verifies the pathname typed in a text field (documentFileField) and then links the file
to the user’s Documents directory:

NSString *source = [documentFileField stringValue];

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
if ([paths count] > 0)
{
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *documentFileName = [source lastPathComponent];
 NSString *destination = [documentsDirectory
stringByAppendingPathComponent:documentFileName];
 NSFileManager *fileManager = [NSFileManager defaultManager];

 if ([fileManager fileExistsAtPath:source])
 {
 [fileManager linkPath:source toPath:destination handler:self];
 }
}

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 653
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

See Also
– linkItemAtPath:toPath:error: (page 651)
– copyPath:toPath:handler: (page 636)
– createSymbolicLinkAtPath:pathContent: (page 640)
– movePath:toPath:handler: (page 654)
– fileManager:shouldProceedAfterError: (page 663)
– removeFileAtPath:handler: (page 656)
– fileManager:willProcessPath: (page 667)

Declared In
NSFileManager.h

moveItemAtPath:toPath:error:
Moves the directory or file specified by a given path to a different location in the file system identified by
another path.

- (BOOL)moveItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath error:(NSError
 **)error

Parameters
srcPath

The path of a file or directory to move. srcPath must exist.

dstPath
The path to which the file or directory at srcPath is moved. destination must not yet exist. The
destination path must end in a filename; there is no implicit adoption of the source filename.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the move operation is successful, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– fileManager:shouldMoveItemAtPath:toPath: (page 662)
– fileManager:shouldProceedAfterError:movingItemAtPath:toPath: (page 665)

Declared In
NSFileManager.h

movePath:toPath:handler:
Moves the directory or file specified by a given path to a different location in the file system identified by
another path.

- (BOOL)movePath:(NSString *)source toPath:(NSString *)destination
handler:(id)handler

654 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Parameters
source

The path of a file or directory to move. source must exist.

destination
The path to which source is moved. destination must not yet exist. The destination path must
end in a filename; there is no implicit adoption of the source filename.

handler
An object that responds to the callback messages fileManager:willProcessPath: (page 667)
and fileManager:shouldProceedAfterError: (page 663). You can specify nil for handler; if
you do so and an error occurs, the method automatically returns NO.

Return Value
YES if the move operation is successful. If the operation is not successful, but the handler method
fileManager:shouldProceedAfterError: (page 663) returnsYES,movePath:toPath:handler: (page
654) also returns YES; otherwise returns NO.

Discussion
If source is a file, the method creates a file at destination that holds the exact contents of the original
file and then deletes the original file. If source is a directory, movePath:toPath:handler: creates a new
directory at destination and recursively populates it with duplicates of the files and directories contained
in source. It then deletes the old directory and its contents. Symbolic links are not traversed, however links
are preserved. File or directory attributes—that is, metadata such as owner and group numbers, file
permissions, and modification date—are also moved.

The handler callback mechanism is similar to delegation. NSFileManager sends
fileManager:willProcessPath: (page 667) when it begins a copy, move, remove, or link operation. It
sends fileManager:shouldProceedAfterError: (page 663) when it encounters any error in processing.

If a failure in a move operation occurs, either the preexisting path or the new path remains intact, but not
both.

Availability
Available in Mac OS X v10.0 and later.

See Also
– copyPath:toPath:handler: (page 636)
– linkPath:toPath:handler: (page 652)
– removeFileAtPath:handler: (page 656)
– fileManager:shouldProceedAfterError: (page 663)
– fileManager:willProcessPath: (page 667)

Related Sample Code
QTRecorder
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
WhackedTV

Declared In
NSFileManager.h

Instance Methods 655
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

pathContentOfSymbolicLinkAtPath:
Returns the path of the directory or file that a symbolic link at a given path refers to.

- (NSString *)pathContentOfSymbolicLinkAtPath:(NSString *)path

Parameters
path

The path of a symbolic link.

Return Value
The path of the directory or file to which the symbolic link path refers, or nil upon failure. If the symbolic
link is specified as a relative path, that relative path is returned.

Special Considerations

On Mac OS X v10.5 and later, use destinationOfSymbolicLinkAtPath:error: (page 642) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– destinationOfSymbolicLinkAtPath:error: (page 642)
– createSymbolicLinkAtPath:pathContent: (page 640)

Declared In
NSFileManager.h

removeFileAtPath:handler:
Deletes the file, link, or directory (including, recursively, all subdirectories, files, and links in the directory)
identified by a given path.

- (BOOL)removeFileAtPath:(NSString *)path handler:(id)handler

Parameters
path

The path of a file, link, or directory to delete. The value must not be "." or "..".

handler
An object that responds to the callback messages fileManager:willProcessPath: (page 667)
and fileManager:shouldProceedAfterError: (page 663). You can specify nil for handler; if
you do so and an error occurs, the deletion stops and the method automatically returns NO.

Return Value
YES if the removal operation is successful. If the operation is not successful, but the handler method
fileManager:shouldProceedAfterError: (page 663) returns YES, also returns YES; otherwise returns
NO.

Discussion
This callback mechanism provided by handler is similar to delegation. NSFileManager sends
fileManager:willProcessPath: (page 667) when it begins a copy, move, remove, or link operation. It
sends fileManager:shouldProceedAfterError: (page 663) when it encounters any error in processing.

656 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Since the removal of directory contents is so thorough and final, be careful when using this method. If you
specify "." or ".." for path an NSInvalidArgumentException exception is raised. This method does not
traverse symbolic links.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeItemAtPath:error: (page 657)
– copyPath:toPath:handler: (page 636)
– linkPath:toPath:handler: (page 652)
– movePath:toPath:handler: (page 654)
– fileManager:shouldProceedAfterError: (page 663)
– fileManager:willProcessPath: (page 667)

Related Sample Code
AutoUpdater
CIVideoDemoGL
Core Data HTML Store
CustomAtomicStoreSubclass
SampleScannerApp

Declared In
NSFileManager.h

removeItemAtPath:error:
Deletes the file, link, or directory (including, recursively, all subdirectories, files, and links in the directory)
identified by a given path.

- (BOOL)removeItemAtPath:(NSString *)path error:(NSError **)error

Parameters
path

The path of a file, link, or directory to delete. The value must not be "." or "..".

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if the removal operation is successful, otherwise NO.

Discussion
Since the removal of directory contents is so thorough and final, be careful when using this method. If you
specify "." or ".." for path an NSInvalidArgumentException exception is raised. This method does not
traverse symbolic links.

Availability
Available in Mac OS X v10.5 and later.

See Also
– copyItemAtPath:toPath:error: (page 635)

Instance Methods 657
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

– linkItemAtPath:toPath:error: (page 651)
– moveItemAtPath:toPath:error: (page 654)
– fileManager:shouldRemoveItemAtPath: (page 666)
– fileManager:shouldProceedAfterError:removingItemAtPath: (page 666)
– removeFileAtPath:handler: (page 656)

Related Sample Code
URL CacheInfo

Declared In
NSFileManager.h

setAttributes:ofItemAtPath:error:
Sets the attributes of a given file or directory.

- (BOOL)setAttributes:(NSDictionary *)attributes ofItemAtPath:(NSString *)path
error:(NSError **)error

Parameters
attributes

A dictionary containing as keys the attributes to set for path and as values the corresponding value
for the attribute. You can set following: NSFileBusy, NSFileCreationDate,
NSFileExtensionHidden, NSFileGroupOwnerAccountID, NSFileGroupOwnerAccountName,
NSFileHFSCreatorCode, NSFileHFSTypeCode, NSFileImmutable, NSFileModificationDate,
NSFileOwnerAccountID,NSFileOwnerAccountName,NSFilePosixPermissions. You can change
single attributes or any combination of attributes; you need not specify keys for all attributes.

path
The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if all changes succeed. If any change fails, returns NO, but it is undefined whether any changes actually
occurred.

Discussion
As in the POSIX standard, the application either must own the file or directory or must be running as superuser
for attribute changes to take effect. The method attempts to make all changes specified in attributes and
ignores any rejection of an attempted modification.

The NSFilePosixPermissions value must be initialized with the code representing the POSIX
file-permissions bit pattern. NSFileHFSCreatorCode and NSFileHFSTypeCode will only be heeded when
path specifies a file.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSFileManager.h

658 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

setDelegate:
Sets the delegate for the receiver.

- (void)setDelegate:(id)delegate

Parameters
delegate

The delegate for the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSFileManager.h

stringWithFileSystemRepresentation:length:
Returns an NSString object converted from the C-string representation of a pathname in the current file
system.

- (NSString *)stringWithFileSystemRepresentation:(const char *)string
length:(NSUInteger)len

Parameters
string

A C string representation of a pathname.

len
The number of characters in string.

Return Value
An NSString object converted from the C-string representation string with length len of a pathname in
the current file system.

Discussion
Use this method if your code receives paths as C strings from system routines.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileSystemRepresentationWithPath: (page 649)

Declared In
NSFileManager.h

subpathsAtPath:
Returns an array that contains (as NSString objects) the contents of the directory identified by a given path.

- (NSArray *)subpathsAtPath:(NSString *)path

Instance Methods 659
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Parameters
path

The path of the directory to list.

Return Value
An array that contains (as NSString objects) the contents of the directory identified by path. If path is a
symbolic link, subpathsAtPath: traverses the link. Returns nil if it cannot get the device of the linked-to
file.

Discussion
This list of directory contents goes very deep and hence is very useful for large file-system subtrees. The
method skips “.” and “..”.

This method reveals every element of the subtree at path, including the contents of file packages (such as
applications, nib files, and RTFD files). This code fragment gets the contents of /System/Library/Fonts
after verifying that the directory exists:

BOOL isDir=NO;
NSArray *subpaths;
NSString *fontPath = @"/System/Library/Fonts";
NSFileManager *fileManager = [NSFileManager defaultManager];
if ([fileManager fileExistsAtPath:fontPath isDirectory:&isDir] && isDir)
 subpaths = [fileManager subpathsAtPath:fontPath];

Special Considerations

On Mac OS X v10.5 and later, use subpathsOfDirectoryAtPath:error: (page 660) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– subpathsOfDirectoryAtPath:error: (page 660)
– directoryContentsAtPath: (page 642)
– enumeratorAtPath: (page 644)

Declared In
NSFileManager.h

subpathsOfDirectoryAtPath:error:
Returns an array that contains the filenames of the items in the directory specified by a given path and all
its subdirectories recursively.

- (NSArray *)subpathsOfDirectoryAtPath:(NSString *)path error:(NSError **)error

Parameters
path

The path of the directory to list.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

660 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Return Value
An array that contains NSString objects representing the filenames of the items in the directory specified
by path and all its subdirectories recursively. If path is a symbolic link,
subpathsOfDirectoryAtPath:error: traverses the link. Returns nil if it cannot get the device of the
linked-to file.

Discussion
This list of directory contents goes very deep and hence is very useful for large file-system subtrees. The
method skips “.” and “..”.

Availability
Available in Mac OS X v10.5 and later.

See Also
– subpathsAtPath: (page 659)
– directoryContentsAtPath: (page 642)
– enumeratorAtPath: (page 644)

Declared In
NSFileManager.h

Delegate Methods

fileManager:shouldCopyItemAtPath:toPath:
An NSFileManager object sends this message immediately before attempting to copy to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldCopyItemAtPath:(NSString
*)srcPath toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

srcPath
The path or a file or directory that manager is about to attempt to copy.

dstPath
The path or a file or directory to which manager is about to attempt to copy.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
You can implement this method in your delegate to monitor file operations.

Availability
Available in Mac OS X v10.5 and later.

See Also
– copyItemAtPath:toPath:error: (page 635)
– fileManager:shouldProceedAfterError:copyingItemAtPath:toPath: (page 664)

Delegate Methods 661
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Declared In
NSFileManager.h

fileManager:shouldLinkItemAtPath:toPath:
An NSFileManager object sends this message immediately before attempting to link to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager
shouldLinkItemAtPath:(NSString *)srcPath
toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

srcPath
The path or a file or directory that manager is about to attempt to link.

dstPath
The path or a file or directory to which manager is about to attempt to link.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
You can implement this method in your delegate to monitor file operations.

Availability
Available in Mac OS X v10.5 and later.

See Also
– linkItemAtPath:toPath:error: (page 651)
– fileManager:shouldProceedAfterError:linkingItemAtPath:toPath: (page 665)

Declared In
NSFileManager.h

fileManager:shouldMoveItemAtPath:toPath:
An NSFileManager object sends this message immediately before attempting to move to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldMoveItemAtPath:(NSString
*)srcPath toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

srcPath
The path or a file or directory that manager is about to attempt to move.

dstPath
The path or a file or directory to which manager is about to attempt to move.

Return Value
YES if the operation should proceed, otherwise NO.

662 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Discussion
You can implement this method in your delegate to monitor file operations.

Availability
Available in Mac OS X v10.5 and later.

See Also
– moveItemAtPath:toPath:error: (page 654)
– fileManager:shouldProceedAfterError:movingItemAtPath:toPath: (page 665)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:
An NSFileManager object sends this message to its handler for each error it encounters when copying,
moving, removing, or linking files or directories.

- (BOOL)fileManager:(NSFileManager *)manager shouldProceedAfterError:(NSDictionary
 *)errorInfo

Parameters
manager

The file manager that sent this message.

errorInfo
A dictionary that contains two or three pieces of information (all NSString objects) related to the
error:

ValueKey

The path related to the error (usually the source path)@"Path"

A description of the error@"Error"

The destination path (not all errors)@"ToPath"

Return Value
YES if the operation (which is often continuous within a loop) should proceed, otherwise NO.

Discussion
An NSFileManager object, manager, sends this message for each error it encounters when copying, moving,
removing, or linking files or directories. The return value is passed back to the invoker of
copyPath:toPath:handler: (page 636), movePath:toPath:handler: (page 654),
removeFileAtPath:handler: (page 656), or linkPath:toPath:handler: (page 652). If an error occurs
and your handler has not implemented this method, the invoking method automatically returns NO.

The following implementation of fileManager:shouldProceedAfterError: displays the error string in
an alert dialog and leaves it to the user whether to proceed or stop:

-(BOOL)fileManager:(NSFileManager *)manager
 shouldProceedAfterError:(NSDictionary *)errorInfo
{
 int result;

Delegate Methods 663
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

 result = NSRunAlertPanel(@"Gumby App", @"File operation error:
 %@ with file: %@", @"Proceed", @"Stop", NULL,
 [errorInfo objectForKey:@"Error"],
 [errorInfo objectForKey:@"Path"]);

 if (result == NSAlertDefaultReturn)
 return YES;
 else
 return NO;
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileManager:willProcessPath: (page 667)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:copyingItemAtPath:toPath:
An NSFileManager object sends this message if an error occurs during an attempt to copy to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldProceedAfterError:(NSError
 *)error copyingItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to copy.

srcPath
The path or a file or directory that manager is attempting to copy.

dstPath
The path or a file or directory to which manager is attempting to copy.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
You can implement this method in your delegate to monitor file operations.

Availability
Available in Mac OS X v10.5 and later.

See Also
– copyItemAtPath:toPath:error: (page 635)
– fileManager:shouldCopyItemAtPath:toPath: (page 661)

Declared In
NSFileManager.h

664 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

fileManager:shouldProceedAfterError:linkingItemAtPath:toPath:
An NSFileManager object sends this message if an error occurs during an attempt to link to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager
shouldProceedAfterError:(NSError *)error
linkingItemAtPath:(NSString *)srcPath
toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to link.

srcPath
The path or a file or directory that manager is attempting to link.

dstPath
The path or a file or directory to which manager is attempting to link.

Return Value
YES if the operation should proceed, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– linkItemAtPath:toPath:error: (page 651)
– fileManager:shouldLinkItemAtPath:toPath: (page 662)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:movingItemAtPath:toPath:
An NSFileManager object sends this message if an error occurs during an attempt to move to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager
shouldProceedAfterError:(NSError *)error
movingItemAtPath:(NSString *)srcPath
toPath:(NSString *)dstPath

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to move.

srcPath
The path or a file or directory that manager is attempting to move.

dstPath
The path or a file or directory to which manager is attempting to move.

Delegate Methods 665
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Return Value
YES if the operation should proceed, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– moveItemAtPath:toPath:error: (page 654)
– fileManager:shouldMoveItemAtPath:toPath: (page 662)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:removingItemAtPath:
An NSFileManager object sends this message if an error occurs during an attempt to delete a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager
shouldProceedAfterError:(NSError *)error
removingItemAtPath:(NSString *)path

Parameters
fileManager

The NSFileManager object that sent this message.

error
The error that occurred during the attempt to copy.

path
The path or a file or directory that manager is attempting to delete.

Return Value
YES if the operation should proceed, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– removeItemAtPath:error: (page 657)
– fileManager:shouldRemoveItemAtPath: (page 666)

Declared In
NSFileManager.h

fileManager:shouldRemoveItemAtPath:
An NSFileManager object sends this message immediately before attempting to delete an item at a given
path.

- (BOOL)fileManager:(NSFileManager *)fileManager
shouldRemoveItemAtPath:(NSString *)path

666 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Parameters
fileManager

The NSFileManager object that sent this message.

path
The path or a file or directory that manager is about to attempt to delete.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
You can implement this method in your delegate to monitor file operations.

Availability
Available in Mac OS X v10.5 and later.

See Also
– removeItemAtPath:error: (page 657)
– fileManager:shouldProceedAfterError:removingItemAtPath: (page 666)

Declared In
NSFileManager.h

fileManager:willProcessPath:
An NSFileManager object sends this message to a handler immediately before attempting to move, copy,
rename, or delete, or before attempting to link to a given path.

- (void)fileManager:(NSFileManager *)manager willProcessPath:(NSString *)path

Parameters
manager

The NSFileManager object that sent this message.

path
The path or a file or directory that manager is about to attempt to move, copy, rename, delete, or
link to.

Discussion
You can implement this method in your handler to monitor file operations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileManager.h

Delegate Methods 667
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Constants

File Attribute Keys
These keys access file attribute values contained in NSDictionary objects used by
changeFileAttributes:atPath: (page 632), fileAttributesAtPath:traverseLink: (page 645),
createDirectoryAtPath:attributes: (page 637), and
createFileAtPath:contents:attributes: (page 639).

NSString *NSFileType;
NSString *NSFileTypeDirectory;
NSString *NSFileTypeRegular;
NSString *NSFileTypeSymbolicLink;
NSString *NSFileTypeSocket;
NSString *NSFileTypeCharacterSpecial;
NSString *NSFileTypeBlockSpecial;
NSString *NSFileTypeUnknown;
NSString *NSFileSize;
NSString *NSFileModificationDate;
NSString *NSFileReferenceCount;
NSString *NSFileDeviceIdentifier;
NSString *NSFileOwnerAccountName;
NSString *NSFileGroupOwnerAccountName;
NSString *NSFilePosixPermissions;
NSString *NSFileSystemNumber;
NSString *NSFileSystemFileNumber;
NSString *NSFileExtensionHidden;
NSString *NSFileHFSCreatorCode;
NSString *NSFileHFSTypeCode;
NSString *NSFileImmutable;
NSString *NSFileAppendOnly;
NSString *NSFileCreationDate;
NSString *NSFileOwnerAccountID;
NSString *NSFileGroupOwnerAccountID;
NSString *NSFileBusy;

Constants
NSFileAppendOnly

The key in a file attribute dictionary whose value indicates whether the file is read-only.

The corresponding value is an NSNumber object containing a Boolean value.

Available in Mac OS X v10.2 and later.

Declared in NSFileManager.h.

NSFileBusy
The key in a file attribute dictionary whose value indicates whether the file is busy.

The corresponding value is an NSNumber object containing a Boolean value.

Available in Mac OS X v10.4 and later.

Declared in NSFileManager.h.

668 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

NSFileCreationDate
The key in a file attribute dictionary whose value indicates the file's creation date.

The corresponding value is an NSDate object.

Available in Mac OS X v10.2 and later.

Declared in NSFileManager.h.

NSFileOwnerAccountName
The key in a file attribute dictionary whose value indicates the name of the file's owner.

The corresponding value is an NSString object.

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileGroupOwnerAccountName
The key in a file attribute dictionary whose value indicates the group name of the file's owner.

The corresponding value is an NSString object.

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileDeviceIdentifier
The key in a file attribute dictionary whose value indicates the identifier for the device on which the
file resides.

The corresponding value is an NSNumber object containing an unsigned long.

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileExtensionHidden
The key in a file attribute dictionary whose value indicates whether the file's extension is hidden.

The corresponding value is an NSNumber object containing a Boolean value.

Available in Mac OS X v10.1 and later.

Declared in NSFileManager.h.

NSFileGroupOwnerAccountID
The key in a file attribute dictionary whose value indicates the file's group ID.

The corresponding value is an NSNumber object containing an unsigned long.

Available in Mac OS X v10.2 and later.

Declared in NSFileManager.h.

NSFileHFSCreatorCode
The key in a file attribute dictionary whose value indicates the file's HFS creator code.

The corresponding value is an NSNumber object containing an unsigned long. See HFS File Types
for possible values.

Available in Mac OS X v10.1 and later.

Declared in NSFileManager.h.

NSFileHFSTypeCode
The key in a file attribute dictionary whose value indicates the file's HFS type code.

The corresponding value is an NSNumber object containing an unsigned long. See HFS File Types
for possible values.

Available in Mac OS X v10.1 and later.

Declared in NSFileManager.h.

Constants 669
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

NSFileImmutable
The key in a file attribute dictionary whose value indicates whether the file is mutable.

The corresponding value is an NSNumber object containing a Boolean value.

Available in Mac OS X v10.2 and later.

Declared in NSFileManager.h.

NSFileModificationDate
The key in a file attribute dictionary whose value indicates the file's last modified date.

The corresponding value is an NSDate object.

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileOwnerAccountID
The key in a file attribute dictionary whose value indicates the file's owner's account ID.

The corresponding value is an NSNumber object containing an unsigned long.

Available in Mac OS X v10.2 and later.

Declared in NSFileManager.h.

NSFilePosixPermissions
The key in a file attribute dictionary whose value indicates the file's Posix permissions.

The corresponding value is an NSNumber object containing an unsigned long.

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileReferenceCount
The key in a file attribute dictionary whose value indicates the file's reference count.

The corresponding value is an NSNumber object containing an unsigned long.

The number specifies the number of hard links to a file.

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileSize
The key in a file attribute dictionary whose value indicates the file's size in bytes.

The corresponding value is an NSNumber object containing an unsigned long long.

Important: If the file has a resource fork, the returned value does not include the size of the resource fork.

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileSystemFileNumber
The key in a file attribute dictionary whose value indicates the file's filesystem file number.

The corresponding value is an NSNumber object containing an unsigned long. The value corresponds
to the value of st_ino, as returned by stat(2).

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

670 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

NSFileType
The key in a file attribute dictionary whose value indicates the file's type.

The corresponding value is an NSString object (see below for possible values).

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

Discussion
NSFileDeviceIdentifier is used to access the identifier of a remote device.

Declared In
NSFileManager.h

File Type Attribute Keys
These strings the possible values for the NSFileType attribute key contained in the NSDictionary object
returned from NSFileManager's fileAttributesAtPath:traverseLink: (page 645).

extern NSString *NSFileTypeDirectory;
extern NSString *NSFileTypeRegular;
extern NSString *NSFileTypeSymbolicLink;
extern NSString *NSFileTypeSocket;
extern NSString *NSFileTypeCharacterSpecial;
extern NSString *NSFileTypeBlockSpecial;
extern NSString *NSFileTypeUnknown;

Constants
NSFileTypeDirectory

Directory

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileTypeRegular
Regular file

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileTypeSymbolicLink
Symbolic link

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileTypeSocket
Socket

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileTypeCharacterSpecial
Character special file

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

Constants 671
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

NSFileTypeBlockSpecial
Block special file

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileTypeUnknown
Unknown

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

Declared In
NSFileManager.h

File-System Attribute Keys
Keys to access the file attribute values contained in the NSDictionary object returned from NSFileManager’s
fileSystemAttributesAtPath: (page 648) method.

extern NSString *NSFileSystemSize;
extern NSString *NSFileSystemFreeSize;
extern NSString *NSFileSystemNodes;
extern NSString *NSFileSystemFreeNodes;
extern NSString *NSFileSystemNumber;

Constants
NSFileSystemSize

The key in a file system attribute dictionary whose value indicates the size of the file system.

The corresponding value is an NSNumber object that specifies the size of the file system in bytes. The
value is determined by statfs().

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileSystemFreeSize
The key in a file system attribute dictionary whose value indicates the amount of free space on the
file system.

The corresponding value is an NSNumber object that specifies the amount of free space on the file
system in bytes. The value is determined by statfs().

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileSystemNodes
The key in a file system attribute dictionary whose value indicates the number of nodes in the file
system.

The corresponding value is an NSNumber object that specifies the number of nodes in the file system.

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

672 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

NSFileSystemFreeNodes
The key in a file system attribute dictionary dictionary whose value indicates the number of free nodes
in the file system.

The corresponding value is an NSNumber object that specifies the number of free nodes in the file
system.

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

NSFileSystemNumber
The key in a file system attribute dictionary dictionary whose value indicates the filesystem number
of the file system.

The corresponding value is an NSNumber object that specifies the filesystem number of the file system.
The value corresponds to the value of st_dev, as returned by stat(2).

Available in Mac OS X v10.0 and later.

Declared in NSFileManager.h.

Declared In
NSFileManager.h

Resource Fork Support
Specifies the version of the Foundation framework in which NSFileManager first supported resource forks.

#define NSFoundationVersionWithFileManagerResourceForkSupport 412

Constants
NSFoundationVersionWithFileManagerResourceForkSupport

The version of the Foundation framework in which NSFileManager first supported resource forks.

Available in Mac OS X v10.1 and later.

Declared in NSFileManager.h.

Declared In
NSFileManager.h

Constants 673
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

674 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 47

NSFileManager Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSFormatter.h

Companion guide Data Formatting Programming Guide for Cocoa

Related sample code bMoviePalette
bMoviePaletteCocoa
QTMetadataEditor
QTSSConnectionMonitor
QTSSInspector

Overview

NSFormatter is an abstract class that declares an interface for objects that create, interpret, and validate
the textual representation of cell contents. The Foundation framework provides two concrete subclasses of
NSFormatter to generate these objects: NSNumberFormatter and NSDateFormatter.

Subclassing Notes

NSFormatter is intended for subclassing. A custom formatter can restrict the input and enhance the display
of data in novel ways. For example, you could have a custom formatter that ensures that serial numbers
entered by a user conform to predefined formats. Before you decide to create a custom formatter, make sure
that you cannot configure the public subclasses NSDateFormatter and NSNumberFormatter to satisfy
your requirements.

For instructions on how to create your own custom formatter, see Creating a Custom Formatter.

Overview 675
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 48

NSFormatter Class Reference

Tasks

Textual Representation of Cell Content

– stringForObjectValue: (page 680)
The default implementation of this method raises an exception.

– attributedStringForObjectValue:withDefaultAttributes: (page 676)
The default implementation returns nil to indicate that the formatter object does not provide an
attributed string.

– editingStringForObjectValue: (page 677)
The default implementation of this method invokes stringForObjectValue: (page 680).

Object Equivalent to Textual Representation

– getObjectValue:forString:errorDescription: (page 677)
The default implementation of this method raises an exception.

Dynamic Cell Editing

– isPartialStringValid:newEditingString:errorDescription: (page 679)
Returns a Boolean value that indicates whether a partial string is valid.

– isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:errorDescription: (page
679)

This method should be implemented in subclasses that want to validate user changes to a string in
a field, where the user changes are not necessarily at the end of the string, and preserve the selection
(or set a different one, such as selecting the erroneous part of the string the user has typed).

Instance Methods

attributedStringForObjectValue:withDefaultAttributes:
The default implementation returns nil to indicate that the formatter object does not provide an attributed
string.

- (NSAttributedString *)attributedStringForObjectValue:(id)anObject
withDefaultAttributes:(NSDictionary *)attributes

Parameters
anObject

The object for which a textual representation is returned.

attributes
The default attributes to use for the returned attributed string.

676 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 48

NSFormatter Class Reference

Return Value
An attributed string that represents anObject.

Discussion
When implementing a subclass, return an NSAttributedString object if the string for display should have
some attributes. For instance, you might want negative values in a financial application to appear in red text.
Invoke your implementation of stringForObjectValue: (page 680) to get the non-attributed string, then
create an NSAttributedString object with it (see initWithString: (page 153)). Use the attributes
default dictionary to reset the attributes of the string when a change in value warrants it (for example, a
negative value becomes positive) For information on creating attributed strings, see Attributed Strings
Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
– editingStringForObjectValue: (page 677)

Declared In
NSFormatter.h

editingStringForObjectValue:
The default implementation of this method invokes stringForObjectValue: (page 680).

- (NSString *)editingStringForObjectValue:(id)anObject

Parameters
anObject

The object for which to return an editing string.

Return Value
An NSString object that is used for editing the textual representation of anObject.

Discussion
When implementing a subclass, override this method only when the string that users see and the string that
they edit are different. In your implementation, return an NSString object that is used for editing, following
the logic recommended for implementing stringForObjectValue: (page 680). As an example, you would
implement this method if you want the dollar signs in displayed strings removed for editing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedStringForObjectValue:withDefaultAttributes: (page 676)

Declared In
NSFormatter.h

getObjectValue:forString:errorDescription:
The default implementation of this method raises an exception.

Instance Methods 677
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 48

NSFormatter Class Reference

- (BOOL)getObjectValue:(id *)anObject forString:(NSString *)string
errorDescription:(NSString **)error

Parameters
anObject

If conversion is successful, upon return contains the object created from string.

string
The string to parse.

error
If non-nil, if there is a error during the conversion, upon return contains an NSString object that
describes the problem.

Return Value
YES if the conversion from string to cell content object was successful, otherwise NO.

Discussion
When implementing a subclass, return by reference the object anObject after creating it from string.
Return YES if the conversion is successful. If you return NO, also return by indirection (in error) a localized
user-presentable NSString object that explains the reason why the conversion failed; the delegate (if any)
of the NSControl object managing the cell can then respond to the failure in
control:didFailToFormatString:errorDescription:. However, if error is nil, the sender is not
interested in the error description, and you should not attempt to assign one.

The following example (which is paired with the example given in stringForObjectValue: (page 680))
converts a string representation of a dollar amount that includes the dollar sign; it uses an NSScanner
instance to convert this amount to a float after stripping out the initial dollar sign.

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string
errorDescription:(NSString **)error
{
 float floatResult;
 NSScanner *scanner;
 BOOL returnValue = NO;

 scanner = [NSScanner scannerWithString: string];
 [scanner scanString: @"$" intoString: NULL]; //ignore return value
 if ([scanner scanFloat:&floatResult] && ([scanner isAtEnd])) {
 returnValue = YES;
 if (obj)
 *obj = [NSNumber numberWithFloat:floatResult];
 } else {
 if (error)
 *error = NSLocalizedString(@"Couldn’t convert to float", @"Error
converting");
 }
 return returnValue;
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringForObjectValue: (page 680)

Declared In
NSFormatter.h

678 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 48

NSFormatter Class Reference

isPartialStringValid:newEditingString:errorDescription:
Returns a Boolean value that indicates whether a partial string is valid.

- (BOOL)isPartialStringValid:(NSString *)partialString newEditingString:(NSString
 **)newString errorDescription:(NSString **)error

Parameters
partialString

The text currently in a cell.

newString
If partialString needs to be modified, upon return contains the replacement string.

error
If non-nil, if validation fails contains an NSString object that describes the problem.

Return Value
YES if partialString is an acceptable value, otherwise NO.

Discussion
This method is invoked each time the user presses a key while the cell has the keyboard focus—it lets you
verify and edit the cell text as the user types it.

In a subclass implementation, evaluate partialString according to the context, edit the text if necessary,
and return by reference any edited string in newString. Return YES if partialString is acceptable and
NO if partialString is unacceptable. If you return NO and newString is nil, the cell displays
partialString minus the last character typed. If you return NO, you can also return by indirection an
NSString object (in error) that explains the reason why the validation failed; the delegate (if any) of the
NSControl object managing the cell can then respond to the failure in
control:didFailToValidatePartialString:errorDescription:. The selection range will always
be set to the end of the text if replacement occurs.

This method is a compatibility method. If a subclass overrides this method and does not override
isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription: (page 679), this method will be called as before
(isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription: (page 679) just calls this one by default).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormatter.h

isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription:
This method should be implemented in subclasses that want to validate user changes to a string in a field,
where the user changes are not necessarily at the end of the string, and preserve the selection (or set a
different one, such as selecting the erroneous part of the string the user has typed).

Instance Methods 679
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 48

NSFormatter Class Reference

- (BOOL)isPartialStringValid:(NSString **)partialStringPtr
proposedSelectedRange:(NSRangePointer)proposedSelRangePtr
originalString:(NSString *)origString originalSelectedRange:(NSRange)origSelRange
errorDescription:(NSString **)error

Parameters
partialStringPtr

The new string to validate.

proposedSelRangePtr
The selection range that will be used if the string is accepted or replaced.

origString
The original string, before the proposed change.

origSelRange
The selection range over which the change is to take place.

error
If non-nil, if validation fails contains an NSString object that describes the problem.

Return Value
YES if partialStringPtr is acceptable, otherwise NO.

Discussion
In a subclass implementation, evaluate partialString according to the context. Return YES if
partialStringPtr is acceptable and NO if partialStringPtr is unacceptable. Assign a new string to
partialStringPtr and a new range to proposedSelRangePtr and return NO if you want to replace the
string and change the selection range. If you return NO, you can also return by indirection an NSString
object (in error) that explains the reason why the validation failed; the delegate (if any) of the NSControl
object managing the cell can then respond to the failure in
control:didFailToValidatePartialString:errorDescription:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isPartialStringValid:newEditingString:errorDescription: (page 679)

Declared In
NSFormatter.h

stringForObjectValue:
The default implementation of this method raises an exception.

- (NSString *)stringForObjectValue:(id)anObject

Parameters
anObject

The object for which a textual representation is returned.

Return Value
An NSString object that textually represents object for display. Returns nil if object is not of the correct
class.

680 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 48

NSFormatter Class Reference

Discussion
When implementing a subclass, return the NSString object that textually represents the cell’s object for
display and—if editingStringForObjectValue: (page 677) is unimplemented—for editing. First test the
passed-in object to see if it’s of the correct class. If it isn’t, return nil; but if it is of the right class, return a
properly formatted and, if necessary, localized string. (See the specification of the NSString class for formatting
and localizing details.)

The following implementation (which is paired with the
getObjectValue:forString:errorDescription: (page 677) example above) prefixes a two-digit float
representation with a dollar sign:

- (NSString *)stringForObjectValue:(id)anObject
{
 if (![anObject isKindOfClass:[NSNumber class]]) {
 return nil;
 }
 return [NSString stringWithFormat:@"$%.2f", [anObject floatValue]];
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedStringForObjectValue:withDefaultAttributes: (page 676)
– editingStringForObjectValue: (page 677)
– getObjectValue:forString:errorDescription: (page 677)

Declared In
NSFormatter.h

Instance Methods 681
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 48

NSFormatter Class Reference

682 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 48

NSFormatter Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSGarbageCollector.h

Availability Available in Mac OS X v10.5 and later.

Companion guide Garbage Collection Programming Guide

Overview

NSGarbageCollector provides a convenient interface to the garbage collection system.

Cocoa’s garbage collector is a conservative generational garbage collector. It uses “write-barriers” to detect
cross generational stores of pointers so that “young” objects can be collected quickly.

You enable garbage collection (GC) by using the -fobjc-gc compiler option. This switch causes the
generation of the write-barrier assignment primitives. You must use this option on your main application
file and all others used by the application, including frameworks and bundles. Bundles are ignored if they are
not GC-capable.

The collector determines what is garbage by recursively examining all nodes starting with globals, possible
nodes referenced from the thread stacks, and all nodes marked as having “external” references. Nodes not
reached by this search are deemed garbage. Weak references to garbage nodes are then cleared.

Garbage nodes that are objects are sent (in an arbitrary order) a finalize (page 1176) message, and after all
finalize messages have been sent their memory is recovered. It is a runtime error (referred to as
“resurrection”) to store a object being finalized into one that is not. For more details, see Implementing a
finalize Method in Garbage Collection Programming Guide.

You can request collection from any thread (see collectIfNeeded (page 685) and
collectExhaustively (page 685)).

Overview 683
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGarbageCollector Class Reference

Tasks

Shared Instance

+ defaultCollector (page 685)
Returns the default garbage collector.

Collection State

– disable (page 686)
Temporarily disables collections.

– enable (page 687)
Enables collection after collection has been disabled.

– isEnabled (page 688)
Returns a Boolean value that indicates whether garbage collection is currently enabled for the current
process.

– isCollecting (page 688)
Returns a Boolean value that indicates whether a collection is currently in progress.

Triggering Collection

– collectExhaustively (page 685)
Tells the receiver to collect iteratively.

– collectIfNeeded (page 685)
Tells the receiver to collect if memory consumption thresholds have been exceeded.

Manipulating External References

– disableCollectorForPointer: (page 686)
Specifies that a given pointer will not be collected.

– enableCollectorForPointer: (page 687)
Specifies that a given pointer may be collected.

Accessing an Unscanned Memory Zone

– zone (page 688)
Returns a zone of unscanned memory.

684 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGarbageCollector Class Reference

Class Methods

defaultCollector
Returns the default garbage collector.

+ (id)defaultCollector

Return Value
The default garbage collector for the current process. Returns nil if the current process is not running with
garbage collection.

Discussion
There is at most one garbage collector for Cocoa within a single process.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSGarbageCollector.h

Instance Methods

collectExhaustively
Tells the receiver to collect iteratively.

- (void)collectExhaustively

Discussion
You use this method to indicate to the collector that it should perform an exhaustive collection. Collection
is subject to interruption on user input.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSGarbageCollector.h

collectIfNeeded
Tells the receiver to collect if memory consumption thresholds have been exceeded.

- (void)collectIfNeeded

Discussion
You use this method to indicate to the collector that there is an opportunity to perform a collection. Collection
is subject to interruption on user input.

Class Methods 685
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGarbageCollector Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSGarbageCollector.h

disable
Temporarily disables collections.

- (void)disable

Discussion
Invocations of this method can be nested. To reenable collection, you must send the collector an enable (page
687) message once for each invocation of this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– enable (page 687)

Declared In
NSGarbageCollector.h

disableCollectorForPointer:
Specifies that a given pointer will not be collected.

- (void)disableCollectorForPointer:(void *)ptr

Parameters
ptr

A pointer to the memory that should not be collected.

Discussion
You use this method to ensure that memory at a given address will not be collected. You can use this, for
example, to create new root objects:

NSMutableDictionary *globalDictionary;
globalDictionary = [NSMutableDictionary dictionary];
[[NSGarbageCollector defaultCollector]
 disableCollectorForPointer:globalDictionary];

The new dictionary will not be collectable and will persist for the lifetime of the application unless it is
subsequently passed as the argument to enableCollectorForPointer: (page 687). For more about root
objects and scanned memory, see Garbage Collection Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

See Also
– enableCollectorForPointer: (page 687)

686 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGarbageCollector Class Reference

Declared In
NSGarbageCollector.h

enable
Enables collection after collection has been disabled.

- (void)enable

Discussion
This method balances a single invocation of disable (page 686). To reenable collection, this method must
be invoked as many times as was disable (page 686).

Availability
Available in Mac OS X v10.5 and later.

See Also
– disable (page 686)
– isEnabled (page 688)

Declared In
NSGarbageCollector.h

enableCollectorForPointer:
Specifies that a given pointer may be collected.

- (void)enableCollectorForPointer:(void *)ptr

Parameters
ptr

A pointer to the memory that may be collected.

Discussion
You use this method to make memory that was previously marked as uncollectable. For example, given the
address of the global dictionary created in disableCollectorForPointer: (page 686), you could make
the dictionary collectable as follows:

[[NSGarbageCollector defaultCollector]
 enableCollectorForPointer:globalDictionary];

For more about root objects and scanned memory, see Garbage Collection Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

See Also
– disableCollectorForPointer: (page 686)

Declared In
NSGarbageCollector.h

Instance Methods 687
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGarbageCollector Class Reference

isCollecting
Returns a Boolean value that indicates whether a collection is currently in progress.

- (BOOL)isCollecting

Return Value
YES if a collection is currently in progress, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSGarbageCollector.h

isEnabled
Returns a Boolean value that indicates whether garbage collection is currently enabled for the current process.

- (BOOL)isEnabled

Return Value
YES if garbage collection is enabled for the current process, otherwise NO.

Discussion
This method returns NO if garbage collection is on, but has been temporarily suspended (using disable (page
686)).

To check whether the current process is using garbage collection check the result of [NSGarbageCollector
defaultCollector]. If defaultCollector (page 685) is nil, then garbage collection is permanently off.
If defaultCollector (page 685) is not nil, then the current process is using garbage collection—you can
then use isEnabled to determine whether or not the collector is actually allowed to run right now.

Availability
Available in Mac OS X v10.5 and later.

See Also
– disable (page 686)
– enable (page 687)

Declared In
NSGarbageCollector.h

zone
Returns a zone of unscanned memory.

- (NSZone *)zone

Return Value
A memory zone of memory that is not scanned.

688 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGarbageCollector Class Reference

Discussion
The collector provides a NSZoneMalloc (page 2259)-style allocation interface, primarily for compatibility with
existing code that maintains zone affinity. Such memory is unscanned and you must free it using
NSZoneFree (page 2258). This is exactly equivalent to calling NSAllocateCollectable (page 2158) with the
option NSCollectorDisabledOption (page ?).

You should typically allocate garbage-collected memory using NSAllocateCollectable (page 2158).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSGarbageCollector.h

Instance Methods 689
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGarbageCollector Class Reference

690 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 49

NSGarbageCollector Class Reference

Inherits from NSScriptCommand : NSObject

Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptStandardSuiteCommands.h

Companion guide Cocoa Scripting Guide

Overview

An instance of NSGetCommand gets the specified value or object from the specified scriptable object: for
example, the words from a paragraph or the name of a document.

When an instance of NSGetCommand is executed, it evaluates the specified receivers, gathers the specified
data, if any, and packages it in a return Apple event.

NSGetCommand is part of Cocoa’s built-in scripting support. It works automatically to support the get
command through key-value coding. Most applications don’t need to subclass NSGetCommand or call its
methods.

For information on working with get commands, see Getting and Setting Properties and Elements in Cocoa
Scripting Guide.

Overview 691
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGetCommand Class Reference

692 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 50

NSGetCommand Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.5 and later.

Declared in Foundation/NSHashTable.h

Companion guide Garbage Collection Programming Guide

Overview

NSHashTable is modeled after NSSet but provides different options, in particular to support weak
relationships in a garbage-collected environment.

Tasks

Initialization

– initWithOptions:capacity: (page 697)
Returns a hash table initialized with the given attributes.

– initWithPointerFunctions:capacity: (page 698)
Returns a hash table initialized with the given functions and capacity.

Convenience Constructors

+ hashTableWithOptions: (page 695)
Returns a hash table with given pointer functions options.

+ hashTableWithWeakObjects (page 695)
Returns a new hash table for storing weak references to its contents.

Overview 693
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

Accessing Content

– allObjects (page 696)
Returns an array that contains the receiver’s members.

– anyObject (page 696)
Returns one of the objects in the receiver.

– containsObject: (page 697)
Returns a Boolean value that indicates whether the receiver contains a given object.

– count (page 697)
Returns the number of elements in the receiver.

– member: (page 700)
Determines whether a given object is an element in the receiver.

– objectEnumerator (page 700)
Returns an enumerator object that lets you access each object in the receiver.

– setRepresentation (page 702)
Returns a set that contains the receiver’s members.

Manipulating Membership

– addObject: (page 696)
Adds a given object to the receiver.

– removeAllObjects (page 701)
Removes all objects from the receiver.

– removeObject: (page 701)
Removes a given object from the receiver.

Comparing Hash Tables

– intersectsHashTable: (page 698)
Returns a Boolean value that indicates whether a given hash table intersects with the receiver.

– isEqualToHashTable: (page 699)
Returns a Boolean value that indicates whether a given hash table is equal to the receiver.

– isSubsetOfHashTable: (page 699)
Returns a Boolean value that indicates whether every element in the receiver is also present in another
given hash table.

Set Functions

– intersectHashTable: (page 698)
Returns a Boolean value that indicates whether at least one element in the receiver is also present in
another given hash table.

– minusHashTable: (page 700)
Removes from the receiver each element contained in another given hash table that is present in the
receiver.

694 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

– unionHashTable: (page 702)
Adds to the receiver each element contained in another given hash table that is not already a member.

Accessing Pointer Functions

– pointerFunctions (page 701)
Returns the pointer functions for the receiver.

Class Methods

hashTableWithOptions:
Returns a hash table with given pointer functions options.

+ (id)hashTableWithOptions:(NSPointerFunctionsOptions)options

Parameters
options

A bit field that specifies the options for the elements in the hash table. For possible values, see “Hash
Table Options” (page 703).

Return Value
A hash table with given pointer functions options.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

hashTableWithWeakObjects
Returns a new hash table for storing weak references to its contents.

+ (id)hashTableWithWeakObjects

Return Value
A new has table that uses the options NSHashTableZeroingWeakMemory (page 703) and
NSPointerFunctionsObjectPersonality (page 1245) and has an initial capacity of 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

Class Methods 695
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

Instance Methods

addObject:
Adds a given object to the receiver.

- (void)addObject:(id)object

Parameters
object

The object to add to the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

allObjects
Returns an array that contains the receiver’s members.

- (NSArray *)allObjects

Return Value
An array that contains the receiver’s members.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

anyObject
Returns one of the objects in the receiver.

- (id)anyObject

Return Value
One of the objects in the receiver, or nil if the receiver contains no objects.

Discussion
The object returned is chosen at the receiver’s convenience—the selection is not guaranteed to be random.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

696 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

containsObject:
Returns a Boolean value that indicates whether the receiver contains a given object.

- (BOOL)containsObject:(id)anObject

Parameters
anObject

The object to test for membership in the receiver.

Return Value
YES if the receiver contains anObject, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

count
Returns the number of elements in the receiver.

- (NSUInteger)count

Return Value
The number of elements in the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

initWithOptions:capacity:
Returns a hash table initialized with the given attributes.

- (id)initWithOptions:(NSPointerFunctionsOptions)options
capacity:(NSUInteger)capacity

Parameters
options

A bit field that specifies the options for the elements in the hash table. For possible values, see “Hash
Table Options” (page 703).

capacity
The initial number of elements the receiver can hold.

Return Value
A hash table initialized with options specified by options and initial capacity of capacity.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 697
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

Declared In
NSHashTable.h

initWithPointerFunctions:capacity:
Returns a hash table initialized with the given functions and capacity.

- (id)initWithPointerFunctions:(NSPointerFunctions *)functions
capacity:(NSUInteger)initialCapacity

Parameters
functions

The pointer functions for the new hash table.

initialCapacity
The initial capacity of the hash table.

Return Value
A hash table initialized with the given functions and capacity.

Discussion
Hash tables allocate additional memory as needed, so initialCapacity simply establishes the object’s
initial capacity.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

intersectHashTable:
Returns a Boolean value that indicates whether at least one element in the receiver is also present in another
given hash table.

- (void)intersectHashTable:(NSHashTable *)other

Parameters
other

The hash table with which to compare the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

intersectsHashTable:
Returns a Boolean value that indicates whether a given hash table intersects with the receiver.

- (BOOL)intersectsHashTable:(NSHashTable *)other

698 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

Parameters
other

The hash table with which to compare the receiver.

Return Value
YES if other intersects with the receiver, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

isEqualToHashTable:
Returns a Boolean value that indicates whether a given hash table is equal to the receiver.

- (BOOL)isEqualToHashTable:(NSHashTable *)other

Parameters
other

The hash table with which to compare the receiver.

Return Value
YES if the contents of other are equal to the contents of the receiver, otherwise NO.

Discussion
Two hash tables have equal contents if they each have the same number of members and if each member
of one hash table is present in the other.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

isSubsetOfHashTable:
Returns a Boolean value that indicates whether every element in the receiver is also present in another given
hash table.

- (BOOL)isSubsetOfHashTable:(NSHashTable *)other

Parameters
other

The hash table with which to compare the receiver.

Return Value
YES if every element in the receiver is also present in other, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 699
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

Declared In
NSHashTable.h

member:
Determines whether a given object is an element in the receiver.

- (id)member:(id)object

Parameters
object

The object to test for membership in the receiver.

Return Value
If object is a member of the receiver, returns object, otherwise returns nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

minusHashTable:
Removes from the receiver each element contained in another given hash table that is present in the receiver.

- (void)minusHashTable:(NSHashTable *)other

Parameters
other

The hash table of elements to remove from the receiver.

Discussion
If any element of other isn’t present in the receiver, this method has no effect on either the receiver or
other.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

objectEnumerator
Returns an enumerator object that lets you access each object in the receiver.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver.

Discussion
The following code fragment illustrates how you can use this method.

700 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

NSEnumerator *enumerator = [myHashTable objectEnumerator];
id value;

while ((value = [enumerator nextObject])) {
 /* code that acts on the hash table's values */
}

Note that NSHashTable also supports the NSFastEnumeration protocol.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

pointerFunctions
Returns the pointer functions for the receiver.

- (NSPointerFunctions *)pointerFunctions

Return Value
The pointer functions for the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

removeAllObjects
Removes all objects from the receiver.

- (void)removeAllObjects

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

removeObject:
Removes a given object from the receiver.

- (void)removeObject:(id)object

Parameters
object

The object to remove from the receiver.

Instance Methods 701
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

setRepresentation
Returns a set that contains the receiver’s members.

- (NSSet *)setRepresentation

Return Value
A set that contains the receiver’s members.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

unionHashTable:
Adds to the receiver each element contained in another given hash table that is not already a member.

- (void)unionHashTable:(NSHashTable *)other

Parameters
other

The hash table of elements to add to the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSHashTable.h

Constants

NSHashTableOptions
Type to specify a bit-field used to define the behavior of elements in an NSHashTable object.

typedef NSUInteger NSHashTableOptions;

Discussion
For possible values, see “Hash Table Options” (page 703).

Availability
Available in Mac OS X v10.5 and later.

702 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

Declared In
NSHashTable.h

Hash Table Options
Components in a bit-field to specify the behavior of elements in an NSHashTable object.

enum {
 NSHashTableStrongMemory = 0,
 NSHashTableZeroingWeakMemory = NSPointerFunctionsZeroingWeakMemory,
 NSHashTableCopyIn = NSPointerFunctionsCopyIn,
 NSHashTableObjectPointerPersonality = NSPointerFunctionsObjectPointerPersonality,
};

Constants
NSHashTableStrongMemory

Equal to NSPointerFunctionsStrongMemory (page 1244).

Available in Mac OS X v10.5 and later.

Declared in NSHashTable.h.

NSHashTableZeroingWeakMemory
Equal to NSPointerFunctionsZeroingWeakMemory (page 1244).

Available in Mac OS X v10.5 and later.

Declared in NSHashTable.h.

NSHashTableCopyIn
Equal to NSPointerFunctionsCopyIn (page 1246).

Available in Mac OS X v10.5 and later.

Declared in NSHashTable.h.

NSHashTableObjectPointerPersonality
Equal to NSPointerFunctionsObjectPointerPersonality (page 1245).

Available in Mac OS X v10.5 and later.

Declared in NSHashTable.h.

Declared In
NSHashTable.h

Constants 703
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

704 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 51

NSHashTable Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSHost.h

Companion guide Interacting with the Operating System

Related sample code Core Data HTML Store
NameAndAddress

Overview

The NSHost class provides methods to access the network name and address information for a host. Instances
of the NSHost class represent individual hosts on a network. Use NSHost objects to get the current host’s
name and address and to look up other hosts by name or by address.

To create an NSHost object, use the currentHost (page 707), hostWithAddress: (page 707), or
hostWithName: (page 708) class methods (don’t use alloc and init). These methods use available network
administration services (such as NetInfo or the Domain Name Service) to discover all names and addresses
for the host requested. They don’t attempt to contact the host itself, however. This approach avoids untimely
delays due to a host being unavailable, but it may result in incomplete information about the host.

An NSHost object contains all of the network addresses and names discovered for a given host by the network
administration services. Each NSHost object typically contains one unique address, but it may have more
than one name. If an NSHost object has more than one name, the additional names are variations on the
same name, typically the basic host name plus the fully qualified domain name. For example, with a host
name “sales” in the domain “anycorp.com”, an NSHost object can hold both the names “sales” and
“sales.anycorp.com”.

The NSHost class maintains a cache of the NSHost objects it creates so that requests for an existing NSHost
object return that object instead of creating a new one. Use the setHostCacheEnabled: (page 709) method
to turn the cache off, forcing lookup of hosts as they’re requested. You can also use the
flushHostCache (page 707) method to clear the cache of its entries so that subsequent requests look up
the host information and create new instances.

Overview 705
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 52

NSHost Class Reference

Tasks

Creating Hosts

+ currentHost (page 707)
Returns an NSHost object representing the host the process is running on.

+ hostWithAddress: (page 707)
Returns the NSHost with the Internet address address.

+ hostWithName: (page 708)
Returns a host with a specific name.

Getting Host Information

– address (page 709)
Returns one of the network addresses of the receiver.

– addresses (page 710)
Returns all the network addresses of the receiver.

– name (page 711)
Returns one of the hostnames of the receiver.

– names (page 711)
Returns all the hostnames of the receiver.

Comparing Hosts

– isEqualToHost: (page 710)
Indicates whether the receiver represents the same host as another NSHost object.

Managing the Host Cache

+ isHostCacheEnabled (page 709)
Indicates whether caching is turned on or off.

+ setHostCacheEnabled: (page 709)
Specifies whether the receiver is to cache instances as it creates them to avoid creating duplicate
instances.

+ flushHostCache (page 707)
Releases the cache of existing NSHost objects so subsequent requests for NSHost objects create new
ones.

706 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 52

NSHost Class Reference

Class Methods

currentHost
Returns an NSHost object representing the host the process is running on.

+ (NSHost *)currentHost

Return Value
NSHost object for the process’s host.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ hostWithAddress: (page 707)
+ hostWithName: (page 708)

Related Sample Code
Core Data HTML Store
NameAndAddress

Declared In
NSHost.h

flushHostCache
Releases the cache of existing NSHost objects so subsequent requests for NSHost objects create new ones.

+ (void)flushHostCache

Discussion
NSHost objects that were retained before this method was invoked remain valid.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ isHostCacheEnabled (page 709)
+ setHostCacheEnabled: (page 709)

Declared In
NSHost.h

hostWithAddress:
Returns the NSHost with the Internet address address.

+ (NSHost *)hostWithAddress:(NSString *)address

Class Methods 707
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 52

NSHost Class Reference

Parameters
address

Network address to look up. For example, @"127.0.0.1" or @"fe80::1".

Return Value
Host for address.

Discussion
If caching is turned on and the cache already contains an NSHost object with address, returns that object.
Otherwise, this method creates an instance and returns it.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ hostWithName: (page 708)
+ setHostCacheEnabled: (page 709)

Related Sample Code
NameAndAddress

Declared In
NSHost.h

hostWithName:
Returns a host with a specific name.

+ (NSHost *)hostWithName:(NSString *)hostname

Parameters
hostname

Name of the host to look up. Can be either a simple hostname, such as @"sales", or a fully qualified
domain name, such as @"sales.anycorp.com".

Return Value
Host named hostname.

Discussion
If caching is turned on and the cache already contains an NSHost object with name, returns that object.
Otherwise, this method creates a new instance and returns it.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ hostWithAddress: (page 707)
+ setHostCacheEnabled: (page 709)

Related Sample Code
NameAndAddress

Declared In
NSHost.h

708 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 52

NSHost Class Reference

isHostCacheEnabled
Indicates whether caching is turned on or off.

+ (BOOL)isHostCacheEnabled

Return Value
YES when caching is turned on; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setHostCacheEnabled: (page 709)
+ flushHostCache (page 707)

Declared In
NSHost.h

setHostCacheEnabled:
Specifies whether the receiver is to cache instances as it creates them to avoid creating duplicate instances.

+ (void)setHostCacheEnabled:(BOOL)cacheOn

Parameters
cacheOn

YES to turn on caching. NO to turn of caching.

Discussion
Caching is turned on by default.

This method doesn’t flush the cache. If you turn caching off and then back on, new requests for hosts use
what was in the cache at the time caching was turned off. However, NSHost objects created while caching
is turned off aren’t entered into the cache.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ isHostCacheEnabled (page 709)
+ flushHostCache (page 707)

Declared In
NSHost.h

Instance Methods

address
Returns one of the network addresses of the receiver.

Instance Methods 709
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 52

NSHost Class Reference

- (NSString *)address

Return Value
One of the network address for the receiver. For example, @"192.42.172.1" or @"fe80::1".

Availability
Available in Mac OS X v10.0 and later.

See Also
– addresses (page 710)
– name (page 711)

Related Sample Code
NameAndAddress

Declared In
NSHost.h

addresses
Returns all the network addresses of the receiver.

- (NSArray *)addresses

Return Value
All the network addresses of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– address (page 709)
– names (page 711)

Declared In
NSHost.h

isEqualToHost:
Indicates whether the receiver represents the same host as another NSHost object.

- (BOOL)isEqualToHost:(NSHost *)host

Parameters
host

Host to compare the receiver to.

Return Value
YES when the receiver and host share at least one network address; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

710 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 52

NSHost Class Reference

See Also
– addresses (page 710)

Declared In
NSHost.h

name
Returns one of the hostnames of the receiver.

- (NSString *)name

Return Value
One of the hostnames of the receiver. Can be either a simple hostname, such as @"sales", or a fully qualified
domain name, such as @"sales.anycorp.com".

Availability
Available in Mac OS X v10.0 and later.

See Also
– address (page 709)
– names (page 711)

Related Sample Code
Core Data HTML Store
NameAndAddress

Declared In
NSHost.h

names
Returns all the hostnames of the receiver.

- (NSArray *)names

Return Value
All the hostnames of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addresses (page 710)
– name (page 711)

Declared In
NSHost.h

Instance Methods 711
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 52

NSHost Class Reference

712 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 52

NSHost Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSHTTPCookie.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

An NSHTTPCookie object represents an HTTP cookie. It’s an immutable object initialized from a dictionary
containing the cookie attributes.

Two versions of cookies are supported:

 ■ Version 0: This version refers to “traditional” or “old-style” cookies, the original cookie format defined by
Netscape. The majority of cookies encountered are in this format.

 ■ Version 1: This version refers to cookies as defined in RFC 2965, HTTP State Management Mechanism.

Adopted Protocols

NSCopying
– copyWithZone: (page 2042)

Overview 713
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

Tasks

Create Cookie Instances

+ cookiesWithResponseHeaderFields:forURL: (page 715)
Returns an array of NSHTTPCookie objects corresponding to the provided response header fields for
the provided URL.

+ cookieWithProperties: (page 715)
Creates and initializes an NSHTTPCookie object using the provided properties.

– initWithProperties: (page 718)
Returns an initialized NSHTTPCookie object using the provided properties.

Convert Cookies to Request Headers

+ requestHeaderFieldsWithCookies: (page 716)
Returns a dictionary of header fields corresponding to a provided array of cookies.

Getting Cookie Properties

– comment (page 716)
Returns the receiver's comment string.

– commentURL (page 717)
Returns the receiver’s comment URL.

– domain (page 717)
Returns the domain of the receiver’s cookie.

– expiresDate (page 717)
Returns the receiver’s expiration date.

– isSecure (page 718)
Returns whether his cookie should only be sent over secure channels.

– isSessionOnly (page 719)
Returns whether the receiver should be discarded at the end of the session (regardless of expiration
date).

– name (page 719)
Returns the receiver’s name.

– path (page 719)
Returns the receiver’s path.

– portList (page 720)
Returns the receiver's port list.

– properties (page 720)
Returns the receiver’s cookie properties.

– value (page 720)
Returns the receiver’s value.

714 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

– version (page 721)
Returns the receiver’s version.

Class Methods

cookiesWithResponseHeaderFields:forURL:
Returns an array of NSHTTPCookie objects corresponding to the provided response header fields for the
provided URL.

+ (NSArray *)cookiesWithResponseHeaderFields:(NSDictionary *)headerFields
forURL:(NSURL *)theURL

Parameters
headerFields

The header fields used to create the NSHTTPCookie objects.

theURL
The URL associated with the created cookies.

Return Value
The array of newly created cookies.

Discussion
This method will ignore irrelevant header fields in headerFields, allowing dictionaries to contain additional
data.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

cookieWithProperties:
Creates and initializes an NSHTTPCookie object using the provided properties.

+ (id)cookieWithProperties:(NSDictionary *)properties

Parameters
properties

The properties for the new cookie object, expressed as key value pairs.

Return Value
The newly created cookie object. Returns nil if the provided properties are invalid.

Discussion
See “Constants” (page 721) for more information on the available header field constants and the constraints
imposed on the values in the dictionary.

Class Methods 715
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– initWithProperties: (page 718)

Declared In
NSHTTPCookie.h

requestHeaderFieldsWithCookies:
Returns a dictionary of header fields corresponding to a provided array of cookies.

+ (NSDictionary *)requestHeaderFieldsWithCookies:(NSArray *)cookies

Parameters
cookies

The cookies from which the header fields are created.

Return Value
The dictionary of header fields created from the provided cookies. This dictionary can be used to add cookies
to a request.

Discussion
See “Constants” (page 721) for details on the header field keys and values in the returned dictionary.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

Instance Methods

comment
Returns the receiver's comment string.

- (NSString *)comment

Return Value
The receiver’s comment string or nil if the cookie has no comment. This string is suitable for presentation
to the user, explaining the contents and purpose of this cookie.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

716 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

Declared In
NSHTTPCookie.h

commentURL
Returns the receiver’s comment URL.

- (NSURL *)commentURL

Return Value
The receiver’s comment URL or nil if the cookie has none. This value specifies a URL which is suitable for
presentation to the user as a link for further information about this cookie.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

domain
Returns the domain of the receiver’s cookie.

- (NSString *)domain

Return Value
The domain of the receiver’s cookie.

Discussion
If the domain does not start with a dot, then the cookie will only be sent to the exact host specified by the
domain. If the domain does start with a dot, then the cookie will be sent to other hosts in that domain as
well, subject to certain restrictions. See RFC 2965 for more detail.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

expiresDate
Returns the receiver’s expiration date.

- (NSDate *)expiresDate

Return Value
The receiver’s expiration date, or nil if there is no specific expiration date such as in the case of “session-only”
cookies. The expiration date is the date when the cookie should be deleted.

Instance Methods 717
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

initWithProperties:
Returns an initialized NSHTTPCookie object using the provided properties.

- (id)initWithProperties:(NSDictionary *)properties

Parameters
properties

The properties for the new cookie object, expressed as key value pairs.

Return Value
The initialized cookie object. Returns nil if the provided properties are invalid.

Discussion
See “Constants” (page 721) for more information on the available header field constants and the constraints
imposed on the values in the dictionary.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ cookieWithProperties: (page 715)

Declared In
NSHTTPCookie.h

isSecure
Returns whether his cookie should only be sent over secure channels.

- (BOOL)isSecure

Return Value
YES if this cookie should only be sent over secure channels, otherwise NO.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

718 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

isSessionOnly
Returns whether the receiver should be discarded at the end of the session (regardless of expiration date).

- (BOOL)isSessionOnly

Return Value
YES if the receiver should be discarded at the end of the session (regardless of expiration date), otherwise
NO.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

name
Returns the receiver’s name.

- (NSString *)name

Return Value
The receiver's name.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

path
Returns the receiver’s path.

- (NSString *)path

Return Value
The receiver's path.

Discussion
The cookie will be sent with requests for this path in the cookie's domain, and all paths that have this prefix.
A path of “/” means the cookie will be sent for all URLs in the domain.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

Instance Methods 719
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

portList
Returns the receiver's port list.

- (NSArray *)portList

Return Value
The list of ports for the cookie, returned as an array of NSNumber objects containing integers. If the cookie
has no port list this method returns nil and the cookie will be sent to any port. Otherwise, the cookie is only
sent to ports specified in the port list.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

properties
Returns the receiver’s cookie properties.

- (NSDictionary *)properties

Return Value
A dictionary representation of the receiver’s cookie properties.

Discussion
This dictionary can be used with initWithProperties: (page 718) or cookieWithProperties: (page
715) to create an equivalent NSHTTPCookie object.

See initWithProperties: (page 718) for more information on the constraints imposed on the properties
dictionary.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

value
Returns the receiver’s value.

- (NSString *)value

Return Value
The receiver's value.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

720 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

Declared In
NSHTTPCookie.h

version
Returns the receiver’s version.

- (NSUInteger)version

Return Value
The receiver's version. Version 0 maps to “old-style” Netscape cookies. Version 1 maps to RFC 2965 cookies.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

Constants

HTTP Cookie Property Keys
These constants define the supported keys in a dictionary containing cookie attributes.

extern NSString *NSHTTPCookieComment;
extern NSString *NSHTTPCookieCommentURL;
extern NSString *NSHTTPCookieDiscard;
extern NSString *NSHTTPCookieDomain;
extern NSString *NSHTTPCookieExpires;
extern NSString *NSHTTPCookieMaximumAge;
extern NSString *NSHTTPCookieName;
extern NSString *NSHTTPCookieOriginURL;
extern NSString *NSHTTPCookiePath;
extern NSString *NSHTTPCookiePort;
extern NSString *NSHTTPCookieSecure;
extern NSString *NSHTTPCookieValue;
extern NSString *NSHTTPCookieVersion;

Constants
NSHTTPCookieComment

An NSString object containing the comment for the cookie.

Only valid for Version 1 cookies and later. This header field is optional.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

Constants 721
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

NSHTTPCookieCommentURL
An NSURL object or NSString object containing the comment URL for the cookie.

Only valid for Version 1 cookies or later. This header field is optional.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieDiscard
An NSString object stating whether the cookie should be discarded at the end of the session.

String value must be either “TRUE” or “FALSE”. This header field is optional. Default is “FALSE”, unless
this is cookie is version 1 or greater and a value for NSHTTPCookieMaximumAge is not specified, in
which case it is assumed “TRUE”.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieDomain
An NSString object containing the domain for the cookie.

A value must be specified for either NSHTTPCookieDomain or NSHTTPCookieOriginURL. If this
header field is missing the domain is inferred from the value for NSHTTPCookieOriginURL.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieExpires
An NSDate object or NSString object specifying the expiration date for the cookie.

This header field is only used for Version 0 cookies. This header field is optional.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieMaximumAge
An NSString object containing an integer value stating how long in seconds the cookie should be
kept, at most.

Only valid for Version 1 cookies and later. Default is “0”. This field is optional.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieName
An NSString object containing the name of the cookie. This field is required.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieOriginURL
An NSURL or NSString object containing the URL that set this cookie.

A value must be specified for either NSHTTPCookieDomain or NSHTTPCookieOriginURL.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

722 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

NSHTTPCookiePath
An NSString object containing the path for the cookie.

Inferred from the value for NSHTTPCookieOriginURL if not provided. Default is “/”. This header field
is optional.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookiePort
An NSString object containing comma-separated integer values specifying the ports for the cookie.

Only valid for Version 1 cookies or later. The default value is an empty string (““). This header field is
optional.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieSecure
An NSString object stating whether the cookie should be transmitted only over secure channels.

String value must be either “TRUE” or “FALSE”. Default is “FALSE”. This header field is optional.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieValue
An NSString object containing the value of the cookie.

This header field is required.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

NSHTTPCookieVersion
An NSString object that specifies the version of the cookie.

Must be either “0” or “1”. The default is “0”. This header field is optional.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookie.h.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

Constants 723
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

724 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 53

NSHTTPCookie Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSHTTPCookieStorage.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

NSHTTPCookieStorage implements a singleton object (shared instance) that manages the shared cookie
storage. These cookies are shared among all applications and are kept in sync cross-process.

Note: Changes made to the cookie accept policy will affect all currently running applications using the
cookie storage.

Tasks

Getting the Shared Cookie Storage Object

+ sharedHTTPCookieStorage (page 726)
Returns the shared cookie storage instance.

Getting and Setting the Cookie Accept Policy

– cookieAcceptPolicy (page 726)
Returns the receiver’s cookie accept policy.

– setCookieAcceptPolicy: (page 728)
Sets the cookie accept policy of the receiver

Overview 725
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 54

NSHTTPCookieStorage Class Reference

Adding and Removing Cookies

– cookies (page 727)
Returns the receiver’s cookies.

– cookiesForURL: (page 727)
Returns all the receiver's cookies that will be sent to a specified URL.

– deleteCookie: (page 728)
Deletes the specified cookie from the receiver.

– setCookie: (page 728)
Stores a specified cookie in the receiver if the receiver's cookie accept policy permits.

– setCookies:forURL:mainDocumentURL: (page 729)
Adds an array of cookies to the receiver if the receiver’s cookie acceptance policy permits.

Class Methods

sharedHTTPCookieStorage
Returns the shared cookie storage instance.

+ (NSHTTPCookieStorage *)sharedHTTPCookieStorage

Return Value
The shared cookie storage instance.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookieStorage.h

Instance Methods

cookieAcceptPolicy
Returns the receiver’s cookie accept policy.

- (NSHTTPCookieAcceptPolicy)cookieAcceptPolicy

Return Value
The receiver's cookie accept policy. The default cookie accept policy is NSHTTPCookieAcceptPolicyAlways.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

726 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 54

NSHTTPCookieStorage Class Reference

See Also
– setCookieAcceptPolicy: (page 728)

Declared In
NSHTTPCookieStorage.h

cookies
Returns the receiver’s cookies.

- (NSArray *)cookies

Return Value
An array containing all of the receiver’s cookies.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– cookiesForURL: (page 727)

Declared In
NSHTTPCookieStorage.h

cookiesForURL:
Returns all the receiver's cookies that will be sent to a specified URL.

- (NSArray *)cookiesForURL:(NSURL *)theURL

Parameters
theURL

The URL to filter on.

Return Value
An array of cookies whose URL matches the provided URL.

Discussion
An application can use NSHTTPCookie’s requestHeaderFieldsWithCookies: (page 716) method to turn
this array into a set of header fields to add to an NSMutableURLRequest object.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– cookies (page 727)

Declared In
NSHTTPCookieStorage.h

Instance Methods 727
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 54

NSHTTPCookieStorage Class Reference

deleteCookie:
Deletes the specified cookie from the receiver.

- (void)deleteCookie:(NSHTTPCookie *)aCookie

Parameters
aCookie

The cookie to delete.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookieStorage.h

setCookie:
Stores a specified cookie in the receiver if the receiver's cookie accept policy permits.

- (void)setCookie:(NSHTTPCookie *)aCookie

Parameters
aCookie

The cookie to store.

Discussion
The cookie will replace an existing cookie with the same name, domain and path, if one exists in the cookie
storage. This method will accept the cookie only if the receiver’s cookie accept policy is
NSHTTPCookieAcceptPolicyAlwaysorNSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain.
The cookie will be ignored if the receiver’s cookie accept policy is NSHTTPCookieAcceptPolicyNever.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookieStorage.h

setCookieAcceptPolicy:
Sets the cookie accept policy of the receiver

- (void)setCookieAcceptPolicy:(NSHTTPCookieAcceptPolicy)aPolicy

Parameters
aPolicy

The new cookie accept policy.

Discussion
The default cookie accept policy is NSHTTPCookieAcceptPolicyAlways. Changing the cookie policy will
affect all currently running applications using the cookie storage.

728 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 54

NSHTTPCookieStorage Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– cookieAcceptPolicy (page 726)

Declared In
NSHTTPCookieStorage.h

setCookies:forURL:mainDocumentURL:
Adds an array of cookies to the receiver if the receiver’s cookie acceptance policy permits.

- (void)setCookies:(NSArray *)cookies forURL:(NSURL *)theURL mainDocumentURL:(NSURL
 *)mainDocumentURL

Parameters
cookies

The cookies to add.

theURL
The URL associated with the added cookies.

mainDocumentURL
The URL of the main HTML document for the top-level frame, if known. Can be nil. This URL is used
to determine if the cookie should be accepted if the cookie accept policy is
NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain.

Discussion
The cookies will replace existing cookies with the same name, domain, and path, if one exists in the cookie
storage. The cookie will be ignored if the receiver's cookie accept policy is
NSHTTPCookieAcceptPolicyNever.

To store cookies from a set of response headers, an application can use
cookiesWithResponseHeaderFields:forURL: (page 715) passing a header field dictionary and then use
this method to store the resulting cookies in accordance with the receiver’s cookie acceptance policy.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookieStorage.h

Constants

NSHTTPCookieAcceptPolicy
NSHTTPCookieAcceptPolicy specifies the cookie acceptance policies implemented by the
NSHTTPCookieStorage class.

Constants 729
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 54

NSHTTPCookieStorage Class Reference

typedef enum {
 NSHTTPCookieAcceptPolicyAlways,
 NSHTTPCookieAcceptPolicyNever,
 NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain
} NSHTTPCookieAcceptPolicy;

Constants
NSHTTPCookieAcceptPolicyAlways

Accept all cookies. This is the default cookie accept policy.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookieStorage.h.

NSHTTPCookieAcceptPolicyNever
Reject all cookies.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookieStorage.h.

NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain
Accept cookies only from the main document domain.

Available in Mac OS X v10.2 and later.

Declared in NSHTTPCookieStorage.h.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookieStorage.h

Notifications

NSHTTPCookieManagerCookiesChangedNotification
This notification is posted when the cookies stored in the NSHTTPCookieStorage instance have changed.
Since cookies are shared among applications, this notification can be sent in response to another application’s
actions.

The notification object is the NSHTTPCookieStorage instance. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookieStorage.h

NSHTTPCookieManagerAcceptPolicyChangedNotification
This notification is posted when the acceptance policy of the NSHTTPCookieStorage instance has changed.
Since cookies are shared among applications, this notification can be sent in response to another application’s
actions.

730 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 54

NSHTTPCookieStorage Class Reference

The notification object is the NSHTTPCookieStorage instance. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookieStorage.h

Notifications 731
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 54

NSHTTPCookieStorage Class Reference

732 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 54

NSHTTPCookieStorage Class Reference

Inherits from NSURLResponse : NSObject

Conforms to NSCoding (NSURLResponse)
NSCopying (NSURLResponse)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLResponse.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

An NSHTTPURLResponse object represents a response to an HTTP URL load request. It’s a subclass of
NSURLResponse that provides methods for accessing information specific to HTTP protocol responses.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

Tasks

Getting HTTP Response Headers

– allHeaderFields (page 734)
Returns all the HTTP header fields of the receiver.

Overview 733
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 55

NSHTTPURLResponse Class Reference

Getting Response Status Code

+ localizedStringForStatusCode: (page 734)
Returns a localized string corresponding to a specified HTTP status code.

– statusCode (page 735)
Returns the receiver’s HTTP status code.

Class Methods

localizedStringForStatusCode:
Returns a localized string corresponding to a specified HTTP status code.

+ (NSString *)localizedStringForStatusCode:(NSInteger)statusCode

Parameters
statusCode

The HTTP status code.

Return Value
A localized string suitable for displaying to users that describes the specified status code.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– statusCode (page 735)

Declared In
NSURLResponse.h

Instance Methods

allHeaderFields
Returns all the HTTP header fields of the receiver.

- (NSDictionary *)allHeaderFields

Return Value
A dictionary containing all the HTTP header fields of the receiver. By examining this dictionary clients can
see the “raw” header information returned by the HTTP server.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

734 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 55

NSHTTPURLResponse Class Reference

Declared In
NSURLResponse.h

statusCode
Returns the receiver’s HTTP status code.

- (NSInteger)statusCode

Return Value
The receiver’s HTTP status code.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ localizedStringForStatusCode: (page 734)

Declared In
NSURLResponse.h

Instance Methods 735
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 55

NSHTTPURLResponse Class Reference

736 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 55

NSHTTPURLResponse Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.4 and later.

Declared in Foundation/NSIndexPath.h

Overview

The NSIndexPath class represents the path to a specific node in a tree of nested array collections. This path
is known as an index path.

Each index in an index path represents the index into an array of children from one node in the tree to
another, deeper, node. For example, the index path 1.4.3.2 specifies the path shown in Figure 56-1.

Figure 56-1 Index path 1.4.3.2

Array 3

0
1
2
3
4
5
6
7
8
9

10

Array 2

0
1
2
3
4
5
6
7
8
9

Array 1

0
1
2
3
4
5
6
7

Array 0

0
1
2
3
4
5
6

Overview 737
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 56

NSIndexPath Class Reference

NSIndexPath objects are uniqued and shared. If an index path containing the specified index or indexes
already exists, that object is returned instead of a new instance.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

Tasks

Creating Index Paths

+ indexPathWithIndex: (page 739)
Creates an one-node index path.

+ indexPathWithIndexes:length: (page 739)
Creates an index path with one or more nodes.

– initWithIndex: (page 742)
Initializes an allocated NSIndexPath (page 737) object with a one-node index path.

– initWithIndexes:length: (page 742)
Initializes an allocated NSIndexPath (page 737) object with an index path of a specific length.

Querying Index Paths

– getIndexes: (page 740)
Provides a reference to the receiver’s indexes.

– indexAtPosition: (page 741)
Provides the index at a particular node in the receiver.

– indexPathByAddingIndex: (page 741)
Provides an index path containing the indexes in the receiver and another index.

– indexPathByRemovingLastIndex (page 741)
Provides an index path with the indexes in the receiver, excluding the last one.

– length (page 743)
Provides the number of indexes in the receiver.

738 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 56

NSIndexPath Class Reference

Comparing Index Paths

– compare: (page 740)
Indicates the depth-first traversal order of the receiver and another index path.

Class Methods

indexPathWithIndex:
Creates an one-node index path.

+ (id)indexPathWithIndex:(NSUInteger)index

Parameters
index

Index of the item in node 0 to point to.

Return Value
One-node index path with index.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithIndex: (page 742)

Declared In
NSIndexPath.h

indexPathWithIndexes:length:
Creates an index path with one or more nodes.

+ (id)indexPathWithIndexes:(NSUInteger *)indexes length:(NSUInteger)length

Parameters
indexes

Array of indexes to make up the index path.

length
Number of nodes to include in the index path.

Return Value
Index path with indexes up to length.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithIndexes:length: (page 742)

Class Methods 739
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 56

NSIndexPath Class Reference

Declared In
NSIndexPath.h

Instance Methods

compare:
Indicates the depth-first traversal order of the receiver and another index path.

- (NSComparisonResult)compare:(NSIndexPath *)indexPath

Parameters
indexPath

Index path to compare.

This value must not be nil. If the value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
The depth-first traversal ordering of the receiver and indexPath.

 ■ NSOrderedAscending: The receiver comes before indexPath.

 ■ NSOrderedDescending: The receiver comes after indexPath.

 ■ NSOrderedSame: The receiver and indexPath are the same index path.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSIndexPath.h

getIndexes:
Provides a reference to the receiver’s indexes.

- (void)getIndexes:(NSUInteger *)indexes

Parameters
indexes

Pointer to an unsigned integer array. On return, the receiver indexes.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSIndexPath.h

740 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 56

NSIndexPath Class Reference

indexAtPosition:
Provides the index at a particular node in the receiver.

- (NSUInteger)indexAtPosition:(NSUInteger)node

Parameters
node

Index value of the desired node. Node numbering starts at zero.

Return Value
Index value at node.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSIndexPath.h

indexPathByAddingIndex:
Provides an index path containing the indexes in the receiver and another index.

- (NSIndexPath *)indexPathByAddingIndex:(NSUInteger)index

Parameters
index

Index to append to the receiver’s indexes.

Return Value
New NSIndexPath (page 737) object containing the receiver’s indexes and index.

Availability
Available in Mac OS X v10.4 and later.

See Also
– indexPathByRemovingLastIndex (page 741)

Declared In
NSIndexPath.h

indexPathByRemovingLastIndex
Provides an index path with the indexes in the receiver, excluding the last one.

- (NSIndexPath *)indexPathByRemovingLastIndex

Return Value
New index path with the receiver’s indexes, excluding the last one.

Discussion
Returns an empty NSIndexPath instance if the receiver’s length is 1 or less.

Instance Methods 741
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 56

NSIndexPath Class Reference

Special Considerations

On Mac OS X 10.4 and earlier this method returns nil when the length of the receiver is 1 or less. On Mac
OS X 10.5 and later this method will never return nil.

Availability
Available in Mac OS X v10.4 and later.

See Also
– indexPathByAddingIndex: (page 741)

Declared In
NSIndexPath.h

initWithIndex:
Initializes an allocated NSIndexPath (page 737) object with a one-node index path.

- (id)initWithIndex:(NSUInteger)index

Parameters
index

Index of the item in node 0 to point to.

Return Value
Initialized NSIndexPath (page 737) object representing a one-node index path with index.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ indexPathWithIndex: (page 739)

Declared In
NSIndexPath.h

initWithIndexes:length:
Initializes an allocated NSIndexPath (page 737) object with an index path of a specific length.

- (id)initWithIndexes:(NSUInteger *)indexes length:(NSUInteger)length

Parameters
indexes

Array of indexes to make up the index path.

length
Number of nodes to include in the index path.

Return Value
Initialized NSIndexPath (page 737) object with indexes up to length.

Availability
Available in Mac OS X v10.4 and later.

742 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 56

NSIndexPath Class Reference

See Also
+ indexPathWithIndexes:length: (page 739)

Declared In
NSIndexPath.h

length
Provides the number of indexes in the receiver.

- (NSUInteger)length

Return Value
Number of indexes in the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSIndexPath.h

Instance Methods 743
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 56

NSIndexPath Class Reference

744 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 56

NSIndexPath Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.3 and later.

Declared in Foundation/NSIndexSet.h

Companion guide Collections Programming Topics for Cocoa

Related sample code Core Data HTML Store
IdentitySample
ImageBrowser
iSpend
QTKitMovieShuffler

Overview

The NSIndexSet class represents an immutable collection of unique unsigned integers, known as indexes
because of the way they are used. This collection is referred to as a index set.

You use index sets in your code to store indexes into some other data structure. For example, given an
NSArray object, you could use an index set to identify a subset of objects in that array.

Each index value can appear only once in the index set. This is an important concept to understand and is
why you would not use index sets to store an arbitrary collection of integer values. To illustrate how this
works, if you created an NSIndexSet object with the values 4, 5, 2, and 5, the resulting set would only have
the values 4, 5, and 2 in it. Because index values are always maintained in sorted order, the actual order of
the values when you created the set would be 2, 4, and then 5.

In most cases, using an index set is more efficient than storing a collection of individual integers. Internally,
the NSIndexSet class represents indexes using ranges. For maximum performance and efficiency, overlapping
ranges in an index set are automatically coalesced—that is, ranges merge rather than overlap. Thus, the more
contiguous the indexes in the set, the fewer ranges are required to specify those indexes.

The designated initializers of the NSIndexSet class are: initWithIndexesInRange: (page 755) and
initWithIndexSet: (page 756).

Overview 745
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

You must not subclass the NSIndexSet class.

The mutable subclass of NSIndexSet is NSMutableIndexSet.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

NSMutableCopying
– mutableCopyWithZone: (page 2094)

Tasks

Creating Index Sets

+ indexSet (page 747)
Creates an empty index set.

+ indexSetWithIndex: (page 748)
Creates an index set with an index.

+ indexSetWithIndexesInRange: (page 748)
Creates an index set with an index range.

– init (page 754)
Initializes an allocated NSIndexSet (page 745) object.

– initWithIndex: (page 755)
Initializes an allocated NSIndexSet (page 745) object with an index.

– initWithIndexesInRange: (page 755)
Initializes an allocated NSIndexSet (page 745) object with an index range.

– initWithIndexSet: (page 756)
Initializes an allocated NSIndexSet (page 745) object with an index set.

Querying Index Sets

– containsIndex: (page 749)
Indicates whether the receiver contains a specific index.

– containsIndexes: (page 749)
Indicates whether the receiver contains a superset of the indexes in another index set.

746 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

– containsIndexesInRange: (page 750)
Indicates whether the receiver contains the indexes represented by an index range.

– intersectsIndexesInRange: (page 756)
Indicates whether the receiver contains any of the indexes in a range.

– count (page 750)
Returns the number of indexes in the receiver.

– countOfIndexesInRange: (page 751)
Returns the number of indexes in the receiver that are members of a given range.

Comparing Index Sets

– isEqualToIndexSet: (page 756)
Indicates whether the indexes in the receiver are the same indeces contained in another index set.

Getting Indexes

– firstIndex (page 751)
Returns either the first index in the receiver or the not-found indicator.

– lastIndex (page 757)
Returns either the last index in the receiver or the not-found indicator.

– indexLessThanIndex: (page 753)
Returns either the closest index in the receiver that is less than a specific index or the not-found
indicator.

– indexLessThanOrEqualToIndex: (page 754)
Returns either the closest index in the receiver that is less than or equal to a specific index or the
not-found indicator.

– indexGreaterThanOrEqualToIndex: (page 753)
Returns either the closest index in the receiver that is greater than or equal to a specific index or the
not-found indicator.

– indexGreaterThanIndex: (page 752)
Returns either the closest index in the receiver that is greater than a specific index or the not-found
indicator.

– getIndexes:maxCount:inIndexRange: (page 751)
The receiver fills an index buffer with the indexes contained both in the receiver and in an index
range, returning the number of indexes copied.

Class Methods

indexSet
Creates an empty index set.

+ (id)indexSet

Class Methods 747
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

Return Value
NSIndexSet (page 745) object with no members.

Availability
Available in Mac OS X v10.3 and later.

See Also
– init (page 754)

Related Sample Code
Core Data HTML Store

Declared In
NSIndexSet.h

indexSetWithIndex:
Creates an index set with an index.

+ (id)indexSetWithIndex:(NSUInteger)index

Parameters
index

An index.

Return Value
NSIndexSet (page 745) object containing index.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initWithIndex: (page 755)

Related Sample Code
AutoSample
IdentitySample
PDFKitLinker2

Declared In
NSIndexSet.h

indexSetWithIndexesInRange:
Creates an index set with an index range.

+ (id)indexSetWithIndexesInRange:(NSRange)indexRange

Parameters
indexRange

An index range.

748 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

Return Value
NSIndexSet (page 745) object containing indexRange.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initWithIndexesInRange: (page 755)

Related Sample Code
iSpend

Declared In
NSIndexSet.h

Instance Methods

containsIndex:
Indicates whether the receiver contains a specific index.

- (BOOL)containsIndex:(NSUInteger)index

Parameters
index

Index being inquired about.

Return Value
YES when the receiver contains index, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

See Also
– containsIndexes: (page 749)
– containsIndexesInRange: (page 750)

Declared In
NSIndexSet.h

containsIndexes:
Indicates whether the receiver contains a superset of the indexes in another index set.

- (BOOL)containsIndexes:(NSIndexSet *)indexSet

Parameters
indexSet

Index set being inquired about.

Instance Methods 749
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

Return Value
YES when the receiver contains a superset of the indexes in indexSet, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

See Also
– containsIndex: (page 749)
– containsIndexesInRange: (page 750)

Declared In
NSIndexSet.h

containsIndexesInRange:
Indicates whether the receiver contains the indexes represented by an index range.

- (BOOL)containsIndexesInRange:(NSRange)indexRange

Parameters
indexRange

The index range being inquired about.

Return Value
YES when the receiver contains the indexes in indexRange, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

See Also
– containsIndex: (page 749)
– containsIndexes: (page 749)
– intersectsIndexesInRange: (page 756)

Declared In
NSIndexSet.h

count
Returns the number of indexes in the receiver.

- (NSUInteger)count

Return Value
Number of indexes in the receiver.

Availability
Available in Mac OS X v10.3 and later.

See Also
– countOfIndexesInRange: (page 751)

750 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

Declared In
NSIndexSet.h

countOfIndexesInRange:
Returns the number of indexes in the receiver that are members of a given range.

- (NSUInteger)countOfIndexesInRange:(NSRange)indexRange

Parameters
indexRange

Index range being inquired about.

Return Value
Number of indexes in the receiver that are members of indexRange.

Availability
Available in Mac OS X v10.5 and later.

See Also
– count (page 750)

Declared In
NSIndexSet.h

firstIndex
Returns either the first index in the receiver or the not-found indicator.

- (NSUInteger)firstIndex

Return Value
First index in the receiver or NSNotFound (page 2287) when the receiver is empty.

Availability
Available in Mac OS X v10.3 and later.

See Also
– lastIndex (page 757)

Related Sample Code
AutomatorHandsOn
iSpend

Declared In
NSIndexSet.h

getIndexes:maxCount:inIndexRange:
The receiver fills an index buffer with the indexes contained both in the receiver and in an index range,
returning the number of indexes copied.

Instance Methods 751
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

- (NSUInteger)getIndexes:(NSUInteger *)indexBuffer maxCount:(NSUInteger)bufferSize
inIndexRange:(NSRangePointer)indexRangePointer

Parameters
indexBuffer

Index buffer to fill.

bufferSize
Maximum size of indexBuffer.

indexRange
Index range to compare with indexes in the receiver; nil represents all the indexes in the receiver.
Indexes in the index range and in the receiver are copied to indexBuffer. On output, the range of
indexes not copied to indexBuffer.

Return Value
Number of indexes placed in indexBuffer.

Discussion
You are responsible for allocating the memory required for indexBuffer and for releasing it later.

Suppose you have an index set with contiguous indexes from 1 to 100. If you use this method to request a
range of (1, 100)—which represents the set of indexes 1 through 100—and specify a buffer size of 20,
this method returns 20 indexes—1 through 20—in indexBuffer and sets indexRange to (21, 80)—which
represents the indexes 21 through 100.

Use this method to retrieve entries quickly and efficiently from an index set. You can call this method repeatedly
to retrieve blocks of index values and then process them. When doing so, use the return value and indexRange
to determine when you have finished processing the desired indexes. When the return value is less than
bufferSize, you have reached the end of the range.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSIndexSet.h

indexGreaterThanIndex:
Returns either the closest index in the receiver that is greater than a specific index or the not-found indicator.

- (NSUInteger)indexGreaterThanIndex:(NSUInteger)index

Parameters
index

Index being inquired about.

Return Value
Closest index in the receiver greater than index; NSNotFound (page 2287) when the receiver contains no
qualifying index.

Availability
Available in Mac OS X v10.3 and later.

See Also
– indexLessThanIndex: (page 753)

752 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

– indexGreaterThanOrEqualToIndex: (page 753)
– indexLessThanOrEqualToIndex: (page 754)

Related Sample Code
AutomatorHandsOn
Core Data HTML Store
QTKitMovieShuffler

Declared In
NSIndexSet.h

indexGreaterThanOrEqualToIndex:
Returns either the closest index in the receiver that is greater than or equal to a specific index or the not-found
indicator.

- (NSUInteger)indexGreaterThanOrEqualToIndex:(NSUInteger)index

Parameters
index

Index being inquired about.

Return Value
Closest index in the receiver greater than or equal to index; NSNotFound (page 2287) when the receiver
contains no qualifying index.

Availability
Available in Mac OS X v10.3 and later.

See Also
– indexGreaterThanIndex: (page 752)
– indexLessThanIndex: (page 753)
– indexLessThanOrEqualToIndex: (page 754)

Declared In
NSIndexSet.h

indexLessThanIndex:
Returns either the closest index in the receiver that is less than a specific index or the not-found indicator.

- (NSUInteger)indexLessThanIndex:(NSUInteger)index

Parameters
index

Index being inquired about.

Return Value
Closest index in the receiver less thanindex;NSNotFound (page 2287) when the receiver contains no qualifying
index.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 753
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

See Also
– indexGreaterThanIndex: (page 752)
– indexGreaterThanOrEqualToIndex: (page 753)
– indexLessThanOrEqualToIndex: (page 754)

Related Sample Code
ImageBrowser

Declared In
NSIndexSet.h

indexLessThanOrEqualToIndex:
Returns either the closest index in the receiver that is less than or equal to a specific index or the not-found
indicator.

- (NSUInteger)indexLessThanOrEqualToIndex:(NSUInteger)index

Parameters
index

Index being inquired about.

Return Value
Closest index in the receiver less than or equal to index; NSNotFound (page 2287) when the receiver contains
no qualifying index.

Availability
Available in Mac OS X v10.3 and later.

See Also
– indexGreaterThanIndex: (page 752)
– indexLessThanIndex: (page 753)
– indexGreaterThanOrEqualToIndex: (page 753)

Declared In
NSIndexSet.h

init
Initializes an allocated NSIndexSet (page 745) object.

- (id)init

Return Value
Initialized, empty NSIndexSet (page 745) object.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ indexSet (page 747)

754 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

Declared In
NSIndexSet.h

initWithIndex:
Initializes an allocated NSIndexSet (page 745) object with an index.

- (id)initWithIndex:(NSUInteger)index

Parameters
index

An index.

Return Value
Initialized NSIndexSet (page 745) object with index.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ indexSetWithIndex: (page 748)

Declared In
NSIndexSet.h

initWithIndexesInRange:
Initializes an allocated NSIndexSet (page 745) object with an index range.

- (id)initWithIndexesInRange:(NSRange)indexRange

Parameters
indexRange

An index range. Must include only indexes representable as unsigned integers.

Return Value
Initialized NSIndexSet (page 745) object with indexRange.

Discussion
This method raises an NSRangeException (page 2306) when indexRangewould add an index that exceeds
the maximum allowed value for unsigned integers.

This method is a designated initializer for NSIndexSet (page 745).

Availability
Available in Mac OS X v10.3 and later.

See Also
+ indexSetWithIndexesInRange: (page 748)

Declared In
NSIndexSet.h

Instance Methods 755
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

initWithIndexSet:
Initializes an allocated NSIndexSet (page 745) object with an index set.

- (id)initWithIndexSet:(NSIndexSet *)indexSet

Parameters
indexSet

An index set.

Return Value
Initialized NSIndexSet (page 745) object with indexSet.

Discussion
This method is a designated initializer for NSIndexSet (page 745).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSIndexSet.h

intersectsIndexesInRange:
Indicates whether the receiver contains any of the indexes in a range.

- (BOOL)intersectsIndexesInRange:(NSRange)indexRange

Parameters
indexRange

Index range being inquired about.

Return Value
YES when the receiver contains one or more of the indexes in indexRange, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

See Also
– containsIndexesInRange: (page 750)

Declared In
NSIndexSet.h

isEqualToIndexSet:
Indicates whether the indexes in the receiver are the same indeces contained in another index set.

- (BOOL)isEqualToIndexSet:(NSIndexSet *)indexSet

Parameters
indexSet

Index set being inquired about.

756 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

Return Value
YES when the indexes in the receiver are the same indexes indexSet contains, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSIndexSet.h

lastIndex
Returns either the last index in the receiver or the not-found indicator.

- (NSUInteger)lastIndex

Return Value
Last index in the receiver or NSNotFound (page 2287) when the receiver is empty.

Availability
Available in Mac OS X v10.3 and later.

See Also
– firstIndex (page 751)

Related Sample Code
IdentitySample
iSpend

Declared In
NSIndexSet.h

Instance Methods 757
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

758 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 57

NSIndexSet Class Reference

Inherits from NSScriptObjectSpecifier : NSObject

Conforms to NSCoding (NSScriptObjectSpecifier)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptObjectSpecifiers.h

Companion guide Cocoa Scripting Guide

Related sample code Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Overview

The NSIndexSpecifier class represents an object in a collection (or container) with an index number. The
script terms first and front specify the object with index 0, while last specifies the object with index of
count-1. A negative index indicates a location by counting backward from the last object in the collection.

You don’t normally subclass NSIndexSpecifier.

Tasks

Creating Index Specifiers

– initWithContainerClassDescription:containerSpecifier:key:index: (page 760)
Initializes an allocated NSIndexSpecifier (page 759) object with a class description, container
specifier, collection key, and object index.

Accessing the Index

– index (page 760)
Returns the value receiver’s index property.

Overview 759
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 58

NSIndexSpecifier Class Reference

– setIndex: (page 761)
Sets the value of the receiver’s index property.

Instance Methods

index
Returns the value receiver’s index property.

- (NSInteger)index

Return Value
Value of the receiver’s index property.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

initWithContainerClassDescription:containerSpecifier:key:index:
Initializes an allocated NSIndexSpecifier (page 759) object with a class description, container specifier,
collection key, and object index.

- (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDescription
containerSpecifier:(NSScriptObjectSpecifier *)containerSpecifier key:(NSString
 *)collectionKey index:(NSInteger)objectIndex

Parameters
classDescription

Description for the container of the collection.

containerSpecifier
Container of the collection.

collectionKey
Name of the collection.

objectIndex
The object within the key collection the index specifier is to identify.

Return Value
Initialized NSIndexSpecifier (page 759) object with its index property set to objectIndex.

Discussion
Invokes the super class’s initWithContainerClassDescription:containerSpecifier:key: (page
1418) method and sets the index property of the index specifier to objectIndex.

Availability
Available in Mac OS X v10.0 and later.

760 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 58

NSIndexSpecifier Class Reference

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSScriptObjectSpecifiers.h

setIndex:
Sets the value of the receiver’s index property.

- (void)setIndex:(NSInteger)index

Parameters
index

Value for the receiver’s index property.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

Instance Methods 761
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 58

NSIndexSpecifier Class Reference

762 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 58

NSIndexSpecifier Class Reference

Inherits from NSStream : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.3 and later.

Declared in Foundation/NSStream.h

Companion guide Stream Programming Guide for Cocoa

Related sample code CocoaEcho
CocoaHTTPServer
CocoaSOAP

Overview

NSInputStream is a subclass of NSStream that provides read-only stream functionality.

Subclassing Notes

NSInputStream is a concrete subclass of NSStream that gives you standard read-only access to stream
data. Although NSInputStream is probably sufficient for most situations requiring access to stream data,
you can create a subclass of NSInputStream if you want more specialized behavior (for example, you want
to record statistics on the data in a stream).

Methods to Override

To create a subclass of NSInputStream you may have to implement initializers for the type of stream data
supported and suitably reimplement existing initializers. You must also provide complete implementations
of the following methods:

 ■ read:maxLength: (page 767)

From the current read index, take up to the number of bytes specified in the second parameter from
the stream and place them in the client-supplied buffer (first parameter). The buffer must be of the size
specified by the second parameter. Return the actual number of bytes placed in the buffer; if there is
nothing left in the stream, return 0. Reset the index into the stream for the next read operation.

 ■ getBuffer:length: (page 765)

Overview 763
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 59

NSInputStream Class Reference

Return in 0(1) a pointer to the subclass-allocated buffer (first parameter). Return by reference in the
second parameter the number of bytes actually put into the buffer. The buffer’s contents are valid only
until the next stream operation. Return NO if you cannot access data in the buffer; otherwise, return YES.
If this method is not appropriate for your type of stream, you may return NO.

 ■ hasBytesAvailable (page 766)

Return YES if there is more data to read in the stream, NO if there is not. If you want to be semantically
compatible with NSInputStream, return YES if a read must be attempted to determine if bytes are
available.

Tasks

Creating Streams

+ inputStreamWithData: (page 764)
Creates and returns an initialized NSInputStream object for reading from a given NSData object.

+ inputStreamWithFileAtPath: (page 765)
Creates and returns an initialized NSInputStream object that reads data from the file at a given path.

– initWithData: (page 766)
Initializes and returns an NSInputStream object for reading from a given NSData object.

– initWithFileAtPath: (page 767)
Initializes and returns an NSInputStream object that reads data from the file at a given path.

Using Streams

– read:maxLength: (page 767)
Reads up to a given number of bytes into a given buffer, and returns the actual number of bytes read.

– getBuffer:length: (page 765)
Returns by reference a pointer to a read buffer and, by reference, the number of bytes available, and
returns a Boolean value that indicates whether the buffer is available.

– hasBytesAvailable (page 766)
Returns a Boolean value that indicates whether the receiver has bytes available to read.

Class Methods

inputStreamWithData:
Creates and returns an initialized NSInputStream object for reading from a given NSData object.

+ (id)inputStreamWithData:(NSData *)data

764 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 59

NSInputStream Class Reference

Parameters
data

The data object from which to read. The contents of data are copied.

Return Value
An initialized NSInputStream object for reading from data. If data is not an NSData object, this method
returns nil.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ inputStreamWithFileAtPath: (page 765)
– initWithData: (page 766)

Declared In
NSStream.h

inputStreamWithFileAtPath:
Creates and returns an initialized NSInputStream object that reads data from the file at a given path.

+ (id)inputStreamWithFileAtPath:(NSString *)path

Parameters
path

The path to the file.

Return Value
An initialized NSInputStream object that reads data from the file at path. If the file specified by path doesn’t
exist or is unreadable, returns nil.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ inputStreamWithData: (page 764)
– initWithFileAtPath: (page 767)

Declared In
NSStream.h

Instance Methods

getBuffer:length:
Returns by reference a pointer to a read buffer and, by reference, the number of bytes available, and returns
a Boolean value that indicates whether the buffer is available.

- (BOOL)getBuffer:(uint8_t **)buffer length:(NSUInteger *)len

Instance Methods 765
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 59

NSInputStream Class Reference

Parameters
buffer

Upon return, contains a pointer to a read buffer. The buffer is only valid until the next stream operation
is performed.

len
Upon return, contains the number of bytes available.

Return Value
YES if the buffer is available, otherwise NO.

Subclasses of NSInputStream may return NO if this operation is not appropriate for the stream type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSStream.h

hasBytesAvailable
Returns a Boolean value that indicates whether the receiver has bytes available to read.

- (BOOL)hasBytesAvailable

Return Value
YES if the receiver has bytes available to read, otherwise NO. May also return YES if a read must be attempted
in order to determine the availability of bytes.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSStream.h

initWithData:
Initializes and returns an NSInputStream object for reading from a given NSData object.

- (id)initWithData:(NSData *)data

Parameters
data

The data object from which to read. The contents of data are copied.

Return Value
An initialized NSInputStream object for reading from data.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initWithFileAtPath: (page 767)
+ inputStreamWithData: (page 764)

766 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 59

NSInputStream Class Reference

Declared In
NSStream.h

initWithFileAtPath:
Initializes and returns an NSInputStream object that reads data from the file at a given path.

- (id)initWithFileAtPath:(NSString *)path

Parameters
path

The path to the file.

Return Value
An initialized NSInputStream object that reads data from the file at path. If the file specified by path doesn’t
exist or is unreadable, returns nil.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initWithData: (page 766)
+ inputStreamWithFileAtPath: (page 765)

Declared In
NSStream.h

read:maxLength:
Reads up to a given number of bytes into a given buffer, and returns the actual number of bytes read.

- (NSInteger)read:(uint8_t *)buffer maxLength:(NSUInteger)len

Parameters
buffer

A data buffer. The buffer must be large enough to contain the number of bytes specified by len.

len
The maximum number of bytes to read.

Return Value
The actual number of bytes read.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CocoaEcho
CocoaHTTPServer
CocoaSOAP

Declared In
NSStream.h

Instance Methods 767
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 59

NSInputStream Class Reference

768 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 59

NSInputStream Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSInvocation.h

Companion guide Distributed Objects Programming Topics

Related sample code CubePuzzle
DeskPictAppDockMenu

Overview

An NSInvocation is an Objective-C message rendered static, that is, it is an action turned into an object.
NSInvocation objects are used to store and forward messages between objects and between applications,
primarily by NSTimer objects and the distributed objects system.

An NSInvocation object contains all the elements of an Objective-C message: a target, a selector, arguments,
and the return value. Each of these elements can be set directly, and the return value is set automatically
when the NSInvocation object is dispatched.

An NSInvocation object can be repeatedly dispatched to different targets; its arguments can be modified
between dispatch for varying results; even its selector can be changed to another with the same method
signature (argument and return types). This flexibility makes NSInvocation useful for repeating messages
with many arguments and variations; rather than retyping a slightly different expression for each message,
you modify the NSInvocation object as needed each time before dispatching it to a new target.

NSInvocation does not support invocations of methods with either variable numbers of arguments or
union arguments. You should use the invocationWithMethodSignature: (page 771) class method to
create NSInvocation objects; you should not create these objects using alloc (page 1152) and init (page
1178).

This class does not retain the arguments for the contained invocation by default. If those objects might
disappear between the time you create your instance of NSInvocation and the time you use it, you should
explicitly retain the objects yourself or invoke the retainArguments method to have the invocation object
retain them itself.

Overview 769
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

Note: NSInvocation conforms to the NSCoding protocol, but only supports coding by an NSPortCoder.
NSInvocation does not support archiving.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

Tasks

Creating NSInvocation Objects

+ invocationWithMethodSignature: (page 771)
Returns an NSInvocation object able to construct messages using a given method signature.

Configuring an Invocation Object

– setSelector: (page 777)
Sets the receiver’s selector.

– selector (page 775)
Returns the receiver’s selector, or 0 if it hasn’t been set.

– setTarget: (page 777)
Sets the receiver’s targe.

– target (page 777)
Returns the receiver’s target, or nil if the receiver has no target.

– setArgument:atIndex: (page 775)
Sets an argument of the receiver.

– getArgument:atIndex: (page 772)
Returns by indirection the receiver's argument at a specified index.

– argumentsRetained (page 771)
Returns YES if the receiver has retained its arguments, NO otherwise.

– retainArguments (page 775)
If the receiver hasn’t already done so, retains the target and all object arguments of the receiver and
copies all of its C-string arguments.

– setReturnValue: (page 776)
Sets the receiver’s return value.

– getReturnValue: (page 773)
Gets the receiver's return value.

770 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

Dispatching an Invocation

– invoke (page 773)
Sends the receiver’s message (with arguments) to its target and sets the return value.

– invokeWithTarget: (page 774)
Sets the receiver’s target, sends the receiver’s message (with arguments) to that target, and sets the
return value.

Getting the Method Signature

– methodSignature (page 774)
Returns the receiver’s method signature.

Class Methods

invocationWithMethodSignature:
Returns an NSInvocation object able to construct messages using a given method signature.

+ (NSInvocation *)invocationWithMethodSignature:(NSMethodSignature *)signature

Parameters
signature

An object encapsulating a method signature.

Discussion
The new object must have its selector set with setSelector: (page 777) and its arguments set with
setArgument:atIndex: (page 775) before it can be invoked. Do not use the alloc (page 1152)/init (page
1178) approach to create NSInvocation objects.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CubePuzzle
DeskPictAppDockMenu

Declared In
NSInvocation.h

Instance Methods

argumentsRetained
Returns YES if the receiver has retained its arguments, NO otherwise.

Class Methods 771
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

- (BOOL)argumentsRetained

Availability
Available in Mac OS X v10.0 and later.

See Also
– retainArguments (page 775)

Declared In
NSInvocation.h

getArgument:atIndex:
Returns by indirection the receiver's argument at a specified index.

- (void)getArgument:(void *)buffer atIndex:(NSInteger)index

Parameters
buffer

An untyped buffer to hold the returned argument. See the discussion below relating to argument
values that are objects.

index
An integer specifying the index of the argument to get.

Indices 0 and 1 indicate the hidden arguments self and _cmd, respectively; these values can be
retrieved directly with the target and selectormethods. Use indices 2 and greater for the arguments
normally passed in a message.

Discussion
This method copies the argument stored at index into the storage pointed to by buffer. The size of buffer
must be large enough to accommodate the argument value.

When the argument value is an object, pass a pointer to the variable (or memory) into which the object
should be placed:

NSArray *anArray;
[invocation getArgument:&anArray atIndex:3];

This method raises NSInvalidArgumentException if index is greater than the actual number of arguments
for the selector.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setArgument:atIndex: (page 775)
– numberOfArguments (page 901) (NSMethodSignature)

Declared In
NSInvocation.h

772 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

getReturnValue:
Gets the receiver's return value.

- (void)getReturnValue:(void *)buffer

Parameters
buffer

An untyped buffer into which the receiver copies its return value. It should be large enough to
accommodate the value. See the discussion below for more information about buffer.

Discussion
Use the NSMethodSignature method methodReturnLength (page 900) to determine the size needed for
buffer:

NSUInteger length = [[myInvocation methodSignature] methodReturnLength];
buffer = (void *)malloc(length);
[invocation getReturnValue:buffer];

When the return value is an object, pass a pointer to the variable (or memory) into which the object should
be placed:

id anObject;
NSArray *anArray;
[invocation1 getReturnValue:&anObject];
[invocation2 getReturnValue:&anArray];

If the NSInvocation object has never been invoked, the result of this method is undefined.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setReturnValue: (page 776)
– methodReturnType (page 901) (NSMethodSignature)

Related Sample Code
CubePuzzle

Declared In
NSInvocation.h

invoke
Sends the receiver’s message (with arguments) to its target and sets the return value.

- (void)invoke

Discussion
You must set the receiver’s target, selector, and argument values before calling this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getReturnValue: (page 773)

Instance Methods 773
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

– setSelector: (page 777)
– setTarget: (page 777)
– setArgument:atIndex: (page 775)

Related Sample Code
CubePuzzle

Declared In
NSInvocation.h

invokeWithTarget:
Sets the receiver’s target, sends the receiver’s message (with arguments) to that target, and sets the return
value.

- (void)invokeWithTarget:(id)anObject

Parameters
anObject

The object to set as the receiver's target.

Discussion
You must set the receiver’s selector and argument values before calling this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getReturnValue: (page 773)
– invoke (page 773)
– setSelector: (page 777)
– setTarget: (page 777)
– setArgument:atIndex: (page 775)

Declared In
NSInvocation.h

methodSignature
Returns the receiver’s method signature.

- (NSMethodSignature *)methodSignature

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSInvocation.h

774 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

retainArguments
If the receiver hasn’t already done so, retains the target and all object arguments of the receiver and copies
all of its C-string arguments.

- (void)retainArguments

Discussion
Before this method is invoked, argumentsRetained (page 771) returns NO; after, it returns YES.

For efficiency, newly created NSInvocations don’t retain or copy their arguments, nor do they retain their
targets or copy C strings. You should instruct an NSInvocation to retain its arguments if you intend to cache
it, since the arguments may otherwise be released before the NSInvocation is invoked. NSTimers always
instruct their NSInvocations to retain their arguments, for example, because there’s usually a delay before
an NSTimer fires.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSInvocation.h

selector
Returns the receiver’s selector, or 0 if it hasn’t been set.

- (SEL)selector

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelector: (page 777)

Declared In
NSInvocation.h

setArgument:atIndex:
Sets an argument of the receiver.

- (void)setArgument:(void *)buffer atIndex:(NSInteger)index

Parameters
buffer

An untyped buffer containing an argument to be assigned to the receiver. See the discussion below
relating to argument values that are objects.

index
An integer specifying the index of the argument.

Indices 0 and 1 indicate the hidden arguments self and _cmd, respectively; you should set these
values directly with the setTarget: (page 777) and setSelector: (page 777) methods. Use indices
2 and greater for the arguments normally passed in a message.

Instance Methods 775
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

Discussion
This method copies the contents of buffer as the argument at index. The number of bytes copied is
determined by the argument size.

When the argument value is an object, pass a pointer to the variable (or memory) from which the object
should be copied:

NSArray *anArray;
[invocation setArgument:&anArray atIndex:3];

This method raises NSInvalidArgumentException if the value of index is greater than the actual number
of arguments for the selector.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getArgument:atIndex: (page 772)
– numberOfArguments (page 901) (NSMethodSignature)

Related Sample Code
CubePuzzle
DeskPictAppDockMenu

Declared In
NSInvocation.h

setReturnValue:
Sets the receiver’s return value.

- (void)setReturnValue:(void *)buffer

Parameters
buffer

An untyped buffer whose contents are copied as the receiver's return value.

Discussion
This value is normally set when you send an invoke (page 773) or invokeWithTarget: (page 774) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getReturnValue: (page 773)
– methodReturnLength (page 900) (NSMethodSignature)
– methodReturnType (page 901) (NSMethodSignature)

Declared In
NSInvocation.h

776 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

setSelector:
Sets the receiver’s selector.

- (void)setSelector:(SEL)selector

Parameters
selector

The selector to assign to the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selector (page 775)

Related Sample Code
CubePuzzle
DeskPictAppDockMenu

Declared In
NSInvocation.h

setTarget:
Sets the receiver’s targe.

- (void)setTarget:(id)anObject

Parameters
anObject

The object to assign to the receiver as target. The target is the receiver of the message sent by
invoke (page 773).

Discussion

Availability
Available in Mac OS X v10.0 and later.

See Also
– target (page 777)
– invokeWithTarget: (page 774)

Related Sample Code
CubePuzzle
DeskPictAppDockMenu

Declared In
NSInvocation.h

target
Returns the receiver’s target, or nil if the receiver has no target.

Instance Methods 777
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

- (id)target

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTarget: (page 777)

Declared In
NSInvocation.h

Constants

Parameter Type Constants
Method argument types. (Deprecated. These constants are used internally by NSInvocation—you should
not use them directly.)

enum _NSObjCValueType {
 NSObjCNoType = 0,
 NSObjCVoidType = 'v',
 NSObjCCharType = 'c',
 NSObjCShortType = 's',
 NSObjCLongType = 'l',
 NSObjCLonglongType = 'q',
 NSObjCFloatType = 'f',
 NSObjCDoubleType = 'd',

 NSObjCBoolType = 'B',

 NSObjCSelectorType = ':',
 NSObjCObjectType = '@',
 NSObjCStructType = '{',
 NSObjCPointerType = '^',
 NSObjCStringType = '*',
 NSObjCArrayType = '[',
 NSObjCUnionType = '(',
 NSObjCBitfield = 'b'
};

Constants
NSObjCNoType

No type information. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCVoidType

The void type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

778 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

NSObjCCharType

The char type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCShortType

The short integer type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCLongType

The long integer type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCLonglongType

The long long integer type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCFloatType

The float type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCDoubleType

The double type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCBoolType

The BOOL type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.2 and later.

Declared in NSInvocation.h.

NSObjCSelectorType

The SEL type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCObjectType

The id type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

Constants 779
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

NSObjCStructType

The struct type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCPointerType

The void* type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCStringType

The char* type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCArrayType

A C-style array of items. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCUnionType

A union union type. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

NSObjCBitfield

A bit field. (Deprecated. Used internally by NSInvocation—do not use it directly)

Available in Mac OS X v10.0 and later.

Declared in NSInvocation.h.

Declared In
NSInvocation.h

780 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 60

NSInvocation Class Reference

Inherits from NSOperation : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.5 and later.

Declared in Foundation/NSOperation.h

Companion guide Threading Programming Guide

Overview

The NSInvocationOperation class is a concrete subclass of NSOperation that manages the execution of
a single encapsulated task specified as an invocation. You can use this class to initiate an operation that
consists of invoking a selector on a specified object. This class implements a non-concurrent operation.

For more information on concurrent versus non-concurrent operations, see NSOperation Class Reference.

Tasks

Initialization

– initWithTarget:selector:object: (page 782)
Returns an NSInvocationOperation object initialized with the specified target and selector.

– initWithInvocation: (page 782)
Returns an NSInvocationOperation object initialized with the specified invocation object.

Getting Attributes

– invocation (page 783)
Returns the receiver’s invocation object.

– result (page 783)
Returns the result of the invocation or method.

Overview 781
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 61

NSInvocationOperation Class Reference

Instance Methods

initWithInvocation:
Returns an NSInvocationOperation object initialized with the specified invocation object.

- (id)initWithInvocation:(NSInvocation *)inv

Parameters
inv

The invocation object identifying the target object, selector, and parameter objects.

Return Value
An initialized NSInvocationOperation object or nil if the object could not be initialized.

Discussion
This method is the designated initializer. The receiver tells the invocation object to retain its arguments.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

initWithTarget:selector:object:
Returns an NSInvocationOperation object initialized with the specified target and selector.

- (id)initWithTarget:(id)target selector:(SEL)sel object:(id)arg

Parameters
target

The object defining the specified selector.

sel
The selector to invoke when running the operation. The selector may take 0 or 1 parameters. If it
accepts a parameter, the type of that parameter should be id.

arg
The parameter object to pass to the selector. If the selector does not take an argument, specify nil.

Return Value
An initialized NSInvocationOperation object or nil if the target object does not implement the specified
selector.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

782 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 61

NSInvocationOperation Class Reference

invocation
Returns the receiver’s invocation object.

- (NSInvocation *)invocation

Return Value
The invocation object identifying the target object, selector, and parameters to use to execute the operation’s
task.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithTarget:selector:object: (page 782)
– initWithInvocation: (page 782)

Declared In
NSOperation.h

result
Returns the result of the invocation or method.

- (id)result

Return Value
The object returned by the method or an NSValue object containing the return value if it is not an object.
If the method or invocation is not finished executing, this method returns nil.

Discussion
If an exception was raised during the execution of the method or invocation, this method raises that exception
again. If the operation was cancelled or the invocation or method has a void return type, calling this method
raises an exception; see “Result Exceptions” (page 783).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

Constants

Result Exceptions
Names of exceptions raised by NSInvocationOperation if there is an error when calling the result (page
783) method.

Constants 783
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 61

NSInvocationOperation Class Reference

extern NSString * const NSInvocationOperationVoidResultException;
extern NSString * const NSInvocationOperationCancelledException;

Constants
NSInvocationOperationVoidResultException

The name of the exception raised if the result method is called for an invocation method with a
void return type.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

NSInvocationOperationCancelledException
The name of the exception raised if the result method is called after the operation was cancelled.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

Declared In
NSOperation.h

784 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 61

NSInvocationOperation Class Reference

Inherits from NSCoder : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.2 and later.

Declared in Foundation/NSKeyedArchiver.h

Companion guide Archives and Serializations Programming Guide for Cocoa

Related sample code CoreRecipes
CustomAtomicStoreSubclass
iSpend
QTQuartzPlayer
Squiggles

Overview

NSKeyedArchiver, a concrete subclass of NSCoder, provides a way to encode objects (and scalar values)
into an architecture-independent format that can be stored in a file. When you archive a set of objects, the
class information and instance variables for each object are written to the archive. NSKeyedArchiver’s
companion class, NSKeyedUnarchiver, decodes the data in an archive and creates a set of objects equivalent
to the original set.

A keyed archive differs from a non-keyed archive in that all the objects and values encoded into the archive
are given names, or keys. When decoding a non-keyed archive, values have to be decoded in the same order
in which they were encoded. When decoding a keyed archive, because values are requested by name, values
can be decoded out of sequence or not at all. Keyed archives, therefore, provide better support for forward
and backward compatibility.

The keys given to encoded values must be unique only within the scope of the current object being encoded.
A keyed archive is hierarchical, so the keys used by object A to encode its instance variables do not conflict
with the keys used by object B, even if A and B are instances of the same class. Within a single object, however,
the keys used by a subclass can conflict with keys used in its superclasses.

An NSArchiver object can write the archive data to a file or to a mutable-data object (an instance of
NSMutableData) that you provide.

Overview 785
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

Tasks

Initializing an NSKeyedArchiver Object

– initForWritingWithMutableData: (page 794)
Returns the receiver, initialized for encoding an archive into a given a mutable-data object.

Archiving Data

+ archivedDataWithRootObject: (page 787)
Returns an NSData object containing the encoded form of the object graph whose root object is
given.

+ archiveRootObject:toFile: (page 788)
Archives an object graph rooted at a given object by encoding it into a data object then atomically
writes the resulting data object to a file at a given path, and returns a Boolean value that indicates
whether the operation was successful.

– finishEncoding (page 794)
Instructs the receiver to construct the final data stream.

– outputFormat (page 795)
Returns the format in which the receiver encodes its data.

– setOutputFormat: (page 796)
Sets the format in which the receiver encodes its data.

Encoding Data and Objects

– archiver:didEncodeObject: (page 797) delegate method
Informs the delegate that a given object has been encoded.

– archiverDidFinish: (page 798) delegate method
Notifies the delegate that encoding has finished.

– archiver:willEncodeObject: (page 797) delegate method
Informs the delegate that object is about to be encoded.

– archiverWillFinish: (page 798) delegate method
Notifies the delegate that encoding is about to finish.

– archiver:willReplaceObject:withObject: (page 798) delegate method
Informs the delegate that one given object is being substituted for another given object.

– encodeBool:forKey: (page 790)
Encodes a given Boolean value and associates it with a given key.

– encodeBytes:length:forKey: (page 791)
Encodes a given number of bytes from a given C array of bytes and associates them with the a given
key.

– encodeConditionalObject:forKey: (page 791)
Encodes a reference to a given object and associates it with a given key only if it has been
unconditionally encoded elsewhere in the archive with encodeObject:forKey: (page 794).

786 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

– encodeDouble:forKey: (page 792)
Encodes a given double value and associates it with a given key.

– encodeFloat:forKey: (page 792)
Encodes a given float value and associates it with a given key.

– encodeInt:forKey: (page 793)
Encodes a given int value and associates it with a given key.

– encodeInt32:forKey: (page 792)
Encodes a given 32-bit integer value and associates it with a given key.

– encodeInt64:forKey: (page 793)
Encodes a given 64-bit integer value and associates it with a given key.

– encodeObject:forKey: (page 794)
Encodes a given object and associates it with a given key.

Managing Delegates

– delegate (page 790)
Returns the receiver’s delegate.

– setDelegate: (page 796)
Sets the delegate for the receiver.

Managing Classes and Class Names

+ setClassName:forClass: (page 789)
Adds a class translation mapping to NSKeyedArchiver whereby instances of of a given class are
encoded with a given class name instead of their real class names.

+ classNameForClass: (page 788)
Returns the class name with which NSKeyedArchiver encodes instances of a given class.

– setClassName:forClass: (page 795)
Adds a class translation mapping to the receiver whereby instances of of a given class are encoded
with a given class name instead of their real class names.

– classNameForClass: (page 789)
Returns the class name with which the receiver encodes instances of a given class.

Class Methods

archivedDataWithRootObject:
Returns an NSData object containing the encoded form of the object graph whose root object is given.

+ (NSData *)archivedDataWithRootObject:(id)rootObject

Class Methods 787
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

Parameters
rootObject

The root of the object graph to archive.

Return Value
An NSData object containing the encoded form of the object graph whose root object is rootObject. The
format of the archive is NSPropertyListBinaryFormat_v1_0.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CoreRecipes
CustomAtomicStoreSubclass
iSpend
QTQuartzPlayer
Squiggles

Declared In
NSKeyedArchiver.h

archiveRootObject:toFile:
Archives an object graph rooted at a given object by encoding it into a data object then atomically writes
the resulting data object to a file at a given path, and returns a Boolean value that indicates whether the
operation was successful.

+ (BOOL)archiveRootObject:(id)rootObject toFile:(NSString *)path

Parameters
rootObject

The root of the object graph to archive.

path
The path of the file in which to write the archive.

Return Value
YES if the operation was successful, otherwise NO.

Discussion
The format of the archive is NSPropertyListBinaryFormat_v1_0.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

classNameForClass:
Returns the class name with which NSKeyedArchiver encodes instances of a given class.

+ (NSString *)classNameForClass:(Class)cls

788 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

Parameters
cls

The class for which to determine the translation mapping.

Return Value
The class name with which NSKeyedArchiver encodes instances of cls. Returns nil if NSKeyedArchiver
does not have a translation mapping for cls.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ setClassName:forClass: (page 789)
– classNameForClass: (page 789)

Declared In
NSKeyedArchiver.h

setClassName:forClass:
Adds a class translation mapping to NSKeyedArchiver whereby instances of of a given class are encoded
with a given class name instead of their real class names.

+ (void)setClassName:(NSString *)codedName forClass:(Class)cls

Parameters
codedName

The name of the class that NSKeyedArchiver uses in place of cls.

cls
The class for which to set up a translation mapping.

Discussion
When encoding, the class’s translation mapping is used only if no translation is found first in an instance’s
separate translation map.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ classNameForClass: (page 788)
– setClassName:forClass: (page 795)

Declared In
NSKeyedArchiver.h

Instance Methods

classNameForClass:
Returns the class name with which the receiver encodes instances of a given class.

Instance Methods 789
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

- (NSString *)classNameForClass:(Class)cls

Parameters
cls

The class for which to determine the translation mapping.

Return Value
The class name with which the receiver encodes instances of cls. Returns nil if the receiver does not have
a translation mapping for cls. The class’s separate translation map is not searched.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setClassName:forClass: (page 795)
+ classNameForClass: (page 788)

Declared In
NSKeyedArchiver.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver's delegate.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setDelegate: (page 796)

Declared In
NSKeyedArchiver.h

encodeBool:forKey:
Encodes a given Boolean value and associates it with a given key.

- (void)encodeBool:(BOOL)boolv forKey:(NSString *)key

Parameters
boolv

The value to encode.

key
The key with which to associate boolv. This value must not be nil.

Availability
Available in Mac OS X v10.2 and later.

790 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

See Also
decodeBoolForKey: (page 807) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeBytes:length:forKey:
Encodes a given number of bytes from a given C array of bytes and associates them with the a given key.

- (void)encodeBytes:(const uint8_t *)bytesp length:(NSUInteger)lenv
forKey:(NSString *)key

Parameters
bytesp

A C array of bytes to encode.

lenv
The number of bytes from bytesp to encode.

key
The key with which to associate the encoded value. This value must not be nil.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeBytesForKey:returnedLength: (page 807) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeConditionalObject:forKey:
Encodes a reference to a given object and associates it with a given key only if it has been unconditionally
encoded elsewhere in the archive with encodeObject:forKey: (page 794).

- (void)encodeConditionalObject:(id)objv forKey:(NSString *)key

Parameters
objv

The object to encode.

key
The key with which to associate the encoded value. This value must not be nil.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

Instance Methods 791
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

encodeDouble:forKey:
Encodes a given double value and associates it with a given key.

- (void)encodeDouble:(double)realv forKey:(NSString *)key

Parameters
realv

The value to encode.

key
The key with which to associate realv. This value must not be nil.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeDoubleForKey: (page 808) (NSKeyedUnarchiver)
decodeFloatForKey: (page 808) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeFloat:forKey:
Encodes a given float value and associates it with a given key.

- (void)encodeFloat:(float)realv forKey:(NSString *)key

Parameters
realv

The value to encode.

key
The key with which to associate realv. This value must not be nil.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeFloatForKey: (page 808) (NSKeyedUnarchiver)
decodeDoubleForKey: (page 808) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeInt32:forKey:
Encodes a given 32-bit integer value and associates it with a given key.

- (void)encodeInt32:(int32_t)intv forKey:(NSString *)key

792 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

Parameters
intv

The value to encode.

key
The key with which to associate intv. This value must not be nil.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeInt32ForKey: (page 809) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeInt64:forKey:
Encodes a given 64-bit integer value and associates it with a given key.

- (void)encodeInt64:(int64_t)intv forKey:(NSString *)key

Parameters
intv

The value to encode.

key
The key with which to associate intv. This value must not be nil.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeInt64ForKey: (page 809) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeInt:forKey:
Encodes a given int value and associates it with a given key.

- (void)encodeInt:(int)intv forKey:(NSString *)key

Parameters
intv

The value to encode.

key
The key with which to associate intv. This value must not be nil.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 793
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

See Also
decodeIntForKey: (page 809) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeObject:forKey:
Encodes a given object and associates it with a given key.

- (void)encodeObject:(id)objv forKey:(NSString *)key

Parameters
objv

The value to encode. This value may be nil.

key
The key with which to associate objv. This value must not be nil.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeObjectForKey: (page 810) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

finishEncoding
Instructs the receiver to construct the final data stream.

- (void)finishEncoding

Discussion
No more values can be encoded after this method is called. You must call this method when finished.

Availability
Available in Mac OS X v10.2 and later.

See Also
– initForWritingWithMutableData: (page 794)

Declared In
NSKeyedArchiver.h

initForWritingWithMutableData:
Returns the receiver, initialized for encoding an archive into a given a mutable-data object.

- (id)initForWritingWithMutableData:(NSMutableData *)data

794 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

Parameters
data

The mutable-data object into which the archive is written.

Return Value
The receiver, initialized for encoding an archive into data.

Discussion
When you finish encoding data, you must invoke finishEncoding (page 794) at which point data is filled.
The format of the receiver is NSPropertyListBinaryFormat_v1_0.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

outputFormat
Returns the format in which the receiver encodes its data.

- (NSPropertyListFormat)outputFormat

Return Value
The format in which the receiver encodes its data. The available formats are
NSPropertyListXMLFormat_v1_0 and NSPropertyListBinaryFormat_v1_0.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setOutputFormat: (page 796)

Declared In
NSKeyedArchiver.h

setClassName:forClass:
Adds a class translation mapping to the receiver whereby instances of of a given class are encoded with a
given class name instead of their real class names.

- (void)setClassName:(NSString *)codedName forClass:(Class)cls

Parameters
codedName

The name of the class that the receiver uses uses in place of cls.

cls
The class for which to set up a translation mapping.

Discussion
When encoding, the receiver’s translation map overrides any translation that may also be present in the
class’s map.

Instance Methods 795
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
– classNameForClass: (page 789)
+ setClassName:forClass: (page 789)

Declared In
NSKeyedArchiver.h

setDelegate:
Sets the delegate for the receiver.

- (void)setDelegate:(id)delegate

Parameters
delegate

The delegate for the receiver.

Availability
Available in Mac OS X v10.2 and later.

See Also
– delegate (page 790)

Declared In
NSKeyedArchiver.h

setOutputFormat:
Sets the format in which the receiver encodes its data.

- (void)setOutputFormat:(NSPropertyListFormat)format

Parameters
format

The format in which the receiver encodes its data. format can be NSPropertyListXMLFormat_v1_0
or NSPropertyListBinaryFormat_v1_0.

Availability
Available in Mac OS X v10.2 and later.

See Also
– outputFormat (page 795)

Declared In
NSKeyedArchiver.h

796 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

Delegate Methods

archiver:didEncodeObject:
Informs the delegate that a given object has been encoded.

- (void)archiver:(NSKeyedArchiver *)archiver didEncodeObject:(id)object

Parameters
archiver

The archiver that sent the message.

object
The object that has been encoded. object may be nil.

Discussion
The delegate might restore some state it had modified previously, or use this opportunity to keep track of
the objects that are encoded.

This method is not called for conditional objects until they are actually encoded (if ever).

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

archiver:willEncodeObject:
Informs the delegate that object is about to be encoded.

- (id)archiver:(NSKeyedArchiver *)archiver willEncodeObject:(id)object

Parameters
archiver

The archiver that sent the message.

object
The object that is about to be encoded. This value is never nil.

Return Value
Either object or a different object to be encoded in its stead. The delegate can also modify the coder state.
If the delegate returns nil, nil is encoded.

Discussion
This method is called after the original object may have replaced itself with
replacementObjectForKeyedArchiver: (page 1191).

This method is called whether or not the object is being encoded conditionally.

This method is not called for an object once a replacement mapping has been set up for that object (either
explicitly, or because the object has previously been encoded). This method is also not called when nil is
about to be encoded.

Delegate Methods 797
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

archiver:willReplaceObject:withObject:
Informs the delegate that one given object is being substituted for another given object.

- (void)archiver:(NSKeyedArchiver *)archiver willReplaceObject:(id)object
withObject:(id)newObject

Parameters
archiver

The archiver that sent the message.

object
The object being replaced in the archive.

newObject
The object replacing object in the archive.

Discussion
This method is called even when the delegate itself is doing, or has done, the substitution. The delegate may
use this method if it is keeping track of the encoded or decoded objects.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

archiverDidFinish:
Notifies the delegate that encoding has finished.

- (void)archiverDidFinish:(NSKeyedArchiver *)archiver

Parameters
archiver

The archiver that sent the message.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

archiverWillFinish:
Notifies the delegate that encoding is about to finish.

- (void)archiverWillFinish:(NSKeyedArchiver *)archiver

798 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

Parameters
archiver

The archiver that sent the message.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

Constants

Keyed Archiving Exception Names
Names of exceptions that are raised by NSKeyedArchiver if there is a problem creating an archive.

extern NSString *NSInvalidArchiveOperationException;

Constants
NSInvalidArchiveOperationException

The name of the exception raised by NSKeyedArchiver if there is a problem creating an archive.

Available in Mac OS X v10.2 and later.

Declared in NSKeyedArchiver.h.

Declared In
NSKeyedArchiver.h

Constants 799
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

800 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 62

NSKeyedArchiver Class Reference

Inherits from NSCoder : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.2 and later.

Declared in Foundation/NSKeyedArchiver.h

Companion guide Archives and Serializations Programming Guide for Cocoa

Related sample code CoreRecipes
CustomAtomicStoreSubclass
iSpend
QTQuartzPlayer
Squiggles

Overview

NSKeyedUnarchiver, a concrete subclass of NSCoder, defines methods for decoding a set of named objects
(and scalar values) from a keyed archive. Such archives are produced by instances of the NSKeyedArchiver
class.

A keyed archive is encoded as a hierarchy of objects. Each object in the hierarchy serves as a namespace into
which other objects are encoded. The objects available for decoding are restricted to those that were encoded
within the immediate scope of a particular object. Objects encoded elsewhere in the hierarchy, whether
higher than, lower than, or parallel to this particular object, are not accessible. In this way, the keys used by
a particular object to encode its instance variables need to be unique only within the scope of that object.

If you invoke one of the decode... methods of this class using a key that does not exist in the archive, a
non-positive value is returned. This value varies by decoded type. For example, if a key does not exist in an
archive, decodeBoolForKey: (page 807) returns NO, decodeIntForKey: (page 809) returns 0, and
decodeObjectForKey: (page 810) returns nil.

NSKeyedUnarchiver supports limited type coercion. A value encoded as any type of integer, whether a
standard int or an explicit 32-bit or 64-bit integer, can be decoded using any of the integer decode methods.
Likewise, a value encoded as a float or double can be decoded as either a float or a double value. If an
encoded value is too large to fit within the coerced type, the decoding method raises an NSRangeException.
Further, when trying to coerce a value to an incompatible type, for example decoding an int as a float,
the decoding method raises an NSInvalidUnarchiveOperationException.

Overview 801
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

Tasks

Initializing a Keyed Unarchiver

– initForReadingWithData: (page 811)
Initializes the receiver for decoding an archive previously encoded by NSKeyedArchiver.

Unarchiving Data

+ unarchiveObjectWithData: (page 804)
Decodes and returns the object graph previously encoded by NSKeyedArchiver and stored in a
given NSData object.

+ unarchiveObjectWithFile: (page 805)
Decodes and returns the object graph previously encoded by NSKeyedArchiver written to the file
at a given path.

Decoding Data

– containsValueForKey: (page 806)
Returns a Boolean value that indicates whether the archive contains a value for a given key within
the current decoding scope.

– decodeBoolForKey: (page 807)
Decodes a Boolean value associated with a given key.

– decodeBytesForKey:returnedLength: (page 807)
Decodes a stream of bytes associated with a given key.

– decodeDoubleForKey: (page 808)
Decodes a double-precision floating-point value associated with a given key.

– decodeFloatForKey: (page 808)
Decodes a single-precision floating-point value associated with a given key.

– decodeIntForKey: (page 809)
Decodes an integer value associated with a given key.

– decodeInt32ForKey: (page 809)
Decodes a 32-bit integer value associated with a given key.

– decodeInt64ForKey: (page 809)
Decodes a 64-bit integer value associated with a given key.

– decodeObjectForKey: (page 810)
Decodes and returns an object associated with a given key.

– finishDecoding (page 811)
Tells the receiver that you are finished decoding objects.

802 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

Managing the Delegate

– delegate (page 810)
Returns the receiver’s delegate.

– setDelegate: (page 812)
Sets the receiver’s delegate.

Managing Class Names

+ setClass:forClassName: (page 804)
Adds a class translation mapping to NSKeyedUnarchiver whereby objects encoded with a given
class name are decoded as instances of a given class instead.

+ classForClassName: (page 803)
Returns the class from which NSKeyedUnarchiver instantiates an encoded object with a given class
name.

– setClass:forClassName: (page 812)
Adds a class translation mapping to the receiver whereby objects encoded with a given class name
are decoded as instances of a given class instead.

– classForClassName: (page 806)
Returns the class from which the receiver instantiates an encoded object with a given class name.

Decoding Objects

– unarchiver:cannotDecodeObjectOfClassName:originalClasses: (page 812) delegate method
Informs the delegate that the class with a given name is not available during decoding.

– unarchiver:didDecodeObject: (page 813) delegate method
Informs the delegate that a given object has been decoded.

– unarchiver:willReplaceObject:withObject: (page 814) delegate method
Informs the delegate that one object is being substituted for another.

Finishing Decoding

– unarchiverDidFinish: (page 814) delegate method
Notifies the delegate that decoding has finished.

– unarchiverWillFinish: (page 814) delegate method
Notifies the delegate that decoding is about to finish.

Class Methods

classForClassName:
Returns the class from which NSKeyedUnarchiver instantiates an encoded object with a given class name.

Class Methods 803
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

+ (Class)classForClassName:(NSString *)codedName

Parameters
codedName

The ostensible name of a class in an archive.

Return Value
The class from which NSKeyedUnarchiver instantiates an object encoded with the class name codedName.
Returns nil if NSKeyedUnarchiver does not have a translation mapping for codedName.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ setClass:forClassName: (page 804)
– classForClassName: (page 806)

Declared In
NSKeyedArchiver.h

setClass:forClassName:
Adds a class translation mapping to NSKeyedUnarchiverwhereby objects encoded with a given class name
are decoded as instances of a given class instead.

+ (void)setClass:(Class)cls forClassName:(NSString *)codedName

Parameters
cls

The class with which to replace instances of the class named codedName.

codedName
The ostensible name of a class in an archive.

Discussion
When decoding, the class’s translation mapping is used only if no translation is found first in an instance’s
separate translation map.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ classForClassName: (page 803)
– setClass:forClassName: (page 812)

Declared In
NSKeyedArchiver.h

unarchiveObjectWithData:
Decodes and returns the object graph previously encoded by NSKeyedArchiver and stored in a given
NSData object.

+ (id)unarchiveObjectWithData:(NSData *)data

804 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

Parameters
data

An object graph previously encoded by NSKeyedArchiver.

Return Value
The object graph previously encoded by NSKeyedArchiver and stored in data.

Discussion
This method raises an NSInvalidArchiveOperationException (page 799) if data is not a valid archive.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CoreRecipes
CustomAtomicStoreSubclass
iSpend
QTQuartzPlayer
Squiggles

Declared In
NSKeyedArchiver.h

unarchiveObjectWithFile:
Decodes and returns the object graph previously encoded by NSKeyedArchiver written to the file at a
given path.

+ (id)unarchiveObjectWithFile:(NSString *)path

Parameters
path

A path to a file that contains an object graph previously encoded by NSKeyedArchiver.

Return Value
The object graph previously encoded by NSKeyedArchiver written to the file path. Returns nil if there is
no file at path.

Discussion
This method raises an NSInvalidArgumentException (page 2307) if the file at path does not contain a valid
archive.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

Class Methods 805
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

Instance Methods

classForClassName:
Returns the class from which the receiver instantiates an encoded object with a given class name.

- (Class)classForClassName:(NSString *)codedName

Parameters
codedName

The name of a class.

Return Value
The class from which the receiver instantiates an encoded object with the class name codedName. Returns
nil if the receiver does not have a translation mapping for codedName.

Discussion
The class’s separate translation map is not searched.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setClass:forClassName: (page 812)
+ classForClassName: (page 803)

Declared In
NSKeyedArchiver.h

containsValueForKey:
Returns a Boolean value that indicates whether the archive contains a value for a given key within the current
decoding scope.

- (BOOL)containsValueForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
YES if the archive contains a value for key within the current decoding scope, otherwise NO.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

806 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

decodeBoolForKey:
Decodes a Boolean value associated with a given key.

- (BOOL)decodeBoolForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The Boolean value associated with the key key. Returns NO if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
– encodeBool:forKey: (page 790) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeBytesForKey:returnedLength:
Decodes a stream of bytes associated with a given key.

- (const uint8_t *)decodeBytesForKey:(NSString *)key returnedLength:(NSUInteger
*)lengthp

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

lengthp
Upon return, contains the number of bytes returned.

Return Value
The stream of bytes associated with the key key. Returns NULL if key does not exist.

Discussion
The returned value is a pointer to a temporary buffer owned by the receiver. The buffer goes away with the
unarchiver, not the containing autorelease pool. You must copy the bytes into your own buffer if you need
the data to persist beyond the life of the receiver.

Availability
Available in Mac OS X v10.2 and later.

See Also
– encodeBytes:length:forKey: (page 791) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

Instance Methods 807
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

decodeDoubleForKey:
Decodes a double-precision floating-point value associated with a given key.

- (double)decodeDoubleForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The double-precision floating-point value associated with the key key. Returns 0.0 if key does not exist.

Discussion
If the archived value was encoded as single-precision, the type is coerced.

Availability
Available in Mac OS X v10.2 and later.

See Also
– encodeDouble:forKey: (page 792) (NSKeyedArchiver)
– encodeFloat:forKey: (page 792) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeFloatForKey:
Decodes a single-precision floating-point value associated with a given key.

- (float)decodeFloatForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The single-precision floating-point value associated with the key key. Returns 0.0 if key does not exist.

Discussion
If the archived value was encoded as double precision, the type is coerced, loosing precision. If the archived
value is too large for single precision, the method raises an NSRangeException.

Availability
Available in Mac OS X v10.2 and later.

See Also
– encodeFloat:forKey: (page 792) (NSKeyedArchiver)
– encodeDouble:forKey: (page 792) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

808 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

decodeInt32ForKey:
Decodes a 32-bit integer value associated with a given key.

- (int32_t)decodeInt32ForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The 32-bit integer value associated with the key key. Returns 0 if key does not exist.

Discussion
If the archived value was encoded with a different size but is still an integer, the type is coerced. If the archived
value is too large to fit into a 32-bit integer, the method raises an NSRangeException.

Availability
Available in Mac OS X v10.2 and later.

See Also
– encodeInt32:forKey: (page 792) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeInt64ForKey:
Decodes a 64-bit integer value associated with a given key.

- (int64_t)decodeInt64ForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The 64-bit integer value associated with the key key. Returns 0 if key does not exist.

Discussion
If the archived value was encoded with a different size but is still an integer, the type is coerced.

Availability
Available in Mac OS X v10.2 and later.

See Also
– encodeInt64:forKey: (page 793) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeIntForKey:
Decodes an integer value associated with a given key.

Instance Methods 809
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

- (int)decodeIntForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The integer value associated with the key key. Returns 0 if key does not exist.

Discussion
If the archived value was encoded with a different size but is still an integer, the type is coerced. If the archived
value is too large to fit into the default size for an integer, the method raises an NSRangeException.

Availability
Available in Mac OS X v10.2 and later.

See Also
– encodeInt:forKey: (page 793) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeObjectForKey:
Decodes and returns an object associated with a given key.

- (id)decodeObjectForKey:(NSString *)key

Parameters
key

A key in the archive within the current decoding scope. key must not be nil.

Return Value
The object associated with the key key. Returns nil if key does not exist, or if the value for key is nil.

Availability
Available in Mac OS X v10.2 and later.

See Also
– encodeObject:forKey: (page 794) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver’s delegate.

810 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
– setDelegate: (page 812)

Declared In
NSKeyedArchiver.h

finishDecoding
Tells the receiver that you are finished decoding objects.

- (void)finishDecoding

Discussion
Invoking this method allows the receiver to notify its delegate and to perform any final operations on the
archive. Once this method is invoked, the receiver cannot decode any further values.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

initForReadingWithData:
Initializes the receiver for decoding an archive previously encoded by NSKeyedArchiver.

- (id)initForReadingWithData:(NSData *)data

Parameters
data

An archive previously encoded by NSKeyedArchiver.

Return Value
An NSKeyedUnarchiver object initialized for for decoding data.

Discussion
When you finish decoding data, you should invoke finishDecoding (page 811).

This method raises an NSInvalidArchiveOperationException (page 799) if data is not a valid archive.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

Instance Methods 811
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

setClass:forClassName:
Adds a class translation mapping to the receiver whereby objects encoded with a given class name are
decoded as instances of a given class instead.

- (void)setClass:(Class)cls forClassName:(NSString *)codedName

Parameters
cls

The class with which to replace instances of the class named codedName.

codedName
The ostensible name of a class in an archive.

Discussion
When decoding, the receiver’s translation map overrides any translation that may also be present in the
class’s map (see setClass:forClassName: (page 804)).

Availability
Available in Mac OS X v10.2 and later.

See Also
– classForClassName: (page 806)
+ setClass:forClassName: (page 804)

Declared In
NSKeyedArchiver.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Parameters
delegate

The delegate for the receiver.

Availability
Available in Mac OS X v10.2 and later.

See Also
– delegate (page 810)

Declared In
NSKeyedArchiver.h

Delegate Methods

unarchiver:cannotDecodeObjectOfClassName:originalClasses:
Informs the delegate that the class with a given name is not available during decoding.

812 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

- (Class)unarchiver:(NSKeyedUnarchiver *)unarchiver
cannotDecodeObjectOfClassName:(NSString *)name originalClasses:(NSArray
*)classNames

Parameters
unarchiver

An unarchiver for which the receiver is the delegate.

name
The name of the class of an object unarchiver is trying to decode.

classNames
An array describing the class hierarchy of the encoded object, where the first element is the class
name string of the encoded object, the second element is the class name of its immediate superclass,
and so on.

Return Value
The class unarchiver should use in place of the class named name.

Discussion
The delegate may, for example, load some code to introduce the class to the runtime and return the class,
or substitute a different class object. If the delegate returns nil, unarchiving aborts and the method raises
an NSInvalidUnarchiveOperationException.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

unarchiver:didDecodeObject:
Informs the delegate that a given object has been decoded.

- (id)unarchiver:(NSKeyedUnarchiver *)unarchiver didDecodeObject:(id)object

Parameters
unarchiver

An unarchiver for which the receiver is the delegate.

object
The object that has been decoded. object may be nil.

Return Value
The object to use in place of object. The delegate can either return object or return a different object to
replace the decoded one. If the delegate returns nil, nil is the result of decoding object.

Discussion
This method is called after object has been sent initWithCoder: (page 2034) and
awakeAfterUsingCoder: (page 1169).

The delegate may use this method to keep track of the decoded objects.

Availability
Available in Mac OS X v10.2 and later.

Delegate Methods 813
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

Declared In
NSKeyedArchiver.h

unarchiver:willReplaceObject:withObject:
Informs the delegate that one object is being substituted for another.

- (void)unarchiver:(NSKeyedUnarchiver *)unarchiver willReplaceObject:(id)object
withObject:(id)newObject

Parameters
unarchiver

An unarchiver for which the receiver is the delegate.

object
An object in the archive.

newObject
The object with which unarchiver will replace object.

Discussion
This method is called even when the delegate itself is doing, or has done, the substitution with
unarchiver:didDecodeObject: (page 813).

The delegate may use this method if it is keeping track of the encoded or decoded objects.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

unarchiverDidFinish:
Notifies the delegate that decoding has finished.

- (void)unarchiverDidFinish:(NSKeyedUnarchiver *)unarchiver

Parameters
unarchiver

An unarchiver for which the receiver is the delegate.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

unarchiverWillFinish:
Notifies the delegate that decoding is about to finish.

- (void)unarchiverWillFinish:(NSKeyedUnarchiver *)unarchiver

814 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

Parameters
unarchiver

An unarchiver for which the receiver is the delegate.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

Constants

Keyed Unarchiving Exception Names
Names of exceptions that are raised by NSKeyedUnarchiver if there is a problem extracting an archive.

extern NSString *NSInvalidUnarchiveOperationException;

Constants
NSInvalidUnarchiveOperationException

The name of the exception raised by NSKeyedArchiver if there is a problem extracting an archive.

Available in Mac OS X v10.2 and later.

Declared in NSKeyedArchiver.h.

Declared In
NSKeyedUnarchiver.h

Constants 815
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

816 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 63

NSKeyedUnarchiver Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.4 and later.

Declared in Foundation/NSLocale.h

Companion guides Locales Programming Guide
Data Formatting Programming Guide for Cocoa

Related sample code Mountains

Overview

Locales encapsulate information about linguistic, cultural, and technological conventions and standards.
Examples of information encapsulated by a locale include the symbol used for the decimal separator in
numbers and the way dates are formatted.

Locales are typically used to provide, format, and interpret information about and according to the user’s
customs and preferences. They are frequently used in conjunction with formatters (see Data Formatting
Programming Guide for Cocoa). Although you can use many locales, you usually use the one associated with
the current user.

NSLocale is “toll-free bridged” with its Core Foundation counterpart, CFLocale. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. Therefore,
in a method where you see an NSLocale * parameter, you can pass a CFLocaleRef, and in a function
where you see a CFLocaleRef parameter, you can pass an NSLocale instance (you cast one type to the
other to suppress compiler warnings). See Interchangeable Data Types for more information on toll-free
bridging.

Overview 817
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

Tasks

Getting and Initializing Locales

– initWithLocaleIdentifier: (page 826)
Initializes the receiver using a given locale identifier.

+ systemLocale (page 824)
Returns the “root”, canonical locale, that contains fixed “backstop” settings that provide values for
otherwise undefined keys.

+ currentLocale (page 821)
Returns the logical locale for the current user.

+ autoupdatingCurrentLocale (page 819)
Returns the current logical locale for the current user.

Getting Information About a Locale

– displayNameForKey:value: (page 825)
Returns the display name for the given value.

– localeIdentifier (page 826)
Returns the identifier for the receiver.

– objectForKey: (page 827)
Returns the object corresponding to the specified key.

Getting System Locale Information

+ availableLocaleIdentifiers (page 819)
Returns an array of NSString objects, each of which identifies a locale available on the system.

+ ISOCountryCodes (page 822)
Returns an array of NSString objects that represents all known legal country codes.

+ ISOCurrencyCodes (page 822)
Returns an array of NSString objects that represents all known legal ISO currency codes.

+ ISOLanguageCodes (page 823)
Returns an array of NSString objects that represents all known legal ISO language codes.

+ commonISOCurrencyCodes (page 820)
Returns an array of common ISO currency codes

Converting Between Identifiers

+ canonicalLocaleIdentifierFromString: (page 820)
Returns the canonical identifier for a given locale identification string.

+ componentsFromLocaleIdentifier: (page 821)
Returns a dictionary that is the result of parsing a locale ID.

818 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

+ localeIdentifierFromComponents: (page 823)
Returns a locale identifier from the components specified in a given dictionary.

Getting Preferred Languages

+ preferredLanguages (page 824)
Returns the user's language preference order as an array of strings.

Class Methods

autoupdatingCurrentLocale
Returns the current logical locale for the current user.

+ (id)autoupdatingCurrentLocale

Return Value
The current logical locale for the current user. The locale is formed from the settings for the current user’s
chosen system locale overlaid with any custom settings the user has specified in System Preferences.

The object always reflects the current state of the current user's locale settings.

Discussion
Settings you get from this locale do change as the user’s settings change (contrast with currentLocale (page
821)).

Note that if you cache values based on the locale or related information, those caches will of course not be
automatically updated by the updating of the locale object. You can recompute caches upon receipt of the
notification (NSCurrentLocaleDidChangeNotification) that gets sent out for locale changes (see
Notification Programming Topics for Cocoa to learn how to register for and receive notifications).

Availability
Available in Mac OS X v10.5 and later.

See Also
+ systemLocale (page 824)
+ currentLocale (page 821)

Related Sample Code
Mountains

Declared In
NSLocale.h

availableLocaleIdentifiers
Returns an array of NSString objects, each of which identifies a locale available on the system.

+ (NSArray *)availableLocaleIdentifiers

Class Methods 819
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

Return Value
An array of NSString objects, each of which identifies a locale available on the system.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ ISOLanguageCodes (page 823)
+ ISOCountryCodes (page 822)
+ ISOCurrencyCodes (page 822)
+ commonISOCurrencyCodes (page 820)

Declared In
NSLocale.h

canonicalLocaleIdentifierFromString:
Returns the canonical identifier for a given locale identification string.

+ (NSString *)canonicalLocaleIdentifierFromString:(NSString *)string

Parameters
string

A locale identification string.

Return Value
The canonical identifier for an the locale identified by string.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ componentsFromLocaleIdentifier: (page 821)
+ localeIdentifierFromComponents: (page 823)

Related Sample Code
Mountains

Declared In
NSLocale.h

commonISOCurrencyCodes
Returns an array of common ISO currency codes

+ (NSArray *)commonISOCurrencyCodes

Return Value
An array of NSString objects that represents common ISO currency codes.

Discussion
Common codes may include, for example, AED, AUD, BZD, DKK, EUR, GBP, JPY, KES, MXN, OMR, STD, USD,
XCD, and ZWD.

820 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
+ availableLocaleIdentifiers (page 819)
+ ISOCountryCodes (page 822)
+ ISOCurrencyCodes (page 822)

Declared In
NSLocale.h

componentsFromLocaleIdentifier:
Returns a dictionary that is the result of parsing a locale ID.

+ (NSDictionary *)componentsFromLocaleIdentifier:(NSString *)string

Parameters
string

A locale ID, consisting of language, script, country, variant, and keyword/value pairs, for example,
"en_US@calendar=japanese".

Return Value
A dictionary that is the result of parsing string as a locale ID. The keys are the constant NSString constants
corresponding to the locale ID components, and the values correspond to constants where available. For
the complete set of dictionary keys, see “Constants” (page 827).

Discussion
For example: the locale ID "en_US@calendar=japanese" yields a dictionary with three entries:
NSLocaleLanguageCode=en,NSLocaleCountryCode=US, andNSLocaleCalendar=NSJapaneseCalendar.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ localeIdentifierFromComponents: (page 823)
+ canonicalLocaleIdentifierFromString: (page 820)

Declared In
NSLocale.h

currentLocale
Returns the logical locale for the current user.

+ (id)currentLocale

Return Value
The logical locale for the current user. The locale is formed from the settings for the current user’s chosen
system locale overlaid with any custom settings the user has specified in System Preferences.

This method may return a retained cached object.

Class Methods 821
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

Discussion
Settings you get from this locale do not change as System Preferences are changed so that your operations
are consistent. Typically you perform some operations on the returned object and then allow it to be disposed
of. Moreover, since the returned object may be cached, you do not need to hold on to it indefinitely. Contrast
with autoupdatingCurrentLocale (page 819).

Availability
Available in Mac OS X v10.4 and later.

See Also
+ systemLocale (page 824)
+ autoupdatingCurrentLocale (page 819)

Declared In
NSLocale.h

ISOCountryCodes
Returns an array of NSString objects that represents all known legal country codes.

+ (NSArray *)ISOCountryCodes

Return Value
An array of NSString objects that represents all known legal country codes.

Discussion
Note that many of country codes do not have any supporting locale data in Mac OS X.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ availableLocaleIdentifiers (page 819)
+ ISOLanguageCodes (page 823)
+ ISOCurrencyCodes (page 822)
+ commonISOCurrencyCodes (page 820)

Declared In
NSLocale.h

ISOCurrencyCodes
Returns an array of NSString objects that represents all known legal ISO currency codes.

+ (NSArray *)ISOCurrencyCodes

Return Value
An array of NSString objects that represents all known legal ISO currency codes.

Discussion
Note that some of the currency codes may not have any supporting locale data in Mac OS X.

822 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
+ availableLocaleIdentifiers (page 819)
+ ISOCountryCodes (page 822)
+ ISOLanguageCodes (page 823)
+ commonISOCurrencyCodes (page 820)

Declared In
NSLocale.h

ISOLanguageCodes
Returns an array of NSString objects that represents all known legal ISO language codes.

+ (NSArray *)ISOLanguageCodes

Return Value
An array of NSString objects that represents all known legal ISO language codes.

Discussion
Note that many of the language codes will not have any supporting locale data in Mac OS X.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ availableLocaleIdentifiers (page 819)
+ ISOCountryCodes (page 822)
+ ISOCurrencyCodes (page 822)
+ commonISOCurrencyCodes (page 820)

Declared In
NSLocale.h

localeIdentifierFromComponents:
Returns a locale identifier from the components specified in a given dictionary.

+ (NSString *)localeIdentifierFromComponents:(NSDictionary *)dict

Parameters
dict

A dictionary containing components that specify a locale. For valid dictionary keys, see
“Constants” (page 827).

Return Value
A locale identifier created from the components specified in dict.

Class Methods 823
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

Discussion
This reverses the actions of componentsFromLocaleIdentifier: (page 821), so for example the dictionary
{NSLocaleLanguageCode="en", NSLocaleCountryCode="US",
NSLocaleCalendar=NSJapaneseCalendar} becomes "en_US@calendar=japanese".

Availability
Available in Mac OS X v10.4 and later.

See Also
+ componentsFromLocaleIdentifier: (page 821)
+ canonicalLocaleIdentifierFromString: (page 820)
+ ISOLanguageCodes (page 823)

Declared In
NSLocale.h

preferredLanguages
Returns the user's language preference order as an array of strings.

+ (NSArray *)preferredLanguages

Return Value
The user's language preference order as an array of NSString objects, each of which is a canonicalized IETF
BCP 47 language identifier.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Mountains

Declared In
NSLocale.h

systemLocale
Returns the “root”, canonical locale, that contains fixed “backstop” settings that provide values for otherwise
undefined keys.

+ (id)systemLocale

Return Value
The “root”, canonical locale, that contains fixed “backstop” settings that provide values for otherwise undefined
keys.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ autoupdatingCurrentLocale (page 819)
+ autoupdatingCurrentLocale (page 819)

824 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

Declared In
NSLocale.h

Instance Methods

displayNameForKey:value:
Returns the display name for the given value.

- (NSString *)displayNameForKey:(id)key value:(id)value

Parameters
key

Specifies which of the locale property keys value is (see “Constants” (page 827)),

value
A value for key.

Return Value
The display name for value.

Discussion
Not all locale property keys have values with display name values.

You can use the NSLocaleIdentifier key to get the name of a locale in the language of another locale,
as illustrated in the following examples. The first uses the fr_FR locale.

NSLocale *frLocale = [[[NSLocale alloc] initWithLocaleIdentifier:@"fr_FR"]
autorelease];
NSString *displayNameString = [frLocale displayNameForKey:NSLocaleIdentifier
value:@"fr_FR"];
NSLog(@"displayNameString fr_FR: %@", displayNameString);
displayNameString = [frLocale displayNameForKey:NSLocaleIdentifier
value:@"en_US"];
NSLog(@"displayNameString en_US: %@", displayNameString);

returns

displayNameString fr_FR: français (France)
displayNameString en_US: anglais (États-Unis)

The following example uses the en_GB locale.

NSLocale *gbLocale = [[[NSLocale alloc] initWithLocaleIdentifier:@"en_GB"]
autorelease];
displayNameString = [gbLocale displayNameForKey:NSLocaleIdentifier
value:@"fr_FR"];
NSLog(@"displayNameString fr_FR: %@", displayNameString);
displayNameString = [gbLocale displayNameForKey:NSLocaleIdentifier
value:@"en_US"];
NSLog(@"displayNameString en_US: %@", displayNameString);

returns

displayNameString fr_FR: French (France)

Instance Methods 825
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

displayNameString en_US: English (United States)

Availability
Available in Mac OS X v10.4 and later.

See Also
– localeIdentifier (page 826)

Declared In
NSLocale.h

initWithLocaleIdentifier:
Initializes the receiver using a given locale identifier.

- (id)initWithLocaleIdentifier:(NSString *)string

Parameters
string

The identifier for the new locale.

Return Value
The initialized locale.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Mountains

Declared In
NSLocale.h

localeIdentifier
Returns the identifier for the receiver.

- (NSString *)localeIdentifier

Return Value
The identifier for the receiver. This may not be the same string that the locale was created with, since NSLocale
may canonicalize it.

Discussion
Equivalent to sending objectForKey: with key NSLocaleIdentifier.

Availability
Available in Mac OS X v10.4 and later.

See Also
– displayNameForKey:value: (page 825)

Related Sample Code
Mountains

826 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

Declared In
NSLocale.h

objectForKey:
Returns the object corresponding to the specified key.

- (id)objectForKey:(id)key

Parameters
key

The key for which to return the corresponding value. For valid values of key, see “Constants” (page
827).

Return Value
The object corresponding to key.

Availability
Available in Mac OS X v10.4 and later.

See Also
– displayNameForKey:value: (page 825)

Declared In
NSLocale.h

Constants

NSLocale Component Keys
The following constants specify keys used to retrieve components of a locale with objectForKey: (page
827).

Constants 827
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

extern NSString * const NSLocaleIdentifier;
extern NSString * const NSLocaleLanguageCode;
extern NSString * const NSLocaleCountryCode;
extern NSString * const NSLocaleScriptCode;
extern NSString * const NSLocaleVariantCode;
extern NSString * const NSLocaleExemplarCharacterSet;
extern NSString * const NSLocaleCalendar;
extern NSString * const NSLocaleCollationIdentifier;
extern NSString * const NSLocaleUsesMetricSystem;
extern NSString * const NSLocaleMeasurementSystem;
extern NSString * const NSLocaleDecimalSeparator;
extern NSString * const NSLocaleGroupingSeparator;
extern NSString * const NSLocaleCurrencySymbol;
extern NSString * const NSLocaleCurrencyCode;

Constants
NSLocaleIdentifier

The key for the locale identifier.

The corresponding value is an NSString object. An example value might be "es_ES_PREEURO".

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleLanguageCode
The key for the locale language code.

The corresponding value is an NSString object. An example value might be "es".

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleCountryCode
The key for the locale country code.

The corresponding value is an NSString object. An example value might be "ES".

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleScriptCode
The key for the locale script code.

The corresponding value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleVariantCode
The key for the locale variant code.

The corresponding value is an NSString object. An example value might be "PREEURO".

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleExemplarCharacterSet
The key for the exemplar character set for the locale.

The corresponding value is an NSCharacterSet object.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

828 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

NSLocaleCalendar
The key for the calendar associated with the locale.

The corresponding value is an NSCalendar object.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleCollationIdentifier
The key for the collation associated with the locale.

The corresponding value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleUsesMetricSystem
The key for the flag that indicates whether the locale uses the metric system.

The corresponding value is a Boolean NSNumber object. If the value is NO, you can typically assume
American measurement units (for example, the statute mile).

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleMeasurementSystem
The key for the measurement system associated with the locale.

The corresponding value is an NSString object containing a description of the measurement system
used by the locale, for example “Metric” or “U.S.”.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleDecimalSeparator
The key for the decimal separator associated with the locale.

The corresponding value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleGroupingSeparator
The key for the numeric grouping separator associated with the locale.

The corresponding value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleCurrencySymbol
The key for the currency symbol associated with the locale.

The corresponding value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSLocaleCurrencyCode
The key for the currency code associated with the locale.

The corresponding value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

Constants 829
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

Declared In
NSLocale.h

NSLocale Calendar Keys
These constants identify NSCalendar instances.

extern NSString * const NSGregorianCalendar;
extern NSString * const NSBuddhistCalendar;
extern NSString * const NSChineseCalendar;
extern NSString * const NSHebrewCalendar;
extern NSString * const NSIslamicCalendar;
extern NSString * const NSIslamicCivilCalendar;
extern NSString * const NSJapaneseCalendar;

Constants
NSGregorianCalendar

Identifier for the Gregorian calendar.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSBuddhistCalendar
Identifier for the Buddhist calendar.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSChineseCalendar
Identifier for the Chinese calendar (unsupported).

Note that the Chinese calendar is not supported in Mac OS X v10.4-10.5. Although you can create a
calendar using this constant, the object will not function correctly.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSHebrewCalendar
Identifier for the Hebrew calendar.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSIslamicCalendar
Identifier for the Islamic calendar.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSIslamicCivilCalendar
Identifier for the Islamic civil calendar.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

NSJapaneseCalendar
Identifier for the Japanese calendar.

Available in Mac OS X v10.4 and later.

Declared in NSLocale.h.

830 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

Discussion
You use these identifiers to initialize a newNSCalendarobject, usinginitWithCalendarIdentifier: (page
207). You get one of these identifiers as the return value from calendarIdentifier (page 202).

Declared In
NSLocale.h

Notifications

NSCurrentLocaleDidChangeNotification
Notification that indicates that the user’s locale changed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLocale.h

Notifications 831
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

832 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 64

NSLocale Class Reference

Inherits from NSObject

Conforms to NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSLock.h

Companion guide Threading Programming Guide

Related sample code Aperture Image Resizer
ExtractMovieAudioToAIFF
QTExtractAndConvertToAIFF
QTQuartzPlayer
SimpleThreads

Overview

An NSLock object is used to coordinate the operation of multiple threads of execution within the same
application. An NSLock object can be used to mediate access to an application’s global data or to protect a
critical section of code, allowing it to run atomically.

Warning: The NSLock class uses POSIX threads to implement its locking behavior. When sending an
unlock message to an NSLock object, you must be sure that message is sent from the same thread that
sent the initial lock message. Unlocking a lock from a different thread can result in undefined behavior.

You should not use this class to implement a recursive lock. Calling the lock method twice on the same
thread will lock up your thread permanently. Use the NSRecursiveLock class to implement recursive locks
instead.

Unlocking a lock that is not locked is considered a programmer error and should be fixed in your code. The
NSLock class reports such errors by printing an error message to the console when they occur.

Overview 833
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLock Class Reference

Adopted Protocols

NSLocking
– lock (page 2091)
– unlock (page 2092)

Tasks

Acquiring a Lock

– lockBeforeDate: (page 834)
Attempts to acquire a lock before a given time and returns a Boolean value indicating whether the
attempt was successful.

– tryLock (page 835)
Attempts to acquire a lock and immediately returns a Boolean value that indicates whether the attempt
was successful.

Naming the Lock

– setName: (page 835)
Assigns a name to the receiver.

– name (page 835)
Returns the name associated with the receiver.

Instance Methods

lockBeforeDate:
Attempts to acquire a lock before a given time and returns a Boolean value indicating whether the attempt
was successful.

- (BOOL)lockBeforeDate:(NSDate *)limit

Parameters
limit

The time limit for attempting to acquire a lock.

Return Value
YES if the lock is acquired before limit, otherwise NO.

Discussion
The thread is blocked until the receiver acquires the lock or limit is reached.

834 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLock Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLock.h

name
Returns the name associated with the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setName: (page 835)

Declared In
NSLock.h

setName:
Assigns a name to the receiver.

- (void)setName:(NSString *)newName

Parameters
newName

The new name for the receiver. This method makes a copy of the specified string.

Discussion
You can use a name string to identify a lock within your code. Cocoa also uses this name as part of any error
descriptions involving the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– name (page 835)

Declared In
NSLock.h

tryLock
Attempts to acquire a lock and immediately returns a Boolean value that indicates whether the attempt was
successful.

Instance Methods 835
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLock Class Reference

- (BOOL)tryLock

Return Value
YES if the lock was acquired, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLock.h

836 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLock Class Reference

Inherits from NSScriptWhoseTest : NSObject

Conforms to NSCoding (NSScriptWhoseTest)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptWhoseTests.h

Companion guide Cocoa Scripting Guide

Overview

Instances of this class perform logical operations of AND, OR, and NOT on Boolean expressions represented
by NSSpecifierTest objects. These operators are equivalent to “&&”, “||”, and “!” in the C language.

For AND and OR operations, an NSLogicalTest object is typically initialized with an array containing two
or more NSSpecifierTest objects. isTrue (page 1438)—inherited from NSScriptWhoseTest—evaluates
the array in a manner appropriate to the logical operation. For NOT operations, an NSLogicalTest object
is initialized with only one NSSpecifierTest object; it simply reverses the Boolean outcome of the
isTrue (page 1438) method.

You don’t normally subclass NSLogicalTest.

Tasks

Initializing a Logical Test

– initAndTestWithTests: (page 838)
Returns anNSLogicalTest object initialized to perform anAND operation with theNSSpecifierTest
objects in a given array.

– initNotTestWithTest: (page 838)
Returns an NSLogicalTest object initialized to perform a NOT operation on the given
NSScriptWhoseTest object.

Overview 837
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLogicalTest Class Reference

– initOrTestWithTests: (page 839)
Returns an NSLogicalTest object initialized to perform an OR operation with the NSSpecifierTest
objects in a given array.

Instance Methods

initAndTestWithTests:
Returns an NSLogicalTest object initialized to perform an AND operation with the NSSpecifierTest
objects in a given array.

- (id)initAndTestWithTests:(NSArray *)subTests

Parameters
subTests

An array of NSSpecifierTest objects representing Boolean expressions.

Return Value
An NSLogicalTest object initialized to perform an AND operation with the NSSpecifierTest objects in
subTests.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

initNotTestWithTest:
Returns an NSLogicalTest object initialized to perform a NOT operation on the given NSScriptWhoseTest
object.

- (id)initNotTestWithTest:(NSScriptWhoseTest *)subTest

Parameters
subTest

The NSScriptWhoseTest object to invert.

Return Value
An NSLogicalTest object initialized to perform a NOT operation on subTest.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

838 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLogicalTest Class Reference

initOrTestWithTests:
Returns an NSLogicalTest object initialized to perform an OR operation with the NSSpecifierTest objects
in a given array.

- (id)initOrTestWithTests:(NSArray *)subTests

Parameters
subTests

An array of NSSpecifierTest objects representing Boolean expressions.

Return Value
An NSLogicalTest object initialized to perform an OR operation with the NSSpecifierTest objects in
subTests.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

Instance Methods 839
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLogicalTest Class Reference

840 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLogicalTest Class Reference

Inherits from NSPortNameServer : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSPortNameServer.h

Companion guide Distributed Objects Programming Topics

Overview

This port name server takes and returns instances of NSMachPort.

Port removal functionality is not supported in NSMachBootstrapServer; if you want to cancel a service,
you have to destroy the port (invalidate the NSMachPort given to registerPort:name: (page 843)).

Tasks

Getting the Server Object

+ sharedInstance (page 842)
Returns the shared instance of the bootstrap server.

Looking Up Ports

– portForName: (page 842)
Looks up and returns the port registered under the specified name on the local host.

– portForName:host: (page 843)
Looks up and returns the port registered under the specified name.

– servicePortWithName: (page 843)
Looks up and returns the port for the vended service that is registered under the specified name.

Overview 841
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 67

NSMachBootstrapServer Class Reference

Registering Ports

– registerPort:name: (page 843)
Registers a port with a specified name.

Class Methods

sharedInstance
Returns the shared instance of the bootstrap server.

+ (id)sharedInstance

Return Value
The shared instance of NSMachBootstrapServerwith which you register and look up NSMachPort objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

Instance Methods

portForName:
Looks up and returns the port registered under the specified name on the local host.

- (NSPort *)portForName:(NSString *)portName

Parameters
portName

The name of the desired port.

Return Value
The port associated with portName on the local host. Returns nil if no such port exists.

Availability
Available in Mac OS X v10.0 and later.

See Also
– portForName:host: (page 843)

Declared In
NSPortNameServer.h

842 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 67

NSMachBootstrapServer Class Reference

portForName:host:
Looks up and returns the port registered under the specified name.

- (NSPort *)portForName:(NSString *)portName host:(NSString *)hostName

Parameters
portName

The name of the desired port.

hostName
Because NSMachBootstrapServer is a local-only server; hostName must be the empty string or
nil.

Return Value
The port associated with portName on the local host. Returns nil if no such port exists.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

registerPort:name:
Registers a port with a specified name.

- (BOOL)registerPort:(NSPort *)port name:(NSString *)portName

Parameters
port

The port object to register with the bootstrap server.

portName
The name to associate with port.

Return Value
YES if the registration succeeded, NO otherwise.

Special Considerations

Once registered, a port cannot be unregistered; instead, you need to invalidate the port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

servicePortWithName:
Looks up and returns the port for the vended service that is registered under the specified name.

- (NSPort *)servicePortWithName:(NSString *)name

Instance Methods 843
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 67

NSMachBootstrapServer Class Reference

Parameters
name

The name of the vended service.

Return Value
The port associated with name. Returns nil if no such port exists.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPortNameServer.h

844 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 67

NSMachBootstrapServer Class Reference

Inherits from NSPort : NSObject

Conforms to NSCoding (NSPort)
NSCopying (NSPort)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSPort.h

Companion guide Distributed Objects Programming Topics

Overview

NSMachPort is a subclass of NSPort that can be used as an endpoint for distributed object connections (or
raw messaging). NSMachPort is an object wrapper for a Mach port, the fundamental communication port
in Mac OS X. NSMachPort allows for local (on the same machine) communication only. A companion class,
NSSocketPort, allows for both local and remote distributed object communication, but may be more
expensive than NSMachPort for the local case.

To use NSMachPort effectively, you should be familiar with Mach ports, port access rights, and Mach messages.
See the Mach OS documentation for more information.

Note: NSMachPort conforms to the NSCoding protocol, but only supports coding by an NSPortCoder.
NSPort and its subclasses do not support archiving.

Tasks

Creating and Initializing

+ portWithMachPort: (page 846)
Creates and returns a port object configured with the given Mach port.

+ portWithMachPort:options: (page 847)
Creates and returns a port object configured with the specified options and the given Mach port.

Overview 845
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMachPort Class Reference

– initWithMachPort: (page 847)
Initializes a newly allocated NSMachPort object with a given Mach port.

– initWithMachPort:options: (page 848)
Initializes a newly allocated NSMachPort object with a given Mach port and the specified options.

Getting the Mach Port

– machPort (page 848)
Returns as an int the Mach port used by the receiver.

Scheduling the Port on a Run Loop

– removeFromRunLoop:forMode: (page 848)
Removes the receiver from the run loop mode mode of runLoop.

– scheduleInRunLoop:forMode: (page 849)
Schedules the receiver into the run loop mode mode of runLoop.

Handling Mach Messages

– handleMachMessage: (page 849) delegate method
Process an incoming Mach message.

Class Methods

portWithMachPort:
Creates and returns a port object configured with the given Mach port.

+ (NSPort *)portWithMachPort:(uint32_t)machPort

Parameters
machPort

The Mach port for the new port. This parameter should originally be of type mach_port_t.

Return Value
An NSMachPort object that uses machPort to send or receive messages.

Discussion
Creates the port object if necessary. Depending on the access rights associated with machPort, the new
port object may be usable only for sending messages.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

846 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMachPort Class Reference

portWithMachPort:options:
Creates and returns a port object configured with the specified options and the given Mach port.

+ (NSPort *)portWithMachPort:(uint32_t)machPort options:(NSUInteger)options

Parameters
machPort

The Mach port for the new port. This parameter should originally be of type mach_port_t.

options
Specifies options for what to do with the underlying port rights when the NSMachPort object is
invalidated or destroyed. For a list of constants, see “Mach Port Rights” (page 850).

Return Value
An NSMachPort object that uses machPort to send or receive messages.

Discussion
Creates the port object if necessary. Depending on the access rights associated with machPort, the new
port object may be usable only for sending messages.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPort.h

Instance Methods

initWithMachPort:
Initializes a newly allocated NSMachPort object with a given Mach port.

- (id)initWithMachPort:(uint32_t)machPort

Parameters
machPort

The Mach port for the new port. This parameter should originally be of type mach_port_t.

Return Value
Returns an initialized NSMachPort object that uses machPort to send or receive messages. The returned
object might be different than the original receiver

Discussion
Depending on the access rights for machPort, the new port may be able to only send messages. If a port
with machPort already exists, this method deallocates the receiver, then retains and returns the existing
port.

This method is the designated initializer for the NSMachPort class.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 847
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMachPort Class Reference

Declared In
NSPort.h

initWithMachPort:options:
Initializes a newly allocated NSMachPort object with a given Mach port and the specified options.

- (id)initWithMachPort:(uint32_t)machPort options:(NSUInteger)options

Parameters
machPort

The Mach port for the new port. This parameter should originally be of type mach_port_t.

options
Specifies options for what to do with the underlying port rights when the NSMachPort object is
invalidated or destroyed. For a list of constants, see “Mach Port Rights” (page 850).

Return Value
Returns an initialized NSMachPort object that uses machPort to send or receive messages. The returned
object might be different than the original receiver

Discussion
Depending on the access rights for machPort, the new port may be able to only send messages. If a port
with machPort already exists, this method deallocates the receiver, then retains and returns the existing
port.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPort.h

machPort
Returns as an int the Mach port used by the receiver.

- (uint32_t)machPort

Return Value
The Mach port used by the receiver. Cast this value to a mach_port_t when using it with Mach system calls.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

removeFromRunLoop:forMode:
Removes the receiver from the run loop mode mode of runLoop.

- (void)removeFromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

848 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMachPort Class Reference

Parameters
runLoop

The run loop from which to remove the receiver.

mode
The run loop mode from which to remove the receiver.

Discussion
When the receiver is removed, the run loop stops monitoring the Mach port for incoming messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scheduleInRunLoop:forMode: (page 849)

Declared In
NSPort.h

scheduleInRunLoop:forMode:
Schedules the receiver into the run loop mode mode of runLoop.

- (void)scheduleInRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

Parameters
runLoop

The run loop to which to add the receiver.

mode
The run loop mode in which to add the receiver.

Discussion
When the receiver is scheduled, the run loop monitors the mach port for incoming messages and, when a
message arrives, invokes the delegate method handleMachMessage: (page 849).

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeFromRunLoop:forMode: (page 848)

Declared In
NSPort.h

Delegate Methods

handleMachMessage:
Process an incoming Mach message.

- (void)handleMachMessage:(void *)machMessage

Delegate Methods 849
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMachPort Class Reference

Parameters
machMessage

A pointer to a Mach message, cast as a pointer to void.

Discussion
The delegate should interpret this data as a pointer to a Mach message beginning with a msg_header_t
structure and should handle the message appropriately.

The delegate should implement only one of handleMachMessage: and handlePortMessage: (page 1255).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

Constants

Mach Port Rights
Used to remove access rights to a mach port when the NSMachPort object is invalidated or destroyed.

enum {
 NSMachPortDeallocateNone = 0,
 NSMachPortDeallocateSendRight = (1 << 0),
 NSMachPortDeallocateReceiveRight = (1 << 1)
};

Constants
NSMachPortDeallocateNone

Do not remove any send or receive rights.

Available in Mac OS X v10.5 and later.

Declared in NSPort.h.

NSMachPortDeallocateSendRight
Deallocate a send right when the NSMachPort object is invalidated or destroyed.

Available in Mac OS X v10.5 and later.

Declared in NSPort.h.

NSMachPortDeallocateReceiveRight
Remove a receive right when the NSMachPort object is invalidated or destroyed.

Available in Mac OS X v10.5 and later.

Declared in NSPort.h.

Declared In
NSPort.h

850 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMachPort Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSMapTable.h

Availability Available in Mac OS X v10.5 and later.

Companion guides Garbage Collection Programming Guide
Collections Programming Topics for Cocoa

Overview

NSMapTable is a mutable collection modeled after NSDictionary but provides different options, in particular
to support weak relationships in a garbage-collected environment.

NSMapTable is modeled after NSDictionary but offers different behaviors:

 ■ It can hold weak references to its keys and/or values.

Keys and/or values held "weakly" in a manner that entries are removed when one of the objects is
collected under garbage collection.

If you are not using garbage collection, you must explicitly remove entries as you would from a dictionary.
In addition to being held weakly, keys or values may be copied on input or may use pointer identity for
equality and hashing.

 ■ It can contain arbitrary pointers (its contents are not constrained to being objects).

You can configure an NSMapTable instance to operate on arbitrary pointers and not just objects, although
typically you are encouraged to use the C function API for void * pointers. The object-based API (such
as setObject:forKey: (page 859)) will not work for non-object pointers without type-casting.

To configure an NSMapTable instance for pointer use, you can: create or initialize it using
mapTableWithKeyOptions:valueOptions: (page 853) or
initWithKeyOptions:valueOptions:capacity: (page 856) and the appropriate
NSPointerFunctionsOptions (page 1244) options; or initialize it with
initWithKeyPointerFunctions:valuePointerFunctions:capacity: (page 856) and appropriate
instances of NSPointerFunctions. Note that only the options listed in “Personality Options” (page

Overview 851
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

860) guarantee that the rest of the API will work correctly—including copying, archiving, and fast enumeration.
If you use other NSPointerFunctions options, the map table may not work correctly, or may not even be
initialized correctly.

Tasks

Creating and Initializing a Map Table

– initWithKeyOptions:valueOptions:capacity: (page 856)
Returns a map table, initialized with the given options.

+ mapTableWithKeyOptions:valueOptions: (page 853)
Returns a new map table, initialized with the given options

– initWithKeyPointerFunctions:valuePointerFunctions:capacity: (page 856)
Returns a map table, initialized with the given functions.

+ mapTableWithStrongToStrongObjects (page 854)
Returns a new map table object which has strong references to the keys and values.

+ mapTableWithWeakToStrongObjects (page 854)
Returns a new map table object which has weak references to the keys and strong references to the
values.

+ mapTableWithStrongToWeakObjects (page 854)
Returns a new map table object which has strong references to the keys and weak references to the
values.

+ mapTableWithWeakToWeakObjects (page 855)
Returns a new map table object which has weak references to the keys and values.

Accessing Content

– objectForKey: (page 858)
Returns a the value associated with a given key.

– keyEnumerator (page 857)
Returns an enumerator object that lets you access each key in the receiver.

– objectEnumerator (page 858)
Returns an enumerator object that lets you access each value in the receiver.

– count (page 855)
Returns the number of key-value pairs in the receiver.

Manipulating Content

– setObject:forKey: (page 859)
Adds a given key-value pair to the receiver.

– removeObjectForKey: (page 859)
Removes a given key and its associated value from the receiver.

852 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

– removeAllObjects (page 859)
Empties the receiver of its entries.

Creating a Dictionary Representation

– dictionaryRepresentation (page 855)
Returns a dictionary representation of the receiver.

Accessing Pointer Functions

– keyPointerFunctions (page 858)
Returns the pointer functions the receiver uses to manage keys.

– valuePointerFunctions (page 860)
Returns the pointer functions the receiver uses to manage values.

Class Methods

mapTableWithKeyOptions:valueOptions:
Returns a new map table, initialized with the given options

+ (id)mapTableWithKeyOptions:(NSPointerFunctionsOptions)keyOptions
valueOptions:(NSPointerFunctionsOptions)valueOptions

Parameters
keys

A bit field that specifies the options for the keys in the map table.

Important: Not all values of NSPointerFunctionsOptions (page 1244) are valid for NSMapTable. For values
that are guaranteed to work correctly, see “Personality Options” (page 860).

values
A bit field that specifies the options for the values in the map table.

Important: Not all values of NSPointerFunctionsOptions (page 1244) are valid for NSMapTable. For values
that are guaranteed to work correctly, see “Personality Options” (page 860).

Return Value
A new map table, initialized with the given options.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithKeyOptions:valueOptions:capacity: (page 856)

Class Methods 853
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

– initWithKeyPointerFunctions:valuePointerFunctions:capacity: (page 856)

Declared In
NSMapTable.h

mapTableWithStrongToStrongObjects
Returns a new map table object which has strong references to the keys and values.

+ (id)mapTableWithStrongToStrongObjects

Return Value
A new map table object which has strong references to the keys and values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

mapTableWithStrongToWeakObjects
Returns a new map table object which has strong references to the keys and weak references to the values.

+ (id)mapTableWithStrongToWeakObjects

Return Value
A new map table object which has strong references to the keys and weak references to the values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

mapTableWithWeakToStrongObjects
Returns a new map table object which has weak references to the keys and strong references to the values.

+ (id)mapTableWithWeakToStrongObjects

Return Value
A new map table object which has weak references to the keys and strong references to the values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

854 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

mapTableWithWeakToWeakObjects
Returns a new map table object which has weak references to the keys and values.

+ (id)mapTableWithWeakToWeakObjects

Return Value
A new map table object which has weak references to the keys and values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

Instance Methods

count
Returns the number of key-value pairs in the receiver.

- (NSUInteger)count

Return Value
The number of key-value pairs in the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

dictionaryRepresentation
Returns a dictionary representation of the receiver.

- (NSDictionary *)dictionaryRepresentation

Return Value
A dictionary representation of the receiver.

Discussion
The receiver’s contents must be objects.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

Instance Methods 855
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

initWithKeyOptions:valueOptions:capacity:
Returns a map table, initialized with the given options.

- (id)initWithKeyOptions:(NSPointerFunctionsOptions)keyOptions
valueOptions:(NSPointerFunctionsOptions)valueOptions
capacity:(NSUInteger)initialCapacity

Parameters
keys

A bit field that specifies the options for the keys in the map table.

Important: Not all values of NSPointerFunctionsOptions (page 1244) are valid for NSMapTable. For values
that are guaranteed to work correctly, see “Personality Options” (page 860).

values
A bit field that specifies the options for the values in the map table.

Important: Not all values of NSPointerFunctionsOptions (page 1244) are valid for NSMapTable. For values
that are guaranteed to work correctly, see “Personality Options” (page 860).

capacity
The initial capacity of the receiver. This is just a hint; the map table may subsequently grow and shrink
as required.

Return Value
A map table initialized using the given options.

Discussion
values must contain entries at all the indexes specified in keys.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ mapTableWithKeyOptions:valueOptions: (page 853)
– initWithKeyPointerFunctions:valuePointerFunctions:capacity: (page 856)

Declared In
NSMapTable.h

initWithKeyPointerFunctions:valuePointerFunctions:capacity:
Returns a map table, initialized with the given functions.

- (id)initWithKeyPointerFunctions:(NSPointerFunctions *)keyFunctions
valuePointerFunctions:(NSPointerFunctions *)valueFunctions
capacity:(NSUInteger)initialCapacity

856 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

Parameters
keyFunctions

The functions the receiver uses to manage keys.

Important: Not all values of NSPointerFunctionsOptions (page 1244) are valid for NSMapTable. For values
that are guaranteed to work correctly, see “Personality Options” (page 860).

valueFunctions
The functions the receiver uses to manage values.

Important: Not all values of NSPointerFunctionsOptions (page 1244) are valid for NSMapTable. For values
that are guaranteed to work correctly, see “Personality Options” (page 860).

initialCapacity
The initial capacity of the receiver. This is just a hint; the map table may subsequently grow and shrink
as required.

Return Value
A map table, initialized with the given functions.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

keyEnumerator
Returns an enumerator object that lets you access each key in the receiver.

- (NSEnumerator *)keyEnumerator

Return Value
An enumerator object that lets you access each key in the receiver.

Discussion
The following code fragment illustrates how you might use the method.

NSEnumerator *enumerator = [myMapTable keyEnumerator];
id value;

while ((value = [enumerator nextObject])) {
 /* code that acts on the map table's keys */
}

See also NSFastEnumeration.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

Instance Methods 857
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

keyPointerFunctions
Returns the pointer functions the receiver uses to manage keys.

- (NSPointerFunctions *)keyPointerFunctions

Return Value
The pointer functions the receiver uses to manage keys.

Availability
Available in Mac OS X v10.5 and later.

See Also
– valuePointerFunctions (page 860)

Declared In
NSMapTable.h

objectEnumerator
Returns an enumerator object that lets you access each value in the receiver.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each value in the receiver.

Discussion
The following code fragment illustrates how you might use the method.

NSEnumerator *enumerator = [myMapTable objectEnumerator];
id value;

while ((value = [enumerator nextObject])) {
 /* code that acts on the map table's values */
}

See also NSFastEnumeration.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

objectForKey:
Returns a the value associated with a given key.

- (id)objectForKey:(id)aKey

Parameters
aKey

The key for which to return the corresponding value.

858 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

Return Value
The value associated with aKey, or nil if no value is associated with aKey.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

removeAllObjects
Empties the receiver of its entries.

- (void)removeAllObjects

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

removeObjectForKey:
Removes a given key and its associated value from the receiver.

- (void)removeObjectForKey:(id)aKey

Parameters
aKey

The key to remove.

Discussion
Does nothing if aKey does not exist.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

setObject:forKey:
Adds a given key-value pair to the receiver.

- (void)setObject:(id)anObject
forKey:(id)aKey

Parameters
anObject

The value for aKey. This value must not be nil.

aKey
The key for anObject. This value must not be nil.

Instance Methods 859
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMapTable.h

valuePointerFunctions
Returns the pointer functions the receiver uses to manage values.

- (NSPointerFunctions *)valuePointerFunctions

Return Value
The pointer functions the receiver uses to manage values.

Availability
Available in Mac OS X v10.5 and later.

See Also
– keyPointerFunctions (page 858)

Declared In
NSMapTable.h

Constants

Personality Options
Constants used as components in a bitfield to specify the behavior of elements (keys and values) in an
NSMapTable object.

enum {
 NSMapTableStrongMemory = 0,
 NSMapTableZeroingWeakMemory = NSPointerFunctionsZeroingWeakMemory,
 NSMapTableCopyIn = NSPointerFunctionsCopyIn,
 NSMapTableObjectPointerPersonality = NSPointerFunctionsObjectPointerPersonality
};

Constants
NSMapTableStrongMemory

Specifies a strong reference from the map table to its contents.

Equal to NSPointerFunctionsStrongMemory.

Available in Mac OS X v10.5 and later.

Declared in NSMapTable.h.

860 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

NSMapTableZeroingWeakMemory
Specifies a zeroing weak reference from the map table to its contents.

Equal to NSPointerFunctionsZeroingWeakMemory.

Available in Mac OS X v10.5 and later.

Declared in NSMapTable.h.

NSMapTableCopyIn
Use the memory acquire function to allocate and copy items on input (see acquireFunction
[NSPointerFunctions]).

Equal to NSPointerFunctionsCopyIn.

Available in Mac OS X v10.5 and later.

Declared in NSMapTable.h.

NSMapTableObjectPointerPersonality
Use shifted pointer hash and direct equality, object description.

Equal to NSPointerFunctionsObjectPointerPersonality.

Available in Mac OS X v10.5 and later.

Declared in NSMapTable.h.

Declared In
NSMapTable.h

Constants 861
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

862 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMapTable Class Reference

Inherits from NSPort : NSObject

Conforms to NSCoding (NSPort)
NSCopying (NSPort)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSPort.h

Companion guide Distributed Objects Programming Topics

Overview

NSMessagePort is a subclass of NSPort that can be used as an endpoint for distributed object connections
(or raw messaging).NSMessagePort allows for local (on the same machine) communication only. A companion
class, NSSocketPort, allows for both local and remote communication, but may be more expensive than
NSMessagePort for the local case.

NSMessagePort defines no additional methods over those already defined by NSPort.

Note: NSMessagePort conforms to the NSCoding protocol, but only supports coding by an NSPortCoder
object. NSPort and its subclasses do not support archiving.

Overview 863
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMessagePort Class Reference

864 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMessagePort Class Reference

Inherits from NSPortNameServer : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSPortNameServer.h

Companion guide Distributed Objects Programming Topics

Overview

This port name server takes and returns instances of NSMessagePort. Port removal functionality is not
supported in NSMessagePortNameServer; if you want to cancel a service, you have to destroy the port
(invalidate the NSMessagePort object given to registerPort:name: (page 1271)).

Tasks

Getting the Server Object

+ sharedInstance (page 866)
Returns the singleton instance of NSMessagePortNameServer.

Getting Ports By Name

– portForName: (page 866)
Returns the NSPort object registered under a given name on the local host.

– portForName:host: (page 866)
Returns the NSPort object registered under a given name on the local host.

Overview 865
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMessagePortNameServer Class Reference

Class Methods

sharedInstance
Returns the singleton instance of NSMessagePortNameServer.

+ (id)sharedInstance

Return Value
The singleton instance of NSMessagePortNameServerwith which you register and look up NSMessagePort
objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

Instance Methods

portForName:
Returns the NSPort object registered under a given name on the local host.

- (NSPort *)portForName:(NSString *)portName

Parameters
portName

The port name.

Return Value
The NSPort registered under portName on the local host Returns nil if a port named portName does not
exist.

Availability
Available in Mac OS X v10.0 and later.

See Also
– portForName:host: (page 866)

Declared In
NSPortNameServer.h

portForName:host:
Returns the NSPort object registered under a given name on the local host.

- (NSPort *)portForName:(NSString *)portName host:(NSString *)hostName

866 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMessagePortNameServer Class Reference

Parameters
portName

The port name.

hostName
The host name. Because NSMessagePortNameServer is a local-only server, hostName must be the
empty string or nil.

Return Value
The NSPort object registered under a given name on the local host. Returns nil if a port named portName
does not exist.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

Instance Methods 867
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMessagePortNameServer Class Reference

868 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMessagePortNameServer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSMetadata.h

Availability Available in Mac OS X v10.4 and later.

Companion guides Spotlight Query Programming Guide
Spotlight Metadata Attributes Reference

Related sample code CoreRecipes
iSpend
PredicateEditorSample

Overview

The NSMetadataItem class represents the metadata associated with a file, providing a simple interface to
retrieve the available attribute names and values.

Adopted Protocols

NSCopying
copyWithZone: (page 2042)

Tasks

Getting Item Attributes

– attributes (page 870)
Returns an array containing the attribute names of the receiver’s values.

– valueForAttribute: (page 870)
Returns the receiver’s metadata attribute name specified by a given key.

Overview 869
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMetadataItem Class Reference

– valuesForAttributes: (page 870)
Returns a dictionary containing the key-value pairs for the attribute names specified by a given array
of keys.

Instance Methods

attributes
Returns an array containing the attribute names of the receiver’s values.

- (NSArray *)attributes

Return Value
An array containing the attribute names of the receiver’s values.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

valueForAttribute:
Returns the receiver’s metadata attribute name specified by a given key.

- (id)valueForAttribute:(NSString *)key

Parameters
key

The name of a metadata attribute.

Return Value
The receiver’s metadata attribute name specified by key.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreRecipes
PredicateEditorSample

Declared In
NSMetadata.h

valuesForAttributes:
Returns a dictionary containing the key-value pairs for the attribute names specified by a given array of keys.

- (NSDictionary *)valuesForAttributes:(NSArray *)keys

870 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMetadataItem Class Reference

Parameters
keys

An array containing NSString objects that specify the names of a metadata attributes.

Return Value
A dictionary containing the key-value pairs for the attribute names specified by keys.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

Instance Methods 871
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMetadataItem Class Reference

872 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMetadataItem Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSMetadata.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Spotlight Query Programming Guide

Related sample code CoreRecipes
iSpend
PredicateEditorSample
SpotlightFortunes

Overview

The NSMetadataQuery class encapsulates the functionality provided by the MDQuery opaque type for
querying the Spotlight metadata.

NSMetadataQuery objects provide metadata query results in several ways:

 ■ As individual attribute values for requested attributes.

 ■ As value lists that contain the distinct values for given attributes in the query results.

 ■ A result array proxy, containing all the query results. This is suitable for use with Cocoa bindings.

 ■ As a hierarchical collection of results, grouping together items with the same values for specified grouping
attributes. This is also suitable for use with Cocoa bindings.

Queries have two phases: the initial gathering phase that collects all currently matching results and a second
live-update phase.

By default the receiver has no limitation on its search scope. Use setSearchScopes: (page 883) to customize.

By default, notification of updated results occurs at 1.0 seconds. Use
setNotificationBatchingInterval: (page 882) to customize.

You must set a predicate with the setPredicate: (page 883) method before starting a query.

Overview 873
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

Tasks

Creating Metadata Queries

– init (page 878)
Initializes an allocated NSMetadataQuery object.

Configuring Queries

– searchScopes (page 881)
Returns an array containing the receiver’s search scopes.

– setSearchScopes: (page 883)
Resctrict the search scope of the receiver.

– predicate (page 879)
Returns the predicate the receiver uses to filter query results.

– setPredicate: (page 883)
Sets the predicate used by the receiver to filter the query results.

– sortDescriptors (page 884)
Returns an array containing the receiver’s sort descriptors.

– setSortDescriptors: (page 883)
Sets the sort descriptors to be used by the receiver.

– valueListAttributes (page 885)
Returns an array containing the value list attributes the receiver generates.

– setValueListAttributes: (page 884)
Sets the value list attributes for the receiver to the specific attribute names.

– groupingAttributes (page 877)
Returns the receiver’s grouping attributes.

– setGroupingAttributes: (page 882)
Sets the receiver’s grouping attributes to specific attribute names.

– notificationBatchingInterval (page 879)
Returns the interval that the receiver provides notification of updated query results.

– setNotificationBatchingInterval: (page 882)
Sets the interval between update notifications sent by the receiver.

– delegate (page 875)
Returns the receiver’s delegate.

– setDelegate: (page 881)
Sets the receiver’s delegate

Running Queries

– isStarted (page 878)
Returns a Boolean value that indicates whether the receiver has started the query.

874 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

– startQuery (page 885)
Attempts to start the query.

– isGathering (page 878)
Returns a Boolean value that indicates whether the receiver is in the initial gathering phase of the
query.

– isStopped (page 879)
Returns a Boolean value that indicates whether the receiver has stopped the query.

– stopQuery (page 885)
Stops the receiver’s current query from gathering any further results.

Getting Query Results

– resultCount (page 880)
Returns the number of results returned by the receiver.

– resultAtIndex: (page 880)
Returns the query result at a specific index.

– results (page 880)
Returns an array containing the result objects for the receiver.

– groupedResults (page 876)
Returns an array containing hierarchical groups of query results based on the receiver’s grouping
attributes.

– indexOfResult: (page 877)
Returns the index of a query result object in the receiver’s results array.

– valueLists (page 886)
Returns a dictionary containing the value lists generated by the receiver.

– metadataQuery:replacementObjectForResultObject: (page 887) delegate method
Implemented by the delegate to return a different object for a specific query result object.

– valueOfAttribute:forResultAtIndex: (page 886)
Returns the value for the attribute name attrName at the index in the results specified by idx.

– metadataQuery:replacementValueForAttribute:value: (page 887) delegate method
Implemented by the delegate to return a different value for a specific attribute.

– enableUpdates (page 876)
Enables updates to the query results.

– disableUpdates (page 876)
Disables updates to the query results.

Instance Methods

delegate
Returns the receiver’s delegate.

- (id)delegate

Instance Methods 875
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

Return Value
The receiver’s delegate, or nil if there is none.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDelegate: (page 881)

Declared In
NSMetadata.h

disableUpdates
Disables updates to the query results.

- (void)disableUpdates

Discussion
You should invoke this method before iterating over query results that could change due to live updates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– enableUpdates (page 876)

Declared In
NSMetadata.h

enableUpdates
Enables updates to the query results.

- (void)enableUpdates

Discussion
You should invoke this method after you’re done iterating over the query results.

Availability
Available in Mac OS X v10.4 and later.

See Also
– disableUpdates (page 876)

Declared In
NSMetadata.h

groupedResults
Returns an array containing hierarchical groups of query results based on the receiver’s grouping attributes.

876 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

- (NSArray *)groupedResults

Return Value
Array containing hierarchical groups of query results.

Availability
Available in Mac OS X v10.4 and later.

See Also
– groupingAttributes (page 877)
– setGroupingAttributes: (page 882)

Declared In
NSMetadata.h

groupingAttributes
Returns the receiver’s grouping attributes.

- (NSArray *)groupingAttributes

Return Value
Array containing grouping attributes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setGroupingAttributes: (page 882)

Declared In
NSMetadata.h

indexOfResult:
Returns the index of a query result object in the receiver’s results array.

- (NSUInteger)indexOfResult:(id)result

Parameters
result

Query result object being inquired about.

Return Value
Index of result in the query result array.

Availability
Available in Mac OS X v10.4 and later.

See Also
– resultAtIndex: (page 880)

Declared In
NSMetadata.h

Instance Methods 877
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

init
Initializes an allocated NSMetadataQuery object.

- (id)init

Return Value
An initialized NSMetadataQuery object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

isGathering
Returns a Boolean value that indicates whether the receiver is in the initial gathering phase of the query.

- (BOOL)isGathering

Return Value
YES when the query is in the initial gathering phase; NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– isStarted (page 878)
– isStopped (page 879)
– startQuery (page 885)

Declared In
NSMetadata.h

isStarted
Returns a Boolean value that indicates whether the receiver has started the query.

- (BOOL)isStarted

Return Value
YES when the receiver has executed the startQuery method; NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– isGathering (page 878)
– isStopped (page 879)
– startQuery (page 885)

878 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

Declared In
NSMetadata.h

isStopped
Returns a Boolean value that indicates whether the receiver has stopped the query.

- (BOOL)isStopped

Return Value
YES when the receiver has stopped the query, NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– isGathering (page 878)
– isStarted (page 878)
– stopQuery (page 885)

Declared In
NSMetadata.h

notificationBatchingInterval
Returns the interval that the receiver provides notification of updated query results.

- (NSTimeInterval)notificationBatchingInterval

Return Value
The interval at which notification of updated results occurs.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setNotificationBatchingInterval: (page 882)

Declared In
NSMetadata.h

predicate
Returns the predicate the receiver uses to filter query results.

- (NSPredicate *)predicate

Return Value
The predicate used to filter query results.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 879
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

See Also
– setPredicate: (page 883)

Declared In
NSMetadata.h

resultAtIndex:
Returns the query result at a specific index.

- (id)resultAtIndex:(NSUInteger)index

Parameters
index

Index of the desired result in the query result array.

Return Value
Query result at the position specified by index.

Discussion
For performance reasons, you should use this method when retrieving a specific result, rather than they array
returned by results (page 880).

Availability
Available in Mac OS X v10.4 and later.

See Also
– indexOfResult: (page 877)

Declared In
NSMetadata.h

resultCount
Returns the number of results returned by the receiver.

- (NSUInteger)resultCount

Return Value
The number of objects the query produced.

Discussion
For performance reasons, you should use this method, rather than invoking count on results (page 880).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

results
Returns an array containing the result objects for the receiver.

880 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

- (NSArray *)results

Return Value
Proxy array containing query result objects.

Discussion
The results array is a proxy object that is primarily intended for use with Cocoa bindings. While it is possible
to copy the proxy array and receive a “snapshot” of the complete current query results, it is generally not
recommended due to performance and memory issues. To access individual result array elements you should
instead use the resultCount (page 880) and resultAtIndex: (page 880) methods.

Availability
Available in Mac OS X v10.4 and later.

See Also
– groupedResults (page 876)

Declared In
NSMetadata.h

searchScopes
Returns an array containing the receiver’s search scopes.

- (NSArray *)searchScopes

Return Value
An array containing the receiver’s search scopes.

Discussion
The array can contain NSString or NSURL objects that represent file system directories or the search scopes
specified in “Constants” (page 888). An empty array indicates that there is no limitation on where the receiver
searches.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setSearchScopes: (page 883)

Declared In
NSMetadata.h

setDelegate:
Sets the receiver’s delegate

- (void)setDelegate:(id)delegate

Parameters
delegate

An object to serve as the receiver’s delegate. Pass nil to remove the current delegate.

Instance Methods 881
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– delegate (page 875)

Declared In
NSMetadata.h

setGroupingAttributes:
Sets the receiver’s grouping attributes to specific attribute names.

- (void)setGroupingAttributes:(NSArray *)attributes

Parameters
attributes

Array containing attribute names.

Discussion
Invoking this method on a receiver while it’s running a query, stops the query and discards current results,
and immediately starts a new query.

Availability
Available in Mac OS X v10.4 and later.

See Also
– groupingAttributes (page 877)

Declared In
NSMetadata.h

setNotificationBatchingInterval:
Sets the interval between update notifications sent by the receiver.

- (void)setNotificationBatchingInterval:(NSTimeInterval)timeInterval

Parameters
Term

The Interval at which notification of updated results is to occur.

Availability
Available in Mac OS X v10.4 and later.

See Also
– notificationBatchingInterval (page 879)

Declared In
NSMetadata.h

882 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

setPredicate:
Sets the predicate used by the receiver to filter the query results.

- (void)setPredicate:(NSPredicate *)predicate

Parameters
predicate

A predicate to be used to filter query results.

Discussion
Invoking this method on a receiver running a query causes the existing query to stop, all current results are
discarded, and a new query is started immediately.

Availability
Available in Mac OS X v10.4 and later.

See Also
– predicate (page 879)

Declared In
NSMetadata.h

setSearchScopes:
Resctrict the search scope of the receiver.

- (void)setSearchScopes:(NSArray *)scopes

Parameters
scopes

Array of NSString or NSURL objects that specify file system directories. You can also include the
predefined search scopes specified in “Constants” (page 888). An empty array removes search scope
limitations.

Availability
Available in Mac OS X v10.4 and later.

See Also
– searchScopes (page 881)

Declared In
NSMetadata.h

setSortDescriptors:
Sets the sort descriptors to be used by the receiver.

- (void)setSortDescriptors:(NSArray *)descriptors

Parameters
descriptors

Array of sort descriptors.

Instance Methods 883
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

Discussion
Invoking this method on the receiver running a query causes the existing query to stop, all current results
are discarded, and a new query is started immediately.

Availability
Available in Mac OS X v10.4 and later.

See Also
– sortDescriptors (page 884)

Declared In
NSMetadata.h

setValueListAttributes:
Sets the value list attributes for the receiver to the specific attribute names.

- (void)setValueListAttributes:(NSArray *)attributes

Parameters
attributes

Array of value list attributes.

Discussion
The query collects the values of these attributes into uniqued lists that can be used to summarize the results
of the query. If attributess is nil, the query generates no value lists. Note that value list collection increases
CPU usage and significantly increases the memory usage of an NSMetadataQuery object.

Invoking this method on the receiver while it’s running a query, stops the query and discards current results,
and immediately starts a new query.

Availability
Available in Mac OS X v10.4 and later.

See Also
– valueListAttributes (page 885)

Declared In
NSMetadata.h

sortDescriptors
Returns an array containing the receiver’s sort descriptors.

- (NSArray *)sortDescriptors

Return Value
An array containing sort descriptors.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setSortDescriptors: (page 883)

884 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

Declared In
NSMetadata.h

startQuery
Attempts to start the query.

- (BOOL)startQuery

Return Value
YES when successful; NO otherwise.

Discussion
A query can’t be started if the receiver is already running a query or no predicate has been specified.

Availability
Available in Mac OS X v10.4 and later.

See Also
– stopQuery (page 885)
– isStarted (page 878)

Declared In
NSMetadata.h

stopQuery
Stops the receiver’s current query from gathering any further results.

- (void)stopQuery

Discussion
The receiver first completes gathering any unprocessed results. If a query is stopped before the gathering
phase finishes, it will not post an NSMetadataQueryDidStartGatheringNotification notification.

You would call this function to stop a query that is generating too many results to be useful but still want to
access the available results. If the receiver is sent a startQuery message after performing this method, the
existing results are discarded.

Availability
Available in Mac OS X v10.4 and later.

See Also
– startQuery (page 885)
– isStopped (page 879)

Declared In
NSMetadata.h

valueListAttributes
Returns an array containing the value list attributes the receiver generates.

Instance Methods 885
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

- (NSArray *)valueListAttributes

Return Value
Array containing value list attributes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setValueListAttributes: (page 884)

Declared In
NSMetadata.h

valueLists
Returns a dictionary containing the value lists generated by the receiver.

- (NSDictionary *)valueLists

Return Value
Dictionary of NSMetadataQueryAttributeValueTuple objects.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

valueOfAttribute:forResultAtIndex:
Returns the value for the attribute name attrName at the index in the results specified by idx.

- (id)valueOfAttribute:(NSString *)attributeName forResultAtIndex:(NSUInteger)index

Parameters
attributeName

The attribute of the result object at index being inquired about. The attribute must be specified in
setValueListAttributes: (page 884), as a sorting key in a specified sort descriptor, or as one of
the grouping attributes specified set for the query.

index
Index of the desired return object in the query results array.

Return Value
Value for attributeName in the result object at index in the query result array.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

886 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

Delegate Methods

metadataQuery:replacementObjectForResultObject:
Implemented by the delegate to return a different object for a specific query result object.

- (id)metadataQuery:(NSMetadataQuery *)query
replacementObjectForResultObject:(NSMetadataItem *)result

Parameters
query

The query that produced the result object to replace.

result
The query result object to replace.

Return Value
Object that replaces the query result object.

Discussion
By default query result objects are instances of the NSMetadataItem class. By implementing this method,
you can return an object of a different class type for the specified result object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

metadataQuery:replacementValueForAttribute:value:
Implemented by the delegate to return a different value for a specific attribute.

- (id)metadataQuery:(NSMetadataQuery *)query replacementValueForAttribute:(NSString
 *)attribute value:(id)attributeValue

Parameters
query

The query that produced the result object with attribute.

attribute
The attribute in question.

attributeValue
The attribute value to replace.

Return Value
Object that replaces the value of attribute in the result object

Discussion
The delegate implementation of this method could convert specific query attribute values to other attribute
values, for example, converting date object values to formatted strings for display.

Availability
Available in Mac OS X v10.4 and later.

Delegate Methods 887
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

Declared In
NSMetadata.h

Constants

Metadata Query Search Scopes
Constants for the predefined search scopes used by setSearchScopes: (page 883).

NSString * const NSMetadataQueryUserHomeScope;
NSString * const NSMetadataQueryLocalComputerScope;
NSString * const NSMetadataQueryNetworkScope;

Constants
NSMetadataQueryUserHomeScope

Search the user’s home directory.

Available in Mac OS X v10.4 and later.

Declared in NSMetadata.h.

NSMetadataQueryLocalComputerScope
Search all local mounted volumes, including the user home directory. The user’s home directory is
searched even if it is a remote volume.

Available in Mac OS X v10.4 and later.

Declared in NSMetadata.h.

NSMetadataQueryNetworkScope
Search all user-mounted remote volumes.

Available in Mac OS X v10.4 and later.

Declared in NSMetadata.h.

Content Relevance
In addition to the requested metadata attributes, a query result also includes content relevance, accessed
with the following key.

NSString * const NSMetadataQueryResultContentRelevanceAttribute;

Constants
NSMetadataQueryResultContentRelevanceAttribute

Key used to retrieve an NSNumber object with a floating point value between 0.0 and 1.0 inclusive.
The relevance value indicates the relevance of the content of a result object. The relevance is computed
based on the value of the result itself, not on its relevance to the other results returned by the query.
If the value is not computed, it is treated as an attribute on the item that does not exist.

Available in Mac OS X v10.4 and later.

Declared in NSMetadata.h.

888 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

Notifications

NSMetadataQueryDidFinishGatheringNotification

Posted when the receiver has finished with the initial result-gathering phase of the query.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

NSMetadataQueryDidStartGatheringNotification

Posted when the receiver begins with the initial result-gathering phase of the query.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

NSMetadataQueryDidUpdateNotification

Posted when the receiver’s results have changed during the live-update phase of the query.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

NSMetadataQueryGatheringProgressNotification

Posted as the receiver’s is collecting results during the initial result-gathering phase of the query.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

Notifications 889
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

890 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMetadataQuery Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSMetadata.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Spotlight Metadata Attributes Reference

Overview

The NSMetadataQueryAttributeValueTuple class represents attribute-value tuples, which are objects
that contain the attribute name and value of a metadata attribute.

Attribute-value tuples are returned by NSMetadataQuery objects as the results in the value lists. Each
attribute/value tuple contains the attribute name, the value, and the number of instances of that value that
exist for the attribute name.

Tasks

Getting Query Attribute/Value Information

– attribute (page 892)
Returns the receiver’s attribute name.

– count (page 892)
Returns the number of instances of the value that exist for the attribute name of the receiver.

– value (page 892)
Returns the receiver’s attribute value.

Overview 891
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMetadataQueryAttributeValueTuple Class
Reference

Instance Methods

attribute
Returns the receiver’s attribute name.

- (NSString *)attribute

Return Value
The receiver’s attribute name.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

count
Returns the number of instances of the value that exist for the attribute name of the receiver.

- (NSUInteger)count

Return Value
The number of instantes of the value that exist for the attribute name of the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

value
Returns the receiver’s attribute value.

- (id)value

Return Value
The receiver’s attribute value.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

892 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMetadataQueryAttributeValueTuple Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSMetadata.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Spotlight Query Programming Guide

Overview

The NSMetadataQueryResultGroup class represents a collection of grouped attribute results returned by
an NSMetadataQuery object.

Tasks

Getting Query Results

– attribute (page 894)
Returns the attribute name for the receiver’s result group.

– value (page 895)
Returns the value of the attribute name for the receiver.

– results (page 895)
Returns an array containing the result objects for the receiver.

– resultCount (page 894)
Returns the number of results returned by the receiver.

– resultAtIndex: (page 894)
Returns the query result at a specific index.

– subgroups (page 895)
Returns an array containing the subgroups of the receiver.

Overview 893
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 75

NSMetadataQueryResultGroup Class Reference

Instance Methods

attribute
Returns the attribute name for the receiver’s result group.

- (NSString *)attribute

Return Value
The attribute name for the receiver’s result group.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

resultAtIndex:
Returns the query result at a specific index.

- (id)resultAtIndex:(NSUInteger)index

Parameters
index

The index of the desired result.

Return Value
The query result at a specific index.

Discussion
For performance reasons, you should use this method when retrieving a specific result, rather than they array
returned by results (page 895).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

resultCount
Returns the number of results returned by the receiver.

- (NSUInteger)resultCount

Return Value
The number of results returned by the receiver.

Discussion
For performance reasons, you should use this method, rather than invoking count on results (page 895).

894 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 75

NSMetadataQueryResultGroup Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

results
Returns an array containing the result objects for the receiver.

- (NSArray *)results

Return Value
An array containing the result objects for the receiver.

Discussion
The results array is a proxy object that is primarily intended for use with Cocoa bindings. While it is possible
to copy the proxy array to get a “snapshot” of the complete current query results, it is generally not
recommended due to performance and memory issues. To access individual result array elements you should
instead use the resultCount and resultAtIndex: methods.

Availability
Available in Mac OS X v10.4 and later.

See Also
– resultCount (page 894)
– resultAtIndex: (page 894)

Declared In
NSMetadata.h

subgroups
Returns an array containing the subgroups of the receiver.

- (NSArray *)subgroups

Return Value
An array containing the subgroups of the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

value
Returns the value of the attribute name for the receiver.

- (id)value

Instance Methods 895
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 75

NSMetadataQueryResultGroup Class Reference

Return Value
The value of the attribute name for the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMetadata.h

896 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 75

NSMetadataQueryResultGroup Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSMethodSignature.h

Companion guides Distributed Objects Programming Topics
The Objective-C 2.0 Programming Language

Overview

An NSMethodSignature object records type information for the arguments and return value of a method.
It is used to forward messages that the receiving object does not respond to—most notably in the case of
distributed objects. You typically create an NSMethodSignature object using NSObject’s
methodSignatureForSelector: (page 1181) instance method (on Mac OS X v10.5 and later you can also
use signatureWithObjCTypes: (page 898)). It is then used to create an NSInvocation object, which is
passed as the argument to aforwardInvocation: (page 1177) message to send the invocation on to whatever
other object can handle the message. In the default case, NSObject invokes
doesNotRecognizeSelector: (page 1175), which raises an exception. For distributed objects, the
NSInvocation object is encoded using the information in the NSMethodSignature object and sent to the
real object represented by the receiver of the message.

An NSMethodSignature object presents its argument types by index with the
getArgumentTypeAtIndex: (page 899) method. The hidden arguments for every method, self and _cmd,
are at indices 0 and 1, respectively. The arguments normally specified in a message invocation follow these.
In addition to the argument types, an NSMethodSignature object offers the total number of arguments
with numberOfArguments (page 901), the total stack frame length occupied by all arguments with
frameLength (page 899) (this varies with hardware architecture), and the length and type of the return value
with methodReturnLength (page 900) and methodReturnType (page 901). Finally, applications using
distributed objects can determine if the method is asynchronous with the isOneway (page 900) method.

For more information about the nature of a method, including the hidden arguments, see “How Messaging
Works” in The Objective-C 2.0 Programming Language.

Overview 897
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 76

NSMethodSignature Class Reference

Tasks

Creating a Method Signature Object

+ signatureWithObjCTypes: (page 898)
Returns an NSMethodSignature object for the given Objective C method type string.

Getting Information on Argument Types

– getArgumentTypeAtIndex: (page 899)
Returns the type encoding for the argument at a given index.

– numberOfArguments (page 901)
Returns the number of arguments recorded in the receiver.

– frameLength (page 899)
Returns the number of bytes that the arguments, taken together, occupy on the stack.

Getting Information on Return Types

– methodReturnType (page 901)
Returns a C string encoding the return type of the method in Objective-C type encoding.

– methodReturnLength (page 900)
Returns the number of bytes required for the return value.

Determining Synchronous Status

– isOneway (page 900)
Returns a Boolean value that indicates whether the receiver is asynchronous when invoked through
distributed objects.

Class Methods

signatureWithObjCTypes:
Returns an NSMethodSignature object for the given Objective C method type string.

+ (NSMethodSignature *)signatureWithObjCTypes:(const char *)types

Parameters
types

An array of characters containing the type encodings for the method arguments.

Indices begin with 0. The hidden arguments self (of type id) and _cmd (of type SEL) are at indices
0 and 1; method-specific arguments begin at index 2.

898 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 76

NSMethodSignature Class Reference

Return Value
An NSMethodSignature object for the given Objective C method type string in types.

Discussion

Special Considerations

This method, available since Mac OS X v10.0, is exposed in Mac OS X v10.5. Only type encoding strings of
the style of the runtime that the application is running against are supported. In exposing this method there
is no commitment to binary compatibily supporting any "old-style" type encoding strings after such changes
occur.

It is your responsibility to pass in type strings which are either from the current runtime data or match the
style of type string in use by the runtime that the application is running on.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMethodSignature.h

Instance Methods

frameLength
Returns the number of bytes that the arguments, taken together, occupy on the stack.

- (NSUInteger)frameLength

Return Value
The number of bytes that the arguments, taken together, occupy on the stack.

Discussion
This number varies with the hardware architecture the application runs on.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMethodSignature.h

getArgumentTypeAtIndex:
Returns the type encoding for the argument at a given index.

- (const char *)getArgumentTypeAtIndex:(NSUInteger)index

Parameters
index

The index of the argument to get.

Return Value
The type encoding for the argument at index.

Instance Methods 899
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 76

NSMethodSignature Class Reference

Discussion
Indices begin with 0. The hidden arguments self (of type id) and _cmd (of type SEL) are at indices 0 and
1; method-specific arguments begin at index 2. Raises NSInvalidArgumentException if index is too large
for the actual number of arguments.

Argument types are given as C strings with Objective-C type encoding. This encoding is
implementation-specific, so applications should use it with caution.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMethodSignature.h

isOneway
Returns a Boolean value that indicates whether the receiver is asynchronous when invoked through distributed
objects.

- (BOOL)isOneway

Return Value
YES if the receiver is asynchronous when invoked through distributed objects, otherwise NO.

Discussion
If the method is oneway, the sender of the remote message doesn’t block awaiting a reply.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMethodSignature.h

methodReturnLength
Returns the number of bytes required for the return value.

- (NSUInteger)methodReturnLength

Return Value
The number of bytes required for the return value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– methodReturnType (page 901)

Declared In
NSMethodSignature.h

900 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 76

NSMethodSignature Class Reference

methodReturnType
Returns a C string encoding the return type of the method in Objective-C type encoding.

- (const char *)methodReturnType

Return Value
A C string encoding the return type of the method in Objective-C type encoding.

Discussion
This encoding is implementation-specific, so applications should use it with caution.

Availability
Available in Mac OS X v10.0 and later.

See Also
– methodReturnLength (page 900)

Declared In
NSMethodSignature.h

numberOfArguments
Returns the number of arguments recorded in the receiver.

- (NSUInteger)numberOfArguments

Return Value
The number of arguments recorded in the receiver.

Discussion
There are always at least 2 arguments, because an NSMethodSignature object includes the hidden arguments
self and _cmd, which are the first two arguments passed to every method implementation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMethodSignature.h

Instance Methods 901
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 76

NSMethodSignature Class Reference

902 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 76

NSMethodSignature Class Reference

Inherits from NSScriptObjectSpecifier : NSObject

Conforms to NSCoding (NSScriptObjectSpecifier)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptObjectSpecifiers.h

Companion guide Cocoa Scripting Guide

Overview

Specifies the middle object in a collection or, if not a one-to-many relationship, the sole object. You don’t
normally subclass NSMiddleSpecifier.

Overview 903
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 77

NSMiddleSpecifier Class Reference

904 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 77

NSMiddleSpecifier Class Reference

Inherits from NSScriptCommand : NSObject

Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptStandardSuiteCommands.h

Companion guide Cocoa Scripting Guide

Overview

An instance of NSMoveCommand moves the specified scriptable object or objects; for example, it may move
words to a new location in a document or a file to a new directory.

NSMoveCommand is part of Cocoa’s built-in scripting support. It works automatically to support the move
AppleScript command through key-value coding. Most applications don’t need to subclass NSMoveCommand
or invoke its methods. However, for circumstances where you might choose to subclass this command, see
"Modifying a Standard Command" in Script Commands in Cocoa Scripting Guide.

When an instance of NSMoveCommand is executed, it does not make copies of moved objects. It removes
objects from the source container or containers, then inserts them into the destination container.

Tasks

Working with Specifiers

– keySpecifier (page 906)
Returns a specifier for the object or objects to be moved.

– setReceiversSpecifier: (page 906)
Sets the receiver’s object specifier.

Overview 905
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 78

NSMoveCommand Class Reference

Instance Methods

keySpecifier
Returns a specifier for the object or objects to be moved.

- (NSScriptObjectSpecifier *)keySpecifier

Return Value
A specifier for the object or objects to be moved.

Discussion
Note that this specifier may be different than the specifier set by setReceiversSpecifier: (page 906),
which sets the container specifier. For example, for a command such as move the third circle to the
location of the first circle, the receiver might identify a document (which has a list of graphics),
while the key specifier identifies the particular graphic to be moved.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

setReceiversSpecifier:
Sets the receiver’s object specifier.

- (void)setReceiversSpecifier:(NSScriptObjectSpecifier *)receiversRef

Parameters
receiversRef

The receiver’s object specifier.

Discussion
When evaluated, receiversRef indicates the receiver or receivers of the move AppleScript command.

This method overrides setReceiversSpecifier: (page 1390) in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRef is a specifier for the third
paragraph of the first document, the receiver specifier is the first document while the key
specifier is the third paragraph.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

906 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 78

NSMoveCommand Class Reference

Inherits from NSArray : NSObject

Conforms to NSCoding (NSArray)
NSCopying (NSArray)
NSMutableCopying (NSArray)
NSFastEnumeration (NSArray)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSArray.h
Foundation/NSPredicate.h
Foundation/NSSortDescriptor.h

Companion guides Collections Programming Topics for Cocoa
Key-Value Coding Programming Guide

Related sample code iSpend
Quartz Composer WWDC 2005 TextEdit
Sketch-112
StickiesExample
TextEditPlus

Overview

The NSMutableArray class declares the programmatic interface to objects that manage a modifiable array
of objects. This class adds insertion and deletion operations to the basic array-handling behavior inherited
from NSArray.

NSArray and NSMutableArray are part of a class cluster, so arrays are not actual instances of the NSArray
or NSMutableArray classes but of one of their private subclasses. Although an array’s class is private, its
interface is public, as declared by these abstract superclasses, NSArray and NSMutableArray.
NSMutableArray‘s methods are conceptually based on these primitive methods:

insertObject:atIndex: (page 913)
removeObjectAtIndex: (page 918)
addObject: (page 911)
removeLastObject (page 916)
replaceObjectAtIndex:withObject: (page 922)

Overview 907
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

In a subclass, you must override all these methods, although you can implement the required functionality
using just the first two (however this is likely to be inefficient).

The other methods in NSMutableArray‘s interface provide convenient ways of inserting an object into a
specific slot in the array and removing an object based on its identity or position in the array.

Like NSArray, instances of NSMutableArray maintain strong references to their contents. If you do not use
garbage collection, when you add an object to an array, the object receives a retain (page 2108) message.
When an object is removed from a mutable array, it receives a release (page 2106) message. If there are no
further references to the object, this means that the object is deallocated. If your program keeps a reference
to such an object, the reference will become invalid unless you send the object a retain (page 2108) message
before it’s removed from the array. For example, if anObject is not retained before it is removed from the
array, the third statement below could result in a runtime error:

id anObject = [[anArray objectAtIndex:0] retain];
[anArray removeObjectAtIndex:0];
[anObject someMessage];

Mac OS X Note: The filterUsingPredicate: (page 912) method provides in-place in-memory filtering
of an array using an NSPredicate object. If you use the Core Data framework, this provides an efficient
means of filtering an existing array of objects without—as a fetch does—requiring a round trip to a persistent
data store. This method and the NSPredicate class are not available in iPhone OS.

Tasks

Creating and Initializing a Mutable Array

+ arrayWithCapacity: (page 910)
Creates and returns an NSMutableArray object with enough allocated memory to initially hold a
given number of objects.

– initWithCapacity: (page 913)
Returns an array, initialized with enough memory to initially hold a given number of objects.

Adding Objects

– addObject: (page 911)
Inserts a given object at the end of the receiver.

– addObjectsFromArray: (page 911)
Adds the objects contained in another given array to the end of the receiver’s content.

– insertObject:atIndex: (page 913)
Inserts a given object into the receiver's contents at a given index.

– insertObjects:atIndexes: (page 914)
Inserts the objects in in a given array into the receiver at the specified indexes.

908 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

Removing Objects

– removeAllObjects (page 916)
Empties the receiver of all its elements.

– removeLastObject (page 916)
Removes the object with the highest-valued index in the receiver

– removeObject: (page 916)
Removes all occurrences in the receiver of a given object.

– removeObject:inRange: (page 917)
Removes all occurrences within a specified range in the receiver of a given object.

– removeObjectAtIndex: (page 918)
Removes the object at index .

– removeObjectsAtIndexes: (page 920)
Removes the objects at the specified indexes from the receiver.

– removeObjectIdenticalTo: (page 919)
Removes all occurrences of a given object in the receiver.

– removeObjectIdenticalTo:inRange: (page 919)
Removes all occurrences of anObject within the specified range in the receiver.

– removeObjectsFromIndices:numIndices: (page 921)
Removes the specified number of objects from the receiver, beginning at the specified index.

– removeObjectsInArray: (page 921)
Removes from the receiver the objects in another given array.

– removeObjectsInRange: (page 922)
Removes from the receiver each of the objects within a given range.

Replacing Objects

– replaceObjectAtIndex:withObject: (page 922)
Replaces the object at index with anObject.

– replaceObjectsAtIndexes:withObjects: (page 923)
Replaces the objects in the receiver at specified locations specified with the objects from a given
array.

– replaceObjectsInRange:withObjectsFromArray:range: (page 924)
Replaces the objects in the receiver specified by one given range with the objects in another array
specified by another range.

– replaceObjectsInRange:withObjectsFromArray: (page 924)
Replaces the objects in the receiver specified by a given range with all of the objects from a given
array.

– setArray: (page 925)
Sets the receiver’s elements to those in another given array.

Tasks 909
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

Filtering Content

– filterUsingPredicate: (page 912)
Evaluates a given predicate against the receiver’s content and leaves only objects that match

Rearranging Content

– exchangeObjectAtIndex:withObjectAtIndex: (page 912)
Exchanges the objects in the receiver at given indices.

– sortUsingDescriptors: (page 925)
Sorts the receiver using a given array of sort descriptors.

– sortUsingFunction:context: (page 926)
Sorts the receiver’s elements in ascending order as defined by the comparison function compare.

– sortUsingSelector: (page 926)
Sorts the receiver’s elements in ascending order, as determined by the comparison method specified
by a given selector.

Class Methods

arrayWithCapacity:
Creates and returns an NSMutableArray object with enough allocated memory to initially hold a given
number of objects.

+ (id)arrayWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the new array.

Return Value
A new NSMutableArray object with enough allocated memory to hold numItems objects.

Discussion
Mutable arrays expand as needed; numItems simply establishes the object’s initial capacity.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithCapacity: (page 913)

Related Sample Code
Birthdays
EnhancedAudioBurn
Fiendishthngs
Sketch-112
TimelineToTC

910 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

Declared In
NSArray.h

Instance Methods

addObject:
Inserts a given object at the end of the receiver.

- (void)addObject:(id)anObject

Parameters
anObject

The object to add to the end of the receiver's content. This value must not be nil.

Important: Raises an NSInvalidArgumentException if anObject is nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addObjectsFromArray: (page 911)
– removeObject: (page 916)
– setArray: (page 925)

Related Sample Code
CoreRecipes
Quartz Composer WWDC 2005 TextEdit
Sketch-112
StickiesExample
TextEditPlus

Declared In
NSArray.h

addObjectsFromArray:
Adds the objects contained in another given array to the end of the receiver’s content.

- (void)addObjectsFromArray:(NSArray *)otherArray

Parameters
otherArray

An array of objects to add to the end of the receiver’s content.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 911
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

See Also
– setArray: (page 925)
– removeObject: (page 916)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
SimpleCalendar
Sketch-112
StickiesExample
TextEditPlus

Declared In
NSArray.h

exchangeObjectAtIndex:withObjectAtIndex:
Exchanges the objects in the receiver at given indices.

- (void)exchangeObjectAtIndex:(NSUInteger)idx1 withObjectAtIndex:(NSUInteger)idx2

Parameters
idx1

The index of the object with which to replace the object at index idx2.

idx2
The index of the object with which to replace the object at index idx1.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSArray.h

filterUsingPredicate:
Evaluates a given predicate against the receiver’s content and leaves only objects that match

- (void)filterUsingPredicate:(NSPredicate *)predicate

Parameters
predicate

The predicate to evaluate against the receiver's elements.

Availability
Available in Mac OS X v10.4 and later.

See Also
– filteredArrayUsingPredicate: (page 121) (NSArray)

Declared In
NSPredicate.h

912 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

initWithCapacity:
Returns an array, initialized with enough memory to initially hold a given number of objects.

- (id)initWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the new array.

Return Value
An array initialized with enough memory to hold numItems objects. The returned object might be different
than the original receiver.

Discussion
Mutable arrays expand as needed; numItems simply establishes the object’s initial capacity.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrayWithCapacity: (page 910)

Declared In
NSArray.h

insertObject:atIndex:
Inserts a given object into the receiver's contents at a given index.

- (void)insertObject:(id)anObject atIndex:(NSUInteger)index

Parameters
anObject

The object to add to the receiver's content. This value must not be nil.

Important: Raises an NSInvalidArgumentException if anObject is nil.

index
The index in the receiver at which to insert anObject. This value must not be greater than the count
of elements in the array.

Important: Raises an NSRangeException if index is greater than the number of elements in the array.

Discussion
If index is already occupied, the objects at index and beyond are shifted by adding 1 to their indices to
make room.

Instance Methods 913
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

Note that NSArray objects are not like C arrays. That is, even though you specify a size when you create an
array, the specified size is regarded as a “hint”; the actual size of the array is still 0. This means that you cannot
insert an object at an index greater than the current count of an array. For example, if an array contains two
objects, its size is 2, so you can add objects at indices 0, 1, or 2. Index 3 is illegal and out of bounds; if you try
to add an object at index 3 (when the size of the array is 2), NSMutableArray raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeObjectAtIndex: (page 918)

Related Sample Code
SimpleCocoaMovie
SimpleCocoaMovieQT
SimpleScriptingObjects
ThreadsExporter
WhackedTV

Declared In
NSArray.h

insertObjects:atIndexes:
Inserts the objects in in a given array into the receiver at the specified indexes.

- (void)insertObjects:(NSArray *)objects atIndexes:(NSIndexSet *)indexes

Parameters
objects

An array of objects to insert into the receiver.

indexes
The indexes at which the objects in objects should be inserted. The count of locations in indexes
must equal the count of objects. For more details, see the Discussion.

Discussion
Each object in objects is inserted into the receiver in turn at the corresponding location specified in indexes
after earlier insertions have been made. The implementation is conceptually similar to that illustrated in the
following example.

- void insertObjects:(NSArray *)additions atIndexes:(NSIndexSet *)indexes
{
 NSUInteger currentIndex = [indexes firstIndex];
 NSUInteger i, count = [indexes count];

 for (i = 0; i < count; i++)
 {
 [self insertObject:[additions objectAtIndex:i] atIndex:currentIndex];
 currentIndex = [indexes indexGreaterThanIndex:currentIndex];
 }
}

The resulting behavior is illustrated by the following example.

914 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"two",
@"three", @"four", nil];
NSArray *newAdditions = [NSArray arrayWithObjects: @"a", @"b", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:1];
[indexes addIndex:3];
[array insertObjects:newAdditions atIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, a, two, b, three, four)

The locations specified by indexes may therefore only exceed the bounds of the receiver if one location
specifies the count of the array or the count of the array after preceding insertions, and other locations
exceeding the bounds do so in a contiguous fashion from that location, as illustrated in the following examples.

In this example, both new objects are appended to the end of the array.

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"two",
@"three", @"four", nil];
NSArray *newAdditions = [NSArray arrayWithObjects: @"a", @"b", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:5];
[indexes addIndex:4];
[array insertObjects:newAdditions atIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, two, three, four, a, b)

If you replace [indexes addIndex:4] with [indexes addIndex:6] (so that the indexes are 5 and 6),
then the application will fail with an out of bounds exception.

In this example, two objects are added into the middle of the array, and another at the current end of the
array (index 4) which means that it is third from the end of the modified array.

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"two",
@"three", @"four", nil];
NSArray *newAdditions = [NSArray arrayWithObjects: @"a", @"b", @"c", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:1];
[indexes addIndex:2];
[indexes addIndex:4];
[array insertObjects:newAdditions atIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, a, b, two, c, three, four)

If you replace [indexes addIndex:4] with [indexes addIndex:6] (so that the indexes are 1, 2, and
6), then the output is (one, a, b, two, three, four, c).

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertObject:atIndex: (page 913)

Declared In
NSArray.h

Instance Methods 915
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

removeAllObjects
Empties the receiver of all its elements.

- (void)removeAllObjects

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeObject: (page 916)
– removeLastObject (page 916)
– removeObjectAtIndex: (page 918)
– removeObjectIdenticalTo: (page 919)

Related Sample Code
ABPresence
WhackedTV

Declared In
NSArray.h

removeLastObject
Removes the object with the highest-valued index in the receiver

- (void)removeLastObject

Discussion
removeLastObject raises an NSRangeException if there are no objects in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeAllObjects (page 916)
– removeObject: (page 916)
– removeObjectAtIndex: (page 918)
– removeObjectIdenticalTo: (page 919)

Related Sample Code
WhackedTV

Declared In
NSArray.h

removeObject:
Removes all occurrences in the receiver of a given object.

- (void)removeObject:(id)anObject

916 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

Parameters
anObject

The object to remove from the receiver.

Discussion
This method uses indexOfObject: (page 123) to locate matches and then removes them by using
removeObjectAtIndex: (page 918). Thus, matches are determined on the basis of an object’s response to
the isEqual: message. If the receiver does not contain anObject, the method has no effect (although it
does incur the overhead of searching the contents).

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeAllObjects (page 916)
– removeLastObject (page 916)
– removeObjectAtIndex: (page 918)
– removeObjectIdenticalTo: (page 919)
– removeObjectsInArray: (page 921)

Related Sample Code
CoreRecipes
GLChildWindowDemo
Squiggles
WhackedTV

Declared In
NSArray.h

removeObject:inRange:
Removes all occurrences within a specified range in the receiver of a given object.

- (void)removeObject:(id)anObject inRange:(NSRange)aRange

Parameters
anObject

The object to remove from the receiver's content.

aRange
The range from which to remove anObject.

Important: Raises an NSRangeException if aRange exceeds the bounds of the receiver.

Discussion
Matches are determined on the basis of an object’s response to the isEqual: message. If the receiver does
not contain anObject within aRange, the method has no effect (although it does incur the overhead of
searching the contents).

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 917
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

See Also
– removeAllObjects (page 916)
– removeLastObject (page 916)
– removeObjectAtIndex: (page 918)
– removeObjectIdenticalTo: (page 919)
– removeObjectsInArray: (page 921)

Declared In
NSArray.h

removeObjectAtIndex:
Removes the object at index .

- (void)removeObjectAtIndex:(NSUInteger)index

Parameters
index

The index from which to remove the object in the receiver. The value must not exceed the bounds
of the receiver.

Important: Raises an NSRangeException if index is beyond the end of the receiver.

Discussion
To fill the gap, all elements beyond index are moved by subtracting 1 from their index.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertObject:atIndex: (page 913)
– removeAllObjects (page 916)
– removeLastObject (page 916)
– removeObject: (page 916)
– removeObjectIdenticalTo: (page 919)
– removeObjectsFromIndices:numIndices: (page 921)

Related Sample Code
EnhancedAudioBurn
EnhancedDataBurn
ImageBackground
QTKitMovieShuffler
SimpleScriptingObjects

Declared In
NSArray.h

918 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

removeObjectIdenticalTo:
Removes all occurrences of a given object in the receiver.

- (void)removeObjectIdenticalTo:(id)anObject

Parameters
anObject

The object to remove from the receiver.

Discussion
This method uses theindexOfObjectIdenticalTo: (page 124) method to locate matches and then removes
them by using removeObjectAtIndex: (page 918). Thus, matches are determined using object addresses.
If the receiver does not contain anObject, the method has no effect (although it does incur the overhead
of searching the contents).

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeAllObjects (page 916)
– removeLastObject (page 916)
– removeObject: (page 916)
– removeObjectAtIndex: (page 918)

Related Sample Code
EnhancedDataBurn
ImageBackground
QTKitMovieShuffler
TrackBall

Declared In
NSArray.h

removeObjectIdenticalTo:inRange:
Removes all occurrences of anObject within the specified range in the receiver.

- (void)removeObjectIdenticalTo:(id)anObject inRange:(NSRange)aRange

Parameters
anObject

The object to remove from the receiver within aRange.

Instance Methods 919
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

aRange
The range in the receiver from which to remove anObject.

Important: Raises an NSRangeException if aRange exceeds the bounds of the receiver.

Discussion
This method uses theindexOfObjectIdenticalTo: (page 124) method to locate matches and then removes
them by using removeObjectAtIndex: (page 918). Thus, matches are determined using object addresses.
If the receiver does not contain anObject within aRange, the method has no effect (although it does incur
the overhead of searching the contents).

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeAllObjects (page 916)
– removeLastObject (page 916)
– removeObject: (page 916)
– removeObjectAtIndex: (page 918)
– removeObjectsAtIndexes: (page 920)

Declared In
NSArray.h

removeObjectsAtIndexes:
Removes the objects at the specified indexes from the receiver.

- (void)removeObjectsAtIndexes:(NSIndexSet *)indexes

Parameters
indexes

The indexes of the objects to remove from the receiver. The locations specified by indexes must lie
within the bounds of the receiver.

Discussion
This method is similar to removeObjectAtIndex: (page 918), but allows you to efficiently remove multiple
objects with a single operation. indexes specifies the locations of objects to be removed given the state of
the receiver when the method is invoked, as illustrated in the following example.

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"a", @"two",
 @"b", @"three", @"four", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:1];
[indexes addIndex:3];
[array removeObjectsAtIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, two, three, four)

Availability
Available in Mac OS X v10.4 and later.

920 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

See Also
– initWithCapacity: (page 913)
– removeObjectAtIndex: (page 918)
– removeObject:inRange: (page 917)

Declared In
NSArray.h

removeObjectsFromIndices:numIndices:
Removes the specified number of objects from the receiver, beginning at the specified index.

- (void)removeObjectsFromIndices:(NSUInteger *)indices numIndices:(NSUInteger)count

Parameters
indices

A C array of the indices of the objects to remove from the receiver.

count
The number of objects to remove from the receiver.

Discussion
This method is similar to removeObjectAtIndex: (page 918), but allows you to efficiently remove multiple
objects with a single operation. If you sort the list of indices in ascending order, you will improve the speed
of this operation.

This method cannot be sent to a remote object with distributed objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithCapacity: (page 913)
– removeObjectAtIndex: (page 918)
– removeObject:inRange: (page 917)
– removeObjectsAtIndexes: (page 920)

Declared In
NSArray.h

removeObjectsInArray:
Removes from the receiver the objects in another given array.

- (void)removeObjectsInArray:(NSArray *)otherArray

Parameters
otherArray

An array containing the objects to be removed from the receiver.

Instance Methods 921
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

Discussion
This method is similar to removeObject: (page 916), but allows you to efficiently remove large sets of objects
with a single operation. If the receiver does not contain objects in otherArray, the method has no effect
(although it does incur the overhead of searching the contents).

This method assumes that all elements in otherArray respond to hash and isEqual:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeAllObjects (page 916)
– removeObjectIdenticalTo: (page 919)
– removeObjectsAtIndexes: (page 920)

Related Sample Code
QTKitAdvancedDocument
SimpleCalendar
StickiesExample

Declared In
NSArray.h

removeObjectsInRange:
Removes from the receiver each of the objects within a given range.

- (void)removeObjectsInRange:(NSRange)aRange

Parameters
aRange

The range of the objects to remove from the receiver.

Discussion
The objects are removed using removeObjectAtIndex: (page 918).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArray.h

replaceObjectAtIndex:withObject:
Replaces the object at index with anObject.

- (void)replaceObjectAtIndex:(NSUInteger)index withObject:(id)anObject

922 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

Parameters
index

The index of the object to be replaced. This value must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if index is beyond the end of the receiver.

anObject
The object with which to replace the object at index index in the receiver. This value must not be
nil.

Important: Raises an NSInvalidArgumentException if anObject is nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertObject:atIndex: (page 913)
– removeObjectAtIndex: (page 918)
– removeObjectsAtIndexes: (page 920)
– replaceObjectsAtIndexes:withObjects: (page 923)

Related Sample Code
ABPresence
TrackBall

Declared In
NSArray.h

replaceObjectsAtIndexes:withObjects:
Replaces the objects in the receiver at specified locations specified with the objects from a given array.

- (void)replaceObjectsAtIndexes:(NSIndexSet *)indexes withObjects:(NSArray *)objects

Parameters
indexes

The indexes of the objects to be replaced.

objects
The objects with which to replace the objects in the receiver at the indexes specified by indexes.
The count of locations in indexes must equal the count of objects.

Discussion
The indexes in indexes are used in the same order as the objects in objects.

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertObject:atIndex: (page 913)
– removeObjectAtIndex: (page 918)

Instance Methods 923
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

– replaceObjectAtIndex:withObject: (page 922)

Declared In
NSArray.h

replaceObjectsInRange:withObjectsFromArray:
Replaces the objects in the receiver specified by a given range with all of the objects from a given array.

- (void)replaceObjectsInRange:(NSRange)aRange withObjectsFromArray:(NSArray
*)otherArray

Parameters
aRange

The range of objects to replace in (or remove from) the receiver.

otherArray
The array of objects from which to select replacements for the objects in aRange.

Discussion
If otherArray has fewer objects than are specified by aRange, the extra objects in the receiver are removed.
If otherArray has more objects than are specified by aRange, the extra objects from otherArray are
inserted into the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertObject:atIndex: (page 913)
– removeObjectAtIndex: (page 918)
– replaceObjectAtIndex:withObject: (page 922)
– replaceObjectsAtIndexes:withObjects: (page 923)

Declared In
NSArray.h

replaceObjectsInRange:withObjectsFromArray:range:
Replaces the objects in the receiver specified by one given range with the objects in another array specified
by another range.

- (void)replaceObjectsInRange:(NSRange)aRange withObjectsFromArray:(NSArray
*)otherArray range:(NSRange)otherRange

Parameters
aRange

The range of objects to replace in (or remove from) the receiver.

otherArray
The array of objects from which to select replacements for the objects in aRange.

otherRange
The range of objects to select from otherArray as replacements for the objects in aRange.

924 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

Discussion
The lengths of aRange and otherRange don’t have to be equal: if aRange is longer than otherRange, the
extra objects in the receiver are removed; if otherRange is longer than aRange, the extra objects from
otherArray are inserted into the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertObject:atIndex: (page 913)
– removeObjectAtIndex: (page 918)
– replaceObjectAtIndex:withObject: (page 922)
– replaceObjectsAtIndexes:withObjects: (page 923)

Declared In
NSArray.h

setArray:
Sets the receiver’s elements to those in another given array.

- (void)setArray:(NSArray *)otherArray

Parameters
otherArray

The array of objects with which to replace the receiver's content.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addObjectsFromArray: (page 911)
– insertObject:atIndex: (page 913)

Declared In
NSArray.h

sortUsingDescriptors:
Sorts the receiver using a given array of sort descriptors.

- (void)sortUsingDescriptors:(NSArray *)sortDescriptors

Parameters
sortDescriptors

An array containing the NSSortDescriptor objects to use to sort the receiver's contents.

Discussion
See NSSortDescriptor for additional information.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 925
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

See Also
– sortUsingFunction:context: (page 926)
– sortUsingSelector: (page 926)
– sortedArrayUsingDescriptors: (page 135) (NSArray)

Related Sample Code
CoreRecipes

Declared In
NSSortDescriptor.h

sortUsingFunction:context:
Sorts the receiver’s elements in ascending order as defined by the comparison function compare.

- (void)sortUsingFunction:(NSInteger (*)(id, id, void *))compare context:(void
*)context

Parameters
compare

The comparison function to use to compare two elements at a time.

The function's parameters are two objects to compare and the context parameter, context. The
function should return NSOrderedAscending if the first element is smaller than the second,
NSOrderedDescending if the first element is larger than the second, and NSOrderedSame if the
elements are equal.

context
The context argument to pass to the compare function.

Discussion
This approach allows the comparison to be based on some outside parameter, such as whether character
sorting is case-sensitive or case-insensitive.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sortUsingDescriptors: (page 925)
– sortUsingSelector: (page 926)
– sortedArrayUsingFunction:context: (page 136) (NSArray)

Related Sample Code
Reminders

Declared In
NSArray.h

sortUsingSelector:
Sorts the receiver’s elements in ascending order, as determined by the comparison method specified by a
given selector.

926 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

- (void)sortUsingSelector:(SEL)comparator

Parameters
comparator

A selector that specifies the comparison method to use to compare elements in the receiver.

The comparatormessage is sent to each object in the receiver and has as its single argument another
object in the array. The comparator method should return NSOrderedAscending if the receiver is
smaller than the argument, NSOrderedDescending if the receiver is larger than the argument, and
NSOrderedSame if they are equal.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sortUsingDescriptors: (page 925)
– sortUsingFunction:context: (page 926)
– sortedArrayUsingSelector: (page 138) (NSArray)

Related Sample Code
ABPresence
SearchField

Declared In
NSArray.h

Instance Methods 927
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

928 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 79

NSMutableArray Class Reference

Inherits from NSAttributedString : NSObject

Conforms to NSCoding (NSAttributedString)
NSCopying (NSAttributedString)
NSMutableCopying (NSAttributedString)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSAttributedString.h

Companion guide Attributed Strings Programming Guide

Related sample code CocoaVideoFrameToGWorld
CoreRecipes
iSpend
NSGLImage
OpenGL Screensaver

Overview

NSMutableAttributedString declares the programmatic interface to objects that manage mutable
attributed strings. You can add and remove characters (raw strings) and attributes separately or together as
attributed strings. See the class description for NSAttributedString for more information about attributed
strings.

When working with the Application Kit, you must also clean up changed attributes using the various fix...
methods. See “Changing an Attributed String“ for more information on fixing attributes. These methods, as
well as others involving setting graphical attributes, are described in NSMutableAttributedString Additions
in the Application Kit.

NSMutableAttributedString adds two primitive methods to those of NSAttributedString. These
primitive methods provide the basis for all the other methods in its class. The primitive
replaceCharactersInRange:withString: (page 936) method replaces a range of characters with those
from a string, leaving all attribute information outside that range intact. The primitive
setAttributes:range: (page 937) method sets attributes and values for a given range of characters,
replacing any previous attributes and values for that range.

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to encapsulate
the paragraph or ruler attributes used by the NSAttributedString classes.

Overview 929
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 80

NSMutableAttributedString Class Reference

Note that the default font for NSAttributedString objects is Helvetica 12-point, which differs from the
Mac OS X system font Lucida Grande, so you may wish to create the string with non-default attributes suitable
for your application using, for example, initWithString:attributes: (page 154).

Tasks

Retrieving Character Information

– mutableString (page 935)
Returns the character contents of the receiver as an NSMutableString object.

Changing Characters

– replaceCharactersInRange:withString: (page 936)
Replaces the characters in the given range with the characters of the given string.

– deleteCharactersInRange: (page 933)
Deletes the characters in the given range along with their associated attributes.

Changing Attributes

– setAttributes:range: (page 937)
Sets the attributes for the characters in the specified range to the specified attributes.

– addAttribute:value:range: (page 931)
Adds an attribute with the given name and value to the characters in the specified range.

– addAttributes:range: (page 932)
Adds the given collection of attributes to the characters in the specified range.

– removeAttribute:range: (page 935)
Removes the named attribute from the characters in the specified range.

Changing Characters and Attributes

– appendAttributedString: (page 932)
Adds the characters and attributes of a given attributed string to the end of the receiver.

– insertAttributedString:atIndex: (page 934)
Inserts the characters and attributes of the given attributed string into the receiver at the given index.

– replaceCharactersInRange:withAttributedString: (page 936)
Replaces the characters and attributes in a given range with the characters and attributes of the given
attributed string.

– setAttributedString: (page 937)
Replaces the receiver’s entire contents with the characters and attributes of the given attributed
string.

930 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 80

NSMutableAttributedString Class Reference

Grouping Changes

– beginEditing (page 933)
Overridden by subclasses to buffer or optimize a series of changes to the receiver’s characters or
attributes, until it receives a matching endEditing (page 934) message, upon which it can consolidate
changes and notify any observers that it has changed.

– endEditing (page 934)
Overridden by subclasses to consolidate changes made since a previous beginEditing (page 933)
message and to notify any observers of the changes.

Instance Methods

addAttribute:value:range:
Adds an attribute with the given name and value to the characters in the specified range.

- (void)addAttribute:(NSString *)name value:(id)value range:(NSRange)aRange

Parameters
name

A string specifying the attribute name.

value
The attribute value associated with name.

aRange
The range of characters to which the specified attribute/value pair applies.

Discussion
You may assign any name/value pair you wish to a range of characters, in addition to the standard attributes
described in the “Constants” section of NSAttributedString Additions. Raises an
NSInvalidArgumentException if name or value is nil and an NSRangeException if any part of aRange
lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addAttributes:range: (page 932)
– removeAttribute:range: (page 935)

Related Sample Code
CoreRecipes
IBFragmentView
iSpend
TipWrapper

Declared In
NSAttributedString.h

Instance Methods 931
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 80

NSMutableAttributedString Class Reference

addAttributes:range:
Adds the given collection of attributes to the characters in the specified range.

- (void)addAttributes:(NSDictionary *)attributes range:(NSRange)aRange

Parameters
attributes

A dictionary containing the attributes to add.

aRange
The range of characters to which the specified attributes apply.

Discussion
You may assign any name/value pair you wish to a range of characters, in addition to the standard attributes
described in the “Constants” section of NSAttributedString Additions. Raises an
NSInvalidArgumentException if attributes is nil and an NSRangeException if any part of aRange
lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addAttribute:value:range: (page 931)
– removeAttribute:range: (page 935)

Related Sample Code
TextLinks
VertexPerformanceTest

Declared In
NSAttributedString.h

appendAttributedString:
Adds the characters and attributes of a given attributed string to the end of the receiver.

- (void)appendAttributedString:(NSAttributedString *)attributedString

Parameters
attributedString

The string whose characters and attributes are added.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertAttributedString:atIndex: (page 934)
+ attributedStringWithAttachment: (NSAttributedString Additions)

Related Sample Code
BackgroundExporter
CoreRecipes
iSpend

932 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 80

NSMutableAttributedString Class Reference

OpenGL Screensaver

Declared In
NSAttributedString.h

beginEditing
Overridden by subclasses to buffer or optimize a series of changes to the receiver’s characters or attributes,
until it receives a matching endEditing (page 934) message, upon which it can consolidate changes and
notify any observers that it has changed.

- (void)beginEditing

Discussion
You can nest pairs of beginEditing and endEditing (page 934) messages.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
VertexPerformanceTest

Declared In
NSAttributedString.h

deleteCharactersInRange:
Deletes the characters in the given range along with their associated attributes.

- (void)deleteCharactersInRange:(NSRange)aRange

Parameters
aRange

A range specifying the characters to delete.

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replaceCharactersInRange:withAttributedString: (page 936)
– replaceCharactersInRange:withString: (page 936)

Declared In
NSAttributedString.h

Instance Methods 933
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 80

NSMutableAttributedString Class Reference

endEditing
Overridden by subclasses to consolidate changes made since a previous beginEditing (page 933) message
and to notify any observers of the changes.

- (void)endEditing

Discussion
The NSMutableAttributedString implementation does nothing. NSTextStorage, for example, overrides
this method to invoke fixAttributesInRange: and to inform its NSLayoutManager objects that they
need to re-lay the text.

Availability
Available in Mac OS X v10.0 and later.

See Also
– processEditing (NSTextStorage)

Related Sample Code
CoreRecipes
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
VertexPerformanceTest

Declared In
NSAttributedString.h

insertAttributedString:atIndex:
Inserts the characters and attributes of the given attributed string into the receiver at the given index.

- (void)insertAttributedString:(NSAttributedString *)attributedString
atIndex:(NSUInteger)index

Parameters
attributedString

The string whose characters and attributes are inserted.

index
The index at which the characters and attributes are inserted.

Discussion
The new characters and attributes begin at the given index and the existing characters and attributes from
the index to the end of the receiver are shifted by the length of the attributed string. Raises an
NSRangeException if index lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendAttributedString: (page 932)
+ attributedStringWithAttachment: (NSAttributedString Additions)

Related Sample Code
CoreRecipes

934 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 80

NSMutableAttributedString Class Reference

Declared In
NSAttributedString.h

mutableString
Returns the character contents of the receiver as an NSMutableString object.

- (NSMutableString *)mutableString

Return Value
The mutable string object.

Discussion
The receiver tracks changes to this string and keeps its attribute mappings up to date.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSAttributedString.h

removeAttribute:range:
Removes the named attribute from the characters in the specified range.

- (void)removeAttribute:(NSString *)name range:(NSRange)aRange

Parameters
name

A string specifying the attribute name to remove.

aRange
The range of characters from which the specified attribute is removed.

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addAttribute:value:range: (page 931)
– addAttributes:range: (page 932)

Declared In
NSAttributedString.h

Instance Methods 935
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 80

NSMutableAttributedString Class Reference

replaceCharactersInRange:withAttributedString:
Replaces the characters and attributes in a given range with the characters and attributes of the given
attributed string.

- (void)replaceCharactersInRange:(NSRange)aRange
withAttributedString:(NSAttributedString *)attributedString

Parameters
aRange

The range of characters and attributes replaced.

attributedString
The attributed string whose characters and attributes replace those in the specified range.

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertAttributedString:atIndex: (page 934)

Declared In
NSAttributedString.h

replaceCharactersInRange:withString:
Replaces the characters in the given range with the characters of the given string.

- (void)replaceCharactersInRange:(NSRange)aRange withString:(NSString *)aString

Parameters
aRange

A range specifying the characters to replace.

aString
A string specifying the characters to replace those in aRange.

Discussion
The new characters inherit the attributes of the first replaced character from aRange. Where the length of
aRange is 0, the new characters inherit the attributes of the character preceding aRange if it has any, otherwise
of the character following aRange.

Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deleteCharactersInRange: (page 933)

Related Sample Code
iSpend
Quartz Composer WWDC 2005 TextEdit

936 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 80

NSMutableAttributedString Class Reference

TextEditPlus

Declared In
NSAttributedString.h

setAttributedString:
Replaces the receiver’s entire contents with the characters and attributes of the given attributed string.

- (void)setAttributedString:(NSAttributedString *)attributedString

Parameters
attributedString

The attributed string whose characters and attributes replace those in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendAttributedString: (page 932)

Declared In
NSAttributedString.h

setAttributes:range:
Sets the attributes for the characters in the specified range to the specified attributes.

- (void)setAttributes:(NSDictionary *)attributes range:(NSRange)aRange

Parameters
attributes

A dictionary containing the attributes to set.

aRange
The range of characters whose attributes are set.

Discussion
These new attributes replace any attributes previously associated with the characters in aRange. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

To set attributes for a zero-length NSMutableAttributedString displayed in a text view, use the
NSTextView method setTypingAttributes:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addAttributes:range: (page 932)
– removeAttribute:range: (page 935)

Declared In
NSAttributedString.h

Instance Methods 937
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 80

NSMutableAttributedString Class Reference

Constants

An attributed string identifies attributes by name, storing a value under the name in an NSDictionary
object. You can assign any attribute name/value pair you wish to a range of characters, in addition to the
standard attributes described in the “Constants” section of NSAttributedString Additions.

938 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 80

NSMutableAttributedString Class Reference

Inherits from NSCharacterSet : NSObject

Conforms to NSCopying
NSMutableCopying
NSCoding (NSCharacterSet)
NSCopying (NSCharacterSet)
NSMutableCopying (NSCharacterSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSCharacterSet.h

Companion guide String Programming Guide for Cocoa

Related sample code ImageMapExample

Overview

The NSMutableCharacterSet class declares the programmatic interface to objects that manage a modifiable
set of Unicode characters. You can add or remove characters from a mutable character set as numeric values
in NSRange structures or as character values in strings, combine character sets by union or intersection, and
invert a character set.

Mutable character sets are less efficient to use than immutable character sets. If you don’t need to change
a character set after creating it, create an immutable copy with copy and use that.

NSMutableCharacterSet defines no primitive methods. Subclasses must implement all methods declared
by this class in addition to the primitives of NSCharacterSet. They must also implement
mutableCopyWithZone: (page 2094).

Tasks

Adding and Removing Characters

– addCharactersInRange: (page 940)
Adds to the receiver the characters whose Unicode values are in a given range.

Overview 939
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 81

NSMutableCharacterSet Class Reference

– removeCharactersInRange: (page 942)
Removes from the receiver the characters whose Unicode values are in a given range.

– addCharactersInString: (page 941)
Adds to the receiver the characters in a given string.

– removeCharactersInString: (page 943)
Removes from the receiver the characters in a given string.

Combining Character Sets

– formIntersectionWithCharacterSet: (page 941)
Modifies the receiver so it contains only characters that exist in both the receiver and otherSet.

– formUnionWithCharacterSet: (page 942)
Modifies the receiver so it contains all characters that exist in either the receiver or otherSet.

Inverting a Character Set

– invert (page 942)
Replaces all the characters in the receiver with all the characters it didn’t previously contain.

Instance Methods

addCharactersInRange:
Adds to the receiver the characters whose Unicode values are in a given range.

- (void)addCharactersInRange:(NSRange)aRange

Parameters
aRange

The range of characters to add.

aRange.location is the value of the first character to add; aRange.location + aRange.length–
1 is the value of the last. If aRange.length is 0, this method has no effect.

Discussion
This code excerpt adds to a character set the lowercase English alphabetic characters:

NSMutableCharacterSet *aCharacterSet = [[NSMutableCharacterSet alloc] init];
NSRange lcEnglishRange;

lcEnglishRange.location = (unsigned int)'a';
lcEnglishRange.length = 26;
[aCharacterSet addCharactersInRange:lcEnglishRange];

Availability
Available in Mac OS X v10.0 and later.

940 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 81

NSMutableCharacterSet Class Reference

See Also
– removeCharactersInRange: (page 942)
– addCharactersInString: (page 941)

Declared In
NSCharacterSet.h

addCharactersInString:
Adds to the receiver the characters in a given string.

- (void)addCharactersInString:(NSString *)aString

Parameters
aString

The characters to add to the receiver.

Discussion
This method has no effect if aString is empty.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeCharactersInString: (page 943)
– addCharactersInRange: (page 940)

Related Sample Code
ImageMapExample

Declared In
NSCharacterSet.h

formIntersectionWithCharacterSet:
Modifies the receiver so it contains only characters that exist in both the receiver and otherSet.

- (void)formIntersectionWithCharacterSet:(NSCharacterSet *)otherSet

Parameters
otherSet

The character set with which to perform the intersection.

Availability
Available in Mac OS X v10.0 and later.

See Also
– formUnionWithCharacterSet: (page 942)

Declared In
NSCharacterSet.h

Instance Methods 941
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 81

NSMutableCharacterSet Class Reference

formUnionWithCharacterSet:
Modifies the receiver so it contains all characters that exist in either the receiver or otherSet.

- (void)formUnionWithCharacterSet:(NSCharacterSet *)otherSet

Availability
Available in Mac OS X v10.0 and later.

See Also
– formIntersectionWithCharacterSet: (page 941)

Declared In
NSCharacterSet.h

invert
Replaces all the characters in the receiver with all the characters it didn’t previously contain.

- (void)invert

Discussion
Inverting a mutable character set, whether by invert or by invertedSet (page 254), is much less efficient
than inverting an immutable character set with invertedSet.

Availability
Available in Mac OS X v10.0 and later.

See Also
– invertedSet (page 254) (NSCharacterSet)

Declared In
NSCharacterSet.h

removeCharactersInRange:
Removes from the receiver the characters whose Unicode values are in a given range.

- (void)removeCharactersInRange:(NSRange)aRange

Parameters
aRange

The range of characters to remove.

aRange.location is the value of the first character to remove; aRange.location +
aRange.length– 1 is the value of the last. If aRange.length is 0, this method has no effect.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addCharactersInRange: (page 940)
– removeCharactersInString: (page 943)

942 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 81

NSMutableCharacterSet Class Reference

Declared In
NSCharacterSet.h

removeCharactersInString:
Removes from the receiver the characters in a given string.

- (void)removeCharactersInString:(NSString *)aString

Parameters
aString

The characters to remove from the receiver.

Discussion
This method has no effect if aString is empty.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addCharactersInString: (page 941)
– removeCharactersInRange: (page 942)

Declared In
NSCharacterSet.h

Instance Methods 943
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 81

NSMutableCharacterSet Class Reference

944 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 81

NSMutableCharacterSet Class Reference

Inherits from NSData : NSObject

Conforms to NSCoding (NSData)
NSCopying (NSData)
NSMutableCopying (NSData)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSData.h
Foundation/NSSerialization.h (Deprecated)

Companion guide Binary Data Programming Guide for Cocoa

Related sample code CocoaHTTPServer
CocoaSOAP
GridCalendar
ImageClient
URL CacheInfo

Overview

NSMutableData (and its superclass NSData) provide data objects, object-oriented wrappers for byte buffers.
Data objects let simple allocated buffers (that is, data with no embedded pointers) take on the behavior of
Foundation objects. They are typically used for data storage and are also useful in Distributed Objects
applications, where data contained in data objects can be copied or moved between applications. NSData
creates static data objects, and NSMutableData creates dynamic data objects. You can easily convert one
type of data object to the other with the initializer that takes an NSData object or an NSMutableData object
as an argument.

NSMutableData is “toll-free bridged” with its Core Foundation counterpart, CFData. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSMutableData * parameter, you can pass a CFDataRef, and in
a function where you see a CFDataRef parameter, you can pass an NSMutableData instance (you cast one
type to the other to suppress compiler warnings). See Interchangeable Data Types for more information on
toll-free bridging.

Overview 945
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 82

NSMutableData Class Reference

Tasks

Creating and Initializing an NSMutableData Object

+ dataWithCapacity: (page 947)
Creates and returns an NSMutableData object capable of holding the specified number of bytes.

+ dataWithLength: (page 947)
Creates and returns an NSMutableData object containing a given number of zeroed bytes.

– initWithCapacity: (page 949)
Returns an initialized NSMutableData object capable of holding the specified number of bytes.

– initWithLength: (page 950)
Initializes and returns an NSMutableData object containing a given number of zeroed bytes.

Adjusting Capacity

– increaseLengthBy: (page 949)
Increases the length of the receiver by a given number of bytes.

– setLength: (page 953)
Extends or truncates a mutable data object to a given length.

Accessing Data

– mutableBytes (page 950)
Returns a pointer to the receiver’s data.

Adding Data

– appendBytes:length: (page 948)
Appends to the receiver a given number of bytes from a given buffer.

– appendData: (page 948)
Appends the content of another NSData object to the receiver.

Modifying Data

– replaceBytesInRange:withBytes: (page 951)
Replaces with a given set of bytes a given range within the contents of the receiver.

– replaceBytesInRange:withBytes:length: (page 951)
Replaces with a given set of bytes a given range within the contents of the receiver.

– resetBytesInRange: (page 952)
Replaces with zeroes the contents of the receiver in a given range.

946 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 82

NSMutableData Class Reference

– setData: (page 952)
Replaces the entire contents of the receiver with the contents of another data object.

Class Methods

dataWithCapacity:
Creates and returns an NSMutableData object capable of holding the specified number of bytes.

+ (id)dataWithCapacity:(NSUInteger)aNumItems

Parameters
aNumItems

The number of bytes the new data object can initially contain.

Return Value
A new NSMutableData object capable of holding aNumItems bytes.

Discussion
This method doesn’t necessarily allocate the requested memory right away. Mutable data objects allocate
additional memory as needed, so aNumItems simply establishes the object’s initial capacity. When it does
allocate the initial memory, though, it allocates the specified amount. This method sets the length of the
data object to 0.

If the capacity specified in aNumItems is greater than four memory pages in size, this method may round
the amount of requested memory up to the nearest full page.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithLength: (page 947)
– initWithCapacity: (page 949)
– initWithLength: (page 950)

Declared In
NSData.h

dataWithLength:
Creates and returns an NSMutableData object containing a given number of zeroed bytes.

+ (id)dataWithLength:(NSUInteger)length

Parameters
length

The number of bytes the new data object initially contains.

Return Value
A new NSMutableData object of length bytes, filled with zeros.

Class Methods 947
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 82

NSMutableData Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithCapacity: (page 947)
– initWithCapacity: (page 949)
– initWithLength: (page 950)

Declared In
NSData.h

Instance Methods

appendBytes:length:
Appends to the receiver a given number of bytes from a given buffer.

- (void)appendBytes:(const void *)bytes length:(NSUInteger)length

Parameters
bytes

A buffer containing data to append to the receiver's content.

length
The number of bytes from bytes to append.

Discussion
A sample using this method can be found in Working With Mutable Binary Data.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendData: (page 948)

Related Sample Code
Core Data HTML Store
QTSSConnectionMonitor
QTSSInspector

Declared In
NSData.h

appendData:
Appends the content of another NSData object to the receiver.

- (void)appendData:(NSData *)otherData

948 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 82

NSMutableData Class Reference

Parameters
otherData

The data object whose content is to be appended to the contents of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendBytes:length: (page 948)

Related Sample Code
GridCalendar

Declared In
NSData.h

increaseLengthBy:
Increases the length of the receiver by a given number of bytes.

- (void)increaseLengthBy:(NSUInteger)extraLength

Parameters
extraLength

The number of bytes by which to increase the receiver's length.

Discussion
The additional bytes are all set to 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLength: (page 953)

Declared In
NSData.h

initWithCapacity:
Returns an initialized NSMutableData object capable of holding the specified number of bytes.

- (id)initWithCapacity:(NSUInteger)capacity

Parameters
capacity

The number of bytes the data object can initially contain.

Return Value
An initialized NSMutableData object capable of holding capacity bytes.

Instance Methods 949
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 82

NSMutableData Class Reference

Discussion
This method doesn’t necessarily allocate the requested memory right away. Mutable data objects allocate
additional memory as needed, so aNumItems simply establishes the object’s initial capacity. When it does
allocate the initial memory, though, it allocates the specified amount. This method sets the length of the
data object to 0.

If the capacity specified in aNumItems is greater than four memory pages in size, this method may round
the amount of requested memory up to the nearest full page.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithCapacity: (page 947)
– initWithLength: (page 950)

Declared In
NSData.h

initWithLength:
Initializes and returns an NSMutableData object containing a given number of zeroed bytes.

- (id)initWithLength:(NSUInteger)length

Parameters
length

The number of bytes the object initially contains.

Return Value
An initialized NSMutableData object containing length zeroed bytes.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dataWithCapacity: (page 947)
+ dataWithLength: (page 947)
– initWithCapacity: (page 949)

Declared In
NSData.h

mutableBytes
Returns a pointer to the receiver’s data.

- (void *)mutableBytes

Return Value
A pointer to the receiver’s data.

950 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 82

NSMutableData Class Reference

Discussion
If the length of the receiver’s data is not zero, this function is guaranteed to return a pointer to the object's
internal bytes. If the length of receiver’s data is zero, this function may or may not return NULL dependent
upon many factors related to how the object was created (moreover, in this case the method result might
change between different releases).

A sample using this method can be found in Working With Mutable Binary Data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSData.h

replaceBytesInRange:withBytes:
Replaces with a given set of bytes a given range within the contents of the receiver.

- (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)bytes

Parameters
range

The range within the receiver's contents to replace with bytes. The range must not exceed the bounds
of the receiver.

bytes
The data to insert into the receiver's contents.

Discussion
If the location of range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The
receiver is resized to accommodate the new bytes, if necessary.

A sample using this method is given in Working With Mutable Binary Data.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replaceBytesInRange:withBytes:length: (page 951)
– resetBytesInRange: (page 952)

Declared In
NSData.h

replaceBytesInRange:withBytes:length:
Replaces with a given set of bytes a given range within the contents of the receiver.

- (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)replacementBytes
length:(NSUInteger)replacementLength

Instance Methods 951
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 82

NSMutableData Class Reference

Parameters
range

The range within the receiver's contents to replace with bytes. The range must not exceed the bounds
of the receiver.

replacementBytes
The data to insert into the receiver's contents.

replacementLength
The number of bytes to take from replacementBytes.

Discussion
If the length of range is not equal to replacementLength, the receiver is resized to accommodate the new
bytes. Any bytes past range in the receiver are shifted to accommodate the new bytes. You can therefore
pass NULL for replacementBytes and 0 for replacementLength to delete bytes in the receiver in the
range range. You can also replace a range (which might be zero-length) with more bytes than the length
of the range, which has the effect of insertion (or “replace some and insert more”).

Availability
Available in Mac OS X v10.2 and later.

See Also
– replaceBytesInRange:withBytes: (page 951)

Declared In
NSData.h

resetBytesInRange:
Replaces with zeroes the contents of the receiver in a given range.

- (void)resetBytesInRange:(NSRange)range

Parameters
range

The range within the contents of the receiver to be replaced by zeros. The range must not exceed
the bounds of the receiver.

Discussion
If the location of range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The
receiver is resized to accommodate the new bytes, if necessary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replaceBytesInRange:withBytes: (page 951)

Declared In
NSData.h

setData:
Replaces the entire contents of the receiver with the contents of another data object.

952 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 82

NSMutableData Class Reference

- (void)setData:(NSData *)aData

Parameters
aData

The data object whose content replaces that of the receiver.

Discussion
As part of its implementation, this method calls replaceBytesInRange:withBytes: (page 951).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSData.h

setLength:
Extends or truncates a mutable data object to a given length.

- (void)setLength:(NSUInteger)length

Parameters
length

The new length for the receiver.

Discussion
If the mutable data object is extended, the additional bytes are filled with zeros.

Availability
Available in Mac OS X v10.0 and later.

See Also
– increaseLengthBy: (page 949)

Declared In
NSData.h

Instance Methods 953
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 82

NSMutableData Class Reference

954 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 82

NSMutableData Class Reference

Inherits from NSDictionary : NSObject

Conforms to NSCoding (NSDictionary)
NSCopying (NSDictionary)
NSMutableCopying (NSDictionary)
NSFastEnumeration (NSDictionary)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDictionary.h

Companion guide Collections Programming Topics for Cocoa

Related sample code EnhancedAudioBurn
GridCalendar
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Class at a Glance

An NSDictionary object stores a mutable set of entries.

Principal Attributes

 ■ A count of the number of entries in the dictionary

 ■ The set of keys contained in the dictionary

 ■ The objects that correspond to the keys in the dictionary

dictionaryWithCapacity: (page 957)
Returns an empty dictionary with enough allocated space to hold a specified number of objects.

Class at a Glance 955
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 83

NSMutableDictionary Class Reference

Commonly Used Methods

removeObjectForKey: (page 959)
Removes the specified entry from the dictionary.

removeObjectsForKeys: (page 960)
Removes multiple entries from the dictionary.

Overview

The NSMutableDictionary class declares the programmatic interface to objects that manage mutable
associations of keys and values. With its two efficient primitive methods—setObject:forKey: (page 961)
and removeObjectForKey: (page 959)—this class adds modification operations to the basic operations it
inherits from NSDictionary.

The other methods declared here operate by invoking one or both of these primitives. The non-primitive
methods provide convenient ways of adding or removing multiple entries at a time.

When an entry is removed from a mutable dictionary, the key and value objects that make up the entry
receive release (page 2106) messages. If there are no further references to the objects, they’re deallocated.
Note that if your program keeps a reference to such an object, the reference will become invalid unless you
remember to send the object a retain message before it’s removed from the dictionary. For example, the
third statement below would result in a runtime error if anObject was not retained before it was removed:

id anObject = [[aDictionary objectForKey:theKey] retain];

[aDictionary removeObjectForKey:theKey];
[anObject someMessage];

Tasks

Creating and Initializing a Mutable Dictionary

+ dictionaryWithCapacity: (page 957)
Creates and returns a mutable dictionary, initially giving it enough allocated memory to hold a given
number of entries.

– initWithCapacity: (page 958)
Initializes a newly allocated mutable dictionary, allocating enough memory to hold numItems entries.

Adding Entries to a Mutable Dictionary

– setObject:forKey: (page 961)
Adds a given key-value pair to the receiver.

– setValue:forKey: (page 962)
Adds a given key-value pair to the receiver.

956 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 83

NSMutableDictionary Class Reference

– addEntriesFromDictionary: (page 958)
Adds to the receiver the entries from another dictionary.

– setDictionary: (page 961)
Sets the contents of the receiver to entries in a given dictionary.

Removing Entries From a Mutable Dictionary

– removeObjectForKey: (page 959)
Removes a given key and its associated value from the receiver.

– removeAllObjects (page 959)
Empties the receiver of its entries.

– removeObjectsForKeys: (page 960)
Removes from the receiver entries specified by elements in a given array.

Class Methods

dictionaryWithCapacity:
Creates and returns a mutable dictionary, initially giving it enough allocated memory to hold a given number
of entries.

+ (id)dictionaryWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the new dictionary.

Return Value
A new mutable dictionary with enough allocated memory to hold numItems entries.

Discussion
Mutable dictionaries allocate additional memory as needed, so numItems simply establishes the object’s
initial capacity.

Availability
Available in Mac OS X v10.0 and later.

See Also
dictionary (page 498) (NSDictionary)
dictionaryWithContentsOfFile: (page 499) (NSDictionary)
dictionaryWithContentsOfURL: (page 500): (NSDictionary)
dictionaryWithObject:forKey: (page 500) (NSDictionary)
dictionaryWithObjects:forKeys: (page 501): (NSDictionary)
dictionaryWithObjects:forKeys:count: (page 502) (NSDictionary)
dictionaryWithObjectsAndKeys: (page 503) (NSDictionary)
– initWithCapacity: (page 958)

Class Methods 957
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 83

NSMutableDictionary Class Reference

Related Sample Code
Dicey
EnhancedAudioBurn
QTKitPlayer
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSDictionary.h

Instance Methods

addEntriesFromDictionary:
Adds to the receiver the entries from another dictionary.

- (void)addEntriesFromDictionary:(NSDictionary *)otherDictionary

Parameters
otherDictionary

The dictionary from which to add entries

Discussion
Each value object from otherDictionary is sent a retain (page 2108) message before being added to the
receiver. In contrast, each key object is copied (using copyWithZone: (page 2042)—keys must conform to
the NSCopying protocol), and the copy is added to the receiver.

If both dictionaries contain the same key, the receiver’s previous value object for that key is sent a release
message, and the new value object takes its place.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setObject:forKey: (page 961)

Related Sample Code
EnhancedAudioBurn
EnhancedDataBurn
Sketch-112

Declared In
NSDictionary.h

initWithCapacity:
Initializes a newly allocated mutable dictionary, allocating enough memory to hold numItems entries.

- (id)initWithCapacity:(NSUInteger)numItems

958 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 83

NSMutableDictionary Class Reference

Parameters
numItems

The initial capacity of the initialized dictionary.

Return Value
An initialized mutable dictionary, which might be different than the original receiver.

Discussion
Mutable dictionaries allocate additional memory as needed, so numItems simply establishes the object’s
initial capacity.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ dictionaryWithCapacity: (page 957)

Declared In
NSDictionary.h

removeAllObjects
Empties the receiver of its entries.

- (void)removeAllObjects

Discussion
Each key and corresponding value object is sent a release (page 2106) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeObjectForKey: (page 959)
– removeObjectsForKeys: (page 960)

Related Sample Code
QTSSConnectionMonitor
QTSSInspector

Declared In
NSDictionary.h

removeObjectForKey:
Removes a given key and its associated value from the receiver.

- (void)removeObjectForKey:(id)aKey

Parameters
aKey

The key to remove.

Instance Methods 959
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 83

NSMutableDictionary Class Reference

Discussion
Does nothing if aKey does not exist.

For example, assume you have an archived dictionary that records the call letters and associated frequencies
of radio stations. To remove an entry for a defunct station, you could write code similar to the following:

NSMutableDictionary *stations = nil;

stations = [[NSMutableDictionary alloc]
 initWithContentsOfFile: pathToArchive];
[stations removeObjectForKey:@"KIKT"];

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeAllObjects (page 959)
– removeObjectsForKeys: (page 960)

Related Sample Code
AnimatedSlider
CoreRecipes
EnhancedAudioBurn
GridCalendar

Declared In
NSDictionary.h

removeObjectsForKeys:
Removes from the receiver entries specified by elements in a given array.

- (void)removeObjectsForKeys:(NSArray *)keyArray

Parameters
keyArray

An array of objects specifying the keys to remove.

Discussion
If a key in keyArray does not exist, the entry is ignored.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeObjectForKey: (page 959)
– removeObjectForKey: (page 959)

Related Sample Code
CoreRecipes

Declared In
NSDictionary.h

960 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 83

NSMutableDictionary Class Reference

setDictionary:
Sets the contents of the receiver to entries in a given dictionary.

- (void)setDictionary:(NSDictionary *)otherDictionary

Parameters
otherDictionary

A dictionary containing the new entries.

Discussion
All entries are removed from the receiver (with removeAllObjects (page 959)), then each entry from
otherDictionary added into the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDictionary.h

setObject:forKey:
Adds a given key-value pair to the receiver.

- (void)setObject:(id)anObject forKey:(id)aKey

Parameters
anObject

The value for key. The object receives a retain message before being added to the receiver. This
value must not be nil.

aKey
The key for value. The key is copied (using copyWithZone: (page 2042); keys must conform to the
NSCopying protocol). The key must not be nil.

Discussion
Raises an NSInvalidArgumentException if aKey or anObject is nil. If you need to represent a nil value
in the dictionary, use NSNull.

If aKey already exists in the receiver, the receiver’s previous value object for that key is sent a release (page
2106) message and anObject takes its place.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeObjectForKey: (page 959)

Related Sample Code
Dicey
GridCalendar
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Instance Methods 961
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 83

NSMutableDictionary Class Reference

Declared In
NSDictionary.h

setValue:forKey:
Adds a given key-value pair to the receiver.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters
value

The value for key.

key
The key for value. Note that when using key-value coding, the key must be a string (see Key-Value
Coding Fundamentals).

Discussion
This method adds value and key to the receiver using setObject:forKey: (page 961), unless value is
nil in which case the method instead attempts to remove key using removeObjectForKey: (page 959).

Availability
Available in Mac OS X v10.3 and later.

See Also
valueForKey: (page 522) (NSDictionary)

Related Sample Code
CustomAtomicStoreSubclass
Dicey
SimpleCalendar
Spotlight
StickiesExample

Declared In
NSKeyValueCoding.h

962 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 83

NSMutableDictionary Class Reference

Inherits from NSIndexSet : NSObject

Conforms to NSCoding (NSIndexSet)
NSCopying (NSIndexSet)
NSMutableCopying (NSIndexSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSIndexSet.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Collections Programming Topics for Cocoa

Related sample code Core Data HTML Store
MyPhoto

Overview

The NSMutableIndexSet class represents a mutable collection of unique unsigned integers, known as
indexes because of the way they are used. This collection is referred to as a mutable index set.

The values in a mutable index set are always sorted, so the order in which values are added is irrelevant.

You must not subclass the NSMutableIndexSet class.

Tasks

Adding Indexes

– addIndex: (page 964)
Adds an index to the receiver.

– addIndexes: (page 964)
Adds the indexes in an index set to the receiver.

– addIndexesInRange: (page 965)
Adds the indexes in an index range to the receiver.

Overview 963
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 84

NSMutableIndexSet Class Reference

Removing Indexes

– removeIndex: (page 966)
Removes an index from the receiver.

– removeIndexes: (page 966)
Removes the indexes in an index set from the receiver.

– removeAllIndexes (page 965)
Removes the receiver’s indexes.

– removeIndexesInRange: (page 966)
Removes the indexes in an index range from the receiver.

Shifting Index Groups

– shiftIndexesStartingAtIndex:by: (page 967)
Shifts a group of indexes to the left or the right within the receiver.

Instance Methods

addIndex:
Adds an index to the receiver.

- (void)addIndex:(NSUInteger)index

Parameters
index

Index to add.

Availability
Available in Mac OS X v10.3 and later.

See Also
– addIndexes: (page 964)
– addIndexesInRange: (page 965)

Related Sample Code
Core Data HTML Store

Declared In
NSIndexSet.h

addIndexes:
Adds the indexes in an index set to the receiver.

- (void)addIndexes:(NSIndexSet *)indexSet

964 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 84

NSMutableIndexSet Class Reference

Parameters
indexSet

Index set to add.

Availability
Available in Mac OS X v10.3 and later.

See Also
– addIndex: (page 964)
– addIndexesInRange: (page 965)

Declared In
NSIndexSet.h

addIndexesInRange:
Adds the indexes in an index range to the receiver.

- (void)addIndexesInRange:(NSRange)indexRange

Parameters
indexRange

Index range to add. Must include only indexes representable as unsigned integers.

Discussion
This method raises an NSRangeException (page 2306) when indexRangewould add an index that exceeds
the maximum allowed value for unsigned integers.

Availability
Available in Mac OS X v10.3 and later.

See Also
– addIndex: (page 964)
– addIndexes: (page 964)

Declared In
NSIndexSet.h

removeAllIndexes
Removes the receiver’s indexes.

- (void)removeAllIndexes

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeIndex: (page 966)
– removeIndexes: (page 966)
– removeIndexesInRange: (page 966)

Instance Methods 965
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 84

NSMutableIndexSet Class Reference

Declared In
NSIndexSet.h

removeIndex:
Removes an index from the receiver.

- (void)removeIndex:(NSUInteger)index

Parameters
index

Index to remove.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeAllIndexes (page 965)
– removeIndexes: (page 966)
– removeIndexesInRange: (page 966)

Declared In
NSIndexSet.h

removeIndexes:
Removes the indexes in an index set from the receiver.

- (void)removeIndexes:(NSIndexSet *)indexSet

Parameters
indexSet

Index set to remove.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeIndex: (page 966)
– removeAllIndexes (page 965)
– removeIndexesInRange: (page 966)

Declared In
NSIndexSet.h

removeIndexesInRange:
Removes the indexes in an index range from the receiver.

- (void)removeIndexesInRange:(NSRange)indexRange

966 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 84

NSMutableIndexSet Class Reference

Parameters
indexRange

Index range to remove.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeIndex: (page 966)
– removeIndexes: (page 966)
– removeAllIndexes (page 965)

Declared In
NSIndexSet.h

shiftIndexesStartingAtIndex:by:
Shifts a group of indexes to the left or the right within the receiver.

- (void)shiftIndexesStartingAtIndex:(NSUInteger)startIndex by:(NSInteger)delta

Parameters
startIndex

Head of the group of indexes to shift.

delta
Amount and direction of the shift. Positive integers shift the indexes to the right. Negative integers
shift the indexes to the left.

Discussion
The group of indexes shifted is made up by startIndex and the indexes that follow it in the receiver.

A left shift deletes the indexes in the range (startIndex-delta,delta) from the receiver.

A right shift inserts empty space in the range (indexStart,delta) in the receiver.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSIndexSet.h

Instance Methods 967
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 84

NSMutableIndexSet Class Reference

968 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 84

NSMutableIndexSet Class Reference

Inherits from NSSet : NSObject

Conforms to NSCoding (NSSet)
NSCopying (NSSet)
NSMutableCopying (NSSet)
NSFastEnumeration (NSSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSSet.h

Companion guide Collections Programming Topics for Cocoa

Related sample code Core Data HTML Store
CoreRecipes
CustomAtomicStoreSubclass
MyPhoto
QTMetadataEditor

Overview

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set of
objects. NSMutableSet provides support for the mathematical concept of a set. A set, both in its mathematical
sense and in the NSMutableSet implementation, is an unordered collection of distinct elements.

The NSCountedSet class, which is a concrete subclass of NSMutableSet, supports mutable sets that can
contain multiple instances of the same element. The NSSet class supports creating and managing immutable
sets.

You add objects to an NSMutableSet object with addObject: (page 971), which adds a single object to the
set; addObjectsFromArray: (page 972), which adds all objects from a specified array to the set; or
unionSet: (page 975), which adds all the objects from another set. You remove objects from an
NSMutableSet object using any of the methods intersectSet: (page 973), minusSet: (page 974),
removeAllObjects (page 974), or removeObject: (page 975).

When an object is added to a set, it receives a retain (page 2108) message. When an object is removed from
a mutable set, it receives a release (page 2106) message. If there are no further references to the object, this
means that the object is deallocated. If your program keeps a reference to such an object, the reference will

Overview 969
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 85

NSMutableSet Class Reference

become invalid unless you send the object a retain (page 2108) message before it’s removed from the array.
For example, if anObject is not retained before it is removed from the set, the third statement below could
result in a runtime error:

id anObject = [[aSet anyObject] retain];
[aSet removeObject:anObject];
[anObject someMessage];

Tasks

Creating a Mutable Set

+ setWithCapacity: (page 971)
Creates and returns a mutable set with a given initial capacity.

– initWithCapacity: (page 973)
Returns an initialized mutable set with a given initial capacity.

Adding and Removing Entries

– addObject: (page 971)
Adds a given object to the receiver, if it is not already a member.

– filterUsingPredicate: (page 972)
Evaluates a given predicate against the receiver’s content and removes from the receiver those objects
for which the predicate returns false.

– removeObject: (page 975)
Removes a given object from the receiver.

– removeAllObjects (page 974)
Empties the receiver of all of its members.

– addObjectsFromArray: (page 972)
Adds to the receiver each object contained in a given array that is not already a member.

Combining and Recombining Sets

– unionSet: (page 975)
Adds to the receiver each object contained in another given set that is not already a member.

– minusSet: (page 974)
Removes from the receiver each object contained in another given set that is present in the receiver.

– intersectSet: (page 973)
Removes from the receiver each object that isn’t a member of another given set.

– setSet: (page 975)
Empties the receiver, then adds to the receiver each object contained in another given set.

970 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 85

NSMutableSet Class Reference

Class Methods

setWithCapacity:
Creates and returns a mutable set with a given initial capacity.

+ (id)setWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the new set.

Return Value
A mutable set with initial capacity to hold numItems members.

Discussion
Mutable sets allocate additional memory as needed, so numItems simply establishes the object’s initial
capacity.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithCapacity: (page 973)
+ set (page 1445) (NSSet)
+ setWithObjects:count: (page 1447) (NSSet)

Declared In
NSSet.h

Instance Methods

addObject:
Adds a given object to the receiver, if it is not already a member.

- (void)addObject:(id)anObject

Parameters
anObject

The object to add to the receiver.

Discussion
If anObject is already present in the set, this method has no effect on either the set or anObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addObjectsFromArray: (page 972)

Class Methods 971
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 85

NSMutableSet Class Reference

– unionSet: (page 975)

Related Sample Code
Core Data HTML Store
CoreRecipes
CustomAtomicStoreSubclass
QTMetadataEditor
Sketch-112

Declared In
NSSet.h

addObjectsFromArray:
Adds to the receiver each object contained in a given array that is not already a member.

- (void)addObjectsFromArray:(NSArray *)anArray

Parameters
anArray

An array of objects to add to the receiver.

Discussion
If a given element of the array is already present in the set, this method has no effect on either the set or the
array element.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addObject: (page 971)
– unionSet: (page 975)

Related Sample Code
Core Data HTML Store
CoreRecipes

Declared In
NSSet.h

filterUsingPredicate:
Evaluates a given predicate against the receiver’s content and removes from the receiver those objects for
which the predicate returns false.

- (void)filterUsingPredicate:(NSPredicate *)predicate

Parameters
predicate

A predicate.

972 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 85

NSMutableSet Class Reference

Discussion
The following example illustrates the use of this method.

NSMutableSet *mutableSet =
 [NSMutableSet setWithObjects:@"One", @"Two", @"Three", @"Four", nil];
NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@"SELF beginswith 'T'"];
[mutableSet filterUsingPredicate:predicate];
// mutableSet contains (Two, Three)

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicate.h

initWithCapacity:
Returns an initialized mutable set with a given initial capacity.

- (id)initWithCapacity:(NSUInteger)numItems

Parameters
numItems

The initial capacity of the set.

Return Value
An initialized mutable set with initial capacity to hold numItems members. The returned object might be
different than the original receiver.

Discussion
Mutable sets allocate additional memory as needed, so numItems simply establishes the object’s initial
capacity.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setWithCapacity: (page 971)

Declared In
NSSet.h

intersectSet:
Removes from the receiver each object that isn’t a member of another given set.

- (void)intersectSet:(NSSet *)otherSet

Parameters
otherSet

The set with which to perform the intersection.

Instance Methods 973
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 85

NSMutableSet Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeObject: (page 975)
– removeAllObjects (page 974)
– minusSet: (page 974)

Declared In
NSSet.h

minusSet:
Removes from the receiver each object contained in another given set that is present in the receiver.

- (void)minusSet:(NSSet *)otherSet

Parameters
otherSet

The set of objects to remove from the receiver.

Discussion
If any member of otherSet isn’t present in the receiving set, this method has no effect on either the receiver
or the otherSet member.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeObject: (page 975)
– removeAllObjects (page 974)
– intersectSet: (page 973)

Related Sample Code
CoreRecipes
MyPhoto

Declared In
NSSet.h

removeAllObjects
Empties the receiver of all of its members.

- (void)removeAllObjects

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeObject: (page 975)
– minusSet: (page 974)

974 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 85

NSMutableSet Class Reference

– intersectSet: (page 973)

Related Sample Code
CoreRecipes

Declared In
NSSet.h

removeObject:
Removes a given object from the receiver.

- (void)removeObject:(id)anObject

Parameters
anObject

The object to remove from the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeAllObjects (page 974)
– minusSet: (page 974)
– intersectSet: (page 973)

Related Sample Code
CoreRecipes

Declared In
NSSet.h

setSet:
Empties the receiver, then adds to the receiver each object contained in another given set.

- (void)setSet:(NSSet *)otherSet

Parameters
otherSet

The set whose members replace the receiver's content.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSet.h

unionSet:
Adds to the receiver each object contained in another given set that is not already a member.

Instance Methods 975
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 85

NSMutableSet Class Reference

- (void)unionSet:(NSSet *)otherSet

Parameters
otherSet

The set of objects to add to the receiver.

Discussion
If any member of otherSet is already present in the receiver, this method has no effect on either the receiver
or the otherSet member.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addObject: (page 971)
– addObjectsFromArray: (page 972)

Declared In
NSSet.h

976 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 85

NSMutableSet Class Reference

Inherits from NSString : NSObject

Conforms to NSCoding (NSString)
NSCopying (NSString)
NSMutableCopying (NSString)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSString.h

Companion guide String Programming Guide for Cocoa

Related sample code CoreRecipes
CubePuzzle
NSGLImage
NumberInput_IMKit_Sample
QTAudioExtractionPanel

Overview

The NSMutableString class declares the programmatic interface to an object that manages a mutable
string—that is, a string whose contents can be edited—that conceptually represents an array of Unicode
characters. To construct and manage an immutable string—or a string that cannot be changed after it has
been created—use an object of the NSString class.

The NSMutableString class adds one primitive
method—replaceCharactersInRange:withString: (page 982)—to the basic string-handling behavior
inherited from NSString. All other methods that modify a string work through this method. For example,
insertString:atIndex: (page 981) simply replaces the characters in a range of 0 length, while
deleteCharactersInRange: (page 980) replaces the characters in a given range with no characters.

Overview 977
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 86

NSMutableString Class Reference

Tasks

Creating and Initializing a Mutable String

+ stringWithCapacity: (page 978)
Returns an empty NSMutableString object with initial storage for a given number of characters.

– initWithCapacity: (page 981)
Returns an NSMutableString object initialized with initial storage for a given number of characters,

Modifying a String

– appendFormat: (page 979)
Adds a constructed string to the receiver.

– appendString: (page 980)
Adds to the end of the receiver the characters of a given string.

– deleteCharactersInRange: (page 980)
Removes from the receiver the characters in a given range.

– insertString:atIndex: (page 981)
Inserts into the receiver the characters of a given string at a given location.

– replaceCharactersInRange:withString: (page 982)
Replaces the characters from aRange with those in aString.

– replaceOccurrencesOfString:withString:options:range: (page 982)
Replaces all occurrences of a given string in a given range with another given string, returning the
number of replacements.

– setString: (page 983)
Replaces the characters of the receiver with those in a given string.

Class Methods

stringWithCapacity:
Returns an empty NSMutableString object with initial storage for a given number of characters.

+ (id)stringWithCapacity:(NSUInteger)capacity

Parameters
capacity

The number of characters the string is expected to initially contain.

Return Value
An empty NSMutableString object with initial storage for capacity characters.

978 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 86

NSMutableString Class Reference

Discussion
The number of characters indicated by capacity is simply a hint to increase the efficiency of data storage.
The value does not limit the length of the string.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
PDFKitLinker2
QTRecorder

Declared In
NSString.h

Instance Methods

appendFormat:
Adds a constructed string to the receiver.

- (void)appendFormat:(NSString *)format ...

Parameters
format

A format string. See Formatting String Objects for more information. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Discussion
The appended string is formed usingNSString'sstringWithFormat: (page 1536) method with the arguments
listed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendString: (page 980)

Related Sample Code
CoreRecipes
iSpend
ThreadsImporter
ThreadsImportMovie
TimelineToTC

Declared In
NSString.h

Instance Methods 979
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 86

NSMutableString Class Reference

appendString:
Adds to the end of the receiver the characters of a given string.

- (void)appendString:(NSString *)aString

Parameters
aString

The string to append to the receiver. aString must not be nil

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendFormat: (page 979)

Related Sample Code
CoreRecipes
JavaSplashScreen
QTKitPlayer
SampleScannerApp
TimelineToTC

Declared In
NSString.h

deleteCharactersInRange:
Removes from the receiver the characters in a given range.

- (void)deleteCharactersInRange:(NSRange)aRange

Parameters
aRange

The range of characters to delete. aRange must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NumberInput_IMKit_Sample

Declared In
NSString.h

980 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 86

NSMutableString Class Reference

initWithCapacity:
Returns an NSMutableString object initialized with initial storage for a given number of characters,

- (id)initWithCapacity:(NSUInteger)capacity

Parameters
capacity

The number of characters the string is expected to initially contain.

Return Value
An initialized NSMutableString object with initial storage for capacity characters. The returned object
might be different than the original receiver.

Discussion
The number of characters indicated by capacity is simply a hint to increase the efficiency of data storage.
The value does not limit the length of the string.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSString.h

insertString:atIndex:
Inserts into the receiver the characters of a given string at a given location.

- (void)insertString:(NSString *)aString atIndex:(NSUInteger)anIndex

Parameters
aString

The string to insert into the receiver. aString must not be nil.

anIndex
The location at which aString is inserted. The location must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if anIndex lies beyond the end of the string.

Discussion
The new characters begin at anIndex and the existing characters from anIndex to the end are shifted by
the length of aString.

This method treats the length of the string as a valid index value that returns an empty string.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Aperture Image Resizer
CustomSave

Declared In
NSString.h

Instance Methods 981
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 86

NSMutableString Class Reference

replaceCharactersInRange:withString:
Replaces the characters from aRange with those in aString.

- (void)replaceCharactersInRange:(NSRange)aRange withString:(NSString *)aString

Parameters
aRange

The range of characters to replace. aRange must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the receiver.

aString
The string with which to replace the characters in aRange. aString must not be nil.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
LSMSmartCategorizer

Declared In
NSString.h

replaceOccurrencesOfString:withString:options:range:
Replaces all occurrences of a given string in a given range with another given string, returning the number
of replacements.

- (NSUInteger)replaceOccurrencesOfString:(NSString *)target withString:(NSString
*)replacement options:(NSStringCompareOptions)opts range:(NSRange)searchRange

982 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 86

NSMutableString Class Reference

Parameters
target

The string to replace.

Important: Raises an NSInvalidArgumentException if target is nil.

replacement
The string with which to replace target.

Important: Raises an NSInvalidArgumentException if replacement is nil.

opts
A mask specifying search options. See String Programming Guide for Cocoa for details.

If opts is NSBackwardsSearch, the search is done from the end of the range. If opts is
NSAnchoredSearch, only anchored (but potentially multiple) instances are replaced.
NSLiteralSearch and NSCaseInsensitiveSearch also apply.

searchRange
The range of characters to replace. aRange must not exceed the bounds of the receiver. Specify
searchRange as NSMakeRange(0, [receiver length]) to process the entire string.

Important: Raises an NSRangeException if any part of searchRange lies beyond the end of the receiver.

Return Value
The number of replacements made.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CubePuzzle
JavaSplashScreen
NewsReader
SpotlightAPI
VideoHardwareInfo

Declared In
NSString.h

setString:
Replaces the characters of the receiver with those in a given string.

- (void)setString:(NSString *)aString

Instance Methods 983
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 86

NSMutableString Class Reference

Parameters
aString

The string with which to replace the receiver's content. aString must not be nil.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NumberInput_IMKit_Sample
PDFKitLinker2
QTCoreVideo201
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSString.h

984 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 86

NSMutableString Class Reference

Inherits from NSURLRequest : NSObject

Conforms to NSCoding (NSURLRequest)
NSCopying (NSURLRequest)
NSMutableCopying (NSURLRequest)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLRequest.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

NSMutableURLRequest is a subclass of NSURLRequest provided to aid developers who may find it more
convenient to mutate a single request object for a series of URL load requests instead of creating an immutable
NSURLRequest for each load.

This programming model is supported by the following contract between NSMutableURLRequest and
NSURLConnection: NSURLConnection makes a deep copy of each NSMutableURLRequest object passed to
one of its initializers.

NSMutableURLRequest, like NSURLRequest, is designed to be extended to support additional protocols by
adding categories that access protocol specific values from a property object using NSURLProtocol’s
propertyForKey:inRequest: (page 1818) andsetProperty:forKey:inRequest: (page 1820) methods.

Tasks

Setting Request Properties

– setCachePolicy: (page 987)
Sets the cache policy of the receiver.

– setMainDocumentURL: (page 989)
Sets the main document URL for the receiver.

Overview 985
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 87

NSMutableURLRequest Class Reference

– setTimeoutInterval: (page 989)
Sets the receiver’s timeout interval, in seconds.

– setURL: (page 990)
Sets the URL of the receiver

Setting HTTP Specific Properties

– addValue:forHTTPHeaderField: (page 986)
Adds an HTTP header to the receiver’s HTTP header dictionary.

– setAllHTTPHeaderFields: (page 987)
Replaces the receiver's header fields with the passed values.

– setHTTPBody: (page 987)
Sets the request body of the receiver to the specified data.

– setHTTPBodyStream: (page 988)
Sets the request body of the receiver to the contents of a specified input stream.

– setHTTPMethod: (page 988)
Sets the receiver’s HTTP request method.

– setHTTPShouldHandleCookies: (page 989)
Sets whether the receiver should use the default cookie handling for the request.

– setValue:forHTTPHeaderField: (page 990)
Sets the specified HTTP header field.

Instance Methods

addValue:forHTTPHeaderField:
Adds an HTTP header to the receiver’s HTTP header dictionary.

- (void)addValue:(NSString *)value forHTTPHeaderField:(NSString *)field

Parameters
value

The value for the header field.

field
The name of the header field. In keeping with the HTTP RFC, HTTP header field names are
case-insensitive

Discussion
This method provides the ability to add values to header fields incrementally. If a value was previously set
for the specified field, the supplied value is appended to the existing value using the appropriate field
delimiter. In the case of HTTP, this is a comma.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

986 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 87

NSMutableURLRequest Class Reference

See Also
– setValue:forHTTPHeaderField: (page 990)

Declared In
NSURLRequest.h

setAllHTTPHeaderFields:
Replaces the receiver's header fields with the passed values.

- (void)setAllHTTPHeaderFields:(NSDictionary *)headerFields

Parameters
headerFields

A dictionary with the new header fields. HTTP header fields must be string values; therefore, each
object and key in the headerFields dictionary must be a subclass of NSString. If either the key or
value for a key-value pair is not a subclass of NSString, the key-value pair is skipped.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– setValue:forHTTPHeaderField: (page 990)

Declared In
NSURLRequest.h

setCachePolicy:
Sets the cache policy of the receiver.

- (void)setCachePolicy:(NSURLRequestCachePolicy)policy

Parameters
policy

The new cache policy.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– cachePolicy (page 1828)

Declared In
NSURLRequest.h

setHTTPBody:
Sets the request body of the receiver to the specified data.

Instance Methods 987
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 87

NSMutableURLRequest Class Reference

- (void)setHTTPBody:(NSData *)data

Parameters
data

The new request body for the receiver. This is sent as the message body of the request, as in an HTTP
POST request.

Discussion
Setting the HTTP body data clears any input stream set by setHTTPBodyStream: (page 988). These values
are mutually exclusive.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLRequest.h

setHTTPBodyStream:
Sets the request body of the receiver to the contents of a specified input stream.

- (void)setHTTPBodyStream:(NSInputStream *)inputStream

Parameters
inputStream

The input stream that will be the request body of the receiver. The entire contents of the stream will
be sent as the body, as in an HTTP POST request. The inputStream should be unopened and the
receiver will take over as the stream’s delegate.

Discussion
Setting a body stream clears any data set by setHTTPBody: (page 987). These values are mutually exclusive.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSURLRequest.h

setHTTPMethod:
Sets the receiver’s HTTP request method.

- (void)setHTTPMethod:(NSString *)method

Parameters
method

The new HTTP request method. The default HTTP method is “GET”.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

988 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 87

NSMutableURLRequest Class Reference

Declared In
NSURLRequest.h

setHTTPShouldHandleCookies:
Sets whether the receiver should use the default cookie handling for the request.

- (void)setHTTPShouldHandleCookies:(BOOL)handleCookies

Parameters
handleCookies

YES if the receiver should use the default cookie handling for the request, NO otherwise. The default
is YES.

Special Considerations

In Mac OS X v10.2 with Safari 1.0 the value set by this method is not respected by the framework.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLRequest.h

setMainDocumentURL:
Sets the main document URL for the receiver.

- (void)setMainDocumentURL:(NSURL *)theURL

Parameters
theURL

The new main document URL. Can be nil.

Discussion
The caller should set the main document URL to an appropriate main document, if known. For example,
when loading a web page the URL of the HTML document for the top-level frame would be appropriate. This
URL will be used for the “only from same domain as main document” cookie accept policy.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLRequest.h

setTimeoutInterval:
Sets the receiver’s timeout interval, in seconds.

- (void)setTimeoutInterval:(NSTimeInterval)timeoutInterval

Instance Methods 989
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 87

NSMutableURLRequest Class Reference

Parameters
timeoutInterval

The timeout interval, in seconds. If during a connection attempt the request remains idle for longer
than the timeout interval, the request is considered to have timed out. The default timeout interval
is 60 seconds.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– timeoutInterval (page 1831)

Declared In
NSURLRequest.h

setURL:
Sets the URL of the receiver

- (void)setURL:(NSURL *)theURL

Parameters
theURL

The new URL.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– URL (page 1832)

Declared In
NSURLRequest.h

setValue:forHTTPHeaderField:
Sets the specified HTTP header field.

- (void)setValue:(NSString *)value forHTTPHeaderField:(NSString *)field

Parameters
value

The new value for the header field. Any existing value for the field is replaced by the new value.

field
The name of the header field to set. In keeping with the HTTP RFC, HTTP header field names are
case-insensitive.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

990 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 87

NSMutableURLRequest Class Reference

See Also
– addValue:forHTTPHeaderField: (page 986)

Declared In
NSURLRequest.h

Instance Methods 991
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 87

NSMutableURLRequest Class Reference

992 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 87

NSMutableURLRequest Class Reference

Inherits from NSScriptObjectSpecifier : NSObject

Conforms to NSCoding (NSScriptObjectSpecifier)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSScriptObjectSpecifiers.h

Availability Available in Mac OS X v10.2 and later.

Companion guide Cocoa Scripting Guide

Overview

Specifies an object in a collection (or container) by name. For example, the following script specifies both an
application and a window by name. In this script, the named window’s implicitly specified container is the
Finder application’s list of open windows.

tell application "Finder" -- specifies an application by name
 close window "Reports" -- specifies a window by name
end tell

This specifier works only for objects that have a name property. You don’t normally subclass
NSNameSpecifier.

The evaluation of an instance of NSNameSpecifier follows these steps until the specified object is found:

1. If the container implements a method whose selector matches the relevant valueIn<Key>WithName:
pattern established by scripting key-value coding, the method is invoked. This method can potentially
be very fast, and it may be relatively easy to implement.

2. As is the case when evaluating any script object specifier, the container of the specified object is given
a chance to evaluate the object specifier. If the container class implements the
indicesOfObjectsByEvaluatingObjectSpecifier method, the method is invoked. This method
can potentially be very fast, but it is relatively difficult to implement.

3. An instance of NSWhoseSpecifier that specifies the first object whose relevant 'pnam' attribute
matches the name is synthesized and evaluated. The instance of NSWhoseSpecifier must search
through all of the keyed elements in the container, looking for a match. The search is potentially very
slow.

Overview 993
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 88

NSNameSpecifier Class Reference

Tasks

Initializing a Name Specifier

– initWithContainerClassDescription:containerSpecifier:key:name: (page 994)
Invokes the super class’s
initWithContainerClassDescription:containerSpecifier:key: (page 1418) method and
then sets the name instance variable to name.

Accessing a Name Specifier

– name (page 994)
Returns the name encapsulated by the receiver for the specified object in the container.

– setName: (page 995)
Sets the name encapsulated with the receiver for the specified object in the container.

Instance Methods

initWithContainerClassDescription:containerSpecifier:key:name:
Invokes the super class’s initWithContainerClassDescription:containerSpecifier:key: (page
1418) method and then sets the name instance variable to name.

- (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDesc
containerSpecifier:(NSScriptObjectSpecifier *)container key:(NSString *)property
name:(NSString *)name

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSScriptObjectSpecifiers.h

name
Returns the name encapsulated by the receiver for the specified object in the container.

- (NSString *)name

Availability
Available in Mac OS X v10.2 and later.

See Also
– setName: (page 995)

994 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 88

NSNameSpecifier Class Reference

Declared In
NSScriptObjectSpecifiers.h

setName:
Sets the name encapsulated with the receiver for the specified object in the container.

- (void)setName:(NSString *)name

Availability
Available in Mac OS X v10.2 and later.

See Also
– name (page 994)

Declared In
NSScriptObjectSpecifiers.h

Instance Methods 995
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 88

NSNameSpecifier Class Reference

996 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 88

NSNameSpecifier Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.2 and later.

Declared in Foundation/NSNetServices.h

Companion guides Bonjour Overview
NSNetServices and CFNetServices Programming Guide

Related sample code CocoaEcho
CocoaSOAP
GridCalendar
PictureSharing
PictureSharingBrowser

Overview

The NSNetService class represents a network service that your application publishes or uses as a client.
This class and the NSNetServiceBrowser class use multicast DNS to convey information about network
services to and from your application. The API of NSNetService provides a convenient way to publish the
services offered by your application and to resolve the socket address for a service.

The types of services you access using NSNetService are the same types that you access directly using BSD
sockets. HTTP and FTP are two services commonly provided by systems. (For a list of common services and
the ports used by those services, see the file /etc/services.) Applications can also define their own custom
services to provide specific data to clients.

You can use the NSNetService class as either a publisher of a service or as a client of a service. If your
application publishes a service, your code must acquire a port and prepare a socket to communicate with
clients. Once your socket is ready, you use the NSNetService class to notify clients that your service is ready.
If your application is the client of a network service, you can either create an NSNetService object directly
(if you know the exact host and port information) or you can use an NSNetServiceBrowser object to
browse for services.

To publish a service, you must initialize your NSNetService object with the service name, domain, type,
and port information. All of this information must be valid for the socket created by your application. Once
initialized, you call the publish (page 1006) method to broadcast your service information out to the network.

Overview 997
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

When connecting to a service, you would normally use the NSNetServiceBrowser class to locate the service
on the network and obtain the corresponding NSNetService object. Once you have the object, you proceed
to call the resolveWithTimeout: (page 1008) method to verify that the service is available and ready for
your application. If it is, the addresses (page 1001) method returns the socket information you can use to
connect to the service.

The methods of NSNetService operate asynchronously so that your application is not impacted by the
speed of the network. All information about a service is returned to your application through the
NSNetService object’s delegate. You must provide a delegate object to respond to messages and to handle
errors appropriately.

Tasks

Creating Network Services

– initWithDomain:type:name: (page 1003)
Returns the receiver, initialized as a network service of a given type and sets the initial host information.

– initWithDomain:type:name:port: (page 1004)
Initializes the receiver as a network service of type type at the socket location specified by domain,
name, and port.

Configuring Network Services

+ dataFromTXTRecordDictionary: (page 1000)
Returns an NSData object representing a TXT record formed from a given dictionary.

+ dictionaryFromTXTRecordData: (page 1000)
Returns a dictionary representing a TXT record given as an NSData object.

– addresses (page 1001)
Returns an array containing NSData objects, each of which contains a socket address for the service.

– domain (page 1002)
Returns the domain name of the service.

– getInputStream:outputStream: (page 1002)
Retrieves by reference the input and output streams for the receiver and returns a Boolean value that
indicates whether they were retrieved successfully.

– hostName (page 1003)
Returns the host name of the computer providing the service.

– name (page 1005)
Returns the name of the service.

– type (page 1012)
Returns the type of the service.

– TXTRecordData (page 1011)
Returns the TXT record for the receiver.

998 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

– setTXTRecordData: (page 1010)
Sets the TXT record for the receiver, and returns a Boolean value that indicates whether the operation
was successful.

– delegate (page 1002)
Returns the delegate for the receiver.

– setDelegate: (page 1009)
Sets the delegate for the receiver.

– protocolSpecificInformation (page 1006) Deprecated in Mac OS X v10.4
Returns protocol specific information for legacy ZeroConf-style clients. (Deprecated. Use
TXTRecordData (page 1011) instead.)

– setProtocolSpecificInformation: (page 1009) Deprecated in Mac OS X v10.4
Sets protocol specific information for legacy ZeroConf-style clients. (Deprecated. Use
setTXTRecordData: (page 1010) instead.)

Managing Run Loops

– scheduleInRunLoop:forMode: (page 1008)
Adds the service to the specified run loop.

– removeFromRunLoop:forMode: (page 1007)
Removes the service from the given run loop for a given mode.

Using Network Services

– publish (page 1006)
Attempts to advertise the receiver’s on the network.

– publishWithOptions: (page 1006)
Attempts to advertise the receiver on the network, with the given options.

– netServiceWillPublish: (page 1014) delegate method
Notifies the delegate that the network is ready to publish the service.

– netService:didNotPublish: (page 1012) delegate method
Notifies the delegate that a service could not be published.

– netServiceDidPublish: (page 1013) delegate method
Notifies the delegate that a service was successfully published.

– resolve (page 1007)
Starts a resolve process for the receiver. (Deprecated. Use resolveWithTimeout: (page 1008) instead.)

– resolveWithTimeout: (page 1008)
Starts a resolve process of a finite duration for the receiver.

– netServiceWillResolve: (page 1015) delegate method
Notifies the delegate that the network is ready to resolve the service.

– netService:didNotResolve: (page 1012) delegate method
Informs the delegate that an error occurred during resolution of a given service.

– netServiceDidResolveAddress: (page 1014) delegate method
Informs the delegate that the address for a given service was resolved.

Tasks 999
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

– port (page 1005)
Provides the port of the receiver.

– startMonitoring (page 1010)
Starts the monitoring of TXT-record updates for the receiver.

– netService:didUpdateTXTRecordData: (page 1013) delegate method
Notifies the delegate that the TXT record for a given service has been updated.

– stop (page 1011)
Halts a currently running attempt to publish or resolve a service.

– stopMonitoring (page 1011)
Stops the monitoring of TXT-record updates for the receiver.

– netServiceDidStop: (page 1014) delegate method
Informs the delegate that a publish (page 1006) or resolveWithTimeout: (page 1008) request was
stopped.

Class Methods

dataFromTXTRecordDictionary:
Returns an NSData object representing a TXT record formed from a given dictionary.

+ (NSData *)dataFromTXTRecordDictionary:(NSDictionary *)txtDictionary

Parameters
txtDictionary

A dictionary containing a TXT record.

Return Value
An NSData object representing TXT data formed from txtDictionary. Fails an assertion if txtDictionary
cannot be represented as an NSData object.

Availability
Available in Mac OS X v10.4 and later.

See Also
– TXTRecordData (page 1011)
+ dictionaryFromTXTRecordData: (page 1000)

Declared In
NSNetServices.h

dictionaryFromTXTRecordData:
Returns a dictionary representing a TXT record given as an NSData object.

+ (NSDictionary *)dictionaryFromTXTRecordData:(NSData *)txtData

1000 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

Parameters
txtData

A data object encoding a TXT record.

Return Value
A dictionary representing txtData. The dictionary’s keys are NSString objects using UTF8 encoding. The
values associated with all the dictionary’s keys are NSData objects that encapsulate strings or data.

Fails an assertion if txtData cannot be represented as an NSDictionary object.

Availability
Available in Mac OS X v10.4 and later.

See Also
– TXTRecordData (page 1011)
+ dataFromTXTRecordDictionary: (page 1000)

Declared In
NSNetServices.h

Instance Methods

addresses
Returns an array containing NSData objects, each of which contains a socket address for the service.

- (NSArray *)addresses

Return Value
An array containing NSData objects, each of which contains a socket address for the service. Each NSData
object in the returned array contains an appropriate sockaddr structure that you can use to connect to the
socket. The exact type of this structure depends on the service to which you are connecting. If no addresses
were resolved for the service, the returned array contains zero elements.

Discussion
It is possible for a single service to resolve to more than one address or not resolve to any addresses. A service
might resolve to multiple addresses if the computer publishing the service is currently multihoming.

Availability
Available in Mac OS X v10.2 and later.

See Also
– resolve (page ?)

Related Sample Code
CocoaSOAP
PictureSharingBrowser

Declared In
NSNetServices.h

Instance Methods 1001
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

delegate
Returns the delegate for the receiver.

- (id)delegate

Return Value
The delegate for the receiver.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setDelegate: (page 1009)

Declared In
NSNetServices.h

domain
Returns the domain name of the service.

- (NSString *)domain

Return Value
The domain name of the service.

This can be an explicit domain name or it can contain the generic local domain name, @"local." (note the
trailing period, which indicates an absolute name).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
GridCalendar

Declared In
NSNetServices.h

getInputStream:outputStream:
Retrieves by reference the input and output streams for the receiver and returns a Boolean value that indicates
whether they were retrieved successfully.

- (BOOL)getInputStream:(NSInputStream **)inputStream outputStream:(NSOutputStream
 **)outputStream

Parameters
inputStream

Upon return, the input stream for the receiver.

outputStream
Upon return, the output stream for the receiver.

1002 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

Return Value
YES if the streams are created successfully, otherwise NO.

Discussion
After this method is called, no delegate callbacks are called by the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSNetServices.h

hostName
Returns the host name of the computer providing the service.

- (NSString *)hostName

Return Value
The host name of the computer providing the service. Returns nil if a successful resolve has not occurred.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSNetServices.h

initWithDomain:type:name:
Returns the receiver, initialized as a network service of a given type and sets the initial host information.

- (id)initWithDomain:(NSString *)domain type:(NSString *)type name:(NSString *)name

Parameters
domain

The domain for the service. For the local domain, use @"local." not @"".

type
The network service type.

type must contain both the service type and transport layer information. To ensure that the mDNS
responder searches for services, as opposed to hosts, prefix both the service name and transport layer
name with an underscore character (“_”). For example, to search for an HTTP service on TCP, you
would use the type string "_http._tcp.". Note that the period character at the end of the string,
which indicates that the domain name is an absolute name, is required.

name
The name of the service to resolve.

Return Value
The receiver, initialized as a network service named name of type type in the domain domain.

Discussion
This method is the appropriate initializer to use to resolve a service—to publish a service, use
initWithDomain:type:name:port: (page 1004).

Instance Methods 1003
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

If you know the values for domain, type, and name of the service you wish to connect to, you can create an
NSNetService object using this initializer and call resolveWithTimeout: (page 1008) on the result.

You cannot use this initializer to publish a service. This initializer passes an invalid port number to the
designated initializer, which prevents the service from being registered. Calling publish (page 1006) on an
NSNetService object initialized with this method generates a call to your delegate’s
netService:didNotPublish: (page 1012) method with an NSNetServicesBadArgumentError error.

Availability
Available in Mac OS X v10.2 and later.

See Also
– initWithDomain:type:name:port: (page 1004)

Related Sample Code
CocoaSOAP
GridCalendar

Declared In
NSNetServices.h

initWithDomain:type:name:port:
Initializes the receiver as a network service of type type at the socket location specified by domain, name,
and port.

- (id)initWithDomain:(NSString *)domain type:(NSString *)type name:(NSString *)name
port:(int)port

Parameters
domain

The domain for the service. For the local domain, use @"local." not @"".

It is generally preferred to use a NSNetServiceBrowser object to obtain the local registration domain
in which to publish your service. To use this default domain, simply pass in an empty string (@"").

type
The network service type.

type must contain both the service type and transport layer information. To ensure that the mDNS
responder searches for services, as opposed to hosts, prefix both the service name and transport layer
name with an underscore character (“_”). For example, to search for an HTTP service on TCP, you
would use the type string "_http._tcp.". Note that the period character at the end of the string,
which indicates that the domain name is an absolute name, is required.

name
The name by which the service is identified to the network. The name must be unique.

port
The port on which the service is published.

port must be a port number acquired by your application for the service.

Discussion
You use this method to create a service that you wish to publish on the network. Although you can also use
this method to create a service you wish to resolve on the network, it is generally more appropriate to use
the initWithDomain:type:name: (page 1003) method instead.

1004 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

When publishing a service, you must provide valid arguments in order to advertise your service correctly. If
the host computer has access to multiple registration domains, you must create separate NSNetService
objects for each domain. If you attempt to publish in a domain for which you do not have registration
authority, your request may be denied.

It is acceptable to use an empty string for the domain argument when publishing or browsing a service, but
do not rely on this for resolution.

This method is the designated initializer.

Availability
Available in Mac OS X v10.2 and later.

See Also
– initWithDomain:type:name: (page 1003)

Related Sample Code
CocoaEcho
CocoaHTTPServer
CocoaSOAP
PictureSharing

Declared In
NSNetServices.h

name
Returns the name of the service.

- (NSString *)name

Return Value
The name of the service.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
GridCalendar

Declared In
NSNetServices.h

port
Provides the port of the receiver.

- (NSInteger)port

Return Value
The receiver’s port. -1 when it has not been resolved.

Instance Methods 1005
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSNetServices.h

protocolSpecificInformation
Returns protocol specific information for legacy ZeroConf-style clients. (Deprecated in Mac OS X v10.4. Use
TXTRecordData (page 1011) instead.)

- (NSString *)protocolSpecificInformation

Return Value
Any protocol-specific data associated with the service.

Discussion
This method is provided for legacy support of older ZeroConf-style clients and its use is discouraged.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.

See Also
– setProtocolSpecificInformation: (page 1009)

Declared In
NSNetServices.h

publish
Attempts to advertise the receiver’s on the network.

- (void)publish

Discussion
This method returns immediately, with success or failure indicated by the callbacks to the delegate.

Availability
Available in Mac OS X v10.2 and later.

See Also
– stop (page 1011)

Declared In
NSNetServices.h

publishWithOptions:
Attempts to advertise the receiver on the network, with the given options.

- (void)publishWithOptions:(NSNetServiceOptions)serviceOptions

1006 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

Parameters
serviceOptions

Options for the receiver.

Discussion
This method returns immediately, with success or failure indicated by the callbacks to the delegate.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSNetServices.h

removeFromRunLoop:forMode:
Removes the service from the given run loop for a given mode.

- (void)removeFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The run loop from which to remove the receiver.

mode
The run loop mode from which to remove the receiver. Possible values for mode are discussed in the
"Constants" section of NSRunLoop.

Discussion
You can use this method in conjunction with scheduleInRunLoop:forMode: (page 1008) to transfer the
service to a different run loop. Although it is possible to remove an NSNetService object completely from
any run loop and then attempt actions on it, it is an error to do so.

Availability
Available in Mac OS X v10.2 and later.

See Also
– scheduleInRunLoop:forMode: (page 1008)

Declared In
NSNetServices.h

resolve
Starts a resolve process for the receiver. (Deprecated. Use resolveWithTimeout: (page 1008) instead.)

- (void)resolve

Discussion
Attempts to determine at least one address for the receiver. This method returns immediately, with success
or failure indicated by the callbacks to the delegate.

In Mac OS X v10.4, this method calls resolveWithTimeout: (page 1008) with a timeout value of 5.

Instance Methods 1007
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
– addresses (page 1001)
– stop (page 1011)
– resolveWithTimeout: (page 1008)

Declared In
NSNetServices.h

resolveWithTimeout:
Starts a resolve process of a finite duration for the receiver.

- (void)resolveWithTimeout:(NSTimeInterval)timeout

Parameters
timeout

The maximum number of seconds to attempt a resolve.

Discussion
If the resolve succeeds before the timeout period lapses, the receiver sends
netServiceDidResolveAddress: (page 1014) to the delegate. Otherwise, the receiver sends
netService:didNotResolve: (page 1012) to the delegate.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addresses (page 1001)
– stop (page 1011)

Related Sample Code
CocoaSOAP

Declared In
NSNetServices.h

scheduleInRunLoop:forMode:
Adds the service to the specified run loop.

- (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The run loop to which to add the receiver.

mode
The run loop mode to which to add the receiver. Possible values for mode are discussed in the
"Constants" section of NSRunLoop.

1008 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

Discussion
You can use this method in conjunction withremoveFromRunLoop:forMode: (page 1007) to transfer a service
to a different run loop. You should not attempt to run a service on multiple run loops.

Availability
Available in Mac OS X v10.2 and later.

See Also
– removeFromRunLoop:forMode: (page 1007)

Related Sample Code
CocoaSOAP

Declared In
NSNetServices.h

setDelegate:
Sets the delegate for the receiver.

- (void)setDelegate:(id)delegate

Parameters
delegate

The delegate for the receiver.

Discussion
The delegate is not retained.

Availability
Available in Mac OS X v10.2 and later.

See Also
– delegate (page 1002)

Declared In
NSNetServices.h

setProtocolSpecificInformation:
Sets protocol specific information for legacy ZeroConf-style clients. (Deprecated in Mac OS X v10.4. Use
setTXTRecordData: (page 1010) instead.)

- (void)setProtocolSpecificInformation:(NSString *)specificInformation

Parameters
specificInformation

Information for the protocol.

Discussion
Attaches protocol-specific data to the service.

This method is provided for legacy support of older ZeroConf-style clients and its use is discouraged.

Instance Methods 1009
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.

See Also
– protocolSpecificInformation (page 1006)

Declared In
NSNetServices.h

setTXTRecordData:
Sets the TXT record for the receiver, and returns a Boolean value that indicates whether the operation was
successful.

- (BOOL)setTXTRecordData:(NSData *)recordData

Parameters
recordData

The TXT record for the receiver.

Return Value
YES if recordData is successfully set as the TXT record, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– TXTRecordData (page 1011)

Declared In
NSNetServices.h

startMonitoring
Starts the monitoring of TXT-record updates for the receiver.

- (void)startMonitoring

Discussion
The delegate must implement netService:didUpdateTXTRecordData: (page 1013), which is called when
the TXT record for the receiver is updated.

Availability
Available in Mac OS X v10.4 and later.

See Also
– stopMonitoring (page 1011)

Declared In
NSNetServices.h

1010 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

stop
Halts a currently running attempt to publish or resolve a service.

- (void)stop

Discussion
This method results in the sending of a netServiceDidStop: (page 1014) message to the delegate.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CocoaSOAP
PictureSharingBrowser

Declared In
NSNetServices.h

stopMonitoring
Stops the monitoring of TXT-record updates for the receiver.

- (void)stopMonitoring

Availability
Available in Mac OS X v10.4 and later.

See Also
– startMonitoring (page 1010)

Declared In
NSNetServices.h

TXTRecordData
Returns the TXT record for the receiver.

- (NSData *)TXTRecordData

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTXTRecordData: (page 1010)
+ dictionaryFromTXTRecordData: (page 1000)
+ dataFromTXTRecordDictionary: (page 1000)

Declared In
NSNetServices.h

Instance Methods 1011
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

type
Returns the type of the service.

- (NSString *)type

Return Value
The type of the service.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
GridCalendar

Declared In
NSNetServices.h

Delegate Methods

netService:didNotPublish:
Notifies the delegate that a service could not be published.

- (void)netService:(NSNetService *)sender didNotPublish:(NSDictionary *)errorDict

Parameters
sender

The service that could not be published.

errorDict
A dictionary containing information about the problem. The dictionary contains the keys
NSNetServicesErrorCode and NSNetServicesErrorDomain.

Discussion
This method may be called long after a netServiceWillPublish: (page 1014) message has been delivered
to the delegate.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSNetServices.h

netService:didNotResolve:
Informs the delegate that an error occurred during resolution of a given service.

- (void)netService:(NSNetService *)sender didNotResolve:(NSDictionary *)errorDict

1012 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

Parameters
sender

The service that did not resolve.

errorDict
A dictionary containing information about the problem. The dictionary contains the keys
NSNetServicesErrorCode and NSNetServicesErrorDomain.

Discussion
Clients may try to resolve again upon receiving this error. For example, a DNS rotary may yield different IP
addresses on different resolution requests.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSNetServices.h

netService:didUpdateTXTRecordData:
Notifies the delegate that the TXT record for a given service has been updated.

- (void)netService:(NSNetService *)sender didUpdateTXTRecordData:(NSData *)data

Parameters
sender

The service whose TXT record was updated.

data
The new TXT record.

Availability
Available in Mac OS X v10.4 and later.

See Also
– startMonitoring (page 1010)

Declared In
NSNetServices.h

netServiceDidPublish:
Notifies the delegate that a service was successfully published.

- (void)netServiceDidPublish:(NSNetService *)sender

Parameters
sender

The service that was published.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSNetServices.h

Delegate Methods 1013
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

netServiceDidResolveAddress:
Informs the delegate that the address for a given service was resolved.

- (void)netServiceDidResolveAddress:(NSNetService *)sender

Parameters
sender

The service that was resolved.

Discussion
The delegate can use the addresses (page 1001) method to retrieve the service’s address.

Availability
Available in Mac OS X v10.2 and later.

See Also
– addresses (page 1001)

Declared In
NSNetServices.h

netServiceDidStop:
Informs the delegate that apublish (page 1006) orresolveWithTimeout: (page 1008) request was stopped.

- (void)netServiceDidStop:(NSNetService *)sender

Parameters
sender

The service that stopped.

Availability
Available in Mac OS X v10.2 and later.

See Also
– stop (page 1011)

Declared In
NSNetServices.h

netServiceWillPublish:
Notifies the delegate that the network is ready to publish the service.

- (void)netServiceWillPublish:(NSNetService *)sender

Parameters
sender

The service that is ready to publish.

Discussion
Publication of the service proceeds asynchronously and may still generate a call to the delegate’s
netService:didNotPublish: (page 1012) method if an error occurs.

1014 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSNetServices.h

netServiceWillResolve:
Notifies the delegate that the network is ready to resolve the service.

- (void)netServiceWillResolve:(NSNetService *)sender

Parameters
sender

The service that the network is ready to resolve.

Discussion
Resolution of the service proceeds asynchronously and may still generate a call to the delegate’s
netService:didNotResolve: (page 1012) method if an error occurs.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSNetServices.h

Constants

NSNetServices Errors
If an error occurs, the delegate error-handling methods return a dictionary with the following keys.

extern NSString *NSNetServicesErrorCode;
extern NSString *NSNetServicesErrorDomain;

Constants
NSNetServicesErrorCode

This key identifies the error that occurred during the most recent operation.

Available in Mac OS X v10.2 and later.

Declared in NSNetServices.h.

NSNetServicesErrorDomain
This key identifies the originator of the error, which is either the NSNetService object or the mach
network layer. For most errors, you should not need the value provided by this key.

Available in Mac OS X v10.2 and later.

Declared in NSNetServices.h.

Declared In
NSNetServices.h

Constants 1015
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

NSNetServicesError
These constants identify errors that can occur when accessing net services.

typedef enum {
 NSNetServicesUnknownError = -72000,
 NSNetServicesCollisionError = -72001,
 NSNetServicesNotFoundError = -72002,
 NSNetServicesActivityInProgress = -72003,
 NSNetServicesBadArgumentError = -72004,
 NSNetServicesCancelledError = -72005,
 NSNetServicesInvalidError = -72006,
 NSNetServicesTimeoutError = -72007,
} NSNetServicesError;

Constants
NSNetServicesUnknownError

An unknown error occurred.

Available in Mac OS X v10.2 and later.

Declared in NSNetServices.h.

NSNetServicesCollisionError
The service could not be published because the name is already in use. The name could be in use
locally or on another system.

Available in Mac OS X v10.2 and later.

Declared in NSNetServices.h.

NSNetServicesNotFoundError
The service could not be found on the network.

Available in Mac OS X v10.2 and later.

Declared in NSNetServices.h.

NSNetServicesActivityInProgress
The net service cannot process the request at this time. No additional information about the network
state is known.

Available in Mac OS X v10.2 and later.

Declared in NSNetServices.h.

NSNetServicesBadArgumentError
An invalid argument was used when creating the NSNetService object.

Available in Mac OS X v10.2 and later.

Declared in NSNetServices.h.

NSNetServicesCancelledError
The client canceled the action.

Available in Mac OS X v10.2 and later.

Declared in NSNetServices.h.

NSNetServicesInvalidError
The net service was improperly configured.

Available in Mac OS X v10.2 and later.

Declared in NSNetServices.h.

1016 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

NSNetServicesTimeoutError
The net service has timed out.

Available in Mac OS X v10.4 and later.

Declared in NSNetServices.h.

Declared In
NSNetServices.h

NSNetServiceOptions
These constants specify options for a network service.

enum {
 NSNetServiceNoAutoRename = 1 << 0
};
typedef NSUInteger NSNetServiceOptions;

Constants
NSNetServiceNoAutoRename

Specifies that the network service not rename itself in the event of a name collision.

Available in Mac OS X v10.5 and later.

Declared in NSNetServices.h.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSNetServices.h

Constants 1017
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

1018 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 89

NSNetService Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSNetServices.h

Availability Available in Mac OS X v10.2 and later.

Companion guides Bonjour Overview
NSNetServices and CFNetServices Programming Guide

Related sample code CocoaEcho
GridCalendar
PictureSharingBrowser

Overview

The NSNetServiceBrowser class defines an interface for finding published services on a network using
multicast DNS. An instance of NSNetServiceBrowser is known as a network service browser.

Services can range from standard services, such as HTTP and FTP, to custom services defined by other
applications. You can use a network service browser in your code to obtain the list of accessible domains
and then to obtain an NSNetService object for each discovered service. Each network service browser
performs one search at a time, so if you want to perform multiple simultaneous searches, use multiple network
service browsers.

A network service browser performs all searches asynchronously using the current run loop to execute the
search in the background. Results from a search are returned through the associated delegate object, which
your client application must provide. Searching proceeds in the background until the object receives a
stop (page 1025) message.

To use an NSNetServiceBrowser object to search for services, allocate it, initialize it, and assign a delegate.
(If you wish, you can also use the scheduleInRunLoop:forMode: (page 1022) and
removeFromRunLoop:forMode: (page 1022) methods to execute searches on a run loop other than the
current one.) Once your object is ready, you begin by gathering the list of accessible domains using either
thesearchForRegistrationDomains (page 1023) orsearchForBrowsableDomains (page 1023) methods.
From the list of returned domains, you can pick one and use the
searchForServicesOfType:inDomain: (page 1024) method to search for services in that domain.

Overview 1019
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

The NSNetServiceBrowser class provides two ways to search for domains. In most cases, your client should
use the searchForRegistrationDomains (page 1023) method to search only for local domains to which
the host machine has registration authority. This is the preferred method for accessing domains as it guarantees
that the host machine can connect to services in the returned domains. Access to domains outside this list
may be more limited.

Tasks

Creating Network Service Browsers

– init (page 1021)
Initializes an allocated NSNetServiceBrowser (page 1019) object.

Configuring Network Service Browsers

– delegate (page 1021)
Returns the receiver’s delegate.

– setDelegate: (page 1025)
Sets the receiver’s delegate.

Using Network Service Browsers

– searchForBrowsableDomains (page 1023)
Initiates a search for domains visible to the host. This method returns immediately.

– searchForRegistrationDomains (page 1023)
Initiates a search for domains in which the host may register services.

– netServiceBrowser:didFindDomain:moreComing: (page 1026) delegate method
Tells the delegate the sender found a domain.

– netServiceBrowser:didRemoveDomain:moreComing: (page 1027) delegate method
Tells the delegate the a domain has disappeared or has become unavailable.

– searchForServicesOfType:inDomain: (page 1024)
Starts a search for services of a particular type within a specific domain.

– netServiceBrowser:didFindService:moreComing: (page 1026) delegate method
Tells the delegate the sender found a service.

– netServiceBrowser:didRemoveService:moreComing: (page 1028) delegate method
Tells the delegate a service has disappeared or has become unavailable.

– netServiceBrowserWillSearch: (page 1029) delegate method
Tells the delegate that a serch is commencing.

– netServiceBrowser:didNotSearch: (page 1027) delegate method
Tells the delegate that a search was not successful.

– stop (page 1025)
Halts a currently running search or resolution.

1020 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

– netServiceBrowserDidStopSearch: (page 1028) delegate method
Tells the delegate that a search was stopped.

– searchForAllDomains (page 1023) Deprecated in Mac OS X v10.4
Initiates a search for all domains that are visible to the host. (Deprecated. This method has been
deprecated. Use searchForBrowsableDomains (page 1023) or
searchForRegistrationDomains (page 1023) instead.)

Managing Run Loops

– scheduleInRunLoop:forMode: (page 1022)
Adds the receiver to the specified run loop.

– removeFromRunLoop:forMode: (page 1022)
Removes the receiver from the specified run loop.

Instance Methods

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
Delegate for the receiver.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setDelegate: (page 1025)

Declared In
NSNetServices.h

init
Initializes an allocated NSNetServiceBrowser (page 1019) object.

- (id)init

Return Value
Initialized NSNetServiceBrowser (page 1019) object.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSNetServices.h

Instance Methods 1021
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

removeFromRunLoop:forMode:
Removes the receiver from the specified run loop.

- (void)removeFromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)runLoopMode

Parameters
runLoop

Run loop from which to remove the receiver.

runLoopMode
Run loop mode in which to perform this operation, such as NSDefaultRunLoopMode. See the
“Constants” (page 1340) section of the NSRunLoop class for other run loop mode values.

Discussion
You can use this method in conjunction with scheduleInRunLoop:forMode: (page 1022) to transfer the
receiver to a run loop other than the default one. Although it is possible to remove an NSNetService object
completely from any run loop and then attempt actions on it, you must not do it.

Availability
Available in Mac OS X v10.2 and later.

See Also
– scheduleInRunLoop:forMode: (page 1022)

Declared In
NSNetServices.h

scheduleInRunLoop:forMode:
Adds the receiver to the specified run loop.

- (void)scheduleInRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)runLoopMode

Parameters
runLoop

Run loop from which to remove the receiver.

runLoopMode
Run loop mode in which to perform this operation, such as NSDefaultRunLoopMode. See the
“Constants” (page 1340) section of the NSRunLoop class for other run loop mode values.

Discussion
You can use this method in conjunction with removeFromRunLoop:forMode: (page 1022) to transfer the
receiver to a run loop other than the default one. You should not attempt to run the receiver on multiple
run loops.

Availability
Available in Mac OS X v10.2 and later.

See Also
– removeFromRunLoop:forMode: (page 1022)

Declared In
NSNetServices.h

1022 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

searchForAllDomains
Initiates a search for all domains that are visible to the host. (Deprecated in Mac OS X v10.4. This method has
been deprecated. UsesearchForBrowsableDomains (page 1023) orsearchForRegistrationDomains (page
1023) instead.)

- (void)searchForAllDomains

Discussion
This method returns immediately, sending a netServiceBrowserWillSearch: (page 1029) message to the
delegate if the network was ready to initiate the search. The delegate receives a subsequent
netServiceBrowser:didFindDomain:moreComing: (page 1026) message for each domain discovered.

This method may find domains in which the localhost does not have registration authority.

Availability
Deprecated in Mac OS X v10.4.

See Also
– searchForRegistrationDomains (page 1023)
– netServiceBrowser:didFindDomain:moreComing: (page 1026)

Declared In
NSNetServices.h

searchForBrowsableDomains
Initiates a search for domains visible to the host. This method returns immediately.

- (void)searchForBrowsableDomains

Discussion
The delegate receives anetServiceBrowser:didFindDomain:moreComing: (page 1026) message for each
domain discovered.

Availability
Available in Mac OS X v10.4 and later.

See Also
– searchForRegistrationDomains (page 1023)

Declared In
NSNetServices.h

searchForRegistrationDomains
Initiates a search for domains in which the host may register services.

- (void)searchForRegistrationDomains

Instance Methods 1023
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

Discussion
This method returns immediately, sending a netServiceBrowserWillSearch: (page 1029) message to the
delegate if the network was ready to initiate the search. The delegate receives a subsequent
netServiceBrowser:didFindDomain:moreComing: (page 1026) message for each domain discovered.

Most network service browser clients do not have to use this method—it is sufficient to publish a service
with the empty string, which registers it in any available registration domains automatically.

Availability
Available in Mac OS X v10.2 and later.

See Also
– searchForBrowsableDomains (page 1023)
– searchForServicesOfType:inDomain: (page 1024)
– netServiceBrowser:didFindDomain:moreComing: (page 1026)
– netServiceBrowserWillSearch: (page 1029)

Declared In
NSNetServices.h

searchForServicesOfType:inDomain:
Starts a search for services of a particular type within a specific domain.

- (void)searchForServicesOfType:(NSString *)serviceType inDomain:(NSString
*)domainName

Parameters
serviceType

Type of the service to search for.

domainName
Domain name in which to perform the search.

Discussion
This method returns immediately, sending a netServiceBrowserWillSearch: (page 1029) message to the
delegate if the network was ready to initiate the search.The delegate receives subsequent
netServiceBrowser:didFindService:moreComing: (page 1026) messages for each service discovered.

The serviceType argument must contain both the service type and transport layer information. To ensure
that the mDNS responder searches for services, rather than hosts, make sure to prefix both the service name
and transport layer name with an underscore character (“_”). For example, to search for an HTTP service on
TCP, you would use the type string “_http._tcp.“. Note that the period character at the end is required.

The domainName argument can be an explicit domain name, the generic local domain @"local." (note
trailing period, which indicates an absolute name), or the empty string (@""), which indicates the default
registration domains. Usually, you pass in an empty string. Note that it is acceptable to use an empty string
for the domainName argument when publishing or browsing a service, but do not rely on this for resolution.

Availability
Available in Mac OS X v10.2 and later.

See Also
– netServiceBrowser:didFindService:moreComing: (page 1026)

1024 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

– netServiceBrowserWillSearch: (page 1029)

Declared In
NSNetServices.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Parameters
delegate

Object to serve as the receiver’s delegate. Must not be nil.

Discussion
The delegate is not retained. The receiver calls the methods of your delegate to receive information about
discovered domains and services.

Availability
Available in Mac OS X v10.2 and later.

See Also
– delegate (page 1021)

Declared In
NSNetServices.h

stop
Halts a currently running search or resolution.

- (void)stop

Discussion
This method sends anetServiceBrowserDidStopSearch: (page 1028) message to the delegate and causes
the browser to discard any pending search results.

Availability
Available in Mac OS X v10.2 and later.

See Also
– netServiceBrowserDidStopSearch: (page 1028)

Declared In
NSNetServices.h

Instance Methods 1025
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

Delegate Methods

netServiceBrowser:didFindDomain:moreComing:
Tells the delegate the sender found a domain.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didFindDomain:(NSString *)domainName moreComing:(BOOL)moreDomainsComing

Parameters
netServiceBrowser

Sender of this delegate message.

domainName
Name of the domain found by netServiceBrowser.

moreDomainsComing
YES when netServiceBrowser is waiting for additional domains. NO when there are no additional
domains.

Discussion
The delegate uses this message to compile a list of available domains. It should wait until moreDomainsComing
is NO to do a bulk update of user interface elements.

Availability
Available in Mac OS X v10.2 and later.

See Also
– searchForBrowsableDomains (page 1023)
– searchForRegistrationDomains (page 1023)

Declared In
NSNetServices.h

netServiceBrowser:didFindService:moreComing:
Tells the delegate the sender found a service.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didFindService:(NSNetService *)netService moreComing:(BOOL)moreServicesComing

Parameters
netServiceBrowser

Sender of this delegate message.

netService
Network service found by netServiceBrowser. The delegate can use this object to connect to and
use the service.

moreServicesComing
YES when netServiceBrowser is waiting for additional services. NO when there are no additional
services.

1026 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

Discussion
The delegate uses this message to compile a list of available services. It should wait until
moreServicesComing is NO to do a bulk update of user interface elements.

Special Considerations

If the delegate chooses to resolve netService, it should retain netService and set itself as that service’s
delegate. The delegate should, therefore, release that service when it receives the
netServiceDidResolveAddress: (page 1014) or netService:didNotResolve: (page 1012) delegate
messages of the NSNetService class.

Availability
Available in Mac OS X v10.2 and later.

See Also
– searchForServicesOfType:inDomain: (page 1024)

Declared In
NSNetServices.h

netServiceBrowser:didNotSearch:
Tells the delegate that a search was not successful.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didNotSearch:(NSDictionary *)errorInfo

Parameters
netServiceBrowser

Sender of this delegate message.

errorInfo
Dictionary with the reasons the search was unsuccessful. Use the dictionary keys
NSNetServicesErrorCode and NSNetServicesErrorDomain to retrieve the error information
from the dictionary.

Availability
Available in Mac OS X v10.2 and later.

See Also
– netServiceBrowserWillSearch: (page 1029)

Declared In
NSNetServices.h

netServiceBrowser:didRemoveDomain:moreComing:
Tells the delegate the a domain has disappeared or has become unavailable.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didRemoveDomain:(NSString *)domainName moreComing:(BOOL)moreDomainsComing

Delegate Methods 1027
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

Parameters
netServiceBrowser

Sender of this delegate message.

domainName
Name of the domain that became unavailable.

moreDomainsComing
YES when netServiceBrowser is waiting for additional domains. NO when there are no additional
domains.

Discussion
The delegate uses this message to compile a list of unavailable domains. It should wait until
moreDomainsComing is NO to do a bulk update of user interface elements.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSNetServices.h

netServiceBrowser:didRemoveService:moreComing:
Tells the delegate a service has disappeared or has become unavailable.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didRemoveService:(NSNetService *)netService moreComing:(BOOL)moreServicesComing

Parameters
netServiceBrowser

Sender of this delegate message.

netService
Network service that has become unavailable.

moreServicesComing
YES when netServiceBrowser is waiting for additional services. NO when there are no additional
services.

Discussion
The delegate uses this message to compile a list of unavailable services. It should wait until
moreServicesComing is NO to do a bulk update of user interface elements.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSNetServices.h

netServiceBrowserDidStopSearch:
Tells the delegate that a search was stopped.

- (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)netServiceBrowser

1028 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

Parameters
netServiceBrowser

Sender of this delegate message.

Discussion
When netServiceBrowser receives a stop (page 1025) message from its client, netServiceBrowser sends
a netServiceBrowserDidStopSearch:message to its delegate. The delegate then performs any necessary
cleanup.

Availability
Available in Mac OS X v10.2 and later.

See Also
– stop (page 1025)

Declared In
NSNetServices.h

netServiceBrowserWillSearch:
Tells the delegate that a serch is commencing.

- (void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)netServiceBrowser

Parameters
netServiceBrowser

Sender of this delegate message.

Discussion
This message is sent to the delegate only if the underlying network layer is ready to begin a search. The
delegate can use this notification to prepare its data structures to receive data.

Availability
Available in Mac OS X v10.2 and later.

See Also
– netServiceBrowser:didNotSearch: (page 1027)

Declared In
NSNetServices.h

Delegate Methods 1029
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

1030 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 90

NSNetServiceBrowser Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSNotification.h

Companion guide Notification Programming Topics for Cocoa

Related sample code EnhancedAudioBurn
PDFKitLinker2
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Overview

NSNotification objects encapsulate information so that it can be broadcast to other objects by an
NSNotificationCenter object. An NSNotification object (referred to as a notification) contains a name, an
object, and an optional dictionary. The name is a tag identifying the notification. The object is any object
that the poster of the notification wants to send to observers of that notification (typically, it is the object
that posted the notification). The dictionary stores other related objects, if any. NSNotification objects are
immutable objects.

You can create a notification object with the class methods notificationWithName:object: (page 1033)
or notificationWithName:object:userInfo: (page 1033). However, you don’t usually create your own
notifications directly. The NSNotificationCenter methods postNotificationName:object: (page 1042) and
postNotificationName:object:userInfo: (page 1043) allow you to conveniently post a notification
without creating it first.

Overview 1031
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 91

NSNotification Class Reference

NSCopying Protocol

The NSNotification class adopts the NSCopying protocol, making it possible to treat notifications as
context-independent values that can be copied and reused. You can store a notification for later use or use
the distributed objects system to send a notification to another process. The NSCopying protocol essentially
allows clients to deal with notifications as first class values that can be copied by collections. You can put
notifications in an array and send the copy message to that array, which recursively copies every item.

Creating Subclasses

You can subclass NSNotification to contain information in addition to the notification name, object, and
dictionary. This extra data must be agreed upon between notifiers and observers.

NSNotification is a class cluster with no instance variables. As such, you must subclass NSNotification and
override the primitive methods name (page 1034), object (page 1034), and userInfo (page 1035). You can
choose any designated initializer you like, but be sure that your initializer does not call NSNotification’s
implementation of init (via [super init]). NSNotification is not meant to be instantiated directly, and
its init method raises an exception.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

Tasks

Creating Notifications

+ notificationWithName:object: (page 1033)
Returns a new notification object with a specified name and object.

+ notificationWithName:object:userInfo: (page 1033)
Returns a notification object with a specified name, object, and user information.

Getting Notification Information

– name (page 1034)
Returns the name of the notification.

1032 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 91

NSNotification Class Reference

– object (page 1034)
Returns the object associated with the notification.

– userInfo (page 1035)
Returns the user information dictionary associated with the receiver.

Class Methods

notificationWithName:object:
Returns a new notification object with a specified name and object.

+ (id)notificationWithName:(NSString *)aName object:(id)anObject

Parameters
aName

The name for the new notification. May not be nil.

anObject
The object for the new notification.

Availability
Available in Mac OS X v10.0 and later.

See Also
– postNotificationName:object: (page 1042) (NSNotificationCenter)

Related Sample Code
ExtractMovieAudioToAIFF
Link Snoop
MyPhoto
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
NSNotification.h

notificationWithName:object:userInfo:
Returns a notification object with a specified name, object, and user information.

+ (id)notificationWithName:(NSString *)aName object:(id)anObject
userInfo:(NSDictionary *)userInfo

Parameters
aName

The name for the new notification. May not be nil.

anObject
The object for the new notification.

Class Methods 1033
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 91

NSNotification Class Reference

userInfo
The user information dictionary for the new notification. May be nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ notificationWithName:object: (page 1033)
– postNotificationName:object:userInfo: (page 1043) (NSNotificationCenter)

Related Sample Code
People

Declared In
NSNotification.h

Instance Methods

name
Returns the name of the notification.

- (NSString *)name

Return Value
The name of the notification. Typically you use this method to find out what kind of notification you are
dealing with when you receive a notification.

Special Considerations

Notification names can be any string. To avoid name collisions, you might want to use a prefix that’s specific
to your application.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
People
QTAudioExtractionPanel
WhackedTV

Declared In
NSNotification.h

object
Returns the object associated with the notification.

- (id)object

1034 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 91

NSNotification Class Reference

Return Value
The object associated with the notification. This is often the object that posted this notification. It may be
nil.

Typically you use this method to find out what object a notification applies to when you receive a notification.

Discussion
For example, suppose you’ve registered an object to receive the message handlePortDeath: when the
“PortInvalid” notification is posted to the notification center and that handlePortDeath: needs to access
the object monitoring the port that is now invalid. handlePortDeath: can retrieve that object as shown
here:

- (void)handlePortDeath:(NSNotification *)notification
{
 ...
 [self reclaimResourcesForPort:[notification object]];
 ...
}

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ABPresence
NewsReader
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSNotification.h

userInfo
Returns the user information dictionary associated with the receiver.

- (NSDictionary *)userInfo

Return Value
Returns the user information dictionary associated with the receiver. May be nil.

The user information dictionary stores any additional objects that objects receiving the notification might
use.

Discussion
For example, in the Application Kit, NSControl objects post the NSControlTextDidChangeNotification
whenever the field editor (an NSText object) changes text inside the NSControl. This notification provides
the NSControl object as the notification's associated object. In order to provide access to the field editor, the
NSControl object posting the notification adds the field editor to the notification's user information dictionary.
Objects receiving the notification can access the field editor and the NSControl object posting the notification
as follows:

- (void)controlTextDidBeginEditing:(NSNotification *)notification
{

Instance Methods 1035
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 91

NSNotification Class Reference

 NSText *fieldEditor = [[notification userInfo]
 objectForKey:@"NSFieldEditor"]; // the field editor
 NSControl *postingObject = [notification object]; // the object that posted
 the notification
 ...
}

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ABPresence
CoreRecipes
PDFKitLinker2
SimpleCalendar
WhackedTV

Declared In
NSNotification.h

1036 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 91

NSNotification Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSNotification.h

Companion guide Notification Programming Topics for Cocoa

Related sample code EnhancedAudioBurn
PDF Annotation Editor
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Class at a Glance

The NSNotificationCenter class provides a way to send notifications to objects in the same task. It takes
NSNotification objects and broadcasts them to any objects in the same task that have registered to
receive the notification with the task’s default notification center.

Principal Attributes

 ■ Notification dispatch table. Each entry in this table specifies a notification set for a particular observer.
A notification set is a subset of the notifications posted to the notification center. Each table entry contains
three items:

 ❏ Notification observer: Required. The object to be notified when qualifying notifications are posted
to the notification center.

 ❏ Notification name: Optional. Specifying a name reduces the set of notifications the entry specifies
to those that have this name.

 ❏ Notification sender: Optional. Specifying a sender reduces the set of notifications the entry specifies
to those sent by this object.

Table 92-1 shows the four types of dispatch table entries and the notification sets they specify. (This
table omits the always present notification observer.)

Class at a Glance 1037
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 92

NSNotificationCenter Class Reference

Table 92-1 Types of dispatch table entries

Notification set specifiedNotification senderNotification name

Notifications with a particular name from a specific sender.SpecifiedSpecified

Notifications with a particular name by any sender.UnspecifiedSpecified

Notifications posted by a specific sender.SpecifiedUnspecified

All notifications.UnspecifiedUnspecified

Table 92-2 shows an example dispatch table with four observers.

Table 92-2 Example notification dispatch table

Notification senderNotification nameObserver

nilNSFileHandleReadCompletionNotificationobserverA

addressTableViewnilobserverB

documentWindowNSWindowDidChangeScreenNotificationobserverC

addressTableViewnilobserverC

nilnilobserverD

When notifications are posted to the notification center, each of the observers in Table 92-2 are notified
of the following notifications:

 ❏ observerA: Notifications named NSFileHandleReadCompletionNotification.

 ❏ observerB: Notifications sent by addressTableView.

 ❏ observerC: Notifications named NSWindowDidChangeScreenNotification sent by
documentWindow and notifications sent by addressTableView.

 ❏ observerD: All notifications.

Commonly Used Methods

defaultCenter (page 1040)
Returns the task’s default notification center.

addObserver:selector:name:object: (page 1041)
Adds an entry to the notification center’s dispatch table specifying at least an observer and a
notification message.

postNotificationName:object: (page 1042)
Creates and posts a notification to the notification center.

1038 Class at a Glance
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 92

NSNotificationCenter Class Reference

removeObserver: (page 1043)
Removes all entries from the notification center’s dispatch center that specify a particular observer,
so that it no longer receives notifications posted to that notification center.

Overview

An NSNotificationCenter object (or simply, notification center) provides a mechanism for broadcasting
information within a task. An NSNotificationCenter object is essentially a notification dispatch table.

Objects register with a notification center to receive notifications (NSNotification objects) using the
addObserver:selector:name:object: (page 1041) method. Each invocation of this method specifies a
set of notifications. Therefore, objects may register as observers of different notification sets by calling
addObserver:selector:name:object: several times.

When an object (known as the notification sender) posts a notification, it sends an NSNotification object
to the notification center. The notification center then notifies any observers for which the notification meets
the criteria specified on registration by sending them the specified notification message, passing the
notification as the sole argument. The order in which observers receive notifications is undefined. It is possible
for the posting object and the observing object to be the same.

A notification center delivers notifications to observers synchronously. In other words, the
postNotification: (page 1041) methods do not return until all observers have received and processed the
notification. To send notifications asynchronously use NSNotificationQueue. In a multithreaded application,
notifications are always delivered in the thread in which the notification was posted, which may not be the
same thread in which an observer registered itself.

Important: The notification center does not retain its observers, therefore, you must ensure that you unregister
observers (using removeObserver: (page 1043) or removeObserver:name:object: (page 1044)) before
they are deallocated. (If you don't, you will generate a runtime error if the center sends a message to a freed
object.)

Each task has a default notification center. You typically don’t create your own. An NSNotificationCenter
object can deliver notifications only within a single task. If you want to post a notification to other tasks or
receive notifications from other tasks, use a NSDistributedNotificationCenter object.

Tasks

Getting the Notification Center

+ defaultCenter (page 1040)
Returns the task’s default notification center.

Overview 1039
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 92

NSNotificationCenter Class Reference

Managing Notification Observers

– addObserver:selector:name:object: (page 1041)
Adds an entry to the receiver’s dispatch table with an observer, a notification selector and optional
criteria: notification name and sender.

– removeObserver: (page 1043)
Removes all the entries specifying a given observer from the receiver’s dispatch table.

– removeObserver:name:object: (page 1044)
Removes matching entries from the receiver’s dispatch table.

Posting Notifications

– postNotification: (page 1041)
Posts a given notification to the receiver.

– postNotificationName:object: (page 1042)
Creates a notification with a given name and sender and posts it to the receiver.

– postNotificationName:object:userInfo: (page 1043)
Creates a notification with a given name, sender, and information and posts it to the receiver.

Class Methods

defaultCenter
Returns the task’s default notification center.

+ (id)defaultCenter

Return Value
The current task’s default notification center, which is used for system notifications.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dicey
PDF Annotation Editor
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSNotification.h

1040 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 92

NSNotificationCenter Class Reference

Instance Methods

addObserver:selector:name:object:
Adds an entry to the receiver’s dispatch table with an observer, a notification selector and optional criteria:
notification name and sender.

- (void)addObserver:(id)notificationObserver selector:(SEL)notificationSelector
name:(NSString *)notificationName object:(id)notificationSender

Parameters
notificationObserver

Object registering as an observer. Must not be nil.

notificationSelector
Selector that specifies the message the receiver sends notificationObserver to notify it of the
notification posting. The method the selector specifies must have one and only one argument.

notificationName
The name of the notification for which to register the observer; that is, only notifications with this
name are delivered to the observer. When nil, the notification center doesn’t use a notification’s
name to decide whether to deliver it to the observer.

notificationSender
The object whose notifications the observer wants to receive; that is, only notifications sent by this
sender are delivered to the observer. When nil, the notification center doesn’t use a notification’s
sender to decide whether to deliver it to the observer.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeObserver: (page 1043)

Related Sample Code
ABPresence
CocoaDVDPlayer
ImageMapExample
QTAudioExtractionPanel
VideoViewer

Declared In
NSNotification.h

postNotification:
Posts a given notification to the receiver.

- (void)postNotification:(NSNotification *)notification

Instance Methods 1041
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 92

NSNotificationCenter Class Reference

Parameters
notification

The notification to post. This value must not be nil.

Discussion
You can create a notification with the NSNotification class method
notificationWithName:object: (page 1033) or notificationWithName:object:userInfo: (page
1033). An exception is raised if notification is nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– postNotificationName:object: (page 1042)
– postNotificationName:object:userInfo: (page 1043)

Related Sample Code
ExtractMovieAudioToAIFF
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
QTKitTimeCode

Declared In
NSNotification.h

postNotificationName:object:
Creates a notification with a given name and sender and posts it to the receiver.

- (void)postNotificationName:(NSString *)notificationName
object:(id)notificationSender

Parameters
notificationName

The name of the notification.

notificationSender
The object posting the notification.

Discussion
This method invokespostNotificationName:object:userInfo: (page 1043) with auserInfo argument
of nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– postNotification: (page 1041)

Declared In
NSNotification.h

1042 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 92

NSNotificationCenter Class Reference

postNotificationName:object:userInfo:
Creates a notification with a given name, sender, and information and posts it to the receiver.

- (void)postNotificationName:(NSString *)notificationName
object:(id)notificationSender userInfo:(NSDictionary *)userInfo

Parameters
notificationName

The name of the notification.

notificationSender
The object posting the notification.

userInfo
Information about the the notification. May be nil.

Discussion
This method is the preferred method for posting notifications.

Availability
Available in Mac OS X v10.0 and later.

See Also
– postNotificationName:object: (page 1042)

Declared In
NSNotification.h

removeObserver:
Removes all the entries specifying a given observer from the receiver’s dispatch table.

- (void)removeObserver:(id)notificationObserver

Parameters
notificationObserver

The observer to remove. Must not be nil.

Discussion
Be sure to invoke this method (or removeObserver:name:object: (page 1044)) before
notificationObserver or any object specified in addObserver:selector:name:object: (page 1041)
is deallocated.

The following example illustrates how to unregister someObserver for all notifications for which it had
previously registered:

[[NSNotificationCenter defaultCenter] removeObserver:someObserver];

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GridCalendar
Quartz Composer WWDC 2005 TextEdit
Sketch-112

Instance Methods 1043
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 92

NSNotificationCenter Class Reference

TextEditPlus
WhackedTV

Declared In
NSNotification.h

removeObserver:name:object:
Removes matching entries from the receiver’s dispatch table.

- (void)removeObserver:(id)notificationObserver name:(NSString *)notificationName
object:(id)notificationSender

Parameters
notificationObserver

Observer to remove from the dispatch table. Specify an observer to remove only entries for this
observer. Must not be nil, or message will have no effect.

notificationName
Name of the notification to remove from dispatch table. Specify a notification name to remove only
entries that specify this notification name. When nil, the receiver does not use notification names
as criteria for removal.

notificationSender
Sender to remove from the dispatch table. Specify a notification sender to remove only entries that
specify this sender. When nil, the receiver does not use notification senders as criteria for removal.

Discussion
Be sure to invoke this method (or removeObserver: (page 1043)) before the observer object or any object
specified in addObserver:selector:name:object: (page 1041) is deallocated.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageMapExample
People
QTAudioExtractionPanel
QTKitMovieShuffler
VideoViewer

Declared In
NSNotification.h

1044 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 92

NSNotificationCenter Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSNotificationQueue.h

Companion guide Notification Programming Topics for Cocoa

Related sample code Link Snoop

Overview

NSNotificationQueue objects (or simply notification queues) act as buffers for notification centers (instances
of NSNotificationCenter). Whereas a notification center distributes notifications when posted, notifications
placed into the queue can be delayed until the end of the current pass through the run loop or until the run
loop is idle. Duplicate notifications can also be coalesced so that only one notification is sent although multiple
notifications are posted. A notification queue maintains notifications (instances of NSNotification) generally
in a first in first out (FIFO) order. When a notification rises to the front of the queue, the queue posts it to the
notification center, which in turn dispatches the notification to all objects registered as observers.

Every thread has a default notification queue, which is associated with the default notification center for the
task. You can create your own notification queues and have multiple queues per center and thread.

Tasks

Creating Notification Queues

– initWithNotificationCenter: (page 1048)
Initializes and returns a notification queue for the specified notification center.

Overview 1045
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 93

NSNotificationQueue Class Reference

Getting the Default Queue

+ defaultQueue (page 1046)
Returns the default notification queue for the current thread.

Managing Notifications

– enqueueNotification:postingStyle: (page 1047)
Adds a notification to the notification queue with a specified posting style.

– enqueueNotification:postingStyle:coalesceMask:forModes: (page 1047)
Adds a notification to the notification queue with a specified posting style, criteria for coalescing, and
runloop mode.

– dequeueNotificationsMatching:coalesceMask: (page 1046)
Removes all notifications from the queue that match a provided notification using provided matching
criteria.

Class Methods

defaultQueue
Returns the default notification queue for the current thread.

+ (NSNotificationQueue *)defaultQueue

Return Value
Returns the default notification queue for the current thread. This notification queue uses the default
notification center.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Link Snoop

Declared In
NSNotificationQueue.h

Instance Methods

dequeueNotificationsMatching:coalesceMask:
Removes all notifications from the queue that match a provided notification using provided matching criteria.

- (void)dequeueNotificationsMatching:(NSNotification *)notification
coalesceMask:(NSUInteger)coalesceMask

1046 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 93

NSNotificationQueue Class Reference

Parameters
notification

The notification used for matching notifications to remove from the notification queue.

coalesceMask
A mask indicating what criteria to use when matching attributes of notification to attributes of
notifications in the queue. The mask is created by combining any of the constants
NSNotificationNoCoalescing, NSNotificationCoalescingOnName, and
NSNotificationCoalescingOnSender.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNotificationQueue.h

enqueueNotification:postingStyle:
Adds a notification to the notification queue with a specified posting style.

- (void)enqueueNotification:(NSNotification *)notification
postingStyle:(NSPostingStyle)postingStyle

Parameters
notification

The notification to add to the queue.

postingStyle
The posting style for the notification. The posting style indicates when the notification queue should
post the notification to its notification center.

Discussion
Notifications added with this method are posted using the runloop mode NSDefaultRunLoopMode and
coalescing criteria that will coalesce only notifications that match both the notification’s name and object.

This method invokes enqueueNotification:postingStyle:coalesceMask:forModes: (page 1047).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Link Snoop

Declared In
NSNotificationQueue.h

enqueueNotification:postingStyle:coalesceMask:forModes:
Adds a notification to the notification queue with a specified posting style, criteria for coalescing, and runloop
mode.

- (void)enqueueNotification:(NSNotification *)notification
postingStyle:(NSPostingStyle)postingStyle coalesceMask:(NSUInteger)coalesceMask
forModes:(NSArray *)modes

Instance Methods 1047
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 93

NSNotificationQueue Class Reference

Parameters
notification

The notification to add to the queue.

postingStyle
The posting style for the notification. The posting style indicates when the notification queue should
post the notification to its notification center.

coalesceMask
A mask indicating what criteria to use when matching attributes of notification to attributes of
notifications in the queue. The mask is created by combining any of the constants
NSNotificationNoCoalescing, NSNotificationCoalescingOnName, and
NSNotificationCoalescingOnSender.

modes
The list of modes the notification may be posted in. The notification queue will only post the notification
to its notification center if the run loops is in one of the modes provided in the array. May be nil, in
which case it defaults to NSDefaultRunLoopMode.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNotificationQueue.h

initWithNotificationCenter:
Initializes and returns a notification queue for the specified notification center.

- (id)initWithNotificationCenter:(NSNotificationCenter *)notificationCenter

Parameters
notificationCenter

The notification center used by the new notification queue.

Return Value
The newly initialized notification queue.

Discussion
This is the designated initializer for the NSNotificationQueue class.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNotificationQueue.h

Constants

NSNotificationCoalescing
These constants specify how notifications are coalesced.

1048 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 93

NSNotificationQueue Class Reference

typedef enum {
 NSNotificationNoCoalescing = 0,
 NSNotificationCoalescingOnName = 1,
 NSNotificationCoalescingOnSender = 2
} NSNotificationCoalescing;

Constants
NSNotificationNoCoalescing

Do not coalesce notifications in the queue.

Available in Mac OS X v10.0 and later.

Declared in NSNotificationQueue.h.

NSNotificationCoalescingOnName
Coalesce notifications with the same name.

Available in Mac OS X v10.0 and later.

Declared in NSNotificationQueue.h.

NSNotificationCoalescingOnSender
Coalesce notifications with the same object.

Available in Mac OS X v10.0 and later.

Declared in NSNotificationQueue.h.

Discussion
These constants are used in the third argument of
enqueueNotification:postingStyle:coalesceMask:forModes: (page 1047). You can OR them together
to specify more than one.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNotificationQueue.h

NSPostingStyle
These constants specify when notifications are posted.

typedef enum {
 NSPostWhenIdle = 1,
 NSPostASAP = 2,
 NSPostNow = 3
} NSPostingStyle;

Constants
NSPostASAP

The notification is posted at the end of the current notification callout or timer.

Available in Mac OS X v10.0 and later.

Declared in NSNotificationQueue.h.

NSPostWhenIdle
The notification is posted when the run loop is idle.

Available in Mac OS X v10.0 and later.

Declared in NSNotificationQueue.h.

Constants 1049
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 93

NSNotificationQueue Class Reference

NSPostNow
The notification is posted immediately after coalescing.

Available in Mac OS X v10.0 and later.

Declared in NSNotificationQueue.h.

Discussion
These constants are used in both enqueueNotification:postingStyle: (page 1047) and
enqueueNotification:postingStyle:coalesceMask:forModes: (page 1047).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNotificationQueue.h

1050 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 93

NSNotificationQueue Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSNull.h

Companion guide Number and Value Programming Topics for Cocoa

Related sample code Apply Firmware Password
MyPhoto
QTQuartzPlayer
SimpleCalendar

Overview

The NSNull class defines a singleton object used to represent null values in collection objects (which don’t
allow nil values).

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

Overview 1051
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 94

NSNull Class Reference

Tasks

Obtaining an Instance

+ null (page 1052)
Returns the singleton instance of NSNull.

Class Methods

null
Returns the singleton instance of NSNull.

+ (NSNull *)null

Return Value
The singleton instance of NSNull.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Apply Firmware Password
MyPhoto
QTQuartzPlayer

Declared In
NSNull.h

1052 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 94

NSNull Class Reference

Inherits from NSValue : NSObject

Conforms to NSCoding (NSValue)
NSCopying (NSValue)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSValue.h
Foundation/NSDecimalNumber.h

Companion guides Number and Value Programming Topics for Cocoa
Property List Programming Guide

Related sample code Dicey
QTCoreVideo301
Quartz Composer WWDC 2005 TextEdit
SimpleScriptingObjects
TextEditPlus

Overview

NSNumber is a subclass of NSValue that offers a value as any C scalar (numeric) type. It defines a set of
methods specifically for setting and accessing the value as a signed or unsigned char, short int, int,
long int, long long int, float, or double or as a BOOL. (Note that number objects do not necessarily
preserve the type they are created with.) It also defines a compare: (page 1064) method to determine the
ordering of two NSNumber objects.

Creating a Subclass of NSNumber

As with any class cluster, if you create a subclass of NSNumber, you have to override the primitive methods
of its superclass, NSValue. Furthermore, there is a restricted set of return values that your implementation
of the NSValue method objCType can return, in order to take advantage of the abstract implementations
of the non-primitive methods. The valid return values are “c”, “C”, “s”, “S”, “i”, “I”, “l”, “L”, “q”, “Q”, “f”, and
“d”.

Overview 1053
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Tasks

Creating an NSNumber Object

+ numberWithBool: (page 1057)
Creates and returns an NSNumber object containing a given value, treating it as a BOOL.

+ numberWithChar: (page 1057)
Creates and returns an NSNumber object containing a given value, treating it as a signed char.

+ numberWithDouble: (page 1057)
Creates and returns an NSNumber object containing a given value, treating it as a double.

+ numberWithFloat: (page 1058)
Creates and returns an NSNumber object containing a given value, treating it as a float.

+ numberWithInt: (page 1058)
Creates and returns an NSNumber object containing a given value, treating it as a signed int.

+ numberWithInteger: (page 1059)
Creates and returns an NSNumber object containing a given value, treating it as an NSInteger.

+ numberWithLong: (page 1059)
Creates and returns an NSNumber object containing a given value, treating it as a signed long.

+ numberWithLongLong: (page 1060)
Creates and returns an NSNumber object containing a given value, treating it as a signed long long.

+ numberWithShort: (page 1060)
Creates and returns an NSNumber object containing value, treating it as a signed short.

+ numberWithUnsignedChar: (page 1061)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned char.

+ numberWithUnsignedInt: (page 1061)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned int.

+ numberWithUnsignedInteger: (page 1062)
Creates and returns an NSNumber object containing a given value, treating it as an NSUInteger.

+ numberWithUnsignedLong: (page 1062)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned long.

+ numberWithUnsignedLongLong: (page 1063)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned long
long.

+ numberWithUnsignedShort: (page 1063)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned short.

Initializing an NSNumber Object

– initWithBool: (page 1067)
Returns an NSNumber object initialized to contain a given value, treated as a BOOL.

– initWithChar: (page 1068)
Returns an NSNumber object initialized to contain a given value, treated as a signed char.

1054 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

– initWithDouble: (page 1068)
Returns an NSNumber object initialized to contain value, treated as a double.

– initWithFloat: (page 1068)
Returns an NSNumber object initialized to contain a given value, treated as a float.

– initWithInt: (page 1069)
Returns an NSNumber object initialized to contain a given value, treated as a signed int.

– initWithInteger: (page 1069)
Returns an NSNumber object initialized to contain a given value, treated as an NSInteger.

– initWithLong: (page 1069)
Returns an NSNumber object initialized to contain a given value, treated as a signed long.

– initWithLongLong: (page 1070)
Returns an NSNumber object initialized to contain value, treated as a signed long long.

– initWithShort: (page 1070)
Returns an NSNumber object initialized to contain a given value, treated as a signed short.

– initWithUnsignedChar: (page 1070)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned char.

– initWithUnsignedInt: (page 1071)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned int.

– initWithUnsignedInteger: (page 1071)
Returns an NSNumber object initialized to contain a given value, treated as an NSUInteger.

– initWithUnsignedLong: (page 1072)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long.

– initWithUnsignedLongLong: (page 1072)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long long.

– initWithUnsignedShort: (page 1072)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned short.

Accessing Numeric Values

– boolValue (page 1064)
Returns the receiver’s value as a BOOL.

– charValue (page 1064)
Returns the receiver’s value as a char.

– decimalValue (page 1065)
Returns the receiver’s value, expressed as an NSDecimal structure.

– doubleValue (page 1066)
Returns the receiver’s value as a double.

– floatValue (page 1067)
Returns the receiver’s value as a float.

– intValue (page 1073)
Returns the receiver’s value as an int.

– integerValue (page 1073)
Returns the receiver’s value as an NSInteger.

Tasks 1055
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

– longLongValue (page 1074)
Returns the receiver’s value as a long long.

– longValue (page 1074)
Returns the receiver’s value as a long.

– shortValue (page 1075)
Returns the receiver’s value as a short.

– unsignedCharValue (page 1076)
Returns the receiver’s value as an unsigned char.

– unsignedIntegerValue (page 1076)
Returns the receiver’s value as an NSUInteger.

– unsignedIntValue (page 1076)
Returns the receiver’s value as an unsigned int.

– unsignedLongLongValue (page 1077)
Returns the receiver’s value as an unsigned long long.

– unsignedLongValue (page 1077)
Returns the receiver’s value as an unsigned long.

– unsignedShortValue (page 1077)
Returns the receiver’s value as an unsigned short.

Retrieving String Representations

– descriptionWithLocale: (page 1065)
Returns a string that represents the contents of the receiver for a given locale.

– stringValue (page 1075)
Returns the receiver’s value as a human-readable string.

Comparing NSNumber Objects

– compare: (page 1064)
Returns an NSComparisonResult value that indicates whether the receiver is greater than, equal
to, or less than a given number.

– isEqualToNumber: (page 1073)
Returns a Boolean value that indicates whether the receiver and a given number are equal.

Accessing Type Information

– objCType (page 1075)
Returns a C string containing the Objective-C type of the data contained in the receiver.

1056 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Class Methods

numberWithBool:
Creates and returns an NSNumber object containing a given value, treating it as a BOOL.

+ (NSNumber *)numberWithBool:(BOOL)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a BOOL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedAudioBurn
GridCalendar
Quartz Composer WWDC 2005 TextEdit
SMARTQuery
TextEditPlus

Declared In
NSValue.h

numberWithChar:
Creates and returns an NSNumber object containing a given value, treating it as a signed char.

+ (NSNumber *)numberWithChar:(char)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed char.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

numberWithDouble:
Creates and returns an NSNumber object containing a given value, treating it as a double.

Class Methods 1057
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

+ (NSNumber *)numberWithDouble:(double)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a double.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIAnnotation
CocoaSOAP
SimpleScriptingObjects
TemperatureTester
TrackBall

Declared In
NSValue.h

numberWithFloat:
Creates and returns an NSNumber object containing a given value, treating it as a float.

+ (NSNumber *)numberWithFloat:(float)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a float.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIAnnotation
Quartz Composer WWDC 2005 TextEdit
SampleScannerApp
SpeedometerView
TextEditPlus

Declared In
NSValue.h

numberWithInt:
Creates and returns an NSNumber object containing a given value, treating it as a signed int.

1058 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

+ (NSNumber *)numberWithInt:(int)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed int.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dicey
QTCoreVideo301
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Declared In
NSValue.h

numberWithInteger:
Creates and returns an NSNumber object containing a given value, treating it as an NSInteger.

+ (NSNumber *)numberWithInteger:(NSInteger)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an NSInteger.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AutomatorHandsOn
Core Data HTML Store
CustomAtomicStoreSubclass
Mountains

Declared In
NSValue.h

numberWithLong:
Creates and returns an NSNumber object containing a given value, treating it as a signed long.

+ (NSNumber *)numberWithLong:(long)value

Class Methods 1059
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed long.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AttachAScript
CocoaSpeechSynthesisExample
QTAudioExtractionPanel
QTKitPlayer
QTMetadataEditor

Declared In
NSValue.h

numberWithLongLong:
Creates and returns an NSNumber object containing a given value, treating it as a signed long long.

+ (NSNumber *)numberWithLongLong:(long long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed long long.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitMovieShuffler

Declared In
NSValue.h

numberWithShort:
Creates and returns an NSNumber object containing value, treating it as a signed short.

+ (NSNumber *)numberWithShort:(short)value

Parameters
value

The value for the new number.

1060 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Return Value
An NSNumber object containing value, treating it as a signed short.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaSpeechSynthesisExample
Core Data HTML Store
CoreRecipes
FunkyOverlayWindow
SampleScannerApp

Declared In
NSValue.h

numberWithUnsignedChar:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned char.

+ (NSNumber *)numberWithUnsignedChar:(unsigned char)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned char.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

numberWithUnsignedInt:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned int.

+ (NSNumber *)numberWithUnsignedInt:(unsigned int)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned int.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedAudioBurn

Class Methods 1061
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

OpenGLCaptureToMovie
Quartz Composer QCTV
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSValue.h

numberWithUnsignedInteger:
Creates and returns an NSNumber object containing a given value, treating it as an NSUInteger.

+ (NSNumber *)numberWithUnsignedInteger:(NSUInteger)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an NSUInteger.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSValue.h

numberWithUnsignedLong:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned long.

+ (NSNumber *)numberWithUnsignedLong:(unsigned long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Apply Firmware Password
QTMetadataEditor
QTRecorder
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSValue.h

1062 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

numberWithUnsignedLongLong:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned long long.

+ (NSNumber *)numberWithUnsignedLongLong:(unsigned long long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long long.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedAudioBurn

Declared In
NSValue.h

numberWithUnsignedShort:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned short.

+ (NSNumber *)numberWithUnsignedShort:(unsigned short)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned short.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioBurn
EnhancedDataBurn
QTMetadataEditor
Verification

Declared In
NSValue.h

Class Methods 1063
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Instance Methods

boolValue
Returns the receiver’s value as a BOOL.

- (BOOL)boolValue

Return Value
The receiver’s value as a BOOL, converting it as necessary.

Special Considerations

Prior to Mac OS X v10.3, the value returned isn’t guaranteed to be one of YES or NO. A 0 value always means
NO or false, but any nonzero value should be interpreted as YES or true.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes

Declared In
NSValue.h

charValue
Returns the receiver’s value as a char.

- (char)charValue

Return Value
The receiver’s value as a char, converting it as necessary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

compare:
Returns an NSComparisonResult value that indicates whether the receiver is greater than, equal to, or less
than a given number.

- (NSComparisonResult)compare:(NSNumber *)aNumber

1064 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Parameters
aNumber

The number with which to compare the receiver.

This value must not be nil. If the value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending if the value of aNumber is greater than the receiver’s, NSOrderedSame if they’re
equal, and NSOrderedDescending if the value of aNumber is less than the receiver’s.

Discussion
The compare: method follows the standard C rules for type conversion. For example, if you compare an
NSNumber object that has an integer value with an NSNumber object that has a floating point value, the
integer value is converted to a floating-point value for comparison.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

decimalValue
Returns the receiver’s value, expressed as an NSDecimal structure.

- (NSDecimal)decimalValue

Return Value
The receiver’s value, expressed as an NSDecimal structure. The value returned isn’t guaranteed to be exact
for float and double values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

descriptionWithLocale:
Returns a string that represents the contents of the receiver for a given locale.

- (NSString *)descriptionWithLocale:(id)aLocale

Parameters
aLocale

An object containing locale information with which to format the description. Use nil if you don’t
want the description formatted.

Return Value
A string that represents the contents of the receiver formatted using the locale information in locale.

Instance Methods 1065
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Discussion
For example, if you have an NSNumber object that has the integer value 522, sending it the
descriptionWithLocale: message returns the string “522”.

To obtain the string representation, this method invokes NSString’s initWithFormat:locale: (page
1574) method, supplying the format based on the type the NSNumber object was created with:

Format SpecificationData Type

%ichar

%0.16gdouble

%0.7gfloat

%iint

%lilong

%llilong long

%hishort

%uunsigned char

%uunsigned int

%luunsigned long

%lluunsigned long long

%huunsigned short

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringValue (page 1075)

Declared In
NSValue.h

doubleValue
Returns the receiver’s value as a double.

- (double)doubleValue

Return Value
The receiver’s value as a double, converting it as necessary.

Availability
Available in Mac OS X v10.0 and later.

1066 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Related Sample Code
CocoaSOAP
QTKitMovieShuffler
Quartz Composer QCTV
SimpleScriptingObjects
SimpleScriptingProperties

Declared In
NSValue.h

floatValue
Returns the receiver’s value as a float.

- (float)floatValue

Return Value
The receiver’s value as a float, converting it as necessary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIAnnotation
MyPhoto
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
WebKitPluginWithJavaScript

Declared In
NSValue.h

initWithBool:
Returns an NSNumber object initialized to contain a given value, treated as a BOOL.

- (id)initWithBool:(BOOL)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a BOOL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

Instance Methods 1067
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

initWithChar:
Returns an NSNumber object initialized to contain a given value, treated as a signed char.

- (id)initWithChar:(char)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed char.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

initWithDouble:
Returns an NSNumber object initialized to contain value, treated as a double.

- (id)initWithDouble:(double)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a double.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

initWithFloat:
Returns an NSNumber object initialized to contain a given value, treated as a float.

- (id)initWithFloat:(float)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a float.

Availability
Available in Mac OS X v10.0 and later.

1068 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Declared In
NSValue.h

initWithInt:
Returns an NSNumber object initialized to contain a given value, treated as a signed int.

- (id)initWithInt:(int)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed int.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

initWithInteger:
Returns an NSNumber object initialized to contain a given value, treated as an NSInteger.

- (id)initWithInteger:(NSInteger)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an NSInteger.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSValue.h

initWithLong:
Returns an NSNumber object initialized to contain a given value, treated as a signed long.

- (id)initWithLong:(long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed long.

Instance Methods 1069
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

initWithLongLong:
Returns an NSNumber object initialized to contain value, treated as a signed long long.

- (id)initWithLongLong:(long long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed long long.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

initWithShort:
Returns an NSNumber object initialized to contain a given value, treated as a signed short.

- (id)initWithShort:(short)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed short.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

initWithUnsignedChar:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned char.

- (id)initWithUnsignedChar:(unsigned char)value

1070 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned char.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

initWithUnsignedInt:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned int.

- (id)initWithUnsignedInt:(unsigned int)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned int.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

initWithUnsignedInteger:
Returns an NSNumber object initialized to contain a given value, treated as an NSUInteger.

- (id)initWithUnsignedInteger:(NSUInteger)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an NSUInteger.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSValue.h

Instance Methods 1071
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

initWithUnsignedLong:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long.

- (id)initWithUnsignedLong:(unsigned long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

initWithUnsignedLongLong:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long long.

- (id)initWithUnsignedLongLong:(unsigned long long)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long long.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

initWithUnsignedShort:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned short.

- (id)initWithUnsignedShort:(unsigned short)value

Parameters
value

The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned short.

Availability
Available in Mac OS X v10.0 and later.

1072 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Declared In
NSValue.h

integerValue
Returns the receiver’s value as an NSInteger.

- (NSInteger)integerValue

Return Value
The receiver’s value as an NSInteger, converting it as necessary.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Mountains
QTCoreVideo301

Declared In
NSValue.h

intValue
Returns the receiver’s value as an int.

- (int)intValue

Return Value
The receiver’s value as an int, converting it as necessary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ABPresence
Dicey
EnhancedAudioBurn
QTCoreVideo301
WebKitPluginWithJavaScript

Declared In
NSValue.h

isEqualToNumber:
Returns a Boolean value that indicates whether the receiver and a given number are equal.

- (BOOL)isEqualToNumber:(NSNumber *)aNumber

Instance Methods 1073
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Parameters
aNumber

The number with which to compare the receiver.

Return Value
YES if the receiver and aNumber are equal, otherwise NOr

Discussion
Two NSNumber objects are considered equal if they have the same id values or if they have equivalent values
(as determined by the compare: (page 1064) method).

This method is more efficient than compare: (page 1064) if you know the two objects are numbers.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

longLongValue
Returns the receiver’s value as a long long.

- (long long)longLongValue

Return Value
The receiver’s value as a long long, converting it as necessary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

longValue
Returns the receiver’s value as a long.

- (long)longValue

Return Value
The receiver’s value as a long, converting it as necessary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaSpeechSynthesisExample
CustomAtomicStoreSubclass
QTKitMovieShuffler
Sketch-112
WhackedTV

1074 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Declared In
NSValue.h

objCType
Returns a C string containing the Objective-C type of the data contained in the receiver.

- (const char *)objCType

Return Value
A C string containing the Objective-C type of the data contained in the receiver, as encoded by the @encode()
compiler directive.

Special Considerations

The returned type does not necessarily match the method the receiver was created with.

shortValue
Returns the receiver’s value as a short.

- (short)shortValue

Return Value
The receiver’s value as a short, converting it as necessary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaSpeechSynthesisExample
CoreRecipes

Declared In
NSValue.h

stringValue
Returns the receiver’s value as a human-readable string.

- (NSString *)stringValue

Return Value
The receiver’s value as a human-readable string, created by invoking descriptionWithLocale: (page 1065)
where locale is nil.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlbumToSlideshow
Audio Unit Effect Templates

Instance Methods 1075
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Calculator
VideoHardwareInfo

Declared In
NSValue.h

unsignedCharValue
Returns the receiver’s value as an unsigned char.

- (unsigned char)unsignedCharValue

Return Value
The receiver’s value as an unsigned char, converting it as necessary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

unsignedIntegerValue
Returns the receiver’s value as an NSUInteger.

- (NSUInteger)unsignedIntegerValue

Return Value
The receiver’s value as an NSUInteger, converting it as necessary.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSValue.h

unsignedIntValue
Returns the receiver’s value as an unsigned int.

- (unsigned int)unsignedIntValue

Return Value
The receiver’s value as an unsigned int, converting it as necessary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dicey
OpenGLCaptureToMovie
Quartz Composer WWDC 2005 TextEdit

1076 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

TextEditPlus
WhackedTV

Declared In
NSValue.h

unsignedLongLongValue
Returns the receiver’s value as an unsigned long long.

- (unsigned long long)unsignedLongLongValue

Return Value
The receiver’s value as an unsigned long long, converting it as necessary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

unsignedLongValue
Returns the receiver’s value as an unsigned long.

- (unsigned long)unsignedLongValue

Return Value
The receiver’s value as an unsigned long, converting it as necessary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTRecorder
Quartz Composer WWDC 2005 TextEdit
SampleScannerApp
TextEditPlus

Declared In
NSValue.h

unsignedShortValue
Returns the receiver’s value as an unsigned short.

- (unsigned short)unsignedShortValue

Return Value
The receiver’s value as an unsigned short, converting it as necessary.

Instance Methods 1077
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

1078 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 95

NSNumber Class Reference

Inherits from NSFormatter : NSObject

Conforms to NSCoding (NSFormatter)
NSCopying (NSFormatter)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSNumberFormatter.h

Companion guide Data Formatting Programming Guide for Cocoa

Related sample code CoreRecipes
Grady
Mountains
NumberInput_IMKit_Sample
Quartz Composer QCTV

Overview

Instances of NSNumberFormatter format the textual representation of cells that contain NSNumber objects
and convert textual representations of numeric values into NSNumber objects. The representation encompasses
integers, floats, and doubles; floats and doubles can be formatted to a specified decimal position.
NSNumberFormatter objects can also impose ranges on the numeric values cells can accept.

Many new methods were added to NSNumberFormatter for Mac OS X v10.4 with the intent of making the
class interface more like that of CFNumberFormatter, the Core Foundation service on which the class is
based. The behavior of an NSNumberFormatter object can conform either to the range of behaviors existing
prior to Mac OS X v10.4 or to the range of behavior since that release. (Methods added for and since Mac OS
X v10.4 are indicated by a method’s availability statement.) You can determine the current formatter behavior
with the formatterBehavior (page 1093) method and you can set the formatter behavior with the
setFormatterBehavior: (page 1115) method.

Overview 1079
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

iPhone OS Note: iPhone OS supports only the modern 10.4+ behavior. 10.0-style methods and format strings
are not available on iPhone OS.

Important: The pre-Mac OS X v10.4 methods of NSNumberFormatter are not compatible with the methods
added for Mac OS X v10.4. An NSNumberFormatter object should not invoke methods in these different
behavior groups indiscriminately. Use the old-style methods if you have configured the number-formatter
behavior to be NSNumberFormatterBehavior10_0. Use the new methods instead of the older-style ones
if you have configured the number-formatter behavior to be NSNumberFormatterBehavior10_4.

Nomenclature note: NSNumberFormatter provides several methods (such as
setMaximumFractionDigits: (page 1120)) that allow you to manage the number of fraction digits allowed
as input by an instance: “fraction digits” are the numbers after the decimal separator (in English locales
typically referred to as the “decimal point”).

Tasks

Configuring Formatter Behavior and Style

– setFormatterBehavior: (page 1115)
Sets the formatter behavior of the receiver.

– formatterBehavior (page 1093)
Returns an NSNumberFormatterBehavior constant that indicates the formatter behavior of the
receiver.

+ setDefaultFormatterBehavior: (page 1088)
Sets the default formatter behavior for new instances of NSNumberFormatter .

+ defaultFormatterBehavior (page 1087)
Returns an NSNumberFormatterBehavior constant that indicates default formatter behavior for
new instances of NSNumberFormatter.

– setNumberStyle: (page 1126)
Sets the number style used by the receiver.

– numberStyle (page 1105)
Returns the number-formatter style of the receiver.

– setGeneratesDecimalNumbers: (page 1116)
Controls whether the receiver creates instances of NSDecimalNumber when it converts strings to
number objects.

– generatesDecimalNumbers (page 1094)
Returns a Boolean value that indicates whether the receiver creates instances of NSDecimalNumber
when it converts strings to number objects.

Converting Between Numbers and Strings

– getObjectValue:forString:range:error: (page 1094)
Returns by reference a cell-content object after creating it from a range of characters in a given string.

1080 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

– numberFromString: (page 1104)
Returns an NSNumber object created by parsing a given string.

– stringFromNumber: (page 1136)
Returns a string containing the formatted value of the provided number object.

Managing Localization of Numbers

– setLocalizesFormat: (page 1119)
Sets whether the dollar sign character ($), decimal separator character (.), and thousand separator
character (,) are converted to appropriately localized characters as specified by the user’s localization
preference.

– localizesFormat (page 1098)
Returns a Boolean value that indicates whether the receiver localizes formats.

– setLocale: (page 1118)
Sets the locale of the receiver.

– locale (page 1097)
Returns the locale of the receiver.

Configuring Rounding Behavior

– setRoundingBehavior: (page 1130)
Sets the rounding behavior used by the receiver.

– roundingBehavior (page 1108)
Returns an NSDecimalNumberHandler object indicating the rounding behavior of the receiver.

– setRoundingIncrement: (page 1131)
Sets the rounding increment used by the receiver.

– roundingIncrement (page 1108)
Returns the rounding increment used by the receiver.

– setRoundingMode: (page 1131)
Sets the rounding mode used by the receiver.

– roundingMode (page 1109)
Returns the rounding mode used by the receiver.

Configuring Numeric Formats

– setFormat: (page 1114)
Sets the receiver’s format.

– formatWidth (page 1094)
Returns the format width of the receiver.

– setNegativeFormat: (page 1124)
Sets the format the receiver uses to display negative values.

– negativeFormat (page 1102)
Returns the format used by the receiver to display negative numbers.

Tasks 1081
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

– setPositiveFormat: (page 1129)
Sets the format the receiver uses to display positive values.

– positiveFormat (page 1107)
Returns the format used by the receiver to display positive numbers.

– setFormatWidth: (page 1115)
Sets the format width used by the receiver.

– format (page 1093)
Returns the format used by the receiver.

– setMultiplier: (page 1123)
Sets the multiplier of the receiver.

– multiplier (page 1102)
Returns the multiplier used by the receiver as an NSNumber object.

Configuring Numeric Symbols

– percentSymbol (page 1106)
Returns the string that the receiver uses to represent the percent symbol.

– setPercentSymbol: (page 1128)
Sets the string used by the receiver to represent the percent symbol.

– perMillSymbol (page 1106)
Returns the string that the receiver uses for the per-thousands symbol.

– setPerMillSymbol: (page 1128)
Sets the string used by the receiver to represent the per-mill (per-thousand) symbol.

– minusSign (page 1101)
Returns the string the receiver uses to represent the minus sign.

– setMinusSign: (page 1123)
Sets the string used by the receiver for the minus sign.

– plusSign (page 1106)
Returns the string the receiver uses for the plus sign.

– setPlusSign: (page 1128)
Sets the string used by the receiver to represent the plus sign.

– exponentSymbol (page 1092)
Returns the string the receiver uses as an exponent symbol.

– setExponentSymbol: (page 1114)
Sets the string used by the receiver to represent the exponent symbol.

– zeroSymbol (page 1141)
Returns the string the receiver uses as the symbol to show the value zero.

– setZeroSymbol: (page 1136)
Sets the string the receiver uses as the symbol to show the value zero.

– nilSymbol (page 1104)
Returns the string the receiver uses to represent a nil value.

– setNilSymbol: (page 1125)
Sets the string the receiver uses to represent nil values.

1082 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

– notANumberSymbol (page 1104)
Returns the symbol the receiver uses to represent NaN (“not a number”) when it converts values.

– setNotANumberSymbol: (page 1126)
Sets the string the receiver uses to represent NaN (“not a number”).

– negativeInfinitySymbol (page 1102)
Returns the symbol the receiver uses to represent negative infinity.

– setNegativeInfinitySymbol: (page 1124)
Sets the string used by the receiver for the negative infinity symbol.

– positiveInfinitySymbol (page 1107)
Returns the string the receiver uses for the positive infinity symbol.

– setPositiveInfinitySymbol: (page 1129)
Sets the string used by the receiver for the positive infinity symbol.

Configuring the Format of Currency

– setCurrencySymbol: (page 1113)
Sets the string used by the receiver as a local currency symbol.

– currencySymbol (page 1092)
Returns the receiver’s local currency symbol.

– setCurrencyCode: (page 1112)
Sets the receiver’s currency code.

– currencyCode (page 1091)
Returns the receiver’s currency code as a string.

– setInternationalCurrencySymbol: (page 1118)
Sets the string used by the receiver for the international currency symbol.

– internationalCurrencySymbol (page 1096)
Returns the international currency symbol used by the receiver.

– setCurrencyGroupingSeparator: (page 1112)
Sets the currency grouping separator for the receiver.

– currencyGroupingSeparator (page 1091)
Returns the currency grouping separator for the receiver.

Configuring Numeric Prefixes and Suffixes

– setPositivePrefix: (page 1129)
Sets the string the receiver uses as the prefix for positive values.

– positivePrefix (page 1107)
Returns the string the receiver uses as the prefix for positive values.

– setPositiveSuffix: (page 1130)
Sets the string the receiver uses as the suffix for positive values.

– positiveSuffix (page 1108)
Returns the string the receiver uses as the suffix for positive values.

Tasks 1083
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

– setNegativePrefix: (page 1125)
Sets the string the receiver uses as a prefix for negative values.

– negativePrefix (page 1103)
Returns the string the receiver inserts as a prefix to negative values.

– setNegativeSuffix: (page 1125)
Sets the string the receiver uses as a suffix for negative values.

– negativeSuffix (page 1103)
Returns the string the receiver adds as a suffix to negative values.

Configuring the Display of Numeric Values

– setTextAttributesForNegativeValues: (page 1132)
Sets the text attributes to be used in displaying negative values .

– textAttributesForNegativeValues (page 1137)
Returns a dictionary containing the text attributes that have been set for negative values.

– setTextAttributesForPositiveValues: (page 1134)
Sets the text attributes to be used in displaying positive values.

– textAttributesForPositiveValues (page 1139)
Returns a dictionary containing the text attributes that have been set for positive values.

– setAttributedStringForZero: (page 1111)
Sets the attributed string that the receiver uses to display zero values.

– attributedStringForZero (page 1090)
Returns the attributed string used to display zero values.

– setTextAttributesForZero: (page 1134)
Sets the text attributes used to display a zero value.

– textAttributesForZero (page 1139)
Returns a dictionary containing the text attributes used to display a value of zero.

– setAttributedStringForNil: (page 1110)
Sets the attributed string the receiver uses to display nil values.

– attributedStringForNil (page 1089)
Returns the attributed string used to display nil values.

– setTextAttributesForNil: (page 1133)
Sets the text attributes used to display the nil symbol.

– textAttributesForNil (page 1138)
Returns a dictionary containing the text attributes used to display the nil symbol.

– setAttributedStringForNotANumber: (page 1111)
Sets the attributed string the receiver uses to display “not a number” values.

– attributedStringForNotANumber (page 1090)
Returns the attributed string used to display “not a number” values.

– setTextAttributesForNotANumber: (page 1133)
Sets the text attributes used to display the NaN ("not a number") string.

– textAttributesForNotANumber (page 1138)
Returns a dictionary containing the text attributes used to display the NaN ("not a number") symbol.

1084 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

– setTextAttributesForPositiveInfinity: (page 1134)
Sets the text attributes used to display the positive infinity symbol.

– textAttributesForPositiveInfinity (page 1138)
Returns a dictionary containing the text attributes used to display the positive infinity symbol.

– setTextAttributesForNegativeInfinity: (page 1132)
Sets the text attributes used to display the negative infinity symbol.

– textAttributesForNegativeInfinity (page 1137)
Returns a dictionary containing the text attributes used to display the negative infinity string.

Configuring Separators and Grouping Size

– setGroupingSeparator: (page 1116)
Specifies the string used by the receiver for a grouping separator.

– groupingSeparator (page 1095)
Returns a string containing the receiver’s grouping separator.

– setUsesGroupingSeparator: (page 1135)
Controls whether the receiver displays the grouping separator.

– usesGroupingSeparator (page 1140)
Returns a Boolean value that indicates whether the receiver uses the grouping separator.

– setThousandSeparator: (page 1135)
Sets the character the receiver uses as a thousand separator.

– thousandSeparator (page 1139)
Returns a string containing the character the receiver uses to represent thousand separators.

– setHasThousandSeparators: (page 1117)
Sets whether the receiver uses thousand separators.

– hasThousandSeparators (page 1096)
Returns a Boolean value that indicates whether the receiver’s format includes thousand separators.

– setDecimalSeparator: (page 1113)
Sets the character the receiver uses as a decimal separator.

– decimalSeparator (page 1092)
Returns a string containing the character the receiver uses to represent decimal separators.

– setAlwaysShowsDecimalSeparator: (page 1110)
Controls whether the receiver always shows the decimal separator, even for integer numbers.

– alwaysShowsDecimalSeparator (page 1089)
Returns a Boolean value that indicates whether the receiver always shows a decimal separator, even
if the number is an integer.

– setCurrencyDecimalSeparator: (page 1112)
Sets the string used by the receiver as a decimal separator.

– currencyDecimalSeparator (page 1091)
Returns the receiver’s currency decimal separator as a string.

– setGroupingSize: (page 1117)
Sets the grouping size of the receiver.

– groupingSize (page 1095)
Returns the receiver’s primary grouping size.

Tasks 1085
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

– setSecondaryGroupingSize: (page 1131)
Sets the secondary grouping size of the receiver.

– secondaryGroupingSize (page 1109)
Returns the size of secondary groupings for the receiver.

Managing the Padding of Numbers

– setPaddingCharacter: (page 1127)
Sets the string that the receiver uses to pad numbers in the formatted string representation.

– paddingCharacter (page 1105)
Returns a string containing the padding character for the receiver.

– setPaddingPosition: (page 1127)
Sets the padding position used by the receiver.

– paddingPosition (page 1105)
Returns the padding position of the receiver.

Managing Input Attributes

– setAllowsFloats: (page 1110)
Sets whether the receiver allows as input floating-point values (that is, values that include the period
character [.]).

– allowsFloats (page 1088)
Returns a Boolean value that indicates whether the receiver allows floating-point values as input.

– setMinimum: (page 1121)
Sets the lowest number the receiver allows as input.

– minimum (page 1100)
Returns the lowest number allowed as input by the receiver.

– setMaximum: (page 1119)
Sets the highest number the receiver allows as input.

– maximum (page 1098)
Returns the highest number allowed as input by the receiver.

– setMinimumIntegerDigits: (page 1122)
Sets the minimum number of integer digits allowed as input by the receiver.

– minimumIntegerDigits (page 1101)
Returns the minimum number of integer digits allowed as input by the receiver.

– setMinimumFractionDigits: (page 1122)
Sets the minimum number of digits after the decimal separator allowed as input by the receiver.

– minimumFractionDigits (page 1100)
Returns the minimum number of digits after the decimal separator allowed as input by the receiver.

– setMaximumIntegerDigits: (page 1120)
Sets the maximum number of integer digits allowed as input by the receiver.

– maximumIntegerDigits (page 1099)
Returns the maximum number of integer digits allowed as input by the receiver.

1086 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

– setMaximumFractionDigits: (page 1120)
Sets the maximum number of digits after the decimal separator allowed as input by the receiver.

– maximumFractionDigits (page 1099)
Returns the maximum number of digits after the decimal separator allowed as input by the receiver.

Configuring Significant Digits

– setUsesSignificantDigits: (page 1136)
Sets whether the receiver uses significant digits.

– usesSignificantDigits (page 1140)
Returns a Boolean value that indicates whether the receiver uses significant digits.

– setMinimumSignificantDigits: (page 1123)
Sets the minimum number of significant digits for the receiver.

– minimumSignificantDigits (page 1101)
Returns the minimum number of significant digits for the receiver.

– setMaximumSignificantDigits: (page 1121)
Sets the maximum number of significant digits for the receiver.

– maximumSignificantDigits (page 1099)
Returns the maximum number of significant digits for the receiver.

Managing Leniency Behavior

– setLenient: (page 1118)
Sets whether the receiver will use heuristics to guess at the number which is intended by a string.

– isLenient (page 1097)
Returns a Boolean value that indicates whether the receiver uses heuristics to guess at the number
which is intended by a string.

Managing the Validation of Partial Numeric Strings

– setPartialStringValidationEnabled: (page 1127)
Sets whether partial string validation is enabled for the receiver.

– isPartialStringValidationEnabled (page 1097)
Returns a Boolean value that indicates whether partial string validation is enabled.

Class Methods

defaultFormatterBehavior
Returns an NSNumberFormatterBehavior constant that indicates default formatter behavior for new
instances of NSNumberFormatter.

Class Methods 1087
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

+ (NSNumberFormatterBehavior)defaultFormatterBehavior

Return Value
An NSNumberFormatterBehavior constant that indicates default formatter behavior for new instances of
NSNumberFormatter.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ setDefaultFormatterBehavior: (page 1088)

Declared In
NSNumberFormatter.h

setDefaultFormatterBehavior:
Sets the default formatter behavior for new instances of NSNumberFormatter .

+ (void)setDefaultFormatterBehavior:(NSNumberFormatterBehavior)behavior

Parameters
behavior

An NSNumberFormatterBehavior constant that indicates the revision of the class providing the
default behavior.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ defaultFormatterBehavior (page 1087)

Related Sample Code
NumberInput_IMKit_Sample

Declared In
NSNumberFormatter.h

Instance Methods

allowsFloats
Returns a Boolean value that indicates whether the receiver allows floating-point values as input.

- (BOOL)allowsFloats

Return Value
YES if the receiver allows as input floating-point values (that is, values that include the period character [.]),
otherwise NO.

1088 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Discussion
When this method returns NO, only integer values can be provided as input. The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsFloats: (page 1110)

Declared In
NSNumberFormatter.h

alwaysShowsDecimalSeparator
Returns a Boolean value that indicates whether the receiver always shows a decimal separator, even if the
number is an integer.

- (BOOL)alwaysShowsDecimalSeparator

Return Value
YES if the receiver always shows a decimal separator, even if the number is an integer, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAlwaysShowsDecimalSeparator: (page 1110)

Declared In
NSNumberFormatter.h

attributedStringForNil
Returns the attributed string used to display nil values.

- (NSAttributedString *)attributedStringForNil

Return Value
The attributed string used to display nil values.

Discussion
By default nil values are displayed as an empty string.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttributedStringForNil: (page 1110)

Instance Methods 1089
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

attributedStringForNotANumber
Returns the attributed string used to display “not a number” values.

- (NSAttributedString *)attributedStringForNotANumber

Return Value
The attributed string used to display “not a number” values.

Discussion
By default “not a number” values are displayed as the string “NaN”.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttributedStringForNotANumber: (page 1111)

Declared In
NSNumberFormatter.h

attributedStringForZero
Returns the attributed string used to display zero values.

- (NSAttributedString *)attributedStringForZero

Return Value
The attributed string used to display zero values.

Discussion
By default zero values are displayed according to the format specified for positive values; for more discussion
of this subject see Data Formatting Programming Guide for Cocoa.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttributedStringForZero: (page 1111)

Declared In
NSNumberFormatter.h

1090 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

currencyCode
Returns the receiver’s currency code as a string.

- (NSString *)currencyCode

Return Value
The receiver’s currency code as a string.

Discussion
A currency code is a three-letter code that is, in most cases, composed of a country’s two-character Internet
country code plus an extra character to denote the currency unit. For example, the currency code for the
Australian dollar is “AUD”. Currency codes are based on the ISO 4217 standard.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCurrencyCode: (page 1112)

Declared In
NSNumberFormatter.h

currencyDecimalSeparator
Returns the receiver’s currency decimal separator as a string.

- (NSString *)currencyDecimalSeparator

Return Value
The receiver’s currency decimal separator as a string.

Availability
Available in Mac OS X v10.4 and later.

See Also
– currencyDecimalSeparator (page 1091)

Declared In
NSNumberFormatter.h

currencyGroupingSeparator
Returns the currency grouping separator for the receiver.

- (NSString *)currencyGroupingSeparator

Return Value
The currency grouping separator for the receiver.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 1091
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

currencySymbol
Returns the receiver’s local currency symbol.

- (NSString *)currencySymbol

Discussion
A country typically has a local currency symbol and an international currency symbol. The local symbol is
used within the country, while the international currency symbol is used in international contexts to specify
that country’s currency unambiguously. The local currency symbol is often represented by a Unicode code
point.

Availability
Available in Mac OS X v10.4 and later.

See Also
– internationalCurrencySymbol (page 1096)
– setCurrencySymbol: (page 1113)

Declared In
NSNumberFormatter.h

decimalSeparator
Returns a string containing the character the receiver uses to represent decimal separators.

- (NSString *)decimalSeparator

Return Value
A string containing the character the receiver uses to represent decimal separators.

Discussion
The return value doesn’t indicate whether decimal separators are enabled.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDecimalSeparator: (page 1113)

Declared In
NSNumberFormatter.h

exponentSymbol
Returns the string the receiver uses as an exponent symbol.

- (NSString *)exponentSymbol

1092 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Return Value
The string the receiver uses as an exponent symbol.

Discussion
The exponent symbol is the “E” or “e” in the scientific notation of numbers, as in 1.0e+56.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setExponentSymbol: (page 1114)

Declared In
NSNumberFormatter.h

format
Returns the format used by the receiver.

- (NSString *)format

Return Value
The format used by the receiver.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFormat: (page 1114)

Declared In
NSNumberFormatter.h

formatterBehavior
Returns an NSNumberFormatterBehavior constant that indicates the formatter behavior of the receiver.

- (NSNumberFormatterBehavior)formatterBehavior

Return Value
An NSNumberFormatterBehavior constant that indicates the formatter behavior of the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setFormatterBehavior: (page 1115)

Declared In
NSNumberFormatter.h

Instance Methods 1093
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

formatWidth
Returns the format width of the receiver.

- (NSUInteger)formatWidth

Discussion
The format width is the number of characters of a formatted number within a string that is either left justified
or right justified based on the value returned from paddingPosition (page 1105).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setFormatWidth: (page 1115)

Declared In
NSNumberFormatter.h

generatesDecimalNumbers
Returns a Boolean value that indicates whether the receiver creates instances of NSDecimalNumber when
it converts strings to number objects.

- (BOOL)generatesDecimalNumbers

Return Value
YES if the receiver creates instances of NSDecimalNumber when it converts strings to number objects, NO
if it creates instance of NSNumber.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setGeneratesDecimalNumbers: (page 1116)

Declared In
NSNumberFormatter.h

getObjectValue:forString:range:error:
Returns by reference a cell-content object after creating it from a range of characters in a given string.

- (BOOL)getObjectValue:(out id *)anObject forString:(NSString *)aString range:(inout
 NSRange *)rangep error:(out NSError **)error

Parameters
anObject

On return, contains an instance of NSDecimalNumber or NSNumber based on the current value of
generatesDecimalNumbers (page 1094). The default is to return NSDecimalNumber instances

aString
A string object with the range of characters specified in rangep that is used to create anObject.

1094 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

rangep
A range of characters in aString. On return, contains the actual range of characters used to create
the object.

error
If an error occurs, upon return contains an NSError object that explains the reason why the conversion
failed. If you pass in nil for error you are indicating that you are not interested in error information.

Return Value
YES if the conversion from string to cell-content object was successful, otherwise NO.

Discussion
If there is an error, the delegate (if any) of the control object managing the cell can then respond to the
failure in the NSControl delegation method control:didFailToFormatString:errorDescription:.

Availability
Available in Mac OS X v10.4 and later.

See Also
– numberFromString: (page 1104)
– stringFromNumber: (page 1136)

Declared In
NSNumberFormatter.h

groupingSeparator
Returns a string containing the receiver’s grouping separator.

- (NSString *)groupingSeparator

Return Value
A string containing the receiver’s grouping separator.

Discussion
For example, the grouping separator used in the United States is the comma (“10,000”) whereas in France it
is the period (“10.000”).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setGroupingSeparator: (page 1116)

Declared In
NSNumberFormatter.h

groupingSize
Returns the receiver’s primary grouping size.

- (NSUInteger)groupingSize

Instance Methods 1095
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Return Value
The receiver’s primary grouping size.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setGroupingSize: (page 1117)

Declared In
NSNumberFormatter.h

hasThousandSeparators
Returns a Boolean value that indicates whether the receiver’s format includes thousand separators.

- (BOOL)hasThousandSeparators

Return Value
YES if the receiver’s format includes thousand separators, otherwise NO.

Discussion
The default is NO.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHasThousandSeparators: (page 1117)

Declared In
NSNumberFormatter.h

internationalCurrencySymbol
Returns the international currency symbol used by the receiver.

- (NSString *)internationalCurrencySymbol

Discussion
A country typically has a local currency symbol and an international currency symbol. The local symbol is
used within the country, while the international currency symbol is used in international contexts to specify
that country’s currency unambiguously. The international currency symbol is often represented by a Unicode
code point.

Availability
Available in Mac OS X v10.4 and later.

See Also
– currencySymbol (page 1092)

1096 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

– setInternationalCurrencySymbol: (page 1118)

Declared In
NSNumberFormatter.h

isLenient
Returns a Boolean value that indicates whether the receiver uses heuristics to guess at the number which is
intended by a string.

- (BOOL)isLenient

Return Value
YES if the receiver uses heuristics to guess at the number which is intended by the string; otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setLenient: (page 1118)

Declared In
NSNumberFormatter.h

isPartialStringValidationEnabled
Returns a Boolean value that indicates whether partial string validation is enabled.

- (BOOL)isPartialStringValidationEnabled

Return Value
YES if partial string validation is enabled, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setPartialStringValidationEnabled: (page 1127)

Declared In
NSNumberFormatter.h

locale
Returns the locale of the receiver.

- (NSLocale *)locale

Return Value
The locale of the receiver.

Instance Methods 1097
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Discussion
A number formatter’s locale specifies default localization attributes, such as ISO country and language codes,
currency code, calendar, system of measurement, and decimal separator.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLocale: (page 1118)

Declared In
NSNumberFormatter.h

localizesFormat
Returns a Boolean value that indicates whether the receiver localizes formats.

- (BOOL)localizesFormat

Return Value
YES if the receiver localizes formats, otherwise NO.

Discussion
The default is NO.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLocalizesFormat: (page 1119)

Declared In
NSNumberFormatter.h

maximum
Returns the highest number allowed as input by the receiver.

- (NSNumber *)maximum

Return Value
The highest number allowed as input by the receiver or nil, meaning no limit.

Discussion
For versions prior to Mac OS X v10.4 (and number-formatter behavior set to
NSNumberFormatterBehavior10_0) this method returns an NSDecimalNumber object.

Availability
Available in Mac OS X v10.4 and later.
Version returning NSDecimalNumber available prior to Mac OS X v10.4.

1098 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

See Also
– setMaximum: (page 1119)
+ setDefaultFormatterBehavior: (page 1088)
– formatterBehavior (page 1093)
– setFormatterBehavior: (page 1115)

Declared In
NSNumberFormatter.h

maximumFractionDigits
Returns the maximum number of digits after the decimal separator allowed as input by the receiver.

- (NSUInteger)maximumFractionDigits

Return Value
The maximum number of digits after the decimal separator allowed as input by the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMaximumFractionDigits: (page 1120)

Declared In
NSNumberFormatter.h

maximumIntegerDigits
Returns the maximum number of integer digits allowed as input by the receiver.

- (NSUInteger)maximumIntegerDigits

Return Value
The maximum number of integer digits allowed as input by the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMaximumIntegerDigits: (page 1120)

Declared In
NSNumberFormatter.h

maximumSignificantDigits
Returns the maximum number of significant digits for the receiver.

- (NSUInteger)maximumSignificantDigits

Instance Methods 1099
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Return Value
The maximum number of significant digits for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setMaximumSignificantDigits: (page 1121)
– minimumSignificantDigits (page 1101)
– usesSignificantDigits (page 1140)

Declared In
NSNumberFormatter.h

minimum
Returns the lowest number allowed as input by the receiver.

- (NSNumber *)minimum

Return Value
The lowest number allowed as input by the receiver or nil, meaning no limit.

Discussion
For versions prior to Mac OS X v10.4 (and number-formatter behavior set to
NSNumberFormatterBehavior10_0) this method returns an NSDecimalNumber object.

Availability
Available in Mac OS X v10.4 and later. Version returning NSDecimalNumber available prior to Mac OS X v10.4.

See Also
– setMinimum: (page 1121)
+ setDefaultFormatterBehavior: (page 1088)
– formatterBehavior (page 1093)
– setFormatterBehavior: (page 1115)

Declared In
NSNumberFormatter.h

minimumFractionDigits
Returns the minimum number of digits after the decimal separator allowed as input by the receiver.

- (NSUInteger)minimumFractionDigits

Return Value
The minimum number of digits after the decimal separator allowed as input by the receiver.

Availability
Available in Mac OS X v10.4 and later.

1100 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

See Also
– setMinimumFractionDigits: (page 1122)

Declared In
NSNumberFormatter.h

minimumIntegerDigits
Returns the minimum number of integer digits allowed as input by the receiver.

- (NSUInteger)minimumIntegerDigits

Return Value
The minimum number of integer digits allowed as input by the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMinimumIntegerDigits: (page 1122)

Declared In
NSNumberFormatter.h

minimumSignificantDigits
Returns the minimum number of significant digits for the receiver.

- (NSUInteger)minimumSignificantDigits

Return Value
The minimum number of significant digits for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setMinimumSignificantDigits: (page 1123)
– maximumSignificantDigits (page 1099)
– usesSignificantDigits (page 1140)

Declared In
NSNumberFormatter.h

minusSign
Returns the string the receiver uses to represent the minus sign.

- (NSString *)minusSign

Return Value
The string that represents the receiver’s minus sign.

Instance Methods 1101
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMinusSign: (page 1123)

Declared In
NSNumberFormatter.h

multiplier
Returns the multiplier used by the receiver as an NSNumber object.

- (NSNumber *)multiplier

Discussion
A multiplier is a factor used in conversions between numbers and strings (that is, numbers as stored and
numbers as displayed). When the input value is a string, the multiplier is used to divide, and when the input
value is a number, the multiplier is used to multiply. These operations allow the formatted values to be
different from the values that a program manipulates internally.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMultiplier: (page 1123)

Declared In
NSNumberFormatter.h

negativeFormat
Returns the format used by the receiver to display negative numbers.

- (NSString *)negativeFormat

Availability
Available in Mac OS X v10.0 and later.

See Also
– setNegativeFormat: (page 1124)
– setFormat: (page 1114)

Declared In
NSNumberFormatter.h

negativeInfinitySymbol
Returns the symbol the receiver uses to represent negative infinity.

- (NSString *)negativeInfinitySymbol

1102 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Return Value
The symbol the receiver uses to represent negative infinity.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setNegativeInfinitySymbol: (page 1124)

Declared In
NSNumberFormatter.h

negativePrefix
Returns the string the receiver inserts as a prefix to negative values.

- (NSString *)negativePrefix

Return Value
The string the receiver inserts as a prefix to negative values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– negativeSuffix (page 1103)
– setNegativePrefix: (page 1125)

Declared In
NSNumberFormatter.h

negativeSuffix
Returns the string the receiver adds as a suffix to negative values.

- (NSString *)negativeSuffix

Return Value
The string the receiver adds as a suffix to negative values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– negativePrefix (page 1103)
– setNegativeSuffix: (page 1125)

Declared In
NSNumberFormatter.h

Instance Methods 1103
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

nilSymbol
Returns the string the receiver uses to represent a nil value.

- (NSString *)nilSymbol

Return Value
The string the receiver uses to represent a nil value.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setNilSymbol: (page 1125)

Declared In
NSNumberFormatter.h

notANumberSymbol
Returns the symbol the receiver uses to represent NaN (“not a number”) when it converts values.

- (NSString *)notANumberSymbol

Return Value
The symbol the receiver uses to represent NaN (“not a number”) when it converts values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setNotANumberSymbol: (page 1126)

Declared In
NSNumberFormatter.h

numberFromString:
Returns an NSNumber object created by parsing a given string.

- (NSNumber *)numberFromString:(NSString *)string

Parameters
string

An NSString object that is parsed to generate the returned number object.

Return Value
An NSNumber object created by parsing string using the receiver’s format.

Availability
Available in Mac OS X v10.4 and later.

See Also
– stringFromNumber: (page 1136)

1104 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Related Sample Code
NumberInput_IMKit_Sample

Declared In
NSNumberFormatter.h

numberStyle
Returns the number-formatter style of the receiver.

- (NSNumberFormatterStyle)numberStyle

Return Value
An NSNumberFormatterStyle constant that indicates the number-formatter style of the receiver.

Discussion
Styles are essentially predetermined sets of values for certain properties. Examples of number-formatter
styles are those used for decimal values, percentage values, and currency.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setNumberStyle: (page 1126)

Declared In
NSNumberFormatter.h

paddingCharacter
Returns a string containing the padding character for the receiver.

- (NSString *)paddingCharacter

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPaddingCharacter: (page 1127)

Declared In
NSNumberFormatter.h

paddingPosition
Returns the padding position of the receiver.

- (NSNumberFormatterPadPosition)paddingPosition

Discussion
The returned constant indicates whether the padding is before or after the number’s prefix or suffix.

Instance Methods 1105
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPaddingPosition: (page 1127)

Declared In
NSNumberFormatter.h

percentSymbol
Returns the string that the receiver uses to represent the percent symbol.

- (NSString *)percentSymbol

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPercentSymbol: (page 1128)

Declared In
NSNumberFormatter.h

perMillSymbol
Returns the string that the receiver uses for the per-thousands symbol.

- (NSString *)perMillSymbol

Return Value
The string that the receiver uses for the per-thousands symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPerMillSymbol: (page 1128)

Declared In
NSNumberFormatter.h

plusSign
Returns the string the receiver uses for the plus sign.

- (NSString *)plusSign

Return Value
The string the receiver uses for the plus sign.

1106 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPlusSign: (page 1128)

Declared In
NSNumberFormatter.h

positiveFormat
Returns the format used by the receiver to display positive numbers.

- (NSString *)positiveFormat

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPositiveFormat: (page 1129)
– setFormat: (page 1114)

Declared In
NSNumberFormatter.h

positiveInfinitySymbol
Returns the string the receiver uses for the positive infinity symbol.

- (NSString *)positiveInfinitySymbol

Return Value
The string the receiver uses for the positive infinity symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPositiveInfinitySymbol: (page 1129)

Declared In
NSNumberFormatter.h

positivePrefix
Returns the string the receiver uses as the prefix for positive values.

- (NSString *)positivePrefix

Return Value
The string the receiver uses as the prefix for positive values.

Instance Methods 1107
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPositivePrefix: (page 1129)

Declared In
NSNumberFormatter.h

positiveSuffix
Returns the string the receiver uses as the suffix for positive values.

- (NSString *)positiveSuffix

Return Value
The string the receiver uses as the suffix for positive values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPositiveSuffix: (page 1130)

Declared In
NSNumberFormatter.h

roundingBehavior
Returns an NSDecimalNumberHandler object indicating the rounding behavior of the receiver.

- (NSDecimalNumberHandler *)roundingBehavior

Return Value
An NSDecimalNumberHandler object indicating the rounding behavior of the receiver.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRoundingBehavior: (page 1130)

Declared In
NSNumberFormatter.h

roundingIncrement
Returns the rounding increment used by the receiver.

1108 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

- (NSNumber *)roundingIncrement

Return Value
The rounding increment used by the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setRoundingIncrement: (page 1131)

Declared In
NSNumberFormatter.h

roundingMode
Returns the rounding mode used by the receiver.

- (NSNumberFormatterRoundingMode)roundingMode

Return Value
The rounding mode used by the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setRoundingMode: (page 1131)

Declared In
NSNumberFormatter.h

secondaryGroupingSize
Returns the size of secondary groupings for the receiver.

- (NSUInteger)secondaryGroupingSize

Return Value
The size of secondary groupings for the receiver.

Discussion
Some locales allow the specification of another grouping size for larger numbers. For example, some locales
may represent a number such as 61, 242, 378.46 (as in the United States) as 6,12,42,378.46. In this case, the
secondary grouping size (covering the groups of digits furthest from the decimal point) is 2.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setSecondaryGroupingSize: (page 1131)

Declared In
NSNumberFormatter.h

Instance Methods 1109
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

setAllowsFloats:
Sets whether the receiver allows as input floating-point values (that is, values that include the period character
[.]).

- (void)setAllowsFloats:(BOOL)flag

Parameters
flag

YES if the receiver allows floating-point values, NO otherwise.

Discussion
By default, floating point values are allowed as input.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsFloats (page 1088)

Related Sample Code
Quartz Composer QCTV

Declared In
NSNumberFormatter.h

setAlwaysShowsDecimalSeparator:
Controls whether the receiver always shows the decimal separator, even for integer numbers.

- (void)setAlwaysShowsDecimalSeparator:(BOOL)flag

Parameters
flag

YES if the receiver should always show the decimal separator, NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– alwaysShowsDecimalSeparator (page 1089)

Declared In
NSNumberFormatter.h

setAttributedStringForNil:
Sets the attributed string the receiver uses to display nil values.

- (void)setAttributedStringForNil:(NSAttributedString *)newAttributedString

Parameters
newAttributedString

An NSAttributedString object that the receiver uses to display nil values.

1110 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedStringForNil (page 1089)

Declared In
NSNumberFormatter.h

setAttributedStringForNotANumber:
Sets the attributed string the receiver uses to display “not a number” values.

- (void)setAttributedStringForNotANumber:(NSAttributedString *)newAttributedString

Parameters
newAttributedString

An NSAttributedString object that the receiver uses to display NaN values.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedStringForNotANumber (page 1090)

Declared In
NSNumberFormatter.h

setAttributedStringForZero:
Sets the attributed string that the receiver uses to display zero values.

- (void)setAttributedStringForZero:(NSAttributedString *)newAttributedString

Parameters
newAttributedString

An NSAttributedString object that the receiver uses to display zero values.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedStringForZero (page 1090)

Instance Methods 1111
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

setCurrencyCode:
Sets the receiver’s currency code.

- (void)setCurrencyCode:(NSString *)string

Parameters
string

A string specifying the receiver's new currency code.

Discussion
A currency code is a three-letter code that is, in most cases, composed of a country’s two-character Internet
country code plus an extra character to denote the currency unit. For example, the currency code for the
Australian dollar is “AUD”. Currency codes are based on the ISO 4217 standard.

Availability
Available in Mac OS X v10.4 and later.

See Also
– currencyCode (page 1091)

Declared In
NSNumberFormatter.h

setCurrencyDecimalSeparator:
Sets the string used by the receiver as a decimal separator.

- (void)setCurrencyDecimalSeparator:(NSString *)string

Parameters
string

The string to use as the currency decimal separator.

Availability
Available in Mac OS X v10.4 and later.

See Also
– currencyDecimalSeparator (page 1091)

Declared In
NSNumberFormatter.h

setCurrencyGroupingSeparator:
Sets the currency grouping separator for the receiver.

- (NSString *)setCurrencyGroupingSeparator:(NSString *)string

1112 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Parameters
string

The currency grouping separator for the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSNumberFormatter.h

setCurrencySymbol:
Sets the string used by the receiver as a local currency symbol.

- (void)setCurrencySymbol:(NSString *)string

Parameters
string

A string that represents a local currency symbol.

Discussion
The local symbol is used within the country, while the international currency symbol is used in international
contexts to specify that country’s currency unambiguously. The local currency symbol is often represented
by a Unicode code point.

Availability
Available in Mac OS X v10.4 and later.

See Also
– currencySymbol (page 1092)
– setInternationalCurrencySymbol: (page 1118)

Declared In
NSNumberFormatter.h

setDecimalSeparator:
Sets the character the receiver uses as a decimal separator.

- (void)setDecimalSeparator:(NSString *)newSeparator

Parameters
newSeparator

The string that specifies the decimal-separator character to use. If newSeparator contains multiple
characters, only the first one is used.

Discussion
If you don’t have decimal separators enabled through another means (such as setFormat: (page 1114)), using
this method enables them.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1113
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

See Also
– decimalSeparator (page 1092)
– formatterBehavior (page 1093)

Declared In
NSNumberFormatter.h

setExponentSymbol:
Sets the string used by the receiver to represent the exponent symbol.

- (void)setExponentSymbol:(NSString *)string

Parameters
string

A string that represents an exponent symbol.

Discussion
The exponent symbol is the “E” or “e” in the scientific notation of numbers, as in 1.0e+56.

Availability
Available in Mac OS X v10.4 and later.

See Also
– exponentSymbol (page 1092)

Declared In
NSNumberFormatter.h

setFormat:
Sets the receiver’s format.

- (void)setFormat:(NSString *)aFormat

Parameters
aFormat

A string that can consist of one, two, or three parts separated by “;”. The first part of the string
represents the positive format, the second part of the string represents the zero value, and the last
part of the string represents the negative format. If the string has just two parts, the first one becomes
the positive format, and the second one becomes the negative format. If the string has just one part,
it becomes the positive format, and default formats are provided for zero and negative values based
on the positive format. For more discussion of this subject, see Data Formatting Programming Guide
for Cocoa.

Discussion
The following code excerpt shows the three different approaches for setting an NSNumberFormatter object’s
format using setFormat::

NSNumberFormatter *numberFormatter =
 [[[NSNumberFormatter alloc] init] autorelease];

// specify just positive format
[numberFormatter setFormat:@"$#,##0.00"];

1114 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

// specify positive and negative formats
[numberFormatter setFormat:@"$#,##0.00;($#,##0.00)"];

// specify positive, zero, and negative formats
[numberFormatter setFormat:@"$#,###.00;0.00;($#,##0.00)"];

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– format (page 1093)

Declared In
NSNumberFormatter.h

setFormatterBehavior:
Sets the formatter behavior of the receiver.

- (void)setFormatterBehavior:(NSNumberFormatterBehavior)behavior

Parameters
behavior

An NSNumberFormatterBehavior constant that indicates the revision of the NSNumberFormatter
class providing the current behavior.

Availability
Available in Mac OS X v10.4 and later.

See Also
– formatterBehavior (page 1093)

Related Sample Code
TrackBall

Declared In
NSNumberFormatter.h

setFormatWidth:
Sets the format width used by the receiver.

- (void)setFormatWidth:(NSUInteger)number

Parameters
number

An integer that specifies the format width.

Instance Methods 1115
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Discussion
The format width is the number of characters of a formatted number within a string that is either left justified
or right justified based on the value returned from paddingPosition (page 1105).

Availability
Available in Mac OS X v10.4 and later.

See Also
– formatWidth (page 1094)

Declared In
NSNumberFormatter.h

setGeneratesDecimalNumbers:
Controls whether the receiver creates instances of NSDecimalNumber when it converts strings to number
objects.

- (void)setGeneratesDecimalNumbers:(BOOL)flag

Parameters
flag

YES if the receiver should generate NSDecimalNumber instances, NO if it should generate NSNumber
instances.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.4 and later.

See Also
– generatesDecimalNumbers (page 1094)

Declared In
NSNumberFormatter.h

setGroupingSeparator:
Specifies the string used by the receiver for a grouping separator.

- (void)setGroupingSeparator:(NSString *)string

Parameters
string

A string that specifies the grouping separator to use.

Availability
Available in Mac OS X v10.4 and later.

See Also
– groupingSeparator (page 1095)

1116 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

setGroupingSize:
Sets the grouping size of the receiver.

- (void)setGroupingSize:(NSUInteger)numDigits

Parameters
numDigits

An integer that specifies the grouping size.

Availability
Available in Mac OS X v10.4 and later.

See Also
– groupingSize (page 1095)

Declared In
NSNumberFormatter.h

setHasThousandSeparators:
Sets whether the receiver uses thousand separators.

- (void)setHasThousandSeparators:(BOOL)flag

Parameters
flag

When flag is NO, thousand separators are disabled for both positive and negative formats (even if
you’ve set them through another means, such assetFormat: (page 1114)). Whenflag isYES, thousand
separators are used.

Discussion
In addition to using this method to add thousand separators to your format, you can also use it to disable
thousand separators if you’ve set them using another method. The default is NO (though you in effect change
this setting to YESwhen you set thousand separators through any means, such as setFormat: (page 1114)).

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasThousandSeparators (page 1096)

Declared In
NSNumberFormatter.h

Instance Methods 1117
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

setInternationalCurrencySymbol:
Sets the string used by the receiver for the international currency symbol.

- (void)setInternationalCurrencySymbol:(NSString *)string

Parameters
string

A string that represents an international currency symbol.

Discussion
The local symbol is used within the country, while the international currency symbol is used in international
contexts to specify that country’s currency unambiguously. The local currency symbol is often represented
by a Unicode code point.

Availability
Available in Mac OS X v10.4 and later.

See Also
– internationalCurrencySymbol (page 1096)

Declared In
NSNumberFormatter.h

setLenient:
Sets whether the receiver will use heuristics to guess at the number which is intended by a string.

- (void)setLenient:(BOOL)b

Parameters
b

YES if the receiver will use heuristics to guess at the number which is intended by the string; otherwise
NO.

Discussion
If the formatter is set to be lenient, as with any guessing it may get the result number wrong (that is, a number
other than that which was intended).

Availability
Available in Mac OS X v10.5 and later.

See Also
– isLenient (page 1097)

Declared In
NSNumberFormatter.h

setLocale:
Sets the locale of the receiver.

- (void)setLocale:(NSLocale *)theLocale

1118 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Parameters
theLocale

An NSLocale object representing the new locale of the receiver.

Discussion
The locale determines the default values for many formatter attributes, such as ISO country and language
codes, currency code, calendar, system of measurement, and decimal separator.

Availability
Available in Mac OS X v10.4 and later.

See Also
– locale (page 1097)

Declared In
NSNumberFormatter.h

setLocalizesFormat:
Sets whether the dollar sign character ($), decimal separator character (.), and thousand separator character
(,) are converted to appropriately localized characters as specified by the user’s localization preference.

- (void)setLocalizesFormat:(BOOL)flag

Parameters
flag

YES if these characters are converted to the localized equivalents, NO otherwise.

Discussion
While the currency-symbol part of this feature may be useful in certain types of applications, it’s probably
more likely that you would tie a particular application to a particular currency (that is, that you would
“hard-code” the currency symbol and separators instead of having them dynamically change based on the
user’s configuration). The reason for this, of course, is that NSNumberFormatter doesn’t perform currency
conversions, it just formats numeric data. You wouldn’t want one user interpreting the value "56324" as US
currency and another user who’s accessing the same data interpreting it as Japanese currency, simply based
on each user’s localization preferences.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– localizesFormat (page 1098)

Declared In
NSNumberFormatter.h

setMaximum:
Sets the highest number the receiver allows as input.

Instance Methods 1119
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

- (void)setMaximum:(NSNumber *)aMaximum

Parameters
aMaximum

A number object that specifies a maximum input value.

Discussion
If aMaximum is nil, checking for the maximum value is disabled. For versions prior to Mac OS X v10.4 (and
number-formatter behavior set to NSNumberFormatterBehavior10_0) this method requires an
NSDecimalNumber argument.

Availability
Available in Mac OS X v10.4 and later. Version requiring NSDecimalNumber argument available prior to Mac
OS X v10.4.

See Also
– maximum (page 1098)
+ setDefaultFormatterBehavior: (page 1088)
– formatterBehavior (page 1093)
– setFormatterBehavior: (page 1115)

Related Sample Code
Quartz Composer QCTV

Declared In
NSNumberFormatter.h

setMaximumFractionDigits:
Sets the maximum number of digits after the decimal separator allowed as input by the receiver.

- (void)setMaximumFractionDigits:(NSUInteger)number

Parameters
number

The maximum number of digits after the decimal separator allowed as input.

Availability
Available in Mac OS X v10.4 and later.

See Also
– maximumFractionDigits (page 1099)

Related Sample Code
TrackBall

Declared In
NSNumberFormatter.h

setMaximumIntegerDigits:
Sets the maximum number of integer digits allowed as input by the receiver.

1120 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

- (void)setMaximumIntegerDigits:(NSUInteger)number

Parameters
number

The maximum number of integer digits allowed as input.

Availability
Available in Mac OS X v10.4 and later.

See Also
– minimumIntegerDigits (page 1101)

Declared In
NSNumberFormatter.h

setMaximumSignificantDigits:
Sets the maximum number of significant digits for the receiver.

- (void)setMaximumSignificantDigits:(NSUInteger)number

Parameters
number

The maximum number of significant digits for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– maximumSignificantDigits (page 1099)
– setMinimumSignificantDigits: (page 1123)
– usesSignificantDigits (page 1140)

Declared In
NSNumberFormatter.h

setMinimum:
Sets the lowest number the receiver allows as input.

- (void)setMinimum:(NSNumber *)aMinimum

Parameters
aMinimum

A number object that specifies a minimum input value.

Discussion
If aMinimum is nil, checking for the minimum value is disabled. For versions prior to Mac OS X v10.4 (and
number-formatter behavior set to NSNumberFormatterBehavior10_0) this method requires an
NSDecimalNumber argument.

Availability
Available in Mac OS X v10.4 and later. Version requiring NSDecimalNumber argument available prior to Mac
OS X v10.4.

Instance Methods 1121
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

See Also
– minimum (page 1100)
+ setDefaultFormatterBehavior: (page 1088)
– formatterBehavior (page 1093)
– setFormatterBehavior: (page 1115)

Related Sample Code
Quartz Composer QCTV

Declared In
NSNumberFormatter.h

setMinimumFractionDigits:
Sets the minimum number of digits after the decimal separator allowed as input by the receiver.

- (void)setMinimumFractionDigits:(NSUInteger)number

Parameters
number

The minimum number of digits after the decimal separator allowed as input.

Availability
Available in Mac OS X v10.4 and later.

See Also
– minimumFractionDigits (page 1100)

Related Sample Code
TrackBall

Declared In
NSNumberFormatter.h

setMinimumIntegerDigits:
Sets the minimum number of integer digits allowed as input by the receiver.

- (void)setMinimumIntegerDigits:(NSUInteger)number

Parameters
number

The minimum number of integer digits allowed as input.

Availability
Available in Mac OS X v10.4 and later.

See Also
– minimumIntegerDigits (page 1101)

Related Sample Code
TrackBall

1122 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

setMinimumSignificantDigits:
Sets the minimum number of significant digits for the receiver.

- (void)setMinimumSignificantDigits:(NSUInteger)number

Parameters
number

The minimum number of significant digits for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– minimumSignificantDigits (page 1101)
– setMaximumSignificantDigits: (page 1121)
– usesSignificantDigits (page 1140)

Declared In
NSNumberFormatter.h

setMinusSign:
Sets the string used by the receiver for the minus sign.

- (void)setMinusSign:(NSString *)string

Parameters
string

A string that represents a minus sign.

Availability
Available in Mac OS X v10.4 and later.

See Also
– minusSign (page 1101)

Declared In
NSNumberFormatter.h

setMultiplier:
Sets the multiplier of the receiver.

- (void)setMultiplier:(NSNumber *)number

Parameters
number

A number object that represents a multiplier.

Instance Methods 1123
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Discussion
A multiplier is a factor used in conversions between numbers and strings (that is, numbers as stored and
numbers as displayed). When the input value is a string, the multiplier is used to divide, and when the input
value is a number, the multiplier is used to multiply. These operations allow the formatted values to be
different from the values that a program manipulates internally.

Availability
Available in Mac OS X v10.4 and later.

See Also
– multiplier (page 1102)

Declared In
NSNumberFormatter.h

setNegativeFormat:
Sets the format the receiver uses to display negative values.

- (void)setNegativeFormat:(NSString *)aFormat

Parameters
aFormat

A string that specifies the format for negative values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– negativeFormat (page 1102)
– setFormat: (page 1114)

Declared In
NSNumberFormatter.h

setNegativeInfinitySymbol:
Sets the string used by the receiver for the negative infinity symbol.

- (void)setNegativeInfinitySymbol:(NSString *)string

Parameters
string

A string that represents a negative infinity symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– negativeInfinitySymbol (page 1102)

Declared In
NSNumberFormatter.h

1124 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

setNegativePrefix:
Sets the string the receiver uses as a prefix for negative values.

- (void)setNegativePrefix:(NSString *)string

Parameters
string

A string to use as the prefix for negative values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– negativePrefix (page 1103)

Declared In
NSNumberFormatter.h

setNegativeSuffix:
Sets the string the receiver uses as a suffix for negative values.

- (void)setNegativeSuffix:(NSString *)string

Parameters
string

A string to use as the suffix for negative values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– negativeSuffix (page 1103)

Declared In
NSNumberFormatter.h

setNilSymbol:
Sets the string the receiver uses to represent nil values.

- (void)setNilSymbol:(NSString *)string

Parameters
string

A string that represents a nil value.

Availability
Available in Mac OS X v10.4 and later.

See Also
– nilSymbol (page 1104)

Instance Methods 1125
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

setNotANumberSymbol:
Sets the string the receiver uses to represent NaN (“not a number”).

- (void)setNotANumberSymbol:(NSString *)string

Parameters
string

A string that represents a NaN symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– notANumberSymbol (page 1104)

Declared In
NSNumberFormatter.h

setNumberStyle:
Sets the number style used by the receiver.

- (void)setNumberStyle:(NSNumberFormatterStyle)style

Parameters
style

An NSNumberFormatterStyle constant that specifies a formatter style.

Discussion
Styles are essentially predetermined sets of values for certain properties. Examples of number-formatter
styles are those used for decimal values, percentage values, and currency.

Availability
Available in Mac OS X v10.4 and later.

See Also
– numberStyle (page 1105)

Related Sample Code
Grady
Mountains
NumberInput_IMKit_Sample
TrackBall

Declared In
NSNumberFormatter.h

1126 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

setPaddingCharacter:
Sets the string that the receiver uses to pad numbers in the formatted string representation.

- (void)setPaddingCharacter:(NSString *)string

Parameters
string

A string containing a padding character (or characters).

Availability
Available in Mac OS X v10.4 and later.

See Also
– paddingCharacter (page 1105)

Declared In
NSNumberFormatter.h

setPaddingPosition:
Sets the padding position used by the receiver.

- (void)setPaddingPosition:(NSNumberFormatterPadPosition)position

Parameters
position

An NSNumberFormatterPadPosition constant that indicates a padding position (before or after
prefix or suffix).

Availability
Available in Mac OS X v10.4 and later.

See Also
– paddingPosition (page 1105)

Declared In
NSNumberFormatter.h

setPartialStringValidationEnabled:
Sets whether partial string validation is enabled for the receiver.

- (void)setPartialStringValidationEnabled:(BOOL)b

Parameters
b

YES if partial string validation is enabled, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isPartialStringValidationEnabled (page 1097)

Instance Methods 1127
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

setPercentSymbol:
Sets the string used by the receiver to represent the percent symbol.

- (void)setPercentSymbol:(NSString *)string

Parameters
string

A string that represents a percent symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– percentSymbol (page 1106)

Declared In
NSNumberFormatter.h

setPerMillSymbol:
Sets the string used by the receiver to represent the per-mill (per-thousand) symbol.

- (void)setPerMillSymbol:(NSString *)string

Parameters
string

A string that represents a per-mill symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– perMillSymbol (page 1106)

Declared In
NSNumberFormatter.h

setPlusSign:
Sets the string used by the receiver to represent the plus sign.

- (void)setPlusSign:(NSString *)string

Parameters
string

A string that represents a plus sign.

Availability
Available in Mac OS X v10.4 and later.

1128 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

See Also
– plusSign (page 1106)

Declared In
NSNumberFormatter.h

setPositiveFormat:
Sets the format the receiver uses to display positive values.

- (void)setPositiveFormat:(NSString *)aFormat

Parameters
aFormat

A string that specifies the format for positive values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– positiveFormat (page 1107)
– setFormat: (page 1114)

Declared In
NSNumberFormatter.h

setPositiveInfinitySymbol:
Sets the string used by the receiver for the positive infinity symbol.

- (void)setPositiveInfinitySymbol:(NSString *)string

Parameters
string

A string that represents a positive infinity symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– positiveInfinitySymbol (page 1107)

Declared In
NSNumberFormatter.h

setPositivePrefix:
Sets the string the receiver uses as the prefix for positive values.

- (void)setPositivePrefix:(NSString *)string

Instance Methods 1129
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Parameters
string

A string to use as the prefix for positive values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– positivePrefix (page 1107)

Declared In
NSNumberFormatter.h

setPositiveSuffix:
Sets the string the receiver uses as the suffix for positive values.

- (void)setPositiveSuffix:(NSString *)string

Parameters
string

A string to use as the suffix for positive values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– positiveSuffix (page 1108)

Declared In
NSNumberFormatter.h

setRoundingBehavior:
Sets the rounding behavior used by the receiver.

- (void)setRoundingBehavior:(NSDecimalNumberHandler *)newRoundingBehavior

Parameters
newRoundingBehavior

An NSDecimalNumberHandler object representing a rounding behavior.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– roundingBehavior (page 1108)

Declared In
NSNumberFormatter.h

1130 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

setRoundingIncrement:
Sets the rounding increment used by the receiver.

- (void)setRoundingIncrement:(NSNumber *)number

Parameters
number

A number object specifying a rounding increment.

Availability
Available in Mac OS X v10.4 and later.

See Also
– roundingIncrement (page 1108)

Declared In
NSNumberFormatter.h

setRoundingMode:
Sets the rounding mode used by the receiver.

- (void)setRoundingMode:(NSNumberFormatterRoundingMode)mode

Parameters
mode

An NSNumberFormatterRoundingMode constant that indicates a rounding mode.

Availability
Available in Mac OS X v10.4 and later.

See Also
– roundingMode (page 1109)

Declared In
NSNumberFormatter.h

setSecondaryGroupingSize:
Sets the secondary grouping size of the receiver.

- (void)setSecondaryGroupingSize:(NSUInteger)number

Parameters
number

An integer that specifies the size of secondary groupings.

Discussion
Some locales allow the specification of another grouping size for larger numbers. For example, some locales
may represent a number such as 61, 242, 378.46 (as in the United States) as 6,12,42,378.46. In this case, the
secondary grouping size (covering the groups of digits furthest from the decimal point) is 2.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1131
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

See Also
– secondaryGroupingSize (page 1109)

Declared In
NSNumberFormatter.h

setTextAttributesForNegativeInfinity:
Sets the text attributes used to display the negative infinity symbol.

- (void)setTextAttributesForNegativeInfinity:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of the negative infinity symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– textAttributesForNegativeInfinity (page 1137)
– setNegativeInfinitySymbol: (page 1124)

Declared In
NSNumberFormatter.h

setTextAttributesForNegativeValues:
Sets the text attributes to be used in displaying negative values .

- (void)setTextAttributesForNegativeValues:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing properties for the display of negative values.

Discussion
For example, this code excerpt causes negative values to be displayed in red:

NSNumberFormatter *numberFormatter =
 [[[NSNumberFormatter alloc] init] autorelease];
NSMutableDictionary *newAttrs = [NSMutableDictionary dictionary];

[numberFormatter setFormat:@"$#,##0.00;($#,##0.00)"];
[newAttrs setObject:[NSColor redColor] forKey:@"NSColor"];
[numberFormatter setTextAttributesForNegativeValues:newAttrs];
[[textField cell] setFormatter:numberFormatter];

An even simpler way to cause negative values to be displayed in red is to include the constant [Red] in your
format string, as shown in this example:

[numberFormatter setFormat:@"$#,##0.00;[Red]($#,##0.00)"];

1132 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

When you set a value’s text attributes to use color, the color appears only when the value’s cell doesn’t have
input focus. When the cell has input focus, the value is displayed in standard black.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textAttributesForNegativeValues (page 1137)

Declared In
NSNumberFormatter.h

setTextAttributesForNil:
Sets the text attributes used to display the nil symbol.

- (void)setTextAttributesForNil:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of the nil symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– textAttributesForNil (page 1138)
– nilSymbol (page 1104)

Declared In
NSNumberFormatter.h

setTextAttributesForNotANumber:
Sets the text attributes used to display the NaN ("not a number") string.

- (void)setTextAttributesForNotANumber:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of the NaN symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTextAttributesForNotANumber: (page 1133)
– notANumberSymbol (page 1104)

Declared In
NSNumberFormatter.h

Instance Methods 1133
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

setTextAttributesForPositiveInfinity:
Sets the text attributes used to display the positive infinity symbol.

- (void)setTextAttributesForPositiveInfinity:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of the positive infinity symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– positiveInfinitySymbol (page 1107)
– textAttributesForPositiveInfinity (page 1138)

Declared In
NSNumberFormatter.h

setTextAttributesForPositiveValues:
Sets the text attributes to be used in displaying positive values.

- (void)setTextAttributesForPositiveValues:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of positive values.

Discussion
See setTextAttributesForNegativeValues: (page 1132) for an example of how a related method might be used.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textAttributesForPositiveValues (page 1139)

Declared In
NSNumberFormatter.h

setTextAttributesForZero:
Sets the text attributes used to display a zero value.

- (void)setTextAttributesForZero:(NSDictionary *)newAttributes

Parameters
newAttributes

A dictionary containing text attributes for the display of zero values.

Availability
Available in Mac OS X v10.4 and later.

1134 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

See Also
– textAttributesForZero (page 1139)

Declared In
NSNumberFormatter.h

setThousandSeparator:
Sets the character the receiver uses as a thousand separator.

- (void)setThousandSeparator:(NSString *)newSeparator

Parameters
newSeparator

A string that specifies the thousand-separator character to use. If newSeparator contains multiple
characters, only the first one is used.

Discussion
If you don’t have thousand separators enabled through any other means (such as setFormat: (page 1114)),
using this method enables them.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– thousandSeparator (page 1139)

Declared In
NSNumberFormatter.h

setUsesGroupingSeparator:
Controls whether the receiver displays the grouping separator.

- (void)setUsesGroupingSeparator:(BOOL)flag

Parameters
flag

YES if the receiver should display the grouping separator, NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– usesGroupingSeparator (page 1140)

Declared In
NSNumberFormatter.h

Instance Methods 1135
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

setUsesSignificantDigits:
Sets whether the receiver uses significant digits.

- (void)setUsesSignificantDigits:(BOOL)b

Parameters
b

YES if the receiver uses significant digits, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– usesSignificantDigits (page 1140)
– setMaximumSignificantDigits: (page 1121)
– setMinimumSignificantDigits: (page 1123)

Declared In
NSNumberFormatter.h

setZeroSymbol:
Sets the string the receiver uses as the symbol to show the value zero.

- (void)setZeroSymbol:(NSString *)string

Parameters
string

The string the receiver uses as the symbol to show the value zero.

Discussion
By default this is 0; you might want to set it to, for example, “ - ”, similar to the way that a spreadsheet
might when a column is defined as accounting.

Special Considerations

On Mac OS X v10.4, this method works correctly for 10_0-style number formatters but does not work correctly
for 10_4-style number formatters. You can work around the problem by subclassing and overriding the
methods that convert between strings and numbers to look for the zero cases first and provide different
behavior, invoking super when not zero.

Availability
Available in Mac OS X v10.4 and later.

See Also
– zeroSymbol (page 1141)

Declared In
NSNumberFormatter.h

stringFromNumber:
Returns a string containing the formatted value of the provided number object.

1136 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

- (NSString *)stringFromNumber:(NSNumber *)number

Parameters
number

An NSNumber object that is parsed to create the returned string object.

Return Value
A string containing the formatted value of number using the receiver’s current settings.

Availability
Available in Mac OS X v10.4 and later.

See Also
– numberFromString: (page 1104)

Related Sample Code
Mountains
NumberInput_IMKit_Sample

Declared In
NSNumberFormatter.h

textAttributesForNegativeInfinity
Returns a dictionary containing the text attributes used to display the negative infinity string.

- (NSDictionary *)textAttributesForNegativeInfinity

Return Value
A dictionary containing the text attributes used to display the negative infinity string.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTextAttributesForNegativeInfinity: (page 1132)

Declared In
NSNumberFormatter.h

textAttributesForNegativeValues
Returns a dictionary containing the text attributes that have been set for negative values.

- (NSDictionary *)textAttributesForNegativeValues

Return Value
A dictionary containing the text attributes that have been set for negative values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextAttributesForNegativeValues: (page 1132)

Instance Methods 1137
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

textAttributesForNil
Returns a dictionary containing the text attributes used to display the nil symbol.

- (NSDictionary *)textAttributesForNil

Return Value
A dictionary containing the text attributes used to display the nil symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTextAttributesForNil: (page 1133)

Declared In
NSNumberFormatter.h

textAttributesForNotANumber
Returns a dictionary containing the text attributes used to display the NaN ("not a number") symbol.

- (NSDictionary *)textAttributesForNotANumber

Return Value
A dictionary containing the text attributes used to display the NaN ("not a number") symbol.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTextAttributesForNotANumber: (page 1133)
– notANumberSymbol (page 1104)

Declared In
NSNumberFormatter.h

textAttributesForPositiveInfinity
Returns a dictionary containing the text attributes used to display the positive infinity symbol.

- (NSDictionary *)textAttributesForPositiveInfinity

Return Value
A dictionary containing the text attributes used to display the positive infinity symbol.

Availability
Available in Mac OS X v10.4 and later.

1138 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

See Also
– setTextAttributesForPositiveInfinity: (page 1134)
– positiveInfinitySymbol (page 1107)

Declared In
NSNumberFormatter.h

textAttributesForPositiveValues
Returns a dictionary containing the text attributes that have been set for positive values.

- (NSDictionary *)textAttributesForPositiveValues

Return Value
A dictionary containing the text attributes that have been set for positive values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextAttributesForPositiveValues: (page 1134)

Declared In
NSNumberFormatter.h

textAttributesForZero
Returns a dictionary containing the text attributes used to display a value of zero.

- (NSDictionary *)textAttributesForZero

Return Value
A dictionary containing the text attributes used to display a value of zero.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTextAttributesForZero: (page 1134)

Declared In
NSNumberFormatter.h

thousandSeparator
Returns a string containing the character the receiver uses to represent thousand separators.

- (NSString *)thousandSeparator

Return Value
A string containing the character the receiver uses to represent thousand separators.

Instance Methods 1139
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Discussion
By default this is the comma character (,). Note that the return value doesn’t indicate whether thousand
separators are enabled.

Special Considerations

This method is for use with formatters using NSNumberFormatterBehavior10_0 behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setThousandSeparator: (page 1135)

Declared In
NSNumberFormatter.h

usesGroupingSeparator
Returns a Boolean value that indicates whether the receiver uses the grouping separator.

- (BOOL)usesGroupingSeparator

Return Value
YES if the receiver uses the grouping separator, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setUsesGroupingSeparator: (page 1135)

Declared In
NSNumberFormatter.h

usesSignificantDigits
Returns a Boolean value that indicates whether the receiver uses significant digits.

- (BOOL)usesSignificantDigits

Return Value
YES if the receiver uses significant digits, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setUsesSignificantDigits: (page 1136)
– maximumSignificantDigits (page 1099)
– minimumSignificantDigits (page 1101)

Declared In
NSNumberFormatter.h

1140 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

zeroSymbol
Returns the string the receiver uses as the symbol to show the value zero.

- (NSString *)zeroSymbol

Return Value
The string the receiver uses as the symbol to show the value zero.

Discussion
For a discussion of how this is used, see setZeroSymbol: (page 1136).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setZeroSymbol: (page 1136)

Declared In
NSNumberFormatter.h

Constants

NSNumberFormatterStyle
These constants specify predefined number format styles.

typedef enum {
 NSNumberFormatterNoStyle = kCFNumberFormatterNoStyle,
 NSNumberFormatterDecimalStyle = kCFNumberFormatterDecimalStyle,
 NSNumberFormatterCurrencyStyle = kCFNumberFormatterCurrencyStyle,
 NSNumberFormatterPercentStyle = kCFNumberFormatterPercentStyle,
 NSNumberFormatterScientificStyle = kCFNumberFormatterScientificStyle,
 NSNumberFormatterSpellOutStyle = kCFNumberFormatterSpellOutStyle
} NSNumberFormatterStyle;

Constants
NSNumberFormatterNoStyle

Specifies no style.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterDecimalStyle
Specifies a decimal style format.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterCurrencyStyle
Specifies a currency style format.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

Constants 1141
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

NSNumberFormatterPercentStyle
Specifies a percent style format.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterScientificStyle
Specifies a scientific style format.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterSpellOutStyle
Specifies a spell-out format; for example, “23” becomes “twenty-three”.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

Discussion
These constants are used by the numberStyle (page 1105) and setNumberStyle: (page 1126) methods.

Declared In
NSNumberFormatter.h

NSNumberFormatterBehavior
These constants specify the behavior of a number formatter.

typedef enum {
 NSNumberFormatterBehaviorDefault = 0,
 NSNumberFormatterBehavior10_0 = 1000,
 NSNumberFormatterBehavior10_4 = 1040,
} NSNumberFormatterBehavior;

Constants
NSNumberFormatterBehaviorDefault

The number-formatter behavior set as the default for new instances. You can set the default formatter
behavior with the class method setDefaultFormatterBehavior: (page 1088).

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterBehavior10_0
The number-formatter behavior as it existed prior to Mac OS X v10.4.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterBehavior10_4
The number-formatter behavior since Mac OS X v10.4.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

Discussion
These constants are returned by the defaultFormatterBehavior (page 1087) class method and the
formatterBehavior (page 1093) instance methods; you set them with the
setDefaultFormatterBehavior: (page 1088) class method and thesetFormatterBehavior: (page 1115)
instance method.

1142 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

NSNumberFormatterPadPosition
These constants are used to specify how numbers should be padded.

typedef enum {
 NSNumberFormatterPadBeforePrefix = kCFNumberFormatterPadBeforePrefix,
 NSNumberFormatterPadAfterPrefix = kCFNumberFormatterPadAfterPrefix,
 NSNumberFormatterPadBeforeSuffix = kCFNumberFormatterPadBeforeSuffix,
 NSNumberFormatterPadAfterSuffix = kCFNumberFormatterPadAfterSuffix
} NSNumberFormatterPadPosition;

Constants
NSNumberFormatterPadBeforePrefix

Specifies that the padding should occur before the prefix.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterPadAfterPrefix
Specifies that the padding should occur after the prefix.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterPadBeforeSuffix
Specifies that the padding should occur before the suffix.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterPadAfterSuffix
Specifies that the padding should occur after the suffix.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

Discussion
These constants are used by the paddingPosition (page 1105) and setPaddingPosition: (page 1127)
methods.

Declared In
NSNumberFormatter.h

NSNumberFormatterRoundingMode
These constants are used to specify how numbers should be rounded.

Constants 1143
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

typedef enum {
 NSNumberFormatterRoundCeiling = kCFNumberFormatterRoundCeiling,
 NSNumberFormatterRoundFloor = kCFNumberFormatterRoundFloor,
 NSNumberFormatterRoundDown = kCFNumberFormatterRoundDown,
 NSNumberFormatterRoundUp = kCFNumberFormatterRoundUp,
 NSNumberFormatterRoundHalfEven = kCFNumberFormatterRoundHalfEven,
 NSNumberFormatterRoundHalfDown = kCFNumberFormatterRoundHalfDown,
 NSNumberFormatterRoundHalfUp = kCFNumberFormatterRoundHalfUp
} NSNumberFormatterRoundingMode;

Constants
NSNumberFormatterRoundCeiling

Round up to next larger number with the proper number of digits after the decimal separator.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundFloor
Round down to next smaller number with the proper number of digits after the decimal separator.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundDown
Round down to next smaller number with the proper number of digits after the decimal separator.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundHalfEven
Round the last digit, when followed by a 5, toward an even digit (.25 -> .2, .35 -> .4)

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundUp
Round up to next larger number with the proper number of digits after the decimal separator.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundHalfDown
Round down when a 5 follows putative last digit.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

NSNumberFormatterRoundHalfUp
Round up when a 5 follows putative last digit.

Available in Mac OS X v10.4 and later.

Declared in NSNumberFormatter.h.

Declared In
NSNumberFormatter.h

These constants are used by the roundingMode (page 1109)and setRoundingMode: (page 1131) methods.

1144 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 96

NSNumberFormatter Class Reference

Inherits from none (NSObject is a root class)

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSObject.h
Foundation/NSArchiver.h
Foundation/NSClassDescription.h
Foundation/NSConnection.h
Foundation/NSKeyedArchiver.h
Foundation/NSObjectScripting.h
Foundation/NSPortCoder.h
Foundation/NSRunLoop.h
Foundation/NSScriptClassDescription.h
Foundation/NSThread.h

Companion guide Cocoa Fundamentals Guide

Related sample code CoreRecipes
Dicey
ImageClient
Quartz Composer WWDC 2005 TextEdit
StickiesExample

Overview

NSObject is the root class of most Objective-C class hierarchies. Through NSObject, objects inherit a basic
interface to the runtime system and the ability to behave as Objective-C objects.

Selectors

NSObject has some special methods that take advantage of the Objective-C runtime system. For example,
you can ask a class or instance if it responds to a message before sending it a message. You can also ask for
a method implementation and invoke it using one of the perform... methods, or as a function. The
advantage of obtaining a method’s implementation and calling it as a function is that you can invoke the
implementation multiple times within a loop, or similar C construct, without the overhead of Objective-C
messaging.

Overview 1145
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

These and other NSObject methods take a selector of type SEL as an argument. For efficiency, full ASCII
names are not used to represent methods in compiled code. Instead the compiler uses a unique identifier
to represent a method at runtime called a selector. A selector for a method name is obtained using the
@selector() directive:

SEL method = @selector(isEqual:);

The instanceMethodForSelector: (page 1159) class method and the methodForSelector: (page 1181)
instance method return a method implementation of type IMP. IMP is defined as a pointer to a function that
returns an id and takes a variable number of arguments (in addition to the two “hidden” arguments—self
and _cmd—that are passed to every method implementation):

typedef id (*IMP)(id, SEL, ...);

This definition serves as a prototype for the function pointer returned by these methods. It’s sufficient for
methods that return an object and take object arguments. However, if the selector takes different argument
types or returns anything but an id, its function counterpart will be inadequately prototyped. Lacking a
prototype, the compiler will promote floats to doubles and chars to ints, which the implementation won’t
expect. It will therefore behave differently (and erroneously) when performed as a method.

To remedy this situation, it’s necessary to provide your own prototype. In the example below, the declaration
of the test variable serves to prototype the implementation of the isEqual: method. test is defined as
a pointer to a function that returns a BOOL and takes an id argument (in addition to the two “hidden”
arguments). The value returned by methodForSelector: (page 1181) is then similarly cast to be a pointer
to this same function type:

BOOL (*test)(id, SEL, id);
test = (BOOL (*)(id, SEL, id))[target methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {
 ...
}

In some cases, it might be clearer to define a type (similar to IMP) that can be used both for declaring the
variable and for casting the function pointer methodForSelector: (page 1181) returns. The example below
defines the EqualIMP type for just this purpose:

typedef BOOL (*EqualIMP)(id, SEL, id);
EqualIMP test;
test = (EqualIMP)[target methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {
 ...
}

Either way, it’s important to cast the return value of methodForSelector: (page 1181) to the appropriate
function type. It’s not sufficient to simply call the function returned by methodForSelector: and cast the
result of that call to the desired type. Doing so can result in errors.

See “How Messaging Works” in The Objective-C 2.0 Programming Language for more information.

1146 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Adopted Protocols

NSObject
– autorelease (page 2099)
– class (page 2100)
– conformsToProtocol: (page 2100)
– description (page 2100)
– hash (page 2101)
– isEqual: (page 2101)
– isKindOfClass: (page 2102)
– isMemberOfClass: (page 2103)
– isProxy (page 2104)
– performSelector: (page 2104)
– performSelector:withObject: (page 2105)
– performSelector:withObject:withObject: (page 2105)
– release (page 2106)
– respondsToSelector: (page 2107)
– retain (page 2108)
– retainCount (page 2109)
– self (page 2109)
– superclass (page 2110)
– zone (page 2110)

Tasks

Initializing a Class

+ initialize (page 1158)
Initializes the receiver before it’s used (before it receives its first message).

+ load (page 1161)
Invoked whenever a class or category is added to the Objective-C runtime; implement this method
to perform class-specific behavior upon loading.

Creating, Copying, and Deallocating Objects

+ new (page 1163)
Allocates a new instance of the receiving class, sends it an init (page 1178) message, and returns the
initialized object.

+ alloc (page 1152)
Returns a new instance of the receiving class.

Adopted Protocols 1147
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

+ allocWithZone: (page 1152)
Returns a new instance of the receiving class where memory for the new instance is allocated from
a given zone.

– init (page 1178)
Implemented by subclasses to initialize a new object (the receiver) immediately after memory for it
has been allocated.

– copy (page 1172)
Returns the object returned by copyWithZone: (page 2042), where the zone is nil.

+ copyWithZone: (page 1157)
Returns the receiver.

– mutableCopy (page 1182)
Returns the object returned by mutableCopyWithZone: (page 2094) where the zone is nil.

+ mutableCopyWithZone: (page 1162)
Returns the receiver.

– dealloc (page 1174)
Deallocates the memory occupied by the receiver.

– finalize (page 1176)
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

Identifying Classes

+ class (page 1155)
Returns the class object.

+ superclass (page 1167)
Returns the class object for the receiver’s superclass.

+ isSubclassOfClass: (page 1161)
Returns a Boolean value that indicates whether the receiving class is a subclass of, or identical to, a
given class.

Testing Class Functionality

+ instancesRespondToSelector: (page 1161)
Returns a Boolean value that indicates whether instances of the receiver are capable of responding
to a given selector.

Testing Protocol Conformance

+ conformsToProtocol: (page 1156)
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

1148 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Obtaining Information About Methods

– methodForSelector: (page 1181)
Locates and returns the address of the receiver’s implementation of a method so it can be called as
a function.

+ instanceMethodForSelector: (page 1159)
Locates and returns the address of the implementation of the instance method identified by a given
selector.

+ instanceMethodSignatureForSelector: (page 1160)
Returns an NSMethodSignature object that contains a description of the instance method identified
by a given selector.

– methodSignatureForSelector: (page 1181)
Returns an NSMethodSignature object that contains a description of the method identified by a
given selector.

Describing Objects

+ description (page 1157)
Returns a string that represents the contents of the receiving class.

Posing

+ poseAsClass: (page 1164) Deprecated in Mac OS X v10.5
Causes the receiving class to pose as a specified superclass.

Sending Messages

– performSelector:withObject:afterDelay: (page 1186)
Invokes a method of the receiver on the current thread using the default mode after a delay.

– performSelector:withObject:afterDelay:inModes: (page 1187)
Invokes a method of the receiver on the current thread using the specified modes after a delay.

– performSelectorOnMainThread:withObject:waitUntilDone: (page 1188)
Invokes a method of the receiver on the main thread using the default mode.

– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 1189)
Invokes a method of the receiver on the main thread using the specified modes.

– performSelector:onThread:withObject:waitUntilDone: (page 1183)
Invokes a method of the receiver on the specified thread using the default mode.

– performSelector:onThread:withObject:waitUntilDone:modes: (page 1184)
Invokes a method of the receiver on the specified thread using the specified modes.

– performSelectorInBackground:withObject: (page 1188)
Invokes a method of the receiver on a new background thread.

+ cancelPreviousPerformRequestsWithTarget: (page 1153)
Cancels perform requests previously registered with the
performSelector:withObject:afterDelay: (page 1186) instance method.

Tasks 1149
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

+ cancelPreviousPerformRequestsWithTarget:selector:object: (page 1154)
Cancels perform requests previously registered with
performSelector:withObject:afterDelay: (page 1186).

Forwarding Messages

– forwardInvocation: (page 1177)
Overridden by subclasses to forward messages to other objects.

Dynamically Resolving Methods

+ resolveClassMethod: (page 1165)
Dynamically provides an implementation for a given selector for a class method.

+ resolveInstanceMethod: (page 1165)
Dynamically provides an implementation for a given selector for an instance method.

Error Handling

– doesNotRecognizeSelector: (page 1175)
Handles messages the receiver doesn’t recognize.

Archiving

– awakeAfterUsingCoder: (page 1169)
Overridden by subclasses to substitute another object in place of the object that was decoded and
subsequently received this message.

– classForArchiver (page 1170)
Overridden by subclasses to substitute a class other than its own during archiving.

– classForCoder (page 1171)
Overridden by subclasses to substitute a class other than its own during coding.

– classForKeyedArchiver (page 1171)
Overridden by subclasses to substitute a new class for instances during keyed archiving.

+ classFallbacksForKeyedArchiver (page 1155)
Overridden to return the names of classes that can be used to decode objects if their class is unavailable.

+ classForKeyedUnarchiver (page 1156)
Overridden by subclasses to substitute a new class during keyed unarchiving.

– classForPortCoder (page 1171)
Overridden by subclasses to substitute a class other than its own for distribution encoding.

– replacementObjectForArchiver: (page 1190)
Overridden by subclasses to substitute another object for itself during archiving.

– replacementObjectForCoder: (page 1191)
Overridden by subclasses to substitute another object for itself during encoding.

1150 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

– replacementObjectForKeyedArchiver: (page 1191)
Overridden by subclasses to substitute another object for itself during keyed archiving.

– replacementObjectForPortCoder: (page 1192)
Overridden by subclasses to substitute another object or a copy for itself during distribution encoding.

+ setVersion: (page 1166)
Sets the receiver's version number.

+ version (page 1167)
Returns the version number assigned to the class.

Working with Class Descriptions

– attributeKeys (page 1168)
Returns an array of NSString objects containing the names of immutable values that instances of
the receiver's class contain.

– classDescription (page 1170)
Returns an object containing information about the attributes and relationships of the receiver’s class.

– inverseForRelationshipKey: (page 1180)
For a given key that defines the name of the relationship from the receiver’s class to another class,
returns the name of the relationship from the other class to the receiver’s class.

– toManyRelationshipKeys (page 1194)
Returns array containing the keys for the to-many relationship properties of the receiver.

– toOneRelationshipKeys (page 1195)
Returns the keys for the to-one relationship properties of the receiver, if any.

Scripting

– classCode (page 1169)
Returns the receiver's Apple event type code, as stored in the NSScriptClassDescription object
for the object’s class.

– className (page 1172)
Returns a string containing the name of the class.

– copyScriptingValue:forKey:withProperties: (page 1173)
Creates and returns one or more scripting objects to be inserted into the specified relationship by
copying the passed-in value and setting the properties in the copied object or objects.

– newScriptingObjectOfClass:forValueForKey:withContentsValue:properties: (page 1183)
Creates and returns an instance of a scriptable class, setting its contents and properties, for insertion
into the relationship identified by the key.

– scriptingProperties (page 1193)
Returns an NSString-keyed dictionary of the receiver's scriptable properties.

– setScriptingProperties: (page 1194)
Given an NSString-keyed dictionary, sets one or more scriptable properties of the receiver.

– scriptingValueForSpecifier: (page 1193)
Given an object specifier, returns the specified object or objects in the receiving container.

Tasks 1151
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Class Methods

alloc
Returns a new instance of the receiving class.

+ (id)alloc

Return Value
A new instance of the receiver.

Discussion
The isa instance variable of the new instance is initialized to a data structure that describes the class; memory
for all other instance variables is set to 0. The new instance is allocated from the default zone—use
allocWithZone: (page 1152) to specify a particular zone.

An init... method must be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass alloc] init];

Subclasses shouldn’t override alloc to include initialization code. Instead, class-specific versions of init...
methods should be implemented for that purpose. Class methods can also be implemented to combine
allocation and initialization, similar to the new class method.

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before returning
it. The returned object has a retain count of 1 and is not autoreleased. The invoker of this method is responsible
for releasing the returned object, using either release (page 2106) or autorelease (page 2099).

Availability
Available in Mac OS X v10.0 and later.

See Also
– init (page 1178)

Related Sample Code
CoreRecipes
GLSLShowpiece
ImageClient
iSpend
QTCoreVideo301

Declared In
NSObject.h

allocWithZone:
Returns a new instance of the receiving class where memory for the new instance is allocated from a given
zone.

+ (id)allocWithZone:(NSZone *)zone

1152 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Parameters
zone

The memory zone in which to create the new instance.

Return Value
A new instance of the receiver, where memory for the new instance is allocated from zone.

Discussion
The isa instance variable of the new instance is initialized to a data structure that describes the class; memory
for its other instance variables is set to 0. If zone is nil, the new instance will be allocated from the default
zone (as returned by NSDefaultMallocZone).

An init... method must be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass allocWithZone:someZone] init];

Subclasses shouldn’t override allocWithZone: to include any initialization code. Instead, class-specific
versions of init... methods should be implemented for that purpose.

When one object creates another, it’s sometimes a good idea to make sure they’re both allocated from the
same region of memory. The zone (page 2110) method (declared in the NSObject protocol) can be used for
this purpose; it returns the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocWithZone:[self zone]] init];

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before returning
it. The returned object has a retain count of 1 and is not autoreleased. The invoker of this method is responsible
for releasing the returned object, using either release (page 2106) or autorelease (page 2099).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ alloc (page 1152)
– init (page 1178)

Related Sample Code
MenuItemView
QTCoreVideo201
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSObject.h

cancelPreviousPerformRequestsWithTarget:
Cancels perform requests previously registered with the
performSelector:withObject:afterDelay: (page 1186) instance method.

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget

Class Methods 1153
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Parameters
aTarget

The target for requests previously registered with the
performSelector:withObject:afterDelay: (page 1186) instance method.

Discussion
All perform requests having the same target aTarget are canceled. This method removes perform requests
only in the current run loop, not all run loops.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSRunLoop.h

cancelPreviousPerformRequestsWithTarget:selector:object:
Cancels perform requests previously registered with performSelector:withObject:afterDelay: (page
1186).

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget selector:(SEL)aSelector
object:(id)anArgument

Parameters
aTarget

The target for requests previously registered with the
performSelector:withObject:afterDelay: (page 1186) instance method

aSelector
The selector for requests previously registered with the
performSelector:withObject:afterDelay: (page 1186) instance method.

See “Selectors” (page 1145) for a description of the SEL type.

anArgument
The argument for requests previously registered with the
performSelector:withObject:afterDelay: (page 1186) instance method. Argument equality is
determined using isEqual: (page 2101), so the value need not be the same object that was passed
originally. Pass nil to match a request for nil that was originally passed as the argument.

Discussion
All perform requests are canceled that have the same target as aTarget, argument as anArgument, and
selector as aSelector. This method removes perform requests only in the current run loop, not all run loops.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AttachAScript

Declared In
NSRunLoop.h

1154 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

class
Returns the class object.

+ (Class)class

Return Value
The class object.

Discussion
Refer to a class only by its name when it is the receiver of a message. In all other cases, the class object must
be obtained through this or a similar method. For example, here SomeClass is passed as an argument to
the isKindOfClass: (page 2102) method (declared in the NSObject protocol):

BOOL test = [self isKindOfClass:[SomeClass class]];

Availability
Available in Mac OS X v10.0 and later.

See Also
class (page 2100) (NSObject protocol)

Related Sample Code
NewsReader
OpenGLCaptureToMovie
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSObject.h

classFallbacksForKeyedArchiver
Overridden to return the names of classes that can be used to decode objects if their class is unavailable.

+ (NSArray *)classFallbacksForKeyedArchiver

Return Value
An array of NSString objects that specify the names of classes in preferred order for unarchiving

Discussion
NSKeyedArchiver calls this method and stores the result inside the archive. If the actual class of an object
doesn’t exist at the time of unarchiving, NSKeyedUnarchiver goes through the stored list of classes and
uses the first one that does exists as a substitute class for decoding the object. The default implementation
of this method returns nil.

Developers who introduce a new class can use this method to provided some backwards compatibility in
case the archive will be read on a system that does not have that class. Sometimes there may be another
class which may work nearly as well as a substitute for the new class, and the archive keys and archived state
for the new class can be carefully chosen (or compatibility written out) so that the object can be unarchived
as the substitute class if necessary.

Class Methods 1155
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSKeyedArchiver.h

classForKeyedUnarchiver
Overridden by subclasses to substitute a new class during keyed unarchiving.

+ (Class)classForKeyedUnarchiver

Return Value
The class to substitute for the receiver during keyed unarchiving.

Discussion
During keyed unarchiving, instances of the receiver will be decoded as members of the returned class. This
method overrides the results of the decoder's class and instance name to class encoding tables.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

conformsToProtocol:
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

+ (BOOL)conformsToProtocol:(Protocol *)aProtocol

Parameters
aProtocol

A protocol.

Return Value
YES if the receiver conforms to aProtocol, otherwise NO.

Discussion
A class is said to “conform to” a protocol if it adopts the protocol or inherits from another class that adopts
it. Protocols are adopted by listing them within angle brackets after the interface declaration. For example,
here MyClass adopts the (fictitious) AffiliationRequests and Normalization protocols:

@interface MyClass : NSObject <AffiliationRequests, Normalization>

A class also conforms to any protocols that are incorporated in the protocols it adopts or inherits. Protocols
incorporate other protocols in the same way classes adopt them. For example, here the
AffiliationRequests protocol incorporates the Joining protocol:

@protocol AffiliationRequests <Joining>

If a class adopts a protocol that incorporates another protocol, it must also implement all the methods in
the incorporated protocol or inherit those methods from a class that adopts it.

1156 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

This method determines conformance solely on the basis of the formal declarations in header files, as illustrated
above. It doesn’t check to see whether the methods declared in the protocol are actually implemented—that’s
the programmer’s responsibility.

The protocol required as this method’s argument can be specified using the @protocol() directive:

BOOL canJoin = [MyClass conformsToProtocol:@protocol(Joining)];

Availability
Available in Mac OS X v10.0 and later.

See Also
+ conformsToProtocol: (page 1156)

Declared In
NSObject.h

copyWithZone:
Returns the receiver.

+ (id)copyWithZone:(NSZone *)zone

Return Value
The receiver.

Discussion
This method exists so class objects can be used in situations where you need an object that conforms to the
NSCopying protocol. For example, this method lets you use a class object as a key to an NSDictionary
object. You should not override this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– copy (page 1172)

Related Sample Code
AlbumToSlideshow
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSObject.h

description
Returns a string that represents the contents of the receiving class.

+ (NSString *)description

Return Value
A string that represents the contents of the receiving class.

Class Methods 1157
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Discussion
The debugger’s print-object command invokes this method to produce a textual description of an object.

NSObject's implementation of this method simply prints the name of the class.

Availability
Available in Mac OS X v10.0 and later.

See Also
description (page 2100) (NSObject protocol)

Related Sample Code
iSpend
QTKitMovieShuffler
QTRecorder
SimpleCalendar
StickiesExample

Declared In
NSObject.h

initialize
Initializes the receiver before it’s used (before it receives its first message).

+ (void)initialize

Discussion
The runtime sends initialize to each class in a program exactly one time just before the class, or any class
that inherits from it, is sent its first message from within the program. (Thus the method may never be invoked
if the class is not used.) The runtime sends the initialize message to classes in a thread-safe manner.
Superclasses receive this message before their subclasses.

For example, if the first message your program sends is this:

[NSApplication new]

the runtime system sends these three initialize messages:

[NSObject initialize];
[NSResponder initialize];
[NSApplication initialize];

because NSApplication is a subclass of NSResponder and NSResponder is a subclass of NSObject. All
the initialize messages precede the new (page 1163) message.

If your program later begins to use the NSText class,

[NSText instancesRespondToSelector:someSelector]

the runtime system invokes these additional initialize messages:

[NSView initialize];
[NSText initialize];

1158 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

because NSText inherits from NSObject, NSResponder, and NSView. The
instancesRespondToSelector: (page 1161) message is sent only after all these classes are initialized. Note
that the initialize messages to NSObject and NSResponder aren’t repeated.

You implement initialize to provide class-specific initialization as needed. Since the runtime sends
appropriate initialize messages automatically, you should typically not send initialize to super in your
implementation.

If a particular class does not implement initialize, the initialize method of its superclass is invoked
twice, once for the superclass and once for the non-implementing subclass. If you want to make sure that
your class performs class-specific initializations only once, implement initialize as in the following example:

@implementation MyClass
+ (void)initialize
{
 if (self == [MyClass class]) {
 /* put initialization code here */
 }
}

Loading a subclasses of MyClass that does not implement its own initialize method will cause MyClass's
implementation to be invoked. The test clause (if (self == [MyClass class])) ensures that the
initialization code has no effect if initialize is invoked when a subclass is loaded.

Special Considerations

initialize it is invoked only once per class. If you want to perform independent initialization for the class
and for categories of the class, you should implement load (page 1161) methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
– init (page 1178)
+ load (page 1161)
class (page 2100) (NSObject protocol)

Related Sample Code
CoreRecipes
Dicey
iSpend
NewsReader
Reducer

Declared In
NSObject.h

instanceMethodForSelector:
Locates and returns the address of the implementation of the instance method identified by a given selector.

+ (IMP)instanceMethodForSelector:(SEL)aSelector

Class Methods 1159
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Parameters
aSelector

A selector that identifies the method for which to return the implementation address. The selector
must be non-NULL and valid for the receiver. If in doubt, use the respondsToSelector: (page 2107)
method to check before passing the selector to methodForSelector:.

See “Selectors” (page 1145) for a description of the SEL type.

Return Value
The address of the implementation of the aSelector instance method.

Discussion
An error is generated if instances of the receiver can’t respond to aSelector messages.

Use this method to ask the class object for the implementation of instance methods only. To ask the class
for the implementation of a class method, send the methodForSelector: (page 1181) instance method to
the class instead.

See “Selectors” (page 1145) for a description of the IMP type, and how to invoke the returned method
implementation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

instanceMethodSignatureForSelector:
Returns an NSMethodSignature object that contains a description of the instance method identified by a
given selector.

+ (NSMethodSignature *)instanceMethodSignatureForSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies the method for which to return the implementation address.

See “Selectors” (page 1145) for a description of the SEL type.

Return Value
An NSMethodSignature object that contains a description of the instance method identified by aSelector,
or nil if the method can’t be found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– methodSignatureForSelector: (page 1181)

Declared In
NSObject.h

1160 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

instancesRespondToSelector:
Returns a Boolean value that indicates whether instances of the receiver are capable of responding to a given
selector.

+ (BOOL)instancesRespondToSelector:(SEL)aSelector

Parameters
aSelector

A selector. See “Selectors” (page 1145) for a description of the SEL type.

Return Value
YES if instances of the receiver are capable of responding to aSelector messages, otherwise NO.

Discussion
If aSelector messages are forwarded to other objects, instances of the class are able to receive those
messages without error even though this method returns NO.

To ask the class whether it, rather than its instances, can respond to a particular message, send to the class
instead the NSObject protocol instance method respondsToSelector: (page 2107).

Availability
Available in Mac OS X v10.0 and later.

See Also
– forwardInvocation: (page 1177)

Declared In
NSObject.h

isSubclassOfClass:
Returns a Boolean value that indicates whether the receiving class is a subclass of, or identical to, a given
class.

+ (BOOL)isSubclassOfClass:(Class)aClass

Parameters
aClass

A class object.

Return Value
YES if the receiving class is a subclass of—or identical to—aClass, otherwise NO.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSObject.h

load
Invoked whenever a class or category is added to the Objective-C runtime; implement this method to perform
class-specific behavior upon loading.

Class Methods 1161
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

+ (void)load

Discussion
The load message is sent to classes and categories that are both dynamically loaded and statically linked,
but only if the newly loaded class or category implements a method that can respond.

On Mac OS X v10.5, the order of initialization is as follows:

1. All initializers in any framework you link to.

2. All +load methods in your image.

3. All C++ static initializers and C/C++ __attribute__(constructor) functions in your image.

4. All initializers in frameworks that link to you.

In addition:

 ■ A class’s +load method is called after all of its superclasses' +load methods.

 ■ A category +load method is called after the class's own +load method.

In a +load method, you can therefore safely message other unrelated classes from the same image, but any
+load methods on those classes may not have run yet.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ initialize (page 1158)

Related Sample Code
CIAnnotation
Core Data HTML Store
CustomAtomicStoreSubclass
LSMSmartCategorizer
TextLinks

Declared In
NSObject.h

mutableCopyWithZone:
Returns the receiver.

+ (id)mutableCopyWithZone:(NSZone *)zone

Parameters
zone

The memory zone in which to create the copy of the receiver.

Return Value
The receiver.

1162 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Discussion
This method exists so class objects can be used in situations where you need an object that conforms to the
NSMutableCopying protocol. For example, this method lets you use a class object as a key to an
NSDictionary object. You should not override this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

new
Allocates a new instance of the receiving class, sends it an init (page 1178) message, and returns the initialized
object.

+ (id)new

Return Value
A new instance of the receiver.

Discussion
This method is a combination of alloc (page 1152) and init (page 1178). Like alloc (page 1152), it initializes
the isa instance variable of the new object so it points to the class data structure. It then invokes the
init (page 1178) method to complete the initialization process.

Unlikealloc (page 1152),new (page 1163) is sometimes re-implemented in subclasses to invoke a class-specific
initialization method. If the init... method includes arguments, they’re typically reflected in a new...
method as well. For example:

+ newMyClassWithTag:(int)tag data:(struct info *)data
{
 return [[self alloc] initWithTag:tag data:data];
}

However, there’s little point in implementing a new... method if it’s simply a shorthand for alloc (page
1152) and init..., as shown above. Often new...methods will do more than just allocation and initialization.
In some classes, they manage a set of instances, returning the one with the requested properties if it already
exists, allocating and initializing a new instance only if necessary. For example:

+ newMyClassWithTag:(int)tag data:(struct info *)data
{
 MyClass *theInstance;

 if (theInstance = findTheObjectWithTheTag(tag))
 return [theInstance retain];
 return [[self alloc] initWithTag:tag data:data];
}

Although it’s appropriate to define new new... methods in this way, the alloc (page 1152) and
allocWithZone: (page 1152) methods should never be augmented to include initialization code.

Class Methods 1163
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before returning
it. The returned object has a retain count of 1 and is not autoreleased. The invoker of this method is responsible
for releasing the returned object, using either release (page 2106) or autorelease (page 2099).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fiendishthngs
LSMSmartCategorizer
NURBSSurfaceVertexProg
Quartz Composer QCTV
SurfaceVertexProgram

Declared In
NSObject.h

poseAsClass:
Causes the receiving class to pose as a specified superclass. (Deprecated in Mac OS X v10.5.)

+ (void)poseAsClass:(Class)aClass

Parameters
aClass

A superclass of the receiver.

Discussion
The receiver takes the place of aClass in the inheritance hierarchy; all messages sent to aClass will actually
be delivered to the receiver. The receiver must be defined as a subclass of aClass. It can’t declare any new
instance variables of its own, but it can define new methods and override methods defined in aClass. The
poseAsClass: message should be sent before any messages are sent to aClass and before any instances
of aClass are created.

This facility allows you to add methods to an existing class by defining them in a subclass and having the
subclass substitute for the existing class. The new method definitions will be inherited by all subclasses of
the superclass. Care should be taken to ensure that the inherited methods do not generate errors.

A subclass that poses as its superclass still inherits from the superclass. Therefore, none of the functionality
of the superclass is lost in the substitution. Posing doesn’t alter the definition of either class.

Posing is useful as a debugging tool, but category definitions are a less complicated and more efficient way
of augmenting existing classes. Posing admits only two possibilities that are absent from categories:

 ■ A method defined by a posing class can override any method defined by its superclass. Methods defined
in categories can replace methods defined in the class proper, but they cannot reliably replace methods
defined in other categories. If two categories define the same method, one of the definitions will prevail,
but there’s no guarantee which one.

 ■ A method defined by a posing class can, through a message to super, incorporate the superclass method
it overrides. A method defined in a category can replace a method defined elsewhere by the class, but
it can’t incorporate the method it replaces.

1164 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Special Considerations

Posing is deprecated in Mac OS X v10.5. The poseAsClass: method is not available in 64-bit applications
on Mac OS X v10.5.

Availability
Available in Mac OS X v10.0.
Deprecated in Mac OS X v10.5.

Declared In
NSObject.h

resolveClassMethod:
Dynamically provides an implementation for a given selector for a class method.

+ (BOOL)resolveClassMethod:(SEL)name

Parameters
name

The name of a selector to resolve.

Return Value
YES if the method was found and added to the receiver, otherwise NO.

Discussion
This method allows you to dynamically provides an implementation for a given selector. See
resolveInstanceMethod: (page 1165) for further discussion.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ resolveInstanceMethod: (page 1165)

Declared In
NSObject.h

resolveInstanceMethod:
Dynamically provides an implementation for a given selector for an instance method.

+ (BOOL)resolveInstanceMethod:(SEL)name

Parameters
name

The name of a selector to resolve.

Return Value
YES if the method was found and added to the receiver, otherwise NO.

Discussion
This method and resolveClassMethod: (page 1165) allow you to dynamically provide an implementation
for a given selector.

Class Methods 1165
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

An Objective-C method is simply a C function that take at least two arguments—self and _cmd. Using the
class_addMethod function, you can add a function to a class as a method. Given the following function:

void dynamicMethodIMP(id self, SEL _cmd)
{
 // implementation
}

you can use resolveInstanceMethod: to dynamically add it to a class as a method (called
resolveThisMethodDynamically) like this:

+ (BOOL) resolveInstanceMethod:(SEL)aSEL
{
 if (aSEL == @selector(resolveThisMethodDynamically))
 {
 class_addMethod([self class], aSEL, (IMP) dynamicMethodIMP, "v@:");
 return YES;
 }
 return [super resolveInstanceMethod:aSel];
}

Special Considerations

This method is called before the Objective-C forwarding mechanism (see The Runtime System in The Objective-C
2.0 Programming Language) is invoked. If respondsToSelector: (page 2107) or
instancesRespondToSelector: (page 1161) is invoked, the dynamic method resolver is given the opportunity
to provide an IMP for the given selector first.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ resolveClassMethod: (page 1165)

Declared In
NSObject.h

setVersion:
Sets the receiver's version number.

+ (void)setVersion:(NSInteger)aVersion

Parameters
aVersion

The version number for the receiver.

Discussion
The version number is helpful when instances of the class are to be archived and reused later. The default
version is 0.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

1166 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ version (page 1167)

Declared In
NSObject.h

superclass
Returns the class object for the receiver’s superclass.

+ (Class)superclass

Return Value
The class object for the receiver’s superclass.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ class (page 1155)
superclass (page 2110) (NSObject protocol)

Declared In
NSObject.h

version
Returns the version number assigned to the class.

+ (NSInteger)version

Return Value
The version number assigned to the class.

Discussion
If no version has been set, the default is 0.

Version numbers are needed for decoding or unarchiving, so older versions of an object can be detected
and decoded correctly.

Caution should be taken when obtaining the version from within an NSCoding protocol or other methods.
Use the class name explicitly when getting a class version number:

version = [MyClass version];

Don’t simply send version to the return value of class—a subclass version number may be returned instead.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

Class Methods 1167
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setVersion: (page 1166)
versionForClassName: (page 295) (NSCoder)

Related Sample Code
CoreRecipes
Fiendishthngs
PrefsPane

Declared In
NSObject.h

Instance Methods

attributeKeys
Returns an array of NSString objects containing the names of immutable values that instances of the
receiver's class contain.

- (NSArray *)attributeKeys

Return Value
An array of NSString objects containing the names of immutable values that instances of the receiver's
class contain.

Discussion
NSObject’s implementation of attributeKeys simply calls [[self classDescription]
attributeKeys]. To make use of the default implementation, you must therefore implement and register
a suitable class description—see NSClassDescription. A class description that describes Movie objects
could, for example, return the attribute keys title, dateReleased, and rating.

Availability
Available in Mac OS X v10.0 and later.

See Also
– classDescription (page 1170)
– inverseForRelationshipKey: (page 1180)
– toManyRelationshipKeys (page 1194)
– toOneRelationshipKeys (page 1195)

Related Sample Code
Core Data HTML Store
CoreRecipes
StickiesExample

Declared In
NSClassDescription.h

1168 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

awakeAfterUsingCoder:
Overridden by subclasses to substitute another object in place of the object that was decoded and
subsequently received this message.

- (id)awakeAfterUsingCoder:(NSCoder *)aDecoder

Parameters
aDecoder

The decoder used to decode the receiver.

Return Value
The receiver, or another object to take the place of the object that was decoded and subsequently received
this message.

Discussion
This method can be used to eliminate redundant objects created by the coder. For example, if after decoding
an object you discover that an equivalent object already exists, you can return the existing object. If a
replacement is returned, your overriding method is responsible for releasing the receiver. To prevent the
accidental use of the receiver after its replacement has been returned, you should invoke the receiver’s
release method to release the object immediately.

This method is invoked by NSCoder. NSObject’s implementation simply returns self.

Availability
Available in Mac OS X v10.0 and later.

See Also
– classForCoder (page 1171)
– replacementObjectForCoder: (page 1191)
initWithCoder: (page 2034) (NSCoding protocol)

Declared In
NSObject.h

classCode
Returns the receiver's Apple event type code, as stored in the NSScriptClassDescription object for the
object’s class.

- (FourCharCode)classCode

Return Value
The receiver's Apple event type code, as stored in the NSScriptClassDescription object for the object’s
class.

Discussion
This method is invoked by Cocoa’s scripting support classes.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Video Hardware Info

Instance Methods 1169
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Declared In
NSScriptClassDescription.h

classDescription
Returns an object containing information about the attributes and relationships of the receiver’s class.

- (NSClassDescription *)classDescription

Return Value
An object containing information about the attributes and relationships of the receiver’s class.

Discussion
NSObject’s implementation simply calls [NSClassDescription classDescriptionForClass:[self
class]]. See NSClassDescription for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributeKeys (page 1168)
– inverseForRelationshipKey: (page 1180)
– toManyRelationshipKeys (page 1194)
– toOneRelationshipKeys (page 1195)

Related Sample Code
SimpleScriptingObjects

Declared In
NSClassDescription.h

classForArchiver
Overridden by subclasses to substitute a class other than its own during archiving.

- (Class)classForArchiver

Return Value
The class to substitute for the receiver's own class during archiving.

Discussion
This method is invoked by NSArchiver. It allows specialized behavior for archiving—for example, the private
subclasses of a class cluster substitute the name of their public superclass when being archived.

NSObject’s implementation returns the object returned by classForCoder (page 1171). Override
classForCoder (page 1171) to add general coding behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replacementObjectForArchiver: (page 1190)

1170 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Declared In
NSArchiver.h

classForCoder
Overridden by subclasses to substitute a class other than its own during coding.

- (Class)classForCoder

Return Value
The class to substitute for the receiver's own class during coding.

Discussion
This method is invoked by NSCoder. NSObject’s implementation returns the receiver’s class. The private
subclasses of a class cluster substitute the name of their public superclass when being archived.

Availability
Available in Mac OS X v10.0 and later.

See Also
– awakeAfterUsingCoder: (page 1169)
– replacementObjectForCoder: (page 1191)

Declared In
NSObject.h

classForKeyedArchiver
Overridden by subclasses to substitute a new class for instances during keyed archiving.

- (Class)classForKeyedArchiver

Discussion
The object will be encoded as if it were a member of the returned class. The results of this method are
overridden by the encoder class and instance name to class encoding tables. If nil is returned, the result of
this method is ignored.

Availability
Available in Mac OS X v10.2 and later.

See Also
– replacementObjectForKeyedArchiver: (page 1191)

Declared In
NSKeyedArchiver.h

classForPortCoder
Overridden by subclasses to substitute a class other than its own for distribution encoding.

- (Class)classForPortCoder

Instance Methods 1171
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Return Value
The class to substitute for the receiver in distribution encoding.

Discussion
This method allows specialized behavior for distributed objects—override classForCoder (page 1171) to
add general coding behavior. This method is invoked by NSPortCoder. NSObject’s implementation returns
the class returned by classForCoder (page 1171).

Availability
Available in Mac OS X v10.0 and later.

See Also
– replacementObjectForPortCoder: (page 1192)

Declared In
NSPortCoder.h

className
Returns a string containing the name of the class.

- (NSString *)className

Return Value
A string containing the name of the class.

Discussion
This method is invoked by Cocoa’s scripting support classes.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Sketch-112
StickiesExample

Declared In
NSScriptClassDescription.h

copy
Returns the object returned by copyWithZone: (page 2042), where the zone is nil.

- (id)copy

Return Value
The object returned by the NSCopying protocol method copyWithZone: (page 2042), where the zone is nil.

Discussion
This is a convenience method for classes that adopt the NSCopying protocol. An exception is raised if there
is no implementation for copyWithZone: (page 2042).

1172 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

NSObject does not itself support the NSCopying protocol. Subclasses must support the protocol and
implement the copyWithZone: (page 2042) method. A subclass version of the copyWithZone: (page 2042)
method should send the message to super first, to incorporate its implementation, unless the subclass
descends directly from NSObject.

Special Considerations

If you are using managed memory (not garbage collection), this method retains the new object before
returning it. The invoker of the method, however, is responsible for releasing the returned object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AttachAScript
Dicey
iSpend
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSObject.h

copyScriptingValue:forKey:withProperties:
Creates and returns one or more scripting objects to be inserted into the specified relationship by copying
the passed-in value and setting the properties in the copied object or objects.

- (id)copyScriptingValue:(id)value forKey:(NSString *)key
withProperties:(NSDictionary *)properties;

Parameters
value

An object or objects to be copied. The type must match the type of the property identified by key.
(See also the Discussion section.)

For example, if the property is a to-many relationship, value will always be an array of objects to be
copied, and this method must therefore return an array of objects.

key
A key that identifies the relationship into which to insert the copied object or objects.

properties
The properties to be set in the copied object or objects. Derived from the "with properties" parameter
of a duplicate command. (See also the Discussion section.)

Return Value
The copied object or objects. Returns nil if an error occurs.

Discussion
You can override the copyScriptingValue method to take more control when your application is sent a
duplicate command. This method is invoked on the prospective container of the copied object or objects.
The properties are derived from the with properties parameter of the duplicate command. The
returned objects or objects are then inserted into the container using key-value coding.

Instance Methods 1173
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

When this method is invoked by Cocoa, neither the value nor the properties will have yet been coerced using
the NSScriptKeyValueCodingmethod coerceValue:forKey: (page 2118). For sdef-declared scriptability,
however, the types of the passed-in objects reliably match the relevant sdef declarations.

The default implementation of this method copies scripting objects by sending copyWithZone: to the
object or objects specified by value. You override this method for situations where this is not sufficient,
such as in Core Data applications, in which new objects must be initialized with
[NSManagedObject initWithEntity:insertIntoManagedObjectContext:].

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSObjectScripting.h

dealloc
Deallocates the memory occupied by the receiver.

- (void)dealloc

Discussion
Subsequent messages to the receiver may generate an error indicating that a message was sent to a
deallocated object (provided the deallocated memory hasn’t been reused yet).

You never send a dealloc message directly. Instead, an object’s dealloc method is invoked indirectly
through the release (page 2106) NSObjectprotocol method (if the releasemessage results in the receiver's
retain count becoming 0). See Memory Management Programming Guide for Cocoa for more details on the
use of these methods.

Subclasses must implement their own versions of dealloc to allow the release of any additional memory
consumed by the object—such as dynamically allocated storage for data or object instance variables owned
by the deallocated object. After performing the class-specific deallocation, the subclass method should
incorporate superclass versions of dealloc through a message to super:

- (void)dealloc {
 [companion release];
 NSZoneFree(private, [self zone])
 [super dealloc];
}

Important: Note that when an application terminates, objects may not be sent a dealloc message since
the process’s memory is automatically cleared on exit—it is more efficient simply to allow the operating
system to clean up resources than to invoke all the memory management methods. For this and other reasons,
you should not manage scarce resources in dealloc—see Object Ownership and Disposal in Memory
Management Programming Guide for Cocoa for more details.

Special Considerations

When garbage collection is enabled, the garbage collector sends finalize (page 1176) to the receiver instead
of dealloc.

When garbage collection is enabled, this method is a no-op.

1174 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
autorelease (page 2099) (NSObject protocol)
release (page 2106) (NSObject protocol)
– finalize (page 1176)

Related Sample Code
ImageClient
iSpend
QTCoreVideo301
Sketch-112
StickiesExample

Declared In
NSObject.h

doesNotRecognizeSelector:
Handles messages the receiver doesn’t recognize.

- (void)doesNotRecognizeSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies a method not implemented or recognized by the receiver.

See “Selectors” (page 1145) for a description of the SEL type.

Discussion
The runtime system invokes this method whenever an object receives an aSelectormessage it can’t respond
to or forward. This method, in turn, raises an NSInvalidArgumentException, and generates an error
message.

Any doesNotRecognizeSelector: messages are generally sent only by the runtime system. However,
they can be used in program code to prevent a method from being inherited. For example, an NSObject
subclass might renounce the copy (page 1172) or init (page 1178) method by re-implementing it to include
a doesNotRecognizeSelector: message as follows:

- (id)copy
{
 [self doesNotRecognizeSelector:_cmd];
}

The _cmd variable is a hidden argument passed to every method that is the current selector; in this example,
it identifies the selector for the copy method. This code prevents instances of the subclass from responding
to copymessages or superclasses from forwarding copymessages—although respondsToSelector: (page
2107) will still report that the receiver has access to a copy method.

If you override this method, you must call super or raise an NSInvalidArgumentException (page 2307)
exception at the end of your implementation. In other words, this method must not return normally; it must
always result in an exception being thrown.

Instance Methods 1175
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– forwardInvocation: (page 1177)

Declared In
NSObject.h

finalize
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

- (void)finalize

Discussion
The garbage collector invokes this method on the receiver before disposing of the memory it uses. When
garbage collection is enabled, this method is invoked instead of dealloc.

Note: Garbage collection is not available for use in Mac OS X before version 10.5.

You can override this method to relinquish resources the receiver has obtained, as shown in the following
example:

- (void)finalize {
 if (log_file != NULL) {
 fclose(log_file);
 log_file = NULL;
 }
 [super finalize];
}

Typically, however, you are encouraged to relinquish resources prior to finalization if at all possible. For more
details, see Implementing a finalize Method.

Special Considerations

It is an error to store self into a new or existing live object (colloquially known as “resurrection”), which
implies that this method will be called only once. However, the receiver may be messaged after finalization
by other objects also being finalized at this time, so your override should guard against future use of resources
that have been reclaimed, as shown by the log_file = NULL statement in the example. The finalize
method itself will never be invoked more than once for a given object.

Important: finalize methods must be thread-safe.

Availability
Available in Mac OS X v10.4 and later.

See Also
– dealloc (page 1174)

Declared In
NSObject.h

1176 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

forwardInvocation:
Overridden by subclasses to forward messages to other objects.

- (void)forwardInvocation:(NSInvocation *)anInvocation

Parameters
anInvocation

The invocation to forward.

Discussion
When an object is sent a message for which it has no corresponding method, the runtime system gives the
receiver an opportunity to delegate the message to another receiver. It delegates the message by creating
an NSInvocation object representing the message and sending the receiver a forwardInvocation:
message containing this NSInvocation object as the argument. The receiver’s forwardInvocation:
method can then choose to forward the message to another object. (If that object can’t respond to the
message either, it too will be given a chance to forward it.)

The forwardInvocation: message thus allows an object to establish relationships with other objects that
will, for certain messages, act on its behalf. The forwarding object is, in a sense, able to “inherit” some of the
characteristics of the object it forwards the message to.

Important: To respond to methods that your object does not itself recognize, you must override
methodSignatureForSelector: (page 1181) in addition to forwardInvocation:. The mechanism for
forwarding messages uses information obtained frommethodSignatureForSelector: (page 1181) to create
the NSInvocation object to be forwarded. Your overriding method must provide an appropriate method
signature for the given selector, either by preformulating one or by asking another object for one.

An implementation of the forwardInvocation: method has two tasks:

 ■ To locate an object that can respond to the message encoded in anInvocation. This object need not
be the same for all messages.

 ■ To send the message to that object using anInvocation. anInvocation will hold the result, and the
runtime system will extract and deliver this result to the original sender.

In the simple case, in which an object forwards messages to just one destination (such as the hypothetical
friend instance variable in the example below), a forwardInvocation: method could be as simple as
this:

- (void)forwardInvocation:(NSInvocation *)invocation
{
 SEL aSelector = [invocation selector];

 if ([friend respondsToSelector:aSelector])
 [invocation invokeWithTarget:friend];
 else
 [self doesNotRecognizeSelector:aSelector];
}

The message that’s forwarded must have a fixed number of arguments; variable numbers of arguments (in
the style of printf()) are not supported.

The return value of the forwarded message is returned to the original sender. All types of return values can
be delivered to the sender: id types, structures, double-precision floating-point numbers.

Instance Methods 1177
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Implementations of the forwardInvocation: method can do more than just forward messages.
forwardInvocation: can, for example, be used to consolidate code that responds to a variety of different
messages, thus avoiding the necessity of having to write a separate method for each selector. A
forwardInvocation:method might also involve several other objects in the response to a given message,
rather than forward it to just one.

NSObject’s implementation of forwardInvocation: simply invokes the
doesNotRecognizeSelector: (page 1175) method; it doesn’t forward any messages. Thus, if you choose
not to implement forwardInvocation:, sending unrecognized messages to objects will raise exceptions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

init
Implemented by subclasses to initialize a new object (the receiver) immediately after memory for it has been
allocated.

- (id)init

Return Value
The initialized receiver.

Discussion
An initmessage is generally coupled with an alloc (page 1152) or allocWithZone: (page 1152) message
in the same line of code:

TheClass *newObject = [[TheClass alloc] init];

An object isn’t ready to be used until it has been initialized. The init method defined in the NSObject class
does no initialization; it simply returns self.

Subclass implementations of this method should initialize and return the new object. If it can’t be initialized,
they should release the object and return nil. In some cases, an init method might release the new object
and return a substitute. Programs should therefore always use the object returned by init, and not necessarily
the one returned by alloc (page 1152) or allocWithZone: (page 1152), in subsequent code.

Every class must guarantee that the init method either returns a fully functional instance of the class or
raises an exception. Subclasses should override the init method to add class-specific initialization code.
Subclass versions of init need to incorporate the initialization code for the classes they inherit from, through
a message to super:

- (id)init
{
 if ((self = [super init])) {
 /* class-specific initialization goes here */
 }
 return self;
}

Note that the message to super precedes the initialization code added in the method. This sequencing
ensures that initialization proceeds in the order of inheritance.

1178 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Subclasses often define init... methods with additional arguments to allow specific values to be set. The
more arguments a method has, the more freedom it gives you to determine the character of initialized
objects. Classes often have a set of init... methods, each with a different number of arguments. For
example:

- (id)init;
- (id)initWithTag:(int)tag;
- (id)initWithTag:(int)tag data:(struct info *)data;

The convention is that at least one of these methods, usually the one with the most arguments, includes a
message to super to incorporate the initialization of classes higher up the hierarchy. This method is called
the designated initializer for the class. The other init... methods defined in the class directly or indirectly
invoke the designated initializer through messages to self. In this way, all init... methods are chained
together. For example:

- (id)init
{
 return [self initWithTag:-1];
}

- (id)initWithTag:(int)tag
{
 return [self initWithTag:tag data:NULL];
}

- (id)initWithTag:(int)tag data:(struct info *)data
{
 if ((self = [super init. . .])) {
 /* class-specific initialization goes here */
 }
 return self;
}

In this example, the initWithTag:data: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated initializer. This method should
begin by sending a message to super to invoke the designated initializer of its superclass. Suppose, for
example, that the three methods illustrated above are defined in the B class. The C class, a subclass of B,
might have this designated initializer:

- (id)initWithTag:(int)tag data:(struct info *)data object:anObject
{
 if ((self = [super initWithTag:tag data:data])) {
 /* class-specific initialization goes here */
 }
 return self;
}

If inherited init... methods are to successfully initialize instances of the subclass, they must all be made
to (directly or indirectly) invoke the new designated initializer. To accomplish this, the subclass is obliged to
cover (override) only the designated initializer of the superclass. For example, in addition to its designated
initializer, the C class would also implement this method:

- (id)initWithTag:(int)tag data:(struct info *)data
{
 return [self initWithTag:tag data:data object:nil];
}

Instance Methods 1179
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

This code ensures that all three methods inherited from the B class also work for instances of the C class.

Often the designated initializer of the subclass overrides the designated initializer of the superclass. If so, the
subclass need only implement the one init... method.

These conventions maintain a direct chain of init... links and ensure that the newmethod and all inherited
init... methods return usable, initialized objects. They also prevent the possibility of an infinite loop
wherein a subclass method sends a message (to super) to perform a superclass method, which in turn sends
a message (to self) to perform the subclass method.

This initmethod is the designated initializer for the NSObject class. Subclasses that do their own initialization
should override it, as described above.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageClient
Quartz Composer WWDC 2005 TextEdit
Quartz EB
StickiesExample
TextEditPlus

Declared In
NSObject.h

inverseForRelationshipKey:
For a given key that defines the name of the relationship from the receiver’s class to another class, returns
the name of the relationship from the other class to the receiver’s class.

- (NSString *)inverseForRelationshipKey:(NSString *)relationshipKey

Parameters
relationshipKey

The name of the relationship from the receiver’s class to another class.

Return Value
The name of the relationship that is the inverse of the receiver's relationship named relationshipKey.

Discussion
NSObject’s implementation of inverseForRelationshipKey: simply invokes [[self
classDescription] inverseForRelationshipKey:relationshipKey]. To make use of the default
implementation, you must therefore implement and register a suitable class description—see
NSClassDescription.

For example, suppose an Employee class has a relationship named department to a Department class, and
that Department has a relationship called employees to Employee. The statement:

employee inverseForRelationshipKey:@"department"];

returns the string employees.

1180 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributeKeys (page 1168)
– classDescription (page 1170)
– toManyRelationshipKeys (page 1194)
– toOneRelationshipKeys (page 1195)

Declared In
NSClassDescription.h

methodForSelector:
Locates and returns the address of the receiver’s implementation of a method so it can be called as a function.

- (IMP)methodForSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies the method for which to return the implementation address. The selector
must be a valid and non-NULL. If in doubt, use the respondsToSelector: (page 2107) method to
check before passing the selector to methodForSelector:.

Return Value
The address of the receiver’s implementation of the aSelector.

Discussion
If the receiver is an instance, aSelector should refer to an instance method; if the receiver is a class, it should
refer to a class method.

See “Selectors” (page 1145) for a description of the IMP and SEL types, and how to invoke the returned method
implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ instanceMethodForSelector: (page 1159)

Declared In
NSObject.h

methodSignatureForSelector:
Returns an NSMethodSignature object that contains a description of the method identified by a given
selector.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Instance Methods 1181
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Parameters
aSelector

A selector that identifies the method for which to return the implementation address. When the
receiver is an instance, aSelector should identify an instance method; when the receiver is a class,
it should identify a class method.

See “Selectors” (page 1145) for a description of the SEL type.

Return Value
An NSMethodSignature object that contains a description of the method identified by aSelector, or nil
if the method can’t be found.

Discussion
This method is used in the implementation of protocols. This method is also used in situations where an
NSInvocation object must be created, such as during message forwarding. If your object maintains a
delegate or is capable of handling messages that it does not directly implement, you should override this
method to return an appropriate method signature.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ instanceMethodSignatureForSelector: (page 1160)
– forwardInvocation: (page 1177)

Declared In
NSObject.h

mutableCopy
Returns the object returned by mutableCopyWithZone: (page 2094) where the zone is nil.

- (id)mutableCopy

Return Value
The object returned by the NSMutableCopying protocol method mutableCopyWithZone: (page 2094),
where the zone is nil.

Discussion
This is a convenience method for classes that adopt the NSMutableCopying protocol. An exception is raised
if there is no implementation for mutableCopyWithZone: (page 2094).

Special Considerations

If you are using managed memory (not garbage collection), this method retains the new object before
returning it. The invoker of the method, however, is responsible for releasing the returned object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
iSpend
NewsReader
Quartz Composer WWDC 2005 TextEdit

1182 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

TextEditPlus

Declared In
NSObject.h

newScriptingObjectOfClass:forValueForKey:withContentsValue:properties:
Creates and returns an instance of a scriptable class, setting its contents and properties, for insertion into
the relationship identified by the key.

- (id)newScriptingObjectOfClass:(Class)class forValueForKey:(NSString *)key
withContentsValue:(id)contentsValue properties:(NSDictionary *)properties;

Parameters
class

The class of the scriptable object to be created.

key
A key that identifies the relationship into which the new class object will be inserted.

contentsValue
Specifies the contents of the object to be created. This may be nil. (See also the Discussion section.)

properties
The properties to be set in the new object. (See also the Discussion section.)

Return Value
The new object. Returns nil if an error occurs.

Discussion
You can override the newScriptingObjectOfClass method to take more control when your application
is sent a make command. This method is invoked on the prospective container of the new object.
The contentsValue and properties are derived from the with contents and with properties
parameters of the make command. The returned objects or objects are then inserted into the container using
key-value coding.

When this method is invoked by Cocoa, neither the contents value nor the properties will have yet been
coerced using theNSScriptKeyValueCodingmethodcoerceValue:forKey: (page 2118). For sdef-declared
scriptability, however, the types of the passed-in objects reliably match the relevant sdef declarations.

The default implementation of this method creates new scripting objects by sending alloc to a class and
init to the resulting object. You override this method for situations where this is not sufficient, such as in
Core Data applications, in which new objects must be initialized with
[NSManagedObject initWithEntity:insertIntoManagedObjectContext:].

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSObjectScripting.h

performSelector:onThread:withObject:waitUntilDone:
Invokes a method of the receiver on the specified thread using the default mode.

Instance Methods 1183
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

- (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg
waitUntilDone:(BOOL)wait

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 1145) for a description of the SEL type.

thr
The thread on which to execute aSelector.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the specified thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread and target thread are the same, and you specify YES for this parameter, the
selector is performed immediately on the current thread. If you specify NO, this method queues the
message on the thread’s run loop and returns, just like it does for other threads. The current thread
must then dequeue and process the message when it has an opportunity to do so.

Discussion
You can use this method to deliver messages to other threads in your application. The message in this case
is a method of the current object that you want to execute on the target thread.

This method queues the message on the run loop of the target thread using the default run loop modes—that
is, the modes associated with the NSRunLoopCommonModes constant. As part of its normal run loop processing,
the target thread dequeues the message (assuming it is running in one of the default run loop modes) and
invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 1186) or
performSelector:withObject:afterDelay:inModes: (page 1187) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in Mac OS X v10.5 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone:modes: (page 1184)
– performSelectorInBackground:withObject: (page 1188)

Declared In
NSThread.h

performSelector:onThread:withObject:waitUntilDone:modes:
Invokes a method of the receiver on the specified thread using the specified modes.

1184 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

- (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg
waitUntilDone:(BOOL)wait modes:(NSArray *)array

Parameters
aSelector

A selector that identifies the method to invoke. It should not have a significant return value and should
take a single argument of type id, or no arguments.

See “Selectors” (page 1145) for a description of the SEL type.

thr
The thread on which to execute aSelector. This thread represents the target thread.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the specified thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread and target thread are the same, and you specify YES for this parameter, the
selector is performed immediately. If you specify NO, this method queues the message and returns
immediately, regardless of whether the threads are the same or different.

array
An array of strings that identifies the modes in which it is permissible to perform the specified selector.
This array must contain at least one string. If you specify nil or an empty array for this parameter,
this method returns without performing the specified selector.

Discussion
You can use this method to deliver messages to other threads in your application. The message in this case
is a method of the current object that you want to execute on the target thread.

This method queues the message on the run loop of the target thread using the run loop modes specified
in the array parameter. As part of its normal run loop processing, the target thread dequeues the message
(assuming it is running in one of the specified modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 1186) or
performSelector:withObject:afterDelay:inModes: (page 1187) method instead.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in Mac OS X v10.5 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone: (page 1183)
– performSelectorInBackground:withObject: (page 1188)

Declared In
NSThread.h

Instance Methods 1185
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

performSelector:withObject:afterDelay:
Invokes a method of the receiver on the current thread using the default mode after a delay.

- (void)performSelector:(SEL)aSelector withObject:(id)anArgument
afterDelay:(NSTimeInterval)delay

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 1145) for a description of the SEL type.

anArgument
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

delay
The minimum time before which the message is sent. Specifying a delay of 0 does not necessarily
cause the selector to be performed immediately. The selector is still queued on the thread’s run loop
and performed as soon as possible.

Discussion
This method sets up a timer to perform the aSelector message on the current thread’s run loop. The timer
is configured to run in the default mode (NSDefaultRunLoopMode). When the timer fires, the thread attempts
to dequeue the message from the run loop and perform the selector. It succeeds if the run loop is running
and in the default mode; otherwise, the timer waits until the run loop is in the default mode.

If you want the message to be dequeued when the run loop is in a mode other than the default mode, use
the performSelector:withObject:afterDelay:inModes: (page 1187) method instead. To ensure that
the selector is performed on the main thread, use the
performSelectorOnMainThread:withObject:waitUntilDone: (page 1188) or
performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 1189) method instead. To
cancel a queued message, use the cancelPreviousPerformRequestsWithTarget: (page 1153) or
cancelPreviousPerformRequestsWithTarget:selector:object: (page 1154) method.

This method retains the receiver and the anArgument parameter until after the selector is performed.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ cancelPreviousPerformRequestsWithTarget:selector:object: (page 1154)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 1188)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 1189)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 1184)

Related Sample Code
IdentitySample

Declared In
NSRunLoop.h

1186 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

performSelector:withObject:afterDelay:inModes:
Invokes a method of the receiver on the current thread using the specified modes after a delay.

- (void)performSelector:(SEL)aSelector withObject:(id)anArgument
afterDelay:(NSTimeInterval)delay inModes:(NSArray *)modes

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 1145) for a description of the SEL type.

anArgument
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

delay
The minimum time before which the message is sent. Specifying a delay of 0 does not necessarily
cause the selector to be performed immediately. The selector is still queued on the thread’s run loop
and performed as soon as possible.

modes
An array of strings that identify the modes to associate with the timer that performs the selector. This
array must contain at least one string. If you specify nil or an empty array for this parameter, this
method returns without performing the specified selector.

Discussion
This method sets up a timer to perform the aSelector message on the current thread’s run loop. The timer
is configured to run in the modes specified by the modes parameter. When the timer fires, the thread attempts
to dequeue the message from the run loop and perform the selector. It succeeds if the run loop is running
and in one of the specified modes; otherwise, the timer waits until the run loop is in one of those modes.

If you want the message to be dequeued when the run loop is in a mode other than the default mode, use
the performSelector:withObject:afterDelay:inModes: (page 1187) method instead. To ensure that
the selector is performed on the main thread, use the
performSelectorOnMainThread:withObject:waitUntilDone: (page 1188) or
performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 1189) method instead. To
cancel a queued message, use the cancelPreviousPerformRequestsWithTarget: (page 1153) or
cancelPreviousPerformRequestsWithTarget:selector:object: (page 1154) method.

This method retains the receiver and the anArgument parameter until after the selector is performed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– performSelector:withObject:afterDelay: (page 1186)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 1188)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 1189)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 1184)
addTimer:forMode: (page 1333) (NSRunLoop)
invalidate (page 1660) (NSTimer)

Declared In
NSRunLoop.h

Instance Methods 1187
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

performSelectorInBackground:withObject:
Invokes a method of the receiver on a new background thread.

- (void)performSelectorInBackground:(SEL)aSelector withObject:(id)arg

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 1145) for a description of the SEL type.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

Discussion
This method creates a new thread in your application, putting your application into multithreaded mode if
it was not already. The method represented by aSelector must set up the thread environment just as you
would for any other new thread in your program. For more information about how to configure and run
threads, see Threading Programming Guide.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in Mac OS X v10.5 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone:modes: (page 1184)

Declared In
NSThread.h

performSelectorOnMainThread:withObject:waitUntilDone:
Invokes a method of the receiver on the main thread using the default mode.

- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg
waitUntilDone:(BOOL)wait

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 1145) for a description of the SEL type.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

1188 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the main thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread is also the main thread, and you specify YES for this parameter, the message is
delivered and processed immediately.

Discussion
You can use this method to deliver messages to the main thread of your application. The main thread
encompasses the application’s main run loop, and is where the NSApplication object receives events. The
message in this case is a method of the current object that you want to execute on the thread.

This method queues the message on the run loop of the main thread using the default run loop modes—that
is, the modes associated with the NSRunLoopCommonModes constant. As part of its normal run loop processing,
the main thread dequeues the message (assuming it is running in one of the default run loop modes) and
invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 1186) or
performSelector:withObject:afterDelay:inModes: (page 1187) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in Mac OS X v10.2 and later.

See Also
– performSelector:withObject:afterDelay: (page 1186)
– performSelector:withObject:afterDelay:inModes: (page 1187)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 1189)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 1184)

Related Sample Code
AudioDeviceNotify
CocoaDVDPlayer
ExtractMovieAudioToAIFF
HelpHook
JSheets

Declared In
NSThread.h

performSelectorOnMainThread:withObject:waitUntilDone:modes:
Invokes a method of the receiver on the main thread using the specified modes.

- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg
waitUntilDone:(BOOL)wait modes:(NSArray *)array

Instance Methods 1189
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Parameters
aSelector

A selector that identifies the method to invoke. The method should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 1145) for a description of the SEL type.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is performed
on the receiver on the main thread. Specify YES to block this thread; otherwise, specify NO to have
this method return immediately.

If the current thread is also the main thread, and you pass YES, the message is performed immediately,
otherwise the perform is queued to run the next time through the run loop.

array
An array of strings that identifies the modes in which it is permissible to perform the specified selector.
This array must contain at least one string. If you specify nil or an empty array for this parameter,
this method returns without performing the specified selector.

Discussion
You can use this method to deliver messages to the main thread of your application. The main thread
encompasses the application’s main run loop, and is where the NSApplication object receives events. The
message in this case is a method of the current object that you want to execute on the thread.

This method queues the message on the run loop of the main thread using the run loop modes specified in
the array parameter. As part of its normal run loop processing, the main thread dequeues the message
(assuming it is running in one of the specified modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message on
the current thread, you must use either the performSelector:withObject:afterDelay: (page 1186) or
performSelector:withObject:afterDelay:inModes: (page 1187) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in Mac OS X v10.2 and later.

See Also
– performSelector:withObject:afterDelay: (page 1186)
– performSelector:withObject:afterDelay:inModes: (page 1187)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 1188)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 1184)

Declared In
NSThread.h

replacementObjectForArchiver:
Overridden by subclasses to substitute another object for itself during archiving.

- (id)replacementObjectForArchiver:(NSArchiver *)anArchiver

1190 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Parameters
anArchiver

The archiver creating an archive.

Return Value
The object to substitute for the receiver during archiving.

Discussion
This method is invoked by NSArchiver. NSObject’s implementation returns the object returned by
replacementObjectForCoder: (page 1191).

Availability
Available in Mac OS X v10.0 and later.

See Also
– classForArchiver (page 1170)

Declared In
NSArchiver.h

replacementObjectForCoder:
Overridden by subclasses to substitute another object for itself during encoding.

- (id)replacementObjectForCoder:(NSCoder *)aCoder

Parameters
aCoder

The coder encoding the receiver.

Return Value
The object encode instead of the receiver (if different).

Discussion
An object might encode itself into an archive, but encode a proxy for itself if it’s being encoded for distribution.
This method is invoked by NSCoder. NSObject’s implementation returns self.

Availability
Available in Mac OS X v10.0 and later.

See Also
– classForCoder (page 1171)
– awakeAfterUsingCoder: (page 1169)

Declared In
NSObject.h

replacementObjectForKeyedArchiver:
Overridden by subclasses to substitute another object for itself during keyed archiving.

- (id)replacementObjectForKeyedArchiver:(NSKeyedArchiver *)archiver

Instance Methods 1191
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Parameters
archiver

A keyed archiver creating an archive.

Return Value
The object encode instead of the receiver (if different).

Discussion
This method is called only if no replacement mapping for the object has been set up in the encoder (for
example, due to a previous call of replacementObjectForKeyedArchiver: to that object).

Availability
Available in Mac OS X v10.2 and later.

See Also
– classForKeyedArchiver (page 1171)

Declared In
NSKeyedArchiver.h

replacementObjectForPortCoder:
Overridden by subclasses to substitute another object or a copy for itself during distribution encoding.

- (id)replacementObjectForPortCoder:(NSPortCoder *)aCoder

Parameters
aCoder

The port coder encoding the receiver.

Return Value
The object encode instead of the receiver (if different).

Discussion
This method is invoked by NSPortCoder. NSObject’s implementation returns an NSDistantObject object
for the object returned by replacementObjectForCoder: (page 1191), enabling all objects to be distributed
by proxy as the default. However, if replacementObjectForCoder: (page 1191) returns nil, NSObject’s
implementation will also return nil.

Subclasses that want to be passed by copy instead of by reference must override this method and return
self. The following example shows how to support object replacement both by copy and by reference:

- (id)replacementObjectForPortCoder:(NSPortCoder *)encoder {
 if ([encoder isByref])
 return [NSDistantObject proxyWithLocal:self
connection:[encoder connection]];
 else
 return self;
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– classForPortCoder (page 1171)

1192 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Declared In
NSPortCoder.h

scriptingProperties
Returns an NSString-keyed dictionary of the receiver's scriptable properties.

- (NSDictionary *)scriptingProperties

Return Value
An NSString-keyed dictionary of the receiver's scriptable properties, including all of those that are declared
as Attributes and ToOneRelationships in the .scriptSuite property list entries for the class and its scripting
superclasses, with the exception of ones keyed by "scriptingProperties." Each key in the dictionary must be
identical to the key for an Attribute or ToOneRelationship. The values of the dictionary must be Objective-C
objects that are convertible to NSAppleEventDescriptor objects.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setScriptingProperties: (page 1194)

Declared In
NSObjectScripting.h

scriptingValueForSpecifier:
Given an object specifier, returns the specified object or objects in the receiving container.

- (id)scriptingValueForSpecifier:(NSScriptObjectSpecifier *)objectSpecifier;

Parameters
objectSpecifier

An object specifier to be evaluated.

Return Value
The specified object or objects in the receiving container.

This method might successfully return an object, an array of objects, or nil, depending on the kind of object
specifier. Because nil is a valid return value, failure is signaled by invoking the object specifier’s
setEvaluationError: method before returning.

Discussion
You can override this method to customize the evaluation of object specifiers without requiring that the
scripting container make up indexes for contained objects that don't naturally have indexes (as can be the
case if you implement indicesOfObjectsByEvaluatingObjectSpecifier: (page 2123) instead).

Your override of this method doesn't need to also invoke any of the NSScriptCommand error signaling
methods, though it can, to record very specific information. The NSUnknownKeySpecifierError and
NSInvalidIndexSpecifierError numbers are special, in that Cocoa may continue evaluating an outer
specifier if they're encountered, for the convenience of scripters.

Instance Methods 1193
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSObjectScripting.h

setScriptingProperties:
Given an NSString-keyed dictionary, sets one or more scriptable properties of the receiver.

- (void)setScriptingProperties:(NSDictionary *)properties

Parameters
properties

A dictionary containing one or more scriptable properties of the receiver. The valid keys for the
dictionary include the keys for non-ReadOnly Attributes and ToOneRelationships in the .scriptSuite
property list entries for the object's class and its scripting superclasses, and no others. The values of
the dictionary are Objective-C objects.

Discussion
Invokers of this method must have already done any necessary validation to ensure that the properties
dictionary includes nothing but entries for declared, settable, Attributes and ToOneRelationships.
Implementations of this method are not expected to check the validity of keys in the passed-in dictionary,
but must be able to accept dictionaries that do not contain entries for every scriptable property.
Implementations of this method must perform type checking on the dictionary values.

Availability
Available in Mac OS X v10.2 and later.

See Also
– scriptingProperties (page 1193)

Declared In
NSObjectScripting.h

toManyRelationshipKeys
Returns array containing the keys for the to-many relationship properties of the receiver.

- (NSArray *)toManyRelationshipKeys

Return Value
An array containing the keys for the to-many relationship properties of the receiver (if any).

Discussion
NSObject’s implementation simply invokes [[self classDescription] toManyRelationshipKeys].
To make use of the default implementation, you must therefore implement and register a suitable class
description—see NSClassDescription.

Availability
Available in Mac OS X v10.0 and later.

1194 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

See Also
– attributeKeys (page 1168)
– classDescription (page 1170)
– inverseForRelationshipKey: (page 1180)
– toOneRelationshipKeys (page 1195)

Declared In
NSClassDescription.h

toOneRelationshipKeys
Returns the keys for the to-one relationship properties of the receiver, if any.

- (NSArray *)toOneRelationshipKeys

Return Value
An array containing the keys for the to-one relationship properties of the receiver.

Discussion
NSObject’s implementation of toOneRelationshipKeys simply invokes [[self classDescription]
toOneRelationshipKeys]. To make use of the default implementation, you must therefore implement
and register a suitable class description—see NSClassDescription.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributeKeys (page 1168)
– classDescription (page 1170)
– toManyRelationshipKeys (page 1194)
– inverseForRelationshipKey: (page 1180)

Declared In
NSClassDescription.h

Instance Methods 1195
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

1196 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 97

NSObject Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.5 and later.

Declared in Foundation/NSOperation.h

Companion guide Threading Programming Guide

Related sample code NSOperationSample

Overview

The NSOperation class manages the execution of a single encapsulated task. Operations are typically
scheduled by adding them to an operation queue object (an instance of the NSOperationQueue class),
although you can also execute them directly by explicitly invoking their start method.

Operation objects are single-shot objects, that is, they perform their task once. You cannot reuse the same
NSOperation object to perform a task (or a slight variant of the task) multiple times in succession. Attempting
to execute an operation that has already finished results in an exception.

When manually executing operations, you are responsible for making sure the object is ready to execute.
Starting an operation that is not in the ready state generally results in an exception being thrown. If you use
an operation queue to manage the execution, the NSOperationQueue object ensures that the operation is
executed only when it is ready.

Concurrent Versus Non-Concurrent Operations

Operation objects can be designed for either concurrent or non-concurrent operation. In the context of an
NSOperation object, the terms concurrent and non-concurrent do not necessarily refer to the side-by-side
execution of threads. Instead, a non-concurrent operation is one that executes using the environment that
is provided for it while a concurrent operation is responsible for setting up its own execution environment.
To understand how this might work in your code, look at the NSOperationQueue object as an example. For
a non-concurrent operation, an operation queue automatically creates a thread and calls the operation
object’s start method, the default implementation of which configures the thread environment and calls
the operation object’s main method to run your custom code. For a concurrent operation, the queue simply
calls the object’s start method on the current thread. The operation object is then responsible for setting
up the appropriate execution environment, which could include starting a new thread.

Overview 1197
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

If you always design your operations to execute on a thread, then creating non-concurrent operations is the
simplest way to go. There are some situations though where you might want to create a concurrent operation
instead, including the following:

 ■ You want to create the thread yourself.

 ■ You want to launch a separate task instead of a thread.

 ■ Your operation’s main method initiates an asynchronous call and exits. (In such a situation, the callback
function or method would then pass control to the operation object to process the request. For example,
you could use this technique to set up a timer and then use the methods of the operation object to do
some work each time the timer fires.)

By default, operations are designated as non-concurrent. For information on how to create a concurrent
operation object, see the subclassing notes for this class.

Operation Dependencies

You can configure an operation to depend on the completion of other operations by adding those operations
as dependencies. An operation object that has dependencies does not execute until all of its dependent
operation objects finish executing. Once the last dependent operation finishes, the operation object moves
to the ready state.

If a dependent operation is unable to perform its task for some reason, it is the responsibility of your code
to make that determination. Operation objects that are non-concurrent (that is, their isConcurrentmethod
returns NO) automatically catch and suppress any exceptions thrown by the operation object’s mainmethod.
Thus, an operation that generates an exception may appear to finish normally even if it did not. If you need
to track errors in a dependent operation, you must build that capability into the main method of your
operation objects explicitly.

KVO-Compliant Properties

The NSOperation class is key-value coding (KVC) and key-value observing (KVO) compliant for several of its
properties. As needed, you can observe these properties to control other parts of your application. The
properties you can observe include the following:

 ■ isCancelled - read-only property

 ■ isConcurrent - read-only property

 ■ isExecuting - read-only property

 ■ isFinished - read-only property

 ■ isReady - read-only property

 ■ dependencies - read-only property

 ■ queuePriority - readable and writable property

Although you can attach observers to these properties, you should not use Cocoa bindings to bind them to
elements of your application’s user interface. Code associated with your user interface typically must execute
only in your application’s main thread. Because an operation may execute in any thread, any KVO notifications
associated with that operation may similarly occur in any thread.

1198 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

If you override any of the preceding properties, your implementations must maintain KVC and KVO compliance.
If you define additional properties for your NSOperation objects, it is recommended that you make those
properties KVC and KVO compliant as well. For information on how to support key-value coding, see Key-Value
Coding Programming Guide. For information on how to support key-value observing, see Key-Value Observing
Programming Guide.

Threading Considerations

The methods of the NSOperation class implement automatic synchronization on the current instance. It is
therefore safe to use a single instance of the NSOperation object from multiple threads without creating
additional locks to synchronize access to the object.

When you subclass NSOperation, the methods in your implementation should also be safe to call from
multiple threads. For example, if the methods of your operation object access shared resources, they should
take the appropriate locks to synchronize access to those resources. For more information about writing
thread-safe code, see Threading Programming Guide.

Subclassing Notes

The NSOperation class does not do anything by default and must be subclassed to perform any desired
tasks. How you create your subclass depends on whether your operation is designed to execute concurrently
or non-concurrently with respect to the thread that started the operation.

Methods to Override

For non-concurrent operations, you typically implement only one method:

 ■ main

In your main method, you implement the code needed to perform the given operation. The NSOperation
class manages the changes in state for your operation automatically and reports the appropriate condition
of your operation from its methods.

If you are creating a concurrent operation, you need to override the following methods:

 ■ start

 ■ isConcurrent

 ■ isExecuting

 ■ isFinished

In your start method, you must prepare the operation for execution, which includes preparing the runtime
environment for your operation. (For example, if you wanted to create a thread yourself, you would do it
here.) Once your runtime environment is established, you can call any methods or functions you want to
subsequently start your operation. Your implementation of the start method should not invoke super.

Overview 1199
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

When implementing a concurrent operation, your custom subclass is responsible for reporting some of the
state information associated with running the operation. In particular, you must override the isExecuting
and isFinished methods to report on the current execution state of your operation. These methods must
return accurate values for the state of your operation at all times, including when your operation has been
cancelled. Your overridden methods should be KVO compliant.

Responding to the Cancel Command

An operation is responsible for periodically calling its own isCancelled method and aborting execution if
it ever returns YES. Because it is bad form to kill a thread outright, the NSOperationQueue object sends a
cancel message to your operation object if it ever needs your object to stop executing. (Other entities can
similarly call the cancelmethod on an executing operation to ask it to stop.) The need to cancel an operation
can typically arise from a user request or in a situation where the application or system is shutting down.
When detected, your operation should clean up its environment and exit as soon as possible.

If an operation is cancelled, it should still update its internal state variables to reflect the change in execution
status. In particular, the object’s isFinished method should return YES and its isExecuting method
should return NO. It must do this even if the it was cancelled before it started executing.

Note: If you implement a custom operation object as a concurrent operation, the start method can still
be called even if the operation has already been cancelled. Your startup code should be prepared to handle
this situation and clean up appropriately.

Tasks

Initialization

– init (page 1203)
Returns an initialized NSOperation object.

Executing the Operation

– start (page 1207)
Begins the execution of the operation.

– main (page 1205)
Performs the receiver’s non-concurrent task.

Canceling Operations

– cancel (page 1202)
Advises the operation object that it should stop executing its task.

1200 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

Getting the Operation Status

– isCancelled (page 1203)
Returns a Boolean value indicating whether the operation has been cancelled.

– isExecuting (page 1204)
Returns a Boolean value indicating whether the operation is currently executing.

– isFinished (page 1204)
Returns a Boolean value indicating whether the operation is done executing.

– isConcurrent (page 1204)
Returns a Boolean value indicating whether the operation runs asynchronously.

– isReady (page 1205)
Returns a Boolean value indicating whether the receiver’s operation can be performed now.

Managing Dependencies

– addDependency: (page 1201)
Makes the receiver dependent on the completion of the specified operation.

– removeDependency: (page 1206)
Removes the receiver’s dependence on the specified operation.

– dependencies (page 1202)
Returns a new array object containing the operations on which the receiver is dependent.

Prioritizing Operations in an Operation Queue

– queuePriority (page 1206)
Returns the priority of the operation in an operation queue.

– setQueuePriority: (page 1207)
Sets the priority of the operation when used in an operation queue.

Instance Methods

addDependency:
Makes the receiver dependent on the completion of the specified operation.

- (void)addDependency:(NSOperation *)operation

Parameters
operation

The operation on which the receiver is dependent. The same dependency should not be added more
than once to the receiver, and the results of doing so are undefined.

Instance Methods 1201
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

Discussion
The receiver is not considered ready to execute until all of its dependent operations finish executing. If the
receiver is already executing its task, adding dependencies is unlikely to have any practical effect. This method
may change the isReady and dependencies properties of the receiver.

It is a programmer error to create any circular dependencies among a set of operations. Doing so can cause
a deadlock among the operations and may freeze your program.

Availability
Available in Mac OS X v10.5 and later.

See Also
– removeDependency: (page 1206)
– dependencies (page 1202)

Declared In
NSOperation.h

cancel
Advises the operation object that it should stop executing its task.

- (void)cancel

Discussion
This method does not force your operation code to stop. The code for your operation must invoke the
isCancelled method periodically to determine whether the operation should be stopped. Once cancelled,
an operation cannot be restarted.

If the operation is already finished executing, this method has no effect. Canceling an operation that is
currently in an operation queue, but not yet executing, causes it to be removed from the queue (although
not necessarily right away).

Availability
Available in Mac OS X v10.5 and later.

See Also
– isCancelled (page 1203)

Declared In
NSOperation.h

dependencies
Returns a new array object containing the operations on which the receiver is dependent.

- (NSArray *)dependencies

Return Value
A new array object containing the NSOperation objects.

Discussion
The receiver is not considered ready to execute until all of its dependent operations finish executing.

1202 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– addDependency: (page 1201)
– removeDependency: (page 1206)

Declared In
NSOperation.h

init
Returns an initialized NSOperation object.

- (id)init

Return Value
The initialized NSOperation object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

isCancelled
Returns a Boolean value indicating whether the operation has been cancelled.

- (BOOL)isCancelled

Return Value
YES if the operation was explicitly cancelled by an invocation of the receiver’s cancel method; otherwise,
NO. This method may return YES even if the operation is currently executing.

Discussion
Canceling an operation does not actively stop the receiver’s code from executing. An operation object is
responsible for calling this method periodically and stopping itself if the method returns YES.

Availability
Available in Mac OS X v10.5 and later.

See Also
– cancel (page 1202)

Related Sample Code
NSOperationSample

Declared In
NSOperation.h

Instance Methods 1203
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

isConcurrent
Returns a Boolean value indicating whether the operation runs asynchronously.

- (BOOL)isConcurrent

Return Value
YES if the operation is asynchronous; otherwise, NO if the operation runs synchronously on whatever thread
started it. This method returns NO by default.

Discussion
If you are implementing a concurrent operation, you must override this method and return YES from your
implementation. For more information about the differences between concurrent and non-concurrent
operations, see “Concurrent Versus Non-Concurrent Operations” (page 1197).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

isExecuting
Returns a Boolean value indicating whether the operation is currently executing.

- (BOOL)isExecuting

Return Value
YES if the operation is executing; otherwise, NO if the operation has not been started or is already finished.

Discussion
If you are implementing a concurrent operation, you should override this method to return the execution
state of your operation. Concurrent operations are also responsible for generating the appropriate KVO
notifications whenever the execution state changes. For more information about manually generating KVO
notifications, see Key-Value Observing Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

isFinished
Returns a Boolean value indicating whether the operation is done executing.

- (BOOL)isFinished

Return Value
YES if the operation is no longer executing; otherwise, NO.

1204 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

Discussion
If you are implementing a concurrent operation, you should override this method to return the finished state
of your operation. Concurrent operations are also responsible for generating the appropriate KVO notifications
whenever the finished state changes. For more information about manually generating KVO notifications,
see Key-Value Observing Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

isReady
Returns a Boolean value indicating whether the receiver’s operation can be performed now.

- (BOOL)isReady

Return Value
YES if the operation can be performed now; otherwise, NO.

Discussion
Operations may not be ready due to dependencies on other operations or because of external conditions
that might prevent needed data from being ready. The NSOperation class manages dependencies on other
operations and reports the readiness of the receiver based on those dependencies.

Note: If the receiver is cancelled before it starts, operations that are dependent on the completion of the
receiver will never become ready.

If your operation object has additional dependencies, you must override this method and return a value that
accurately reflects the readiness of the receiver. Your custom implementation should invoke super and
incorporate its return value into this method’s return value. Your custom implementation must be KVO
compliant.

Availability
Available in Mac OS X v10.5 and later.

See Also
– dependencies (page 1202)

Declared In
NSOperation.h

main
Performs the receiver’s non-concurrent task.

- (void)main

Instance Methods 1205
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

Discussion
The default implementation of this method does nothing. For non-concurrent operations, you must override
this method in your NSOperation subclass to perform the desired task. In your implementation, do not
invoke super.

If you are implementing a concurrent operation, you should override the start method instead. In your
overridden start method, you can continue to call this method to do the actual work if separating the work
from your starting logic is practical.

Availability
Available in Mac OS X v10.5 and later.

See Also
– start (page 1207)

Declared In
NSOperation.h

queuePriority
Returns the priority of the operation in an operation queue.

- (NSOperationQueuePriority)queuePriority

Return Value
The relative priority of the operation. The returned value always corresponds to one of the predefined
constants. (For a list of valid values, see “Operation Priorities” (page 1208).) If no priority is explicitly set, this
method returns NSOperationQueuePriorityNormal.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setQueuePriority: (page 1207)

Declared In
NSOperation.h

removeDependency:
Removes the receiver’s dependence on the specified operation.

- (void)removeDependency:(NSOperation *)operation

Parameters
operation

The dependent operation to be removed from the receiver.

Discussion
This method may change the isReady and dependencies properties of the receiver.

Availability
Available in Mac OS X v10.5 and later.

1206 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

See Also
– addDependency: (page 1201)
– dependencies (page 1202)

Declared In
NSOperation.h

setQueuePriority:
Sets the priority of the operation when used in an operation queue.

- (void)setQueuePriority:(NSOperationQueuePriority)priority

Parameters
priority

The relative priority of the operation. For a list of valid values, see “Operation Priorities” (page 1208).

Discussion
You should use priority values only as needed to classify the relative priority of non-dependent operations.
Priority values should not be used to implement dependency management among different operation
objects. If you need to establish dependencies between operations, use the addDependency: method
instead.

If you attempt to specify a priority value that does not match one of the defined constants, this method
automatically adjusts the value you specify towards the NSOperationQueuePriorityNormal priority,
stopping at the first valid constant value. For example, if you specified the value -10, this method would
adjust that value to match the NSOperationQueuePriorityVeryLow constant. Similarly, if you specified
+10, this method would adjust the value to match the NSOperationQueuePriorityVeryHigh constant.

Availability
Available in Mac OS X v10.5 and later.

See Also
– queuePriority (page 1206)
– addDependency: (page 1201)

Related Sample Code
NSOperationSample

Declared In
NSOperation.h

start
Begins the execution of the operation.

- (void)start

Discussion
The default implementation of this method configures the execution environment for a non-concurrent
operation and invokes the receiver’s main method. As part of the default configuration, this method performs
several checks to ensure that the non-concurrent operation can actually run and generates appropriate KVO
notifications for each change in the operation’s state. If the receiver’s operation has already been performed,

Instance Methods 1207
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

this method throws an NSInvalidArgumentException exception. If the operation has already been
cancelled, this method simply returns without calling main. If the operation is to be performed on a separate
thread, this method may return before the operation itself completes on the other thread.

Note: An operation may not be ready to execute if it is dependent on other operations that have not yet
finished.

If you are implementing a concurrent operation, you must override this method to initiate your operation;
however, your implementation must not call super. If you override this method, you must also override the
isExecuting and isFinishedmethods to report when your operation begins executing and finishes. Your
implementations for these methods must maintain KVO compliance for the associated properties by manually
sending the appropriate value change messages. For more information about manually generating KVO
notifications, see Key-Value Observing Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

See Also
– main (page 1205)
– isReady (page 1205)
– dependencies (page 1202)

Declared In
NSOperation.h

Constants

NSOperationQueuePriority
Describes the priority of an operation relative to other operations in an operation queue.

typedef NSInteger NSOperationQueuePriority;

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

Operation Priorities
These constants let you prioritize the order in which operations execute.

1208 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

enum {
 NSOperationQueuePriorityVeryLow = -8,
 NSOperationQueuePriorityLow = -4,
 NSOperationQueuePriorityNormal = 0,
 NSOperationQueuePriorityHigh = 4,
 NSOperationQueuePriorityVeryHigh = 8
};

Constants
NSOperationQueuePriorityVeryLow

Operations receive very low priority for execution.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityLow
Operations receive low priority for execution.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityNormal
Operations receive the normal priority for execution.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityHigh
Operations receive high priority for execution.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityVeryHigh
Operations receive very high priority for execution.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

Discussion
You can use these constants to specify the relative ordering of operations that are waiting to be started in
an operation queue. You should always use these constants (and not the defined value) for determining
priority.

Declared In
NSOperation.h

Constants 1209
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

1210 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 98

NSOperation Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.5 and later.

Declared in Foundation/NSOperation.h

Companion guide Threading Programming Guide

Related sample code NSOperationSample

Overview

The NSOperationQueue class manages a set of NSOperation objects in a priority queue and regulates
their execution. Operations remain in the queue until they are explicitly cancelled or finish executing. An
application may create multiple operation queues, with each queue running up to its designated maximum
number of operations.

A specific NSOperation object can be in only one operation queue at a time. Operations within a single
queue coordinate their execution order using both priority levels and inter-operation object dependencies.
Operation objects in different queues can coordinate their execution order using dependencies, which are
not queue-specific.

Inter-operation dependencies provide an absolute execution order for operations. An operation object is
not considered ready to execute until all of its dependent operations have finished executing. For operations
that are ready to execute, the operation queue always executes the one with the highest priority relative to
the other ready operations. For details on how to set priority levels and dependencies, see NSOperation Class
Reference.

You should never manually start an operation while it is sitting in an operation queue. Once added, an
operation stays in its queue until it finishes executing or is cancelled.

If the isConcurrent method of an operation returns NO, the operation queue automatically creates a new
thread for that operation before running it. If the isConcurrent method returns YES, the operation object
must create its own thread or otherwise configure its own runtime environment as part of its execution
phase.

Overview 1211
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 99

NSOperationQueue Class Reference

KVO-Compliant Properties

The NSOperationQueue class is key-value coding (KVC) and key-value observing (KVO) compliant. You can
observe these properties as desired to control other parts of your application. The properties you can observe
include the following:

 ■ operations - read-only property

 ■ maxConcurrentOperationCount - readable and writable property

For more information about key-value observing and how to attach observers to an object, see Key-Value
Observing Programming Guide.

Threading Considerations

It is safe to use a single NSOperationQueue object from multiple threads without creating additional locks
to synchronize access to that object.

Tasks

Managing Operations in the Queue

– addOperation: (page 1213)
Adds the specified operation object to the receiver.

– operations (page 1214)
Returns a new array containing the operations currently in the queue.

– cancelAllOperations (page 1213)
Cancels all queued and executing operations.

– waitUntilAllOperationsAreFinished (page 1216)
Blocks the current thread until all of the receiver’s queued and executing operations finish executing.

Managing the Number of Running Operations

– maxConcurrentOperationCount (page 1214)
Returns the maximum number of concurrent operations that the receiver can execute.

– setMaxConcurrentOperationCount: (page 1215)
Sets the maximum number of concurrent operations that the receiver can execute.

Suspending Operations

– setSuspended: (page 1215)
Modifies the execution of pending operations

1212 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 99

NSOperationQueue Class Reference

– isSuspended (page 1214)
Returns a Boolean value indicating whether the receiver is scheduling queued operations for execution.

Instance Methods

addOperation:
Adds the specified operation object to the receiver.

- (void)addOperation:(NSOperation *)operation

Parameters
operation

The operation object to be added to the queue. In memory-managed applications, this object is
retained by the operation queue.

Discussion
An operation object can be in at most one operation queue at a time and cannot be added if it is currently
executing or finished. This method throws an NSInvalidArgumentException exception if any of these
conditions is true.

Once added, the specified operation remains in the queue until it is executed or cancelled.

Availability
Available in Mac OS X v10.5 and later.

See Also
– cancel (page 1202) (NSOperation)
– isExecuting (page 1204) (NSOperation)

Declared In
NSOperation.h

cancelAllOperations
Cancels all queued and executing operations.

- (void)cancelAllOperations

Discussion
This method sends a cancelmessage to all operations currently in the queue or executing. Queued operations
are cancelled before they begin executing. If an operation is already executing, it is up to that operation to
recognize the cancellation and stop what it is doing.

Availability
Available in Mac OS X v10.5 and later.

See Also
cancel (page 1202) (NSOperation)

Instance Methods 1213
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 99

NSOperationQueue Class Reference

Declared In
NSOperation.h

isSuspended
Returns a Boolean value indicating whether the receiver is scheduling queued operations for execution.

- (BOOL)isSuspended

Return Value
NO if operations are being scheduled for execution; otherwise, YES.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setSuspended: (page 1215)

Declared In
NSOperation.h

maxConcurrentOperationCount
Returns the maximum number of concurrent operations that the receiver can execute.

- (NSInteger)maxConcurrentOperationCount

Return Value
The maximum number of concurrent operations set explicitly on the receiver using the
setMaxConcurrentOperationCount: method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setMaxConcurrentOperationCount: (page 1215)

Declared In
NSOperation.h

operations
Returns a new array containing the operations currently in the queue.

- (NSArray *)operations

Return Value
A new array object containing the NSOperation objects in the order in which they were added to the queue.

Availability
Available in Mac OS X v10.5 and later.

1214 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 99

NSOperationQueue Class Reference

Declared In
NSOperation.h

setMaxConcurrentOperationCount:
Sets the maximum number of concurrent operations that the receiver can execute.

- (void)setMaxConcurrentOperationCount:(NSInteger)count

Parameters
count

The maximum number of concurrent operations. Specify the value
NSOperationQueueDefaultMaxConcurrentOperationCount if you want the receiver to choose
an appropriate value based on the number of available processors and other relevant factors.

Discussion
The specified value affects only the receiver and the operations in its queue. Other operation queue objects
can also execute their maximum number of operations in parallel.

Reducing the number of concurrent operations does not affect any operations that are currently executing.
If you specify the value NSOperationQueueDefaultMaxConcurrentOperationCount (which is
recommended), the maximum number of operations can change dynamically based on system conditions.

Availability
Available in Mac OS X v10.5 and later.

See Also
– maxConcurrentOperationCount (page 1214)

Declared In
NSOperation.h

setSuspended:
Modifies the execution of pending operations

- (void)setSuspended:(BOOL)suspend

Parameters
suspend

If YES, the queue stops scheduling queued operations for execution. If NO, the queue begins scheduling
operations again.

Discussion
This method suspends or restarts the execution of queued operations only. It does not have any impact on
the state of currently running operations. Running operations continue to run until their natural termination
or until they are explicitly cancelled.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isSuspended (page 1214)

Instance Methods 1215
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 99

NSOperationQueue Class Reference

Declared In
NSOperation.h

waitUntilAllOperationsAreFinished
Blocks the current thread until all of the receiver’s queued and executing operations finish executing.

- (void)waitUntilAllOperationsAreFinished

Discussion
When called, this method blocks the current thread and waits for the receiver’s current and pending operations
to finish executing. While the thread is blocked, the receiver continues to launch already queued operations
and monitor those that are executing. During this time, the current thread cannot add operations to the
queue, but other threads may. Once all of the pending operations are finished, this method returns.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

Constants

Concurrent Operation Constants
Indicates the number of supported concurrent operations.

enum {
 NSOperationQueueDefaultMaxConcurrentOperationCount = -1
};

Constants
NSOperationQueueDefaultMaxConcurrentOperationCount

The default maximum number of operations is determined dynamically by the NSOperationQueue
object based on current system conditions.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

Declared In
NSOperation.h

1216 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 99

NSOperationQueue Class Reference

Inherits from NSStream : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.3 and later.

Declared in Foundation/NSStream.h

Companion guide Stream Programming Guide for Cocoa

Related sample code CocoaEcho
CocoaHTTPServer
CocoaSOAP

Overview

The NSOutputStream class is a subclass of NSStream that provides write-only stream functionality.

Subclassing Notes

The NSOutputStream is a concrete subclass of NSStream that lets you write data to a stream. Although
NSOutputStream is probably sufficient for most situations requiring this capability, you can create a subclass
of NSOutputStream if you want more specialized behavior (for example, you want to record statistics on
the data in a stream).

Methods to Override

To create a subclass of NSOutputStream you may have to implement initializers for the type of stream data
supported and suitably reimplement existing initializers. You must also provide complete implementations
of the following methods:

 ■ write:maxLength: (page 1222)

From the current write pointer, take up to the number of bytes specified in the maxLength: parameter
from the client-supplied buffer (first parameter) and put them onto the stream. The buffer must be of
the size specified by the second parameter. To prepare for the next operation, offset the write pointer
by the number of bytes written. Return a signed integer based on the outcome of the current operation:

 ❏ If the write operation is successful, return the actual number of bytes put onto the stream.

Overview 1217
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 100

NSOutputStream Class Reference

 ❏ If there was an error writing to the stream, return -1.

 ❏ If the stream is of a fixed length and has reached its capacity, return zero.

 ■ hasSpaceAvailable (page 1220)

Return YES if the stream can currently accept more data, NO if it cannot. If you want to be semantically
compatible with NSOutputStream, return YES if a write must be attempted to determine if space is
available.

Tasks

Creating Streams

+ outputStreamToMemory (page 1220)
Creates and returns an initialized output stream that will write stream data to memory.

+ outputStreamToBuffer:capacity: (page 1218)
Creates and returns an initialized output stream that can write to a provided buffer.

+ outputStreamToFileAtPath:append: (page 1219)
Creates and returns an initialized output stream for writing to a specified file.

– initToMemory (page 1222)
Returns an initialized output stream that will write to memory.

– initToBuffer:capacity: (page 1220)
Returns an initialized output stream that can write to a provided buffer.

– initToFileAtPath:append: (page 1221)
Returns an initialized output stream for writing to a specified file.

Using Streams

– hasSpaceAvailable (page 1220)
Returns whether the receiver can be written to.

– write:maxLength: (page 1222)
Writes the contents of a provided data buffer to the receiver.

Class Methods

outputStreamToBuffer:capacity:
Creates and returns an initialized output stream that can write to a provided buffer.

+ (id)outputStreamToBuffer:(uint8_t *)buffer capacity:(NSUInteger)capacity

1218 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 100

NSOutputStream Class Reference

Parameters
buffer

The buffer the output stream will write to.

capacity
The size of the buffer in bytes.

Return Value
An initialized output stream that can write to buffer.

Discussion
The stream must be opened before it can be used.

When the number of bytes written to buffer has reached capacity, the stream’s streamStatus (page
1504) will return NSStreamStatusAtEnd.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ outputStreamToMemory (page 1220)
+ outputStreamToFileAtPath:append: (page 1219)
– initToBuffer:capacity: (page 1220)

Declared In
NSStream.h

outputStreamToFileAtPath:append:
Creates and returns an initialized output stream for writing to a specified file.

+ (id)outputStreamToFileAtPath:(NSString *)path append:(BOOL)shouldAppend

Parameters
path

The path to the file the output stream will write to.

shouldAppend
YES if newly written data should be appended to any existing file contents, NO otherwise.

Return Value
An initialized output stream that can write to path.

Discussion
The stream must be opened before it can be used.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ outputStreamToMemory (page 1220)
+ outputStreamToBuffer:capacity: (page 1218)
– initToFileAtPath:append: (page 1221)

Class Methods 1219
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 100

NSOutputStream Class Reference

Declared In
NSStream.h

outputStreamToMemory
Creates and returns an initialized output stream that will write stream data to memory.

+ (id)outputStreamToMemory

Return Value
An initialized output stream that will write stream data to memory.

Discussion
The stream must be opened before it can be used.

You retrieve the contents of the memory stream by sending the message propertyForKey: (page 1501) to
the receiver with an argument of NSStreamDataWrittenToMemoryStreamKey.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ outputStreamToBuffer:capacity: (page 1218)
+ outputStreamToFileAtPath:append: (page 1219)
– initToMemory (page 1222)

Declared In
NSStream.h

Instance Methods

hasSpaceAvailable
Returns whether the receiver can be written to.

- (BOOL)hasSpaceAvailable

Return Value
YES if the receiver can be written to or if a write must be attempted in order to determine if space is available,
NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSStream.h

initToBuffer:capacity:
Returns an initialized output stream that can write to a provided buffer.

1220 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 100

NSOutputStream Class Reference

- (id)initToBuffer:(uint8_t *)buffer capacity:(NSUInteger)capacity

Parameters
buffer

The buffer the output stream will write to.

capacity
The size of the buffer in bytes.

Return Value
An initialized output stream that can write to buffer.

Discussion
The stream must be opened before it can be used.

When the number of bytes written to buffer has reached capacity, the stream’s streamStatus (page
1504) will return NSStreamStatusAtEnd.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initToMemory (page 1222)
– initToFileAtPath:append: (page 1221)
+ outputStreamToBuffer:capacity: (page 1218)

Declared In
NSStream.h

initToFileAtPath:append:
Returns an initialized output stream for writing to a specified file.

- (id)initToFileAtPath:(NSString *)path append:(BOOL)shouldAppend

Parameters
path

The path to the file the output stream will write to.

shouldAppend
YES if newly written data should be appended to any existing file contents, NO otherwise.

Return Value
An initialized output stream that can write to path.

Discussion
The stream must be opened before it can be used.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initToMemory (page 1222)
– initToBuffer:capacity: (page 1220)
+ outputStreamToFileAtPath:append: (page 1219)

Instance Methods 1221
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 100

NSOutputStream Class Reference

Declared In
NSStream.h

initToMemory
Returns an initialized output stream that will write to memory.

- (id)initToMemory

Return Value
An initialized output stream that will write stream data to memory.

Discussion
The stream must be opened before it can be used.

The contents of the memory stream are retrieved by passing the constant
NSStreamDataWrittenToMemoryStreamKey to propertyForKey: (page 1501).

Availability
Available in Mac OS X v10.3 and later.

See Also
– initToBuffer:capacity: (page 1220)
– initToFileAtPath:append: (page 1221)
+ outputStreamToMemory (page 1220)

Declared In
NSStream.h

write:maxLength:
Writes the contents of a provided data buffer to the receiver.

- (NSInteger)write:(const uint8_t *)buffer maxLength:(NSUInteger)length

Parameters
buffer

The data to write.

length
The length of the data buffer, in bytes.

Return Value
The number of bytes actually written, or -1 if an error occurs. More information about the error can be
obtained with streamError (page 1504). If the receiver is a fixed-length stream and has reached its capacity,
0 is returned.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CocoaEcho

1222 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 100

NSOutputStream Class Reference

Declared In
NSStream.h

Instance Methods 1223
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 100

NSOutputStream Class Reference

1224 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 100

NSOutputStream Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSFileHandle.h

Companion guide Interacting with the Operating System

Related sample code Moriarity

Overview

NSPipe objects provide an object-oriented interface for accessing pipes. An NSPipe object represents both
ends of a pipe and enables communication through the pipe. A pipe is a one-way communications channel
between related processes; one process writes data, while the other process reads that data. The data that
passes through the pipe is buffered; the size of the buffer is determined by the underlying operating system.
NSPipe is an abstract class, the public interface of a class cluster.

Tasks

Creating an NSPipe Object

– init (page 1227)
Returns an initialized NSPipe object.

+ pipe (page 1226)
Returns an NSPipe object.

Getting the File Handles for a Pipe

– fileHandleForReading (page 1226)
Returns the receiver's read file handle.

Overview 1225
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPipe Class Reference

– fileHandleForWriting (page 1227)
Returns the receiver's write file handle.

Class Methods

pipe
Returns an NSPipe object.

+ (id)pipe

Return Value
An initialized NSPipe object. Returns nil if the method encounters errors while attempting to create the
pipe or the NSFileHandle objects that serve as endpoints of the pipe.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Moriarity

Declared In
NSFileHandle.h

Instance Methods

fileHandleForReading
Returns the receiver's read file handle.

- (NSFileHandle *)fileHandleForReading

Return Value
The receiver's read file handle.The descriptor represented by this object is deleted, and the object itself is
automatically deallocated when the receiver is deallocated.

Discussion
You use the returned file handle to read from the pipe using NSFileHandle's read
methods—availableData (page 610),readDataToEndOfFile (page 614), andreadDataOfLength: (page
613).

You don’t need to send closeFile (page 611) to this object or explicitly release the object after you have
finished using it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

1226 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPipe Class Reference

fileHandleForWriting
Returns the receiver's write file handle.

- (NSFileHandle *)fileHandleForWriting

Return Value
The receiver's write file handle. This object is automatically deallocated when the receiver is deallocated.

Discussion
You use the returned file handle to write to the pipe using NSFileHandle's writeData: (page 619) method.
When you are finished writing data to this object, send it a closeFile (page 611) message to delete the
descriptor. Deleting the descriptor causes the reading process to receive an end-of-data signal (an empty
NSData object).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFileHandle.h

init
Returns an initialized NSPipe object.

- (id)init

Return Value
An initialized NSPipe object. Returns nil if the method encounters errors while attempting to create the
pipe or the NSFileHandle objects that serve as endpoints of the pipe.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ pipe (page 1226)

Declared In
NSFileHandle.h

Instance Methods 1227
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPipe Class Reference

1228 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPipe Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Companion guides Collections Programming Topics for Cocoa
Garbage Collection Programming Guide

Availability Available in Mac OS X v10.5 and later.

Overview

NSPointerArray is a mutable collection modeled after NSArray but it can also hold NULL values, which
can be inserted or extracted (and which contribute to the object’s count). Moreover, unlike traditional arrays,
you can set the count of the array directly. In a garbage collected environment, if you specify a zeroing weak
memory configuration, if an element is collected it is replaced by a NULL value.

The copying and archiving protocols are applicable only when a pointer array is configured for object uses.

The fast fast enumeration protocol (that is, use a pointer array in the for...in language construct—see
Fast Enumeration in The Objective-C 2.0 Programming Language) will yield NULL values that are present in
the array. It is defined for all types of pointers although the language syntax doesn’t directly support this.

Tasks

Creating and Initializing a New Pointer Array

– initWithOptions: (page 1233)
Initializes the receiver to use the given options.

– initWithPointerFunctions: (page 1234)
Initializes the receiver to use the given functions.

+ pointerArrayWithOptions: (page 1230)
Returns a new pointer array initialized to use the given options.

Overview 1229
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPointerArray Class Reference

+ pointerArrayWithPointerFunctions: (page 1231)
A new pointer array initialized to use the given functions.

+ pointerArrayWithStrongObjects (page 1231)
Returns a new pointer array that maintains strong references to its elements.

+ pointerArrayWithWeakObjects (page 1232)
Returns a new pointer array that maintains weak references to its elements.

Managing the Collection

– count (page 1233)
Returns the number of elements in the receiver.

– setCount: (page 1236)
Sets the count for the receiver.

– allObjects (page 1233)
Returns an array containing all the objects in the receiver.

– pointerAtIndex: (page 1235)
Returns the pointer at a given index.

– addPointer: (page 1232)
Adds a given pointer to the receiver.

– removePointerAtIndex: (page 1236)
Removes the pointer at a given index.

– insertPointer:atIndex: (page 1234)
Inserts a pointer at a given index.

– replacePointerAtIndex:withPointer: (page 1236)
Replaces the pointer at a given index.

– compact (page 1233)
Removes NULL values from the receiver.

Getting the Pointer Functions

– pointerFunctions (page 1235)
Returns a new NSPointerFunctions object reflecting the functions in use by the receiver.

Class Methods

pointerArrayWithOptions:
Returns a new pointer array initialized to use the given options.

+ (id)pointerArrayWithOptions:(NSPointerFunctionsOptions)options

1230 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPointerArray Class Reference

Parameters
options

The pointer functions options for the new instance.

Return Value
A new pointer array initialized to use the given options.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ pointerArrayWithPointerFunctions: (page 1231)
+ pointerArrayWithStrongObjects (page 1231)
+ pointerArrayWithWeakObjects (page 1232)

Declared In
NSPointerArray.h

pointerArrayWithPointerFunctions:
A new pointer array initialized to use the given functions.

+ (id)pointerArrayWithPointerFunctions:(NSPointerFunctions *)functions

Parameters
functions

The pointer functions for the new instance.

Return Value
A new pointer array initialized to use the given pointer functions.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ pointerArrayWithOptions: (page 1230)
+ pointerArrayWithStrongObjects (page 1231)
+ pointerArrayWithWeakObjects (page 1232)

Declared In
NSPointerArray.h

pointerArrayWithStrongObjects
Returns a new pointer array that maintains strong references to its elements.

+ (id)pointerArrayWithStrongObjects

Return Value
A new pointer array that maintains strong references to its elements.

Availability
Available in Mac OS X v10.5 and later.

Class Methods 1231
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPointerArray Class Reference

See Also
+ pointerArrayWithWeakObjects (page 1232)
+ pointerArrayWithOptions: (page 1230)
+ pointerArrayWithPointerFunctions: (page 1231)

Declared In
NSPointerArray.h

pointerArrayWithWeakObjects
Returns a new pointer array that maintains weak references to its elements.

+ (id)pointerArrayWithWeakObjects

Return Value
A new pointer array that maintains weak references to its elements.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ pointerArrayWithStrongObjects (page 1231)
+ pointerArrayWithOptions: (page 1230)
+ pointerArrayWithPointerFunctions: (page 1231)

Declared In
NSPointerArray.h

Instance Methods

addPointer:
Adds a given pointer to the receiver.

- (void)addPointer:(void *)pointer

Parameters
pointer

The pointer to add. This value may be NULL.

Discussion
pointer is added at index count (page 1233).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerArray.h

1232 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPointerArray Class Reference

allObjects
Returns an array containing all the objects in the receiver.

- (NSArray *)allObjects

Return Value
An array containing all the object in the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– count (page 1233)

Declared In
NSPointerArray.h

compact
Removes NULL values from the receiver.

- (void)compact

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerArray.h

count
Returns the number of elements in the receiver.

- (NSUInteger)count

Return Value
The number of elements in the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setCount: (page 1236)

Declared In
NSPointerArray.h

initWithOptions:
Initializes the receiver to use the given options.

- (id)initWithOptions:(NSPointerFunctionsOptions)options

Instance Methods 1233
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPointerArray Class Reference

Parameters
options

The pointer functions options for the new instance.

Return Value
The receiver, initialized to use the given options.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithPointerFunctions: (page 1234)
+ pointerArrayWithOptions: (page 1230)
+ pointerArrayWithPointerFunctions: (page 1231)

Declared In
NSPointerArray.h

initWithPointerFunctions:
Initializes the receiver to use the given functions.

- (id)initWithPointerFunctions:(NSPointerFunctions *)functions

Parameters
functions

The pointer functions for the new instance.

Return Value
The receiver, initialized to use the given functions.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithOptions: (page 1233)
+ pointerArrayWithPointerFunctions: (page 1231)
+ pointerArrayWithOptions: (page 1230)

Declared In
NSPointerArray.h

insertPointer:atIndex:
Inserts a pointer at a given index.

- (void)insertPointer:(void *)item atIndex:(NSUInteger)index

Parameters
item

The pointer to add.

1234 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPointerArray Class Reference

index
The index of an element in the receiver. This value must be less than the count (page 1233) of the
receiver.

Discussion
Elements at and above index, including NULL values, slide higher.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerArray.h

pointerAtIndex:
Returns the pointer at a given index.

- (void *)pointerAtIndex:(NSUInteger)index

Parameters
index

The index of an element in the receiver. This value must be less than the count (page 1233) of the
receiver.

Return Value
The pointer at index.

Discussion
The returned value may be NULL.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerArray.h

pointerFunctions
Returns a new NSPointerFunctions object reflecting the functions in use by the receiver.

- (NSPointerFunctions *)pointerFunctions

Return Value
A new NSPointerFunctions object reflecting the functions in use by the receiver.

Discussion
The returned object is a new NSPointerFunctions object that you can modify and/or use directly to create
other pointer collections.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerArray.h

Instance Methods 1235
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPointerArray Class Reference

removePointerAtIndex:
Removes the pointer at a given index.

- (void)removePointerAtIndex:(NSUInteger)index

Parameters
index

The index of an element in the receiver. This value must be less than the count (page 1233) of the
receiver.

Discussion
Elements above index, including NULL values, slide lower.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerArray.h

replacePointerAtIndex:withPointer:
Replaces the pointer at a given index.

- (void)replacePointerAtIndex:(NSUInteger)index withPointer:(void *)item

Parameters
index

The index of an element in the receiver. This value must be less than the count (page 1233) of the
receiver.

item
The item with which to replace the element at index. This value may be NULL.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerArray.h

setCount:
Sets the count for the receiver.

- (void)setCount:(NSUInteger)count

Parameters
count

The count for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– count (page 1233)

1236 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPointerArray Class Reference

Discussion
If count is greater than the count (page 1233) of the receiver, NULL values are added; if count is less than
the count (page 1233) of the receiver, then elements at indexes count and greater are removed from the
receiver.

Declared In
NSPointerArray.h

Instance Methods 1237
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPointerArray Class Reference

1238 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPointerArray Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSPointerFunctions.h

Availability Available in Mac OS X v10.5 and later.

Companion guides Collections Programming Topics for Cocoa
Garbage Collection Programming Guide

Overview

An instance of NSPointerFunctions defines callout functions appropriate for managing a pointer reference
held somewhere else.

The functions specified by an instance of NSPointerFunctions are separated into two clusters—those
that define “personality” such as “object” or "C-string”, and those that describe memory management issues
such as a memory deallocation function. There are constants for common personalities and memory manager
selections (see “Memory and Personality Options” (page 1244)).

NSHashTable, NSMapTable, and NSPointerArray use an NSPointerFunctions object to define the
acquisition and retention behavior for the pointers they manage. Note, however, that not all combinations
of personality and memory management behavior are valid for these collections. The pointer collection
objects copy the NSPointerFunctions object on input and output, so you cannot usefully subclass
NSPointerFunctions.

Tasks

Creating and Initializing an NSPointerFunctions Object

– initWithOptions: (page 1243)
Returns an NSPointerFunctions object initialized with the given options.

+ pointerFunctionsWithOptions: (page 1243)
Returns a new NSPointerFunctions object initialized with the given options.

Overview 1239
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPointerFunctions Class Reference

Personality Functions

 hashFunction (page 1241) property
The hash function.

 isEqualFunction (page 1241) property
The function used to compare pointers.

 sizeFunction (page 1242) property
The function used to determine the size of pointers.

 descriptionFunction (page 1241) property
The function used to describe elements.

Memory Configuration

 acquireFunction (page 1240) property
The function used to acquire memory.

 relinquishFunction (page 1241) property
The function used to relinquish memory.

 usesStrongWriteBarrier (page 1242) property
Specifies whether, in a garbage collected environment, pointers should be assigned using a strong
write barrier.

 usesWeakReadAndWriteBarriers (page 1242) property
Specifies whether, in a garbage collected environment, pointers should use weak read and write
barriers.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

acquireFunction
The function used to acquire memory.

@property void *(*acquireFunction)(const void *src, NSUInteger (*size)(const void
 *item), BOOL shouldCopy)

Discussion
This specifies the function to use for copy-in operations.

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property relinquishFunction (page 1241)

Declared In
NSPointerFunctions.h

1240 Properties
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPointerFunctions Class Reference

descriptionFunction
The function used to describe elements.

@property NSString *(*descriptionFunction)(const void *item)

Discussion
This function is used by description methods for hash and map tables.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerFunctions.h

hashFunction
The hash function.

@property NSUInteger (*hashFunction)(const void *item, NSUInteger (*size)(const
void *item))

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerFunctions.h

isEqualFunction
The function used to compare pointers.

@property BOOL (*isEqualFunction)(const void *item1, const void*item2, NSUInteger
 (*size)(const void *item))

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerFunctions.h

relinquishFunction
The function used to relinquish memory.

@property void (*relinquishFunction)(const void *item, NSUInteger (*size)(const
void *item))

Discussion
This specifies the function to use when an item is removed from a table or pointer array.

Availability
Available in Mac OS X v10.5 and later.

Properties 1241
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPointerFunctions Class Reference

See Also
 @property acquireFunction (page 1240)

Declared In
NSPointerFunctions.h

sizeFunction
The function used to determine the size of pointers.

@property NSUInteger (*sizeFunction)(const void *item)

Discussion
This function is used for copy-in operations (unless the collection has an object personality).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerFunctions.h

usesStrongWriteBarrier
Specifies whether, in a garbage collected environment, pointers should be assigned using a strong write
barrier.

@property BOOL usesStrongWriteBarrier

Discussion
If you use garbage collection, read and write barrier functions must be used when pointers are from memory
scanned by the collector.

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property usesWeakReadAndWriteBarriers (page 1242)

Declared In
NSPointerFunctions.h

usesWeakReadAndWriteBarriers
Specifies whether, in a garbage collected environment, pointers should use weak read and write barriers.

@property BOOL usesWeakReadAndWriteBarriers

Discussion
If you use garbage collection, read and write barrier functions must be used when pointers are from memory
scanned by the collector.

1242 Properties
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPointerFunctions Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
 @property usesStrongWriteBarrier (page 1242)

Declared In
NSPointerFunctions.h

Class Methods

pointerFunctionsWithOptions:
Returns a new NSPointerFunctions object initialized with the given options.

+ (id)pointerFunctionsWithOptions:(NSPointerFunctionsOptions)options

Parameters
options

The options for the new NSPointerFunctions object.

Return Value
A new NSPointerFunctions object initialized with the given options.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerFunctions.h

Instance Methods

initWithOptions:
Returns an NSPointerFunctions object initialized with the given options.

- (id)initWithOptions:(NSPointerFunctionsOptions)options

Parameters
options

The options for the new NSPointerFunctions object.

Return Value
The receiver, initialized with the given options.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerFunctions.h

Class Methods 1243
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPointerFunctions Class Reference

Constants

NSPointerFunctionsOptions
Defines the memory and personality options for an NSPointerFunctions object.

typedef NSUInteger NSPointerFunctionsOptions;

Discussion
For values, see “Memory and Personality Options” (page 1244).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPointerFunctions.h

Memory and Personality Options
Specify memory and personality options for an NSPointerFunctions object.

enum {
 NSPointerFunctionsStrongMemory = (0 << 0),
 NSPointerFunctionsZeroingWeakMemory = (1 << 0),
 NSPointerFunctionsOpaqueMemory = (2 << 0),
 NSPointerFunctionsMallocMemory = (3 << 0),
 NSPointerFunctionsMachVirtualMemory = (4 << 0),
 NSPointerFunctionsObjectPersonality = (0 << 8),
 NSPointerFunctionsOpaquePersonality = (1 << 8),
 NSPointerFunctionsObjectPointerPersonality = (2 << 8),
 NSPointerFunctionsCStringPersonality = (3 << 8),
 NSPointerFunctionsStructPersonality = (4 << 8),
 NSPointerFunctionsIntegerPersonality = (5 << 8),
 NSPointerFunctionsCopyIn = (1 << 16),
};

Constants
NSPointerFunctionsStrongMemory

Use strong write-barriers to backing store; use garbage-collected memory on copy-in.

This is the default memory value.

As a special case, if you do not use garbage collection and specify this value in conjunction with
NSPointerFunctionsObjectPersonality (page 1245) then theNSPointerFunctionsobject uses
retain and release.

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

NSPointerFunctionsZeroingWeakMemory
Use weak read and write barriers; use garbage-collected memory on copyIn.

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

1244 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPointerFunctions Class Reference

NSPointerFunctionsOpaqueMemory
Take no action when pointers are deleted.

This is essentially a no-op relinquish function; the acquire function is only used for copy-in operations.
This option is unlikely a to be a good choice for objects.

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

NSPointerFunctionsMallocMemory
Use free() on removal, calloc() on copy in.

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

NSPointerFunctionsMachVirtualMemory
Use Mach memory.

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

NSPointerFunctionsObjectPersonality
Use hash and isEqualmethods for hashing and equality comparisons, use the descriptionmethod
for a description.

This is the default personality value.

As a special case, if you do not use garbage collection and specify this value in conjunction with
NSPointerFunctionsStrongMemory (page 1244) then the NSPointerFunctions object uses
retain and release.

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

NSPointerFunctionsOpaquePersonality
Use shifted pointer for the hash value and direct comparison to determine equality.

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

NSPointerFunctionsObjectPointerPersonality
Use shifted pointer for the hash value and direct comparison to determine equality; use the
description method for a description.

As a special case, if you do not use garbage collection and specify this value in conjunction with
NSPointerFunctionsStrongMemory (page 1244) then the NSPointerFunctions object uses
retain and release.

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

NSPointerFunctionsCStringPersonality
Use a string hash and strcmp; C-string '%s' style description.

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

NSPointerFunctionsStructPersonality
Use a memory hash and memcmp (using a size function that you must set—see sizeFunction (page
1242)).

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

Constants 1245
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPointerFunctions Class Reference

NSPointerFunctionsIntegerPersonality
Use unshifted value as hash and equality.

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

NSPointerFunctionsCopyIn
Use the memory acquire function to allocate and copy items on input (see acquireFunction (page
1240)).

Available in Mac OS X v10.5 and later.

Declared in NSPointerFunctions.h.

Discussion
Memory options are mutually exclusive and personality options are mutually exclusive.

Declared In
NSPointerFunctions.h

1246 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPointerFunctions Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSPort.h

Companion guides Run Loops
Distributed Objects Programming Topics

Related sample code SimpleThreads
TrivialThreads

Overview

NSPort is an abstract class that represents a communication channel. Communication occurs between
NSPort objects, which typically reside in different threads or tasks. The distributed objects system uses
NSPort objects to send NSPortMessage objects back and forth. You should implement interapplication
communication using distributed objects whenever possible and use NSPort objects only when necessary.

To receive incoming messages, NSPort objects must be added to an NSRunLoop object as input sources.
NSConnection objects automatically add their receive port when initialized.

When an NSPort object receives a port message, it forwards the message to its delegate in a
handleMachMessage: (page 849) or handlePortMessage: (page 1255) message. The delegate should
implement only one of these methods to process the incoming message in whatever form desired.
handleMachMessage: (page 849) provides a message as a raw Mach message beginning with a
msg_header_t structure. handlePortMessage: (page 1255) provides a message as an NSPortMessage
object, which is an object-oriented wrapper for a Mach message. If a delegate has not been set, the NSPort
object handles the message itself.

When you are finished using a port object, you must explicitly invalidate the port object prior to sending it
a releasemessage. Similarly, if your application uses garbage collection, you must invalidate the port object
before removing any strong references to it. If you do not invalidate the port, the resulting port object may
linger and create a memory leak. To invalidate the port object, invoke its invalidate method.

Overview 1247
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPort Class Reference

Foundation defines three concrete subclasses of NSPort. NSMachPort and NSMessagePort allow local (on
the same machine) communication only. NSSocketPort allows for both local and remote communication,
but may be more expensive than the others for the local case. When creating an NSPort object, using
allocWithZone: (page 1249) or port (page 1250), an NSMachPort object is created instead.

Important: NSPort conforms to the NSCoding protocol, but only supports coding by an NSPortCoder.
NSPort and its subclasses do not support archiving.

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

NSCopying
copyWithZone: (page 2042)

Tasks

Creating Instances

+ allocWithZone: (page 1249)
Returns an instance of the NSMachPort class.

+ port (page 1250)
Creates and returns a new NSPort object capable of both sending and receiving messages.

Validation

– invalidate (page 1251)
Marks the receiver as invalid and posts an NSPortDidBecomeInvalidNotification (page 1256) to
the default notification center.

– isValid (page 1252)
Returns a Boolean value that indicates whether the receiver is valid.

Setting the Delegate

– setDelegate: (page 1255)
Sets the receiver’s delegate to a given object.

– delegate (page 1251)
Returns the receiver’s delegate.

1248 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPort Class Reference

Creating Connections

– addConnection:toRunLoop:forMode: (page 1250)
Adds the receiver to the list of ports monitored by a given run loop for the given input mode.

– removeConnection:fromRunLoop:forMode: (page 1252)
Removes the receiver from the list of ports monitored by runLoop in the given input mode, mode.

Setting Information

– sendBeforeDate:components:from:reserved: (page 1254)
This method is provided for subclasses that have custom types of NSPort.

– sendBeforeDate:msgid:components:from:reserved: (page 1254)
This method is provided for subclasses that have custom types of NSPort.

– reservedSpaceLength (page 1253)
Returns the number of bytes of space reserved by the receiver for sending data.

Port Monitoring

– removeFromRunLoop:forMode: (page 1252)
This method should be implemented by a subclass to stop monitoring of a port when removed from
a give run loop in a given input mode.

– scheduleInRunLoop:forMode: (page 1253)
This method should be implemented by a subclass to set up monitoring of a port when added to a
given run loop in a given input mode.

Handling Port Messages

– handlePortMessage: (page 1255) delegate method
Processes a given incoming message on the port.

Class Methods

allocWithZone:
Returns an instance of the NSMachPort class.

+ (id)allocWithZone:(NSZone *)zone

Parameters
zone

The memory zone in which to allocate the new object.

Return Value
An instance of the NSMachPort class.

Class Methods 1249
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPort Class Reference

Discussion
For backward compatibility on Mach, allocWithZone: returns an instance of the NSMachPort class when
sent to the NSPort class. Otherwise, it returns an instance of a concrete subclass that can be used for
messaging between threads or processes on the local machine, or, in the case of NSSocketPort, between
processes on separate machines.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

port
Creates and returns a new NSPort object capable of both sending and receiving messages.

+ (NSPort *)port

Return Value
A new NSPort object capable of both sending and receiving messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ allocWithZone: (page 1249)

Related Sample Code
SimpleThreads
TrivialThreads

Declared In
NSPort.h

Instance Methods

addConnection:toRunLoop:forMode:
Adds the receiver to the list of ports monitored by a given run loop for the given input mode.

- (void)addConnection:(NSConnection *)connection toRunLoop:(NSRunLoop *)runLoop
forMode:(NSString *)mode

Parameters
connection

The connection object that invoked this method.

runLoop
The run loop to which to add the receiver.

1250 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPort Class Reference

mode
The run loop mode in which to add the receiver.

Discussion
You should not call this method directly. The method is provided for subclassers who wish to provide their
own custom types of NSPort. The NSConnection object, connection, calls this method at the appropriate
times.

Availability
Available in Mac OS X v10.0 and later.

See Also
addPort:forMode: (page 1333) (NSRunLoop)

Declared In
NSPort.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 1255)

Declared In
NSPort.h

invalidate
Marks the receiver as invalid and posts an NSPortDidBecomeInvalidNotification (page 1256) to the
default notification center.

- (void)invalidate

Discussion
You must call this method before releasing a port object (or removing strong references to it if your application
is garbage collected).

Availability
Available in Mac OS X v10.0 and later.

See Also
– isValid (page 1252)

Declared In
NSPort.h

Instance Methods 1251
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPort Class Reference

isValid
Returns a Boolean value that indicates whether the receiver is valid.

- (BOOL)isValid

Return Value
NO if the receiver is known to be invalid, otherwise YES.

Discussion
An NSPort object becomes invalid when its underlying communication resource, which is operating system
dependent, is closed or damaged.

Availability
Available in Mac OS X v10.0 and later.

See Also
– invalidate (page 1251)

Declared In
NSPort.h

removeConnection:fromRunLoop:forMode:
Removes the receiver from the list of ports monitored by runLoop in the given input mode, mode.

- (void)removeConnection:(NSConnection *)connection fromRunLoop:(NSRunLoop *)runLoop
forMode:(NSString *)mode

Parameters
connection

The connection object that invoked this method.

runLoop
The run loop to which to add the receiver.

mode
The run loop mode in which to add the receiver.

Discussion
You should not call this method directly. The method is provided for subclassers who wish to provide their
own custom types of NSPort. The NSConnection object, connection, calls this method at the appropriate
times.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

removeFromRunLoop:forMode:
This method should be implemented by a subclass to stop monitoring of a port when removed from a give
run loop in a given input mode.

1252 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPort Class Reference

- (void)removeFromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

Parameters
runLoop

The run loop from which to remove the receiver.

mode
The run loop mode from which to remove the receiver

Discussion
This method should not be called directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scheduleInRunLoop:forMode: (page 1253)

Declared In
NSPort.h

reservedSpaceLength
Returns the number of bytes of space reserved by the receiver for sending data.

- (NSUInteger)reservedSpaceLength

Return Value
The number of bytes reserved by the receiver for sending data. The default length is 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

scheduleInRunLoop:forMode:
This method should be implemented by a subclass to set up monitoring of a port when added to a given
run loop in a given input mode.

- (void)scheduleInRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

Parameters
runLoop

The run loop to which to add the receiver.

mode
The run loop mode to which to add the receiver

Discussion
This method should not be called directly.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1253
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPort Class Reference

See Also
– removeFromRunLoop:forMode: (page 1252)

Declared In
NSPort.h

sendBeforeDate:components:from:reserved:
This method is provided for subclasses that have custom types of NSPort.

- (BOOL)sendBeforeDate:(NSDate *)limitDate components:(NSMutableArray *)components
from:(NSPort *)receivePort reserved:(NSUInteger)headerSpaceReserved

Parameters
limitDate

The last instant that a message may be sent.

components
The message components.

receivePort
The receive port.

headerSpaceReserved
The number of bytes reserved for the header.

Discussion
NSConnection calls this method at the appropriate times. This method should not be called directly. This
method could raise an NSInvalidSendPortException, NSInvalidReceivePortException, or an
NSPortSendException, depending on the type of send port and the type of error.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

sendBeforeDate:msgid:components:from:reserved:
This method is provided for subclasses that have custom types of NSPort.

- (BOOL)sendBeforeDate:(NSDate *)limitDate msgid:(NSUInteger)msgID
components:(NSMutableArray *)components from:(NSPort *)receivePort
reserved:(NSUInteger)headerSpaceReserved

Parameters
limitDate

The last instant that a message may be sent.

msgID
The message ID.

components
The message components.

1254 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPort Class Reference

receivePort
The receive port.

headerSpaceReserved
The number of bytes reserved for the header.

Discussion
NSConnection calls this method at the appropriate times. This method should not be called directly. This
method could raise an NSInvalidSendPortException, NSInvalidReceivePortException, or an
NSPortSendException, depending on the type of send port and the type of error.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

setDelegate:
Sets the receiver’s delegate to a given object.

- (void)setDelegate:(id)anObject

Parameters
anObject

The delegate for the receiver.

Discussion
Does not retain anObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 1251)

Declared In
NSPort.h

Delegate Methods

handlePortMessage:
Processes a given incoming message on the port.

- (void)handlePortMessage:(NSPortMessage *)portMessage

Parameters
portMessage

An incoming port message.

Discussion
See the NSPortMessage class specification for more information.

Delegate Methods 1255
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPort Class Reference

The delegate should implement only one of handleMachMessage: (page 849) and handlePortMessage:.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

Notifications

NSPortDidBecomeInvalidNotification
Posted from the invalidate (page 1251) method, which is invoked when the NSPort is deallocated or when
it notices that its communication channel has been damaged. The notification object is the NSPort object
that has become invalid. This notification does not contain a userInfo dictionary.

An NSSocketPort object cannot detect when its connection to a remote port is lost, even if the remote
port is on the same machine. Therefore, it cannot invalidate itself and post this notification. Instead, you must
detect the timeout error when the next message is sent.

The NSPort object posting this notification is no longer useful, so all receivers should unregister themselves
for any notifications involving the NSPort. A method receiving this notification should check to see which
port became invalid before attempting to do anything. In particular, observers that receive all
NSPortDidBecomeInvalidNotificationmessages should be aware that communication with the window
server is handled through an NSPort. If this port becomes invalid, drawing operations will cause a fatal error.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

1256 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPort Class Reference

Inherits from NSCoder : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSPortCoder.h

Companion guide Distributed Objects Programming Topics

Overview

NSPortCoder is a concrete subclass of NSCoder used in the distributed objects system to transmit object
proxies (and sometimes objects themselves) between NSConnection objects. An NSPortCoder instance
is always created and used by an NSConnection object; you should never need to explicitly create or use
one directly yourself.

Tasks

Creating an NSPortCoder Object

+ portCoderWithReceivePort:sendPort:components: (page 1258)
Creates and returns a new NSPortCoder object.

– initWithReceivePort:sendPort:components: (page 1260)
Initializes and returns an NSPortCoder object.

Getting the Connection

– connection (page 1259)
Returns the NSConnection object that uses the receiver.

Overview 1257
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPortCoder Class Reference

Encoding NSPort Objects

– encodePortObject: (page 1260)
Encodes a given port so it can be properly reconstituted in the receiving process or thread.

– decodePortObject (page 1259)
Decodes and returns an NSPort object that was previously encoded with any of the general
encode...Object: messages.

Checking for Encoding

– isBycopy (page 1261)
Returns a Boolean value that indicates whether the receiver is encoding an object by copying it.

– isByref (page 1261)
Returns a Boolean value that indicates whether the receiver is encoding an object by reference.

Dispatching

– dispatch (page 1259)
Processes and acts upon the distributed object message with which the receiver was initialized.

Class Methods

portCoderWithReceivePort:sendPort:components:
Creates and returns a new NSPortCoder object.

+ (id)portCoderWithReceivePort:(NSPort *)rcvPort sendPort:(NSPort *)sndPort
components:(NSArray *)comps

Parameters
receiverPort

The receiver port.

sendPort
The send port.

components
An array containing an encoded distributed objects message.

Return Value
A new NSPortCoder object connected to the communication ports receiverPort and sendPort, with
an encoded distributed objects message stored in components.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dispatch (page 1259)

1258 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPortCoder Class Reference

– initWithReceivePort:sendPort:components: (page 1260)

Declared In
NSPortCoder.h

Instance Methods

connection
Returns the NSConnection object that uses the receiver.

- (NSConnection *)connection

Return Value
The NSConnection object that uses the receiver. In an object’s encodeWithCoder: (page 2034) method, this
is the sending (server) connection. In initWithCoder: (page 2034) this is the receiving (client) connection.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortCoder.h

decodePortObject
Decodes and returns an NSPort object that was previously encoded with any of the general
encode...Object: messages.

- (NSPort *)decodePortObject

Return Value
An NSPort object that was previously encoded with any of the general encode...Object: messages.

Discussion
This method is primarily for use by NSPort objects themselves—you can always use decodeObject (page
279) to decode any object.

NSPort invokes this method in itsinitWithCoder: (page 2034) method so the appropriate kernel information
for the port can be decoded. A subclass of NSPortCoder shouldn’t decode an NSPort by sending it an
initWithCoder: (page 2034) message. See Subclassing NSCoder for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortCoder.h

dispatch
Processes and acts upon the distributed object message with which the receiver was initialized.

Instance Methods 1259
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPortCoder Class Reference

- (void)dispatch

Availability
Available in Mac OS X v10.0 and later.

See Also
+ portCoderWithReceivePort:sendPort:components: (page 1258)
– initWithReceivePort:sendPort:components: (page 1260)

Declared In
NSPortCoder.h

encodePortObject:
Encodes a given port so it can be properly reconstituted in the receiving process or thread.

- (void)encodePortObject:(NSPort *)aPort

Parameters
aPort

The port to encode.

Discussion
This method is primarily for use by NSPort objects themselves—you can always use the general
encode...Object: methods to encode any object.

NSPort invokes this method in its encodeWithCoder: (page 2034) method so that the appropriate kernel
information for the port can be encoded. A subclass of NSPortCoder should not encode an NSPort by
sending it an encodeWithCoder: (page 2034) message. See Subclassing NSCoder for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortCoder.h

initWithReceivePort:sendPort:components:
Initializes and returns an NSPortCoder object.

- (id)initWithReceivePort:(NSPort *)receiverPort sendPort:(NSPort *)sendPort
components:(NSArray *)components

Parameters
receiverPort

The receive port.

sendPort
The send port.

components
An array containing an encoded distributed objects message.

1260 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPortCoder Class Reference

Discussion
Initializes a newly allocated NSPortCoder object connected to the communication ports receiverPort
and sendPort, with an encoded distributed objects message stored in components.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ portCoderWithReceivePort:sendPort:components: (page 1258)
– dispatch (page 1259)

Declared In
NSPortCoder.h

isBycopy
Returns a Boolean value that indicates whether the receiver is encoding an object by copying it.

- (BOOL)isBycopy

Return Value
YES if the receiver is encoding an object by copying it, NO if it expects a proxy.

Discussion
See Distributed Objects Programming Topics for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isByref (page 1261)

Declared In
NSPortCoder.h

isByref
Returns a Boolean value that indicates whether the receiver is encoding an object by reference.

- (BOOL)isByref

Return Value
YES if the receiver is encoding an object byref, NO if it expects a copy.

Discussion
See Distributed Objects Programming Topics for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isBycopy (page 1261)

Instance Methods 1261
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPortCoder Class Reference

Declared In
NSPortCoder.h

1262 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPortCoder Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSPortMessage.h

Companion guide Distributed Objects Programming Topics

Overview

An NSPortMessage defines a low-level, operating system-independent type for inter-application (and
inter-thread) messages. Port messages are used primarily by the distributed objects system. You should
implement inter-application communication using distributed objects whenever possible and use
NSPortMessage only when necessary.

An NSPortMessage object has three major parts: the send and receive ports, which are NSPort object that
link the sender of the message to the receiver, and the components, which form the body of the message.
The components are held as an NSArray object containing NSData and NSPort objects. NSPortMessage's
sendBeforeDate: (page 1266) message sends the components out through the send port; any replies to the
message arrive on the receive port. See the NSPort class specification for information on handling incoming
messages.

An NSPortMessage instance can be initialized with a pair of NSPort objects and an array of components.
A port message's body can contain only NSPort objects or NSData objects. In the distributed objects system
the byte/character arrays are usually encoded NSInvocation objects that are being forwarded from a proxy
to the corresponding real object.

An NSPortMessage object also maintains a message identifier, which can be used to indicate the class of a
message, such as an Objective-C method invocation, a connection request, an error, and so on. Use the
setMsgid: (page 1267) and msgid (page 1265) methods to access the identifier.

Overview 1263
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 106

NSPortMessage Class Reference

Tasks

Creating Instances

– initWithSendPort:receivePort:components: (page 1265)
Initializes a newly allocated NSPortMessage object to send given data on a given port and to receiver
replies on another given port.

Sending the Message

– sendBeforeDate: (page 1266)
Attempts to send the message before aDate, returning YES if successful or NO if the operation times
out.

Getting the Components

– components (page 1264)
Returns the data components of the receiver.

Getting the Ports

– receivePort (page 1266)
For an outgoing message, returns the port on which replies to the receiver will arrive. For an incoming
message, returns the port the receiver did arrive on.

– sendPort (page 1267)
For an outgoing message, returns the port the receiver will send itself through. For an incoming
message, returns the port replies to the receiver should be sent through.

Accessing the Message ID

– setMsgid: (page 1267)
Sets the identifier for the receiver.

– msgid (page 1265)
Returns the identifier for the receiver.

Instance Methods

components
Returns the data components of the receiver.

1264 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 106

NSPortMessage Class Reference

- (NSArray *)components

Return Value
The data components of the receiver. See “Class Description” (page 1263) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortMessage.h

initWithSendPort:receivePort:components:
Initializes a newly allocated NSPortMessage object to send given data on a given port and to receiver replies
on another given port.

- (id)initWithSendPort:(NSPort *)sendPort receivePort:(NSPort *)receivePort
components:(NSArray *)components

Parameters
sendPort

The port on which the message is sent.

receivePort
The port on which replies to the message arrive.

components
The data to send in the message. components should contain only NSData and NSPort objects, and
the contents of the NSData objects should be in network byte order.

Return Value
An NSPortMessage object initialized to send components on sendPort and to receiver replies on
receivePort.

Discussion
An NSPortMessage object initialized with this method has a message identifier of 0.

This is the designated initializer for NSPortMessage.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMsgid: (page 1267)

Declared In
NSPortMessage.h

msgid
Returns the identifier for the receiver.

- (uint32_t)msgid

Instance Methods 1265
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 106

NSPortMessage Class Reference

Return Value
The identifier for the receiver.

Discussion
Cooperating applications can use this to define different types of messages, such as connection requests,
RPCs, errors, and so on.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMsgid: (page 1267)

Declared In
NSPortMessage.h

receivePort
For an outgoing message, returns the port on which replies to the receiver will arrive. For an incoming
message, returns the port the receiver did arrive on.

- (NSPort *)receivePort

Return Value
For an outgoing message, the port on which replies to the receiver will arrive. For an incoming message, the
port the receiver did arrive on.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendPort (page 1267)

Declared In
NSPortMessage.h

sendBeforeDate:
Attempts to send the message before aDate, returning YES if successful or NO if the operation times out.

- (BOOL)sendBeforeDate:(NSDate *)aDate

Parameters
aDate

The instant before which the message should be sent.

Return Value
YES if the operation is successful, otherwise NO (for example, if the operation times out).

Discussion
If an error other than a time out occurs, this method could raise an NSInvalidSendPortException,
NSInvalidReceivePortException, or an NSPortSendException, depending on the type of send port
and the type of error.

1266 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 106

NSPortMessage Class Reference

If the message cannot be sent immediately, the sending thread blocks until either the message is sent or
aDate is reached. Sent messages are queued to minimize blocking, but failure can occur if multiple messages
are sent to a port faster than the port’s owner can receive them, causing the queue to fill up. Therefore, select
a value for aDate that provides enough time for the message to be processed before the next message is
sent. See the NSPort class specification for information on receiving a port message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortMessage.h

sendPort
For an outgoing message, returns the port the receiver will send itself through. For an incoming message,
returns the port replies to the receiver should be sent through.

- (NSPort *)sendPort

Return Value
For an outgoing message, the port the receiver will send itself through when it receives a
sendBeforeDate: (page 1266) message. For an incoming message, the port replies to the receiver should
be sent through.

Availability
Available in Mac OS X v10.0 and later.

See Also
– receivePort (page 1266)

Declared In
NSPortMessage.h

setMsgid:
Sets the identifier for the receiver.

- (void)setMsgid:(uint32_t)msgid

Parameters
msgid

The identifier for the receiver.

Discussion
Cooperating applications can use this method to define different types of messages, such as connection
requests, RPCs, errors, and so on.

Availability
Available in Mac OS X v10.0 and later.

See Also
– msgid (page 1265)

Instance Methods 1267
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 106

NSPortMessage Class Reference

Declared In
NSPortMessage.h

1268 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 106

NSPortMessage Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSPortNameServer.h

Companion guide Distributed Objects Programming Topics

Overview

NSPortNameServer provides an object-oriented interface to the port registration service used by the
distributed objects system. NSConnection objects use it to contact each other and to distribute objects
over the network; you should rarely need to interact directly with an NSPortNameServer.

You get an NSPortNameServer object by using the systemDefaultPortNameServer (page 1270) class
method—never allocate and initialize an instance directly. With the default server object you can register
an NSPort object under a given name, making it available on the network, and also unregister it so that it
can’t be looked up (although other applications that have already looked up the NSPort object can still use
it until it becomes invalid). See the NSPort class specification for more information.

Tasks

Getting the Server Object

+ systemDefaultPortNameServer (page 1270)
Returns the single instance of NSPortNameServer for the application.

Looking Up Ports

– portForName: (page 1270)
Looks up and returns the port registered under the specified name on the local host.

– portForName:host: (page 1271)
Looks up and returns the port registered under the specified name on a specified host.

Overview 1269
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 107

NSPortNameServer Class Reference

Registering Ports

– registerPort:name: (page 1271)
Makes a given port available on the network under a specified name.

– removePortForName: (page 1272)
Unregisters the port for a given name on the local host.

Class Methods

systemDefaultPortNameServer
Returns the single instance of NSPortNameServer for the application.

+ (NSPortNameServer *)systemDefaultPortNameServer

Return Value
The single instance of NSPortNameServer for the application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

Instance Methods

portForName:
Looks up and returns the port registered under the specified name on the local host.

- (NSPort *)portForName:(NSString *)portName

Parameters
portName

The name of the desired port.

Return Value
The port associated with portName on the local host. Returns nil if no such port exists.

Discussion
Invokes portForName:host: (page 1271) with nil as the host name.

Availability
Available in Mac OS X v10.0 and later.

See Also
– portForName:host: (page 1271)

1270 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 107

NSPortNameServer Class Reference

Declared In
NSPortNameServer.h

portForName:host:
Looks up and returns the port registered under the specified name on a specified host.

- (NSPort *)portForName:(NSString *)portName host:(NSString *)hostName

Parameters
portName

The name of the desired port.

hostName
The name of the host. hostName is an Internet domain name (for example, “sales.anycorp.com”).
If hostName is nil or empty, the local host is checked.

Return Value
The port associated with portName on the host hostName. Returns nil if no such port exists.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

registerPort:name:
Makes a given port available on the network under a specified name.

- (BOOL)registerPort:(NSPort *)aPort name:(NSString *)portName

Parameters
aPort

The port to make available.

portName
The name for the port.

Return Value
YES if successful, NO otherwise (for example, if another NSPort object has already been registered under
portName).

Discussion
A port can be registered under multiple names. If it is, it must be unregistered for each name with
removePortForName: (page 1272) to make it completely unavailable.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSPortNameServer.h

Instance Methods 1271
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 107

NSPortNameServer Class Reference

removePortForName:
Unregisters the port for a given name on the local host.

- (BOOL)removePortForName:(NSString *)portName

Parameters
portName

The name of the port to unregister.

Return Value
YES if successful, otherwise NO.

Discussion
If the operation is successful, the port can no longer be looked up using the name portName. Other
applications that already have a reference to the port can continue to use it until it becomes invalid.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

1272 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 107

NSPortNameServer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptObjectSpecifiers.h

Companion guide Cocoa Scripting Guide

Overview

Instances of NSPositionalSpecifier specify an insertion point in a container relative to another object
in the container, for example, before first word or after paragraph 4. The container is specified by
an instance of NSScriptObjectSpecifier. NSPositionalSpecifier objects commonly encapsulate
object specifiers used as arguments to the make (create) and move commands and indicate where the
created or moved object is to be inserted relative to the object represented by an object specifier.

Invoking an accessor method to obtain information about an instance of NSPositionalSpecifier causes
the object to be evaluated if it hasn’t been already.

You don’t normally subclass NSPositionalSpecifier.

Tasks

Initializing a Positional Specifier

– initWithPosition:objectSpecifier: (page 1274)
Initializes a positional specifier with a given position relative to another given specifier.

Accessing Information About a Positional Specifier

– insertionContainer (page 1275)
Returns the container in which the new or copied object or objects should be placed.

Overview 1273
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 108

NSPositionalSpecifier Class Reference

– insertionIndex (page 1275)
Returns an insertion index that indicates where the new or copied object or objects should be placed.

– insertionKey (page 1275)
Returns the key that identifies the relationship into which the new or copied object or objects should
be inserted.

– insertionReplaces (page 1276)
Returns a Boolean value that indicates whether evaluation has been successful and the object to be
inserted should actually replace the keyed, indexed object in the insertion container.

– objectSpecifier (page 1276)
Returns the object specifier specified at initialization time.

– position (page 1276)
Returns the insertion position specified at initialization time.

– setInsertionClassDescription: (page 1277)
Sets the class description for the object or objects to be inserted.

Evaluating a Positional Specifier

– evaluate (page 1274)
Causes the receiver to evaluate its position.

Instance Methods

evaluate
Causes the receiver to evaluate its position.

- (void)evaluate

Discussion
Calling insertionContainer (page 1275), insertionKey (page 1275), insertionIndex (page 1275), or
insertionReplaces (page 1276) also causes the receiver to be evaluated, if it hasn’t already been evaluated.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

initWithPosition:objectSpecifier:
Initializes a positional specifier with a given position relative to another given specifier.

- (id)initWithPosition:(NSInsertionPosition)position
objectSpecifier:(NSScriptObjectSpecifier *)specifier

1274 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 108

NSPositionalSpecifier Class Reference

Parameters
position

The position for the new specifier relative to specifier.

specifier
The reference specifier.

Return Value
An initialized positional specifier with the position specified by position relative to the object specified by
specifier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

insertionContainer
Returns the container in which the new or copied object or objects should be placed.

- (id)insertionContainer

Return Value
A container. Determined by evaluating the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

insertionIndex
Returns an insertion index that indicates where the new or copied object or objects should be placed.

- (NSInteger)insertionIndex

Return Value
An insertion index. Determined by evaluating the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

insertionKey
Returns the key that identifies the relationship into which the new or copied object or objects should be
inserted.

- (NSString *)insertionKey

Instance Methods 1275
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 108

NSPositionalSpecifier Class Reference

Return Value
A key. Determined by evaluating the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

insertionReplaces
Returns a Boolean value that indicates whether evaluation has been successful and the object to be inserted
should actually replace the keyed, indexed object in the insertion container.

- (BOOL)insertionReplaces

Return Value
YES if evaluation has been successful and the object to be inserted should actually replace the keyed, indexed
object in the insertion container, instead of being inserted before it; NO otherwise.

Discussion
If this object has never been evaluated, evaluation is attempted.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSScriptObjectSpecifiers.h

objectSpecifier
Returns the object specifier specified at initialization time.

- (NSScriptObjectSpecifier *)objectSpecifier

Return Value
An object specifier for a container.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScriptObjectSpecifiers.h

position
Returns the insertion position specified at initialization time.

- (NSInsertionPosition)position

Return Value
An insertion position.

1276 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 108

NSPositionalSpecifier Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScriptObjectSpecifiers.h

setInsertionClassDescription:
Sets the class description for the object or objects to be inserted.

- (void)setInsertionClassDescription:(NSScriptClassDescription *)classDescription

Parameters
classDescription

The class description for the object or objects to be inserted.

Discussion
This message can be sent at any time after object initialization, but must be sent before evaluation to have
any effect.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSScriptObjectSpecifiers.h

Constants

NSInsertionPosition
The following constants are defined by NSPositionalSpecifier to specify an insertion position.

typedef enum {
 NSPositionAfter,
 NSPositionBefore,
 NSPositionBeginning,
 NSPositionEnd,
 NSPositionReplace
} NSInsertionPosition;

Constants
NSPositionAfter

Specifies a position after another object.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSPositionBefore
Specifies a position before another object.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

Constants 1277
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 108

NSPositionalSpecifier Class Reference

NSPositionBeginning
Specifies a position at the beginning of a collection.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSPositionEnd
Specifies a position at the end of a collection.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSPositionReplace
Specifies a position in the place of another object.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

Discussion
These constants are described in NSPositionalSpecifier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

1278 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 108

NSPositionalSpecifier Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSPredicate.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Predicate Programming Guide

Related sample code CoreRecipes
DerivedProperty
iSpend
PredicateEditorSample
SimpleCalendar

Overview

The NSPredicate class is used to define logical conditions used to constrain a search either for a fetch or
for in-memory filtering.

You use predicates to represent logical conditions, used for describing objects in persistent stores and
in-memory filtering of objects. Although it is common to create predicates directly from instances of
NSComparisonPredicate, NSCompoundPredicate, and NSExpression, you often create predicates from
a format string which is parsed by the class methods on NSPredicate. Examples of predicate format strings
include:

 ■ Simple comparisons, such as grade == "7" or firstName like "Shaffiq"

 ■ Case/diacritic insensitive lookups, such as name contains[cd] "itroen"

 ■ Logical operations, such as (firstName like "Mark") OR (lastName like "Adderley")

 ■ With Mac OS X version 10.5 and later, you can create “between” predicates such as date between
{$YESTERDAY, $TOMORROW}.

You can create predicates for relationships, such as:

 ■ group.name like "work*"

Overview 1279
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 109

NSPredicate Class Reference

 ■ ALL children.age > 12

 ■ ANY children.age > 12

You can create predicates for operations, such as @sum.items.price < 1000. For a complete syntax
reference, refer to the Predicate Programming Guide.

You can also create predicates that include variables, so that the predicate can be pre-defined before
substituting concrete values at runtime. On Mac OS X v10.4, for predicates that use variables, evaluation is
a two step process (see predicateWithSubstitutionVariables: (page 1284) and
evaluateWithObject: (page 1283)). Mac OS X v10.5 introduces a new method,
evaluateWithObject:substitutionVariables: (page 1283), which combines these steps.

Tasks

Constructors

+ predicateWithFormat: (page 1281)
Creates and returns a new predicate formed by creating a new string with a given format and parsing
the result.

+ predicateWithFormat:argumentArray: (page 1281)
Creates and returns a new predicate by substituting the values in a given array into a format string
and parsing the result.

+ predicateWithFormat:arguments: (page 1282)
Creates and returns a new predicate by substituting the values in an argument list into a format string
and parsing the result.

– predicateWithSubstitutionVariables: (page 1284)
Returns a copy of the receiver with the receiver’s variables substituted by values specified in a given
substitution variables dictionary.

+ predicateWithValue: (page 1282)
Creates and returns a predicate that always evaluates to a given value.

Evaluating a Predicate

– evaluateWithObject: (page 1283)
Returns a Boolean value that indicates whether a given object matches the conditions specified by
the receiver.

– evaluateWithObject:substitutionVariables: (page 1283)
Returns a Boolean value that indicates whether a given object matches the conditions specified by
the receiver after substituting in the values in a given variables dictionary.

Getting Format Information

– predicateFormat (page 1284)
Returns the receiver’s format string.

1280 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 109

NSPredicate Class Reference

Class Methods

predicateWithFormat:
Creates and returns a new predicate formed by creating a new string with a given format and parsing the
result.

+ (NSPredicate *)predicateWithFormat:(NSString *)format, ...

Parameters
format

The format string for the new predicate.

...
A comma-separated list of arguments to substitute into format.

Return Value
A new predicate formed by creating a new string with format and parsing the result.

Discussion
For details of the format of the format string and of limitations on variable substitution, see Predicate Format
String Syntax.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreRecipes
iSpend
QTMetadataEditor
SimpleCalendar
SpotlightFortunes

Declared In
NSPredicate.h

predicateWithFormat:argumentArray:
Creates and returns a new predicate by substituting the values in a given array into a format string and
parsing the result.

+ (NSPredicate *)predicateWithFormat:(NSString *)predicateFormat
argumentArray:(NSArray *)arguments

Parameters
predicateFormat

The format string for the new predicate.

arguments
The arguments to substitute into predicateFormat. Values are substituted into predicateFormat
in the order they appear in the array.

Class Methods 1281
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 109

NSPredicate Class Reference

Return Value
A new predicate by substituting the values in arguments into predicateFormat, and parsing the result.

Discussion
For details of the format of the format string and of limitations on variable substitution, see Predicate Format
String Syntax.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSPredicate.h

predicateWithFormat:arguments:
Creates and returns a new predicate by substituting the values in an argument list into a format string and
parsing the result.

+ (NSPredicate *)predicateWithFormat:(NSString *)format arguments:(va_list)argList

Parameters
format

The format string for the new predicate.

argList
The arguments to substitute into predicateFormat. Values are substituted into predicateFormat
in the order they appear in the argument list.

Return Value
A new predicate by substituting the values in argList into predicateFormat and parsing the result.

Discussion
For details of the format of the format string and of limitations on variable substitution, see Predicate Format
String Syntax.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSPredicate.h

predicateWithValue:
Creates and returns a predicate that always evaluates to a given value.

+ (NSPredicate *)predicateWithValue:(BOOL)value

Parameters
value

The value to which the new predicate should evaluate.

Return Value
A predicate that always evaluates to value.

1282 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 109

NSPredicate Class Reference

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreRecipes

Declared In
NSPredicate.h

Instance Methods

evaluateWithObject:
Returns a Boolean value that indicates whether a given object matches the conditions specified by the
receiver.

- (BOOL)evaluateWithObject:(id)object

Parameters
object

The object against which to evaluate the receiver.

Return Value
YES if object matches the conditions specified by the receiver, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSPredicate.h

evaluateWithObject:substitutionVariables:
Returns a Boolean value that indicates whether a given object matches the conditions specified by the
receiver after substituting in the values in a given variables dictionary.

- (BOOL)evaluateWithObject:(id)object
substitutionVariables:(NSDictionary *)variables

Parameters
object

The object against which to evaluate the receiver.

variables
The substitution variables dictionary. The dictionary must contain key-value pairs for all variables in
the receiver.

Return Value
YES if objectmatches the conditions specified by the receiver after substituting in the values in variables
for any replacement tokens, otherwise NO.

Instance Methods 1283
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 109

NSPredicate Class Reference

Discussion
This method returns the same result as the two step process of first invoking
predicateWithSubstitutionVariables: (page 1284) on the receiver and then invoking
evaluateWithObject: (page 1283) on the returned predicate. This method is optimized for situations which
require repeatedly evaluating a predicate with substitution variables with different variable substitutions.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicate.h

predicateFormat
Returns the receiver’s format string.

- (NSString *)predicateFormat

Return Value
The receiver’s format string.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSPredicate.h

predicateWithSubstitutionVariables:
Returns a copy of the receiver with the receiver’s variables substituted by values specified in a given
substitution variables dictionary.

- (NSPredicate *)predicateWithSubstitutionVariables:(NSDictionary *)variables

Parameters
variables

The substitution variables dictionary. The dictionary must contain key-value pairs for all variables in
the receiver.

Return Value
A copy of the receiver with the receiver’s variables substituted by values specified in variables.

Discussion
The receiver itself is not modified by this method, so you can reuse it for any number of substitutions.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
DerivedProperty

Declared In
NSPredicate.h

1284 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 109

NSPredicate Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSProcessinfo.h

Companion guide Interacting with the Operating System

Related sample code CocoaEcho
Quartz Composer WWDC 2005 TextEdit
Sproing
TextEditPlus
URL CacheInfo

Overview

The NSProcessInfo class provides methods to access information about the current process. Each process
has a single, shared NSProcessInfo object, known as process information agent.

The process information agent can return such information as the arguments, environment variables, host
name, or process name. The processInfo (page 1287) class method returns the shared agent for the current
process—that is, the process whose object sent the message. For example, the following line returns the
NSProcessInfo object, which then provides the name of the current process:

NSString *processName = [[NSProcessInfo processInfo] processName];

The NSProcessInfo class also includes the operatingSystem (page 1289) method, which returns an enum
constant identifying the operating system on which the process is executing.

NSProcessInfo objects attempt to interpret environment variables and command-line arguments in the
user's default C string encoding if they cannot be converted to Unicode as UTF-8 strings. If neither conversion
works, these values are ignored by the NSProcessInfo object.

Overview 1285
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 110

NSProcessInfo Class Reference

Tasks

Getting the Process Information Agent

+ processInfo (page 1287)
Returns the process information agent for the process.

Accessing Process Information

– arguments (page 1288)
Returns the command-line arguments for the process.

– environment (page 1288)
Returns the variable names and their values in the environment from which the process was launched.

– processIdentifier (page 1290)
Returns the identifier of the process.

– globallyUniqueString (page 1288)
Returns a global unique identifier for the process.

– processName (page 1291)
Returns the name of the process.

– setProcessName: (page 1291)
Sets the name of the process.

Getting Host Information

– hostName (page 1289)
Returns the name of the host computer.

– operatingSystem (page 1289)
Returns a constant to indicate the operating system on which the process is executing.

– operatingSystemName (page 1289)
Returns a string containing the name of the operating system on which the process is executing.

– operatingSystemVersionString (page 1290)
Returns a string containing the version of the operating system on which the process is executing.

Getting Computer Information

– physicalMemory (page 1290)
Provides the amount of physical memory on the computer.

– processorCount (page 1291)
Provides the number of processing cores available on the computer.

– activeProcessorCount (page 1287)
Provides the number of active processing cores available on the computer.

1286 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 110

NSProcessInfo Class Reference

Class Methods

processInfo
Returns the process information agent for the process.

+ (NSProcessInfo *)processInfo

Return Value
Shared process information agent for the process.

Discussion
An NSProcessInfo (page 1285) object is created the first time this method is invoked, and that same object
is returned on each subsequent invocation.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaEcho
CocoaHTTPServer
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
URL CacheInfo

Declared In
NSProcessInfo.h

Instance Methods

activeProcessorCount
Provides the number of active processing cores available on the computer.

- (NSUInteger)activeProcessorCount

Return Value
Number of active processing cores.

Availability
Available in Mac OS X v10.5 and later.

See Also
– processorCount (page 1291)

Declared In
NSProcessInfo.h

Class Methods 1287
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 110

NSProcessInfo Class Reference

arguments
Returns the command-line arguments for the process.

- (NSArray *)arguments

Return Value
Array of strings with the process’s command-line arguments.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProcessInfo.h

environment
Returns the variable names and their values in the environment from which the process was launched.

- (NSDictionary *)environment

Return Value
Dictionary of environment-variable names (keys) and their values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProcessInfo.h

globallyUniqueString
Returns a global unique identifier for the process.

- (NSString *)globallyUniqueString

Return Value
Global ID for the process. The ID includes the host name, process ID, and a time stamp, which ensures that
the ID is unique for the network.

Discussion
This method generates a new string each time it is invoked, so it also uses a counter to guarantee that strings
created from the same process are unique.

Availability
Available in Mac OS X v10.0 and later.

See Also
– processName (page 1291)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

1288 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 110

NSProcessInfo Class Reference

Declared In
NSProcessInfo.h

hostName
Returns the name of the host computer.

- (NSString *)hostName

Return Value
Host name of the computer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProcessInfo.h

operatingSystem
Returns a constant to indicate the operating system on which the process is executing.

- (unsigned int)operatingSystem

Return Value
Operating system identifier. See “Constants” (page 1292) for a list of possible values. In Mac OS X, it’s
NSMACHOperatingSystem.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProcessInfo.h

operatingSystemName
Returns a string containing the name of the operating system on which the process is executing.

- (NSString *)operatingSystemName

Return Value
Operating system name. In Mac OS X, it’s @"NSMACHOperatingSystem"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProcessInfo.h

Instance Methods 1289
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 110

NSProcessInfo Class Reference

operatingSystemVersionString
Returns a string containing the version of the operating system on which the process is executing.

- (NSString *)operatingSystemVersionString

Return Value
Operating system version. This string is human readable, localized, and is appropriate for displaying to the
user. This string is not appropriate for parsing.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSProcessInfo.h

physicalMemory
Provides the amount of physical memory on the computer.

- (unsigned long long)physicalMemory

Return Value
Amount of physical memory in bytes.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSProcessInfo.h

processIdentifier
Returns the identifier of the process.

- (int)processIdentifier

Return Value
Process ID of the process.

Availability
Available in Mac OS X v10.0 and later.

See Also
– processName (page 1291)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSProcessInfo.h

1290 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 110

NSProcessInfo Class Reference

processName
Returns the name of the process.

- (NSString *)processName

Return Value
Name of the process.

Discussion
The process name is used to register application defaults and is used in error messages. It does not uniquely
identify the process.

Availability
Available in Mac OS X v10.0 and later.

See Also
– processIdentifier (page 1290)
– setProcessName: (page 1291)

Related Sample Code
URL CacheInfo

Declared In
NSProcessInfo.h

processorCount
Provides the number of processing cores available on the computer.

- (NSUInteger)processorCount

Return Value
Number of processing cores.

Availability
Available in Mac OS X v10.5 and later.

See Also
– activeProcessorCount (page 1287)

Declared In
NSProcessInfo.h

setProcessName:
Sets the name of the process.

- (void)setProcessName:(NSString *)name

Parameters
name

New name for the process.

Instance Methods 1291
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 110

NSProcessInfo Class Reference

Discussion

Warning: User defaults and other aspects of the environment might depend on the process name, so
be very careful if you change it. Setting the process name in this manner is not thread safe.

Availability
Available in Mac OS X v10.0 and later.

See Also
– processName (page 1291)

Declared In
NSProcessInfo.h

Constants

NSProcessInfo—Operating Systems
The following constants are provided by the NSProcessInfo class as return values for
operatingSystem (page 1289).

enum {
 NSWindowsNTOperatingSystem = 1,
 NSWindows95OperatingSystem,
 NSSolarisOperatingSystem,
 NSHPUXOperatingSystem,
 NSMACHOperatingSystem,
 NSSunOSOperatingSystem,
 NSOSF1OperatingSystem
};

Constants
NSHPUXOperatingSystem

Indicates the HP UX operating system.

Available in Mac OS X v10.0 and later.

Declared in NSProcessInfo.h.

NSMACHOperatingSystem
Indicates the Mac OS X operating system.

Available in Mac OS X v10.0 and later.

Declared in NSProcessInfo.h.

NSOSF1OperatingSystem
Indicates the OSF/1 operating system.

Available in Mac OS X v10.0 and later.

Declared in NSProcessInfo.h.

1292 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 110

NSProcessInfo Class Reference

NSSolarisOperatingSystem
Indicates the Solaris operating system.

Available in Mac OS X v10.0 and later.

Declared in NSProcessInfo.h.

NSSunOSOperatingSystem
Indicates the Sun OS operating system.

Available in Mac OS X v10.0 and later.

Declared in NSProcessInfo.h.

NSWindows95OperatingSystem
Indicates the Windows 95 operating system.

Available in Mac OS X v10.0 and later.

Declared in NSProcessInfo.h.

NSWindowsNTOperatingSystem
Indicates the Windows NT operating system.

Available in Mac OS X v10.0 and later.

Declared in NSProcessInfo.h.

Declared In
NSProcessInfo.h

Constants 1293
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 110

NSProcessInfo Class Reference

1294 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 110

NSProcessInfo Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSPropertyList.h

Availability Available in Mac OS X v10.2 and later.

Companion guides Archives and Serializations Programming Guide for Cocoa
Property List Programming Guide

Related sample code EnhancedAudioBurn
iSpend
People
Sketch-112
Squiggles

Overview

The NSPropertyListSerialization class provides methods that convert property list objects to and
from several serialized formats. Property list objects include NSData, NSString, NSArray, NSDictionary,
NSDate, and NSNumber objects. These objects are toll-free bridged with their respective Core Foundation
types (CFData, CFString, and so on). For more about toll-free bridging, see Interchangeable Data Types.

Property list serialization automatically takes account of endianness on different platforms—for example,
you can correctly read on an Intel-based Macintosh a binary property list created on a PowerPC-based
Macintosh.

Tasks

Serializing a Property List

+ dataFromPropertyList:format:errorDescription: (page 1296)
Returns an NSData object containing a given property list in a specified format.

Overview 1295
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 111

NSPropertyListSerialization Class Reference

Deserializing a Property List

+ propertyListFromData:mutabilityOption:format:errorDescription: (page 1297)
Returns a property list object corresponding to the representation in a given NSData object.

Validating a Property List

+ propertyList:isValidForFormat: (page 1297)
Returns a Boolean value that indicates whether a given property list is valid for a given format.

Class Methods

dataFromPropertyList:format:errorDescription:
Returns an NSData object containing a given property list in a specified format.

+ (NSData *)dataFromPropertyList:(id)plist format:(NSPropertyListFormat)format
errorDescription:(NSString **)errorString

Parameters
plist

A property list object. plist must be a kind of NSData, NSString, NSNumber, NSDate, NSArray,
or NSDictionary object. Container objects must also contain only these kinds of objects.

format
A property list format. Possible values for format are described in NSPropertyListFormat (page 1299).

errorString
Upon return, if the conversion is successful, errorString is nil. If the conversion fails, upon return
contains a string describing the nature of the error. If you receive a string, you must release it.

Return Value
An NSData object containing plist in the format specified by format.

Special Considerations

Unlike the normal memory management rules for Cocoa, strings returned in errorString need to be
released by the caller.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ propertyListFromData:mutabilityOption:format:errorDescription: (page 1297)

Related Sample Code
EnhancedAudioBurn
iSpend
People
SpotlightFortunes
Squiggles

1296 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 111

NSPropertyListSerialization Class Reference

Declared In
NSPropertyList.h

propertyList:isValidForFormat:
Returns a Boolean value that indicates whether a given property list is valid for a given format.

+ (BOOL)propertyList:(id)plist isValidForFormat:(NSPropertyListFormat)format

Parameters
plist

A property list object.

format
A property list format. Possible values for format are listed in NSPropertyListFormat (page 1299).

Return Value
YES if plist is a valid property list in format format, otherwise NO.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSPropertyList.h

propertyListFromData:mutabilityOption:format:errorDescription:
Returns a property list object corresponding to the representation in a given NSData object.

+ (id)propertyListFromData:(NSData *)data
mutabilityOption:(NSPropertyListMutabilityOptions)opt
format:(NSPropertyListFormat *)format errorDescription:(NSString **)errorString

Parameters
data

A data object containing a serialized property list.

opt
Determines whether the property list’s contents are created as mutable objects, where possible.
Possible values are described in NSPropertyListMutabilityOptions (page 1298).

format
If the property list is valid, upon return contains the format. format can be NULL, in which case the
property list format is not returned. Possible values are described in NSPropertyListFormat (page 1299).

errorString
Upon return, if the conversion is successful, errorString is nil. If the conversion fails, upon return
contains a string describing the nature of the error. If you receive a string, you must release it.

Return Value
A property list object corresponding to the representation in data. If data is not in a supported format,
returns nil.

Class Methods 1297
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 111

NSPropertyListSerialization Class Reference

Special Considerations

Unlike the normal memory management rules for Cocoa, strings returned in errorString need to be
released by the caller.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ dataFromPropertyList:format:errorDescription: (page 1296)

Related Sample Code
ImageBrowser
iSpend
People
Sketch-112
Squiggles

Declared In
NSPropertyList.h

Constants

NSPropertyListMutabilityOptions
These constants specify mutability options in property lists.

typedef enum {
 NSPropertyListImmutable = kCFPropertyListImmutable,
 NSPropertyListMutableContainers = kCFPropertyListMutableContainers,
 NSPropertyListMutableContainersAndLeaves =
kCFPropertyListMutableContainersAndLeaves
} NSPropertyListMutabilityOptions;

Constants
NSPropertyListImmutable

Causes the returned property list to contain immutable objects.

Available in Mac OS X v10.2 and later.

Declared in NSPropertyList.h.

NSPropertyListMutableContainers
Causes the returned property list to have mutable containers but immutable leaves.

Available in Mac OS X v10.2 and later.

Declared in NSPropertyList.h.

NSPropertyListMutableContainersAndLeaves
Causes the returned property list to have mutable containers and leaves.

Available in Mac OS X v10.2 and later.

Declared in NSPropertyList.h.

Availability
Available in Mac OS X v10.2 and later.

1298 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 111

NSPropertyListSerialization Class Reference

Declared In
NSPropertyList.h

NSPropertyListFormat
These constants are used to specify a property list serialization format.

typedef enum {
 NSPropertyListOpenStepFormat = kCFPropertyListOpenStepFormat,
 NSPropertyListXMLFormat_v1_0 = kCFPropertyListXMLFormat_v1_0,
 NSPropertyListBinaryFormat_v1_0 = kCFPropertyListBinaryFormat_v1_0
} NSPropertyListFormat;

Constants
NSPropertyListOpenStepFormat

Specifies the old-style ASCII property list format inherited from the OpenStep APIs.

Important: The NSPropertyListOpenStepFormat constant is not supported for writing. It can be used
only for reading old-style property lists.

Available in Mac OS X v10.2 and later.

Declared in NSPropertyList.h.

NSPropertyListXMLFormat_v1_0
Specifies the XML property list format.

Available in Mac OS X v10.2 and later.

Declared in NSPropertyList.h.

NSPropertyListBinaryFormat_v1_0
Specifies the binary property list format.

Available in Mac OS X v10.2 and later.

Declared in NSPropertyList.h.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSPropertyList.h

Constants 1299
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 111

NSPropertyListSerialization Class Reference

1300 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 111

NSPropertyListSerialization Class Reference

Inherits from NSScriptObjectSpecifier : NSObject

Conforms to NSCoding (NSScriptObjectSpecifier)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptObjectSpecifiers.h

Companion guide Cocoa Scripting Guide

Overview

Specifies a simple attribute value, a one-to-one relationship, or all elements of a to-many relationship. You
don’t normally subclass NSPropertySpecifier.

Overview 1301
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 112

NSPropertySpecifier Class Reference

1302 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 112

NSPropertySpecifier Class Reference

Inherits from NSProxy

Conforms to NSObject (NSProxy)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSProtocolChecker.h

Companion guide Distributed Objects Programming Topics

Overview

The NSProtocolChecker class defines an object that restricts the messages that can be sent to another object
(referred to as the checker’s delegate). This fact can be particularly useful when an object with many methods,
only a few of which ought to be remotely accessible, is made available using the distributed objects system.

A protocol checker acts as a kind of proxy; when it receives a message that is in its designated protocol, it
forwards the message to its target and consequently appears to be the target object itself. However, when
it receives a message not in its protocol, it raises an NSInvalidArgumentException to indicate that the
message isn’t allowed, whether or not the target object implements the method.

Typically, an object that is to be distributed (yet must restrict messages) creates an NSProtocolChecker for
itself and returns the checker rather than returning itself in response to any messages. The object might also
register the checker as the root object of an NSConnection.

The object should be careful about vending references to self—the protocol checker will convert a return
value of self to indicate the checker rather than the object for any messages forwarded by the checker, but
direct references to the object (bypassing the checker) could be passed around by other objects.

Tasks

Creating a Checker

+ protocolCheckerWithTarget:protocol: (page 1304)
Allocates and initializes an NSProtocolChecker instance that will forward any messages in aProtocol
to anObject, the protocol checker’s target.

Overview 1303
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 113

NSProtocolChecker Class Reference

– initWithTarget:protocol: (page 1304)
Initializes a newly allocated NSProtocolChecker instance that will forward any messages in aProtocol
to anObject, the protocol checker’s target.

Getting Information

– protocol (page 1305)
Returns the protocol object the receiver uses.

– target (page 1305)
Returns the target of the receiver.

Class Methods

protocolCheckerWithTarget:protocol:
Allocates and initializes an NSProtocolChecker instance that will forward any messages in aProtocol to
anObject, the protocol checker’s target.

+ (id)protocolCheckerWithTarget:(NSObject *)anObject protocol:(Protocol *)aProtocol

Discussion
Thus, the checker can be vended in lieu of anObject to restrict the messages that can be sent to anObject.
Returns the new instance.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProtocolChecker.h

Instance Methods

initWithTarget:protocol:
Initializes a newly allocated NSProtocolChecker instance that will forward any messages in aProtocol to
anObject, the protocol checker’s target.

- (id)initWithTarget:(NSObject *)anObject protocol:(Protocol *)aProtocol

Discussion
Thus, the checker can be vended in lieu of anObject to restrict the messages that can be sent to anObject.
If anObject is allowed to be freed or dereferenced by clients, the free method should be included in
aProtocol.

Availability
Available in Mac OS X v10.0 and later.

1304 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 113

NSProtocolChecker Class Reference

Declared In
NSProtocolChecker.h

protocol
Returns the protocol object the receiver uses.

- (Protocol *)protocol

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProtocolChecker.h

target
Returns the target of the receiver.

- (NSObject *)target

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProtocolChecker.h

Instance Methods 1305
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 113

NSProtocolChecker Class Reference

1306 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 113

NSProtocolChecker Class Reference

Inherits from none (NSProxy is a root class)

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSProxy.h

Companion guide Distributed Objects Programming Topics

Overview

NSProxy is an abstract superclass defining an API for objects that act as stand-ins for other objects or for
objects that don’t exist yet. Typically, a message to a proxy is forwarded to the real object or causes the proxy
to load (or transform itself into) the real object. Subclasses of NSProxy can be used to implement transparent
distributed messaging (for example, NSDistantObject) or for lazy instantiation of objects that are expensive
to create.

NSProxy implements the basic methods required of a root class, including those defined in the NSObject
protocol. However, as an abstract class it doesn’t provide an initialization method, and it raises an exception
upon receiving any message it doesn’t respond to. A concrete subclass must therefore provide an initialization
or creation method and override the forwardInvocation: (page 1311) and
methodSignatureForSelector: (page 1312) methods to handle messages that it doesn’t implement itself.
A subclass’s implementation of forwardInvocation: (page 1311) should do whatever is needed to process
the invocation, such as forwarding the invocation over the network or loading the real object and passing
it the invocation. methodSignatureForSelector: (page 1312) is required to provide argument type
information for a given message; a subclass’s implementation should be able to determine the argument
types for the messages it needs to forward and should construct an NSMethodSignature object accordingly.
See the NSDistantObject, NSInvocation, and NSMethodSignature class specifications for more
information.

Adopted Protocols

NSObject
– autorelease (page 2099)
– class (page 2100)
– conformsToProtocol: (page 2100)

Overview 1307
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 114

NSProxy Class Reference

– description (page 2100)
– hash (page 2101)
– isEqual: (page 2101)
– isKindOfClass: (page 2102)
– isMemberOfClass: (page 2103)
– isProxy (page 2104)
– performSelector: (page 2104)
– performSelector:withObject: (page 2105)
– performSelector:withObject:withObject: (page 2105)
– release (page 2106)
– respondsToSelector: (page 2107)
– retain (page 2108)
– retainCount (page 2109)
– self (page 2109)
– superclass (page 2110)
– zone (page 2110)

Tasks

Creating Instances

+ alloc (page 1309)
Returns a new instance of the receiving class

+ allocWithZone: (page 1309)
Returns a new instance of the receiving class

Deallocating Instances

– dealloc (page 1310)
Deallocates the memory occupied by the receiver.

Finalizing an Object

– finalize (page 1311)
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

Handling Unimplemented Methods

– forwardInvocation: (page 1311)
Passes a given invocation to the real object the proxy represents.

1308 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 114

NSProxy Class Reference

– methodSignatureForSelector: (page 1312)
Raises NSInvalidArgumentException. Override this method in your concrete subclass to return a
proper NSMethodSignature object for the given selector and the class your proxy objects stand in
for.

Introspecting a Proxy Class

+ respondsToSelector: (page 1310)
Returns a Boolean value that indicates whether the receiving class responds to a given selector.

Describing a Proxy Class or Object

+ class (page 1310)
Returns self (the class object).

– description (page 1311)
Returns an NSString object containing the real class name and the id of the receiver as a hexadecimal
number.

Class Methods

alloc
Returns a new instance of the receiving class

+ (id)alloc

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProxy.h

allocWithZone:
Returns a new instance of the receiving class

+ (id)allocWithZone:(NSZone *)zone

Return Value
A new instance of the receiving class, as described in the NSObject class specification under the
allocWithZone: (page 1152) class method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProxy.h

Class Methods 1309
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 114

NSProxy Class Reference

class
Returns self (the class object).

+ (Class)class

Return Value
self. Because this is a class method, it returns the class object

Availability
Available in Mac OS X v10.0 and later.

See Also
class (page 1155) (NSObject)
class (page 2100) (NSObject protocol)

Declared In
NSProxy.h

respondsToSelector:
Returns a Boolean value that indicates whether the receiving class responds to a given selector.

+ (BOOL)respondsToSelector:(SEL)aSelector

Parameters
aSelector

A selector.

Return Value
YES if the receiving class responds to aSelector messages, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProxy.h

Instance Methods

dealloc
Deallocates the memory occupied by the receiver.

- (void)dealloc

Discussion
This method behaves as described in the NSObject class specification under the dealloc (page 1174) instance
method.

Availability
Available in Mac OS X v10.0 and later.

1310 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 114

NSProxy Class Reference

See Also
– finalize (page 1311)

Declared In
NSProxy.h

description
Returns an NSString object containing the real class name and the id of the receiver as a hexadecimal
number.

- (NSString *)description

Return Value
An NSString object containing the real class name and the id of the receiver as a hexadecimal number.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProxy.h

finalize
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

- (void)finalize

Discussion
This method behaves as described in the NSObject class specification under the finalize (page 1176)
instance method. Note that a finalize method must be thread-safe.

Availability
Available in Mac OS X v10.5 and later.

See Also
– dealloc (page 1310)

Declared In
NSProxy.h

forwardInvocation:
Passes a given invocation to the real object the proxy represents.

- (void)forwardInvocation:(NSInvocation *)anInvocation

Parameters
anInvocation

The invocation to forward.

Instance Methods 1311
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 114

NSProxy Class Reference

Discussion
NSProxy’s implementation merely raises NSInvalidArgumentException. Override this method in your
subclass to handle anInvocation appropriately, at the very least by setting its return value.

For example, if your proxy merely forwards messages to an instance variable named realObject, it can
implement forwardInvocation: like this:

– (void)forwardInvocation:(NSInvocation *)anInvocation
{
 [anInvocation setTarget:realObject];
 [anInvocation invoke];
 return;
}

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProxy.h

methodSignatureForSelector:
Raises NSInvalidArgumentException. Override this method in your concrete subclass to return a proper
NSMethodSignature object for the given selector and the class your proxy objects stand in for.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Parameters
aSelector

The selector for which to return a method signature.

Return Value
Not applicable. The implementation provided by NSProxy raises an exception.

Discussion
Be sure to avoid an infinite loop when necessary by checking that aSelector isn’t the selector for this
method itself and by not sending any message that might invoke this method.

For example, if your proxy merely forwards messages to an instance variable named realObject, it can
implement methodSignatureForSelector: like this:

– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
{
 return [realObject methodSignatureForSelector:aSelector];
}

Availability
Available in Mac OS X v10.0 and later.

See Also
methodSignatureForSelector: (page 1181) (NSObject)

Declared In
NSProxy.h

1312 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 114

NSProxy Class Reference

Inherits from NSScriptCommand : NSObject

Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptStandardSuiteCommands.h

Companion guide Cocoa Scripting Guide

Overview

An instance of NSQuitCommand quits the specified application. The command may optionally specify how
to handle modified documents (automatically save changes, don’t save them, or ask the user). For details,
see the description for the quit command in "Apple Events Sent By the Mac OS" in How Cocoa Applications
Handle Apple Events inCocoa Scripting Guide.

NSQuitCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSQuitCommand or call its methods.

Tasks

Accessing Options

– saveOptions (page 1313)
Returns a constant indicating how to deal with closing any modified documents.

Instance Methods

saveOptions
Returns a constant indicating how to deal with closing any modified documents.

Overview 1313
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 115

NSQuitCommand Class Reference

- (NSSaveOptions)saveOptions

Return Value
A constant indicating how to deal with closing any modified documents.

The default value returned is NSSaveOptionsAsk. See "Constants" in NSCloseCommand for a list of possible
return values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

1314 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 115

NSQuitCommand Class Reference

Inherits from NSScriptObjectSpecifier : NSObject

Conforms to NSCoding (NSScriptObjectSpecifier)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptObjectSpecifiers.h

Companion guide Cocoa Scripting Guide

Overview

Specifies an arbitrary object in a collection or, if not a one-to-many relationship, the sole object.

Overview 1315
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 116

NSRandomSpecifier Class Reference

1316 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 116

NSRandomSpecifier Class Reference

Inherits from NSScriptObjectSpecifier : NSObject

Conforms to NSCoding (NSScriptObjectSpecifier)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptObjectSpecifiers.h

Companion guide Cocoa Scripting Guide

Related sample code Sketch-112

Overview

An NSRangeSpecifier object specifies a range (that is, an uninterrupted series) of objects in a container
through two delimiting objects. The range is represented by two object specifiers, a start specifier and an
end specifier, which can be of any specifier type (such as NSIndexSpecifier or NSWhoseSpecifier object).
These specifiers are evaluated in the context of the same container object as the range specifier itself.

You don’t normally subclass NSRangeSpecifier.

Tasks

Initializing a Range Specifier

– initWithContainerClassDescription:containerSpecifier:key:startSpecifier:endSpecifier: (page
1318)

Returns a range specifier initialized with the given properties.

Accessing a Range Specifier

– endSpecifier (page 1318)
Returns the object specifier representing the last object of the range.

Overview 1317
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 117

NSRangeSpecifier Class Reference

– setEndSpecifier: (page 1319)
Sets the object specifier representing the last object of the range to a given object.

– setStartSpecifier: (page 1319)
Sets the object specifier representing the first object of the range to a given object.

– startSpecifier (page 1319)
Returns the object specifier representing the first object of the range.

Instance Methods

endSpecifier
Returns the object specifier representing the last object of the range.

- (NSScriptObjectSpecifier *)endSpecifier

Return Value
The object specifier representing the last object of the range.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Sketch-112

Declared In
NSScriptObjectSpecifiers.h

initWithContainerClassDescription:containerSpecifier:key:startSpecifier:
endSpecifier:
Returns a range specifier initialized with the given properties.

- (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDescription
containerSpecifier:(NSScriptObjectSpecifier *)container key:(NSString *)property
startSpecifier:(NSScriptObjectSpecifier *)startSpec
endSpecifier:(NSScriptObjectSpecifier *)endSpec

Parameters
classDescription

The class description.

container
The container.

property
The property.

startSpec
The object specifier representing the first object of the range.

1318 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 117

NSRangeSpecifier Class Reference

endSpec
The object specifier representing the last object of the range.

Return Value
A range specifier initialized with the given properties.

Discussion
Invokes the super class’s initWithContainerClassDescription:containerSpecifier:key: (page
1418) method and initializes the instance with the object specifiers representing the starting element,
startSpec, and the ending element, endSpec, of a range of elements in the container.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

setEndSpecifier:
Sets the object specifier representing the last object of the range to a given object.

- (void)setEndSpecifier:(NSScriptObjectSpecifier *)endSpec

Parameters
endSpec

The object specifier representing the last object of the range.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

setStartSpecifier:
Sets the object specifier representing the first object of the range to a given object.

- (void)setStartSpecifier:(NSScriptObjectSpecifier *)startSpec

Parameters
startSpec

The object specifier representing the first object of the range.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

startSpecifier
Returns the object specifier representing the first object of the range.

Instance Methods 1319
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 117

NSRangeSpecifier Class Reference

- (NSScriptObjectSpecifier *)startSpecifier

Return Value
The object specifier representing the first object of the range.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Sketch-112

Declared In
NSScriptObjectSpecifiers.h

1320 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 117

NSRangeSpecifier Class Reference

Inherits from NSObject

Conforms to NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSLock.h

Companion guide Threading Programming Guide

Related sample code CIVideoDemoGL
LSMSmartCategorizer
QTCoreImage101
QTCoreVideo103
QTCoreVideo201

Overview

NSRecursiveLock defines a lock that may be acquired multiple times by the same thread without causing
a deadlock, a situation where a thread is permanently blocked waiting for itself to relinquish a lock. While
the locking thread has one or more locks, all other threads are prevented from accessing the code protected
by the lock.

Adopted Protocols

NSLocking
– lock (page 2091)
– unlock (page 2092)

Overview 1321
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 118

NSRecursiveLock Class Reference

Tasks

Acquiring a Lock

– lockBeforeDate: (page 1322)
Attempts to acquire a lock before a given date.

– tryLock (page 1323)
Attempts to acquire a lock, and immediately returns a Boolean value that indicates whether the
attempt was successful.

Naming the Lock

– setName: (page 1323)
Assigns a name to the receiver

– name (page 1322)
Returns the name associated with the receiver.

Instance Methods

lockBeforeDate:
Attempts to acquire a lock before a given date.

- (BOOL)lockBeforeDate:(NSDate *)limit

Parameters
limit

The time before which the lock should be acquired.

Return Value
YES if the lock is acquired before limit, otherwise NO.

Discussion
The thread is blocked until the receiver acquires the lock or limit is reached.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLock.h

name
Returns the name associated with the receiver.

- (NSString *)name

1322 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 118

NSRecursiveLock Class Reference

Return Value
The name of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setName: (page 1323)

Declared In
NSLock.h

setName:
Assigns a name to the receiver

- (void)setName:(NSString *)newName

Parameters
newName

The new name for the receiver. This method makes a copy of the specified string.

Discussion
You can use a name string to identify a lock within your code. Cocoa also uses this name as part of any error
descriptions involving the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– name (page 1322)

Declared In
NSLock.h

tryLock
Attempts to acquire a lock, and immediately returns a Boolean value that indicates whether the attempt was
successful.

- (BOOL)tryLock

Return Value
YES if successful, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLock.h

Instance Methods 1323
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 118

NSRecursiveLock Class Reference

1324 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 118

NSRecursiveLock Class Reference

Inherits from NSScriptObjectSpecifier : NSObject

Conforms to NSCoding (NSScriptObjectSpecifier)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptObjectSpecifiers.h

Companion guide Cocoa Scripting Guide

Related sample code Sketch-112

Overview

Specifies an object in a collection by its position relative to another object. You don’t normally subclass
NSRelativeSpecifier.

Tasks

Initializing a Relative Specifier

– initWithContainerClassDescription:containerSpecifier:key:relativePosition:baseSpecifier: (page
1326)

Invokes the super class’s
initWithContainerClassDescription:containerSpecifier:key: (page 1418) method and
initializes the relative position and base specifier to relPos and baseSpecifier.

Accessing a Relative Specifier

– baseSpecifier (page 1326)
Returns a specifier for the base object.

– relativePosition (page 1326)
Returns the relative position encapsulated by the receiver.

Overview 1325
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 119

NSRelativeSpecifier Class Reference

– setBaseSpecifier: (page 1327)
Sets the specifier for the base object.

– setRelativePosition: (page 1327)
Sets the relative position encapsulated by the receiver.

Instance Methods

baseSpecifier
Returns a specifier for the base object.

- (NSScriptObjectSpecifier *)baseSpecifier

Return Value
A specifier for the base object—the object to which the relative specifier is related.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Sketch-112

Declared In
NSScriptObjectSpecifiers.h

initWithContainerClassDescription:containerSpecifier:key:relativePosition:
baseSpecifier:
Invokes the super class’s initWithContainerClassDescription:containerSpecifier:key: (page
1418) method and initializes the relative position and base specifier to relPos and baseSpecifier.

- (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDescription
containerSpecifier:(NSScriptObjectSpecifier *)specifier key:(NSString *)property
relativePosition:(NSRelativePosition)relPos
baseSpecifier:(NSScriptObjectSpecifier *)baseSpecifier

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

relativePosition
Returns the relative position encapsulated by the receiver.

- (NSRelativePosition)relativePosition

1326 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 119

NSRelativeSpecifier Class Reference

Return Value
The relative position encapsulated by the receiver.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Sketch-112

Declared In
NSScriptObjectSpecifiers.h

setBaseSpecifier:
Sets the specifier for the base object.

- (void)setBaseSpecifier:(NSScriptObjectSpecifier *)baseSpecifier

Parameters
baseSpecifier

The specifier for the base object—the object to which the relative specifier is related.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

setRelativePosition:
Sets the relative position encapsulated by the receiver.

- (void)setRelativePosition:(NSRelativePosition)relPos

Parameters
relPos

The relative position encapsulated by the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

Constants

NSRelativePosition
These constants are used by relativePosition (page 1326) and setRelativePosition: (page 1327).

Constants 1327
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 119

NSRelativeSpecifier Class Reference

typedef enum {
 NSRelativeAfter = 0,
 NSRelativeBefore
} NSRelativePosition;

Constants
NSRelativeAfter

Specifies a position after another object.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSRelativeBefore
Specifies a position before another object.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

1328 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 119

NSRelativeSpecifier Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSRunLoop.h

Companion guide Threading Programming Guide

Related sample code CocoaEcho
CocoaSOAP
QTAudioExtractionPanel
SimpleCocoaJavaMovie
WhackedTV

Overview

The NSRunLoop class declares the programmatic interface to objects that manage input sources. An
NSRunLoop object processes input for sources such as mouse and keyboard events from the window system,
NSPort objects, and NSConnection objects. An NSRunLoop object also processes NSTimer events.

In general, your application does not need to either create or explicitly manage NSRunLoop objects. Each
NSThread object, including the application’s main thread, has an NSRunLoop object automatically created
for it as needed. If you need to access the current thread’s run loop, you do so with the class method
currentRunLoop (page 1331).

Note that from the perspective of NSRunloop, NSTimer objects are not "input"—they are a special type,
and one of the things that means is that they do not cause the run loop to return when they fire.

Warning: The NSRunLoop class is generally not considered to be thread-safe and its methods should
only be called within the context of the current thread. You should never try to call the methods of an
NSRunLoop object running in a different thread, as doing so might cause unexpected results.

Overview 1329
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

Tasks

Accessing Run Loops and Modes

+ currentRunLoop (page 1331)
Returns the NSRunLoop object for the current thread.

– currentMode (page 1335)
Returns the receiver's current input mode.

– limitDateForMode: (page 1336)
Performs one pass through the run loop in the specified mode and returns the date at which the next
timer is scheduled to fire.

+ mainRunLoop (page 1332)
Returns the run loop of the main thread.

– getCFRunLoop (page 1336)
Returns the receiver's underlying CFRunLoop Reference object.

Managing Timers

– addTimer:forMode: (page 1333)
Registers a given timer with a given input mode.

Managing Ports

– addPort:forMode: (page 1333)
Adds a port as an input source to the specified mode of the run loop.

– removePort:forMode: (page 1337)
Removes a port from the specified input mode of the run loop.

Configuring as Server Process

– configureAsServer (page 1335) Deprecated in Mac OS X v10.5
Deprecated. Does nothing. (Deprecated. Deprecated since Mac OS X v10.5. There is no alternative
method.)

Running a Loop

– run (page 1338)
Puts the receiver into a permanent loop, during which time it processes data from all attached input
sources.

– runMode:beforeDate: (page 1339)
Runs the loop once, blocking for input in the specified mode until a given date.

1330 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

– runUntilDate: (page 1339)
Runs the loop until the specified date, during which time it processes data from all attached input
sources.

– acceptInputForMode:beforeDate: (page 1332)
Runs the loop once or until the specified date, accepting input only for the specified mode.

Scheduling and Canceling Messages

– performSelector:target:argument:order:modes: (page 1336)
Schedules the sending of a message on the current run loop.

– cancelPerformSelector:target:argument: (page 1334)
Cancels the sending of a previously scheduled message.

– cancelPerformSelectorsWithTarget: (page 1334)
Cancels all outstanding ordered performs scheduled with a given target.

Class Methods

currentRunLoop
Returns the NSRunLoop object for the current thread.

+ (NSRunLoop *)currentRunLoop

Return Value
The NSRunLoop object for the current thread.

Discussion
If a run loop does not yet exist for the thread, one is created and returned.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentMode (page 1335)

Related Sample Code
CocoaEcho
CocoaSOAP
QTAudioExtractionPanel
Quartz Composer Texture
WhackedTV

Declared In
NSRunLoop.h

Class Methods 1331
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

mainRunLoop
Returns the run loop of the main thread.

+ (NSRunLoop *)mainRunLoop

Return Value
An object representing the main thread’s run loop.

Availability
Available in Mac OS X v10.5.

Declared In
NSRunLoop.h

Instance Methods

acceptInputForMode:beforeDate:
Runs the loop once or until the specified date, accepting input only for the specified mode.

- (void)acceptInputForMode:(NSString *)mode beforeDate:(NSDate *)limitDate

Parameters
mode

The mode in which to run. You may specify custom modes or use one of the modes listed in “Run
Loop Modes” (page 1340).

limitDate
The date up until which to run.

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately; otherwise, it runs
the run loop once, returning as soon as one input source processes a message or the specifed time elapses.

Note: A timer is not considered an input source and may fire multiple times while waiting for this method
to return

Manually removing all known input sources and timers from the run loop is not a guarantee that the run
loop will exit. Mac OS X can install and remove additional input sources as needed to process requests
targeted at the receiver’s thread. Those sources could therefore prevent the run loop from exiting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runMode:beforeDate: (page 1339)

Declared In
NSRunLoop.h

1332 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

addPort:forMode:
Adds a port as an input source to the specified mode of the run loop.

- (void)addPort:(NSPort *)aPort forMode:(NSString *)mode

Parameters
aPort

The port to add to the receiver.

mode
The mode in which to add aPort. You may specify a custom mode or use one of the modes listed in
“Run Loop Modes” (page 1340).

Discussion
This method schedules the port with the receiver. You can add a port to multiple input modes. When the
receiver is running in the specified mode, it dispatches messages destined for that port to the port’s designated
handler routine.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removePort:forMode: (page 1337)

Declared In
NSRunLoop.h

addTimer:forMode:
Registers a given timer with a given input mode.

- (void)addTimer:(NSTimer *)aTimer forMode:(NSString *)mode

Parameters
aTimer

The timer to register with the receiver.

mode
The mode in which to add aTimer. You may specify a custom mode or use one of the modes listed
in “Run Loop Modes” (page 1340).

Discussion
You can add a timer to multiple input modes. While running in the designated mode, the receiver causes
the timer to fire on or after its scheduled fire date. Upon firing, the timer invokes its associated handler
routine, which is a selector on a designated object.

The receiver retains aTimer. To remove a timer from all run loop modes on which it is installed, send an
invalidate (page 1660) message to the timer.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
OpenGLCaptureToMovie
OpenGLCompositorLab

Instance Methods 1333
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

Quartz Composer QCTV
Quartz Composer Texture
WhackedTV

Declared In
NSRunLoop.h

cancelPerformSelector:target:argument:
Cancels the sending of a previously scheduled message.

- (void)cancelPerformSelector:(SEL)aSelector target:(id)target
argument:(id)anArgument

Parameters
aSelector

The previously-specified selector.

target
The previously-specified target.

anArgument
The previously-specified argument.

Discussion
You can use this method to cancel a message previously scheduled using the
performSelector:target:argument:order:modes: (page 1336) method. The parameters identify the
message you want to cancel and must match those originally specified when the selector was scheduled.
This method removes the perform request from all modes of the run loop.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRunLoop.h

cancelPerformSelectorsWithTarget:
Cancels all outstanding ordered performs scheduled with a given target.

- (void)cancelPerformSelectorsWithTarget:(id)target

Parameters
target

The previously-specified target.

Discussion
This method cancels the previously scheduled messages associated with the target, ignoring the selector
and argument of the scheduled operation. This is in contrast to
cancelPerformSelector:target:argument: (page 1334), which requires you to match the selector and
argument as well as the target. This method removes the perform requests for the object from all modes of
the run loop.

1334 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSRunLoop.h

configureAsServer
Deprecated. Does nothing. (Deprecated in Mac OS X v10.5. Deprecated since Mac OS X v10.5. There is no
alternative method.)

- (void)configureAsServer

Discussion
On Mac OS X, this method does nothing.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSRunLoop.h

currentMode
Returns the receiver's current input mode.

- (NSString *)currentMode

Return Value
The receiver's current input mode. This method returns the current input mode only while the receiver is
running; otherwise, it returns nil.

Discussion
The current mode is set by the methods that run the run loop, such as
acceptInputForMode:beforeDate: (page 1332) and runMode:beforeDate: (page 1339).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentRunLoop (page 1331)
– limitDateForMode: (page 1336)
– run (page 1338)
– runUntilDate: (page 1339)

Declared In
NSRunLoop.h

Instance Methods 1335
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

getCFRunLoop
Returns the receiver's underlying CFRunLoop Reference object.

- (CFRunLoopRef)getCFRunLoop

Return Value
The receiver's underlying CFRunLoop Reference object.

Discussion
You can use the returned run loop to configure the current run loop using Core Foundation function calls.
For example, you might use this function to set up a run loop observer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRunLoop.h

limitDateForMode:
Performs one pass through the run loop in the specified mode and returns the date at which the next timer
is scheduled to fire.

- (NSDate *)limitDateForMode:(NSString *)mode

Parameters
mode

The run loop mode to search. You may specify custom modes or use one of the modes listed in “Run
Loop Modes” (page 1340).

Return Value
The date at which the next timer is scheduled to fire, or nil if there are no input sources for this mode.

Discussion
The run loop is entered with an immediate timeout, so the run loop does not block, waiting for input, if no
input sources need processing.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRunLoop.h

performSelector:target:argument:order:modes:
Schedules the sending of a message on the current run loop.

- (void)performSelector:(SEL)aSelector target:(id)target argument:(id)anArgument
order:(NSUInteger)order modes:(NSArray *)modes

1336 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

Parameters
aSelector

A selector that identifies the method to invoke. This method should not have a significant return
value and should take a single argument of type id.

target
The object that defines the selector in aSelector.

anArgument
The argument to pass to the method when it is invoked. Pass nil if the method does not take an
argument.

order
The priority for the message. If multiple messages are scheduled, the messages with a lower order
value are sent before messages with a higher order value.

modes
An array of input modes for which the message may be sent. You may specify custom modes or use
one of the modes listed in “Run Loop Modes” (page 1340).

Discussion
This method sets up a timer to perform the aSelector message on the current thread’s run loop at the start
of the next run loop iteration. The timer is configured to run in the modes specified by the modes parameter.
When the timer fires, the thread attempts to dequeue the message from the run loop and perform the
selector. It succeeds if the run loop is running and in one of the specified modes; otherwise, the timer waits
until the run loop is in one of those modes.

This method returns before the aSelectormessage is sent. The receiver retains the target and anArgument
objects until the timer for the selector fires, and then releases them as part of its cleanup.

Use this method if you want multiple messages to be sent after the current event has been processed and
you want to make sure these messages are sent in a certain order.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cancelPerformSelector:target:argument: (page 1334)

Related Sample Code
StickiesExample

Declared In
NSRunLoop.h

removePort:forMode:
Removes a port from the specified input mode of the run loop.

- (void)removePort:(NSPort *)aPort forMode:(NSString *)mode

Parameters
aPort

The port to remove from the receiver.

Instance Methods 1337
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

mode
The mode from which to remove aPort. You may specify a custom mode or use one of the modes
listed in “Run Loop Modes” (page 1340).

Discussion
If you added the port to multiple input modes, you must remove it from each mode separately.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addPort:forMode: (page 1333)

Declared In
NSRunLoop.h

run
Puts the receiver into a permanent loop, during which time it processes data from all attached input sources.

- (void)run

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately; otherwise, it runs
the receiver in the NSDefaultRunLoopMode by repeatedly invoking runMode:beforeDate: (page 1339). In
other words, this method effectively begins an infinite loop that processes data from the run loop’s input
sources and timers.

Manually removing all known input sources and timers from the run loop is not a guarantee that the run
loop will exit. Mac OS X can install and remove additional input sources as needed to process requests
targeted at the receiver’s thread. Those sources could therefore prevent the run loop from exiting.

If you want the run loop to terminate, you shouldn't use this method. Instead, use one of the other run
methods and also check other arbitrary conditions of your own, in a loop. A simple example would be:

BOOL shouldKeepRunning = YES; // global
NSRunLoop *theRL = [NSRunLoop currentRunLoop];
while (shouldKeepRunning && [theRL runMode:NSDefaultRunLoopMode beforeDate:[NSDate
 distantFuture]]);

where shouldKeepRunning is set to NO somewhere else in the program.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runUntilDate: (page 1339)

Related Sample Code
CocoaEcho
CocoaHTTPServer
CocoaSOAP
SimpleThreads
TrivialThreads

1338 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

Declared In
NSRunLoop.h

runMode:beforeDate:
Runs the loop once, blocking for input in the specified mode until a given date.

- (BOOL)runMode:(NSString *)mode beforeDate:(NSDate *)limitDate

Parameters
mode

The mode in which to run. You may specify custom modes or use one of the modes listed in “Run
Loop Modes” (page 1340).

limitDate
The date until which to block.

Return Value
NO without starting the run loop if there are no input sources in mode; otherwise YES.

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately; otherwise, it returns
after either the first input source is processed or limitDate is reached. Manually removing all known input
sources and timers from the run loop is not a guarantee that the run loop will exit. Mac OS X may install and
remove additional input sources as needed to process requests targeted at the receiver’s thread. Those
sources could therefore prevent the run loop from exiting.

Note: A timer is not considered an input source and may fire multiple times while waiting for this method
to return

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 1338)
– runUntilDate: (page 1339)

Related Sample Code
CocoaSOAP

Declared In
NSRunLoop.h

runUntilDate:
Runs the loop until the specified date, during which time it processes data from all attached input sources.

- (void)runUntilDate:(NSDate *)limitDate

Parameters
limitDate

The date up until which to run.

Instance Methods 1339
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately; otherwise, it runs
the receiver in the NSDefaultRunLoopMode by repeatedly invoking runMode:beforeDate: (page 1339)
until the specified expiration date.

Manually removing all known input sources and timers from the run loop is not a guarantee that the run
loop will exit. Mac OS X can install and remove additional input sources as needed to process requests
targeted at the receiver’s thread. Those sources could therefore prevent the run loop from exiting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 1338)

Related Sample Code
EnhancedAudioBurn
QTAudioExtractionPanel

Declared In
NSRunLoop.h

Constants

Run Loop Modes
NSRunLoop defines the following run loop mode.

extern NSString *NSDefaultRunLoopMode;

Constants
NSDefaultRunLoopMode

The mode to deal with input sources other than NSConnection objects.

This is the most commonly used run-loop mode.

Available in Mac OS X v10.0 and later.

Declared in NSRunLoop.h.

NSRunLoopCommonModes
Objects added to a run loop using this value as the mode are monitored by all run loop modes that
have been declared as a member of the set of “common" modes; see the description of
CFRunLoopAddCommonMode for details.

Available in Mac OS X v10.5 and later.

Declared in NSRunLoop.h.

Declared In
Foundation/NSRunLoop.h

Additional run loop modes are defined by NSConnection and NSApplication.

1340 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

Use this mode to indicate NSConnection objects waiting for replies.
Defined in the Foundation/NSConnection.h header file. You rarely
need to use this mode.

NSConnectionReplyMode

A run loop should be set to this mode when waiting for input from a
modal panel, such as NSSavePanel or NSOpenPanel.

NSModalPanelRunLoopMode

A run loop should be set to this mode when tracking events modally,
such as a mouse-dragging loop.

NSEventTrackingRunLoopMode

Constants 1341
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

1342 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 120

NSRunLoop Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScanner.h
Foundation/NSDecimalNumber.h

Companion guide String Programming Guide for Cocoa

Related sample code ImageMapExample
iSpend
NumberInput_IMKit_Sample
QTAudioExtractionPanel
Quartz Composer QCTV

Overview

The NSScanner class is an abstract superclass of a class cluster that declares the programmatic interface for
an object that scans values from an NSString object.

An NSScanner object interprets and converts the characters of an NSString object into number and string
values. You assign the scanner’s string on creating it, and the scanner progresses through the characters of
that string from beginning to end as you request items.

Because of the nature of class clusters, scanner objects aren’t actual instances of the NSScanner class but
one of its private subclasses. Although a scanner object’s class is private, its interface is public, as declared
by this abstract superclass, NSScanner. The primitive methods of NSScanner are string (page 1359) and all
of the methods listed under “Configuring a Scanner” (page 1344) in the "Methods by Task" section. The objects
you create using this class are referred to as scanner objects (and when no confusion will result, merely as
scanners).

You can set an NSScanner object to ignore a set of characters as it scans the string using the
setCharactersToBeSkipped: (page 1357) method. The default set of characters to skip is the whitespace
and newline character set.

To retrieve the unscanned remainder of the string, use [[scanner string]substringFromIndex: (page
1609)[scanner scanLocation]].

Overview 1343
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Adopted Protocols

NSCopying
– copyWithZone: (page 2042)

Tasks

Creating an Scanner

+ scannerWithString: (page 1346)
Returns an NSScanner object that scans a given string.

+ localizedScannerWithString: (page 1345)
Returns an NSScanner object that scans a given string according to the user’s default locale.

– initWithString: (page 1347)
Returns an NSScanner object initialized to scan a given string.

Getting a Scanner’s String

– string (page 1359)
Returns the string with which the receiver was created or initialized.

Configuring a Scanner

– setScanLocation: (page 1358)
Sets the location at which the next scan operation will begin to a given index.

– scanLocation (page 1354)
Returns the character position at which the receiver will begin its next scanning operation.

– setCaseSensitive: (page 1357)
Sets whether the receiver is case sensitive when scanning characters.

– caseSensitive (page 1346)
Returns a Boolean value that indicates whether the receiver distinguishes case in the characters it
scans.

– setCharactersToBeSkipped: (page 1357)
Sets the set of characters to ignore when scanning for a value representation.

– charactersToBeSkipped (page 1347)
Returns a character set containing the characters the receiver ignores when looking for a scannable
element.

– setLocale: (page 1358)
Sets the receiver’s locale to a given locale.

– locale (page 1348)
Returns the receiver’s locale.

1344 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Scanning a String

– scanCharactersFromSet:intoString: (page 1349)
Scans the string as long as characters from a given character set are encountered, accumulating
characters into a string that’s returned by reference.

– scanUpToCharactersFromSet:intoString: (page 1355)
Scans the string until a character from a given character set is encountered, accumulating characters
into a string that’s returned by reference.

– scanDecimal: (page 1349)
Scans for an NSDecimal value, returning a found value by reference.

– scanDouble: (page 1350)
Scans for a double value, returning a found value by reference.

– scanFloat: (page 1350)
Scans for a float value, returning a found value by reference.

– scanHexDouble: (page 1351)
Scans for a double value from a hexadecimal representation, returning a found value by reference.

– scanHexFloat: (page 1352)
Scans for a double value from a hexadecimal representation, returning a found value by reference.

– scanHexInt: (page 1352)
Scans for an unsigned value from a hexadecimal representation, returning a found value by reference.

– scanHexLongLong: (page 1352)
Scans for a double value from a hexadecimal representation, returning a found value by reference.

– scanInteger: (page 1353)
Scans for an NSInteger value from a decimal representation, returning a found value by reference

– scanInt: (page 1353)
Scans for an int value from a decimal representation, returning a found value by reference.

– scanLongLong: (page 1354)
Scans for a long long value from a decimal representation, returning a found value by reference.

– scanString:intoString: (page 1355)
Scans a given string, returning an equivalent string object by reference if a match is found.

– scanUpToString:intoString: (page 1356)
Scans the string until a given string is encountered, accumulating characters into a string that’s
returned by reference.

– isAtEnd (page 1348)
Returns a Boolean value that indicates whether the receiver has exhausted all significant characters

Class Methods

localizedScannerWithString:
Returns an NSScanner object that scans a given string according to the user’s default locale.

+ (id)localizedScannerWithString:(NSString *)aString

Class Methods 1345
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Parameters
aString

The string to scan.

Return Value
An NSScanner object that scans aString according to the user’s default locale.

Discussion
Sets the string to scan by invoking initWithString: (page 1347) with aString. The locale is set with
setLocale: (page 1358).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScanner.h

scannerWithString:
Returns an NSScanner object that scans a given string.

+ (id)scannerWithString:(NSString *)aString

Parameters
aString

The string to scan.

Return Value
An NSScanner object that scans aString.

Discussion
Sets the string to scan by invoking initWithString: (page 1347) with aString.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend
NumberInput_IMKit_Sample
QTAudioExtractionPanel
Quartz Composer QCTV
Sproing

Declared In
NSScanner.h

Instance Methods

caseSensitive
Returns a Boolean value that indicates whether the receiver distinguishes case in the characters it scans.

1346 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

- (BOOL)caseSensitive

Return Value
YES if the receiver distinguishes case in the characters it scans, otherwise NO.

Discussion
Scanners are not case sensitive by default. Note that case sensitivity doesn’t apply to the characters to be
skipped.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCaseSensitive: (page 1357)
– setCharactersToBeSkipped: (page 1357)

Declared In
NSScanner.h

charactersToBeSkipped
Returns a character set containing the characters the receiver ignores when looking for a scannable element.

- (NSCharacterSet *)charactersToBeSkipped

Return Value
A character set containing the characters the receiver ignores when looking for a scannable element.

Discussion
For example, if a scanner ignores spaces and you send it a scanInt: (page 1353) message, it skips spaces
until it finds a decimal digit or other character. While an element is being scanned, however, no characters
are skipped. If you scan for something made of characters in the set to be skipped (for example, using
scanInt: (page 1353) when the set of characters to be skipped is the decimal digits), the result is undefined.

The default set to skip is the whitespace and newline character set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCharactersToBeSkipped: (page 1357)
whitespaceAndNewlineCharacterSet (page 252) (NSCharacterSet)

Declared In
NSScanner.h

initWithString:
Returns an NSScanner object initialized to scan a given string.

- (id)initWithString:(NSString *)aString

Instance Methods 1347
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Parameters
aString

The string to scan.

Return Value
An NSScanner object initialized to scan aString from the beginning. The returned object might be different
than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ localizedScannerWithString: (page 1345)
+ scannerWithString: (page 1346)

Declared In
NSScanner.h

isAtEnd
Returns a Boolean value that indicates whether the receiver has exhausted all significant characters

- (BOOL)isAtEnd

Return Value
YES if the receiver has exhausted all significant characters in its string, otherwise NO.

If only characters from the set to be skipped remain, returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– charactersToBeSkipped (page 1347)

Related Sample Code
QTAudioExtractionPanel

Declared In
NSScanner.h

locale
Returns the receiver’s locale.

- (id)locale

Return Value
The receiver’s locale, or nil if it has none.

1348 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Discussion
A scanner’s locale affects the way it interprets numeric values from the string. In particular, a scanner uses
the locale’s decimal separator to distinguish the integer and fractional parts of floating-point representations.
A scanner with no locale set uses non-localized values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLocale: (page 1358)

Declared In
NSScanner.h

scanCharactersFromSet:intoString:
Scans the string as long as characters from a given character set are encountered, accumulating characters
into a string that’s returned by reference.

- (BOOL)scanCharactersFromSet:(NSCharacterSet *)scanSet intoString:(NSString
**)stringValue

Parameters
scanSet

The set of characters to scan.

stringValue
Upon return, contains the characters scanned.

Return Value
YES if the receiver scanned any characters, otherwise NO.

Discussion
Invoke this method with NULL as stringValue to simply scan past a given set of characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scanUpToCharactersFromSet:intoString: (page 1355)

Declared In
NSScanner.h

scanDecimal:
Scans for an NSDecimal value, returning a found value by reference.

- (BOOL)scanDecimal:(NSDecimal *)decimalValue

Parameters
decimalValue

Upon return, contains the scanned value. See the NSDecimalNumber class specification for more
information about NSDecimal values.

Instance Methods 1349
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Return Value
YES if the receiver finds a valid NSDecimal representation, otherwise NO.

Discussion
Invoke this method with NULL as decimalValue to simply scan past an NSDecimal representation.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NumberInput_IMKit_Sample

Declared In
NSDecimalNumber.h

scanDouble:
Scans for a double value, returning a found value by reference.

- (BOOL)scanDouble:(double *)doubleValue

Parameters
doubleValue

Upon return, contains the scanned value. Contains HUGE_VAL or –HUGE_VAL on overflow, or 0.0 on
underflow.

Return Value
YES if the receiver finds a valid floating-point representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the scanner’s position is past the entire floating-point
representation.

Invoke this method with NULL as doubleValue to simply scan past a double value representation.
Floating-point representations are assumed to be IEEE compliant.

Availability
Available in Mac OS X v10.0 and later.

See Also
doubleValue (page 1552) (NSString)

Declared In
NSScanner.h

scanFloat:
Scans for a float value, returning a found value by reference.

- (BOOL)scanFloat:(float *)floatValue

1350 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Parameters
floatValue

Upon return, contains the scanned value. Contains HUGE_VAL or –HUGE_VAL on overflow, or 0.0 on
underflow.

Return Value
YES if the receiver finds a valid floating-point representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the scanner’s position is past the entire floating-point
representation.

Invoke this method with NULL as floatValue to simply scan past a float value representation. Floating-point
representations are assumed to be IEEE compliant.

Availability
Available in Mac OS X v10.0 and later.

See Also
floatValue (page 1553) (NSString)

Related Sample Code
iSpend
Quartz Composer QCTV

Declared In
NSScanner.h

scanHexDouble:
Scans for a double value from a hexadecimal representation, returning a found value by reference.

- (BOOL)scanHexDouble:(double *)result

Parameters
result

Upon return, contains the scanned value.

Return Value
YES if the receiver finds a valid double-point representation, otherwise NO.

Discussion
This corresponds to %a or %A formatting. The hexadecimal double representation must be preceded by 0x
or 0X.

Invoke this method with NULL as result to simply scan past a hexadecimal double representation.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScanner.h

Instance Methods 1351
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

scanHexFloat:
Scans for a double value from a hexadecimal representation, returning a found value by reference.

- (BOOL)scanHexFloat:(float *)result

Parameters
result

Upon return, contains the scanned value.

Return Value
YES if the receiver finds a valid float-point representation, otherwise NO.

Discussion
This corresponds to %a or %A formatting. The hexadecimal float representation must be preceded by 0x or
0X.

Invoke this method with NULL as result to simply scan past a hexadecimal float representation.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScanner.h

scanHexInt:
Scans for an unsigned value from a hexadecimal representation, returning a found value by reference.

- (BOOL)scanHexInt:(unsigned *)intValue

Parameters
intValue

Upon return, contains the scanned value. Contains INT_MAX or INT_MIN on overflow.

Return Value
Returns YES if the receiver finds a valid hexadecimal integer representation, otherwise NO.

Discussion
The hexadecimal integer representation may optionally be preceded by 0x or 0X. Skips past excess digits in
the case of overflow, so the receiver’s position is past the entire hexadecimal representation.

Invoke this method with NULL as intValue to simply scan past a hexadecimal integer representation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScanner.h

scanHexLongLong:
Scans for a double value from a hexadecimal representation, returning a found value by reference.

- (BOOL)scanHexLongLong:(unsigned long long *)result

1352 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Parameters
result

Upon return, contains the scanned value.

Return Value
YES if the receiver finds a valid double-point representation, otherwise NO.

Discussion
Invoke this method with NULL as result to simply scan past a hexadecimal long long representation.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScanner.h

scanInt:
Scans for an int value from a decimal representation, returning a found value by reference.

- (BOOL)scanInt:(int *)intValue

Parameters
intValue

Upon return, contains the scanned value. Contains INT_MAX or INT_MIN on overflow.

Return Value
YES if the receiver finds a valid decimal integer representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the receiver’s position is past the entire decimal
representation.

Invoke this method with NULL as intValue to simply scan past a decimal integer representation.

Availability
Available in Mac OS X v10.0 and later.

See Also
intValue (page 1577) (NSString)
– scanInteger: (page 1353)

Declared In
NSScanner.h

scanInteger:
Scans for an NSInteger value from a decimal representation, returning a found value by reference

- (BOOL)scanInteger:(NSInteger *)value

Parameters
value

Upon return, contains the scanned value.

Instance Methods 1353
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Return Value
YES if the receiver finds a valid integer representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the receiver’s position is past the entire integer
representation.

Invoke this method with NULL as value to simply scan past a decimal integer representation.

Availability
Available in Mac OS X v10.5 and later.

See Also
integerValue (page 1576) (NSString)
– scanInt: (page 1353)

Declared In
NSScanner.h

scanLocation
Returns the character position at which the receiver will begin its next scanning operation.

- (NSUInteger)scanLocation

Return Value
The character position at which the receiver will begin its next scanning operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setScanLocation: (page 1358)

Declared In
NSScanner.h

scanLongLong:
Scans for a long long value from a decimal representation, returning a found value by reference.

- (BOOL)scanLongLong:(long long *)longLongValue

Parameters
longLongValue

Upon return, contains the scanned value. Contains LLONG_MAX or LLONG_MIN on overflow.

Return Value
YES if the receiver finds a valid decimal integer representation, otherwise NO.

Discussion
All overflow digits are skipped. Skips past excess digits in the case of overflow, so the receiver’s position is
past the entire decimal representation.

1354 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Invoke this method with NULL as longLongValue to simply scan past a long decimal integer representation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScanner.h

scanString:intoString:
Scans a given string, returning an equivalent string object by reference if a match is found.

- (BOOL)scanString:(NSString *)string intoString:(NSString **)stringValue

Parameters
string

The string for which to scan at the current scan location.

stringValue
Upon return, if the receiver contains a string equivalent to string at the current scan location,
contains a string equivalent to string.

Return Value
YES if stringValue matches the characters at the scan location, otherwise NO.

Discussion
If string is present at the current scan location, then the current scan location is advanced to after the
string; otherwise the scan location does not change.

Invoke this method with NULL as stringValue to simply scan past a given string.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scanUpToString:intoString: (page 1356)

Declared In
NSScanner.h

scanUpToCharactersFromSet:intoString:
Scans the string until a character from a given character set is encountered, accumulating characters into a
string that’s returned by reference.

- (BOOL)scanUpToCharactersFromSet:(NSCharacterSet *)stopSet intoString:(NSString
**)stringValue

Parameters
stopSet

The set of characters up to which to scan.

stringValue
Upon return, contains the characters scanned.

Instance Methods 1355
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Return Value
YES if the receiver scanned any characters, otherwise NO.

If the only scanned characters are in the charactersToBeSkipped (page 1347) character set (which is the
whitespace and newline character set by default), then returns NO.

Discussion
Invoke this method with NULL as stringValue to simply scan up to a given set of characters.

If no characters in stopSet are present in the scanner's source string, the remainder of the source string is
put into stringValue, the receiver’s scanLocation is advanced to the end of the source string, and the
method returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scanCharactersFromSet:intoString: (page 1349)

Declared In
NSScanner.h

scanUpToString:intoString:
Scans the string until a given string is encountered, accumulating characters into a string that’s returned by
reference.

- (BOOL)scanUpToString:(NSString *)stopString intoString:(NSString **)stringValue

Parameters
stopString

The string to scan up to.

stringValue
Upon return, contains any characters that were scanned.

Return Value
YES if the receiver scans any characters, otherwise NO.

If the only scanned characters are in the charactersToBeSkipped (page 1347) character set (which by default
is the whitespace and newline character set), then this method returns NO.

Discussion
If stopString is present in the receiver, then on return the scan location is set to the beginning of that
string.

If stopString is the first string in the receiver, then the method returns NO and stringValue is not changed.

If the search string (stopString) isn't present in the scanner's source string, the remainder of the source
string is put into stringValue, the receiver’s scanLocation is advanced to the end of the source string,
and the method returns YES.

Invoke this method with NULL as stringValue to simply scan up to a given string.

Availability
Available in Mac OS X v10.0 and later.

1356 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

See Also
– scanString:intoString: (page 1355)

Declared In
NSScanner.h

setCaseSensitive:
Sets whether the receiver is case sensitive when scanning characters.

- (void)setCaseSensitive:(BOOL)flag

Parameters
flag

If YES, the receiver will distinguish case when scanning characters, otherwise it will ignore case
distinctions.

Discussion
Scanners are not case sensitive by default. Note that case sensitivity doesn’t apply to the characters to be
skipped.

Availability
Available in Mac OS X v10.0 and later.

See Also
– caseSensitive (page 1346)
– setCharactersToBeSkipped: (page 1357)

Declared In
NSScanner.h

setCharactersToBeSkipped:
Sets the set of characters to ignore when scanning for a value representation.

- (void)setCharactersToBeSkipped:(NSCharacterSet *)skipSet

Parameters
skipSet

The characters to ignore when scanning for a value representation.

Discussion
For example, if a scanner ignores spaces and you send it a scanInt: (page 1353) message, it skips spaces
until it finds a decimal digit or other character. While an element is being scanned, however, no characters
are skipped. If you scan for something made of characters in the set to be skipped (for example, using
scanInt: (page 1353) when the set of characters to be skipped is the decimal digits), the result is undefined.

The characters to be skipped are treated literally as single values. A scanner doesn’t apply its case sensitivity
setting to these characters and doesn’t attempt to match composed character sequences with anything in
the set of characters to be skipped (though it does match pre-composed characters individually). If you want
to skip all vowels while scanning a string, for example, you can set the characters to be skipped to those in
the string “AEIOUaeiou” (plus any accented variants with pre-composed characters).

Instance Methods 1357
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

The default set of characters to skip is the whitespace and newline character set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– charactersToBeSkipped (page 1347)
whitespaceAndNewlineCharacterSet (page 252) (NSCharacterSet)

Related Sample Code
ImageMapExample
QTAudioExtractionPanel
Quartz Composer QCTV

Declared In
NSScanner.h

setLocale:
Sets the receiver’s locale to a given locale.

- (void)setLocale:(id)aLocale

Parameters
aLocale

The locale for the receiver.

Discussion
A scanner’s locale affects the way it interprets values from the string. In particular, a scanner uses the locale’s
decimal separator to distinguish the integer and fractional parts of floating-point representations. A new
scanner’s locale is by default nil, which causes it to use non-localized values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– locale (page 1348)

Declared In
NSScanner.h

setScanLocation:
Sets the location at which the next scan operation will begin to a given index.

- (void)setScanLocation:(NSUInteger)index

Parameters
index

The location at which the next scan operation will begin. Raises an NSRangeException if index is
beyond the end of the string being scanned.

1358 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Discussion
This method is useful for backing up to rescan after an error.

Rather than setting the scan location directly to skip known sequences of characters, use
scanString:intoString: (page 1355) or scanCharactersFromSet:intoString: (page 1349), which
allow you to verify that the expected substring (or set of characters) is in fact present.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scanLocation (page 1354)

Declared In
NSScanner.h

string
Returns the string with which the receiver was created or initialized.

- (NSString *)string

Return Value
The string with which the receiver was created or initialized.

Availability
Available in Mac OS X v10.0 and later.

See Also
– locale (page 1348)

Declared In
NSScanner.h

Instance Methods 1359
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

1360 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 121

NSScanner Class Reference

Inherits from NSClassDescription : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptClassDescription.h

Companion guides Cocoa Scripting Guide
Key-Value Coding Programming Guide

Related sample code Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Overview

An instance of NSScriptClassDescription describes a script class that a Cocoa application supports.

A scriptable application provides scriptability information that describes the commands and objects scripters
can use in scripts that target the application. That includes information about the classes those scriptable
objects are created from.

An application’s scriptability information is collected automatically by an instance of
NSScriptSuiteRegistry. The registry object creates an NSScriptClassDescription for each class it
finds and caches these objects in memory. Cocoa scripting uses registry information in handling scripting
requests that target the application.

A class description instance stores the name, attributes, relationships, and supported commands for a class.
For example, a scriptable document class for a drawing application might support attributes such as file
and file type, relationships such as collections of circles, rectangles, and lines, and commands
such as align and rotate.

As with many of the classes in Cocoa’s built-in scripting support, your application may never need to directly
work with instances of NSScriptClassDescription. However, one case where you might need access to
a class description is if you override objectSpecifier in a scriptable class. For information on how to do
this, see Object Specifiers in Cocoa Scripting Guide.

Another case where your application may need access to class description information is if you override
indicesOfObjectsByEvaluatingWithContainer:count: in a specifier class.

Overview 1361
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

Although you can subclass NSScriptClassDescription, it is unlikely that you would need to do so, or
even to create instances of it.

Tasks

Initializing a Script Class Description

– initWithSuiteName:className:dictionary: (page 1368)
Initializes and returns a newly allocated instance of NSScriptClassDescription.

Getting a Script Class Description

+ classDescriptionForClass: (page 1363)
Returns the class description for the specified class or, if it is not scriptable, for the first superclass that
is.

– classDescriptionForKey: (page 1365)
Returns the class description instance for the class type of the specified attribute or relationship.

– superclassDescription (page 1371)
Returns the class description instance for the superclass of the receiver’s class.

Getting Basic Information About the Script Class

– className (page 1365)
Returns the name of the class the receiver describes, as provided at initialization time.

– defaultSubcontainerAttributeKey (page 1366)
Returns the value of the DefaultSubcontainerAttribute entry of the class dictionary from which
the receiver was instantiated.

– implementationClassName (page 1367)
Returns the name of the Objective-C class instantiated to implement the scripting class.

– isLocationRequiredToCreateForKey: (page 1368)
Returns a Boolean value indicating whether an insertion location must be specified when creating a
new object in the specified to-many relationship of the receiver.

– suiteName (page 1371)
Returns the name of the receiver’s suite.

Getting and Comparing Apple Event Codes

– appleEventCode (page 1364)
Returns the Apple event code associated with the receiver’s class.

– appleEventCodeForKey: (page 1364)
Returns the Apple event code for the specified attribute or relationship in the receiver.

1362 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

– matchesAppleEventCode: (page 1370)
Returns a Boolean value indicating whether a primary or secondary Apple event code in the receiver
matches the passed code.

Getting Attribute and Relationship Information

– hasOrderedToManyRelationshipForKey: (page 1366)
Returns a Boolean value indicating whether the described class has an ordered to-many relationship
identified by the specified key.

– hasPropertyForKey: (page 1366)
Returns a Boolean value indicating whether the described class has a property identified by the
specified key.

– hasReadablePropertyForKey: (page 1367)
Returns a Boolean value indicating whether the described class has a readable property identified by
the specified key.

– hasWritablePropertyForKey: (page 1367)
Returns a Boolean value indicating whether the described class has a writable property identified by
the specified key.

– keyWithAppleEventCode: (page 1369)
Given an Apple event code that identifies a property or element class, returns the key for the
corresponding attribute, one-to-one relationship, or one-to-many relationship.

– typeForKey: (page 1372)
Returns the name of the declared type of the attribute or relationship identified by the passed key.

– isReadOnlyKey: (page 1369) Deprecated in Mac OS X v10.5
Returns a Boolean value indicating whether a specified property in the receiver is read-only.
(Deprecated. Use hasWritablePropertyForKey: (page 1367) instead.)

Getting Command Information

– selectorForCommand: (page 1370)
Returns the selector associated with the receiver for the specified command description.

– supportsCommand: (page 1372)
Returns a Boolean value indicating whether the receiver or any superclass supports the specified
command.

Class Methods

classDescriptionForClass:
Returns the class description for the specified class or, if it is not scriptable, for the first superclass that is.

+ (NSScriptClassDescription *)classDescriptionForClass:(Class)aClass

Class Methods 1363
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

Parameters
aClass

The class whose description is needed.

Return Value
The class description for the class specified by aClass or, if that class isn’t scriptable, for the class description
for the first superclass that is. Returns nil if it doesn’t find a scriptable class.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScriptClassDescription.h

Instance Methods

appleEventCode
Returns the Apple event code associated with the receiver’s class.

- (FourCharCode)appleEventCode

Return Value
The Apple event code associated with the receiver’s class. This is the primary code used to identify the class
in Apple events.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appleEventCodeForKey: (page 1364)
– matchesAppleEventCode: (page 1370)

Declared In
NSScriptClassDescription.h

appleEventCodeForKey:
Returns the Apple event code for the specified attribute or relationship in the receiver.

- (FourCharCode)appleEventCodeForKey:(NSString *)key

Parameters
key

The identifying key for an attribute or relationship of the receiver.

Return Value
The four-character Apple event code associated with the attribute or relationship identified by key in the
receiver or, if none exists, in the class description for the receiver’s superclass. Returns 0 if no such attribute
or relationship is found.

1364 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– appleEventCode (page 1364)
– matchesAppleEventCode: (page 1370)

Declared In
NSScriptClassDescription.h

classDescriptionForKey:
Returns the class description instance for the class type of the specified attribute or relationship.

- (NSScriptClassDescription *)classDescriptionForKey:(NSString *)key

Parameters
key

The identifying key for an attribute or relationship of the receiver.

Return Value
The instance of NSScriptClassDescription for the type of the attribute or relationship specified by key.
Returns nil if no scriptable property corresponds to key.

Availability
Available in Mac OS X v10.0 and later.

See Also
– superclassDescription (page 1371)

Declared In
NSScriptClassDescription.h

className
Returns the name of the class the receiver describes, as provided at initialization time.

- (NSString *)className

Return Value
A class name. This may be either the human-readable name for the class—that is, the name that is used in
a script—or the name of the Objective-C class that is instantiated to implement the class. To reliably obtain
the implementation name, use implementationClassName (page 1367).

Availability
Available in Mac OS X v10.0 and later.

See Also
– suiteName (page 1371)

Declared In
NSScriptClassDescription.h

Instance Methods 1365
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

defaultSubcontainerAttributeKey
Returns the value of the DefaultSubcontainerAttribute entry of the class dictionary from which the
receiver was instantiated.

- (NSString *)defaultSubcontainerAttributeKey

Return Value
The value of the default subcontainer attribute entry. Returns nil if the there was no such entry.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSScriptClassDescription.h

hasOrderedToManyRelationshipForKey:
Returns a Boolean value indicating whether the described class has an ordered to-many relationship identified
by the specified key.

- (BOOL)hasOrderedToManyRelationshipForKey:(NSString *)key

Parameters
key

The identifying key for a property of the receiver.

Return Value
YES if the described class has an ordered to-many relationship identified by the specified key; otherwise, NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScriptClassDescription.h

hasPropertyForKey:
Returns a Boolean value indicating whether the described class has a property identified by the specified
key.

- (BOOL)hasPropertyForKey:(NSString *)key

Parameters
key

The identifying key for a property of the receiver.

Return Value
YES if the described class has a property identified by the specified key; otherwise, NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScriptClassDescription.h

1366 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

hasReadablePropertyForKey:
Returns a Boolean value indicating whether the described class has a readable property identified by the
specified key.

- (BOOL)hasReadablePropertyForKey:(NSString *)key

Parameters
key

The identifying key for a property of the receiver.

Return Value
YES if the described class has a readable property identified by the specified key; otherwise, NO.

Discussion
To determine if a property is read-only, invoke hasWritablePropertyForKey: (page 1367)/

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScriptClassDescription.h

hasWritablePropertyForKey:
Returns a Boolean value indicating whether the described class has a writable property identified by the
specified key.

- (BOOL)hasWritablePropertyForKey:(NSString *)key

Parameters
key

The identifying key for a property of the receiver.

Return Value
YES if the described class has a writable property identified by the specified key; otherwise, NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScriptClassDescription.h

implementationClassName
Returns the name of the Objective-C class instantiated to implement the scripting class.

- (NSString *)implementationClassName

Return Value
An Objective-C class name.

Instance Methods 1367
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

Discussion
The name returned by the className (page 1365) method for an instance of NSScriptClassDescription
resulting from an sdef class declaration is the human-readable name for the class—that is, the name that is
used in a script. To obtain the name of the Objective-C class instantiated to implement the class, use
implementationClassName.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScriptClassDescription.h

initWithSuiteName:className:dictionary:
Initializes and returns a newly allocated instance of NSScriptClassDescription.

- (id)initWithSuiteName:(NSString *)suiteName className:(NSString *)className
dictionary:(NSDictionary *)classDeclaration

Parameters
suiteName

The name of the suite (in the application’s scriptability information) that the class belongs to. For
example, "AppName Suite".

className
The name of the class that this instance describes.

classDeclaration
A class declaration dictionary of the sort that is valid in script suite property list files. This dictionary
provides information about the class such as its attributes and relationships.

Return Value
The initialized instance. Returns nil if the event code value for the class description itself is missing or is not
an NSString. Also returns nil if the superclass name or any of the subdictionaries of descriptions are not
of the right type.

Discussion
This method registers self with the application’s global instance of NSScriptSuiteRegistry.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptClassDescription.h

isLocationRequiredToCreateForKey:
Returns a Boolean value indicating whether an insertion location must be specified when creating a new
object in the specified to-many relationship of the receiver.

- (BOOL)isLocationRequiredToCreateForKey:(NSString *)toManyRelationshipKey

1368 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

Parameters
toManyRelationshipKey

The key for the to-many relationship that may require an insertion location.

Return Value
YES if an insertion location must be specified; otherwise, NO.

Discussion
A script command object that creates a new object in a to-many relationship needs to know whether an
explicitly specified insertion location is required. It can get this information from an instance of
NSScriptClassDescription. For example, NSMakeCommand uses this method to determine whether or
not a specific make AppleScript command must have an at parameter.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSScriptClassDescription.h

isReadOnlyKey:
Returns a Boolean value indicating whether a specified property in the receiver is read-only. (Deprecated in
Mac OS X v10.5. Use hasWritablePropertyForKey: (page 1367) instead.)

- (BOOL)isReadOnlyKey:(NSString *)key

Parameters
key

The identifying key for a property of the receiver.

Return Value
YES if the property specified by key exists in the receiver or in the NSScriptClassDescription for any
superclass, and is read only; otherwise, NO.

Special Considerations

This method could return NO either because key is unrecognized or because writing to the property is not
supported. Use hasWritablePropertyForKey: (page 1367) instead.

Availability
Available in in Mac OS X v10.0.
Deprecated in Mac OS X v10.5.

See Also
– keyWithAppleEventCode: (page 1369)
– typeForKey: (page 1372)

Declared In
NSScriptClassDescription.h

keyWithAppleEventCode:
Given an Apple event code that identifies a property or element class, returns the key for the corresponding
attribute, one-to-one relationship, or one-to-many relationship.

Instance Methods 1369
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

- (NSString *)keyWithAppleEventCode:(FourCharCode)appleEventCode

Parameters
appleEventCode

An Apple event code that identifies a property or element class.

Return Value
The key that corresponds to the property or element class identified by appleEventCode in the receiver or,
if none exists, in a class description in the receiver’s superclasses.

The four-character Apple event code associated with the attribute or relationship identified by key Returns
0 if no such attribute or relationship is found. Returns nil if it cannot find any such attribute or relationship.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isReadOnlyKey: (page 1369)
– typeForKey: (page 1372)

Declared In
NSScriptClassDescription.h

matchesAppleEventCode:
Returns a Boolean value indicating whether a primary or secondary Apple event code in the receiver matches
the passed code.

- (BOOL)matchesAppleEventCode:(FourCharCode)appleEventCode

Parameters
appleEventCode

An Apple event code to compare against the receiver’s primary or secondary codes.

Return Value
YES if the receiver’s primary four-character Apple event code or any of its secondary codes (its synonyms)
matches code; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appleEventCode (page 1364)
– appleEventCodeForKey: (page 1364)

Declared In
NSScriptClassDescription.h

selectorForCommand:
Returns the selector associated with the receiver for the specified command description.

- (SEL)selectorForCommand:(NSScriptCommandDescription *)commandDescription

1370 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

Parameters
commandDescription

A description for a script command, such as duplicate, make, or move. Encapsulates the scriptability
information for that command, such as its Objective-C selector, its argument names and types, and
its return type (if any).

Return Value
The selector from the receiver for the command specified by commandDescription. Searches in the receiver
first, then in any superclass. Returns NULL if no matching selector is found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– supportsCommand: (page 1372)

Declared In
NSScriptClassDescription.h

suiteName
Returns the name of the receiver’s suite.

- (NSString *)suiteName

Return Value
The receiver’s suite name. Within an application’s scriptability information, named suites contain related sets
of information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– className (page 1365)

Declared In
NSScriptClassDescription.h

superclassDescription
Returns the class description instance for the superclass of the receiver’s class.

- (NSScriptClassDescription *)superclassDescription

Return Value
A class description instance that describes the superclass of the receiver’s class. Returns nil if the class has
no superclass.

Discussion
The instance of NSScriptClassDescription that describes the superclass can be in the same suite as the
receiver or in a different suite.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1371
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

See Also
– classDescriptionForKey: (page 1365)

Declared In
NSScriptClassDescription.h

supportsCommand:
Returns a Boolean value indicating whether the receiver or any superclass supports the specified command.

- (BOOL)supportsCommand:(NSScriptCommandDescription *)commandDescription

Parameters
commandDescription

A description for a script command, such as duplicate, make, or move. Encapsulates the scriptability
information for that command, such as its Objective-C selector, its argument names and types, and
its return type (if any).

Return Value
YES if an the receiver or the instance of NSScriptClassDescription of any superclass of the receiver’s
class lists the command described by commandDesc among its supported commands; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectorForCommand: (page 1370)

Declared In
NSScriptClassDescription.h

typeForKey:
Returns the name of the declared type of the attribute or relationship identified by the passed key.

- (NSString *)typeForKey:(NSString *)key

Parameters
key

The identifying key for an attribute, one-to-one relationship, or one-to-many relationship of the
receiver.

Return Value
The name of the declared type of the attribute or relationship identified by key; for example, “NSString”.
Searches in the receiver first, then in any superclass. Returns nil if no match is found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isReadOnlyKey: (page 1369)
– keyWithAppleEventCode: (page 1369)

1372 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

Declared In
NSScriptClassDescription.h

Instance Methods 1373
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

1374 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 122

NSScriptClassDescription Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptCoercionHandler.h

Companion guide Cocoa Scripting Guide

Related sample code Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Overview

Provides a mechanism for converting one kind of scripting data to another. A shared instance of this class
coerces (converts) object values to objects of another class, using information supplied by classes that register
with it. Coercions frequently are required during key-value coding.

Tasks

Accessing the Application’s Handler

+ sharedCoercionHandler (page 1376)
Returns the shared NSScriptCoercionHandler for the application.

Working with Handlers

– coerceValue:toClass: (page 1376)
Returns an object of a given class representing a given value.

– registerCoercer:selector:toConvertFromClass:toClass: (page 1377)
Registers a given object (typically a class) to handle coercions (conversions) from one given class to
another.

Overview 1375
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 123

NSScriptCoercionHandler Class Reference

Class Methods

sharedCoercionHandler
Returns the shared NSScriptCoercionHandler for the application.

+ (NSScriptCoercionHandler *)sharedCoercionHandler

Return Value
The shared NSScriptCoercionHandler for the application.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSScriptCoercionHandler.h

Instance Methods

coerceValue:toClass:
Returns an object of a given class representing a given value.

- (id)coerceValue:(id)value toClass:(Class)toClass

Parameters
value

The value to coerce.

toClass
The class with which to represent value.

Return Value
An object of the class toClass representing the value specified by value. Returns nil if an error occurs.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSScriptCoercionHandler.h

1376 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 123

NSScriptCoercionHandler Class Reference

registerCoercer:selector:toConvertFromClass:toClass:
Registers a given object (typically a class) to handle coercions (conversions) from one given class to another.

- (void)registerCoercer:(id)coercer selector:(SEL)selector
toConvertFromClass:(Class)fromClass toClass:(Class)toClass

Parameters
coercer

The object that performs the coercion. coercer should typically be a class object.

selector
A selector that specifies the method to perform the coercion. selector should typically be a factory
method, and must take two arguments. The first is the value to be converted. The second is the class
to convert it to.

fromClass
The class for which instances are coerced.

toClass
The class to which instances of fromClass are coerced.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptCoercionHandler.h

Instance Methods 1377
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 123

NSScriptCoercionHandler Class Reference

1378 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 123

NSScriptCoercionHandler Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptCommand.h

Companion guide Cocoa Scripting Guide

Related sample code Quartz Composer WWDC 2005 TextEdit
SimpleCarbonAppleScript
SimpleScriptingVerbs
Sketch-112
TextEditPlus

Overview

An instance of NSScriptCommand represents a scripting statement, such as set word 5 of the front
document to word 1 of the second document, and contains the information needed to perform the
operation specified by the statement.

When an Apple event reaches a Cocoa application, Cocoa’s built-in scripting support transforms it into a
script command (that is, an instance of NSScriptCommand or one of the subclasses provided by Cocoa
scripting or by your application) and executes the command in the context of the application. Executing a
command means either invoking the selector associated with the command on the object or objects
designated to receive the command, or having the command perform its default implementation method
(performDefaultImplementation (page 1387)).

Your application most likely calls methods of NSScriptCommand to extract the command arguments. You
do this either in the performDefaultImplementation method of a command subclass you have created,
or in an object method designated as the selector to handle a particular command.

As part of Cocoa’s standard scripting implementation, NSScriptCommand and its subclasses can handle the
default command set for AppleScript's Standard suite for most applications without any subclassing. The
Standard suite includes commands such as copy, count, create, delete, exists, and move, as well as
common object classes such as application, document, and window.

For more information on working with script commands, see Script Commands in Cocoa Scripting Guide.

Overview 1379
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

Tasks

Initializing a Script Command

– initWithCommandDescription: (page 1386)
Returns an a script command object initialized from the passed command description.

Getting the Current Command

+ currentCommand (page 1382)
If a command is being executed in the current thread by Cocoa scripting's built-in Apple event
handling, return the command.

Getting the Apple Event

– appleEvent (page 1383)
If the receiver was constructed by Cocoa scripting's built-in Apple event handling, returns the Apple
event descriptor from which it was constructed.

Executing the Command

– executeCommand (page 1385)
Executes the command if it is valid and returns the result, if any.

– performDefaultImplementation (page 1387)
Overridden by subclasses to provide a default implementation for the command represented by the
receiver.

Accessing Receivers

– evaluatedReceivers (page 1385)
Returns the object or objects to which the command is to be sent (called both the “receivers” or
“targets” of script commands).

– receiversSpecifier (page 1387)
Returns the object specifier that, when evaluated, yields the receiver or receivers of the command.

1380 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

– setReceiversSpecifier: (page 1390)
Sets the object specifier to receiversSpec that, when evaluated, indicates the receiver or receivers
of the command.

Accessing Arguments

– arguments (page 1383)
Returns the arguments of the command.

– evaluatedArguments (page 1384)
Returns a dictionary containing the arguments of the command, evaluated from object specifiers to
objects if necessary. The keys in the dictionary are the argument names.

– setArguments: (page 1390)
Sets the arguments of the command to args.

Accessing the Direct Parameter

– directParameter (page 1384)
Returns the object that corresponds to the direct parameter of the Apple event from which the receiver
derives.

– setDirectParameter: (page 1390)
Sets the object that corresponds to the direct parameter of the Apple event from which the receiver
derives.

Getting Command Information

– commandDescription (page 1383)
Returns the command description for the command.

– isWellFormed (page 1386)
Returns a Boolean value indicating whether the receiver is well formed according to its command
description.

Handling Script Execution Errors

– scriptErrorExpectedTypeDescriptor (page 1388)
Returns the type descriptor that was put in the reply Apple event if the sender requested a reply,
execution of the receiver completed, and an error number was set.

– scriptErrorNumber (page 1388)
Returns the script error number, if any, associated with execution of the command.

– scriptErrorOffendingObjectDescriptor (page 1389)
Returns the object descriptor that was put in the reply Apple event if the sender requested a reply,
execution of the receiver completed, and an error number was set.

– scriptErrorString (page 1389)
Returns the script error string, if any, associated with execution of the command.

Tasks 1381
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

– setScriptErrorExpectedTypeDescriptor: (page 1391)
Sets a descriptor for the expected type that will be put in the reply Apple event if the sender requested
a reply, execution of the receiver completes, and an error number was set.

– setScriptErrorOffendingObjectDescriptor: (page 1392)
Sets a descriptor for an object that will be put in the reply Apple event if the sender requested a reply,
execution of the receiver completes, and an error number was set.

– setScriptErrorNumber: (page 1391)
Sets a script error number that is associated with the execution of the command and is returned in
the reply Apple event, if a reply was requested by the sender.

– setScriptErrorString: (page 1392)
Sets a script error string that is associated with execution of the command.

Suspending and Resuming Commands

– suspendExecution (page 1393)
Suspends the execution of the receiver.

– resumeExecutionWithResult: (page 1387)
If a successful, unmatched, invocation of suspendExecution (page 1393) has been made, resume the
execution of the command.

Class Methods

currentCommand
If a command is being executed in the current thread by Cocoa scripting's built-in Apple event handling,
return the command.

+ (NSScriptCommand *)currentCommand

Discussion
A command is being executed in the current thread by Cocoa scripting's built-in Apple event handling if an
instance of NSScriptCommand is handling an executeCommand (page 1385) message at this instant as the
result of the dispatch of an Apple event. Returns nil otherwise. setScriptErrorNumber: (page 1391) and
setScriptErrorString: (page 1392) messages sent to the returned command object will affect the reply
event sent to the sender of the event from which the command was constructed, if the sender has requested
a reply.

A suspended command is not considered the current command. If a command is suspended and no other
command is being executed in the current thread, currentCommand returns nil.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSScriptCommand.h

1382 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

Instance Methods

appleEvent
If the receiver was constructed by Cocoa scripting's built-in Apple event handling, returns the Apple event
descriptor from which it was constructed.

- (NSAppleEventDescriptor *)appleEvent

Discussion
The effects of mutating or retaining this descriptor are undefined, although it may be copied.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSScriptCommand.h

arguments
Returns the arguments of the command.

- (NSDictionary *)arguments

Discussion
If there are no arguments, returns an empty NSDictionary object. When you subclass NSScriptCommand
or one of its subclasses, you rarely call this method because it returns the arguments directly, without
evaluating any arguments that are object specifiers. If any of a command’s arguments may be object specifiers,
which is generally the case, call evaluatedArguments (page 1384) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setArguments: (page 1390)

Declared In
NSScriptCommand.h

commandDescription
Returns the command description for the command.

- (NSScriptCommandDescription *)commandDescription

Discussion
Once a command is created, its command description is immutable.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1383
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

See Also
– isWellFormed (page 1386)

Declared In
NSScriptCommand.h

directParameter
Returns the object that corresponds to the direct parameter of the Apple event from which the receiver
derives.

- (id)directParameter

Return Value
An object. Returns nil if the received Apple event doesn’t contain a direct parameter.

Discussion
For example, the direct parameter of a print documents Apple event contains a list of documents. This
method may return the same object or objects returned by receiversSpecifier (page 1387).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDirectParameter: (page 1390)

Related Sample Code
SimpleCarbonAppleScript
SimpleScriptingVerbs

Declared In
NSScriptCommand.h

evaluatedArguments
Returns a dictionary containing the arguments of the command, evaluated from object specifiers to objects
if necessary. The keys in the dictionary are the argument names.

- (NSDictionary *)evaluatedArguments

Discussion
Arguments initially can be either a normal object or an object specifier such as word 5 (represented as an
instance of an NSScriptObjectSpecifier subclass). If arguments are object specifiers, the receiver evaluates
them before using the referenced objects. Returns nil if the command is not well formed. Also returns nil
if an object specifier does not evaluate to an object or if there is no type defined for the argument in the
command description.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isWellFormed (page 1386)
– arguments (page 1383)

1384 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

– setArguments: (page 1390)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
SimpleScriptingVerbs
Sketch-112
TextEditPlus

Declared In
NSScriptCommand.h

evaluatedReceivers
Returns the object or objects to which the command is to be sent (called both the “receivers” or “targets” of
script commands).

- (id)evaluatedReceivers

Discussion
It evaluates receivers, which are always object specifiers, to a proper object. If the command does not specify
a receiver, or if the receiver doesn’t accept the command, it returns nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– receiversSpecifier (page 1387)
– setReceiversSpecifier: (page 1390)

Declared In
NSScriptCommand.h

executeCommand
Executes the command if it is valid and returns the result, if any.

- (id)executeCommand

Discussion
Before this method executes the command (through NSInvocation mechanisms), it evaluates all object
specifiers involved in the command, validates that the receivers can actually handle the command, and
verifies that the types of any arguments that were initially object specifiers are valid.

You shouldn’t have to override this method. If the command’s receivers want to handle the command
themselves, this method invokes their defined handler. Otherwise, it invokes
performDefaultImplementation (page 1387).

Availability
Available in Mac OS X v10.0 and later.

See Also
– evaluatedArguments (page 1384)

Instance Methods 1385
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

– evaluatedReceivers (page 1385)

Declared In
NSScriptCommand.h

initWithCommandDescription:
Returns an a script command object initialized from the passed command description.

- (id)initWithCommandDescription:(NSScriptCommandDescription *)commandDesc

Parameters
commandDesc

A command description for the command to be created.

Return Value
A newly initialized instance of NSScriptCommand or a subclass.

Discussion
To make this command object usable, you must set its receiving objects and arguments (if any) after invoking
this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setArguments: (page 1390)
– setReceiversSpecifier: (page 1390)

Declared In
NSScriptCommand.h

isWellFormed
Returns a Boolean value indicating whether the receiver is well formed according to its command description.

- (BOOL)isWellFormed

Discussion
The method ensures that there is a description of the command and that the number of arguments and the
types of non-specifier arguments conform to the command description.

Availability
Available in Mac OS X v10.0 and later.

See Also
– commandDescription (page 1383)

Declared In
NSScriptCommand.h

1386 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

performDefaultImplementation
Overridden by subclasses to provide a default implementation for the command represented by the receiver.

- (id)performDefaultImplementation

Discussion
Do not invoke this method directly. executeCommand (page 1385) invokes this method when the command
being executed is not supported by the class of the objects receiving the command. The default
implementation returns nil.

You need to create a subclass of NSScriptCommand only if you need to provide a default implementation
of a command.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptCommand.h

receiversSpecifier
Returns the object specifier that, when evaluated, yields the receiver or receivers of the command.

- (NSScriptObjectSpecifier *)receiversSpecifier

Discussion
The receiver is typically a container. For example, if the original command is get the third paragraph
of the first document, the receiver specifier is the first document—it’s the document that knows
how to get or set words or paragraphs it contains.

Availability
Available in Mac OS X v10.0 and later.

See Also
– evaluatedReceivers (page 1385)
– setReceiversSpecifier: (page 1390)

Declared In
NSScriptCommand.h

resumeExecutionWithResult:
If a successful, unmatched, invocation ofsuspendExecution (page 1393) has been made, resume the execution
of the command.

- (void)resumeExecutionWithResult:(id)result

Discussion
Resumes the execution of the command if a successful, unmatched, invocation of suspendExecution (page
1393) has been made—otherwise, does nothing. The value for result is dependent on the segment of
command execution that was suspended:

Instance Methods 1387
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

 ■ If suspendExecutionwas invoked from within a command handler of one of the command's receivers,
result is considered to be the return value of the handler. Unless the command has received a
setScriptErrorNumber: (page 1391) message with a nonzero error number, execution of the command
will continue and the command handlers of other receivers will be invoked.

 ■ IfsuspendExecutionwas invoked from within an override ofperformDefaultImplementation (page
1387) the result is treated as if it were the return value of the invocation of
performDefaultImplementation.

resumeExecutionWithResult:may be invoked in any thread, not just the one in which the corresponding
invocation of suspendExecution (page 1393) occurred.

Important: The script command handler that is being executed when suspendExecution is invoked must
return before you invoke resumeExecutionWithResult:. That is, it is not valid to suspend a command’s
execution and then resume it immediately.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSScriptCommand.h

scriptErrorExpectedTypeDescriptor
Returns the type descriptor that was put in the reply Apple event if the sender requested a reply, execution
of the receiver completed, and an error number was set.

- (NSAppleEventDescriptor *)scriptErrorExpectedTypeDescriptor

Return Value
A descriptor that specifies a type.

Discussion
When an error occurs during script command execution because an Apple event descriptor wasn’t of the
expected type, and the sender requested a reply, Cocoa scripting returns a descriptor for the expected type
in a reply Apple event. You can invoke setScriptErrorExpectedTypeDescriptor: (page 1391) to set this
descriptor directly.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScriptCommand.h

scriptErrorNumber
Returns the script error number, if any, associated with execution of the command.

- (int)scriptErrorNumber

Discussion
When you subclass NSScriptCommand or one of its subclasses, you shouldn’t need to override this method.

1388 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

For error conditions specific to your application you can define your own error return values. For some
common errors, you may want to return error values defined in MacErrors.h, a header in
CarbonCore.framework (a subframework of CoreServices.framework). Look for error constants that
start with errAE. For example, errAEEventNotHandled indicates a handler wasn’t able to handle the Apple
event.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setScriptErrorNumber: (page 1391)

Declared In
NSScriptCommand.h

scriptErrorOffendingObjectDescriptor
Returns the object descriptor that was put in the reply Apple event if the sender requested a reply, execution
of the receiver completed, and an error number was set.

- (NSAppleEventDescriptor *)scriptErrorOffendingObjectDescriptor

Return Value
A descriptor that specifies an object.

Discussion
When an error that occurs during script command execution is caused by a specific object, and the sender
requested a reply, Cocoa scripting returns a descriptor for the offending object in a reply Apple event. You
can invoke setScriptErrorOffendingObjectDescriptor: (page 1392) to set this descriptor directly.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setScriptErrorOffendingObjectDescriptor: (page 1392)

Declared In
NSScriptCommand.h

scriptErrorString
Returns the script error string, if any, associated with execution of the command.

- (NSString *)scriptErrorString

Discussion
When you subclass NSScriptCommand or one of its subclasses, you shouldn’t need to override this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setScriptErrorString: (page 1392)

Instance Methods 1389
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

Declared In
NSScriptCommand.h

setArguments:
Sets the arguments of the command to args.

- (void)setArguments:(NSDictionary *)args

Discussion
Each argument in the dictionary is identified by the same name key used for the argument in the command’s
class declaration in the script suite file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arguments (page 1383)
– evaluatedArguments (page 1384)

Declared In
NSScriptCommand.h

setDirectParameter:
Sets the object that corresponds to the direct parameter of the Apple event from which the receiver derives.

- (void)setDirectParameter:(id)directParameter

Parameters
directParameter

An object to be set as the direct parameter.

Discussion
You don’t normally override this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– directParameter (page 1384)

Declared In
NSScriptCommand.h

setReceiversSpecifier:
Sets the object specifier to receiversSpec that, when evaluated, indicates the receiver or receivers of the
command.

- (void)setReceiversSpecifier:(NSScriptObjectSpecifier *)receiversSpec

1390 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

Discussion
If you create a subclass of NSScriptCommand, you don’t necessarily need to override this method, though
some of Cocoa’s subclasses do. An override should perform the same function as the superclass method,
with a critical difference: it causes the container specifier part of the passed-in object specifier to become
the receiver specifier of the command, and the key part of the passed-in object specifier to become the key
specifier. In an override, for example, if receiversRef is a specifier for the third rectangle of the
first document, the receiver specifier is the first document while the key specifier is the third
rectangle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– evaluatedReceivers (page 1385)
– receiversSpecifier (page 1387)

Declared In
NSScriptCommand.h

setScriptErrorExpectedTypeDescriptor:
Sets a descriptor for the expected type that will be put in the reply Apple event if the sender requested a
reply, execution of the receiver completes, and an error number was set.

- (void)setScriptErrorExpectedTypeDescriptor:(NSAppleEventDescriptor
*)errorExpectedTypeDescriptor

Parameters
errorExpectedTypeDescriptor

A descriptor that specifies a type.

Availability
Available in Mac OS X v10.5 and later.

See Also
– scriptErrorExpectedTypeDescriptor (page 1388)

Declared In
NSScriptCommand.h

setScriptErrorNumber:
Sets a script error number that is associated with the execution of the command and is returned in the reply
Apple event, if a reply was requested by the sender.

- (void)setScriptErrorNumber:(int)errorNumber

Parameters
errorNumber

An error number to associate with the command.

Instance Methods 1391
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

Discussion
If you override performDefaultImplementation (page 1387) and an error occurs, you should call this
method to supply an appropriate error number. In fact, any script handler should call this method when an
error occurs. The error number you supply is returned in the reply Apple event.

Invoking setScriptErrorNumber: causes an error message to be displayed. To associate a specific error
message with the error number, you invoke setScriptErrorString: (page 1392). This make sense, for
example, when you set an error number that is specific to your application, or when you can supply a specific
and useful error message to the user.

If setScriptErrorNumber: is invoked on an NSScriptCommand with multiple receivers, the command
will stop sending command handling messages to more receivers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scriptErrorNumber (page 1388)

Related Sample Code
Sketch-112

Declared In
NSScriptCommand.h

setScriptErrorOffendingObjectDescriptor:
Sets a descriptor for an object that will be put in the reply Apple event if the sender requested a reply,
execution of the receiver completes, and an error number was set.

- (void)setScriptErrorOffendingObjectDescriptor:(NSAppleEventDescriptor
*)errorOffendingObjectDescriptor

Parameters
errorOffendingObjectDescriptor

A descriptor that specifies an object that was responsible for an error.

Availability
Available in Mac OS X v10.5 and later.

See Also
– scriptErrorOffendingObjectDescriptor (page 1389)

Declared In
NSScriptCommand.h

setScriptErrorString:
Sets a script error string that is associated with execution of the command.

- (void)setScriptErrorString:(NSString *)errorString

1392 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

Parameters
errorString

A string that describes an error.

Discussion
If you override performDefaultImplementation (page 1387) and an error occurs, you should call this
method to supply a string that provides a useful explanation. In fact, any script handler should call this method
when an error occurs.

Calling this method alone does not cause an error message to be be displayed—you must also call
setScriptErrorNumber: (page 1391) to supply an error number.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scriptErrorString (page 1389)

Declared In
NSScriptCommand.h

suspendExecution
Suspends the execution of the receiver.

- (void)suspendExecution

Discussion
Suspends the execution of the receiver only if the receiver is being executed in the current thread by Cocoa
scripting's built-in Apple event handling (that is, the receiver would be returned by [NSScriptCommand
currentCommand])—otherwise, does nothing. A matching invocation of
resumeExecutionWithResult: (page 1387) must be made.

Important: The script command handler that is being executed when this method is invoked must return
before the subsequent invocation of resumeExecutionWithResult: (page 1387). That is, it is not valid to
suspend a command’s execution and then resume it immediately.

Another command can execute while a command is suspended.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSScriptCommand.h

Constants

NSScriptCommand—General Command Execution Errors
NSScriptCommand uses the following error codes for general command execution problems:

Constants 1393
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

enum {
 NSNoScriptError = 0,
 NSReceiverEvaluationScriptError,
 NSKeySpecifierEvaluationScriptError,
 NSArgumentEvaluationScriptError,
 NSReceiversCantHandleCommandScriptError,
 NSRequiredArgumentsMissingScriptError,
 NSArgumentsWrongScriptError,
 NSUnknownKeyScriptError,
 NSInternalScriptError,
 NSOperationNotSupportedForKeyScriptError,
 NSCannotCreateScriptCommandError
};

Constants
NSNoScriptError

No error.

Available in Mac OS X v10.0 and later.

Declared in NSScriptCommand.h.

NSReceiverEvaluationScriptError
The object or objects specified by the direct parameter to a command could not be found.

Available in Mac OS X v10.0 and later.

Declared in NSScriptCommand.h.

NSKeySpecifierEvaluationScriptError
The object or objects specified by a key (for commands that support key specifiers) could not be
found.

Available in Mac OS X v10.0 and later.

Declared in NSScriptCommand.h.

NSArgumentEvaluationScriptError
The object specified by an argument could not be found.

Available in Mac OS X v10.0 and later.

Declared in NSScriptCommand.h.

NSReceiversCantHandleCommandScriptError
The receivers don’t support the command sent to them.

Available in Mac OS X v10.0 and later.

Declared in NSScriptCommand.h.

NSRequiredArgumentsMissingScriptError
An argument (or more than one argument) is missing.

Available in Mac OS X v10.0 and later.

Declared in NSScriptCommand.h.

NSArgumentsWrongScriptError
An argument (or more than one argument) is of the wrong type or is otherwise invalid.

Available in Mac OS X v10.0 and later.

Declared in NSScriptCommand.h.

1394 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

NSUnknownKeyScriptError
An unidentified error occurred; indicates an error in the scripting support of your application.

Available in Mac OS X v10.0 and later.

Declared in NSScriptCommand.h.

NSInternalScriptError
An unidentified internal error occurred; indicates an error in the scripting support of your application.

Available in Mac OS X v10.0 and later.

Declared in NSScriptCommand.h.

NSOperationNotSupportedForKeyScriptError
The implementation of a scripting command signaled an error.

Available in Mac OS X v10.0 and later.

Declared in NSScriptCommand.h.

NSCannotCreateScriptCommandError
Could not create the script command; an invalid or unrecognized Apple event was received.

Available in Mac OS X v10.0 and later.

Declared in NSScriptCommand.h.

Declared In
NSScriptCommand.h

Constants 1395
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

1396 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 124

NSScriptCommand Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptCommandDescription.h

Companion guide Cocoa Scripting Guide

Overview

An instance of NSScriptCommandDescription describes a script command that a Cocoa application
supports.

A scriptable application provides scriptability information that describes the commands and objects scripters
can use in scripts that target the application. An application’s scripting information is collected automatically
by an instance of NSScriptSuiteRegistry, which creates an NSScriptCommandDescription for each
command it finds, caches these objects in memory, and installs a command handler for each command.

A script command instance stores the name, class, argument types, and return type of a command. For
example, commands in AppleScript’s Core suite include clone, count, create, delete, exists, and move.

The public methods of NSScriptCommandDescription are used primarily by Cocoa’s built-in scripting
support in responding to Apple events that target the application. Although you can subclass the
NSScriptCommandDescription class, it is unlikely that you would need to do so, or to create instances of
it.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

Overview 1397
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 125

NSScriptCommandDescription Class Reference

Tasks

Initializing a Script Command Description

– initWithSuiteName:commandName:dictionary: (page 1402)
Initializes and returns a newly allocated instance of NSScriptCommandDescription.

Getting Basic Information About the Command

– appleEventClassCode (page 1399)
Returns the four-character code for the Apple event class of the receiver’s command.

– appleEventCode (page 1399)
Returns the four-character code for the Apple event ID of the receiver’s command.

– commandClassName (page 1401)
Returns the name of the class that will be instantiated to handle the command.

– commandName (page 1401)
Returns the name of the command.

– suiteName (page 1404)
Returns the name of the suite that contains the command described by the receiver.

Getting Command Argument Information

– appleEventCodeForArgumentWithName: (page 1400)
Returns the Apple event code for the specified command argument of the receiver.

– argumentNames (page 1401)
Returns the names (or keys) for all arguments of the receiver’s command.

– isOptionalArgumentWithName: (page 1403)
Returns a Boolean value that indicates whether the command argument identified by the specified
argument key is an optional argument.

– typeForArgumentWithName: (page 1404)
Returns the type of the command argument identified by the specified key.

Getting Command Return-Type Information

– appleEventCodeForReturnType (page 1400)
Returns the Apple event code that identifies the command’s return type.

– returnType (page 1403)
Returns the return type of the command.

1398 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 125

NSScriptCommandDescription Class Reference

Creating Commands

– createCommandInstance (page 1402)
Creates and returns an instance of the command object described by the receiver.

– createCommandInstanceWithZone: (page 1402)
Creates and returns an instance of the command object described by the receiver in the specified
memory zone.

Instance Methods

appleEventClassCode
Returns the four-character code for the Apple event class of the receiver’s command.

- (FourCharCode)appleEventClassCode

Return Value
The Apple event code associated with the receiver’s command. This is the primary code used to identify the
command in Apple events.

Discussion
In an Apple event that specifies a script command, two four character codes—the event class and event
ID—together identify the command. You use this method to obtain the event class. You use
appleEventCode (page 1399) to obtain the event ID.

For example, commands in AppleScript’s Core suite, such as clone, count, and create, have an event class
code of 'core'. This code and the event ID code returned by appleEventCode together specify the necessary
information for identifying and dispatching an Apple event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptCommandDescription.h

appleEventCode
Returns the four-character code for the Apple event ID of the receiver’s command.

- (FourCharCode)appleEventCode

Return Value
The code for the event ID of the receiver’s command.

Discussion
This value of the event ID returned by this method, together with the event class code returned by
appleEventClassCode (page 1399), specifies the necessary information for identifying and dispatching an
Apple event.

Instance Methods 1399
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 125

NSScriptCommandDescription Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– appleEventCodeForArgumentWithName: (page 1400)
– appleEventCodeForReturnType (page 1400)

Declared In
NSScriptCommandDescription.h

appleEventCodeForArgumentWithName:
Returns the Apple event code for the specified command argument of the receiver.

- (FourCharCode)appleEventCodeForArgumentWithName:(NSString *)argumentName

Parameters
argumentName

The argument name (used as a key) for which to obtain the corresponding Apple event code.

Return Value
The code for the specified argument.

Availability
Available in Mac OS X v10.0 and later.

See Also
– argumentNames (page 1401)

Declared In
NSScriptCommandDescription.h

appleEventCodeForReturnType
Returns the Apple event code that identifies the command’s return type.

- (FourCharCode)appleEventCodeForReturnType

Return Value
The event code for the command’s return type.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appleEventCodeForArgumentWithName: (page 1400)
– returnType (page 1403)

Declared In
NSScriptCommandDescription.h

1400 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 125

NSScriptCommandDescription Class Reference

argumentNames
Returns the names (or keys) for all arguments of the receiver’s command.

- (NSArray *)argumentNames

Return Value
The array of argument names. If there are no arguments for the command, returns an empty array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptCommandDescription.h

commandClassName
Returns the name of the class that will be instantiated to handle the command.

- (NSString *)commandClassName

Return Value
The Objective-C class name (for example, "NSGetCommand"). This is always NSScriptCommand or a subclass.

Availability
Available in Mac OS X v10.0 and later.

See Also
– commandName (page 1401)

Declared In
NSScriptCommandDescription.h

commandName
Returns the name of the command.

- (NSString *)commandName

Return Value
The command name as it appears in the application's scriptability information; may be different from what
is displayed to the scripter.

Availability
Available in Mac OS X v10.0 and later.

See Also
– commandClassName (page 1401)

Declared In
NSScriptCommandDescription.h

Instance Methods 1401
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 125

NSScriptCommandDescription Class Reference

createCommandInstance
Creates and returns an instance of the command object described by the receiver.

- (NSScriptCommand *)createCommandInstance

Return Value
The command object, instantiated from NSScriptCommand or a subclass.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptCommandDescription.h

createCommandInstanceWithZone:
Creates and returns an instance of the command object described by the receiver in the specified memory
zone.

- (NSScriptCommand *)createCommandInstanceWithZone:(NSZone *)zone

Parameters
zone

The memory zone from which to allocate the command.

Return Value
The command object, instantiated from NSScriptCommand or a subclass.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptCommandDescription.h

initWithSuiteName:commandName:dictionary:
Initializes and returns a newly allocated instance of NSScriptCommandDescription.

- (id)initWithSuiteName:(NSString *)suiteName commandName:(NSString *)commandName
dictionary:(NSDictionary *)commandDeclaration

Parameters
suiteName

The name of the suite (in the application’s scriptability information) that the command belongs to.
For example, "AppName Suite".

commandName
The name of the script command that this instance describes.

commandDeclaration
A command declaration dictionary of the sort that is valid in script suite property list files. This dictionary
provides information about the command such as its argument names and types and return type (if
any).

1402 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 125

NSScriptCommandDescription Class Reference

Return Value
The initialized command description instance. Returns nil if the event constant or class name for the
command description is missing; also returns nil if the return type or argument values are of the wrong
type.

Discussion
This method registers self with the application’s global instance of NSScriptSuiteRegistry and also
registers all command arguments with the registry.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptCommandDescription.h

isOptionalArgumentWithName:
Returns a Boolean value that indicates whether the command argument identified by the specified argument
key is an optional argument.

- (BOOL)isOptionalArgumentWithName:(NSString *)argumentName

Parameters
argumentName

Argument name (used as a key) that identifies the command argument to examine.

Return Value
YES if the specified argument exists and is optional; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– argumentNames (page 1401)

Declared In
NSScriptCommandDescription.h

returnType
Returns the return type of the command.

- (NSString *)returnType

Return Value
The receiver’s command return type; for example, "NSNumber" or "NSDictionary").

Availability
Available in Mac OS X v10.0 and later.

See Also
– appleEventCodeForReturnType (page 1400)

Instance Methods 1403
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 125

NSScriptCommandDescription Class Reference

Declared In
NSScriptCommandDescription.h

suiteName
Returns the name of the suite that contains the command described by the receiver.

- (NSString *)suiteName

Return Value
The receiver’s suite name. Within an application’s scriptability information, named suites contain related sets
of information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appleEventCode (page 1399)

Declared In
NSScriptCommandDescription.h

typeForArgumentWithName:
Returns the type of the command argument identified by the specified key.

- (NSString *)typeForArgumentWithName:(NSString *)argumentName

Parameters
argumentName

Argument name (used as a key) that identifies the command argument to examine.

Return Value
The type of the specified command argument. Returns nil if there is no such argument.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptCommandDescription.h

1404 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 125

NSScriptCommandDescription Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptExecutionContext.h

Companion guide Cocoa Scripting Guide

Related sample code SimpleCarbonAppleScript

Overview

An NSScriptExecutionContext object is a shared instance (there is only one instance of the class) that
represents the context in which the current script command is executed. NSScriptExecutionContext
tracks global state relating to the command being executed, especially the top-level container object (that
is, the container implied by a specifier object that specifies no container) used in an evaluation of an
NSScriptObjectSpecifier object.

In most cases, the top-level container for a complete series of nested object specifiers is automatically set to
the application object (NSApp), and you can get this object with the topLevelObject (page 1408) method.
But you can also set this top-level container to something else (using setTopLevelObject: (page 1408)) if
the situation warrants it.

It is unlikely that you will need to subclass NSScriptExecutionContext.

Tasks

Getting the Current Context

+ sharedScriptExecutionContext (page 1406)
Returns the shared NSScriptExecutionContext instance.

Overview 1405
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 126

NSScriptExecutionContext Class Reference

Getting and Setting the Container Object

– topLevelObject (page 1408)
Returns the top-level object for an object-specifier evaluation.

– setTopLevelObject: (page 1408)
Sets the top-level object for an object-specifier evaluation.

– objectBeingTested (page 1406)
Returns the top-level container object currently being tested in a “whose” qualifier.

– setObjectBeingTested: (page 1407)
Sets the top-level container object currently being tested in a “whose” qualifier to a given object.

– rangeContainerObject (page 1407)
Returns the top-level container object for an object specifier (encapsulated in an NSRangeSpecifier
object) that represents the first or last element in a range of elements.

– setRangeContainerObject: (page 1408)
Sets the top-level container object for a range-specifier evaluation to a give object.

Class Methods

sharedScriptExecutionContext
Returns the shared NSScriptExecutionContext instance.

+ (NSScriptExecutionContext *)sharedScriptExecutionContext

Return Value
The shared NSScriptExecutionContext instance, creating it first if it doesn’t exist.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SimpleCarbonAppleScript

Declared In
NSScriptExecutionContext.h

Instance Methods

objectBeingTested
Returns the top-level container object currently being tested in a “whose” qualifier.

- (id)objectBeingTested

1406 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 126

NSScriptExecutionContext Class Reference

Return Value
The top-level container object currently being tested in a “whose” qualifier. Returns nil if such an object
does not exist.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setObjectBeingTested: (page 1407)
containerIsObjectBeingTested (page 1415) (NSScriptObjectSpecifier)

Declared In
NSScriptExecutionContext.h

rangeContainerObject
Returns the top-level container object for an object specifier (encapsulated in an NSRangeSpecifier object)
that represents the first or last element in a range of elements.

- (id)rangeContainerObject

Return Value
The top-level container object for an object specifier (encapsulated in an NSRangeSpecifier object) that
represents the first or last element in a range of elements.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setObjectBeingTested: (page 1407)
containerIsRangeContainerObject (page 1416) (NSScriptObjectSpecifier)

Declared In
NSScriptExecutionContext.h

setObjectBeingTested:
Sets the top-level container object currently being tested in a “whose” qualifier to a given object.

- (void)setObjectBeingTested:(id)object

Parameters
object

The top-level container object currently being tested.

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectBeingTested (page 1406)

Declared In
NSScriptExecutionContext.h

Instance Methods 1407
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 126

NSScriptExecutionContext Class Reference

setRangeContainerObject:
Sets the top-level container object for a range-specifier evaluation to a give object.

- (void)setRangeContainerObject:(id)container

Parameters
container

The top-level container object for a range-specifier evaluation.

Discussion
Instances of NSRangeSpecifier contain object specifiers representing the first or last element in a range
of elements, and these specifiers are evaluated in the context of container.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rangeContainerObject (page 1407)

Declared In
NSScriptExecutionContext.h

setTopLevelObject:
Sets the top-level object for an object-specifier evaluation.

- (void)setTopLevelObject:(id)anObject

Parameters
anObject

The top-level object for an object-specifier evaluation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– topLevelObject (page 1408)

Related Sample Code
SimpleCarbonAppleScript

Declared In
NSScriptExecutionContext.h

topLevelObject
Returns the top-level object for an object-specifier evaluation.

- (id)topLevelObject

Return Value
The top-level object for an object-specifier evaluation.

1408 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 126

NSScriptExecutionContext Class Reference

Discussion
For applications, this object is automatically set to the application object, but can be set to some other
container object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTopLevelObject: (page 1408)

Declared In
NSScriptExecutionContext.h

Instance Methods 1409
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 126

NSScriptExecutionContext Class Reference

1410 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 126

NSScriptExecutionContext Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptObjectSpecifiers.h

Companion guide Cocoa Scripting Guide

Related sample code Quartz Composer WWDC 2005 TextEdit
SimpleScriptingObjects
Sketch-112
TextEditPlus

Overview

NSScriptObjectSpecifier is the abstract superclass for classes that instantiate objects called “object
specifiers.” An object specifier represents an AppleScript reference form, which is a natural-language expression
such as words 10 through 20 or front document or words whose color is red.

The scripting system maps these words or phrases to attributes and relationships of scriptable objects. A
reference form rarely occurs in isolation; usually a script statement consists of a series of reference forms
preceded by a command and typically connected to each other by of, such as:

get words whose color is blue of paragraph 10 of front document

The expression words whose color is blue of paragraph 10 of front document specifies a
location in the application's AppleScript object model—the objects the application makes available to
scripters. The classes of objects in the object model often closely match the classes of actual objects in the
application, but they are not required to. An object specifier locates objects in the running application that
correspond to the specified object model objects.

Your application typically creates object specifiers when it implements the objectSpecifier method for
its scriptable classes. That method is defined by the NSScriptObjectSpecifiers protocol.

It is unlikely that you would ever need to create your own subclass of NSScriptObjectSpecifier; the set
of valid AppleScript reference forms is determined by Apple Computer and object specifier classes are already
implemented for this set. If for some reason you do need to create a subclass, you must override the primitive
method indicesOfObjectsByEvaluatingWithContainer:count: (page 1418) to return indices to the

Overview 1411
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

elements within the container whose values are matched with the child specifier’s key. In addition, you
probably need to declare any special instance variables and implement an initializer that invokes super’s
designated initializer,initWithContainerClassDescription:containerSpecifier:key: (page 1418),
and initializes these variables.

For a comprehensive treatment of object specifiers, including sample code, see Object Specifiers in Cocoa
Scripting Guide.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

Tasks

Obtaining an Object Specifier for a Descriptor

+ objectSpecifierWithDescriptor: (page 1414)
Returns a new object specifier for an Apple event descriptor.

Initializing an Object Specifier

– initWithContainerClassDescription:containerSpecifier:key: (page 1418)
Returns an NSScriptObjectSpecifier object initialized with the given attributes.

– initWithContainerSpecifier:key: (page 1418)
Returns an NSScriptObjectSpecifier object initialized with a given container specifier and key.

Evaluating an Object Specifier

– indicesOfObjectsByEvaluatingWithContainer:count: (page 1418)
This primitive method must be overridden by subclasses to return a pointer to an array of indices
identifying objects in the key of a given container that are identified by the receiver of the message.

– objectsByEvaluatingSpecifier (page 1420)
Returns the actual object represented by the nested series of object specifiers.

– objectsByEvaluatingWithContainers: (page 1420)
Returns the actual object or objects specified by the receiver as evaluated in the context of given
container object.

1412 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

Getting, Testing, and Setting Containers

– containerClassDescription (page 1415)
Returns the class description of the object indicated by the receiver’s container specifier.

– containerIsObjectBeingTested (page 1415)
If the receiver’s container specifier is nil, returns a Boolean value that indicates whether the receiver’s
container is the object involved in a specifier test.

– containerIsRangeContainerObject (page 1416)
If the receiver’s container specifier is nil, returns a Boolean value that indicates whether the container
for the receiver contains the range of elements represented by an NSRangeSpecifier.

– containerSpecifier (page 1416)
Returns the receiver’s container specifier.

– setContainerClassDescription: (page 1421)
Sets the class description of the receiver’s container specifier to a given specifier.

– setContainerIsObjectBeingTested: (page 1422)
Sets whether the receiver’s container should be an object involved in a filter reference or the top-level
object.

– setContainerSpecifier: (page 1422)
Sets the container specifier of the receiver.

– setContainerIsRangeContainerObject: (page 1422)
Sets whether the receiver’s container is to be the container for a range specifier or a top-level object.

Getting and Setting Child References

– childSpecifier (page 1414)
Returns the receiver’s child reference.

– setChildSpecifier: (page 1421)
Sets the receiver’s child reference.

Getting and Setting Object Keys

– key (page 1419)
Returns the key of the receiver.

– keyClassDescription (page 1419)
Returns the class description of the objects specified by the receiver.

– setKey: (page 1423)
Sets the key of the receiver.

Getting Evaluation Errors

– evaluationErrorSpecifier (page 1417)
Returns the object specifier in which an evaluation error occurred.

Tasks 1413
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

– evaluationErrorNumber (page 1417)
Returns the constant identifying the type of error that caused evaluation to fail.

– setEvaluationErrorNumber: (page 1423)
Sets the value of the evaluation error.

Getting a Descriptor for the Object Specifier

– descriptor (page 1416)
Returns an Apple event descriptor that represents the receiver.

Class Methods

objectSpecifierWithDescriptor:
Returns a new object specifier for an Apple event descriptor.

+ (NSScriptObjectSpecifier *)objectSpecifierWithDescriptor:(NSAppleEventDescriptor
 *)descriptor

Parameters
descriptor

An Apple event descriptor. The descriptor must have the type typeObjectSpecifier.

Return Value
An object specifier, or nil if an error occurs.

Discussion
If objectSpecifierWithDescriptor: is invoked and fails during the execution of a script command,
information about the error that caused the failure is recorded in [NSScriptCommand currentCommand].

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScriptObjectSpecifiers.h

Instance Methods

childSpecifier
Returns the receiver’s child reference.

- (NSScriptObjectSpecifier *)childSpecifier

Return Value
The receiver’s child reference, that is, the object specifier evaluating to the object or objects that the receiver
contains.

1414 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setChildSpecifier: (page 1421)

Declared In
NSScriptObjectSpecifiers.h

containerClassDescription
Returns the class description of the object indicated by the receiver’s container specifier.

- (NSScriptClassDescription *)containerClassDescription

Return Value
The class description of the object indicated by the receiver’s container specifier.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContainerClassDescription: (page 1421)

Declared In
NSScriptObjectSpecifiers.h

containerIsObjectBeingTested
If the receiver’s container specifier is nil, returns a Boolean value that indicates whether the receiver’s
container is the object involved in a specifier test.

- (BOOL)containerIsObjectBeingTested

Return Value
YES if the receiver’s container is the object involved in a specifier test, otherwise NO.

Discussion
An example of a specifier test is whose color is blue). If the returned value is YES, then the top-level
object is the object being tested (that is, the specifier has no container specifier).

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectBeingTested (page 1406) (NSScriptExecutionContext)

Declared In
NSScriptObjectSpecifiers.h

Instance Methods 1415
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

containerIsRangeContainerObject
If the receiver’s container specifier is nil, returns a Boolean value that indicates whether the container for
the receiver contains the range of elements represented by an NSRangeSpecifier.

- (BOOL)containerIsRangeContainerObject

Return Value
YES if the container for the receiver contains the range of elements represented by an NSRangeSpecifier,
otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContainerIsRangeContainerObject: (page 1422)

Declared In
NSScriptObjectSpecifiers.h

containerSpecifier
Returns the receiver’s container specifier.

- (NSScriptObjectSpecifier *)containerSpecifier

Return Value
The receiver’s container specifier, which is the object specifier that must be evaluated to provide a context
for the evaluation of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– childSpecifier (page 1414)
– containerClassDescription (page 1415)
– setContainerSpecifier: (page 1422)

Declared In
NSScriptObjectSpecifiers.h

descriptor
Returns an Apple event descriptor that represents the receiver.

- (NSAppleEventDescriptor *)descriptor

Return Value
An Apple event descriptor of type typeObjectSpecifier.

Discussion
If the receiver was created with objectSpecifierWithDescriptor: (page 1414), the passed-in descriptor
is returned. Otherwise, a new descriptor is created and returned, autoreleased.

1416 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScriptObjectSpecifiers.h

evaluationErrorNumber
Returns the constant identifying the type of error that caused evaluation to fail.

- (NSInteger)evaluationErrorNumber

Return Value
The constant identifying the type of error that caused evaluation to fail.

Discussion
This error code could be associated with the receiver or any container specifier “above” the receiver. Possible
return values are defined in “Constants” (page 1424).

Availability
Available in Mac OS X v10.0 and later.

See Also
– evaluationErrorSpecifier (page 1417)

Declared In
NSScriptObjectSpecifiers.h

evaluationErrorSpecifier
Returns the object specifier in which an evaluation error occurred.

- (NSScriptObjectSpecifier *)evaluationErrorSpecifier

Return Value
The object specifier in which an evaluation error occurred.

Discussion
The object specifier failing to evaluate could be the receiver or any container specifier “above” the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– evaluationErrorNumber (page 1417)

Declared In
NSScriptObjectSpecifiers.h

Instance Methods 1417
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

indicesOfObjectsByEvaluatingWithContainer:count:
This primitive method must be overridden by subclasses to return a pointer to an array of indices identifying
objects in the key of a given container that are identified by the receiver of the message.

- (NSInteger *)indicesOfObjectsByEvaluatingWithContainer:(id)aContainer
count:(NSInteger *)numRefs

Discussion
This primitive method must be overridden by subclasses to return a pointer to an array of indices identifying
objects in the key of the container aContainer that are identified by the receiver of the message. The
method uses key-value coding to obtain values based on the receiver’s key. It returns the number of such
matching objects by indirection in numRefs. It returns nil directly and –1 via numRefs if all objects in the
container (or the sole object) match the value of the receiver’s key. This method is invoked by
objectsByEvaluatingWithContainers: (page 1420). The default implementation returns nil directly
and –1 indirectly via numRefs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

initWithContainerClassDescription:containerSpecifier:key:
Returns an NSScriptObjectSpecifier object initialized with the given attributes.

- (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDescription
containerSpecifier:(NSScriptObjectSpecifier *)specifier key:(NSString *)key

Return Value
An NSScriptObjectSpecifier object initialized with container specifier specifier, key key, and the
class description of the object specifier classDescription, derived from the value of the specifier’s key.

Discussion
You should never pass nil for the value of classDescription. The receiver’s child reference is set to nil.

This is the designated initializer for NSScriptObjectSpecifier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

initWithContainerSpecifier:key:
Returns an NSScriptObjectSpecifier object initialized with a given container specifier and key.

- (id)initWithContainerSpecifier:(NSScriptObjectSpecifier *)specifier key:(NSString
 *)key

Return Value
An NSScriptObjectSpecifier object initialized with container specifier specifier and key key.

1418 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

Discussion
The class description of the container is set automatically.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

key
Returns the key of the receiver.

- (NSString *)key

Return Value
The key of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyClassDescription (page 1419)
– setKey: (page 1423)

Related Sample Code
Sketch-112

Declared In
NSScriptObjectSpecifiers.h

keyClassDescription
Returns the class description of the objects specified by the receiver.

- (NSScriptClassDescription *)keyClassDescription

Return Value
The class description of the objects specified by the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– key (page 1419)
– setKey: (page 1423)

Related Sample Code
Sketch-112

Declared In
NSScriptObjectSpecifiers.h

Instance Methods 1419
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

objectsByEvaluatingSpecifier
Returns the actual object represented by the nested series of object specifiers.

- (id)objectsByEvaluatingSpecifier

Return Value
The actual object represented by the nested series of object specifiers.

Discussion
Recursively obtains the next container in a nested series of object specifiers until it reaches the top-level
container specifier (which is either an NSWhoseSpecifier or the application object), after which it begins
evaluating each object specifier (objectsByEvaluatingWithContainers: (page 1420)) going in the opposite
direction (top-level to innermost) as it unwinds from the stack. Returns the actual object represented by the
nested series of object specifiers. Returns nil if a container specifier could not be evaluated or if no top-level
container specifier could be found. Thus nil can be a valid value or can indicate an error; you can use
evaluationErrorNumber (page 1417) to determine if and which error occurred and
evaluationErrorSpecifier (page 1417) to find the container specifier responsible for the error. In the
normal course of command processing, this method is invoked by an NSScriptCommand object’s
evaluatedArguments (page 1384) andevaluatedReceivers (page 1385) methods, which take as message
receiver the innermost object specifier.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indicesOfObjectsByEvaluatingWithContainer:count: (page 1418)

Related Sample Code
Sketch-112

Declared In
NSScriptObjectSpecifiers.h

objectsByEvaluatingWithContainers:
Returns the actual object or objects specified by the receiver as evaluated in the context of given container
object.

- (id)objectsByEvaluatingWithContainers:(id)containers

Return Value
The actual object or objects specified by the receiver as evaluated in the context of its container object or
objects (containers).

Discussion
Invokes indicesOfObjectsByEvaluatingWithContainer:count: (page 1418) on self to get an array
of pointers to indices of elements in containers that have values paired with the message receiver’s key.
This method then uses key-value coding to obtain the object or objects associated with the key; it returns
these objects or nil if there are no matching values in containers. If there are multiple matching values, they
are returned in an NSArray; if matching values are nil, NSNull objects are substituted. If containers is
an NSArray, the method recursively evaluates each element in the array and returns an NSArray with
evaluated objects (including NSNulls) in their corresponding slots.

1420 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectsByEvaluatingSpecifier (page 1420)

Related Sample Code
Sketch-112

Declared In
NSScriptObjectSpecifiers.h

setChildSpecifier:
Sets the receiver’s child reference.

- (void)setChildSpecifier:(NSScriptObjectSpecifier *)child

Parameters
child

The receiver’s child reference.

Discussion
Do not invoke this method directly; it is automatically invoked by setContainerSpecifier: (page 1422).

Availability
Available in Mac OS X v10.0 and later.

See Also
– childSpecifier (page 1414)

Declared In
NSScriptObjectSpecifiers.h

setContainerClassDescription:
Sets the class description of the receiver’s container specifier to a given specifier.

- (void)setContainerClassDescription:(NSScriptClassDescription *)classDescription

Parameters
classDescription

The class description of the receiver’s container specifier.

Availability
Available in Mac OS X v10.0 and later.

See Also
– containerClassDescription (page 1415)

Declared In
NSScriptObjectSpecifiers.h

Instance Methods 1421
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

setContainerIsObjectBeingTested:
Sets whether the receiver’s container should be an object involved in a filter reference or the top-level object.

- (void)setContainerIsObjectBeingTested:(BOOL)flag

Discussion
If the receiver’s container specifier is nil and flag is YES, sets the receiver’s container to be an object
involved in a filter reference (for example, whose color is blue). If the receiver’s container specifier is
nil and flag is NO, sets the receiver’s container to be the top-level object.

If flag is YES setContainerIsRangeContainerObject: (page 1422) should not also be invoked with an
argument of YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– containerIsObjectBeingTested (page 1415)

Declared In
NSScriptObjectSpecifiers.h

setContainerIsRangeContainerObject:
Sets whether the receiver’s container is to be the container for a range specifier or a top-level object.

- (void)setContainerIsRangeContainerObject:(BOOL)flag

Discussion
If the receiver’s container specifier is nil and flag is YES, sets the receiver’s container to be the container
for a range specifier. If the receiver’s container specifier is nil and flag is NO, sets the receiver’s container
to be the top-level object.

If flag is YES, setContainerIsObjectBeingTested: (page 1422) should not also be invoked with an
argument of YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– containerIsRangeContainerObject (page 1416)

Declared In
NSScriptObjectSpecifiers.h

setContainerSpecifier:
Sets the container specifier of the receiver.

- (void)setContainerSpecifier:(NSScriptObjectSpecifier *)objSpecifier

1422 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

Parameters
objSpecifier

The container specifier for the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– containerSpecifier (page 1416)

Declared In
NSScriptObjectSpecifiers.h

setEvaluationErrorNumber:
Sets the value of the evaluation error.

- (void)setEvaluationErrorNumber:(NSInteger)error

Parameters
error

The value for the evaluation error.

Availability
Available in Mac OS X v10.0 and later.

See Also
– evaluationErrorNumber (page 1417)

Declared In
NSScriptObjectSpecifiers.h

setKey:
Sets the key of the receiver.

- (void)setKey:(NSString *)key

Parameters
key

The key for the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– key (page 1419)
– keyClassDescription (page 1419)

Declared In
NSScriptObjectSpecifiers.h

Instance Methods 1423
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

Constants

NSScriptObjectSpecifier—Specifier Evaluation Errors
NSScriptObjectSpecifierprovides the following constants for error codes for specific problems evaluating
specifiers:

enum {
 NSNoSpecifierError = 0,
 NSNoTopLevelContainersSpecifierError,
 NSContainerSpecifierError,
 NSUnknownKeySpecifierError,
 NSInvalidIndexSpecifierError,
 NSInternalSpecifierError,
 NSOperationNotSupportedForKeySpecifierError
};

Constants
NSNoSpecifierError

No error encountered.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSNoTopLevelContainersSpecifierError
Someone called evaluate with nil.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSContainerSpecifierError
Error evaluating container specifier.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSUnknownKeySpecifierError
Receivers do not understand the key.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSInvalidIndexSpecifierError
Index out of bounds.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSInternalSpecifierError
Other internal error.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSOperationNotSupportedForKeySpecifierError
Attempt made to perform an unsupported operation on some key.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

1424 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

Declared In
NSScriptObjectSpecifier.h

Constants 1425
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

1426 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 127

NSScriptObjectSpecifier Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptSuiteRegistry.h

Companion guide Cocoa Scripting Guide

Related sample code SimpleCarbonAppleScript

Overview

NSScriptSuiteRegistry functions as the top-level repository of scriptability information for an application
at runtime.

Scriptability information specifies the terminology available for use in scripts that target an application. It
also provides information, used by AppleScript and by Cocoa, about how support for that terminology is
implemented in the application. This information includes descriptions of the scriptable object classes in an
application and of the commands the application supports.

There are two standard formats for supplying scriptability information: the older script suite format, consisting
of a script suite file and one or more script terminology files, and the newer scripting definition (or sdef)
format, consisting of a single sdef file.

There is one instance of NSScriptSuiteRegistry per scriptable application. This registry object collects
scriptability information when the application first needs to respond to an Apple event for which Cocoa
hasn't installed a default event handler. It then creates one instance of NSScriptClassDescription for
each object class and one instance of NSScriptCommandDescription for each command class, and installs
a command handler for each command.

When a user executes an AppleScript script, Apple events are sent to the targeted application. Using the
information stored in the registry object, Cocoa automatically converts incoming Apple events into script
commands (based on NSScriptCommand or a subclass) that manipulate objects in the application.

The public methods of NSScriptSuiteRegistry are used primarily by Cocoa’s built-in scripting support.
You should not need to create a subclass of NSScriptSuiteRegistry.

Overview 1427
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 128

NSScriptSuiteRegistry Class Reference

For information on scriptability information formats, loading of scriptability information, and related topics,
see "Scriptability Information" in Overview of Cocoa Support for Scriptable Applications in Cocoa Scripting
Guide.

Tasks

Getting and Setting the Shared Instance

+ setSharedScriptSuiteRegistry: (page 1429)
Sets the single, shared instance of NSScriptSuiteRegistry to registry.

+ sharedScriptSuiteRegistry (page 1429)
Returns the single, shared instance of NSScriptSuiteRegistry, creating it first if it doesn’t exist.

Getting Suite Information

– suiteForAppleEventCode: (page 1434)
Returns the name of the suite definition associated with the given four-character Apple event code,
code.

– suiteNames (page 1434)
Returns the names of the suite definitions currently loaded by the application.

Getting and Registering Class Descriptions

– classDescriptionsInSuite: (page 1431)
Returns the class descriptions contained in the suite identified by suiteName.

– classDescriptionWithAppleEventCode: (page 1431)
Returns the class description associated with the given four-character Apple event code, code.

– registerClassDescription: (page 1433)
Registers class description classDescription for use by Cocoa’s built-in scripting support by storing
it in a per-suite internal dictionary under the class name.

Getting and Registering Command Descriptions

– commandDescriptionsInSuite: (page 1432)
Returns the command descriptions contained in the suite identified by suiteName.

– commandDescriptionWithAppleEventClass:andAppleEventCode: (page 1432)
Returns the command description identified by a suite’s four-character Apple event code of the class
(eventClass) and the four-character Apple event code of the command (commandCode).

– registerCommandDescription: (page 1434)
Registers command description commandDesc for use by Cocoa’s built-in scripting support by storing
it in a per-suite internal dictionary under the command name.

1428 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 128

NSScriptSuiteRegistry Class Reference

Getting Other Suite Information

– aeteResource: (page 1430)
Returns an NSData object that contains data in 'aete' resource format describing the scriptability
information currently known to the application.

– appleEventCodeForSuite: (page 1430)
Returns the Apple event code associated with the suite named suiteName, such as ‘core’ for the
Core suite.

– bundleForSuite: (page 1431)
Returns the bundle containing the suite-definition property list (extension .scriptSuite) identified
by suiteName.

Loading Suites

– loadSuiteWithDictionary:fromBundle: (page 1433)
Loads the suite definition encapsulated in dictionary; previously, this suite definition was parsed
from a .scriptSuite property list contained in a framework or in bundle.

– loadSuitesFromBundle: (page 1432)
Loads the suite definitions in bundle aBundle, invoking
loadSuiteWithDictionary:fromBundle: (page 1433) for each suite found.

Class Methods

setSharedScriptSuiteRegistry:
Sets the single, shared instance of NSScriptSuiteRegistry to registry.

+ (void)setSharedScriptSuiteRegistry:(NSScriptSuiteRegistry *)registry

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptSuiteRegistry.h

sharedScriptSuiteRegistry
Returns the single, shared instance of NSScriptSuiteRegistry, creating it first if it doesn’t exist.

+ (NSScriptSuiteRegistry *)sharedScriptSuiteRegistry

Discussion
If it creates an instance, and if the application provides scriptability information in the script suite format,
the method loads suite definitions in all frameworks and other bundles that the application currently imports
or includes; if information is provided in the sdef format, the method loads information only from the specified
sdef file. If in reading scriptability information an exception is raised because of parsing errors, it handles
the exception by printing a line of information to the console.

Class Methods 1429
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 128

NSScriptSuiteRegistry Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– loadSuiteWithDictionary:fromBundle: (page 1433)

Related Sample Code
SimpleCarbonAppleScript

Declared In
NSScriptSuiteRegistry.h

Instance Methods

aeteResource:
Returns an NSData object that contains data in 'aete' resource format describing the scriptability information
currently known to the application.

- (NSData *)aeteResource:(NSString *)languageName

Discussion
This method is typically invoked to implement the get aete Apple event for an application that provides
scriptability information in the script suite format. The languageName argument is the name of a language
for which a localized resource directory (such as English.lproj) exists. This language indication specifies
the set of .scriptTerminology files to be used to generate the data. NSScriptSuiteRegistry does not
create an 'aete' resource unless this method is called.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appleEventCodeForSuite: (page 1430)

Declared In
NSScriptSuiteRegistry.h

appleEventCodeForSuite:
Returns the Apple event code associated with the suite named suiteName, such as ‘core’ for the Core
suite.

- (FourCharCode)appleEventCodeForSuite:(NSString *)suiteName

Availability
Available in Mac OS X v10.0 and later.

See Also
– suiteForAppleEventCode: (page 1434)

1430 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 128

NSScriptSuiteRegistry Class Reference

Declared In
NSScriptSuiteRegistry.h

bundleForSuite:
Returns the bundle containing the suite-definition property list (extension .scriptSuite) identified by
suiteName.

- (NSBundle *)bundleForSuite:(NSString *)suiteName

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptSuiteRegistry.h

classDescriptionsInSuite:
Returns the class descriptions contained in the suite identified by suiteName.

- (NSDictionary *)classDescriptionsInSuite:(NSString *)suiteName

Discussion
Each class description (instance of NSScriptClassDescription) in the returned dictionary is identified
by class name.

Availability
Available in Mac OS X v10.0 and later.

See Also
– classDescriptionWithAppleEventCode: (page 1431)
– registerClassDescription: (page 1433)

Declared In
NSScriptSuiteRegistry.h

classDescriptionWithAppleEventCode:
Returns the class description associated with the given four-character Apple event code, code.

- (NSScriptClassDescription *)classDescriptionWithAppleEventCode:(FourCharCode)code

Discussion
Overriding behavior is important here. Multiple classes can have the same code if the classes have an
uninterrupted linear inheritance from one another. For example, if class B is a subclass of A and class C is a
subclass of B, and all three classes have the same four-character Apple event code, then this method returns
the class description for class C.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1431
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 128

NSScriptSuiteRegistry Class Reference

See Also
– classDescriptionsInSuite: (page 1431)
– registerClassDescription: (page 1433)

Declared In
NSScriptSuiteRegistry.h

commandDescriptionsInSuite:
Returns the command descriptions contained in the suite identified by suiteName.

- (NSDictionary *)commandDescriptionsInSuite:(NSString *)suiteName

Discussion
Each command description (instance of NSScriptCommandDescription) in the returned dictionary is
identified by command name.

Availability
Available in Mac OS X v10.0 and later.

See Also
– commandDescriptionWithAppleEventClass:andAppleEventCode: (page 1432)
– registerCommandDescription: (page 1434)

Declared In
NSScriptSuiteRegistry.h

commandDescriptionWithAppleEventClass:andAppleEventCode:
Returns the command description identified by a suite’s four-character Apple event code of the class
(eventClass) and the four-character Apple event code of the command (commandCode).

- (NSScriptCommandDescription
*)commandDescriptionWithAppleEventClass:(FourCharCode)eventClass
andAppleEventCode:(FourCharCode)commandCode

Availability
Available in Mac OS X v10.0 and later.

See Also
– commandDescriptionsInSuite: (page 1432)
– registerCommandDescription: (page 1434)

Declared In
NSScriptSuiteRegistry.h

loadSuitesFromBundle:
Loads the suite definitions in bundle aBundle, invoking loadSuiteWithDictionary:fromBundle: (page
1433) for each suite found.

1432 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 128

NSScriptSuiteRegistry Class Reference

- (void)loadSuitesFromBundle:(NSBundle *)aBundle

Discussion
If errors occur while method is parsing a suite-definition file, the method logs error messages to the console.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptSuiteRegistry.h

loadSuiteWithDictionary:fromBundle:
Loads the suite definition encapsulated in dictionary; previously, this suite definition was parsed from a
.scriptSuite property list contained in a framework or in bundle.

- (void)loadSuiteWithDictionary:(NSDictionary *)dictionary fromBundle:(NSBundle
*)bundle

Discussion
The method extracts information from the dictionary and caches it in various internal collection objects. If
keys are missing or values are of the wrong type, it logs messages to the console. It also registers class
descriptions and command descriptions. In registering a class description, it invokes the NSClassDescription
class method registerClassDescription:forClass: (page 259). In registering a command description,
it arranges for the Apple event translator to handle incoming Apple events that represent the defined
commands.

This method is invoked when the shared instance is initialized and when bundles are loaded at runtime. Prior
to invoking it, NSScriptSuiteRegistry creates the dictionary argument from the .scriptSuite property
list. If you invoke this method in your code, you should try to do it before the application receives its first
Apple event.

Availability
Available in Mac OS X v10.0 and later.

See Also
– loadSuitesFromBundle: (page 1432)
– registerClassDescription: (page 1433)
– registerCommandDescription: (page 1434)
+ sharedScriptSuiteRegistry (page 1429)

Declared In
NSScriptSuiteRegistry.h

registerClassDescription:
Registers class description classDescription for use by Cocoa’s built-in scripting support by storing it in
a per-suite internal dictionary under the class name.

- (void)registerClassDescription:(NSScriptClassDescription *)classDescription

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1433
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 128

NSScriptSuiteRegistry Class Reference

See Also
– loadSuiteWithDictionary:fromBundle: (page 1433)
– registerCommandDescription: (page 1434)

Declared In
NSScriptSuiteRegistry.h

registerCommandDescription:
Registers command description commandDesc for use by Cocoa’s built-in scripting support by storing it in
a per-suite internal dictionary under the command name.

- (void)registerCommandDescription:(NSScriptCommandDescription *)commandDesc

Discussion
Also registers with the single, shared instance of NSAppleEventManager to handle incoming Apple events
that should be handled by the command.

Availability
Available in Mac OS X v10.0 and later.

See Also
– loadSuiteWithDictionary:fromBundle: (page 1433)
– registerClassDescription: (page 1433)

Declared In
NSScriptSuiteRegistry.h

suiteForAppleEventCode:
Returns the name of the suite definition associated with the given four-character Apple event code, code.

- (NSString *)suiteForAppleEventCode:(FourCharCode)code

Availability
Available in Mac OS X v10.0 and later.

See Also
– suiteNames (page 1434)

Declared In
NSScriptSuiteRegistry.h

suiteNames
Returns the names of the suite definitions currently loaded by the application.

- (NSArray *)suiteNames

Availability
Available in Mac OS X v10.0 and later.

1434 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 128

NSScriptSuiteRegistry Class Reference

See Also
– suiteForAppleEventCode: (page 1434)

Declared In
NSScriptSuiteRegistry.h

Instance Methods 1435
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 128

NSScriptSuiteRegistry Class Reference

1436 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 128

NSScriptSuiteRegistry Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptWhoseTests.h

Companion guide Cocoa Scripting Guide

Overview

NSScriptWhoseTest is an abstract class whose sole method is isTrue (page 1438). Two concrete subclasses
of NSScriptWhoseTest generate objects representing Boolean expressions comparing one object with
another and objects representing multiple Boolean expressions connected by logical operators (OR, AND,
NOT). These classes are, respectively, NSSpecifierTest and NSLogicalTest. In evaluating itself, an
NSWhoseSpecifier invokes the isTrue (page 1438) method of its “test” object.

You shouldn’t need to subclass NSScriptWhoseTest, and you should rarely need to subclass one of its
subclasses.

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

Tasks

Evaluating a Test

– isTrue (page 1438)
Returns a Boolean value that indicates whether the test represented by the receiver evaluates to YES.

Overview 1437
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 129

NSScriptWhoseTest Class Reference

Instance Methods

isTrue
Returns a Boolean value that indicates whether the test represented by the receiver evaluates to YES.

- (BOOL)isTrue

Return Value
YES if the test represented by the receiver evaluates to YES, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

1438 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 129

NSScriptWhoseTest Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSSerialization.h

Availability Deprecated in Mac OS X v10.2.

Companion guide Archives and Serializations Programming Guide for Cocoa

Overview

NSSerializer is obsolete and has been deprecated. Instead use NSPropertyListSerialization.

The NSSerializer class provides a mechanism for creating an abstract representation of a property list. (In
Cocoa, property lists are defined to be—and to contain—objects of these classes: NSDictionary, NSArray,
NSString, NSData.) The NSSerializer class stores this representation in an NSData object using an
architecture-independent format, so that property lists can be used with distributed applications. NSSerializer’s
companion class NSDeserializer declares methods that take the representation and recreate the property
list in memory.

The NSSerializer class object provides the interface to the serialization process; you don’t create instances
of NSSerializer. You might subclass NSSerializer to modify the representation it creates, for example,
to encrypt the data or add authentication information.

Other types of data besides property lists can be serialized using serializeDataAt:ofObjCType:context:
and deserializeDataAt:ofObjCType:atCursor:context:, declared by NSData and NSMutableData,
allowing these types to be represented in an architecture-independent format. Furthermore, the
NSObjCTypeSerializationCallBack protocol allows you to serialize and deserialize objects that are not
property lists.

Tasks

Serializing a Property List

+ serializePropertyList: (page 1440) Deprecated in Mac OS X v10.2
Creates a data object, serializes aPropertyList into it, and returns the data object.

Overview 1439
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 130

NSSerializer Class Reference

+ serializePropertyList:intoData: (page 1440) Deprecated in Mac OS X v10.2
Serializes the property list aPropertyList into the mutable data object mdata.

Class Methods

serializePropertyList:
Creates a data object, serializes aPropertyList into it, and returns the data object. (Deprecated in Mac OS
X v10.2.)

+ (NSData *)serializePropertyList:(id)aPropertyList

Discussion
aPropertyList must be a kind of NSData, NSString, NSArray, or NSDictionary object.

Availability
Deprecated in Mac OS X v10.2.

Declared In
NSSerialization.h

serializePropertyList:intoData:
Serializes the property list aPropertyList into the mutable data object mdata. (Deprecated in Mac OS X
v10.2.)

+ (void)serializePropertyList:(id)aPropertyList intoData:(NSMutableData *)mdata

Discussion
aPropertyList must be a kind of NSData, NSString, NSArray, or NSDictionary object. The property
list is appended to mdata.

Availability
Deprecated in Mac OS X v10.2.

Declared In
NSSerialization.h

1440 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 130

NSSerializer Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSSet.h

Companion guide Collections Programming Topics for Cocoa

Related sample code Core Data HTML Store
CoreRecipes
CustomAtomicStoreSubclass
NewsReader
Sketch-112

Overview

The NSSet, NSMutableSet, and NSCountedSet classes declare the programmatic interface to an object
that manages a set of objects. NSSet provides support for the mathematical concept of a set. A set, both in
its mathematical sense and in the implementation of NSSet, is an unordered collection of distinct elements.
The NSMutableSet (a subclass of NSSet) and NSCountedSet (a subclass of NSMutableSet) classes are
provided for sets whose contents may be altered.

NSSet and NSMutableSet are part of a class cluster, so sets are not actual instances of NSSet or
NSMutableSet. Rather, the instances belong to one of their private subclasses. (For convenience, we use
the term set to refer to any one of these instances without specifying its exact class membership.) Although
a set’s class is private, its interface is public, as declared by the abstract superclasses NSSet and NSMutableSet.
Note that NSCountedSet is not part of the class cluster; it is a concrete subclass of NSMutableSet.

NSSet declares the programmatic interface for static sets of objects. You establish a static set’s entries when
it’s created, and thereafter the entries can’t be modified. NSMutableSet, on the other hand, declares a
programmatic interface for dynamic sets of objects. A dynamic—or mutable—set allows the addition and
deletion of entries at any time, automatically allocating memory as needed.

Overview 1441
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

You can use sets as an alternative to arrays when the order of elements isn’t important and performance in
testing whether an object is contained in the set is a consideration—while arrays are ordered, testing for
membership is slower than with sets.

Objects in a set must respond to the NSObject protocol methods hash (page 2101) and isEqual: (page
2101)—see the NSObject protocol for more information.

Note that if mutable objects are stored in a set, either the hash method of the objects shouldn’t depend on
the internal state of the mutable objects or the mutable objects shouldn’t be modified while they’re in the
set (note that it can be difficult to know whether or not a given object is in a collection).

Objects added to a set are not copied; rather, an object receives a retain message before it’s added to a
set.

Typically, you create a temporary set by sending one of the set… methods to the NSSet class object. These
methods return an NSSet object containing the elements (if any) you pass in as arguments. The set (page
1445) method is a “convenience” method to create an empty mutable set.

The set classes adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert
a set of one type to the other.

NSSet provides methods for querying the elements of the set. allObjects (page 1449) returns an array
containing the objects in a set.anyObject (page 1450) returns some object in the set.count (page 1451) returns
the number of objects currently in the set. member: (page 1458) returns the object in the set that is equal to
a specified object. Additionally, intersectsSet: (page 1455) tests for set intersection, isEqualToSet: (page
1456) tests for set equality, and isSubsetOfSet: (page 1456) tests for one set being a subset of another.

The objectEnumerator (page 1458) method provides for traversing elements of the set one by one. For
better performance on Mac OS X v10.5 and later, you can also use the Objective-C fast enumeration feature
(see Fast Enumeration).

NSSet’s makeObjectsPerformSelector: (page 1457) and
makeObjectsPerformSelector:withObject: (page 1457) methods provides for sending messages to
individual objects in the set.

NSSet is “toll-free bridged” with its Core Foundation counterpart, CFSet Reference. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. Therefore,
in a method where you see an NSSet * parameter, you can pass a CFSetRef, and in a function where you
see a CFSetRef parameter, you can pass an NSSet instance (you cast one type to the other to suppress
compiler warnings). See Interchangeable Data Types for more information on toll-free bridging.

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

NSCopying
copyWithZone: (page 2042)

NSMutableCopying
mutableCopyWithZone: (page 2094)

1442 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

Tasks

Creating a Set

+ set (page 1445)
Creates and returns an empty set.

+ setWithArray: (page 1445)
Creates and returns a set containing a uniqued collection of those objects contained in a given array.

+ setWithObject: (page 1446)
Creates and returns a set that contains a single given object.

+ setWithObjects: (page 1447)
Creates and returns a set containing the objects in a given argument list.

+ setWithObjects:count: (page 1447)
Creates and returns a set containing a specified number of objects from a given C array of objects.

+ setWithSet: (page 1448)
Creates and returns a set containing the objects from another set.

– setByAddingObject: (page 1459)
Returns a new set formed by adding a given object to the collection defined by the receiver.

– setByAddingObjectsFromSet: (page 1461)
Returns a new set formed by adding the objects in a given set to the collection defined by the receiver.

– setByAddingObjectsFromArray: (page 1460)
Returns a new set formed by adding the objects in a given array to the collection defined by the
receiver.

Initializing a Set

– initWithArray: (page 1452)
Initializes a newly allocated set with the objects that are contained in a given array.

– initWithObjects: (page 1453)
Initializes a newly allocated set with members taken from the specified list of objects.

– initWithObjects:count: (page 1454)
Initializes a newly allocated set with a specified number of objects from a given C array of objects.

– initWithSet: (page 1454)
Initializes a newly allocated set and adds to it objects from another given set.

– initWithSet:copyItems: (page 1455)
Initializes a newly allocated set and adds to it members of another given set.

Counting Entries

– count (page 1451)
Returns the number of members in the receiver.

Tasks 1443
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

Accessing Set Members

– allObjects (page 1449)
Returns an array containing the receiver’s members, or an empty array if the receiver has no members.

– anyObject (page 1450)
Returns one of the objects in the receiver, or nil if the receiver contains no objects.

– containsObject: (page 1450)
Returns a Boolean value that indicates whether a given object is present in the receiver.

– filteredSetUsingPredicate: (page 1452)
Evaluates a given predicate against each object in the receiver and returns a new set containing the
objects for which the predicate returns true.

– makeObjectsPerformSelector: (page 1457)
Sends to each object in the receiver a message specified by a given selector.

– makeObjectsPerformSelector:withObject: (page 1457)
Sends to each object in the receiver a message specified by a given selector.

– member: (page 1458)
Determines whether the receiver contains an object equal to a given object, and returns that object
if it is present.

– objectEnumerator (page 1458)
Returns an enumerator object that lets you access each object in the receiver.

Comparing Sets

– isSubsetOfSet: (page 1456)
Returns a Boolean value that indicates whether every object in the receiver is also present in another
given set.

– intersectsSet: (page 1455)
Returns a Boolean value that indicates whether at least one object in the receiver is also present in
another given set.

– isEqualToSet: (page 1456)
Compares the receiver to another set.

– valueForKey: (page 1461)
Return a set containing the results of invoking valueForKey: on each of the receiver's members.

– setValue:forKey: (page 1461)
Invokes setValue:forKey: on each of the receiver’s members.

Key-Value Observing

– addObserver:forKeyPath:options:context: (page 1449)
Raises an exception.

– removeObserver:forKeyPath: (page 1459)
Raises an exception.

1444 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

Describing a Set

– description (page 1451)
Returns a string that represents the contents of the receiver, formatted as a property list.

– descriptionWithLocale: (page 1451)
Returns a string that represents the contents of the receiver, formatted as a property list.

Class Methods

set
Creates and returns an empty set.

+ (id)set

Return Value
A new empty set.

Discussion
This method is declared primarily for the use of mutable subclasses of NSSet.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setWithArray: (page 1445)
+ setWithObject: (page 1446)
+ setWithObjects: (page 1447)
– setByAddingObject: (page 1459)
– setByAddingObjectsFromSet: (page 1461)
– setByAddingObjectsFromArray: (page 1460)

Declared In
NSSet.h

setWithArray:
Creates and returns a set containing a uniqued collection of those objects contained in a given array.

+ (id)setWithArray:(NSArray *)anArray

Parameters
anArray

An array containing the objects to add to the new set. If the same object appears more than once in
anArray, it is added only once to the returned set. Each object receives a retain (page 2108) message
as it is added to the set.

Return Value
A new set containing a uniqued collection of those objects contained in anArray.

Class Methods 1445
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ set (page 1445)
+ setWithObject: (page 1446)
+ setWithObjects: (page 1447)
– setByAddingObject: (page 1459)
– setByAddingObjectsFromSet: (page 1461)
– setByAddingObjectsFromArray: (page 1460)

Related Sample Code
CoreRecipes
NewsReader

Declared In
NSSet.h

setWithObject:
Creates and returns a set that contains a single given object.

+ (id)setWithObject:(id)anObject

Parameters
anObject

The object to add to the new set. anObject receives a retain (page 2108) message after being added
to the set.

Return Value
A new set that contains a single member, anObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ set (page 1445)
+ setWithArray: (page 1445)
+ setWithObjects: (page 1447)
– setByAddingObject: (page 1459)
– setByAddingObjectsFromSet: (page 1461)
– setByAddingObjectsFromArray: (page 1460)

Related Sample Code
Core Data HTML Store

Declared In
NSSet.h

1446 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

setWithObjects:
Creates and returns a set containing the objects in a given argument list.

+ (id)setWithObjects:(id)anObject, ...

Parameters
anObject

The first object to add to the new set.

anObject, ...
A comma-separated list of objects, ending with nil, to add to the new set. If the same object appears
more than once in the list of objects, it is added only once to the returned set. Each object receives
a retain (page 2108) message as it is added to the set.

Return Value
A new set containing the objects in the argument list.

Discussion
As an example, the following code excerpt creates a set containing three different types of elements (assuming
aPath exits):

NSSet *mySet;
NSData *someData = [NSData dataWithContentsOfFile:aPath];
NSValue *aValue = [NSNumber numberWithInteger:5];
NSString *aString = @"a string";

mySet = [NSSet setWithObjects:someData, aValue, aString, nil];

Availability
Available in Mac OS X v10.0 and later.

See Also
+ set (page 1445)
+ setWithArray: (page 1445)
+ setWithObject: (page 1446)
– setByAddingObject: (page 1459)
– setByAddingObjectsFromSet: (page 1461)
– setByAddingObjectsFromArray: (page 1460)

Declared In
NSSet.h

setWithObjects:count:
Creates and returns a set containing a specified number of objects from a given C array of objects.

+ (id)setWithObjects:(id *)objects count:(NSUInteger)count

Parameters
objects

A C array of objects to add to the new set. If the same object appears more than once in objects, it
is added only once to the returned set. Each object receives a retain (page 2108) message as it is
added to the set.

Class Methods 1447
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

count
The number of objects from objects to add to the new set.

Return Value
A new set containing count objects from the list of objects specified by objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ set (page 1445)
+ setWithArray: (page 1445)
+ setWithObject: (page 1446)
+ setWithObjects: (page 1447)
– setByAddingObject: (page 1459)
– setByAddingObjectsFromSet: (page 1461)
– setByAddingObjectsFromArray: (page 1460)

Declared In
NSSet.h

setWithSet:
Creates and returns a set containing the objects from another set.

+ (id)setWithSet:(NSSet *)aSet

Parameters
aSet

A set containing the objects to add to the new set. Each object receives a retain (page 2108) message
as it is added to the new set.

Return Value
A new set containing the objects from aSet.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ set (page 1445)
+ setWithArray: (page 1445)
+ setWithObject: (page 1446)
+ setWithObjects: (page 1447)
– setByAddingObject: (page 1459)
– setByAddingObjectsFromSet: (page 1461)
– setByAddingObjectsFromArray: (page 1460)

Declared In
NSSet.h

1448 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

Instance Methods

addObserver:forKeyPath:options:context:
Raises an exception.

- (void)addObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath
options:(NSKeyValueObservingOptions)options context:(void *)context

Parameters
observer

The object to register for KVO notifications. The observer must implement the key-value observing
method observeValueForKeyPath:ofObject:change:context: (page 2081).

keyPath
The key path, relative to the receiver, of the property to observe. This value must not be nil.

options
A combination of the NSKeyValueObservingOptions (page 2086) values that specifies what is
included in observation notifications. For possible values, see NSKeyValueObservingOptions.

context
Arbitrary data that is passed to observer in
observeValueForKeyPath:ofObject:change:context: (page 2081).

Special Considerations

NSSet objects are not observable, so this method raises an exception when invoked on an NSSet object.
Instead of observing a set, observe the unordered to-many relationship for which the set is the collection of
related objects.

Availability
Available in Mac OS X v10.4 and later.

See Also
– removeObserver:forKeyPath: (page 1459)

Declared In
NSKeyValueObserving.h

allObjects
Returns an array containing the receiver’s members, or an empty array if the receiver has no members.

- (NSArray *)allObjects

Return Value
An array containing the receiver’s members, or an empty array if the receiver has no members. The order of
the objects in the array isn’t defined.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1449
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

See Also
– anyObject (page 1450)
– objectEnumerator (page 1458)

Related Sample Code
CoreRecipes
Sketch-112

Declared In
NSSet.h

anyObject
Returns one of the objects in the receiver, or nil if the receiver contains no objects.

- (id)anyObject

Return Value
One of the objects in the receiver, or nil if the receiver contains no objects. The object returned is chosen
at the receiver’s convenience—the selection is not guaranteed to be random.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allObjects (page 1449)
– objectEnumerator (page 1458)

Related Sample Code
Core Data HTML Store

Declared In
NSSet.h

containsObject:
Returns a Boolean value that indicates whether a given object is present in the receiver.

- (BOOL)containsObject:(id)anObject

Parameters
anObject

The object for which to test membership of the receiver.

Return Value
YES if anObject is present in the receiver, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– member: (page 1458)

1450 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

Declared In
NSSet.h

count
Returns the number of members in the receiver.

- (NSUInteger)count

Return Value
The number of members in the receiver.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes

Declared In
NSSet.h

description
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)description

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– descriptionWithLocale: (page 1451)

Declared In
NSSet.h

descriptionWithLocale:
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale

Parameters
locale

In Mac OS X v10.4 and earlier, this must be a dictionary that specifies options used for formatting
each of the receiver’s members. In Mac OS X v10.5 and later, you can use an NSLocale object. If you
do not want the receiver’s members to be formatted, specify nil.

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Instance Methods 1451
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

Discussion
This method sends each of the receiver’s members descriptionWithLocale: with locale passed as the
sole parameter. If the receiver’s members do not respond to descriptionWithLocale:, this method sends
description (page 2100) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– description (page 1451)

Declared In
NSSet.h

filteredSetUsingPredicate:
Evaluates a given predicate against each object in the receiver and returns a new set containing the objects
for which the predicate returns true.

- (NSSet *)filteredSetUsingPredicate:(NSPredicate *)predicate

Parameters
predicate

A predicate.

Return Value
A new set containing the objects in the receiver for which predicate returns true.

Discussion
The following example illustrates the use of this method.

NSSet *sourceSet =
 [NSSet setWithObjects:@"One", @"Two", @"Three", @"Four", nil];
NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@"SELF beginswith 'T'"];
NSSet *filteredSet =
 [sourceSet filteredSetUsingPredicate:predicate];
// filteredSet contains (Two, Three)

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicate.h

initWithArray:
Initializes a newly allocated set with the objects that are contained in a given array.

- (id)initWithArray:(NSArray *)array

1452 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

Parameters
array

An array of objects to add to the new set. If the same object appears more than once in array, it is
represented only once in the returned set. Each object receives a retain (page 2108) message as it is
added to the set.

Return Value
An initialized object, which might be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithObjects: (page 1453)
– initWithObjects:count: (page 1454)
– initWithSet: (page 1454)
– initWithSet:copyItems: (page 1455)
+ setWithArray: (page 1445)

Declared In
NSSet.h

initWithObjects:
Initializes a newly allocated set with members taken from the specified list of objects.

- (id)initWithObjects:(id)firstObj, ...

Parameters
anObject

The first object to add to the new set.

firstObj, ...
A comma-separated list of objects, ending with nil, to add to the new set. If the same object appears
more than once in the list, it is represented only once in the returned set. Each object receives a
retain (page 2108) message as it is added to the set

Return Value
An initialized object, which might be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithArray: (page 1452)
– initWithObjects:count: (page 1454)
– initWithSet: (page 1454)
– initWithSet:copyItems: (page 1455)
+ setWithObjects: (page 1447)

Declared In
NSSet.h

Instance Methods 1453
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

initWithObjects:count:
Initializes a newly allocated set with a specified number of objects from a given C array of objects.

- (id)initWithObjects:(id *)objects count:(NSUInteger)count

Parameters
objects

A C array of objects to add to the new set. If the same object appears more than once in objects, it
is added only once to the returned set. Each object receives a retain (page 2108) message as it is
added to the set.

count
The number of objects from objects to add to the new set.

Return Value
An initialized object, which might be different than the original receiver.

Discussion
This method is the designated initializer for NSSet.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithArray: (page 1452)
– initWithObjects: (page 1453)
– initWithSet: (page 1454)
– initWithSet:copyItems: (page 1455)
+ setWithObjects:count: (page 1447)

Declared In
NSSet.h

initWithSet:
Initializes a newly allocated set and adds to it objects from another given set.

- (id)initWithSet:(NSSet *)otherSet

Parameters
otherSet

A set containing objects to add to the receiver. Each object is retained as it is added to the receiver.

Return Value
An initialized object, which might be different than the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithArray: (page 1452)
– initWithObjects: (page 1453)
– initWithObjects:count: (page 1454)

1454 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

– initWithSet:copyItems: (page 1455)
+ setWithSet: (page 1448)

Declared In
NSSet.h

initWithSet:copyItems:
Initializes a newly allocated set and adds to it members of another given set.

- (id)initWithSet:(NSSet *)otherSet copyItems:(BOOL)flag

Parameters
otherSet

A set containing objects to add to the new set.

flag
If YES, the members of otherSet are copied, and the copies are added to the receiver. If NO, the
members of otherSet are added to the receiver and retained.

Return Value
An initialized object that contains the members of otherSet.

This method returns an initialized object, which might be different than the original receiver.

Discussion
Note that, if flag is YES, copyWithZone: (page 2042) is invoked to make copies—thus, the receiver’s new
member objects may be immutable, even though their counterparts in otherSet were mutable. Also,
members must conform to the NSCopying protocol)

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithArray: (page 1452)
– initWithObjects: (page 1453)
– initWithObjects:count: (page 1454)
– initWithSet: (page 1454)
+ setWithSet: (page 1448)

Declared In
NSSet.h

intersectsSet:
Returns a Boolean value that indicates whether at least one object in the receiver is also present in another
given set.

- (BOOL)intersectsSet:(NSSet *)otherSet

Instance Methods 1455
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

Parameters
otherSet

The set with which to compare the receiver.

Return Value
YES if at least one object in the receiver is also present in otherSet, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEqualToSet: (page 1456)
– isSubsetOfSet: (page 1456)

Declared In
NSSet.h

isEqualToSet:
Compares the receiver to another set.

- (BOOL)isEqualToSet:(NSSet *)otherSet

Parameters
otherSet

The set with which to compare the receiver.

Return Value
YES if the contents of otherSet are equal to the contents of the receiver, otherwise NO.

Discussion
Two sets have equal contents if they each have the same number of members and if each member of one
set is present in the other.

Availability
Available in Mac OS X v10.0 and later.

See Also
– intersectsSet: (page 1455)
– isEqual: (page 2101) (NSObject protocol)
– isSubsetOfSet: (page 1456)

Declared In
NSSet.h

isSubsetOfSet:
Returns a Boolean value that indicates whether every object in the receiver is also present in another given
set.

- (BOOL)isSubsetOfSet:(NSSet *)otherSet

1456 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

Parameters
otherSet

The set with which to compare the receiver.

Return Value
YES if every object in the receiver is also present in otherSet, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– intersectsSet: (page 1455)
– isEqualToSet: (page 1456)

Declared In
NSSet.h

makeObjectsPerformSelector:
Sends to each object in the receiver a message specified by a given selector.

- (void)makeObjectsPerformSelector:(SEL)aSelector

Parameters
aSelector

A selector that specifies the message to send to the members of the receiver. The method must not
take any arguments. It should not have the side effect of modifying the receiver. This value must not
be NULL.

Discussion
The message specified by aSelector is sent once to each member of the receiver. This method raises an
NSInvalidArgumentException if aSelector is NULL.

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeObjectsPerformSelector:withObject: (page 1457)

Declared In
NSSet.h

makeObjectsPerformSelector:withObject:
Sends to each object in the receiver a message specified by a given selector.

- (void)makeObjectsPerformSelector:(SEL)aSelector withObject:(id)anObject

Parameters
aSelector

A selector that specifies the message to send to the receiver's members. The method must take a
single argument of type id. The method should not, as a side effect, modify the receiver. The value
must not be NULL.

Instance Methods 1457
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

anObject
The object to pass as an argument to the method specified by aSelector.

Discussion
The message specified by aSelector is sent, with anObject as the argument, once to each member of the
receiver. This method raises an NSInvalidArgumentException if aSelector is NULL.

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeObjectsPerformSelector: (page 1457)

Declared In
NSSet.h

member:
Determines whether the receiver contains an object equal to a given object, and returns that object if it is
present.

- (id)member:(id)anObject

Parameters
anObject

The object for which to test for membership of the receiver.

Return Value
If the receiver contains an object equal to anObject (as determined by isEqual: (page 2101)) then that
object (typically this will be anObject), otherwise nil.

Discussion
If you override isEqual:, you must also override the hash method for the member: method to work on a
set of objects of your class.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSet.h

objectEnumerator
Returns an enumerator object that lets you access each object in the receiver.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver.

Discussion
The following code fragment illustrates how you can use this method.

NSEnumerator *enumerator = [mySet objectEnumerator];

1458 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

id value;

while ((value = [enumerator nextObject])) {
 /* code that acts on the set’s values */
}

When this method is used with mutable subclasses of NSSet, your code shouldn’t modify the receiver during
enumeration. If you intend to modify the receiver, use the allObjects (page 1449) method to create a
“snapshot” of the set’s members. Enumerate the snapshot, but make your modifications to the original set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextObject (page 558) (NSEnumerator)

Related Sample Code
CoreRecipes

Declared In
NSSet.h

removeObserver:forKeyPath:
Raises an exception.

- (void)removeObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath

Parameters
observer

The object to remove as an observer.

keyPath
A key-path, relative to the receiver, for which observer is registered to receive KVO change
notifications. This value must not be nil.

Special Considerations

NSSet objects are not observable, so this method raises an exception when invoked on an NSSet object.
Instead of observing a set, observe the unordered to-many relationship for which the set is the collection of
related objects.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addObserver:forKeyPath:options:context: (page 1449)

Declared In
NSKeyValueObserving.h

setByAddingObject:
Returns a new set formed by adding a given object to the collection defined by the receiver.

Instance Methods 1459
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

- (NSSet *)setByAddingObject:(id)anObject

Parameters
anObject

The object to add to the collection defined by the receiver.

Return Value
A new set formed by adding anObject to the collection defined by the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ set (page 1445)
+ setWithArray: (page 1445)
+ setWithObject: (page 1446)
+ setWithObjects: (page 1447)
– setByAddingObjectsFromSet: (page 1461)
– setByAddingObjectsFromArray: (page 1460)

Declared In
NSSet.h

setByAddingObjectsFromArray:
Returns a new set formed by adding the objects in a given array to the collection defined by the receiver.

- (NSSet *)setByAddingObjectsFromArray:(NSArray *)other

Parameters
other

The array of objects to add to the collection defined by the receiver.

Return Value
A new set formed by adding the objects in other to the collection defined by the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ set (page 1445)
+ setWithArray: (page 1445)
+ setWithObject: (page 1446)
+ setWithObjects: (page 1447)
– setByAddingObject: (page 1459)
– setByAddingObjectsFromSet: (page 1461)

Declared In
NSSet.h

1460 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

setByAddingObjectsFromSet:
Returns a new set formed by adding the objects in a given set to the collection defined by the receiver.

- (NSSet *)setByAddingObjectsFromSet:(NSSet *)other

Parameters
other

The set of objects to add to the collection defined by the receiver.

Return Value
A new set formed by adding the objects in other to the collection defined by the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ set (page 1445)
+ setWithArray: (page 1445)
+ setWithObject: (page 1446)
+ setWithObjects: (page 1447)
– setByAddingObject: (page 1459)
– setByAddingObjectsFromSet: (page 1461)

Declared In
NSSet.h

setValue:forKey:
Invokes setValue:forKey: on each of the receiver’s members.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters
value

The value for the property identified by key.

key
The name of one of the properties of the receiver's members.

Availability
Available in Mac OS X v10.4 and later.

See Also
– valueForKey: (page 1461)

Declared In
NSKeyValueCoding.h

valueForKey:
Return a set containing the results of invoking valueForKey: on each of the receiver's members.

Instance Methods 1461
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

- (id)valueForKey:(NSString *)key

Parameters
key

The name of one of the properties of the receiver's members.

Return Value
A set containing the results of invoking valueForKey: (with the argument key) on each of the receiver's
members.

Discussion
The returned set might not have the same number of members as the receiver. The returned set will not
contain any elements corresponding to instances of valueForKey: returning nil (note that this is in contrast
with NSArray’s implementation, which may put NSNull values in the arrays it returns).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setValue:forKey: (page 1461)

Declared In
NSKeyValueCoding.h

1462 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 131

NSSet Class Reference

Inherits from NSScriptCommand : NSObject

Conforms to NSCoding (NSScriptCommand)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptStandardSuiteCommands.h

Companion guide Cocoa Scripting Guide

Overview

An instance of NSSetCommand sets one or more attributes or relationships to one or more values; for example,
it may set the (x, y) coordinates for a window’s position or set the name of a document.

NSSetCommand is part of Cocoa’s built-in scripting support. It works automatically to support the set
command through key-value coding. Most applications don’t need to subclass NSSetCommand or call its
methods.

NSSetCommand uses available scripting class descriptions to determine whether it should set a value for an
attribute (or property), or set a value for all elements (to-many objects). For the latter, it invokes
replaceValueAtIndex:inPropertyWithKey:withValue: (page 2119); for the former, it invokes
setValue:forKey: (page 2064) (or, if the receiver overridestakeValue:forKey: (page 2068), it invokes that
method, to support backward binary compatibility.)

For information on working with set commands, see Getting and Setting Properties and Elements in Cocoa
Scripting Guide.

Tasks

Working with Specifiers

– keySpecifier (page 1464)
Returns a specifier that identifies the attribute or relationship that is to be set for the receiver of the
set AppleScript command.

Overview 1463
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 132

NSSetCommand Class Reference

– setReceiversSpecifier: (page 1464)
Sets the receiver’s object specifier.

Instance Methods

keySpecifier
Returns a specifier that identifies the attribute or relationship that is to be set for the receiver of the set
AppleScript command.

- (NSScriptObjectSpecifier *)keySpecifier

Return Value
A specifier that identifies the attribute or relationship that is to be set for the receiver of the set AppleScript
command.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

setReceiversSpecifier:
Sets the receiver’s object specifier.

- (void)setReceiversSpecifier:(NSScriptObjectSpecifier *)receiversRef

Parameters
receiversRef

The receiver’s object specifier.

Discussion
When the command is executed, it sets attributes or relationships in the objects specified by receiversRef.

This method overrides setReceiversSpecifier: (page 1390) in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRef is a specifier for the color of
the third rectangle, the receiver specifier is the third rectangle, while the key specifier is the
color.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptStandardSuiteCommands.h

1464 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 132

NSSetCommand Class Reference

Inherits from NSPort : NSObject

Conforms to NSCoding (NSPort)
NSCopying (NSPort)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSPort.h

Companion guide Distributed Objects Programming Topics

Overview

NSSocketPort is a subclass of NSPort that represents a BSD socket. An NSSocketPort object can be used
as an endpoint for distributed object connections. Companion classes, NSMachPort and NSMessagePort,
allow for local (on the same machine) communication only. The NSSocketPort class allows for both local
and remote communication, but may be more expensive than the others for the local case.

Note: The NSSocketPort class conforms to the NSCoding protocol, but only supports coding by an
NSPortCoder. NSPort and its other subclasses do not support archiving.

Tasks

Creating Instances

– init (page 1466)
Initializes the receiver as a local TCP/IP socket of type SOCK_STREAM.

– initWithTCPPort: (page 1469)
Initializes the receiver as a local TCP/IP socket of type SOCK_STREAM, listening on a specified port
number.

– initWithProtocolFamily:socketType:protocol:address: (page 1468)
Initializes the receiver as a local socket with the provided arguments.

– initWithProtocolFamily:socketType:protocol:socket: (page 1469)
Initializes the receiver with a previously created local socket.

Overview 1465
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 133

NSSocketPort Class Reference

– initRemoteWithTCPPort:host: (page 1467)
Initializes the receiver as a TCP/IP socket of type SOCK_STREAM that can connect to a remote host on
a specified port.

– initRemoteWithProtocolFamily:socketType:protocol:address: (page 1467)
Initializes the receiver as a remote socket with the provided arguments.

Getting Information

– address (page 1466)
Returns the receiver’s socket address structure.

– protocol (page 1470)
Returns the protocol that the receiver uses for communication.

– protocolFamily (page 1470)
Returns the protocol family that the receiver uses for communication.

– socket (page 1470)
Returns the receiver’s native socket identifier on the platform.

– socketType (page 1470)
Returns the receiver’s socket type.

Instance Methods

address
Returns the receiver’s socket address structure.

- (NSData *)address

Return Value
The receiver’s socket address structure stored inside an NSData object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithProtocolFamily:socketType:protocol:address: (page 1468)
– initRemoteWithProtocolFamily:socketType:protocol:address: (page 1467)

Declared In
NSPort.h

init
Initializes the receiver as a local TCP/IP socket of type SOCK_STREAM.

- (id)init

1466 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 133

NSSocketPort Class Reference

Return Value
An initialized local TCP/IP socket port of type SOCK_STREAM.

Discussion
The port number is selected by the system.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithTCPPort: (page 1469)
– initWithProtocolFamily:socketType:protocol:address: (page 1468)

Declared In
NSPort.h

initRemoteWithProtocolFamily:socketType:protocol:address:
Initializes the receiver as a remote socket with the provided arguments.

- (id)initRemoteWithProtocolFamily:(int)family socketType:(int)type
protocol:(int)protocol address:(NSData *)address

Parameters
family

The protocol family for the socket port.

type
The type of socket.

protocol
The specific protocol to use from the the protocol family.

address
The family-specific socket address for the receiver copied into an NSData object.

Discussion
A connection is not opened to the remote address until data is sent.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initRemoteWithTCPPort:host: (page 1467)

Declared In
NSPort.h

initRemoteWithTCPPort:host:
Initializes the receiver as a TCP/IP socket of type SOCK_STREAM that can connect to a remote host on a
specified port.

- (id)initRemoteWithTCPPort:(unsigned short)port host:(NSString *)hostName

Instance Methods 1467
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 133

NSSocketPort Class Reference

Parameters
port

The port to connect to.

hostName
The host name to connect to. hostName may be either a host name or an IPv4-style address.

Return Value
A TCP/IP socket port of type SOCK_STREAM that can connect to the remote host hostName on port port.

Discussion
A connection is not opened to the remote host until data is sent.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initRemoteWithProtocolFamily:socketType:protocol:address: (page 1467)

Declared In
NSPort.h

initWithProtocolFamily:socketType:protocol:address:
Initializes the receiver as a local socket with the provided arguments.

- (id)initWithProtocolFamily:(int)family socketType:(int)type protocol:(int)protocol
address:(NSData *)address

Parameters
family

The protocol family for the socket port.

type
The type of socket.

protocol
The specific protocol to use from the the protocol family.

address
The family-specific socket address for the receiver copied into an NSData object.

Return Value
A local socket port initialized with the provided arguments.

Discussion
The receiver must be added to a run loop before it can accept connections or receive messages. Incoming
messages are passed to the receiver’s delegate method handlePortMessage: (page 1255).

To create a standard TCP/IP socket, use initWithTCPPort: (page 1469).

Availability
Available in Mac OS X v10.0 and later.

See Also
– init (page 1466)
– initWithProtocolFamily:socketType:protocol:socket: (page 1469)

1468 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 133

NSSocketPort Class Reference

Declared In
NSPort.h

initWithProtocolFamily:socketType:protocol:socket:
Initializes the receiver with a previously created local socket.

- (id)initWithProtocolFamily:(int)family socketType:(int)type protocol:(int)protocol
socket:(NSSocketNativeHandle)sock

Parameters
family

The protocol family for the provided socket.

type
The type of the provided socket.

protocol
The specific protocol the provided socket uses.

sock
The previously created socket.

Return Value
A local socket port initialized with the provided socket.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithProtocolFamily:socketType:protocol:address: (page 1468)

Declared In
NSPort.h

initWithTCPPort:
Initializes the receiver as a local TCP/IP socket of type SOCK_STREAM, listening on a specified port number.

- (id)initWithTCPPort:(unsigned short)port

Parameters
port

The port number for the newly created socket port to listen on. If port is 0, the system will assign a
port number.

Return Value
An initialized local TCP/IP socket of type SOCK_STREAM, listening on port port.

Availability
Available in Mac OS X v10.0 and later.

See Also
– init (page 1466)
– initWithProtocolFamily:socketType:protocol:address: (page 1468)

Instance Methods 1469
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 133

NSSocketPort Class Reference

Declared In
NSPort.h

protocol
Returns the protocol that the receiver uses for communication.

- (int)protocol

Return Value
The protocol the receiver uses for communication.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

protocolFamily
Returns the protocol family that the receiver uses for communication.

- (int)protocolFamily

Return Value
The protocol family the receiver uses for communication.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

socket
Returns the receiver’s native socket identifier on the platform.

- (NSSocketNativeHandle)socket

Return Value
The native socket identifier on the platform. For Mac OS X, this is an integer file descriptor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

socketType
Returns the receiver’s socket type.

1470 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 133

NSSocketPort Class Reference

- (int)socketType

Return Value
The receiver's socket type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPort.h

Instance Methods 1471
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 133

NSSocketPort Class Reference

1472 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 133

NSSocketPort Class Reference

Inherits from NSPortNameServer : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSPortNameServer.h

Companion guide Distributed Objects Programming Topics

Overview

This port name server takes and returns instances of NSSocketPort.

Port removal functionality is supported by the removePortForName: (page 1478) method and should be
used to remove invalid socket ports.

Unlike the other port name servers, NSSocketPortNameServer can operate over a network. By registering
your socket ports, you make them available to other computers on the local network without hard-coding
the TCP port numbers. Clients just need to know the name of the port.

NSPortNameServer is implemented using NSNetService and registers ports in the local network domain.
The registered name of a port must be unique within the local domain, not just the local host. The name
server only supports TCP/IP (either IPv4 or IPv6) sockets.

Note: Prior to Mac OS X v10.2, NSSocketPortNameServer was inoperable.

Tasks

Getting the Server Object

+ sharedInstance (page 1474)
Returns the shared socket port name server.

Overview 1473
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 134

NSSocketPortNameServer Class Reference

Looking Up Ports

– portForName: (page 1475)
Looks up and returns the port registered under the specified name on the local host.

– portForName:host: (page 1475)
Looks up and returns the port registered under the specified name on a specified host.

– portForName:host:nameServerPortNumber: (page 1476)
Looks up and returns the port registered under the specified name on a specified host.

Registering and Removing Ports

– registerPort:name: (page 1477)
Registers a given port as a network service with the specified name in the local domain.

– registerPort:name:nameServerPortNumber: (page 1477)
Registers a given port as a network service with the specified name in the local domain.

– removePortForName: (page 1478)
Unregisters the port for a given name on the local host.

Configuring the Default Port Number

– defaultNameServerPortNumber (page 1475)
Returns the port number used to contact the name server.

– setDefaultNameServerPortNumber: (page 1478)
Sets the default port number used to contact the name server.

Class Methods

sharedInstance
Returns the shared socket port name server.

+ (id)sharedInstance

Return Value
The single instance of NSSocketPortNameServer with which you register and look up NSSocketPort
objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

1474 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 134

NSSocketPortNameServer Class Reference

Instance Methods

defaultNameServerPortNumber
Returns the port number used to contact the name server.

- (uint16_t)defaultNameServerPortNumber

Return Value
The port number used to contact the name server. This value is currently ignored.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDefaultNameServerPortNumber: (page 1478)

Declared In
NSPortNameServer.h

portForName:
Looks up and returns the port registered under the specified name on the local host.

- (NSPort *)portForName:(NSString *)portName

Parameters
portName

The name of the desired port.

Return Value
The port associated with portName on the local host. Returns nil if no such port exists.

Discussion
Invokes portForName:host:nameServerPortNumber: (page 1476) with nil as the host name and 0 as
the name server port number.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

portForName:host:
Looks up and returns the port registered under the specified name on a specified host.

- (NSPort *)portForName:(NSString *)portName host:(NSString *)hostName

Instance Methods 1475
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 134

NSSocketPortNameServer Class Reference

Parameters
portName

The name of the desired port.

hostName
The name of the host. hostName is an Internet domain name (for example, “sales.anycorp.com”).
If hostName is nil or empty, the local host is checked.

Return Value
The port associated with portName on the host hostName. Returns nil if no such port exists.

Discussion
Invokes portForName:host:nameServerPortNumber: (page 1476) with 0 as the name server port number.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

portForName:host:nameServerPortNumber:
Looks up and returns the port registered under the specified name on a specified host.

- (NSPort *)portForName:(NSString *)portName host:(NSString *)hostName
nameServerPortNumber:(uint16_t)portNumber

Parameters
portName

The name of the desired port.

hostName
The name of the host. hostName is an Internet domain name (for example, “sales.anycorp.com”)
or IP address (IPv4 or IPv6). If hostName is nil or empty, the local host is checked. If hostName is
@"*", all hosts on the local network are checked.

portNumber
The portNumber parameter is ignored.

Return Value
The port associated with portName on the host hostName. Returns nil if no such port exists.

Availability
Available in Mac OS X v10.0 and later.

See Also
– portForName: (page 1475)
– portForName:host: (page 1475)
– registerPort:name:nameServerPortNumber: (page 1477)

Declared In
NSPortNameServer.h

1476 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 134

NSSocketPortNameServer Class Reference

registerPort:name:
Registers a given port as a network service with the specified name in the local domain.

- (BOOL)registerPort:(NSPort *)port name:(NSString *)portName

Parameters
port

The port to make available.

portName
The name for the port.

Return Value
YES if successful, NO otherwise.

Discussion
InvokesregisterPort:name:nameServerPortNumber: (page 1477) with 0 as the name server port number.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSPortNameServer.h

registerPort:name:nameServerPortNumber:
Registers a given port as a network service with the specified name in the local domain.

- (BOOL)registerPort:(NSPort *)port name:(NSString *)portName
nameServerPortNumber:(uint16_t)portNumber

Parameters
port

The port to make available.

portName
The name for the port.

portNumber
The portNumber parameter is ignored.

Return Value
YES if successful, NO otherwise.

Special Considerations

If your application has already registered a port under the name portName, this method replaces it with
port.

If the local domain already has a port named portName registered, this method could return YES before the
name collision is detected. To detect a potential name collision, you can invoke portForName:host: (page
1475) with a host argument of @"*" to test if portName is already taken. This, however, leaves a race condition
wherein another process can register a port under portName after portForName:host: (page 1475) returns
but before you register port. If this is an unacceptable risk for your application, you can also invoke
portForName:host: (page 1475) some finite time after registering your port to test if you get the same port
back.

Instance Methods 1477
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 134

NSSocketPortNameServer Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– portForName:host:nameServerPortNumber: (page 1476)

Declared In
NSPortNameServer.h

removePortForName:
Unregisters the port for a given name on the local host.

- (BOOL)removePortForName:(NSString *)portName

Parameters
portName

The name of the port to unregister.

Return Value
YES if successful, otherwise NO.

Discussion
If the operation is successful, the port can no longer be looked up using the name portName. Other
applications that already have a reference to the port can continue to use it until it becomes invalid.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPortNameServer.h

setDefaultNameServerPortNumber:
Sets the default port number used to contact the name server.

- (void)setDefaultNameServerPortNumber:(uint16_t)portNumber

Parameters
portNumber

The new port number used to contact the name server. This value is currently ignored.

Availability
Available in Mac OS X v10.0 and later.

See Also
– defaultNameServerPortNumber (page 1475)

Declared In
NSPortNameServer.h

1478 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 134

NSSocketPortNameServer Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.3 and later.

Declared in Foundation/NSSortDescriptor.h

Companion guide Sort Descriptor Programming Topics

Related sample code CoreRecipes
GridCalendar
iSpend
NSOperationSample
SpotlightFortunes

Overview

An instance of NSSortDescriptor describes a basis for ordering objects by specifying the property to use
to compare the objects, the method to use to compare the properties, and whether the comparison should
be ascending or descending. Instances of NSSortDescriptor are immutable.

You construct an instance of NSSortDescriptor by specifying the key path of the property to be compared,
the order of the sort (ascending or descending), and (optionally) a selector to use to perform the comparison.
The three-argument constructor allows you to specify other comparison selectors such as
caseInsensitiveCompare: and localizedCompare:. Sorting raises an exception if the objects to be
sorted do not respond to the sort descriptor’s comparison selector.

Note: Many of the descriptions of NSSortDescriptor methods refer to "property key". This, briefly, is a
string (key) that identifies a property (an attribute or relationship) of an object. You can find a discussion of
this terminology in "Object Modeling" in Cocoa Fundamentals Guide and in Key-Value Coding Programming
Guide.

There are a number of situations in which you can use sort descriptors, for example:

 ■ To sort an array (an instance of NSArray or NSMutableArray—see sortedArrayUsingDescriptors:
and sortUsingDescriptors:)

Overview 1479
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 135

NSSortDescriptor Class Reference

 ■ To directly compare two objects (see compareObject:toObject: (page 1481))

 ■ To specify how the elements in a table view should be arranged (see sortDescriptors)

 ■ To specify how the elements managed by an array controller should be arranged (see sortDescriptors)

 ■ If you are using Core Data, to specify the ordering of objects returned from a fetch request (see
sortDescriptors)

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

Tasks

Initializing a Sort Descriptor

– initWithKey:ascending: (page 1482)
Returns an NSSortDescriptor object initialized with a given property key path and sort order, and
with the default comparison selector.

– initWithKey:ascending:selector: (page 1482)
Returns an NSSortDescriptor object initialized with a given property key path, sort order, and
comparison selector.

Getting Information About a Sort Descriptor

– ascending (page 1481)
Returns a Boolean value that indicates whether the receiver specifies sorting in ascending order.

– key (page 1483)
Returns the receiver’s property key path.

– selector (page 1484)
Returns the selector the receiver specifies to use when comparing objects.

Using Sort Descriptors

– compareObject:toObject: (page 1481)
Returns an NSComparisonResult value that indicates the ordering of two given objects.

1480 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 135

NSSortDescriptor Class Reference

– reversedSortDescriptor (page 1483)
Returns a copy of the receiver with the sort order reversed.

Instance Methods

ascending
Returns a Boolean value that indicates whether the receiver specifies sorting in ascending order.

- (BOOL)ascending

Return Value
YES if the receiver specifies sorting in ascending order, otherwise NO.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSortDescriptor.h

compareObject:toObject:
Returns an NSComparisonResult value that indicates the ordering of two given objects.

- (NSComparisonResult)compareObject:(id)object1 toObject:(id)object2

Parameters
object1

The object to compare with object2. This object must have a property accessible using the key-path
specified by key (page 1483).

This value must not be nil. If the value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

object2
The object to compare with object1. This object must have a property accessible using the key-path
specified by key (page 1483).

This value must not be nil. If the value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending if object1 is less than object2, NSOrderedDescending if object1 is greater than
object2, or NSOrderedSame if object1 is equal to object2.

Discussion
The ordering is determined by comparing, using the selector specified selector (page 1484), the values of the
properties specified by key (page 1483) of object1 and object2.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 1481
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 135

NSSortDescriptor Class Reference

Declared In
NSSortDescriptor.h

initWithKey:ascending:
Returns an NSSortDescriptor object initialized with a given property key path and sort order, and with
the default comparison selector.

- (id)initWithKey:(NSString *)keyPath ascending:(BOOL)ascending

Parameters
keyPath

The property key to use when performing a comparison. In the comparison, the property is accessed
using key-value coding (see Key-Value Coding Programming Guide).

ascending
YES if the receiver specifies sorting in ascending order, otherwise NO.

Return Value
An NSSortDescriptor object initialized with the property key path specified by keyPath, sort order
specified by ascending, and the default comparison selector (compare:).

Availability
Available in Mac OS X v10.3 and later.

See Also
– initWithKey:ascending:selector: (page 1482)

Related Sample Code
CoreRecipes
NSOperationSample
PredicateEditorSample
SimpleCalendar
SpotlightFortunes

Declared In
NSSortDescriptor.h

initWithKey:ascending:selector:
Returns an NSSortDescriptor object initialized with a given property key path, sort order, and comparison
selector.

- (id)initWithKey:(NSString *)keyPath ascending:(BOOL)ascending
selector:(SEL)selector

Parameters
keyPath

The property key to use when performing a comparison. In the comparison, the property is accessed
using key-value coding (see Key-Value Coding Programming Guide).

ascending
YES if the receiver specifies sorting in ascending order, otherwise NO.

1482 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 135

NSSortDescriptor Class Reference

selector
The method to use when comparing the properties of objects, for example
caseInsensitiveCompare: or localizedCompare:. The selector must specify a method
implemented by the value of the property identified by keyPath. The selector used for the comparison
is passed a single parameter, the object to compare against self, and must return the appropriate
NSComparisonResult constant. The selector must have the same method signature as:

- (NSComparisonResult)localizedCompare:(NSString *)aString

Return Value
An NSSortDescriptor object initialized with the property key path specified by keyPath, sort order
specified by ascending, and the selector specified by selector.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initWithKey:ascending: (page 1482)

Related Sample Code
GridCalendar

Declared In
NSSortDescriptor.h

key
Returns the receiver’s property key path.

- (NSString *)key

Return Value
The receiver’s property key path.

Discussion
This key path specifies the property that is compared during sorting.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
iSpend

Declared In
NSSortDescriptor.h

reversedSortDescriptor
Returns a copy of the receiver with the sort order reversed.

- (id)reversedSortDescriptor

Return Value
A copy of the receiver with the sort order reversed

Instance Methods 1483
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 135

NSSortDescriptor Class Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSortDescriptor.h

selector
Returns the selector the receiver specifies to use when comparing objects.

- (SEL)selector

Return Value
The selector the receiver specifies to use when comparing objects.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSortDescriptor.h

1484 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 135

NSSortDescriptor Class Reference

Inherits from NSScriptWhoseTest : NSObject

Conforms to NSCoding (NSScriptWhoseTest)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptWhoseTests.h

Companion guide Cocoa Scripting Guide

Overview

Instances of this class represent a Boolean expression; they evaluate an object specifier and compare the
resulting object to another object using a given comparison method. For more information on
NSSpecifierTest, see the method description for its sole public method, its initializer,
initWithObjectSpecifier:comparisonOperator:testObject: (page 1486).

When an NSSpecifierTest object is properly initialized, it holds two objects:

 ■ A “value” or “test” object used as the basis of the comparison; this object can be a regular object or
object specifier (such as “blue” in “words whose color is blue”).

 ■ An object specifier evaluating to the container (“words”).

The instance also encapsulates a selector identifying the method performing this comparison. The informal
protocol NSComparisonMethods defines a set of comparison methods useful for this purpose, while
NSScriptingComparisonMethods describes additional methods you may need to use for scripting.

The test object is compared, using the selector, against each object in the container. Specifiers in these tests
usually have containerIsObjectBeingTested (page 1415) invoked on their topmost container.

You should rarely need to subclass NSSpecifierTest.

Overview 1485
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 136

NSSpecifierTest Class Reference

Tasks

Initializing a Specifier Test

– initWithObjectSpecifier:comparisonOperator:testObject: (page 1486)
Returns a specifier test initialized to evaluate a test object against an object specified by an object
specifier using a given comparison operation.

Instance Methods

initWithObjectSpecifier:comparisonOperator:testObject:
Returns a specifier test initialized to evaluate a test object against an object specified by an object specifier
using a given comparison operation.

- (id)initWithObjectSpecifier:(NSScriptObjectSpecifier *)obj1
comparisonOperator:(NSTestComparisonOperation)compOp testObject:(id)obj2

Parameters
obj1

An object specifier.

compOp
The comparison operation.

obj2
The object against which to evaluate the object specified by obj1.

Return Value
A specifier test initialized to evaluate (obj2) against an object specified by obj1 using the comparison
operation compOp.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

Constants

NSTestComparisonOperation
These are passed to initWithObjectSpecifier:comparisonOperator:testObject: (page 1486) to specify the
comparison operator.

1486 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 136

NSSpecifierTest Class Reference

typedef enum {
 NSEqualToComparison = 0,
 NSLessThanOrEqualToComparison,
 NSLessThanComparison,
 NSGreaterThanOrEqualToComparison,
 NSGreaterThanComparison,
 NSBeginsWithComparison,
 NSEndsWithComparison,
 NSContainsComparison
} NSTestComparisonOperation;

Constants
NSEqualToComparison

Binary comparison operator that results in YES if the two objects are equal.

Available in Mac OS X v10.0 and later.

Declared in NSScriptWhoseTests.h.

NSLessThanOrEqualToComparison
Binary comparison operator that results in YES if the value of the test object is equal to or less than
the value of the other object.

Available in Mac OS X v10.0 and later.

Declared in NSScriptWhoseTests.h.

NSLessThanComparison
Binary comparison operator that results in YES if the value of the test object is less than the value of
the other object.

Available in Mac OS X v10.0 and later.

Declared in NSScriptWhoseTests.h.

NSGreaterThanOrEqualToComparison
Binary comparison operator that results in YES if the value of the test object is greater than or equal
to the value of the other object.

Available in Mac OS X v10.0 and later.

Declared in NSScriptWhoseTests.h.

NSGreaterThanComparison
Binary comparison operator that results in YES if the value of the test object is greater than the value
of the other object.

Available in Mac OS X v10.0 and later.

Declared in NSScriptWhoseTests.h.

NSBeginsWithComparison
Binary containment operator that results in YES if the test object is a list or string that matches the
beginning of the other object (which is also a list or string).

Available in Mac OS X v10.0 and later.

Declared in NSScriptWhoseTests.h.

NSEndsWithComparison
Binary containment operator that results in YES if the test object is a list or string that matches the
end of the other object (which is also a list or string).

Available in Mac OS X v10.0 and later.

Declared in NSScriptWhoseTests.h.

Constants 1487
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 136

NSSpecifierTest Class Reference

NSContainsComparison
Binary containment operator that results in YES if the test object is a list or string that matches the
other object (which is also a list or string) at any location.

Available in Mac OS X v10.0 and later.

Declared in NSScriptWhoseTests.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

1488 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 136

NSSpecifierTest Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSSpellServer.h

Companion guide Spell Checking

Overview

The NSSpellServer class gives you a way to make your application’s spell checker available as a spelling
service available to any application.

A service provider is an application that declares its availability in a standard way, so that any other
applications that wish to use it can do so. If you build a spelling checker that makes use of the NSSpellServer
class and list it as an available service, then users of any application that makes use of NSSpellChecker or
includes a Services menu will see your spelling checker as one of the available dictionaries.

Tasks

Configuring Spelling Servers

– setDelegate: (page 1492)
Assigns the specified delegate to the receiver.

– delegate (page 1490)
Returns the receiver’s delegate.

Providing Spelling Services

– registerLanguage:byVendor: (page 1491)
Notifies the receiver of a language your spelling checker can check.

– run (page 1491)
Causes the receiver to start listening for spell-checking requests.

Overview 1489
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 137

NSSpellServer Class Reference

Managing the Spell-Checking Process

– isWordInUserDictionaries:caseSensitive: (page 1490)
Indicates whether a given word is in the user’s list of learned words or the document’s list of words
to ignore.

– spellServer:didForgetWord:inLanguage: (page 1493) delegate method
Notifies the delegate that the sender has removed the specified word from the user’s list of acceptable
words in the specified language.

– spellServer:didLearnWord:inLanguage: (page 1493) delegate method
Notifies the delegate that the sender has added the specified word to the user’s list of acceptable
words in the specified language.

– spellServer:findMisspelledWordInString:language:wordCount:countOnly: (page 1494) delegate
method

Asks the delegate to search for a misspelled word in a given string, using the specified language, and
marking the first misspelled word found by returning its range within the string.

– spellServer:suggestCompletionsForPartialWordRange:inString:language: (page 1494) delegate
method

This delegate method returns an array of possible word completions from the spell checker, based
on a partially completed string and a given range.

– spellServer:suggestGuessesForWord:inLanguage: (page 1495) delegate method
Gives the delegate the opportunity to suggest guesses to the sender for the correct spelling of the
given misspelled word in the specified language.

– spellServer:checkGrammarInString:language:details: (page 1492) delegate method
Gives the delegate the opportunity to customize the grammatical analysis of a given string.

Instance Methods

delegate
Returns the receiver’s delegate.

- (id)delegate

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 1492)

Declared In
NSSpellServer.h

isWordInUserDictionaries:caseSensitive:
Indicates whether a given word is in the user’s list of learned words or the document’s list of words to ignore.

- (BOOL)isWordInUserDictionaries:(NSString *)word caseSensitive:(BOOL)caseSensitive

1490 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 137

NSSpellServer Class Reference

Parameters
word

The word to compare with those in the user dictionaries.

caseSensitive
Specifies whether the comparison is case sensitive.

Return Value
A Boolean value indicating whether the word is in the user dictionaries. If YES, the word is acceptable to the
user.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellServer.h

registerLanguage:byVendor:
Notifies the receiver of a language your spelling checker can check.

- (BOOL)registerLanguage:(NSString *)language byVendor:(NSString *)vendor

Parameters
language

A string specifying the English name of a language on Apple’s list of languages.

vendor
A string that identifies the vendor (to distinguish your spelling checker from those that others may
offer for the same language).

Return Value
Returns YES if the language is registered, NO if for some reason it can’t be registered.

Discussion
If your spelling checker supports more than one language, it should invoke this method once for each
language. Registering a language-vendor combination causes it to appear in the Spelling panel’s pop-up
menu of spelling checkers.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellServer.h

run
Causes the receiver to start listening for spell-checking requests.

- (void)run

Discussion
This method starts a loop that never returns; you need to set the NSSpellServer object’s delegate before
sending this message.

Instance Methods 1491
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 137

NSSpellServer Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 1492)

Declared In
NSSpellServer.h

setDelegate:
Assigns the specified delegate to the receiver.

- (void)setDelegate:(id)anObject

Parameters
anObject

The delegate assigned to the receiver.

Discussion
Because the delegate is where the real work is done, this step is essential before telling the NSSpellServer
object to run.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 1490)
– run (page 1491)

Declared In
NSSpellServer.h

Delegate Methods

spellServer:checkGrammarInString:language:details:
Gives the delegate the opportunity to customize the grammatical analysis of a given string.

- (NSRange)spellServer:(NSSpellServer *)sender checkGrammarInString:(NSString
*)string language:(NSString *)language details:(NSArray **)outDetails

Parameters
sender

Spell server satisfying a grammatical analysis request.

string
String to analyze.

language
Language use in string. When nil, the language selected in the Spelling panel is used.

1492 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 137

NSSpellServer Class Reference

outDetails
On output, dictionaries describing grammar-analysis details within the flagged grammatical unit. See
the NSSpellServer class for information about these dictionaries.

Return Value
Location of the first flagged grammatical unit within string.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSpellServer.h

spellServer:didForgetWord:inLanguage:
Notifies the delegate that the sender has removed the specified word from the user’s list of acceptable words
in the specified language.

- (void)spellServer:(NSSpellServer *)sender didForgetWord:(NSString *)word
inLanguage:(NSString *)language

Parameters
sender

The NSSpellServer object that removed the word.

word
The word that was removed.

language
The language of the removed word.

Discussion
If your delegate maintains a similar auxiliary word list, you may wish to edit the list accordingly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellServer.h

spellServer:didLearnWord:inLanguage:
Notifies the delegate that the sender has added the specified word to the user’s list of acceptable words in
the specified language.

- (void)spellServer:(NSSpellServer *)sender didLearnWord:(NSString *)word
inLanguage:(NSString *)language

Parameters
sender

The NSSpellServer object that added the word.

word
The word that was added.

Delegate Methods 1493
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 137

NSSpellServer Class Reference

language
The language of the added word.

Discussion
If your delegate maintains a similar auxiliary word list, you may wish to edit the list accordingly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellServer.h

spellServer:findMisspelledWordInString:language:wordCount:countOnly:
Asks the delegate to search for a misspelled word in a given string, using the specified language, and marking
the first misspelled word found by returning its range within the string.

- (NSRange)spellServer:(NSSpellServer *)sender findMisspelledWordInString:(NSString
 *)stringToCheck language:(NSString *)language wordCount:(int32_t *)wordCount
countOnly:(BOOL)countOnly

Parameters
sender

The NSSpellServer object that sent this message.

stringToCheck
The string to search for the misspelled word.

language
The language to use for the search.

wordCount
On output, returns by reference the number of words from the beginning of the string object until
the misspelled word (or the end of string).

countOnly
If YES, the method only counts the words in the string object and does not spell checking.

Return Value
The range of the misspelled word within the given string.

Discussion
Send isWordInUserDictionaries:caseSensitive: (page 1490) to the spelling server to determine if the
word exists in the user’s language dictionaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellServer.h

spellServer:suggestCompletionsForPartialWordRange:inString:language:
This delegate method returns an array of possible word completions from the spell checker, based on a
partially completed string and a given range.

1494 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 137

NSSpellServer Class Reference

- (NSArray *)spellServer:(NSSpellServer *)sender
suggestCompletionsForPartialWordRange:(NSRange)range inString:(NSString *)string
language:(NSString *)language

Parameters
sender

The NSSpellServer object that sent this message.

range
The range of the partially completed word.

string
The string containing the partial word range.

language
The language to use for the completion.

Return Value
An array of NSString objects indicating possible completions.

Discussion
See completionsForPartialWordRange:inString:language:inSpellDocumentWithTag: in
NSSpellChecker for more information.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSpellServer.h

spellServer:suggestGuessesForWord:inLanguage:
Gives the delegate the opportunity to suggest guesses to the sender for the correct spelling of the given
misspelled word in the specified language.

- (NSArray *)spellServer:(NSSpellServer *)sender suggestGuessesForWord:(NSString
*)word inLanguage:(NSString *)language

Parameters
sender

The NSSpellServer object that sent this message.

word
The misspelled word.

language
The language to use for the guesses.

Return Value
An array of NSString objects indicating possible correct spellings.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellServer.h

Delegate Methods 1495
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 137

NSSpellServer Class Reference

Constants

Grammatical-Analysis Details
These constants are use as the keys in the outDetails dictionaries returned by
spellServer:checkGrammarInString:language:details: (page 1492) and NSSpellChecker
-checkGrammarOfString:startingAt:language:wrap:inSpellingDocumentWithTag:details:.

FOUNDATION_EXPORT NSString *const NSGrammarRange;
FOUNDATION_EXPORT NSString *const NSGrammarUserDescription;
FOUNDATION_EXPORT NSString *const NSGrammarCorrections;

Constants
NSGrammarRange

NSGrammarUserDescription

NSGrammarCorrections

Declared In
NSSpellServer.h

1496 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 137

NSSpellServer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.3 and later.

Declared in Foundation/NSStream.h

Companion guide Stream Programming Guide for Cocoa

Related sample code CocoaEcho
CocoaHTTPServer
CocoaSOAP

Overview

NSStream is an abstract class for objects representing streams. Its interface is common to all Cocoa stream
classes, including its concrete subclasses NSInputStream and NSOutputStream.

NSStream objects provide an easy way to read and write data to and from a variety of media in a
device-independent way. You can create stream objects for data located in memory, in a file, or on a network
(using sockets), and you can use stream objects without loading all of the data into memory at once.

By default, NSStream instances that are not file-based are non-seekable, one-way streams (although custom
seekable subclasses are possible). Once the data has been provided or consumed, the data cannot be retrieved
from the stream.

Subclassing Notes

NSStream is an abstract class, incapable of instantiation and intended to be subclassed. It publishes a
programmatic interface that all subclasses must adopt and provide implementations for. The two
Apple-provided concrete subclasses of NSStream, NSInputStream and NSOutputStream, are suitable for
most purposes. However, there might be situations when you want a peer subclass to NSInputStream and
NSOutputStream. For example, you might want a class that implements a full-duplex (two-way) stream, or
a class whose instances are capable of seeking through a stream.

Overview 1497
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

Methods to Override

All subclasses must fully implement the following methods, which are presented in functional pairs:

 ■ open (page 1501) and close (page 1500)

Implement open to open the stream for reading or writing and make the stream available to the client
directly or, if the stream object is scheduled on a run loop, to the delegate. Implement close to close
the stream and remove the stream object from the run loop, if necessary. A closed stream should still
be able to accept new properties and report its current properties. Once a stream is closed, it cannot be
reopened.

 ■ delegate (page 1500) and setDelegate: (page 1503)

Return and set the delegate. By a default, a stream object must be its own delegate; so a setDelegate:
message with an argument of nil should restore this delegate. Do not retain the delegate to prevent
retain cycles.

To learn about delegates and delegation, read "Delegates and Data Sources" in Cocoa Fundamentals
Guide.

 ■ scheduleInRunLoop:forMode: (page 1502) and removeFromRunLoop:forMode: (page 1502)

Implement scheduleInRunLoop:forMode: to schedule the stream object on the specified run loop
for the specified mode. Implement removeFromRunLoop:forMode: to remove the object from the
run loop. See the documentation of the NSRunLoop class for details. Once the stream object for an open
stream is scheduled on a run loop, it is the responsibility of the subclass as it processes stream data to
send stream:handleEvent: (page 1504) messages to its delegate.

 ■ propertyForKey: (page 1501) and setProperty:forKey: (page 1503)

Implement these methods to return and set, respectively, the property value for the specified key. You
may add custom properties, but be sure to handle all properties defined by NSStream as well.

 ■ streamStatus (page 1504) and streamError (page 1504)

Implement streamStatus to return the current status of the stream as a NSStreamStatus constant;
you may define new NSStreamStatus constants, but be sure to handle the NSStream-defined constants
properly. ImplementstreamError to return an NSError object representing the current error. You
might decide to return a custom NSError object that can provide complete and localized information
about the error.

Tasks

Creating Streams

+ getStreamsToHost:port:inputStream:outputStream: (page 1499)
Creates and returns by reference an NSInputStream object and NSOutputStream object for a socket
connection with a given host on a given port.

1498 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

Configuring Streams

– propertyForKey: (page 1501)
Returns the receiver’s property for a given key.

– setProperty:forKey: (page 1503)
Attempts to set the value of a given property of the receiver and returns a Boolean value that indicates
whether the value is accepted by the receiver.

– delegate (page 1500)
Returns the receiver’s delegate.

– setDelegate: (page 1503)
Sets the receiver’s delegate.

Using Streams

– open (page 1501)
Opens the receiving stream.

– close (page 1500)
Closes the receiver.

– stream:handleEvent: (page 1504) delegate method
The delegate receives this message when a given event has occurred on a given stream.

Managing Run Loops

– scheduleInRunLoop:forMode: (page 1502)
Schedules the receiver on a given run loop in a given mode.

– removeFromRunLoop:forMode: (page 1502)
Removes the receiver from a given run loop running in a given mode.

Getting Stream Information

– streamStatus (page 1504)
Returns the receiver’s status.

– streamError (page 1504)
Returns an NSError object representing the stream error.

Class Methods

getStreamsToHost:port:inputStream:outputStream:
Creates and returns by reference an NSInputStream object and NSOutputStream object for a socket
connection with a given host on a given port.

Class Methods 1499
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

+ (void)getStreamsToHost:(NSHost *)host port:(NSInteger)port
inputStream:(NSInputStream **)inputStream outputStream:(NSOutputStream
**)outputStream

Parameters
host

The host to which to connect.

port
The port to connect to on host.

inputStream
Upon return, contains the input stream. If nil is passed, the stream object is not created.

outputStream
Upon return, contains the output stream. If nil is passed, the stream object is not created.

Discussion
If neither port nor host is properly specified, no socket connection is made.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSStream.h

Instance Methods

close
Closes the receiver.

- (void)close

Discussion
Closing the stream terminates the flow of bytes and releases system resources that were reserved for the
stream when it was opened. If the stream has been scheduled on a run loop, closing the stream implicitly
removes the stream from the run loop. A stream that is closed can still be queried for its properties.

Availability
Available in Mac OS X v10.3 and later.

See Also
– open (page 1501)

Declared In
NSStream.h

delegate
Returns the receiver’s delegate.

- (id)delegate

1500 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

Return Value
The receiver’s delegate.

Discussion
By default, a stream is its own delegate, and subclasses of NSInputStream and NSOutputStream must
maintain this contract.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setDelegate: (page 1503)

Declared In
NSStream.h

open
Opens the receiving stream.

- (void)open

Discussion
A stream must be created before it can be opened. Once opened, a stream cannot be closed and reopened.

Availability
Available in Mac OS X v10.3 and later.

See Also
– close (page 1500)

Declared In
NSStream.h

propertyForKey:
Returns the receiver’s property for a given key.

- (id)propertyForKey:(NSString *)key

Parameters
key

The key for one of the receiver's properties. See “Constants” (page 1505) for a description of the available
property-key constants and associated values.

Return Value
The receiver’s property for the key key.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setProperty:forKey: (page 1503)

Instance Methods 1501
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

Declared In
NSStream.h

removeFromRunLoop:forMode:
Removes the receiver from a given run loop running in a given mode.

- (void)removeFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The run loop on which the receiver was scheduled.

mode
The mode for the run loop.

Availability
Available in Mac OS X v10.3 and later.

See Also
– scheduleInRunLoop:forMode: (page 1502)

Declared In
NSStream.h

scheduleInRunLoop:forMode:
Schedules the receiver on a given run loop in a given mode.

- (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The run loop on which to schedule the receiver.

mode
The mode for the run loop.

Discussion
Unless the client is polling the stream, it is responsible for ensuring that the stream is scheduled on at least
one run loop and that at least one of the run loops on which the stream is scheduled is being run.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeFromRunLoop:forMode: (page 1502)

Declared In
NSStream.h

1502 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Parameters
delegate

The delegate for the receiver.

Discussion
By default, a stream is its own delegate, and subclasses of NSInputStream and NSOutputStream must
maintain this contract. If you override this method in a subclass, passing nil must restore the receiver as its
own delegate. Delegates are not retained.

To learn about delegates and delegation, read "Delegates and Data Sources" in Cocoa Fundamentals Guide.

Availability
Available in Mac OS X v10.3 and later.

See Also
– delegate (page 1500)

Declared In
NSStream.h

setProperty:forKey:
Attempts to set the value of a given property of the receiver and returns a Boolean value that indicates
whether the value is accepted by the receiver.

- (BOOL)setProperty:(id)property forKey:(NSString *)key

Parameters
property

The value for key.

key
The key for one of the receiver's properties. See “Constants” (page 1505) for a description of the available
property-key constants and expected values.

Return Value
YES if the value is accepted by the receiver, otherwise NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– propertyForKey: (page 1501)

Declared In
NSStream.h

Instance Methods 1503
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

streamError
Returns an NSError object representing the stream error.

- (NSError *)streamError

Return Value
An NSError object representing the stream error, or nil if no error has been encountered.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSStream.h

streamStatus
Returns the receiver’s status.

- (NSStreamStatus)streamStatus

Return Value
The receiver’s status.

Discussion
See “Constants” (page 1505) for a description of the available NSStreamStatus constants.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSStream.h

Delegate Methods

stream:handleEvent:
The delegate receives this message when a given event has occurred on a given stream.

- (void)stream:(NSStream *)theStream handleEvent:(NSStreamEvent)streamEvent

Parameters
theStream

The stream on which streamEvent occurred.

streamEvent
The stream event that occurred,

Discussion
The delegate receives this message only if theStream is scheduled on a run loop. The message is sent on
the stream object’s thread. The delegate should examine streamEvent to determine the appropriate action
it should take.

1504 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSStream.h

Constants

NSStreamStatus
The type declared for the constants listed in “Stream Status Constants” (page 1505).

typedef NSUInteger NSStreamStatus;

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSStream.h

Stream Status Constants
These constants indicate the current status of a stream. They are returned by streamStatus (page 1504).

typedef enum {
 NSStreamStatusNotOpen = 0,
 NSStreamStatusOpening = 1,
 NSStreamStatusOpen = 2,
 NSStreamStatusReading = 3,
 NSStreamStatusWriting = 4,
 NSStreamStatusAtEnd = 5,
 NSStreamStatusClosed = 6,
 NSStreamStatusError = 7
};

Constants
NSStreamStatusNotOpen

The stream is not open for reading or writing. This status is returned before the underlying call to
open a stream but after it’s been created.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamStatusOpening
The stream is in the process of being opened for reading or for writing. For network streams, this
status might include the time after the stream was opened, but while network DNS resolution is
happening.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

Constants 1505
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

NSStreamStatusOpen
The stream is open, but no reading or writing is occurring.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamStatusReading
Data is being read from the stream. This status would be returned if code on another thread were to
call streamStatus (page 1504) on the stream while a read:maxLength: (page 767) call
(NSInputStream) was in progress.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamStatusWriting
Data is being written to the stream. This status would be returned if code on another thread were to
call streamStatus (page 1504) on the stream while a write:maxLength: (page 1222) call
(NSOutputStream) was in progress.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamStatusAtEnd
There is no more data to read, or no more data can be written to the stream. When this status is
returned, the stream is in a “non-blocking” mode and no data are available.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamStatusClosed
The stream is closed (close (page 1500) has been called on it).

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamStatusError
The remote end of the connection can’t be contacted, or the connection has been severed for some
other reason.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

Declared In
NSStream.h

NSStreamEvent
The type declared for the constants listed in “Stream Event Constants” (page 1507).

typedef NSUInteger NSStreamEvent;

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSStream.h

1506 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

Stream Event Constants
One or more of these constants may be sent to the delegate as a bit field in the second parameter of
stream:handleEvent: (page 1504).

typedef enum {
 NSStreamEventNone = 0,
 NSStreamEventOpenCompleted = 1 << 0,
 NSStreamEventHasBytesAvailable = 1 << 1,
 NSStreamEventHasSpaceAvailable = 1 << 2,
 NSStreamEventErrorOccurred = 1 << 3,
 NSStreamEventEndEncountered = 1 << 4
};

Constants
NSStreamEventNone

No event has occurred.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamEventOpenCompleted
The open has completed successfully.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamEventHasBytesAvailable
The stream has bytes to be read.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamEventHasSpaceAvailable
The stream can accept bytes for writing.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamEventErrorOccurred
An error has occurred on the stream.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamEventEndEncountered
The end of the stream has been reached.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

Declared In
NSStream.h

NSStream Property Keys
NSStream defines these string constants as keys for accessing stream properties using
propertyForKey: (page 1501) and setting properties with setProperty:forKey: (page 1503):

Constants 1507
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

extern NSString * const NSStreamSocketSecurityLevelKey ;
extern NSString * const NSStreamSocketSecurityLevelNone ;
extern NSString * const NSStreamSocketSecurityLevelSSLv2 ;
extern NSString * const NSStreamSocketSecurityLevelSSLv3 ;
extern NSString * const NSStreamSocketSecurityLevelTLSv1 ;
extern NSString * const NSStreamSocketSecurityLevelNegotiatedSSL;
extern NSString * const NSStreamSOCKSProxyConfigurationKey ;
extern NSString * const NSStreamSOCKSProxyHostKey ;
extern NSString * const NSStreamSOCKSProxyPortKey ;
extern NSString * const NSStreamSOCKSProxyVersionKey ;
extern NSString * const NSStreamSOCKSProxyUserKey ;
extern NSString * const NSStreamSOCKSProxyPasswordKey ;
extern NSString * const NSStreamSOCKSProxyVersion4 ;
extern NSString * const NSStreamSOCKSProxyVersion5 ;
extern NSString * const NSStreamDataWrittenToMemoryStreamKey ;
extern NSString * const NSStreamFileCurrentOffsetKey ;

Constants
NSStreamSocketSecurityLevelKey

The security level of the target stream. May be one of the following values:
NSStreamSocketSecurityLevelNone, NSStreamSocketSecurityLevelSSLv2,
NSStreamSocketSecurityLevelSSLv3, NSStreamSocketSecurityLevelTLSv1, or
NSStreamSocketSecurityLevelNegotiatedSSL.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyConfigurationKey
Value is an NSDictionary object containing SOCKS proxy configuration information.

The dictionary returned from the System Configuration framework for SOCKS proxies usually suffices.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamDataWrittenToMemoryStreamKey
Value is an NSData instance containing the data written to a memory stream.

Use this property when you have an output-stream object instantiated to collect written data in
memory. The value of this property is read-only.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamFileCurrentOffsetKey
Value is an NSNumber object containing the current absolute offset of the stream.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

Declared In
NSStream.h

NSStream Error Domains
NSStream defines these string constants to represent error domains that can be returned by
streamError (page 1504):

1508 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

extern NSString * const NSStreamSocketSSLErrorDomain ;
extern NSString * const NSStreamSOCKSErrorDomain ;

Constants
NSStreamSocketSSLErrorDomain

The error domain used by NSError when reporting SSL errors.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamSOCKSErrorDomain
The error domain used by NSError when reporting SOCKS errors.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

Declared In
NSStream.h

Secure-Socket Layer (SSL) Security Level
NSStream defines these string constants for specifying the secure-socket layer (SSL) security level.

NSString * const NSStreamSocketSecurityLevelNone;
NSString * const NSStreamSocketSecurityLevelSSLv2;
NSString * const NSStreamSocketSecurityLevelSSLv3;
NSString * const NSStreamSocketSecurityLevelTLSv1;
NSString * const NSStreamSocketSecurityLevelNegotiatedSSL

Constants
NSStreamSocketSecurityLevelNone

Specifies that no security level be set for a socket stream.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamSocketSecurityLevelSSLv2
Specifies that SSL version 2 be set as the security protocol for a socket stream.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamSocketSecurityLevelSSLv3
Specifies that SSL version 3 be set as the security protocol for a socket stream.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamSocketSecurityLevelTLSv1
Specifies that TLS version 1 be set as the security protocol for a socket stream.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamSocketSecurityLevelNegotiatedSSL
Specifies that the highest level security protocol that can be negotiated be set as the security protocol
for a socket stream.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

Constants 1509
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

Discussion
You access and set these values using the NSStreamSocketSecurityLevelKey property key.

Declared In
NSStream.h

SOCKS Proxy Configuration Values
NSStream defines these string constants for use as keys to specify SOCKS proxy configuration values in an
NSDictionary object.

NSString * const NSStreamSOCKSProxyHostKey;
NSString * const NSStreamSOCKSProxyPortKey;
NSString * const NSStreamSOCKSProxyVersionKey;
NSString * const NSStreamSOCKSProxyUserKey;
NSString * const NSStreamSOCKSProxyPasswordKey;
NSString * const NSStreamSOCKSProxyVersion4;
NSString * const NSStreamSOCKSProxyVersion5

Constants
NSStreamSOCKSProxyHostKey

Value is an NSString object that represents the SOCKS proxy host.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyPortKey
Value is an NSNumber object containing an integer that represents the port on which the proxy listens.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyVersionKey
Value is either NSStreamSOCKSProxyVersion4 or NSStreamSOCKSProxyVersion5.

If this key is not present, NSStreamSOCKSProxyVersion5 is used by default.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyUserKey
Value is an NSString object containing the user’s name.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyPasswordKey
Value is an NSString object containing the user’s password.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

NSStreamSOCKSProxyVersion4
Possible value for NSStreamSOCKSProxyVersionKey.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

1510 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

NSStreamSOCKSProxyVersion5
Possible value for NSStreamSOCKSProxyVersionKey.

Available in Mac OS X v10.3 and later.

Declared in NSStream.h.

Discussion
You set the dictionary object as the current SOCKS proxy configuration using the
NSStreamSOCKSProxyConfigurationKey key

Declared In
NSStream.h

Constants 1511
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

1512 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 138

NSStream Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSString.h
Foundation/NSPathUtilities.h
Foundation/NSURL.h

Companion guides String Programming Guide for Cocoa
Property List Programming Guide

Related sample code Dicey
GLSLShowpiece
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Overview

The NSString class declares the programmatic interface for an object that manages immutable strings. (An
immutable string is a text string that is defined when it is created and subsequently cannot be changed.
NSString is implemented to represent an array of Unicode characters (in other words, a text string).

The mutable subclass of NSString is NSMutableString.

The NSString class has two primitive methods—length (page 1580) and characterAtIndex: (page
1540)—that provide the basis for all other methods in its interface. The length (page 1580) method returns the
total number of Unicode characters in the string. characterAtIndex: (page 1540) gives access to each
character in the string by index, with index values starting at 0.

NSString declares methods for finding and comparing strings. It also declares methods for reading numeric
values from strings, for combining strings in various ways, and for converting a string to different forms (such
as encoding and case changes).

Overview 1513
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to
encapsulate the paragraph or ruler attributes used by the NSAttributedString classes. Additionally,
methods to support string drawing are described in NSString Application Kit Additions Reference, found in
the Application Kit.

NSString is “toll-free bridged” with its Core Foundation counterpart, CFString (see CFStringRef). This
means that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSString * parameter, you can pass a
CFStringRef, and in a function where you see a CFStringRef parameter, you can pass an NSString
instance (you cast one type to the other to suppress compiler warnings). This also applies to your concrete
subclasses of NSString. See Interchangeable Data Types for more information on toll-free bridging.

String Objects

NSString objects represent character strings in frameworks. Representing strings as objects allows you to
use strings wherever you use other objects. It also provides the benefits of encapsulation, so that string
objects can use whatever encoding and storage are needed for efficiency while simply appearing as arrays
of characters. The cluster’s two public classes, NSString and NSMutableString, declare the programmatic
interface for non-editable and editable strings, respectively.

Note: An immutable string is a text string that is defined when it is created and subsequently cannot be
changed. An immutable string is implemented as an array of Unicode characters (in other words, a text string).
To create and manage an immutable string, use the NSString class. To construct and manage a string that
can be changed after it has been created, use NSMutableString.

The objects you create using NSString and NSMutableString are referred to as string objects (or, when
no confusion will result, merely as strings). The term C string refers to the standard char * type. Because of
the nature of class clusters, string objects aren’t actual instances of the NSString or NSMutableString
classes but of one of their private subclasses. Although a string object’s class is private, its interface is public,
as declared by these abstract superclasses, NSString and NSMutableString. The string classes adopt the
NSCopying and NSMutableCopying protocols, making it convenient to convert a string of one type to the
other.

Understanding characters

A string object presents itself as an array of Unicode characters (Unicode is a registered trademark of Unicode,
Inc.). You can determine how many characters a string object contains with the length (page 1580) method
and can retrieve a specific character with the characterAtIndex: (page 1540) method. These two “primitive”
methods provide basic access to a string object.

Most use of strings, however, is at a higher level, with the strings being treated as single entities: You compare
strings against one another, search them for substrings, combine them into new strings, and so on. If you
need to access string objects character by character, you must understand the Unicode character encoding,
specifically issues related to composed character sequences. For details see The Unicode Standard, Version
4.0 (The Unicode Consortium, Boston: Addison-Wesley, 2003, ISBN 0-321-18578-1) and the Unicode Consortium
web site: http://www.unicode.org/. See also Characters and Grapheme Clusters in String Programming Guide
for Cocoa.

1514 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

http://www.unicode.org/

Interpreting UTF-16-encoded data

When creating an NSString object from a UTF-16-encoded string (or a byte stream interpreted as UTF-16),
if the byte order is not otherwise specified, NSString assumes that the UTF-16 characters are big-endian,
unless there is a BOM (byte-order mark), in which case the BOM dictates the byte order. When creating an
NSString object from an array of Unicode characters, the returned string is always native-endian, since the
array always contains Unicode characters in native byte order.

Distributed objects

Over distributed-object connections, mutable string objects are passed by-reference and immutable string
objects are passed by-copy.

Subclassing Notes

It is possible to subclass NSString (and NSMutableString), but doing so requires providing storage facilities
for the string (which is not inherited by subclasses) and implementing two primitive methods. The abstract
NSString and NSMutableString classes are the public interface of a class cluster consisting mostly of
private, concrete classes that create and return a string object appropriate for a given situation. Making your
own concrete subclass of this cluster imposes certain requirements (discussed in “Methods to Override” (page
1515)).

Make sure your reasons for subclassing NSString are valid. Instances of your subclass should represent a
string and not something else. Thus the only attributes the subclass should have are the length of the character
buffer it’s managing and access to individual characters in the buffer. Valid reasons for making a subclass of
NSString include providing a different backing store (perhaps for better performance) or implementing
some aspect of object behavior differently, such as memory management. If your purpose is to add
non-essential attributes or metadata to your subclass of NSString, a better alternative would be object
composition (see “Alternatives to Subclassing” (page 1516)). Cocoa already provides an example of this with
the NSAttributedString class.

Methods to Override

Any subclass of NSString must override the primitive instance methods length (page 1580) and
characterAtIndex: (page 1540). These methods must operate on the backing store that you provide for
the characters of the string. For this backing store you can use a static array, a dynamically allocated buffer,
a standard NSString object, or some other data type or mechanism. You may also choose to override,
partially or fully, any other NSString method for which you want to provide an alternative implementation.
For example, for better performance it is recommended that you override getCharacters:range: (page
1555) and give it a faster implementation.

You might want to implement an initializer for your subclass that is suited to the backing store that the
subclass is managing. The NSString class does not have a designated initializer, so your initializer need only
invoke the init (page 1178) method of super. The NSString class adopts the NSCopying,
NSMutableCopying, and NSCoding protocols; if you want instances of your own custom subclass created
from copying or coding, override the methods in these protocols.

Note that you shouldn’t override the hash (page 1561) method.

Overview 1515
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Alternatives to Subclassing

Often a better and easier alternative to making a subclass of NSString—or of any other abstract, public
class of a class cluster, for that matter—is object composition. This is especially the case when your intent is
to add to the subclass metadata or some other attribute that is not essential to a string object. In object
composition, you would have an NSString object as one instance variable of your custom class (typically a
subclass of NSObject) and one or more instance variables that store the metadata that you want for the
custom object. Then just design your subclass interface to include accessor methods for the embedded string
object and the metadata.

If the behavior you want to add supplements that of the existing class, you could write a category on
NSString. Keep in mind, however, that this category will be in effect for all instances of NSString that you
use, and this might have unintended consequences.

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

NSCopying
copyWithZone: (page 2042)

NSMutableCopying
mutableCopyWithZone: (page 2094)

Tasks

Creating and Initializing Strings

+ string (page 1529)
Returns an empty string.

– init (page 1563)
Returns an initialized NSString object that contains no characters.

– initWithBytes:length:encoding: (page 1563)
Returns an initialized NSString object containing a given number of bytes from a given C array of
bytes in a given encoding.

– initWithBytesNoCopy:length:encoding:freeWhenDone: (page 1564)
Returns an initialized NSString object that contains a given number of bytes from a given C array
of bytes in a given encoding, and optionally frees the array on deallocation.

– initWithCharacters:length: (page 1565)
Returns an initialized NSString object that contains a given number of characters from a given C
array of Unicode characters.

1516 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

– initWithCharactersNoCopy:length:freeWhenDone: (page 1565)
Returns an initialized NSString object that contains a given number of characters from a given C
array of Unicode characters.

– initWithString: (page 1575)
Returns an NSString object initialized by copying the characters from another given string.

– initWithCString:encoding: (page 1570)
Returns an NSString object initialized using the characters in a given C array, interpreted according
to a given encoding.

– initWithUTF8String: (page 1576)
Returns an NSString object initialized by copying the characters a given C array of UTF8-encoded
bytes.

– initWithFormat: (page 1572)
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted.

– initWithFormat:arguments: (page 1573)
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted according to the user’s default locale.

– initWithFormat:locale: (page 1574)
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted according to given locale information.

– initWithFormat:locale:arguments: (page 1574)
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted according to given locale information.

– initWithData:encoding: (page 1572)
Returns an NSString object initialized by converting given data into Unicode characters using a
given encoding.

+ stringWithFormat: (page 1536)
Returns a string created by using a given format string as a template into which the remaining
argument values are substituted.

+ localizedStringWithFormat: (page 1528)
Returns a string created by using a given format string as a template into which the remaining
argument values are substituted according to the user's default locale.

+ stringWithCharacters:length: (page 1530)
Returns a string containing a given number of characters taken from a given C array of Unicode
characters.

+ stringWithString: (page 1537)
Returns a string created by copying the characters from another given string.

+ stringWithCString:encoding: (page 1535)
Returns a string containing the bytes in a given C array, interpreted according to a given encoding.

+ stringWithUTF8String: (page 1537)
Returns a string created by copying the data from a given C array of UTF8-encoded bytes.

+ stringWithCString: (page 1534) Deprecated in Mac OS X v10.4
Creates a new string using a given C-string. (Deprecated. Use stringWithCString:encoding: (page
1535) instead.)

Tasks 1517
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

+ stringWithCString:length: (page 1535) Deprecated in Mac OS X v10.4
Returns a string containing the characters in a given C-string. (Deprecated. Use
stringWithCString:encoding: (page 1535) instead.)

– initWithCString: (page 1569) Deprecated in Mac OS X v10.4
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string
from the default C-string encoding into the Unicode character encoding. (Deprecated. Use
initWithCString:encoding: (page 1570) instead.)

– initWithCString:length: (page 1570) Deprecated in Mac OS X v10.4
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string
from the default C-string encoding into the Unicode character encoding. (Deprecated. Use
initWithCString:encoding: (page 1570) instead.)

– initWithCStringNoCopy:length:freeWhenDone: (page 1571) Deprecated in Mac OS X v10.4
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string
from the default C-string encoding into the Unicode character encoding. (Deprecated. Use
initWithBytesNoCopy:length:encoding:freeWhenDone: (page 1564) instead.)

Creating and Initializing a String from a File

+ stringWithContentsOfFile:encoding:error: (page 1531)
Returns a string created by reading data from the file at a given path interpreted using a given
encoding.

– initWithContentsOfFile:encoding:error: (page 1566)
Returns an NSString object initialized by reading data from the file at a given path using a given
encoding.

+ stringWithContentsOfFile:usedEncoding:error: (page 1532)
Returns a string created by reading data from the file at a given path and returns by reference the
encoding used to interpret the file.

– initWithContentsOfFile:usedEncoding:error: (page 1567)
Returns an NSString object initialized by reading data from the file at a given path and returns by
reference the encoding used to interpret the characters.

+ stringWithContentsOfFile: (page 1530) Deprecated in Mac OS X v10.4
Returns a string created by reading data from the file named by a given path. (Deprecated. Use
stringWithContentsOfFile:encoding:error: (page 1531) or
stringWithContentsOfFile:usedEncoding:error: (page 1532) instead.)

– initWithContentsOfFile: (page 1566) Deprecated in Mac OS X v10.4
Initializes the receiver, a newly allocated NSString object, by reading data from the file named by
path. (Deprecated. Use initWithContentsOfFile:encoding:error: (page 1566) or
initWithContentsOfFile:usedEncoding:error: (page 1567) instead.)

Creating and Initializing a String from an URL

+ stringWithContentsOfURL:encoding:error: (page 1533)
Returns a string created by reading data from a given URL interpreted using a given encoding.

– initWithContentsOfURL:encoding:error: (page 1568)
Returns an NSString object initialized by reading data from a given URL interpreted using a given
encoding.

1518 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

+ stringWithContentsOfURL:usedEncoding:error: (page 1534)
Returns a string created by reading data from a given URL and returns by reference the encoding
used to interpret the data.

– initWithContentsOfURL:usedEncoding:error: (page 1569)
Returns an NSString object initialized by reading data from a given URL and returns by reference
the encoding used to interpret the data.

+ stringWithContentsOfURL: (page 1532) Deprecated in Mac OS X v10.4
Returns a string created by reading data from the file named by a given URL. (Deprecated. Use
stringWithContentsOfURL:encoding:error: (page 1533) or
stringWithContentsOfURL:usedEncoding:error: (page 1534) instead.)

– initWithContentsOfURL: (page 1568) Deprecated in Mac OS X v10.4
Initializes the receiver, a newly allocated NSString object, by reading data from the location named
by a given URL. (Deprecated. Use initWithContentsOfURL:encoding:error: (page 1568) or
initWithContentsOfURL:usedEncoding:error: (page 1569) instead.)

Writing to a File or URL

– writeToFile:atomically:encoding:error: (page 1613)
Writes the contents of the receiver to a file at a given path using a given encoding.

– writeToURL:atomically:encoding:error: (page 1614)
Writes the contents of the receiver to the URL specified by url using the specified encoding.

– writeToFile:atomically: (page 1612) Deprecated in Mac OS X v10.4
Writes the contents of the receiver to the file specified by a given path. (Deprecated. Use
writeToFile:atomically:encoding:error: (page 1613) instead.)

– writeToURL:atomically: (page 1614) Deprecated in Mac OS X v10.4
Writes the contents of the receiver to the location specified by a given URL. (Deprecated. Use
writeToURL:atomically:encoding:error: (page 1614) instead.)

Getting a String’s Length

– length (page 1580)
Returns the number of Unicode characters in the receiver.

– lengthOfBytesUsingEncoding: (page 1580)
Returns the number of bytes required to store the receiver in a given encoding.

– maximumLengthOfBytesUsingEncoding: (page 1584)
Returns the maximum number of bytes needed to store the receiver in a given encoding.

Getting Characters and Bytes

– characterAtIndex: (page 1540)
Returns the character at a given array position.

– getCharacters: (page 1555)
Copies all characters from the receiver into a given buffer.

Tasks 1519
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

– getCharacters:range: (page 1555)
Copies characters from a given range in the receiver into a given buffer.

– getBytes:maxLength:usedLength:encoding:options:range:remainingRange: (page 1554)
Gets a given range of characters as bytes in a specified encoding.

Getting C Strings

– cStringUsingEncoding: (page 1549)
Returns a representation of the receiver as a C string using a given encoding.

– getCString:maxLength:encoding: (page 1557)
Converts the receiver’s content to a given encoding and stores them in a buffer.

– UTF8String (page 1612)
Returns a null-terminated UTF8 representation of the receiver.

– cString (page 1547) Deprecated in Mac OS X v10.4
Returns a representation of the receiver as a C string in the default C-string encoding. (Deprecated.
Use cStringUsingEncoding: (page 1549) or UTF8String (page 1612) instead.)

– cStringLength (page 1548) Deprecated in Mac OS X v10.4
Returns the length in char-sized units of the receiver’s C-string representation in the default C-string
encoding. (Deprecated. Use lengthOfBytesUsingEncoding: (page 1580) or
maximumLengthOfBytesUsingEncoding: (page 1584) instead.)

– getCString: (page 1556) Deprecated in Mac OS X v10.4
Invokes getCString:maxLength:range:remainingRange: (page 1558) with
NSMaximumStringLength as the maximum length, the receiver’s entire extent as the range, and
NULL for the remaining range. (Deprecated. Use cStringUsingEncoding: (page 1549) or
dataUsingEncoding:allowLossyConversion: (page 1550) instead.)

– getCString:maxLength: (page 1557) Deprecated in Mac OS X v10.4
Invokes getCString:maxLength:range:remainingRange: (page 1558) with maxLength as the
maximum length in char-sized units, the receiver’s entire extent as the range, and NULL for the
remaining range. (Deprecated. Use getCString:maxLength:encoding: (page 1557) instead.)

– getCString:maxLength:range:remainingRange: (page 1558) Deprecated in Mac OS X v10.4
Converts the receiver’s content to the default C-string encoding and stores them in a given buffer.
(Deprecated. Use getCString:maxLength:encoding: (page 1557) instead.)

– lossyCString (page 1583) Deprecated in Mac OS X v10.4
Returns a representation of the receiver as a C string in the default C-string encoding, possibly losing
information in converting to that encoding. (Deprecated. Use cStringUsingEncoding: (page 1549) or
dataUsingEncoding:allowLossyConversion: (page 1550) instead.)

Combining Strings

– stringByAppendingFormat: (page 1597)
Returns a string made by appending to the receiver a string constructed from a given format string
and the following arguments.

– stringByAppendingString: (page 1599)
Returns a new string made by appending a given string to the receiver.

1520 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

– stringByPaddingToLength:withString:startingAtIndex: (page 1603)
Returns a new string formed from the receiver by either removing characters from the end, or by
appending as many occurrences as necessary of a given pad string.

Dividing Strings

– componentsSeparatedByString: (page 1547)
Returns an array containing substrings from the receiver that have been divided by a given separator.

– componentsSeparatedByCharactersInSet: (page 1546)
Returns an array containing substrings from the receiver that have been divided by characters in a
given set.

– stringByTrimmingCharactersInSet: (page 1608)
Returns a new string made by removing from both ends of the receiver characters contained in a
given character set.

– substringFromIndex: (page 1609)
Returns a new string containing the characters of the receiver from the one at a given index to the
end.

– substringWithRange: (page 1611)
Returns a string object containing the characters of the receiver that lie within a given range.

– substringToIndex: (page 1610)
Returns a new string containing the characters of the receiver up to, but not including, the one at a
given index.

Finding Characters and Substrings

– rangeOfCharacterFromSet: (page 1589)
Finds and returns the range in the receiver of the first character from a given character set.

– rangeOfCharacterFromSet:options: (page 1590)
Finds and returns the range in the receiver of the first character, using given options, from a given
character set.

– rangeOfCharacterFromSet:options:range: (page 1590)
Finds and returns the range in the receiver of the first character from a given character set found in
a given range with given options.

– rangeOfString: (page 1592)
Finds and returns the range of the first occurrence of a given string within the receiver.

– rangeOfString:options: (page 1593)
Finds and returns the range of the first occurrence of a given string within the receiver, subject to
given options.

– rangeOfString:options:range: (page 1594)
Finds and returns the range of the first occurrence of a given string, within the given range of the
receiver, subject to given options.

– rangeOfString:options:range:locale: (page 1595)
Finds and returns the range of the first occurrence of a given string within a given range of the receiver,
subject to given options, using the specified locale, if any.

Tasks 1521
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Replacing Substrings

– stringByReplacingOccurrencesOfString:withString: (page 1605)
Returns a new string in which all occurrences of a target string in the receiver are replaced by another
given string.

– stringByReplacingOccurrencesOfString:withString:options:range: (page 1605)
Returns a new string in which all occurrences of a target string in a specified range of the receiver are
replaced by another given string.

– stringByReplacingCharactersInRange:withString: (page 1604)
Returns a new string in which the characters in a specified range of the receiver are replaced by a
given string.

Determining Line and Paragraph Ranges

– getLineStart:end:contentsEnd:forRange: (page 1560)
Returns by reference the beginning of the first line and the end of the last line touched by the given
range.

– lineRangeForRange: (page 1581)
Returns the range of characters representing the line or lines containing a given range.

– getParagraphStart:end:contentsEnd:forRange: (page 1561)
Returns by reference the beginning of the first paragraph and the end of the last paragraph touched
by the given range.

– paragraphRangeForRange: (page 1585)
Returns the range of characters representing the paragraph or paragraphs containing a given range.

Determining Composed Character Sequences

– rangeOfComposedCharacterSequenceAtIndex: (page 1591)
Returns the range in the receiver of the composed character sequence located at a given index.

– rangeOfComposedCharacterSequencesForRange: (page 1592)
Returns the range in the receiver of the composed character sequence in a given range.

Converting String Contents Into a Property List

– propertyList (page 1588)
Parses the receiver as a text representation of a property list, returning an NSString, NSData, NSArray,
or NSDictionary object, according to the topmost element.

– propertyListFromStringsFileFormat (page 1588)
Returns a dictionary object initialized with the keys and values found in the receiver.

1522 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Identifying and Comparing Strings

– caseInsensitiveCompare: (page 1540)
Returns the result of invoking compare:options: (page 1542) with NSCaseInsensitiveSearch as
the only option.

– localizedCaseInsensitiveCompare: (page 1582)
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and a given
string using a case-insensitive, localized, comparison.

– compare: (page 1542)
Returns the result of invokingcompare:options:range: (page 1543) with no options and the receiver’s
full extent as the range.

– localizedCompare: (page 1582)
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and another
given string using a localized comparison.

– compare:options: (page 1542)
Returns the result of invokingcompare:options:range: (page 1543) with a given mask as the options
and the receiver’s full extent as the range.

– compare:options:range: (page 1543)
Returns the result of invoking compare:options:range:locale: (page 1544) with a nil locale.

– compare:options:range:locale: (page 1544)
Returns an NSComparisonResult value that indicates the lexical ordering of a specified range within
the receiver and a given string.

– hasPrefix: (page 1562)
Returns a Boolean value that indicates whether a given string matches the beginning characters of
the receiver.

– hasSuffix: (page 1562)
Returns a Boolean value that indicates whether a given string matches the ending characters of the
receiver.

– isEqualToString: (page 1578)
Returns a Boolean value that indicates whether a given string is equal to the receiver using an literal
Unicode-based comparison.

– hash (page 1561)
Returns an unsigned integer that can be used as a hash table address.

Folding Strings

– stringByFoldingWithOptions:locale: (page 1603)
Returns a string with the given character folding options applied.

Getting a Shared Prefix

– commonPrefixWithString:options: (page 1541)
Returns a string containing prefix the receiver and a given string have in common.

Tasks 1523
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Changing Case

– capitalizedString (page 1539)
Returns a capitalized representation of the receiver.

– lowercaseString (page 1584)
Returns lowercased representation of the receiver.

– uppercaseString (page 1611)
Returns an uppercased representation of the receiver.

Getting Strings with Mapping

– decomposedStringWithCanonicalMapping (page 1551)
Returns a string made by normalizing the receiver’s contents using Form D.

– decomposedStringWithCompatibilityMapping (page 1551)
Returns a string made by normalizing the receiver’s contents using Form KD.

– precomposedStringWithCanonicalMapping (page 1587)
Returns a string made by normalizing the receiver’s contents using Form C.

– precomposedStringWithCompatibilityMapping (page 1588)
Returns a string made by normalizing the receiver’s contents using Form KC.

Getting Numeric Values

– doubleValue (page 1552)
Returns the floating-point value of the receiver’s text as a double.

– floatValue (page 1553)
Returns the floating-point value of the receiver’s text as a float.

– intValue (page 1577)
Returns the integer value of the receiver’s text.

– integerValue (page 1576)
Returns the NSInteger value of the receiver’s text.

– longLongValue (page 1583)
Returns the long long value of the receiver’s text.

– boolValue (page 1538)
Returns the Boolean value of the receiver’s text.

Working with Encodings

+ availableStringEncodings (page 1526)
Returns a zero-terminated list of the encodings string objects support in the application’s environment.

+ defaultCStringEncoding (page 1527)
Returns the C-string encoding assumed for any method accepting a C string as an argument.

+ localizedNameOfStringEncoding: (page 1527)
Returns a human-readable string giving the name of a given encoding.

1524 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

– canBeConvertedToEncoding: (page 1539)
Returns a Boolean value that indicates whether the receiver can be converted to a given encoding
without loss of information.

– dataUsingEncoding: (page 1549)
Returns an NSData object containing a representation of the receiver encoded using a given encoding.

– dataUsingEncoding:allowLossyConversion: (page 1550)
Returns an NSData object containing a representation of the receiver encoded using a given encoding.

– description (page 1551)
Returns the receiver.

– fastestEncoding (page 1552)
Returns the fastest encoding to which the receiver may be converted without loss of information.

– smallestEncoding (page 1595)
Returns the smallest encoding to which the receiver can be converted without loss of information.

Working with Paths

+ pathWithComponents: (page 1529)
Returns a string built from the strings in a given array by concatenating them with a path separator
between each pair.

– pathComponents (page 1585)
Returns an array of NSString objects containing, in order, each path component of the receiver.

– completePathIntoString:caseSensitive:matchesIntoArray:filterTypes: (page 1545)
Interprets the receiver as a path in the file system and attempts to perform filename completion,
returning a numeric value that indicates whether a match was possible, and by reference the longest
path that matches the receiver.

– fileSystemRepresentation (page 1553)
Returns a file system-specific representation of the receiver.

– getFileSystemRepresentation:maxLength: (page 1559)
Interprets the receiver as a system-independent path and fills a buffer with a C-string in a format and
encoding suitable for use with file-system calls.

– isAbsolutePath (page 1578)
Returning a Boolean value that indicates whether the receiver represents an absolute path.

– lastPathComponent (page 1579)
Returns the last path component of the receiver.

– pathExtension (page 1586)
Interprets the receiver as a path and returns the receiver’s extension, if any.

– stringByAbbreviatingWithTildeInPath (page 1596)
Returns a new string representing the receiver as a path with a tilde (~) substituted for the full path
to the current user’s home directory.

– stringByAppendingPathComponent: (page 1598)
Returns a new string made by appending to the receiver a given string.

– stringByAppendingPathExtension: (page 1598)
Returns a new string made by appending to the receiver an extension separator followed by a given
extension.

Tasks 1525
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

– stringByDeletingLastPathComponent (page 1600)
Returns a new string made by deleting the last path component from the receiver, along with any
final path separator.

– stringByDeletingPathExtension (page 1601)
Returns a new string made by deleting the extension (if any, and only the last) from the receiver.

– stringByExpandingTildeInPath (page 1602)
Returns a new string made by expanding the initial component of the receiver to its full path value.

– stringByResolvingSymlinksInPath (page 1606)
Returns a new string made from the receiver by resolving all symbolic links and standardizing path.

– stringByStandardizingPath (page 1607)
Returns a new string made by removing extraneous path components from the receiver.

– stringsByAppendingPaths: (page 1609)
Returns an array of strings made by separately appending to the receiver each string in in a given
array.

Working with URLs

– stringByAddingPercentEscapesUsingEncoding: (page 1596)
Returns a representation of the receiver using a given encoding to determine the percent escapes
necessary to convert the receiver into a legal URL string.

– stringByReplacingPercentEscapesUsingEncoding: (page 1606)
Returns a new string made by replacing in the receiver all percent escapes with the matching characters
as determined by a given encoding.

Class Methods

availableStringEncodings
Returns a zero-terminated list of the encodings string objects support in the application’s environment.

+ (const NSStringEncoding *)availableStringEncodings

Return Value
A zero-terminated list of the encodings string objects support in the application’s environment.

Discussion
Among the more commonly used encodings are:

NSASCIIStringEncoding

NSUnicodeStringEncoding

NSISOLatin1StringEncoding

NSISOLatin2StringEncoding

NSSymbolStringEncoding

1526 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

See the “Constants” (page 1615) section for a larger list and descriptions of many supported encodings. In
addition to those encodings listed here, you can also use the encodings defined for CFString in Core
Foundation; you just need to call the CFStringConvertEncodingToNSStringEncoding function to
convert them to a usable format.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ localizedNameOfStringEncoding: (page 1527)

Declared In
NSString.h

defaultCStringEncoding
Returns the C-string encoding assumed for any method accepting a C string as an argument.

+ (NSStringEncoding)defaultCStringEncoding

Return Value
The C-string encoding assumed for any method accepting a C string as an argument.

Discussion
This method returns a user-dependent encoding who value is derived from user's default language and
potentially other factors. You might sometimes need to use this encoding when interpreting user documents
with unknown encodings, in the absence of other hints, but in general this encoding should be used rarely,
if at all. Note that some potential values might result in unexpected encoding conversions of even fairly
straightforward NSString content—for example, punctuation characters with a bidirectional encoding.

Methods that accept a C string as an argument use ...CString... in the keywords for such arguments:
for example,stringWithCString: (page 1534)—note, though, that these are deprecated. The default C-string
encoding is determined from system information and can’t be changed programmatically for an individual
process. See “String Encodings” (page 1619) for a full list of supported encodings.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitCreateMovie
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSString.h

localizedNameOfStringEncoding:
Returns a human-readable string giving the name of a given encoding.

+ (NSString *)localizedNameOfStringEncoding:(NSStringEncoding)encoding

Class Methods 1527
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Parameters
encoding

A string encoding.

Return Value
A human-readable string giving the name of encoding in the current locale’s language.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NSFontAttributeExplorer
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSString.h

localizedStringWithFormat:
Returns a string created by using a given format string as a template into which the remaining argument
values are substituted according to the user's default locale.

+ (id)localizedStringWithFormat:(NSString *)format ...

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Return Value
A string created by using format as a template into which the following argument values are substituted
according to the formatting information to the user's default locale.

Discussion
This method is equivalent to using initWithFormat:locale: (page 1574) and passing [[NSUserDefaults
standardUserDefaults] dictionaryRepresentation] as the locale argument.

As an example of formatting, this method replaces the decimal according to the locale in %f and %d
substitutions, and calls descriptionWithLocale: instead of description where necessary.

This code excerpt creates a string from another string and a float:

NSString *myString = [NSString localizedStringWithFormat:@"%@: %f\n", @"Cost",
 1234.56];

The resulting string has the value “Cost: 1234.560000\n” if the locale is en_US, and “Cost:
1234,560000\n” if the locale is fr_FR.

1528 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

See Formatting String Objects for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ stringWithFormat: (page 1536)
– initWithFormat:locale: (page 1574)

Related Sample Code
FilterDemo
GridCalendar

Declared In
NSString.h

pathWithComponents:
Returns a string built from the strings in a given array by concatenating them with a path separator between
each pair.

+ (NSString *)pathWithComponents:(NSArray *)components

Parameters
components

An array of NSString objects representing a file path. To create an absolute path, use a slash mark
(“/”) as the first component. To include a trailing path divider, use an empty string as the last
component.

Return Value
A string built from the strings in components by concatenating them (in the order they appear in the array)
with a path separator between each pair.

Discussion
This method doesn’t clean up the path created; use stringByStandardizingPath (page 1607) to resolve
empty components, references to the parent directory, and so on.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pathComponents (page 1585)

Declared In
NSPathUtilities.h

string
Returns an empty string.

+ (id)string

Class Methods 1529
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
An empty string.

Availability
Available in Mac OS X v10.0 and later.

See Also
– init (page 1563)

Declared In
NSString.h

stringWithCharacters:length:
Returns a string containing a given number of characters taken from a given C array of Unicode characters.

+ (id)stringWithCharacters:(const unichar *)chars length:(NSUInteger)length

Parameters
chars

A C array of Unicode characters; the value must not be NULL.

Important: Raises an exception if chars is NULL, even if length is 0.

length
The number of characters to use from chars.

Return Value
A string containing length Unicode characters taken (starting with the first) from chars.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithCharacters:length: (page 1565)

Related Sample Code
CrossEvents
PDFKitLinker2
QCCocoaComponent
SharedMemory

Declared In
NSString.h

stringWithContentsOfFile:
Returns a string created by reading data from the file named by a given path. (Deprecated in Mac OS X v10.4.
Use stringWithContentsOfFile:encoding:error: (page 1531) or
stringWithContentsOfFile:usedEncoding:error: (page 1532) instead.)

1530 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

+ (id)stringWithContentsOfFile:(NSString *)path

Discussion
If the contents begin with a Unicode byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode
characters. If the contents begin with a UTF-8 byte-order mark (EFBBBF), interprets the contents as UTF-8.
Otherwise, interprets the contents as data in the default C string encoding. Since the default C string encoding
will vary with the user’s configuration, do not depend on this method unless you are using Unicode or UTF-8
or you can verify the default C string encoding. Returns nil if the file can’t be opened.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
+ stringWithContentsOfFile:encoding:error: (page 1531)
+ stringWithContentsOfFile:usedEncoding:error: (page 1532)

Related Sample Code
CIAnnotation
GLSLShowpiece
NURBSSurfaceVertexProg
SpecialPictureProtocol
SurfaceVertexProgram

Declared In
NSString.h

stringWithContentsOfFile:encoding:error:
Returns a string created by reading data from the file at a given path interpreted using a given encoding.

+ (id)stringWithContentsOfFile:(NSString *)path encoding:(NSStringEncoding)enc
error:(NSError **)error

Parameters
path

A path to a file.

enc
The encoding of the file at path.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, pass in NULL.

Return Value
A string created by reading data from the file named by path using the encoding, enc. If the file can’t be
opened or there is an encoding error, returns nil.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithContentsOfFile:encoding:error: (page 1566)

Class Methods 1531
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Related Sample Code
JSPong
LSMSmartCategorizer

Declared In
NSString.h

stringWithContentsOfFile:usedEncoding:error:
Returns a string created by reading data from the file at a given path and returns by reference the encoding
used to interpret the file.

+ (id)stringWithContentsOfFile:(NSString *)path usedEncoding:(NSStringEncoding
*)enc error:(NSError **)error

Parameters
path

A path to a file.

enc
Upon return, if the file is read successfully, contains the encoding used to interpret the file at path.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, you may pass in NULL.

Return Value
A string created by reading data from the file named by path. If the file can’t be opened or there is an
encoding error, returns nil.

Discussion
This method attempts to determine the encoding of the file at path.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithContentsOfFile:encoding:error: (page 1566)

Declared In
NSString.h

stringWithContentsOfURL:
Returns a string created by reading data from the file named by a given URL. (Deprecated in Mac OS X v10.4.
Use stringWithContentsOfURL:encoding:error: (page 1533) or
stringWithContentsOfURL:usedEncoding:error: (page 1534) instead.)

+ (id)stringWithContentsOfURL:(NSURL *)aURL

1532 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Discussion
If the contents begin with a byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode characters.
If the contents begin with a UTF-8 byte-order mark (EFBBBF), interprets the contents as UTF-8. Otherwise
interprets the contents as data in the default C string encoding. Since the default C string encoding will vary
with the user’s configuration, do not depend on this method unless you are using Unicode or UTF-8 or you
can verify the default C string encoding. Returns nil if the location can’t be opened.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
+ stringWithContentsOfURL:encoding:error: (page 1533)
+ stringWithContentsOfURL:usedEncoding:error: (page 1534)

Declared In
NSString.h

stringWithContentsOfURL:encoding:error:
Returns a string created by reading data from a given URL interpreted using a given encoding.

+ (id)stringWithContentsOfURL:(NSURL *)url encoding:(NSStringEncoding)enc
error:(NSError **)error

Parameters
url

The URL to read.

enc
The encoding of the data at url.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, you may pass in NULL.

Return Value
A string created by reading data from URL using the encoding, enc. If the URL can’t be opened or there is
an encoding error, returns nil.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ stringWithContentsOfURL:usedEncoding:error: (page 1534)
– initWithContentsOfURL:encoding:error: (page 1568)

Declared In
NSString.h

Class Methods 1533
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

stringWithContentsOfURL:usedEncoding:error:
Returns a string created by reading data from a given URL and returns by reference the encoding used to
interpret the data.

+ (id)stringWithContentsOfURL:(NSURL *)url usedEncoding:(NSStringEncoding *)enc
error:(NSError **)error

Parameters
url

The URL from which to read data.

enc
Upon return, if url is read successfully, contains the encoding used to interpret the data.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, you may pass in NULL.

Return Value
A string created by reading data from url. If the URL can’t be opened or there is an encoding error, returns
nil.

Discussion
This method attempts to determine the encoding at url.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ stringWithContentsOfURL:encoding:error: (page 1533)
– initWithContentsOfURL:usedEncoding:error: (page 1569)

Declared In
NSString.h

stringWithCString:
Creates a new string using a given C-string. (Deprecated in Mac OS X v10.4. Use
stringWithCString:encoding: (page 1535) instead.)

+ (id)stringWithCString:(const char *)cString

Discussion
cString should contain data in the default C string encoding. If the argument passed to
stringWithCString: is not a zero-terminated C-string, the results are undefined.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
+ stringWithCString:encoding: (page 1535)

Related Sample Code
Quartz EB

1534 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Simon
SurfaceVertexProgram
Vertex Optimization
Video Hardware Info

Declared In
NSString.h

stringWithCString:encoding:
Returns a string containing the bytes in a given C array, interpreted according to a given encoding.

+ (id)stringWithCString:(const char *)cString encoding:(NSStringEncoding)enc

Parameters
cString

A C array of bytes. The array must end with a NULL character; intermediate NULL characters are not
allowed.

enc
The encoding of cString.

Return Value
A string containing the characters described in cString.

Discussion
If cString is not a NULL-terminated C string, or encoding does not match the actual encoding, the results
are undefined.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithCString:encoding: (page 1570)

Related Sample Code
CAPlayThrough
QTKitCreateMovie
QTMetadataEditor
SMARTQuery
VideoHardwareInfo

Declared In
NSString.h

stringWithCString:length:
Returns a string containing the characters in a given C-string. (Deprecated in Mac OS X v10.4. Use
stringWithCString:encoding: (page 1535) instead.)

+ (id)stringWithCString:(const char *)cString length:(NSUInteger)length

Class Methods 1535
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Discussion
cStringmust not be NULL. cString should contain characters in the default C-string encoding. This method
converts length * sizeof(char) bytes from cString and doesn’t stop short at a NULL character.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
+ stringWithCString:encoding: (page 1535)

Related Sample Code
CapabilitiesSample
CocoaSpeechSynthesisExample
EnhancedDataBurn
Fiendishthngs
SGDevices

Declared In
NSString.h

stringWithFormat:
Returns a string created by using a given format string as a template into which the remaining argument
values are substituted.

+ (id)stringWithFormat:(NSString *)format, ...

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Return Value
A string created by using format as a template into which the remaining argument values are substituted
according to the canonical locale.

Discussion
This method is similar to localizedStringWithFormat: (page 1528), but using the canonical locale to
format numbers. This is useful, for example, if you want to produce “non-localized” formatting which needs
to be written out to files and parsed back later.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFormat: (page 1572)

1536 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

+ localizedStringWithFormat: (page 1528)

Related Sample Code
CoreRecipes
Fiendishthngs
LSMSmartCategorizer
MyPhoto
Quartz Composer WWDC 2005 TextEdit

Declared In
NSString.h

stringWithString:
Returns a string created by copying the characters from another given string.

+ (id)stringWithString:(NSString *)aString

Parameters
aString

The string from which to copy characters. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
A string created by copying the characters from aString.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithString: (page 1575)

Related Sample Code
OpenGL Screensaver
QTMetadataEditor
SimpleScriptingProperties
SurfaceVertexProgram
TimelineToTC

Declared In
NSString.h

stringWithUTF8String:
Returns a string created by copying the data from a given C array of UTF8-encoded bytes.

+ (id)stringWithUTF8String:(const char *)bytes

Class Methods 1537
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Parameters
bytes

A NULL-terminated C array of bytes in UTF8 encoding.

Important: Raises an exception if bytes is NULL.

Return Value
A string created by copying the data from bytes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithString: (page 1575)

Related Sample Code
DockTile
DynamicProperties
MyPhoto
QTMetadataEditor
StickiesExample

Declared In
NSString.h

Instance Methods

boolValue
Returns the Boolean value of the receiver’s text.

- (BOOL)boolValue

Return Value
The Boolean value of the receiver’s text. Returns YES on encountering one of "Y", "y", "T", "t", or a digit 1-9—the
method ignores any trailing characters. Returns NO if the receiver doesn’t begin with a valid decimal text
representation of a number.

Discussion
The method assumes a decimal representation and skips whitespace at the beginning of the string. It also
skips initial whitespace characters, or optional -/+ sign followed by zeroes.

Availability
Available in Mac OS X v10.5 and later.

See Also
– integerValue (page 1576)
– scanInt: (page 1353) (NSScanner)

1538 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Declared In
NSString.h

canBeConvertedToEncoding:
Returns a Boolean value that indicates whether the receiver can be converted to a given encoding without
loss of information.

- (BOOL)canBeConvertedToEncoding:(NSStringEncoding)encoding

Parameters
encoding

A string encoding.

Return Value
YES if the receiver can be converted to encodingwithout loss of information. Returns NO if characters would
have to be changed or deleted in the process of changing encodings.

Discussion
If you plan to actually convert a string, the dataUsingEncoding:... methods return nil on failure, so
you can avoid the overhead of invoking this method yourself by simply trying to convert the string.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataUsingEncoding:allowLossyConversion: (page 1550)

Declared In
NSString.h

capitalizedString
Returns a capitalized representation of the receiver.

- (NSString *)capitalizedString

Return Value
A string with the first character from each word in the receiver changed to its corresponding uppercase value,
and all remaining characters set to their corresponding lowercase values.

Discussion
A “word” here is any sequence of characters delimited by spaces, tabs, or line terminators (listed under
getLineStart:end:contentsEnd:forRange: (page 1560)). Other common word delimiters such as hyphens
and other punctuation aren’t considered, so this method may not generally produce the desired results for
multiword strings.

Case transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as the
originals. See lowercaseString (page 1584) for an example.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1539
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

See Also
– lowercaseString (page 1584)
– uppercaseString (page 1611)

Related Sample Code
Mountains
StickiesExample

Declared In
NSString.h

caseInsensitiveCompare:
Returns the result of invoking compare:options: (page 1542) with NSCaseInsensitiveSearch as the only
option.

- (NSComparisonResult)caseInsensitiveCompare:(NSString *)aString

Parameters
aString

The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
The result of invoking compare:options: (page 1542) with NSCaseInsensitiveSearch as the only option.

Discussion
If you are comparing strings to present to the end-user, you should typically use
localizedCaseInsensitiveCompare: (page 1582) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– localizedCaseInsensitiveCompare: (page 1582)
– compare:options: (page 1542)

Related Sample Code
IdentitySample
People

Declared In
NSString.h

characterAtIndex:
Returns the character at a given array position.

- (unichar)characterAtIndex:(NSUInteger)index

1540 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Parameters
index

The index of the character to retrieve. The index value must not lie outside the bounds of the receiver.

Return Value
The character at the array position given by index.

Discussion
Raises an NSRangeException if index lies beyond the end of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getCharacters: (page 1555)
– getCharacters:range: (page 1555)

Related Sample Code
CubePuzzle
DerivedProperty
NSGLImage
NSOpenGL Fullscreen
PDFKitLinker2

Declared In
NSString.h

commonPrefixWithString:options:
Returns a string containing prefix the receiver and a given string have in common.

- (NSString *)commonPrefixWithString:(NSString *)aString
options:(NSStringCompareOptions)mask

Parameters
aString

The string with which to compare the receiver.

mask
Options for the comparison. The following search options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch. See String Programming
Guide for Cocoa for details on these options.

Return Value
A string containing characters the receiver and aString have in common, starting from the beginning of
each up to the first characters that aren’t equivalent.

Discussion
The returned string is based on the characters of the receiver. For example, if the receiver is “Ma¨dchen” and
aString is “Mädchenschule”, the string returned is “Ma¨dchen”, not “Mädchen”.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1541
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

See Also
– hasPrefix: (page 1562)

Declared In
NSString.h

compare:
Returns the result of invoking compare:options:range: (page 1543) with no options and the receiver’s full
extent as the range.

- (NSComparisonResult)compare:(NSString *)aString

Parameters
aString

The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
The result of invoking compare:options:range: (page 1543) with no options and the receiver’s full extent
as the range.

Discussion
If you are comparing strings to present to the end-user, you should typically use localizedCompare: (page
1582) or localizedCaseInsensitiveCompare: (page 1582) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– localizedCompare: (page 1582)
– localizedCaseInsensitiveCompare: (page 1582)
– compare:options: (page 1542)
– caseInsensitiveCompare: (page 1540)
– isEqualToString: (page 1578)

Related Sample Code
QTCoreVideo102
QTCoreVideo103
QTCoreVideo201
QTCoreVideo202
QTCoreVideo301

Declared In
NSString.h

compare:options:
Returns the result of invoking compare:options:range: (page 1543) with a given mask as the options and
the receiver’s full extent as the range.

1542 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

- (NSComparisonResult)compare:(NSString *)aString
options:(NSStringCompareOptions)mask

Parameters
aString

The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

mask
Options for the search—you can combine any of the following using a C bitwise OR operator:
NSCaseInsensitiveSearch, NSLiteralSearch, NSNumericSearch. See String Programming
Guide for Cocoa for details on these options.

Return Value
The result of invoking compare:options:range: (page 1543) with a given mask as the options and the
receiver’s full extent as the range.

Discussion
If you are comparing strings to present to the end-user, you should typically use localizedCompare: (page
1582) or localizedCaseInsensitiveCompare: (page 1582) instead, or use
compare:options:range:locale: (page 1544) and pass the user’s locale.

Availability
Available in Mac OS X v10.0 and later.

See Also
– localizedCompare: (page 1582)
– localizedCaseInsensitiveCompare: (page 1582)
– compare:options:range:locale: (page 1544)
– caseInsensitiveCompare: (page 1540)
– isEqualToString: (page 1578)

Declared In
NSString.h

compare:options:range:
Returns the result of invoking compare:options:range:locale: (page 1544) with a nil locale.

- (NSComparisonResult)compare:(NSString *)aString
options:(NSStringCompareOptions)mask range:(NSRange)range

Parameters
aString

The string with which to compare the range of the receiver specified by range.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

mask
Options for the search—you can combine any of the following using a C bitwise OR operator:
NSCaseInsensitiveSearch, NSLiteralSearch, NSNumericSearch.

See String Programming Guide for Cocoa for details on these options.

Instance Methods 1543
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

range
The range of the receiver over which to perform the comparison. The range must not exceed the
bounds of the receiver.

Important: Raises an NSRangeException if range exceeds the bounds of the receiver.

Return Value
The result of invoking compare:options:range:locale: (page 1544) with a nil locale.

Discussion
If you are comparing strings to present to the end-user, you should typically use
compare:options:range:locale: (page 1544) instead and pass the user’s locale (currentLocale (page
821) [NSLocale]).

Availability
Available in Mac OS X v10.0 and later.

See Also
– localizedCompare: (page 1582)
– localizedCaseInsensitiveCompare: (page 1582)
– compare:options: (page 1542)
– caseInsensitiveCompare: (page 1540)
– isEqualToString: (page 1578)

Declared In
NSString.h

compare:options:range:locale:
Returns an NSComparisonResult value that indicates the lexical ordering of a specified range within the
receiver and a given string.

- (NSComparisonResult)compare:(NSString *)aString
options:(NSStringCompareOptions)mask range:(NSRange)range locale:(id)locale

Parameters
aString

The string with which to compare the range of the receiver specified by range.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

mask
Options for the search—you can combine any of the following using a C bitwise OR operator:
NSCaseInsensitiveSearch, NSLiteralSearch, NSNumericSearch.

See String Programming Guide for Cocoa for details on these options.

1544 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

range
The range of the receiver over which to perform the comparison. The range must not exceed the
bounds of the receiver.

Important: Raises an NSRangeException if range exceeds the bounds of the receiver.

locale
An instance of NSLocale. If this value not nil and is not an instance of NSLocale, uses the current
locale instead. If you are comparing strings to present to the end-user, you should typically pass the
user’s locale (currentLocale (page 821) [NSLocale]).

The locale argument affects both equality and ordering algorithms. For example, in some locales,
accented characters are ordered immediately after the base; other locales order them after “z”.

Return Value
NSOrderedAscending if the substring of the receiver given by range precedes aString in lexical ordering
for the locale given in dict, NSOrderedSame if the substring of the receiver and aString are equivalent in
lexical value, and NSOrderedDescending if the substring of the receiver follows aString.

Special Considerations

Prior to Mac OS X v10.5, the locale argument was an instance of NSDictionary. On Mac OS X v10.5 and
later, if you pass an instance of NSDictionary the current locale is used instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– localizedCompare: (page 1582)
– localizedCaseInsensitiveCompare: (page 1582)
– caseInsensitiveCompare: (page 1540)
– compare: (page 1542)
– compare:options: (page 1542)
– compare:options:range: (page 1543)
– isEqualToString: (page 1578)

Declared In
NSString.h

completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:
Interprets the receiver as a path in the file system and attempts to perform filename completion, returning
a numeric value that indicates whether a match was possible, and by reference the longest path that matches
the receiver.

- (NSUInteger)completePathIntoString:(NSString **)outputName caseSensitive:(BOOL)flag
matchesIntoArray:(NSArray **)outputArray filterTypes:(NSArray *)filterTypes

Parameters
outputName

Upon return, contains the longest path that matches the receiver.

Instance Methods 1545
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

flag
If YES, the methods considers case for possible completions.

outputArray
Upon return, contains all matching filenames.

filterTypes
An array of NSString objects specifying path extensions to consider for completion. only paths
whose extensions (not including the extension separator) match one of those strings.

Return Value
0 if no matches are found and 1 if exactly one match is found. In the case of multiple matches, returns the
actual number of matching paths if outputArray is provided, or simply a positive value if outputArray is
NULL.

Discussion
You can check for the existence of matches without retrieving by passing NULL as outputArray.

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPathUtilities.h

componentsSeparatedByCharactersInSet:
Returns an array containing substrings from the receiver that have been divided by characters in a given set.

- (NSArray *)componentsSeparatedByCharactersInSet:(NSCharacterSet *)separator

Parameters
separator

A character set containing the characters to to use to split the receiver. Must not be nil.

Return Value
An NSArray object containing substrings from the receiver that have been divided by characters in
separator.

Discussion
The substrings in the array appear in the order they did in the receiver. Adjacent occurrences of the separator
characters produce empty strings in the result. Similarly, if the string begins or ends with separator characters,
the first or last substring, respectively, is empty.

Availability
Available in Mac OS X v10.5 and later.

See Also
– componentsSeparatedByString: (page 1547)
– stringByTrimmingCharactersInSet: (page 1608)

Declared In
NSString.h

1546 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

componentsSeparatedByString:
Returns an array containing substrings from the receiver that have been divided by a given separator.

- (NSArray *)componentsSeparatedByString:(NSString *)separator

Parameters
separator

The separator string.

Return Value
An NSArray object containing substrings from the receiver that have been divided by separator.

Discussion
The substrings in the array appear in the order they did in the receiver. Adjacent occurrences of the separator
string produce empty strings in the result. Similarly, if the string begins or ends with the separator, the first
or last substring, respectively, is empty. For example, this code fragment:

NSString *list = @"Norman, Stanley, Fletcher";
NSArray *listItems = [list componentsSeparatedByString:@", "];

produces an array { @"Norman", @"Stanley", @"Fletcher" }.

If list begins with a comma and space—for example, ", Norman, Stanley, Fletcher"—the array
has these contents: { @"", @"Norman", @"Stanley", @"Fletcher" }

If list has no separators—for example, "Norman"—the array contains the string itself, in this case {
@"Norman" }.

Availability
Available in Mac OS X v10.0 and later.

See Also
componentsJoinedByString: (page 118) (NSArray)
– pathComponents (page 1585)

Related Sample Code
Birthdays
ColorMatching
CoreRecipes
iSpend
QTKitMovieShuffler

Declared In
NSString.h

cString
Returns a representation of the receiver as a C string in the default C-string encoding. (Deprecated in Mac
OS X v10.4. Use cStringUsingEncoding: (page 1549) or UTF8String (page 1612) instead.)

- (const char *)cString

Instance Methods 1547
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Discussion
The returned C string will be automatically freed just as a returned object would be released; your code
should copy the C string or use getCString: (page 1556) if it needs to store the C string outside of the
autorelease context in which the C string is created.

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C-string
encoding without loss of information. Use canBeConvertedToEncoding: (page 1539) if necessary to check
whether a string can be losslessly converted to the default C-string encoding. If it can’t, use
lossyCString (page 1583) ordataUsingEncoding:allowLossyConversion: (page 1550) to get a C-string
representation with some loss of information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– cStringUsingEncoding: (page 1549)
– getCString:maxLength:encoding: (page 1557)
– UTF8String (page 1612)

Related Sample Code
WhackedTV

Declared In
NSString.h

cStringLength
Returns the length in char-sized units of the receiver’s C-string representation in the default C-string encoding.
(Deprecated in Mac OS X v10.4. Use lengthOfBytesUsingEncoding: (page 1580) or
maximumLengthOfBytesUsingEncoding: (page 1584) instead.)

- (NSUInteger)cStringLength

Discussion
Raises if the receiver can’t be represented in the default C-string encoding without loss of information. You
can also usecanBeConvertedToEncoding: (page 1539) to check whether a string can be losslessly converted
to the default C-string encoding. If it can’t, use lossyCString (page 1583) to get a C-string representation
with some loss of information, then check its length explicitly using the ANSI function strlen().

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– lengthOfBytesUsingEncoding: (page 1580)
– maximumLengthOfBytesUsingEncoding: (page 1584)
– UTF8String (page 1612)

Declared In
NSString.h

1548 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

cStringUsingEncoding:
Returns a representation of the receiver as a C string using a given encoding.

- (const char *)cStringUsingEncoding:(NSStringEncoding)encoding

Parameters
encoding

The encoding for the returned C string.

Return Value
A C string representation of the receiver using the encoding specified by encoding. Returns NULL if the
receiver cannot be losslessly converted to encoding.

Discussion
The returned C string is guaranteed to be valid only until either the receiver is freed, or until the current
autorelease pool is emptied, whichever occurs first. You should copy the C string or use
getCString:maxLength:encoding: (page 1557) if it needs to store the C string beyond this time.

You can use canBeConvertedToEncoding: (page 1539) to check whether a string can be losslessly converted
to encoding. If it can’t, you can use dataUsingEncoding:allowLossyConversion: (page 1550) to get a
C-string representation using encoding, allowing some loss of information (note that the data returned by
dataUsingEncoding:allowLossyConversion: is not a strict C-string since it does not have a NULL
terminator).

Availability
Available in Mac OS X v10.4 and later.

See Also
– getCString: (page 1556)
– canBeConvertedToEncoding: (page 1539)
+ defaultCStringEncoding (page 1527)
– cStringLength (page 1548)
– getCharacters: (page 1555)
– UTF8String (page 1612)

Related Sample Code
CocoaDVDPlayer
Core Data HTML Store

Declared In
NSString.h

dataUsingEncoding:
Returns an NSData object containing a representation of the receiver encoded using a given encoding.

- (NSData *)dataUsingEncoding:(NSStringEncoding)encoding

Parameters
encoding

A string encoding.

Instance Methods 1549
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
The result of invoking dataUsingEncoding:allowLossyConversion: (page 1550) with NO as the second
argument (that is, requiring lossless conversion).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedAudioBurn
ObjectPath
QTSSConnectionMonitor
QTSSInspector
Sketch-112

Declared In
NSString.h

dataUsingEncoding:allowLossyConversion:
Returns an NSData object containing a representation of the receiver encoded using a given encoding.

- (NSData *)dataUsingEncoding:(NSStringEncoding)encoding
allowLossyConversion:(BOOL)flag

Parameters
encoding

A string encoding.

flag
If YES, then allows characters to be removed or altered in conversion.

Return Value
An NSData object containing a representation of the receiver encoded using encoding. Returns nil if flag
is NO and the receiver can’t be converted without losing some information (such as accents or case).

Discussion
If flag is YES and the receiver can’t be converted without losing some information, some characters may
be removed or altered in conversion. For example, in converting a character from NSUnicodeStringEncoding
to NSASCIIStringEncoding, the character ‘Á’ becomes ‘A’, losing the accent.

This method creates an external representation (with a byte order marker, if necessary, to indicate endianness)
to ensure that the resulting NSData object can be written out to a file safely. The result of this method, when
lossless conversion is made, is the default “plain text” format for encoding and is the recommended way to
save or transmit a string object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ availableStringEncodings (page 1526)
– canBeConvertedToEncoding: (page 1539)

Related Sample Code
JavaSplashScreen

1550 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Spotlight

Declared In
NSString.h

decomposedStringWithCanonicalMapping
Returns a string made by normalizing the receiver’s contents using Form D.

- (NSString *)decomposedStringWithCanonicalMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form D.

Availability
Available in Mac OS X v10.2 and later.

See Also
– precomposedStringWithCanonicalMapping (page 1587)
– decomposedStringWithCompatibilityMapping (page 1551)

Declared In
NSString.h

decomposedStringWithCompatibilityMapping
Returns a string made by normalizing the receiver’s contents using Form KD.

- (NSString *)decomposedStringWithCompatibilityMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form KD.

Availability
Available in Mac OS X v10.2 and later.

See Also
– precomposedStringWithCompatibilityMapping (page 1588)
– decomposedStringWithCanonicalMapping (page 1551)

Declared In
NSString.h

description
Returns the receiver.

- (NSString *)description

Return Value
The receiver.

Instance Methods 1551
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSString.h

doubleValue
Returns the floating-point value of the receiver’s text as a double.

- (double)doubleValue

Return Value
The floating-point value of the receiver’s text as a double. Returns HUGE_VAL or –HUGE_VAL on overflow,
0.0 on underflow. Returns 0.0 if the receiver doesn’t begin with a valid text representation of a floating-point
number.

Discussion
This method skips any whitespace at the beginning of the string. This method uses formatting information
stored in the non-localized value; use an NSScanner object for localized scanning of numeric values from a
string.

Availability
Available in Mac OS X v10.0 and later.

See Also
– floatValue (page 1553)
– longLongValue (page 1583)
– integerValue (page 1576)
– scanDouble: (page 1350) (NSScanner)

Related Sample Code
JavaFrameEmbedding example
QTMetadataEditor
TimelineToTC
TrackBall

Declared In
NSString.h

fastestEncoding
Returns the fastest encoding to which the receiver may be converted without loss of information.

- (NSStringEncoding)fastestEncoding

Return Value
The fastest encoding to which the receiver may be converted without loss of information.

Discussion
“Fastest” applies to retrieval of characters from the string. This encoding may not be space efficient.

1552 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– smallestEncoding (page 1595)
– getCharacters:range: (page 1555)

Declared In
NSString.h

fileSystemRepresentation
Returns a file system-specific representation of the receiver.

- (const char *)fileSystemRepresentation

Return Value
A file system-specific representation of the receiver, as described for
getFileSystemRepresentation:maxLength: (page 1559).

Discussion
The returned C string will be automatically freed just as a returned object would be released; your code
should copy the representation or usegetFileSystemRepresentation:maxLength: (page 1559) if it needs
to store the representation outside of the autorelease context in which the representation is created.

Raises an NSCharacterConversionException if the receiver can’t be represented in the file system’s
encoding.

Note that this method only works with file paths (not, for example, string representations of URLs).

To convert a char * path (such as you might get from a C library routine) to an NSString object, use
NSFileManager‘s stringWithFileSystemRepresentation:length: (page 659) method.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
JavaSplashScreen

Declared In
NSPathUtilities.h

floatValue
Returns the floating-point value of the receiver’s text as a float.

- (float)floatValue

Return Value
The floating-point value of the receiver’s text as a float, skipping whitespace at the beginning of the string.
Returns HUGE_VAL or –HUGE_VAL on overflow, 0.0 on underflow. Also returns 0.0 if the receiver doesn’t
begin with a valid text representation of a floating-point number.

Instance Methods 1553
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object for
localized scanning of numeric values from a string.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doubleValue (page 1552)
– longLongValue (page 1583)
– integerValue (page 1576)
– scanFloat: (page 1350) (NSScanner)

Related Sample Code
WhackedTV

Declared In
NSString.h

getBytes:maxLength:usedLength:encoding:options:range:remainingRange:
Gets a given range of characters as bytes in a specified encoding.

- (BOOL)getBytes:(void *)buffer maxLength:(NSUInteger)maxBufferCount
usedLength:(NSUInteger *)usedBufferCount encoding:(NSStringEncoding)encoding
options:(NSStringEncodingConversionOptions)options range:(NSRange)range
remainingRange:(NSRangePointer)leftover

Parameters
buffer

A buffer into which to store the bytes from the receiver. The returned bytes are not NULL-terminated.

maxBufferCount
The maximum number of bytes to write to buffer.

usedBufferCount
The number of bytes used from buffer. Pass NULL if you do not need this value.

encoding
The encoding to use for the returned bytes.

options
A mask to specify options to use for converting the receiver’s contents to encoding (if conversion is
necessary).

range
The range of characters in the receiver to get.

leftover
The remaining range. Pass NULL If you do not need this value.

Return Value
YES if some characters were converted, otherwise NO.

Discussion
Conversion might stop when the buffer fills, but it might also stop when the conversion isn't possible due
to the chosen encoding.

1554 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSString.h

getCharacters:
Copies all characters from the receiver into a given buffer.

- (void)getCharacters:(unichar *)buffer

Parameters
buffer

Upon return, contains the characters from the receiver. buffer must be large enough to contain all
characters in the string ([string length]*sizeof(unichar)).

Discussion
Invokes getCharacters:range: (page 1555) with buffer and the entire extent of the receiver as the range.

Availability
Available in Mac OS X v10.0 and later.

See Also
– length (page 1580)

Related Sample Code
JSheets

Declared In
NSString.h

getCharacters:range:
Copies characters from a given range in the receiver into a given buffer.

- (void)getCharacters:(unichar *)buffer range:(NSRange)aRange

Parameters
buffer

Upon return, contains the characters from the receiver. buffer must be large enough to contain the
characters in the range aRange (aRange.length*sizeof(unichar)).

aRange
The range of characters to retrieve. The range must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the bounds of the receiver.

Discussion
This method does not add a NULL character.

Instance Methods 1555
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

The abstract implementation of this method uses characterAtIndex: (page 1540) repeatedly, correctly
extracting the characters, though very inefficiently. Subclasses should override it to provide a fast
implementation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSString.h

getCString:
Invokes getCString:maxLength:range:remainingRange: (page 1558) with NSMaximumStringLength
as the maximum length, the receiver’s entire extent as the range, and NULL for the remaining range.
(Deprecated in Mac OS X v10.4. Use cStringUsingEncoding: (page 1549) or
dataUsingEncoding:allowLossyConversion: (page 1550) instead.)

- (void)getCString:(char *)buffer

Discussion
buffer must be large enough to contain the resulting C-string plus a terminating NULL character (which
this method adds—[string cStringLength]).

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C-string
encoding without loss of information. Use canBeConvertedToEncoding: (page 1539) if necessary to check
whether a string can be losslessly converted to the default C-string encoding. If it can’t, use
lossyCString (page 1583) ordataUsingEncoding:allowLossyConversion: (page 1550) to get a C-string
representation with some loss of information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– cStringUsingEncoding: (page 1549)
– getCString:maxLength:encoding: (page 1557)
– UTF8String (page 1612)

Related Sample Code
QTMetadataEditor
ThreadsExporter
ThreadsImporter
ThreadsImportMovie

Declared In
NSString.h

1556 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

getCString:maxLength:
InvokesgetCString:maxLength:range:remainingRange: (page 1558) withmaxLength as the maximum
length in char-sized units, the receiver’s entire extent as the range, and NULL for the remaining range.
(Deprecated in Mac OS X v10.4. Use getCString:maxLength:encoding: (page 1557) instead.)

- (void)getCString:(char *)buffer maxLength:(NSUInteger)maxLength

Discussion
buffermust be large enough to contain maxLength chars plus a terminating zero char (which this method
adds).

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C-string
encoding without loss of information. Use canBeConvertedToEncoding: (page 1539) if necessary to check
whether a string can be losslessly converted to the default C-string encoding. If it can’t, use
lossyCString (page 1583) ordataUsingEncoding:allowLossyConversion: (page 1550) to get a C-string
representation with some loss of information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– cStringUsingEncoding: (page 1549)
– getCString:maxLength:encoding: (page 1557)
– UTF8String (page 1612)

Declared In
NSString.h

getCString:maxLength:encoding:
Converts the receiver’s content to a given encoding and stores them in a buffer.

- (BOOL)getCString:(char *)buffer maxLength:(NSUInteger)maxBufferCount
encoding:(NSStringEncoding)encoding

Parameters
buffer

Upon return, contains the converted C-string plus the NULL termination byte. The buffer must include
room for maxBufferCount bytes.

maxBufferCount
The maximum number of bytes in the string to return in buffer (including the NULL termination byte).

encoding
The encoding for the returned C string.

Return Value
YES if the operation was successful, otherwise NO. Returns NO if conversion is not possible due to encoding
errors or if buffer is too small.

Instance Methods 1557
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Discussion
Note that in the treatment of the maxBufferCount argument, this method differs from the deprecated
getCString:maxLength: (page 1557) method which it replaces. (The buffer should include room for
maxBufferCount bytes; this number should accommodate the expected size of the return value plus the
NULL termination byte, which this method adds.)

You can use canBeConvertedToEncoding: (page 1539) to check whether a string can be losslessly converted
to encoding. If it can’t, you can use dataUsingEncoding:allowLossyConversion: (page 1550) to get a
C-string representation using encoding, allowing some loss of information (note that the data returned by
dataUsingEncoding:allowLossyConversion: is not a strict C-string since it does not have a NULL
terminator).

Availability
Available in Mac OS X v10.4 and later.

See Also
– cStringUsingEncoding: (page 1549)
– canBeConvertedToEncoding: (page 1539)
– getCharacters: (page 1555)
– UTF8String (page 1612)

Related Sample Code
QTMetadataEditor

Declared In
NSString.h

getCString:maxLength:range:remainingRange:
Converts the receiver’s content to the default C-string encoding and stores them in a given buffer. (Deprecated
in Mac OS X v10.4. Use getCString:maxLength:encoding: (page 1557) instead.)

- (void)getCString:(char *)buffer maxLength:(NSUInteger)maxLength
range:(NSRange)aRange remainingRange:(NSRangePointer)leftoverRange

Discussion
buffer must be large enough to contain maxLength bytes plus a terminating zero character (which this
method adds). Copies and converts as many characters as possible from aRange and stores the range of
those not converted in the range given by leftoverRange (if it’s non-nil). Raises an NSRangeException
if any part of aRange lies beyond the end of the string.

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C-string
encoding without loss of information. Use canBeConvertedToEncoding: (page 1539) if necessary to check
whether a string can be losslessly converted to the default C-string encoding. If it can’t, use
lossyCString (page 1583) ordataUsingEncoding:allowLossyConversion: (page 1550) to get a C-string
representation with some loss of information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– cStringUsingEncoding: (page 1549)

1558 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

– getCString:maxLength:encoding: (page 1557)
– UTF8String (page 1612)

Declared In
NSString.h

getFileSystemRepresentation:maxLength:
Interprets the receiver as a system-independent path and fills a buffer with a C-string in a format and encoding
suitable for use with file-system calls.

- (BOOL)getFileSystemRepresentation:(char *)buffer maxLength:(NSUInteger)maxLength

Parameters
buffer

Upon return, contains a C-string that represent the receiver as as a system-independent path, plus
the NULL termination byte. The size of buffer must be large enough to contain maxLength bytes.

maxLength
The maximum number of bytes in the string to return in buffer (including a terminating NULL
character, which this method adds).

Return Value
YES if buffer is successfully filled with a file-system representation, otherwise NO (for example, if maxLength
would be exceeded or if the receiver can’t be represented in the file system’s encoding).

Discussion
This method operates by replacing the abstract path and extension separator characters (‘/’ and ‘.’ respectively)
with their equivalents for the operating system. If the system-specific path or extension separator appears
in the abstract representation, the characters it is converted to depend on the system (unless they’re identical
to the abstract separators).

Note that this method only works with file paths (not, for example, string representations of URLs).

The following example illustrates the use of the maxLength argument. The first method invocation returns
failure as the file representation of the string (@"/mach_kernel") is 12 bytes long and the value passed as
the maxLength argument (12) does not allow for the addition of a NULL termination byte.

char filenameBuffer[13];
BOOL success;
success = [@"/mach_kernel" getFileSystemRepresentation:filenameBuffer
maxLength:12];
// success == NO
// Changing the length to include the NULL character does work
success = [@"/mach_kernel" getFileSystemRepresentation:filenameBuffer
maxLength:13];
// success == YES

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileSystemRepresentation (page 1553)

Instance Methods 1559
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Declared In
NSPathUtilities.h

getLineStart:end:contentsEnd:forRange:
Returns by reference the beginning of the first line and the end of the last line touched by the given range.

- (void)getLineStart:(NSUInteger *)startIndex end:(NSUInteger *)lineEndIndex
contentsEnd:(NSUInteger *)contentsEndIndex forRange:(NSRange)aRange

Parameters
startIndex

Upon return, contains the index of the first character of the line containing the beginning of aRange.
Pass NULL if you do not need this value (in which case the work to compute the value isn’t performed).

lineEndIndex
Upon return, contains the index of the first character past the terminator of the line containing the
end of aRange. Pass NULL if you do not need this value (in which case the work to compute the value
isn’t performed).

contentsEndIndex
Upon return, contains the index of the first character of the terminator of the line containing the end
of aRange. Pass NULL if you do not need this value (in which case the work to compute the value
isn’t performed).

aRange
A range within the receiver. The value must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Discussion
A line is delimited by any of these characters, the longest possible sequence being preferred to any shorter:

 ■ U+000D (\r or CR)

 ■ U+2028 (Unicode line separator)

 ■ U+000A (\n or LF)

 ■ U+2029 (Unicode paragraph separator)

 ■ \r\n, in that order (also known as CRLF)

If aRange is contained with a single line, of course, the returned indexes all belong to that line. You can use
the results of this method to construct ranges for lines by using the start index as the range’s location and
the difference between the end index and the start index as the range’s length.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineRangeForRange: (page 1581)
– substringWithRange: (page 1611)

1560 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Declared In
NSString.h

getParagraphStart:end:contentsEnd:forRange:
Returns by reference the beginning of the first paragraph and the end of the last paragraph touched by the
given range.

- (void)getParagraphStart:(NSUInteger *)startIndex end:(NSUInteger *)endIndex
contentsEnd:(NSUInteger *)contentsEndIndex forRange:(NSRange)aRange

Parameters
startIndex

Upon return, contains the index of the first character of the paragraph containing the beginning of
aRange. Pass NULL if you do not need this value (in which case the work to compute the value isn’t
performed).

endIndex
Upon return, contains the index of the first character past the terminator of the paragraph containing
the end of aRange. Pass NULL if you do not need this value (in which case the work to compute the
value isn’t performed).

contentsEndIndex
Upon return, contains the index of the first character of the terminator of the paragraph containing
the end of aRange. Pass NULL if you do not need this value (in which case the work to compute the
value isn’t performed).

aRange
A range within the receiver. The value must not exceed the bounds of the receiver.

Discussion
If aRange is contained with a single paragraph, of course, the returned indexes all belong to that paragraph.
Similar togetLineStart:end:contentsEnd:forRange: (page 1560), you can use the results of this method
to construct the ranges for paragraphs.

Availability
Available in Mac OS X v10.3 and later.

See Also
– paragraphRangeForRange: (page 1585)

Declared In
NSString.h

hash
Returns an unsigned integer that can be used as a hash table address.

- (NSUInteger)hash

Return Value
An unsigned integer that can be used as a hash table address.

Instance Methods 1561
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Discussion
If two string objects are equal (as determined by the isEqualToString: (page 1578) method), they must
have the same hash value. The abstract implementation of this method fulfills this requirement, so subclasses
of NSString shouldn’t override it.

You should not rely on this method returning the same hash value across releases of Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSString.h

hasPrefix:
Returns a Boolean value that indicates whether a given string matches the beginning characters of the
receiver.

- (BOOL)hasPrefix:(NSString *)aString

Parameters
aString

A string.

Return Value
YES if aString matches the beginning characters of the receiver, otherwise NO. Returns NO if aString is
empty.

Discussion
This method is a convenience for comparing strings using the NSAnchoredSearch option. See String
Programming Guide for Cocoa for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasSuffix: (page 1562)
– compare:options:range: (page 1543)

Related Sample Code
Reminders

Declared In
NSString.h

hasSuffix:
Returns a Boolean value that indicates whether a given string matches the ending characters of the receiver.

- (BOOL)hasSuffix:(NSString *)aString

1562 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Parameters
aString

A string.

Return Value
YES if aStringmatches the ending characters of the receiver, otherwise NO. Returns NO if aString is empty.

Discussion
This method is a convenience for comparing strings using the NSAnchoredSearch and NSBackwardsSearch
options. See String Programming Guide for Cocoa for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasPrefix: (page 1562)
– compare:options:range: (page 1543)

Declared In
NSString.h

init
Returns an initialized NSString object that contains no characters.

- (id)init

Return Value
An initialized NSString object that contains no characters. The returned object may be different from the
original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ string (page 1529)

Declared In
NSString.h

initWithBytes:length:encoding:
Returns an initialized NSString object containing a given number of bytes from a given C array of bytes in
a given encoding.

- (id)initWithBytes:(const void *)bytes length:(NSUInteger)length
encoding:(NSStringEncoding)encoding

Parameters
bytes

A C array of bytes in the encoding specified by encoding. The array must not contain NULL.

Instance Methods 1563
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

length
The number of bytes to use from bytes.

encoding
The character encoding of bytes.

Return Value
An initialized NSString object containing length bytes from bytes interpreted using the encoding
encoding. The returned object may be different from the original receiver.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initWithBytesNoCopy:length:encoding:freeWhenDone: (page 1564)

Related Sample Code
VideoHardwareInfo

Declared In
NSString.h

initWithBytesNoCopy:length:encoding:freeWhenDone:
Returns an initialized NSString object that contains a given number of bytes from a given C array of bytes
in a given encoding, and optionally frees the array on deallocation.

- (id)initWithBytesNoCopy:(void *)bytes length:(NSUInteger)length
encoding:(NSStringEncoding)encoding freeWhenDone:(BOOL)flag

Parameters
bytes

A C array of bytes in the encoding specified by encoding. The array must not contain NULL.

length
The number of bytes to use from bytes.

encoding
The character encoding of bytes.

flag
If YES, the receiver will free the memory when it no longer needs the data; if NO it won’t.

Return Value
An initialized NSString object containing length bytes from bytes interpreted using the encoding
encoding. The returned object may be different from the original receiver.

Special Considerations

If an error occurs during the creation of the string, then bytes is not freed even if flag is YES. In this case,
the caller is responsible for freeing the buffer. This allows the caller to continue trying to create a string with
the buffer, without having the buffer deallocated.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initWithBytes:length:encoding: (page 1563)

1564 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Related Sample Code
QTRecorder

Declared In
NSString.h

initWithCharacters:length:
Returns an initialized NSString object that contains a given number of characters from a given C array of
Unicode characters.

- (id)initWithCharacters:(const unichar *)characters length:(NSUInteger)length

Parameters
characters

A C array of Unicode characters; the value must not be NULL.

Important: Raises an exception if characters is NULL, even if length is 0.

length
The number of characters to use from characters.

Return Value
An initialized NSString object containing length characters taken from characters. The returned object
may be different from the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ stringWithCharacters:length: (page 1530)

Declared In
NSString.h

initWithCharactersNoCopy:length:freeWhenDone:
Returns an initialized NSString object that contains a given number of characters from a given C array of
Unicode characters.

- (id)initWithCharactersNoCopy:(unichar *)characters length:(NSUInteger)length
freeWhenDone:(BOOL)flag

Parameters
characters

A C array of Unicode characters.

length
The number of characters to use from characters.

flag
If YES, the receiver will free the memory when it no longer needs the characters; if NO it won’t.

Instance Methods 1565
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
An initialized NSString object that contains length characters from characters. The returned object may
be different from the original receiver.

Special Considerations

If an error occurs during the creation of the string, then bytes is not freed even if flag is YES. In this case,
the caller is responsible for freeing the buffer. This allows the caller to continue trying to create a string with
the buffer, without having the buffer deallocated.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ stringWithCharacters:length: (page 1530)

Declared In
NSString.h

initWithContentsOfFile:
Initializes the receiver, a newly allocated NSString object, by reading data from the file named by path.
(Deprecated in Mac OS X v10.4. Use initWithContentsOfFile:encoding:error: (page 1566) or
initWithContentsOfFile:usedEncoding:error: (page 1567) instead.)

- (id)initWithContentsOfFile:(NSString *)path

Discussion
Initializes the receiver, a newly allocated NSString object, by reading data from the file named by path. If
the contents begin with a byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode characters;
otherwise interprets the contents as data in the default C string encoding. Returns an initialized object, which
might be different from the original receiver, or nil if the file can’t be opened.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– initWithContentsOfFile:encoding:error: (page 1566)
– initWithContentsOfFile:usedEncoding:error: (page 1567)

Declared In
NSString.h

initWithContentsOfFile:encoding:error:
Returns an NSString object initialized by reading data from the file at a given path using a given encoding.

- (id)initWithContentsOfFile:(NSString *)path encoding:(NSStringEncoding)enc
error:(NSError **)error

1566 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Parameters
path

A path to a file.

enc
The encoding of the file at path.

error
If an error occurs, upon return contains an NSError object that describes the problem. If you are not
interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from the file named by path using the encoding, enc. The
returned object may be different from the original receiver. If the file can’t be opened or there is an encoding
error, returns nil.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ stringWithContentsOfFile:encoding:error: (page 1531)
– initWithContentsOfFile:usedEncoding:error: (page 1567)

Declared In
NSString.h

initWithContentsOfFile:usedEncoding:error:
Returns an NSString object initialized by reading data from the file at a given path and returns by reference
the encoding used to interpret the characters.

- (id)initWithContentsOfFile:(NSString *)path usedEncoding:(NSStringEncoding *)enc
error:(NSError **)error

Parameters
path

A path to a file.

enc
Upon return, if the file is read successfully, contains the encoding used to interpret the file at path.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from the file named by path. The returned object may be
different from the original receiver. If the file can’t be opened or there is an encoding error, returns nil.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ stringWithContentsOfFile:encoding:error: (page 1531)
– initWithContentsOfFile:encoding:error: (page 1566)

Instance Methods 1567
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Declared In
NSString.h

initWithContentsOfURL:
Initializes the receiver, a newly allocated NSString object, by reading data from the location named by a
given URL. (Deprecated in Mac OS X v10.4. Use initWithContentsOfURL:encoding:error: (page 1568)
or initWithContentsOfURL:usedEncoding:error: (page 1569) instead.)

- (id)initWithContentsOfURL:(NSURL *)aURL

Discussion
Initializes the receiver, a newly allocated NSString object, by reading data from the location named by
aURL. If the contents begin with a byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode
characters; otherwise interprets the contents as data in the default C string encoding. Returns an initialized
object, which might be different from the original receiver, or nil if the location can’t be opened.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– initWithContentsOfURL:encoding:error: (page 1568)
– initWithContentsOfURL:usedEncoding:error: (page 1569)

Declared In
NSString.h

initWithContentsOfURL:encoding:error:
Returns an NSString object initialized by reading data from a given URL interpreted using a given encoding.

- (id)initWithContentsOfURL:(NSURL *)url encoding:(NSStringEncoding)enc
error:(NSError **)error

Parameters
url

The URL to read.

enc
The encoding of the file at path.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from url. The returned object may be different from the
original receiver. If the URL can’t be opened or there is an encoding error, returns nil.

Availability
Available in Mac OS X v10.4 and later.

1568 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

See Also
+ stringWithContentsOfURL:encoding:error: (page 1533)

Declared In
NSString.h

initWithContentsOfURL:usedEncoding:error:
Returns an NSString object initialized by reading data from a given URL and returns by reference the
encoding used to interpret the data.

- (id)initWithContentsOfURL:(NSURL *)url usedEncoding:(NSStringEncoding *)enc
error:(NSError **)error

Parameters
url

The URL from which to read data.

enc
Upon return, if url is read successfully, contains the encoding used to interpret the data.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you are
not interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from url. If url can’t be opened or the encoding cannot be
determined, returns nil. The returned initialized object might be different from the original receiver

Availability
Available in Mac OS X v10.4 and later.

See Also
+ stringWithContentsOfURL:usedEncoding:error: (page 1534)

Declared In
NSString.h

initWithCString:
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string from
the default C-string encoding into the Unicode character encoding. (Deprecated in Mac OS X v10.4. Use
initWithCString:encoding: (page 1570) instead.)

- (id)initWithCString:(const char *)cString

Discussion
cString must be a zero-terminated C string in the default C string encoding, and may not be NULL. Returns
an initialized object, which might be different from the original receiver.

To create an immutable string from an immutable C string buffer, do not attempt to use this method. Instead,
use initWithCStringNoCopy:length:freeWhenDone: (page 1571).

Instance Methods 1569
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– initWithCString:encoding: (page 1570)

Related Sample Code
SimplePlayThru

Declared In
NSString.h

initWithCString:encoding:
Returns an NSString object initialized using the characters in a given C array, interpreted according to a
given encoding.

- (id)initWithCString:(const char *)nullTerminatedCString
encoding:(NSStringEncoding)encoding

Parameters
nullTerminatedCString

A C array of characters. The array must end with a NULL character; intermediate NULL characters are
not allowed.

encoding
The encoding of nullTerminatedCString.

Return Value
An NSString object initialized using the characters from nullTerminatedCString. The returned object
may be different from the original receiver

Discussion
If nullTerminatedCString is not a NULL-terminated C string, or encoding does not match the actual
encoding, the results are undefined.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ stringWithCString: (page 1534)
– initWithCStringNoCopy:length:freeWhenDone: (page 1571)
+ defaultCStringEncoding (page 1527)

Declared In
NSString.h

initWithCString:length:
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string from
the default C-string encoding into the Unicode character encoding. (Deprecated in Mac OS X v10.4. Use
initWithCString:encoding: (page 1570) instead.)

1570 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

- (id)initWithCString:(const char *)cString length:(NSUInteger)length

Discussion
This method converts length * sizeof(char)bytes from cString and doesn’t stop short at a zero character.
cString must contain bytes in the default C-string encoding and may not be NULL. Returns an initialized
object, which might be different from the original receiver.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– initWithCString:encoding: (page 1570)

Related Sample Code
CocoaSpeechSynthesisExample

Declared In
NSString.h

initWithCStringNoCopy:length:freeWhenDone:
Initializes the receiver, a newly allocated NSString object, by converting the data in a given C-string from
the default C-string encoding into the Unicode character encoding. (Deprecated in Mac OS X v10.4. Use
initWithBytesNoCopy:length:encoding:freeWhenDone: (page 1564) instead.)

- (id)initWithCStringNoCopy:(char *)cString length:(NSUInteger)length
freeWhenDone:(BOOL)flag

Discussion
This method converts length * sizeof(char)bytes from cString and doesn’t stop short at a zero character.
cString must contain data in the default C-string encoding and may not be NULL. The receiver becomes
the owner of cString; if flag is YES it will free the memory when it no longer needs it, but if flag is NO it
won’t. Returns an initialized object, which might be different from the original receiver.

You can use this method to create an immutable string from an immutable (const char *) C-string buffer.
If you receive a warning message, you can disregard it; its purpose is simply to warn you that the C string
passed as the method’s first argument may be modified. If you make certain the freeWhenDone argument
to initWithStringNoCopy is NO, the C string passed as the method’s first argument cannot be modified,
so you can safely use initWithStringNoCopy to create an immutable string from an immutable (const
char *) C-string buffer.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– initWithCString:encoding: (page 1570)

Declared In
NSString.h

Instance Methods 1571
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

initWithData:encoding:
Returns an NSString object initialized by converting given data into Unicode characters using a given
encoding.

- (id)initWithData:(NSData *)data encoding:(NSStringEncoding)encoding

Parameters
data

An NSData object containing bytes in encoding and the default plain text format (that is, pure
content with no attributes or other markups) for that encoding.

encoding
The encoding used by data.

Return Value
An NSString object initialized by converting the bytes in data into Unicode characters using encoding.
The returned object may be different from the original receiver. Returns nil if the initialization fails for some
reason (for example if data does not represent valid data for encoding).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AutoUpdater
EnhancedAudioBurn
GridCalendar
Moriarity
NameAndPassword

Declared In
NSString.h

initWithFormat:
Returns an NSString object initialized by using a given format string as a template into which the remaining
argument values are substituted.

- (id)initWithFormat:(NSString *)format ...

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

1572 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
An NSString object initialized by using format as a template into which the remaining argument values
are substituted according to the canonical locale. The returned object may be different from the original
receiver.

Discussion
InvokesinitWithFormat:locale:arguments: (page 1574) withnil as the locale, hence using the canonical
locale to format numbers. This is useful, for example, if you want to produce "non-localized" formatting which
needs to be written out to files and parsed back later.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ stringWithFormat: (page 1536)
– initWithFormat:locale:arguments: (page 1574)

Declared In
NSString.h

initWithFormat:arguments:
Returns an NSString object initialized by using a given format string as a template into which the remaining
argument values are substituted according to the user’s default locale.

- (id)initWithFormat:(NSString *)format arguments:(va_list)argList

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

argList
A list of arguments to substitute into format.

Return Value
An NSString object initialized by using format as a template into which the values in argList are
substituted according to the user’s default locale. The returned object may be different from the original
receiver.

Discussion
Invokes initWithFormat:locale:arguments: (page 1574) with nil as the locale.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ stringWithFormat: (page 1536)

Declared In
NSString.h

Instance Methods 1573
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

initWithFormat:locale:
Returns an NSString object initialized by using a given format string as a template into which the remaining
argument values are substituted according to given locale information.

- (id)initWithFormat:(NSString *)format locale:(id)locale ...

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

locale
This may be an instance of NSDictionary containing locale information or an instance of NSLocale.
If this value is nil, uses the canonical locale.

To use a dictionary containing the current user's locale, you can use [[NSUserDefaults
standardUserDefaults] dictionaryRepresentation].

...
A comma-separated list of arguments to substitute into format.

Discussion
Invokes initWithFormat:locale:arguments: (page 1574) with locale as the locale.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ localizedStringWithFormat: (page 1528)

Declared In
NSString.h

initWithFormat:locale:arguments:
Returns an NSString object initialized by using a given format string as a template into which the remaining
argument values are substituted according to given locale information.

- (id)initWithFormat:(NSString *)format locale:(id)locale arguments:(va_list)argList

1574 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Parameters
format

A format string. See Formatting String Objects for examples of how to use this method, and String
Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

locale
This may be an instance of NSDictionary containing locale information or an instance of NSLocale.
If this value is nil, uses the canonical locale.

To use a dictionary containing the current user's locale, you can use [[NSUserDefaults
standardUserDefaults] dictionaryRepresentation].

argList
A list of arguments to substitute into format.

Return Value
An NSString object initialized by using format as a template into which values in argList are substituted
according the locale information in locale. The returned object may be different from the original receiver.

Discussion
The following code fragment illustrates how to create a string from myArgs, which is derived from a string
object with the value “Cost:” and an int with the value 32:

va_list myArgs;

NSString *myString = [[NSString alloc] initWithFormat:@"%@: %d\n"
 locale:[[NSUserDefaults standardUserDefaults] dictionaryRepresentation]
 arguments:myArgs];

The resulting string has the value “Cost: 32\n”.

See String Programming Guide for Cocoa for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFormat:arguments: (page 1573)

Declared In
NSString.h

initWithString:
Returns an NSString object initialized by copying the characters from another given string.

- (id)initWithString:(NSString *)aString

Instance Methods 1575
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Parameters
aString

The string from which to copy characters. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
An NSString object initialized by copying the characters from aString. The returned object may be different
from the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ stringWithString: (page 1537)

Declared In
NSString.h

initWithUTF8String:
Returns an NSString object initialized by copying the characters a given C array of UTF8-encoded bytes.

- (id)initWithUTF8String:(const char *)bytes

Parameters
bytes

A NULL-terminated C array of bytes in UTF-8 encoding. This value must not be NULL.

Important: Raises an exception if bytes is NULL.

Return Value
An NSString object initialized by copying the bytes from bytes. The returned object may be different from
the original receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ stringWithUTF8String: (page 1537)

Related Sample Code
Reminders

Declared In
NSString.h

integerValue
Returns the NSInteger value of the receiver’s text.

1576 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

- (NSInteger)integerValue

Return Value
The NSInteger value of the receiver’s text, assuming a decimal representation and skipping whitespace at
the beginning of the string. Returns 0 if the receiver doesn’t begin with a valid decimal text representation
of a number.

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object for
localized scanning of numeric values from a string.

Availability
Available in Mac OS X v10.5 and later.

See Also
– doubleValue (page 1552)
– floatValue (page 1553)
– scanInt: (page 1353) (NSScanner)

Related Sample Code
Core Data HTML Store

Declared In
NSString.h

intValue
Returns the integer value of the receiver’s text.

- (int)intValue

Return Value
The integer value of the receiver’s text, assuming a decimal representation and skipping whitespace at the
beginning of the string. Returns INT_MAX or INT_MIN on overflow. Returns 0 if the receiver doesn’t begin
with a valid decimal text representation of a number.

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object for
localized scanning of numeric values from a string.

Special Considerations

On Mac OS X v10.5 and later, use integerValue (page 1576) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– integerValue (page 1576)
– doubleValue (page 1552)
– floatValue (page 1553)
– scanInt: (page 1353) (NSScanner)

Instance Methods 1577
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Related Sample Code
AlbumToSlideshow
DatePicker
QTAudioExtractionPanel
QTMetadataEditor
WebKitDOMElementPlugIn

Declared In
NSString.h

isAbsolutePath
Returning a Boolean value that indicates whether the receiver represents an absolute path.

- (BOOL)isAbsolutePath

Return Value
YES if the receiver (if interpreted as a path) represents an absolute path, otherwise NO (if the receiver represents
a relative path).

Discussion
See String Programming Guide for Cocoa for more information on paths.

Note that this method only works with file paths (not, for example, string representations of URLs). The
method does not check the filesystem for the existence of the path (use fileExistsAtPath: (page 646) or
similar methods in NSFileManager for that task).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPathUtilities.h

isEqualToString:
Returns a Boolean value that indicates whether a given string is equal to the receiver using an literal
Unicode-based comparison.

- (BOOL)isEqualToString:(NSString *)aString

Parameters
aString

The string with which to compare the receiver.

Return Value
YES if aString is equivalent to the receiver (if they have the same id or if they are NSOrderedSame in a
literal comparison), otherwise NO.

Discussion
The comparison uses the canonical representation of strings, which for a particular string is the length of the
string plus the Unicode characters that make up the string. When this method compares two strings, if the
individual Unicodes are the same, then the strings are equal, regardless of the backing store. “Literal” when

1578 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

applied to string comparison means that various Unicode decomposition rules are not applied and Unicode
characters are individually compared. So, for instance, “Ö” represented as the composed character sequence
“O” and umlaut would not compare equal to “Ö” represented as one Unicode character.

Special Considerations

When you know both objects are strings, this method is a faster way to check equality than isEqual: (page
2101).

Availability
Available in Mac OS X v10.0 and later.

See Also
– compare:options:range: (page 1543)

Related Sample Code
Core Data HTML Store
NameAndAddress
People
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSString.h

lastPathComponent
Returns the last path component of the receiver.

- (NSString *)lastPathComponent

Return Value
The last path component of the receiver.

Discussion
The following table illustrates the effect of lastPathComponent on a variety of different paths:

String ReturnedReceiver’s String Value

“scratch.tiff”“/tmp/scratch.tiff”

“scratch”“/tmp/scratch”

“tmp”“/tmp/”

“scratch”“scratch”

“/”“/”

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1579
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Related Sample Code
EnhancedAudioBurn
OpenGLCompositorLab
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Declared In
NSPathUtilities.h

length
Returns the number of Unicode characters in the receiver.

- (NSUInteger)length

Return Value
The number of Unicode characters in the receiver.

Discussion
The number returned includes the individual characters of composed character sequences, so you cannot
use this method to determine if a string will be visible when printed or how long it will appear.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lengthOfBytesUsingEncoding: (page 1580)
sizeWithAttributes: (NSString Additions)

Related Sample Code
iSpend
People
Quartz Composer WWDC 2005 TextEdit
StickiesExample
VertexPerformanceTest

Declared In
NSString.h

lengthOfBytesUsingEncoding:
Returns the number of bytes required to store the receiver in a given encoding.

- (NSUInteger)lengthOfBytesUsingEncoding:(NSStringEncoding)enc

Parameters
enc

The encoding for which to determine the receiver's length.

1580 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
The number of bytes required to store the receiver in the encoding enc in a non-external representation.
The length does not include space for a terminating NULL character.

Discussion
The result is exact and is returned in O(n) time.

Availability
Available in Mac OS X v10.4 and later.

See Also
– maximumLengthOfBytesUsingEncoding: (page 1584)
– length (page 1580)

Related Sample Code
Core Data HTML Store

Declared In
NSString.h

lineRangeForRange:
Returns the range of characters representing the line or lines containing a given range.

- (NSRange)lineRangeForRange:(NSRange)aRange

Parameters
aRange

A range within the receiver.

Return Value
The range of characters representing the line or lines containing aRange, including the line termination
characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– paragraphRangeForRange: (page 1585)
– getLineStart:end:contentsEnd:forRange: (page 1560)
– substringWithRange: (page 1611)

Related Sample Code
iSpend
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSString.h

Instance Methods 1581
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

localizedCaseInsensitiveCompare:
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and a given string
using a case-insensitive, localized, comparison.

- (NSComparisonResult)localizedCaseInsensitiveCompare:(NSString *)aString

Parameters
aString

The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending the receiver precedes aString in lexical ordering, NSOrderedSame the receiver
and aString are equivalent in lexical value, and NSOrderedDescending if the receiver follows aString.

Availability
Available in Mac OS X v10.0 and later.

See Also
– compare:options:range:locale: (page 1544)

Related Sample Code
NewsReader

Declared In
NSString.h

localizedCompare:
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and another given
string using a localized comparison.

- (NSComparisonResult)localizedCompare:(NSString *)aString

Parameters
aString

The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending the receiver precedes string in lexical ordering, NSOrderedSame the receiver and
string are equivalent in lexical value, and NSOrderedDescending if the receiver follows string.

Availability
Available in Mac OS X v10.0 and later.

See Also
– compare:options:range:locale: (page 1544)

Declared In
NSString.h

1582 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

longLongValue
Returns the long long value of the receiver’s text.

- (long long)longLongValue

Return Value
The long long value of the receiver’s text, assuming a decimal representation and skipping whitespace at
the beginning of the string. Returns LLONG_MAX or LLONG_MIN on overflow. Returns 0 if the receiver doesn’t
begin with a valid decimal text representation of a number.

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object for
localized scanning of numeric values from a string.

Availability
Available in Mac OS X v10.5 and later.

See Also
– doubleValue (page 1552)
– floatValue (page 1553)
– scanInt: (page 1353) (NSScanner)

Declared In
NSString.h

lossyCString
Returns a representation of the receiver as a C string in the default C-string encoding, possibly losing
information in converting to that encoding. (Deprecated in Mac OS X v10.4. Use cStringUsingEncoding: (page
1549) or dataUsingEncoding:allowLossyConversion: (page 1550) instead.)

- (const char *)lossyCString

Discussion
This method does not raise an exception if the conversion is lossy. The returned C string will be automatically
freed just as a returned object would be released; your code should copy the C string or use
getCString: (page 1556) if it needs to store the C string outside of the autorelease context in which the C
string is created.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– cStringUsingEncoding: (page 1549)
– dataUsingEncoding:allowLossyConversion: (page 1550)

Declared In
NSString.h

Instance Methods 1583
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

lowercaseString
Returns lowercased representation of the receiver.

- (NSString *)lowercaseString

Return Value
A string with each character from the receiver changed to its corresponding lowercase value.

Discussion
Case transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as the
originals. The result of this statement:

lcString = [myString lowercaseString];

might not be equal to this statement:

lcString = [[myString uppercaseString] lowercaseString];

For example, the uppercase form of “ß” in German is “SS”, so converting “Straße” to uppercase, then lowercase,
produces this sequence of strings:

“Straße”
“STRASSE”
“strasse”

Availability
Available in Mac OS X v10.0 and later.

See Also
– capitalizedString (page 1539)
– uppercaseString (page 1611)

Related Sample Code
NewsReader
People
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Declared In
NSString.h

maximumLengthOfBytesUsingEncoding:
Returns the maximum number of bytes needed to store the receiver in a given encoding.

- (NSUInteger)maximumLengthOfBytesUsingEncoding:(NSStringEncoding)enc

Parameters
enc

The encoding for which to determine the receiver's length.

1584 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
The maximum number of bytes needed to store the receiver in encoding in a non-external representation.
The length does not include space for a terminating NULL character.

Discussion
The result is an estimate and is returned in O(1) time; the estimate may be considerably greater than the
actual length needed.

Availability
Available in Mac OS X v10.4 and later.

See Also
– lengthOfBytesUsingEncoding: (page 1580)
– length (page 1580)

Declared In
NSString.h

paragraphRangeForRange:
Returns the range of characters representing the paragraph or paragraphs containing a given range.

- (NSRange)paragraphRangeForRange:(NSRange)aRange

Parameters
aRange

A range within the receiver. The range must not exceed the bounds of the receiver.

Return Value
The range of characters representing the paragraph or paragraphs containing aRange, including the paragraph
termination characters.

Availability
Available in Mac OS X v10.3 and later.

See Also
– getParagraphStart:end:contentsEnd:forRange: (page 1561)
– lineRangeForRange: (page 1581)

Declared In
NSString.h

pathComponents
Returns an array of NSString objects containing, in order, each path component of the receiver.

- (NSArray *)pathComponents

Return Value
An array of NSString objects containing, in order, each path component of the receiver.

Instance Methods 1585
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Discussion
The strings in the array appear in the order they did in the receiver. If the string begins or ends with the path
separator, then the first or last component, respectively, will contain the separator. Empty components
(caused by consecutive path separators) are deleted. For example, this code excerpt:

NSString *path = @"tmp/scratch";
NSArray *pathComponents = [path pathComponents];

produces an array with these contents:

Path ComponentIndex

“tmp”0

“scratch”1

If the receiver begins with a slash—for example, “/tmp/scratch”—the array has these contents:

Path ComponentIndex

“/”0

“tmp”1

“scratch”2

If the receiver has no separators—for example, “scratch”—the array contains the string itself, in this case
“scratch”.

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ pathWithComponents: (page 1529)
– stringByStandardizingPath (page 1607)
– componentsSeparatedByString: (page 1547)

Related Sample Code
CoreRecipes
CustomSave
ObjectPath

Declared In
NSPathUtilities.h

pathExtension
Interprets the receiver as a path and returns the receiver’s extension, if any.

- (NSString *)pathExtension

1586 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
The receiver’s extension, if any (not including the extension divider).

Discussion
The following table illustrates the effect of pathExtension on a variety of different paths:

String ReturnedReceiver’s String Value

“tiff”“/tmp/scratch.tiff”

“” (an empty string)“/tmp/scratch”

“” (an empty string)“/tmp/”

“tiff”“/tmp/scratch..tiff”

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLChildWindowDemo
Quartz Composer WWDC 2005 TextEdit
Sketch-112
StickiesExample
TextEditPlus

Declared In
NSPathUtilities.h

precomposedStringWithCanonicalMapping
Returns a string made by normalizing the receiver’s contents using Form C.

- (NSString *)precomposedStringWithCanonicalMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form C.

Availability
Available in Mac OS X v10.2 and later.

See Also
– precomposedStringWithCompatibilityMapping (page 1588)
– decomposedStringWithCanonicalMapping (page 1551)

Declared In
NSString.h

Instance Methods 1587
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

precomposedStringWithCompatibilityMapping
Returns a string made by normalizing the receiver’s contents using Form KC.

- (NSString *)precomposedStringWithCompatibilityMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form KC.

Availability
Available in Mac OS X v10.2 and later.

See Also
– precomposedStringWithCanonicalMapping (page 1587)
– decomposedStringWithCompatibilityMapping (page 1551)

Declared In
NSString.h

propertyList
Parses the receiver as a text representation of a property list, returning an NSString, NSData, NSArray, or
NSDictionary object, according to the topmost element.

- (id)propertyList

Return Value
A property list representation of returning an NSString, NSData, NSArray, or NSDictionary object,
according to the topmost element.

Discussion
The receiver must contain a string in a property list format. For a discussion of property list formats, see
Property List Programming Guide.

Important: Raises an NSParseErrorException if the receiver cannot be parsed as a property list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– propertyListFromStringsFileFormat (page 1588)
+ stringWithContentsOfFile: (page 1530)

Declared In
NSString.h

propertyListFromStringsFileFormat
Returns a dictionary object initialized with the keys and values found in the receiver.

- (NSDictionary *)propertyListFromStringsFileFormat

1588 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
A dictionary object initialized with the keys and values found in the receiver

Discussion
The receiver must contain text in the format used for .strings files. In this format, keys and values are
separated by an equal sign, and each key-value pair is terminated with a semicolon. The value is optional—if
not present, the equal sign is also omitted. The keys and values themselves are always strings enclosed in
straight quotation marks. Comments may be included, delimited by /* and */ as for ANSI C comments.
Here’s a short example of a strings file:

/* Question in confirmation panel for quitting. */
"Confirm Quit" = "Are you sure you want to quit?";

/* Message when user tries to close unsaved document */
"Close or Save" = "Save changes before closing?";

/* Word for Cancel */
"Cancel";

Availability
Available in Mac OS X v10.0 and later.

See Also
– propertyList (page 1588)
+ stringWithContentsOfFile: (page 1530)

Declared In
NSString.h

rangeOfCharacterFromSet:
Finds and returns the range in the receiver of the first character from a given character set.

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

Parameters
aSet

A character set. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aSet is nil.

Return Value
The range in the receiver of the first character found from aSet. Returns a range of {NSNotFound, 0} if
none of the characters in aSet are found.

Discussion
Invokes rangeOfCharacterFromSet:options: (page 1590) with no options.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSString.h

Instance Methods 1589
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

rangeOfCharacterFromSet:options:
Finds and returns the range in the receiver of the first character, using given options, from a given character
set.

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(NSStringCompareOptions)mask

Parameters
aSet

A character set. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aSet is nil.

mask
A mask specifying search options. The following options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch, NSBackwardsSearch.
See String Programming Guide for Cocoa for details on these options.

Return Value
The range in the receiver of the first character found from aSet. Returns a range of {NSNotFound, 0} if
none of the characters in aSet are found.

Discussion
InvokesrangeOfCharacterFromSet:options:range: (page 1590) withmask for the options and the entire
extent of the receiver for the range.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSString.h

rangeOfCharacterFromSet:options:range:
Finds and returns the range in the receiver of the first character from a given character set found in a given
range with given options.

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(NSStringCompareOptions)mask range:(NSRange)aRange

Parameters
aSet

A character set. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aSet is nil.

mask
A mask specifying search options. The following options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch, NSBackwardsSearch.
See String Programming Guide for Cocoa for details on these options.

1590 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

aRange
The range in which to search. aRange must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Return Value
The range in the receiver of the first character found from aSet within aRange. Returns a range of
{NSNotFound, 0} if none of the characters in aSet are found.

Discussion
Because pre-composed characters in aSet can match composed character sequences in the receiver, the
length of the returned range can be greater than 1. For example, if you search for “ü” in the string “stru¨del”,
the returned range is {3,2}.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
VertexPerformanceTest

Declared In
NSString.h

rangeOfComposedCharacterSequenceAtIndex:
Returns the range in the receiver of the composed character sequence located at a given index.

- (NSRange)rangeOfComposedCharacterSequenceAtIndex:(NSUInteger)anIndex

Parameters
anIndex

The index of a character in the receiver. The value must not exceed the bounds of the receiver.

Return Value
The range in the receiver of the composed character sequence located at anIndex.

Discussion
The composed character sequence includes the first base character found at or before anIndex, and its
length includes the base character and all non-base characters following the base character.

If you want to write a method to adjust an arbitrary range so it includes the composed character sequences
on its boundaries, you can create a method such as the following:

- (NSRange)adjustRange:(NSRange)aRange
{
 NSUInteger index, endIndex;
 NSRange newRange, endRange;

 // Check for validity of range
 if (aRange.location >= [self length] ||
 aRange.location + aRange.length > [self length])
 {
 [NSException raise:NSRangeException format:@"Invalid range %@.",
 NSStringFromRange(aRange)];

Instance Methods 1591
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

 }

 index = aRange.location;
 newRange = [self rangeOfComposedCharacterSequenceAtIndex:index];

 index = aRange.location + aRange.length - 1;
 endRange = [self rangeOfComposedCharacterSequenceAtIndex:index];
 endIndex = endRange.location + endRange.length;

 newRange.length = endIndex - newRange.location;

 return newRange;
}

First, adjustRange: corrects the location for the beginning of aRange, storing it in newRange. It then works
at the end of aRange, correcting the location and storing it in endIndex. Finally, it sets the length of newRange
to the difference between endIndex and the new range’s location.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rangeOfComposedCharacterSequencesForRange: (page 1592)

Declared In
NSString.h

rangeOfComposedCharacterSequencesForRange:
Returns the range in the receiver of the composed character sequence in a given range.

- (NSRange)rangeOfComposedCharacterSequencesForRange:(NSRange)range

Parameters
range

A range in the receiver. The range must not exceed the bounds of the receiver.

Return Value
The range in the receiver of the composed character sequence in range.

Availability
Available in Mac OS X v10.5 and later.

See Also
– rangeOfComposedCharacterSequenceAtIndex: (page 1591)

Declared In
NSString.h

rangeOfString:
Finds and returns the range of the first occurrence of a given string within the receiver.

- (NSRange)rangeOfString:(NSString *)aString

1592 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Parameters
aString

The string to search for. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
An NSRange structure giving the location and length in the receiver of the first occurrence of aString.
Returns {NSNotFound, 0} if aString is not found or is empty (@"").

Discussion
Invokes rangeOfString:options: (page 1593) with no options.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
People
QTSSConnectionMonitor
QTSSInspector

Declared In
NSString.h

rangeOfString:options:
Finds and returns the range of the first occurrence of a given string within the receiver, subject to given
options.

- (NSRange)rangeOfString:(NSString *)aString options:(NSStringCompareOptions)mask

Parameters
aString

The string to search for. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

mask
A mask specifying search options. The following options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch, NSBackwardsSearch,
NSAnchoredSearch. See String Programming Guide for Cocoa for details on these options.

Return Value
An NSRange structure giving the location and length in the receiver of the first occurrence of aString,
modulo the options in mask. Returns {NSNotFound, 0} if aString is not found or is empty (@"").

Discussion
Invokes rangeOfString:options:range: (page 1594) with the options specified by mask and the entire
extent of the receiver as the range.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1593
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Related Sample Code
Sketch-112

Declared In
NSString.h

rangeOfString:options:range:
Finds and returns the range of the first occurrence of a given string, within the given range of the receiver,
subject to given options.

- (NSRange)rangeOfString:(NSString *)aString options:(NSStringCompareOptions)mask
range:(NSRange)aRange

Parameters
aString

The string for which to search. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

mask
A mask specifying search options. The following options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch, NSBackwardsSearch,
and NSAnchoredSearch. See String Programming Guide for Cocoa for details on these options.

aRange
The range within the receiver for which to search for aString.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Return Value
An NSRange structure giving the location and length in the receiver of aStringwithin aRange in the receiver,
modulo the options in mask. The range returned is relative to the start of the string, not to the passed-in
range. Returns {NSNotFound, 0} if aString is not found or is empty (@"").

Discussion
The length of the returned range and that of aStringmay differ if equivalent composed character sequences
are matched.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
VertexPerformanceTest

Declared In
NSString.h

1594 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

rangeOfString:options:range:locale:
Finds and returns the range of the first occurrence of a given string within a given range of the receiver,
subject to given options, using the specified locale, if any.

- (NSRange)rangeOfString:(NSString *)aString options:(NSStringCompareOptions)mask
range:(NSRange)searchRange locale:(NSLocale *)locale

Parameters
aString

The string for which to search. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

mask
A mask specifying search options. The following options may be specified by combining them with
the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch, NSBackwardsSearch,
and NSAnchoredSearch. See String Programming Guide for Cocoa for details on these options.

aRange
The range within the receiver for which to search for aString.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

locale
The locale to use when comparing the receiver with aString. If this value is nil, uses the current
locale.

The locale argument affects the equality checking algorithm. For example, for the Turkish locale,
case-insensitive compare matches “I” to “ı” (Unicode code point U+0131, Latin Small Dotless I), not
the normal “i” character.

Return Value
An NSRange structure giving the location and length in the receiver of aStringwithin aRange in the receiver,
modulo the options in mask. The range returned is relative to the start of the string, not to the passed-in
range. Returns {NSNotFound, 0} if aString is not found or is empty (@"").

Discussion
The length of the returned range and that of aStringmay differ if equivalent composed character sequences
are matched.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSString.h

smallestEncoding
Returns the smallest encoding to which the receiver can be converted without loss of information.

- (NSStringEncoding)smallestEncoding

Instance Methods 1595
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
The smallest encoding to which the receiver can be converted without loss of information.

Discussion
The returned encoding may not be the fastest for accessing characters, but is space-efficient. This method
may take some time to execute.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fastestEncoding (page 1552)
– getCharacters:range: (page 1555)

Declared In
NSString.h

stringByAbbreviatingWithTildeInPath
Returns a new string representing the receiver as a path with a tilde (~) substituted for the full path to the
current user’s home directory.

- (NSString *)stringByAbbreviatingWithTildeInPath

Return Value
A new string representing the receiver as a path with a tilde (~) substituted for the full path to the current
user’s home directory. Returns a new string matching the receiver if the receiver doesn’t begin with a user’s
home directory.

Discussion
Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringByExpandingTildeInPath (page 1602)

Related Sample Code
SimpleDownload

Declared In
NSPathUtilities.h

stringByAddingPercentEscapesUsingEncoding:
Returns a representation of the receiver using a given encoding to determine the percent escapes necessary
to convert the receiver into a legal URL string.

- (NSString *)stringByAddingPercentEscapesUsingEncoding:(NSStringEncoding)encoding

1596 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Parameters
encoding

The encoding to use for the returned string.

Return Value
A representation of the receiver using encoding to determine the percent escapes necessary to convert the
receiver into a legal URL string. Returns nil if encoding cannot encode a particular character

Discussion
See CFURLCreateStringByAddingPercentEscapes for more complex transformations.

Availability
Available in Mac OS X v10.3 and later.

See Also
– stringByReplacingPercentEscapesUsingEncoding: (page 1606)

Declared In
NSURL.h

stringByAppendingFormat:
Returns a string made by appending to the receiver a string constructed from a given format string and the
following arguments.

- (NSString *)stringByAppendingFormat:(NSString *)format ...

Parameters
format

A format string. See Formatting String Objects for more information. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Return Value
A string made by appending to the receiver a string constructed from format and the following arguments,
in the manner of stringWithFormat: (page 1536).

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringByAppendingString: (page 1599)

Related Sample Code
Departments and Employees
QTMetadataEditor

Declared In
NSString.h

Instance Methods 1597
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

stringByAppendingPathComponent:
Returns a new string made by appending to the receiver a given string.

- (NSString *)stringByAppendingPathComponent:(NSString *)aString

Parameters
aString

The path component to append to the receiver.

Return Value
A new string made by appending aString to the receiver, preceded if necessary by a path separator.

Discussion
The following table illustrates the effect of this method on a variety of different paths, assuming that aString
is supplied as “scratch.tiff”:

Resulting StringReceiver’s String Value

“/tmp/scratch.tiff”“/tmp”

“/tmp/scratch.tiff”“/tmp/”

“/scratch.tiff”“/”

“scratch.tiff”“” (an empty string)

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringsByAppendingPaths: (page 1609)
– stringByAppendingPathExtension: (page 1598)
– stringByDeletingLastPathComponent (page 1600)

Related Sample Code
Core Data HTML Store
CoreRecipes
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Declared In
NSPathUtilities.h

stringByAppendingPathExtension:
Returns a new string made by appending to the receiver an extension separator followed by a given extension.

- (NSString *)stringByAppendingPathExtension:(NSString *)ext

1598 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Parameters
ext

The extension to append to the receiver.

Return Value
A new string made by appending to the receiver an extension separator followed by ext.

Discussion
The following table illustrates the effect of this method on a variety of different paths, assuming that ext is
supplied as @"tiff":

Resulting StringReceiver’s String Value

“/tmp/scratch.old.tiff”“/tmp/scratch.old”

“/tmp/scratch..tiff”“/tmp/scratch.”

“/tmp.tiff”“/tmp/”

“scratch.tiff”“scratch”

Note that adding an extension to @"/tmp/" causes the result to be @"/tmp.tiff" instead of
@"/tmp/.tiff". This difference is because a file named @".tiff" is not considered to have an extension,
so the string is appended to the last nonempty path component.

This method does not allow you to append file extensions to filenames starting with the tilde character (~).

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringByAppendingPathComponent: (page 1598)
– stringByDeletingPathExtension (page 1601)

Related Sample Code
QTRecorder
Quartz Composer WWDC 2005 TextEdit
SpotlightFortunes
TextEditPlus
WhackedTV

Declared In
NSPathUtilities.h

stringByAppendingString:
Returns a new string made by appending a given string to the receiver.

- (NSString *)stringByAppendingString:(NSString *)aString

Instance Methods 1599
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Parameters
aString

The string to append to the receiver. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
A new string made by appending aString to the receiver.

Discussion
This code excerpt, for example:

NSString *errorTag = @"Error: ";
NSString *errorString = @"premature end of file.";
NSString *errorMessage = [errorTag stringByAppendingString:errorString];

produces the string “Error: premature end of file.”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringByAppendingFormat: (page 1597)

Related Sample Code
CocoaDVDPlayer
NumberInput_IMKit_Sample
QTSSConnectionMonitor
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSString.h

stringByDeletingLastPathComponent
Returns a new string made by deleting the last path component from the receiver, along with any final path
separator.

- (NSString *)stringByDeletingLastPathComponent

Return Value
A new string made by deleting the last path component from the receiver, along with any final path separator.
If the receiver represents the root path it is returned unaltered.

Discussion
The following table illustrates the effect of this method on a variety of different paths:

Resulting StringReceiver’s String Value

“/tmp”“/tmp/scratch.tiff”

1600 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Resulting StringReceiver’s String Value

“/tmp”“/tmp/lock/”

“/”“/tmp/”

“/”“/tmp”

“/”“/”

“” (an empty string)“scratch.tiff”

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringByDeletingPathExtension (page 1601)
– stringByAppendingPathComponent: (page 1598)

Related Sample Code
ExtractMovieAudioToAIFF
LSMSmartCategorizer
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
WhackedTV

Declared In
NSPathUtilities.h

stringByDeletingPathExtension
Returns a new string made by deleting the extension (if any, and only the last) from the receiver.

- (NSString *)stringByDeletingPathExtension

Return Value
a new string made by deleting the extension (if any, and only the last) from the receiver. Strips any trailing
path separator before checking for an extension. If the receiver represents the root path, it is returned
unaltered.

Discussion
The following table illustrates the effect of this method on a variety of different paths:

Resulting StringReceiver’s String Value

“/tmp/scratch”“/tmp/scratch.tiff”

“/tmp”“/tmp/”

“scratch”“scratch.bundle/”

Instance Methods 1601
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Resulting StringReceiver’s String Value

“scratch.”“scratch..tiff”

“.tiff”“.tiff”

“/”“/”

Note that attempting to delete an extension from @".tiff" causes the result to be @".tiff" instead of
an empty string. This difference is because a file named @".tiff" is not considered to have an extension,
so nothing is deleted. Note also that this method only works with file paths (not, for example, string
representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

See Also
– pathExtension (page 1586)
– stringByDeletingLastPathComponent (page 1600)

Related Sample Code
AutoUpdater
EnhancedAudioBurn
QTAudioExtractionPanel
Reducer
StickiesExample

Declared In
NSPathUtilities.h

stringByExpandingTildeInPath
Returns a new string made by expanding the initial component of the receiver to its full path value.

- (NSString *)stringByExpandingTildeInPath

Return Value
A new string made by expanding the initial component of the receiver, if it begins with “~” or “~user”, to
its full path value. Returns a new string matching the receiver if the receiver’s initial component can’t be
expanded.

Discussion
Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringByAbbreviatingWithTildeInPath (page 1596)

Related Sample Code
MyPhoto

1602 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Quartz Composer Offline Rendering
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSPathUtilities.h

stringByFoldingWithOptions:locale:
Returns a string with the given character folding options applied.

- (NSString *)stringByFoldingWithOptions:(NSStringCompareOptions)options
locale:(NSLocale *)locale

Parameters
options

A mask of compare flags with a suffix InsensitiveSearch.

locale
The locale to use for the folding. The locale affects the folding logic. For example, for the Turkish
locale, case-insensitive compare matches “I” to “ı” (Unicode code point U+0131, Latin Small Dotless
I), not the normal “i” character.

Return Value
A string with the character folding options applied.

Discussion
Character folding operations remove distinctions between characters. For example, case folding may replace
uppercase letters with their lowercase equivalents.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSString.h

stringByPaddingToLength:withString:startingAtIndex:
Returns a new string formed from the receiver by either removing characters from the end, or by appending
as many occurrences as necessary of a given pad string.

- (NSString *)stringByPaddingToLength:(NSUInteger)newLength withString:(NSString
*)padString startingAtIndex:(NSUInteger)padIndex

Parameters
newLength

The new length for the receiver.

padString
The string with which to extend the receiver.

padIndex
The index in padString from which to start padding.

Instance Methods 1603
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
A new string formed from the receiver by either removing characters from the end, or by appending as many
occurrences of padString as necessary.

Discussion
Here are some examples of usage:

[@"abc" stringByPaddingToLength: 9 withString: @"." startingAtIndex:0];
 // Results in "abc......"

[@"abc" stringByPaddingToLength: 2 withString: @"." startingAtIndex:0];
 // Results in "ab"

[@"abc" stringByPaddingToLength: 9 withString: @". " startingAtIndex:1];
 // Results in "abc . . ."
 // Notice that the first character in the padding is " "

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSString.h

stringByReplacingCharactersInRange:withString:
Returns a new string in which the characters in a specified range of the receiver are replaced by a given
string.

- (NSString *)stringByReplacingCharactersInRange:(NSRange)range withString:(NSString
 *)replacement

Parameters
range

A range of characters in the receiver.

replacement
The string with which to replace the characters in range.

Return Value
A new string in which the characters in range of the receiver are replaced by replacement.

Availability
Available in Mac OS X v10.5 and later.

See Also
– stringByReplacingOccurrencesOfString:withString: (page 1605)
– stringByReplacingOccurrencesOfString:withString:options:range: (page 1605)
– stringByReplacingPercentEscapesUsingEncoding: (page 1606)

Declared In
NSString.h

1604 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

stringByReplacingOccurrencesOfString:withString:
Returns a new string in which all occurrences of a target string in the receiver are replaced by another given
string.

- (NSString *)stringByReplacingOccurrencesOfString:(NSString *)target
withString:(NSString *)replacement

Parameters
target

The string to replace.

replacement
The string with which to replace target.

Return Value
A new string in which all occurrences of target in the receiver are replaced by replacement.

Discussion
Invokes stringByReplacingOccurrencesOfString:withString:options:range: (page 1605)with 0
options and range of the whole string.

Availability
Available in Mac OS X v10.5 and later.

See Also
– stringByReplacingOccurrencesOfString:withString:options:range: (page 1605)
– stringByReplacingCharactersInRange:withString: (page 1604)
– stringByReplacingPercentEscapesUsingEncoding: (page 1606)

Declared In
NSString.h

stringByReplacingOccurrencesOfString:withString:options:range:
Returns a new string in which all occurrences of a target string in a specified range of the receiver are replaced
by another given string.

- (NSString *)stringByReplacingOccurrencesOfString:(NSString *)target
withString:(NSString *)replacement options:(NSStringCompareOptions)options
range:(NSRange)searchRange

Parameters
target

The string to replace.

replacement
The string with which to replace target.

options
A mask of options to use when comparing target with the receiver. Pass 0 to specify no options.

searchRange
The range in the receiver in which to search for target.

Instance Methods 1605
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
A new string in which all occurrences of target, matched using options, in searchRange of the receiver
are replaced by replacement.

Availability
Available in Mac OS X v10.5 and later.

See Also
– stringByReplacingOccurrencesOfString:withString: (page 1605)
– stringByReplacingCharactersInRange:withString: (page 1604)
– stringByReplacingPercentEscapesUsingEncoding: (page 1606)

Declared In
NSString.h

stringByReplacingPercentEscapesUsingEncoding:
Returns a new string made by replacing in the receiver all percent escapes with the matching characters as
determined by a given encoding.

- (NSString *)stringByReplacingPercentEscapesUsingEncoding:(NSStringEncoding)encoding

Parameters
encoding

The encoding to use for the returned string.

Return Value
A new string made by replacing in the receiver all percent escapes with the matching characters as determined
by the given encoding encoding. Returns nil if the transformation is not possible, for example, the percent
escapes give a byte sequence not legal in encoding.

Discussion
See CFURLCreateStringByReplacingPercentEscapes for more complex transformations.

Availability
Available in Mac OS X v10.3 and later.

See Also
– stringByAddingPercentEscapesUsingEncoding: (page 1596)

Declared In
NSURL.h

stringByResolvingSymlinksInPath
Returns a new string made from the receiver by resolving all symbolic links and standardizing path.

- (NSString *)stringByResolvingSymlinksInPath

1606 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Return Value
A new string made by expanding an initial tilde expression in the receiver, then resolving all symbolic links
and references to current or parent directories if possible, to generate a standardized path. If the original
path is absolute, all symbolic links are guaranteed to be removed; if it’s a relative path, symbolic links that
can’t be resolved are left unresolved in the returned string. Returns self if an error occurs.

Discussion
If the name of the receiving path begins with /private, the stringByResolvingSymlinksInPathmethod
strips off the /private designator, provided the result is the name of an existing file.

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringByStandardizingPath (page 1607)
– stringByExpandingTildeInPath (page 1602)

Related Sample Code
CoreRecipes
DeskPictAppDockMenu
PredicateEditorSample
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSPathUtilities.h

stringByStandardizingPath
Returns a new string made by removing extraneous path components from the receiver.

- (NSString *)stringByStandardizingPath

Return Value
A new string made by removing extraneous path components from the receiver.

Discussion
If stringByStandardizingPath detects symbolic links in a pathname, the
stringByResolvingSymlinksInPath (page 1606) method is called to resolve them. If an invalid pathname
is provided, stringByStandardizingPath may attempt to resolve it by calling
stringByResolvingSymlinksInPath, and the results are undefined. If any other kind of error is encountered
(such as a path component not existing), self is returned.

This method can make the following changes in the provided string:

 ■ Expand an initial tilde expression using stringByExpandingTildeInPath (page 1602).

 ■ Reduce empty components and references to the current directory (that is, the sequences “//” and “/./”)
to single path separators.

Instance Methods 1607
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

 ■ In absolute paths only, resolve references to the parent directory (that is, the component “..”) to the real
parent directory if possible using stringByResolvingSymlinksInPath (page 1606), which consults
the file system to resolve each potential symbolic link.

In relative paths, because symbolic links can’t be resolved, references to the parent directory are left in
place.

 ■ Remove an initial component of “/private” from the path if the result still indicates an existing file or
directory (checked by consulting the file system).

Note that the path returned by this method may still have symbolic link components in it. Note also that this
method only works with file paths (not, for example, string representations of URLs).

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringByExpandingTildeInPath (page 1602)
– stringByResolvingSymlinksInPath (page 1606)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSPathUtilities.h

stringByTrimmingCharactersInSet:
Returns a new string made by removing from both ends of the receiver characters contained in a given
character set.

- (NSString *)stringByTrimmingCharactersInSet:(NSCharacterSet *)set

Parameters
set

A character set containing the characters to remove from the receiver. set must not be nil.

Return Value
A new string made by removing from both ends of the receiver characters contained in set. If the receiver
is composed entirely of characters from set, the empty string is returned.

Discussion
UsewhitespaceCharacterSet (page 252) orwhitespaceAndNewlineCharacterSet (page 252) to remove
whitespace around strings.

Availability
Available in Mac OS X v10.2 and later.

See Also
– componentsSeparatedByCharactersInSet: (page 1546)

1608 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Related Sample Code
CoreRecipes
iSpend
TextLinks

Declared In
NSString.h

stringsByAppendingPaths:
Returns an array of strings made by separately appending to the receiver each string in in a given array.

- (NSArray *)stringsByAppendingPaths:(NSArray *)paths

Parameters
paths

An array of NSString objects specifying paths to add to the receiver.

Return Value
An array of NSString objects made by separately appending each string in paths to the receiver, preceded
if necessary by a path separator.

Discussion
Note that this method only works with file paths (not, for example, string representations of URLs). See
stringByAppendingPathComponent: (page 1598) for an individual example.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPathUtilities.h

substringFromIndex:
Returns a new string containing the characters of the receiver from the one at a given index to the end.

- (NSString *)substringFromIndex:(NSUInteger)anIndex

Parameters
anIndex

An index. The value must lie within the bounds of the receiver, or be equal to the length of the receiver.

Important: Raises an NSRangeException if anIndex lies beyond the end of the receiver.

Return Value
A new string containing the characters of the receiver from the one at anIndex to the end. If anIndex is
equal to the length of the string, returns an empty string.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1609
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

See Also
– substringWithRange: (page 1611)
– substringToIndex: (page 1610)

Related Sample Code
Birthdays
Core Data HTML Store
NewsReader
Reminders
Sketch-112

Declared In
NSString.h

substringToIndex:
Returns a new string containing the characters of the receiver up to, but not including, the one at a given
index.

- (NSString *)substringToIndex:(NSUInteger)anIndex

Parameters
anIndex

An index. The value must lie within the bounds of the receiver, or be equal to the length of the receiver.

Important: Raises an NSRangeException if (anIndex - 1) lies beyond the end of the receiver.

Return Value
A new string containing the characters of the receiver up to, but not including, the one at anIndex. If anIndex
is equal to the length of the string, returns a copy of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– substringFromIndex: (page 1609)
– substringWithRange: (page 1611)

Related Sample Code
DerivedProperty
People
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Declared In
NSString.h

1610 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

substringWithRange:
Returns a string object containing the characters of the receiver that lie within a given range.

- (NSString *)substringWithRange:(NSRange)aRange

Parameters
aRange

A range. The range must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the receiver.

Return Value
A string object containing the characters of the receiver that lie within aRange.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in Mac OS X v10.0 and later.

See Also
– substringFromIndex: (page 1609)
– substringToIndex: (page 1610)

Related Sample Code
EnhancedDataBurn
iSpend
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
VertexPerformanceTest

Declared In
NSString.h

uppercaseString
Returns an uppercased representation of the receiver.

- (NSString *)uppercaseString

Return Value
A string with each character from the receiver changed to its corresponding uppercase value.

Discussion
Case transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as the
originals. See lowercaseString (page 1584) for an example.

Availability
Available in Mac OS X v10.0 and later.

See Also
– capitalizedString (page 1539)

Instance Methods 1611
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

– lowercaseString (page 1584)

Related Sample Code
QTKitMovieShuffler
Worm

Declared In
NSString.h

UTF8String
Returns a null-terminated UTF8 representation of the receiver.

- (const char *)UTF8String

Return Value
A null-terminated UTF8 representation of the receiver.

Discussion
The returned C string is automatically freed just as a returned object would be released; you should copy the
C string if it needs to store it outside of the autorelease context in which the C string is created.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DynamicProperties
NameAndPassword

Declared In
NSString.h

writeToFile:atomically:
Writes the contents of the receiver to the file specified by a given path. (Deprecated in Mac OS X v10.4. Use
writeToFile:atomically:encoding:error: (page 1613) instead.)

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag

Return Value
YES if the file is written successfully, otherwise NO.

Discussion
Writes the contents of the receiver to the file specified by path (overwriting any existing file at path). path
is written in the default C-string encoding if possible (that is, if no information would be lost), in the Unicode
encoding otherwise.

If flag is YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed to path. If
flag is NO, the receiver is written directly to path. The YES option guarantees that path, if it exists at all,
won’t be corrupted even if the system should crash during writing.

If path contains a tilde (~) character, you must expand it with stringByExpandingTildeInPath (page
1602) before invoking this method.

1612 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– writeToFile:atomically:encoding:error: (page 1613)

Related Sample Code
bMoviePalette
bMoviePaletteCocoa
Cropped Image
Monochrome Image
RGB Image

Declared In
NSString.h

writeToFile:atomically:encoding:error:
Writes the contents of the receiver to a file at a given path using a given encoding.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)useAuxiliaryFile
encoding:(NSStringEncoding)enc error:(NSError **)error

Parameters
path

The file to which to write the receiver. If path contains a tilde (~) character, you must expand it with
stringByExpandingTildeInPath (page 1602) before invoking this method.

useAuxiliaryFile
If YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed to path. If NO,
the receiver is written directly to path. The YES option guarantees that path, if it exists at all, won’t
be corrupted even if the system should crash during writing.

enc
The encoding to use for the output.

error
If there is an error, upon return contains an NSError object that describes the problem. If you are
not interested in details of errors, you may pass in NULL.

Return Value
YES if the file is written successfully, otherwise NO (if there was a problem writing to the file or with the
encoding).

Discussion
This method overwrites any existing file at path.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSString.h

Instance Methods 1613
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

writeToURL:atomically:
Writes the contents of the receiver to the location specified by a given URL. (Deprecated in Mac OS X v10.4.
Use writeToURL:atomically:encoding:error: (page 1614) instead.)

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)atomically

Return Value
YES if the location is written successfully, otherwise NO.

Discussion
If atomically is YES, the receiver is written to an auxiliary location, and then the auxiliary location is renamed
to aURL. If atomically is NO, the receiver is written directly to aURL. The YES option guarantees that aURL,
if it exists at all, won’t be corrupted even if the system should crash during writing.

The atomically parameter is ignored if aURL is not of a type that can be accessed atomically.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– writeToURL:atomically:encoding:error: (page 1614)

Declared In
NSString.h

writeToURL:atomically:encoding:error:
Writes the contents of the receiver to the URL specified by url using the specified encoding.

- (BOOL)writeToURL:(NSURL *)url atomically:(BOOL)useAuxiliaryFile
encoding:(NSStringEncoding)enc error:(NSError **)error

Parameters
url

The URL to which to write the receiver.

useAuxiliaryFile
If YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed to url. If NO,
the receiver is written directly to url. The YES option guarantees that url, if it exists at all, won’t be
corrupted even if the system should crash during writing.

The useAuxiliaryFile parameter is ignored if url is not of a type that can be accessed atomically.

enc
The encoding to use for the output.

error
If there is an error, upon return contains an NSError object that describes the problem. If you are
not interested in details of errors, you may pass in NULL.

Return Value
YES if the URL is written successfully, otherwise NO (if there was a problem writing to the URL or with the
encoding).

1614 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSString.h

Constants

unichar
Type for Unicode characters.

typedef unsigned short unichar;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSString.h

NSMaximumStringLength
A constant to define the maximum number of characters in an NSString object. (Deprecated. This constant
is not available in Mac OS X v10.5 and later.)

#define NSMaximumStringLength (INT_MAX-1)

Constants
NSMaximumStringLength

Maximum number of characters in an NSString object.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in NSString.h.

Availability
Available in Mac OS X v10.0.
Removed in Mac OS X v10.5.

Declared In
NSString.h

NSStringCompareOptions
Type for string comparison options.

typedef NSUInteger NSStringCompareOptions;

Discussion
See “Search and Comparison Options” (page 1616) for possible values.

Constants 1615
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSString.h

Search and Comparison Options
These values represent the options available to many of the string classes’ search and comparison methods.

enum {
 NSCaseInsensitiveSearch = 1,
 NSLiteralSearch = 2,
 NSBackwardsSearch = 4,
 NSAnchoredSearch = 8,
 NSNumericSearch = 64,
 NSDiacriticInsensitiveSearch = 128,
 NSWidthInsensitiveSearch = 256,
 NSForcedOrderingSearch = 512
};

Constants
NSCaseInsensitiveSearch

A case-insensitive search.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSLiteralSearch
Exact character-by-character equivalence.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSBackwardsSearch
Search from end of source string.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSAnchoredSearch
Search is limited to start (or end, if NSBackwardsSearch) of source string.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSNumericSearch
Numbers within strings are compared using numeric value, that is, Foo2.txt < Foo7.txt <
Foo25.txt.

This option only applies to compare methods, not find.

Available in Mac OS X v10.3 and later.

Declared in NSString.h.

1616 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

NSDiacriticInsensitiveSearch
Search ignores diacritic marks.

For example, ‘ö’ is equal to ‘o’.

Available in Mac OS X v10.5 and later.

Declared in NSString.h.

NSWidthInsensitiveSearch
Search ignores width differences in characters that have full-width and half-width forms, as occurs in
East Asian character sets.

For example, with this option, the full-width Latin small letter 'a' (Unicode code point U+FF41) is equal
to the basic Latin small letter 'a' (Unicode code point U+0061).

Available in Mac OS X v10.5 and later.

Declared in NSString.h.

NSForcedOrderingSearch
Comparisons are forced to return either NSOrderedAscending or NSOrderedDescending if the
strings are equivalent but not strictly equal.

This option gives stability when sorting. For example, “aaa” is greater than "AAA” if
NSCaseInsensitiveSearch is specified.

Available in Mac OS X v10.5 and later.

Declared in NSString.h.

Discussion
See Searching, Comparing, and Sorting Strings for details on the effects of these options.

Declared In
NSString.h

NSStringEncodingConversionOptions
Type for encoding conversion options.

typedef NSUInteger NSStringEncodingConversionOptions;

Discussion
See NSStringEncodingConversionOptions (page 1617) for possible values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSString.h

Encoding Conversion Options
Options for converting string encodings.

Constants 1617
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

enum {
 NSStringEncodingConversionAllowLossy = 1,
 NSStringEncodingConversionExternalRepresentation = 2
};

Constants
NSStringEncodingConversionAllowLossy

Allows lossy conversion.

Available in Mac OS X v10.5 and later.

Declared in NSString.h.

NSStringEncodingConversionExternalRepresentation

Available in Mac OS X v10.5 and later.

Declared in NSString.h.

Special Considerations

These constants are available in Mac OS X v10.4; they are, however, differently named:

typedef enum {
 NSAllowLossyEncodingConversion = 1,
 NSExternalRepresentationEncodingConversion = 2
} NSStringEncodingConversionOptions;

You can use them on Mac OS X v10.4 if you define the symbols as extern constants.

Declared In
NSString.h

NSString Handling Exception Names
These constants define the names of exceptions raised if NSString cannot represent a string in a given
encoding, or parse a string as a property list.

extern NSString *NSParseErrorException;
extern NSString *NSCharacterConversionException;

Constants
NSCharacterConversionException

NSString raises an NSCharacterConversionException if a string cannot be represented in a
file-system or string encoding.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSParseErrorException
NSString raises an NSParseErrorException if a string cannot be parsed as a property list.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

Declared In
NSString.h

1618 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

NSStringEncoding
Type for string encoding.

typedef NSUInteger NSStringEncoding;

Discussion
See “String Encodings” (page 1619) for possible values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSString.h

String Encodings
The following constants are provided by NSString as possible string encodings.

enum {
 NSASCIIStringEncoding = 1,
 NSNEXTSTEPStringEncoding = 2,
 NSJapaneseEUCStringEncoding = 3,
 NSUTF8StringEncoding = 4,
 NSISOLatin1StringEncoding = 5,
 NSSymbolStringEncoding = 6,
 NSNonLossyASCIIStringEncoding = 7,
 NSShiftJISStringEncoding = 8,
 NSISOLatin2StringEncoding = 9,
 NSUnicodeStringEncoding = 10,
 NSWindowsCP1251StringEncoding = 11,
 NSWindowsCP1252StringEncoding = 12,
 NSWindowsCP1253StringEncoding = 13,
 NSWindowsCP1254StringEncoding = 14,
 NSWindowsCP1250StringEncoding = 15,
 NSISO2022JPStringEncoding = 21,
 NSMacOSRomanStringEncoding = 30,
 NSUTF16BigEndianStringEncoding = 0x90000100,
 NSUTF16LittleEndianStringEncoding = 0x94000100,
 NSUTF32StringEncoding = 0x8c000100,
 NSUTF32BigEndianStringEncoding = 0x98000100,
 NSUTF32LittleEndianStringEncoding = 0x9c000100,
 NSProprietaryStringEncoding = 65536
};

Constants
NSASCIIStringEncoding

Strict 7-bit ASCII encoding within 8-bit chars; ASCII values 0…127 only.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSISO2022JPStringEncoding
ISO 2022 Japanese encoding for email.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

Constants 1619
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

NSISOLatin1StringEncoding
8-bit ISO Latin 1 encoding.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSISOLatin2StringEncoding
8-bit ISO Latin 2 encoding.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSJapaneseEUCStringEncoding
8-bit EUC encoding for Japanese text.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSMacOSRomanStringEncoding
Classic Macintosh Roman encoding.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSNEXTSTEPStringEncoding
8-bit ASCII encoding with NEXTSTEP extensions.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSNonLossyASCIIStringEncoding
7-bit verbose ASCII to represent all Unicode characters.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSShiftJISStringEncoding
8-bit Shift-JIS encoding for Japanese text.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSSymbolStringEncoding
8-bit Adobe Symbol encoding vector.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSUTF8StringEncoding
An 8-bit representation of Unicode characters, suitable for transmission or storage by ASCII-based
systems.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSUnicodeStringEncoding
The canonical Unicode encoding for string objects.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

1620 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

NSWindowsCP1250StringEncoding
Microsoft Windows codepage 1250; equivalent to WinLatin2.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSWindowsCP1251StringEncoding
Microsoft Windows codepage 1251, encoding Cyrillic characters; equivalent to AdobeStandardCyrillic
font encoding.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSWindowsCP1252StringEncoding
Microsoft Windows codepage 1252; equivalent to WinLatin1.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSWindowsCP1253StringEncoding
Microsoft Windows codepage 1253, encoding Greek characters.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSWindowsCP1254StringEncoding
Microsoft Windows codepage 1254, encoding Turkish characters.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

NSUTF16BigEndianStringEncoding
NSUTF16StringEncoding encoding with explicit endianness specified.

Available in Mac OS X v10.5 and later.

Declared in NSString.h.

NSUTF16LittleEndianStringEncoding
NSUTF16StringEncoding encoding with explicit endianness specified.

Available in Mac OS X v10.5 and later.

Declared in NSString.h.

NSUTF32StringEncoding
32-bit UTF encoding.

Available in Mac OS X v10.5 and later.

Declared in NSString.h.

NSUTF32BigEndianStringEncoding
NSUTF32StringEncoding encoding with explicit endianness specified.

Available in Mac OS X v10.5 and later.

Declared in NSString.h.

NSUTF32LittleEndianStringEncoding
NSUTF32StringEncoding encoding with explicit endianness specified.

Available in Mac OS X v10.5 and later.

Declared in NSString.h.

Constants 1621
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

NSProprietaryStringEncoding
Installation-specific encoding.

Available in Mac OS X v10.0 and later.

Declared in NSString.h.

Discussion
These values represent the various character encodings supported by the NSString classes. This is an
incomplete list. Additional encodings are defined in Strings Programming Guide for Core Foundation (see
CFStringEncodingExt.h); these encodings can be used with NSStringby first passing the Core Foundation
encoding to the CFStringConvertEncodingToNSStringEncoding function.

Declared In
NSString.h

1622 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 139

NSString Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSTask.h

Companion guide Interacting with the Operating System

Related sample code Moriarity
MP3 Player

Overview

Using the NSTask class, your program can run another program as a subprocess and can monitor that
program’s execution. An NSTask object creates a separate executable entity; it differs from NSThread in
that it does not share memory space with the process that creates it.

A task operates within an environment defined by the current values for several items: the current directory,
standard input, standard output, standard error, and the values of any environment variables. By default, an
NSTask object inherits its environment from the process that launches it. If there are any values that should
be different for the task, for example, if the current directory should change, you must change the value
before you launch the task. A task’s environment cannot be changed while it is running.

An NSTask object can only be run once. Subsequent attempts to run the task raise an error.

Tasks

Creating and Initializing an NSTask Object

+ launchedTaskWithLaunchPath:arguments: (page 1625)
Creates and launches a task with a specified executable and arguments.

– init (page 1627)
Returns an initialized NSTask object with the environment of the current process.

Overview 1623
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

Returning Task Information

– arguments (page 1626)
Returns the arguments used when the receiver was launched.

– currentDirectoryPath (page 1626)
Returns the task’s current directory.

– environment (page 1626)
Returns a dictionary of variables for the environment from which the receiver was launched.

– launchPath (page 1628)
Returns the path of the receiver’s executable.

– processIdentifier (page 1629)
Returns the receiver’s process identifier.

– standardError (page 1633)
Returns the standard error file used by the receiver.

– standardInput (page 1633)
Returns the standard input file used by the receiver.

– standardOutput (page 1633)
Returns the standard output file used by the receiver.

Running and Stopping a Task

– interrupt (page 1627)
Sends an interrupt signal to the receiver and all of its subtasks.

– launch (page 1628)
Launches the task represented by the receiver.

– resume (page 1629)
Resumes execution of the receiver task that had previously been suspended with a suspend (page
1634) message.

– suspend (page 1634)
Suspends execution of the receiver task.

– terminate (page 1634)
Sends a terminate signal to the receiver and all of its subtasks.

– waitUntilExit (page 1635)
Block until the receiver is finished.

Querying the Task State

– isRunning (page 1628)
Returns whether the receiver is still running.

– terminationStatus (page 1635)
Returns the exit status returned by the receiver’s executable.

1624 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

Configuring an NSTask Object

– setArguments: (page 1629)
Sets the command arguments that should be used to launch the executable.

– setCurrentDirectoryPath: (page 1630)
Sets the current directory for the receiver.

– setEnvironment: (page 1630)
Sets the environment for the receiver.

– setLaunchPath: (page 1631)
Sets the receiver’s executable.

– setStandardError: (page 1631)
Sets the standard error for the receiver.

– setStandardInput: (page 1632)
Sets the standard input for the receiver.

– setStandardOutput: (page 1632)
Sets the standard output for the receiver.

Class Methods

launchedTaskWithLaunchPath:arguments:
Creates and launches a task with a specified executable and arguments.

+ (NSTask *)launchedTaskWithLaunchPath:(NSString *)path arguments:(NSArray
*)arguments

Parameters
path

The path to the executable.

arguments
An array of NSString objects that supplies the arguments to the task. If arguments is nil, an
NSInvalidArgumentException is raised.

Discussion
The task inherits its environment from the process that invokes this method.

The NSTask object converts both path and the strings in arguments to appropriate C-style strings (using
fileSystemRepresentation (page 1553)) before passing them to the task via argv[]) . The strings in
arguments do not undergo shell expansion, so you do not need to do special quoting, and shell variables,
such as $PWD, are not resolved.

Availability
Available in Mac OS X v10.0 and later.

See Also
– init (page 1627)

Class Methods 1625
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

Declared In
NSTask.h

Instance Methods

arguments
Returns the arguments used when the receiver was launched.

- (NSArray *)arguments

Return Value
An array of NSString objects containing the arguments used when the receiver was launched.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setArguments: (page 1629)

Declared In
NSTask.h

currentDirectoryPath
Returns the task’s current directory.

- (NSString *)currentDirectoryPath

Return Value
The task's current working directory.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCurrentDirectoryPath: (page 1630)

Declared In
NSTask.h

environment
Returns a dictionary of variables for the environment from which the receiver was launched.

- (NSDictionary *)environment

Return Value
A dictionary of variables for the environment from which the receiver was launched. The dictionary keys are
the environment variable names.

1626 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEnvironment: (page 1630)
– environment (page 1288) (NSProcessInfo)

Declared In
NSTask.h

init
Returns an initialized NSTask object with the environment of the current process.

- (id)init

Return Value
An initialized NSTask object with the environment of the current process.

Discussion
If you need to modify the environment of a task, use alloc and init, and then set up the environment before
launching the new task. Otherwise, just use the class method
launchedTaskWithLaunchPath:arguments: (page 1625) to create and run the task.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

interrupt
Sends an interrupt signal to the receiver and all of its subtasks.

- (void)interrupt

Discussion
If the task terminates as a result, which is the default behavior, an NSTaskDidTerminateNotification (page
1636) gets sent to the default notification center. This method has no effect if the receiver was already launched
and has already finished executing. If the receiver has not been launched yet, this method raises an
NSInvalidArgumentException.

It is not always possible to interrupt the receiver because it might be ignoring the interrupt signal. interrupt
sends SIGINT.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

Instance Methods 1627
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

isRunning
Returns whether the receiver is still running.

- (BOOL)isRunning

Return Value
YES if the receiver is still running, otherwise NO. NOmeans either the receiver could not run or it has terminated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– launch (page 1628)
– terminate (page 1634)
– waitUntilExit (page 1635)

Declared In
NSTask.h

launch
Launches the task represented by the receiver.

- (void)launch

Discussion
Raises an NSInvalidArgumentException if the launch path has not been set or is invalid or if it fails to
create a process.

Availability
Available in Mac OS X v10.0 and later.

See Also
– launchPath (page 1628)
– setLaunchPath: (page 1631)
– terminate (page 1634)
– waitUntilExit (page 1635)

Declared In
NSTask.h

launchPath
Returns the path of the receiver’s executable.

- (NSString *)launchPath

Return Value
The path of the receiver’s executable.

Availability
Available in Mac OS X v10.0 and later.

1628 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

See Also
+ launchedTaskWithLaunchPath:arguments: (page 1625)
– setLaunchPath: (page 1631)

Declared In
NSTask.h

processIdentifier
Returns the receiver’s process identifier.

- (int)processIdentifier

Return Value
The receiver’s process identifier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

resume
Resumes execution of the receiver task that had previously been suspended with a suspend (page 1634)
message.

- (BOOL)resume

Return Value
YES if the receiver was able to resume execution, NO otherwise.

Discussion
If multiple suspend messages were sent to the receiver, an equal number of resume messages must be sent
before the task resumes execution.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

setArguments:
Sets the command arguments that should be used to launch the executable.

- (void)setArguments:(NSArray *)arguments

Parameters
arguments

An array of NSString objects that supplies the arguments to the task. If arguments is nil, an
NSInvalidArgumentException is raised.

Instance Methods 1629
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

Discussion
The NSTask object converts both path and the strings in arguments to appropriate C-style strings (using
fileSystemRepresentation (page 1553)) before passing them to the task via argv[] . The strings in
arguments do not undergo shell expansion, so you do not need to do special quoting, and shell variables,
such as $PWD, are not resolved.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arguments (page 1626)

Declared In
NSTask.h

setCurrentDirectoryPath:
Sets the current directory for the receiver.

- (void)setCurrentDirectoryPath:(NSString *)path

Parameters
path

The current directory for the task.

Discussion
If this method isn’t used, the current directory is inherited from the process that created the receiver. This
method raises an NSInvalidArgumentException if the receiver has already been launched.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentDirectoryPath (page 1626)

Declared In
NSTask.h

setEnvironment:
Sets the environment for the receiver.

- (void)setEnvironment:(NSDictionary *)environmentDictionary

Parameters
environmentDictionary

A dictionary of environment variable values whose keys are the variable names.

Discussion
If this method isn’t used, the environment is inherited from the process that created the receiver. This method
raises an NSInvalidArgumentException if the receiver has already been launched.

Availability
Available in Mac OS X v10.0 and later.

1630 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

See Also
– environment (page 1626)

Declared In
NSTask.h

setLaunchPath:
Sets the receiver’s executable.

- (void)setLaunchPath:(NSString *)path

Parameters
path

The path to the executable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– launchPath (page 1628)

Declared In
NSTask.h

setStandardError:
Sets the standard error for the receiver.

- (void)setStandardError:(id)file

Parameters
file

The standard error for the receiver, which can be either an NSFileHandle or an NSPipe object.

Discussion
If file is an NSPipe object, launching the receiver automatically closes the write end of the pipe in the
current task. Don’t create a handle for the pipe and pass that as the argument, or the write end of the pipe
won’t be closed automatically.

If this method isn’t used, the standard error is inherited from the process that created the receiver. This
method raises an NSInvalidArgumentException if the receiver has already been launched.

Availability
Available in Mac OS X v10.0 and later.

See Also
– standardError (page 1633)

Declared In
NSTask.h

Instance Methods 1631
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

setStandardInput:
Sets the standard input for the receiver.

- (void)setStandardInput:(id)file

Parameters
file

The standard input for the receiver, which can be either an NSFileHandle or an NSPipe object.

Discussion
If file is an NSPipe object, launching the receiver automatically closes the read end of the pipe in the
current task. Don’t create a handle for the pipe and pass that as the argument, or the read end of the pipe
won’t be closed automatically.

If this method isn’t used, the standard input is inherited from the process that created the receiver. This
method raises an NSInvalidArgumentException if the receiver has already been launched.

Availability
Available in Mac OS X v10.0 and later.

See Also
– standardInput (page 1633)

Declared In
NSTask.h

setStandardOutput:
Sets the standard output for the receiver.

- (void)setStandardOutput:(id)file

Parameters
file

The standard output for the receiver, which can be either an NSFileHandle or an NSPipe object.

Discussion
If file is an NSPipe object, launching the receiver automatically closes the write end of the pipe in the
current task. Don’t create a handle for the pipe and pass that as the argument, or the write end of the pipe
won’t be closed automatically.

If this method isn’t used, the standard output is inherited from the process that created the receiver. This
method raises an NSInvalidArgumentException if the receiver has already been launched.

Availability
Available in Mac OS X v10.0 and later.

See Also
– standardOutput (page 1633)

Declared In
NSTask.h

1632 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

standardError
Returns the standard error file used by the receiver.

- (id)standardError

Return Value
The standard error file used by the receiver.

Discussion
Standard error is where all diagnostic messages are sent. The object returned is either an NSFileHandle or
an NSPipe instance, depending on what type of object was passed to setStandardError: (page 1631).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setStandardError: (page 1631)

Declared In
NSTask.h

standardInput
Returns the standard input file used by the receiver.

- (id)standardInput

Return Value
The standard input file used by the receiver.

Discussion
Standard input is where the receiver takes its input from unless otherwise specified. The object returned is
either an NSFileHandle or an NSPipe instance, depending on what type of object was passed to the
setStandardInput: (page 1632) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setStandardInput: (page 1632)

Declared In
NSTask.h

standardOutput
Returns the standard output file used by the receiver.

- (id)standardOutput

Return Value
The standard output file used by the receiver.

Instance Methods 1633
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

Discussion
Standard output is where the receiver displays its output. The object returned is either an NSFileHandle
or an NSPipe instance, depending on what type of object was passed to the setStandardOutput: (page
1632) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setStandardOutput: (page 1632)

Declared In
NSTask.h

suspend
Suspends execution of the receiver task.

- (BOOL)suspend

Return Value
YES if the receiver was successfully suspended, NO otherwise.

Discussion
Multiple suspend messages can be sent, but they must be balanced with an equal number of resume (page
1629) messages before the task resumes execution.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

terminate
Sends a terminate signal to the receiver and all of its subtasks.

- (void)terminate

Discussion
If the task terminates as a result, which is the default behavior, an NSTaskDidTerminateNotification (page
1636) gets sent to the default notification center. This method has no effect if the receiver was already launched
and has already finished executing. If the receiver has not been launched yet, this method raises an
NSInvalidArgumentException.

It is not always possible to terminate the receiver because it might be ignoring the terminate signal. terminate
sends SIGTERM.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ launchedTaskWithLaunchPath:arguments: (page 1625)

1634 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

– launch (page 1628)
– terminationStatus (page 1635)
– waitUntilExit (page 1635)

Declared In
NSTask.h

terminationStatus
Returns the exit status returned by the receiver’s executable.

- (int)terminationStatus

Return Value
The exit status returned by the receiver’s executable.

Discussion
Each task defines and documents how its return value should be interpreted. For example, many commands
return 0 if they complete successfully or an error code if they don’t. You’ll need to look at the documentation
for that task to learn what values it returns under what circumstances.

This method raises an NSInvalidArgumentException if the receiver is still running. Verify that the receiver
is not running before you use it.

if (![aTask isRunning]) {
 int status = [aTask terminationStatus];
 if (status == ATASK_SUCCESS_VALUE)
 NSLog(@"Task succeeded.");
 else
 NSLog(@"Task failed.");
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– terminate (page 1634)
– waitUntilExit (page 1635)

Declared In
NSTask.h

waitUntilExit
Block until the receiver is finished.

- (void)waitUntilExit

Discussion
This method first checks to see if the receiver is still running using isRunning (page 1628). Then it polls the
current run loop using NSDefaultRunLoopMode until the task completes.

[aTask launch];

Instance Methods 1635
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

[aTask waitUntilExit];
int status = [aTask terminationStatus];

if (status == ATASK_SUCCESS_VALUE)
 NSLog(@"Task succeeded.");
else
 NSLog(@"Task failed.");

Availability
Available in Mac OS X v10.0 and later.

See Also
– launch (page 1628)
– terminate (page 1634)

Declared In
NSTask.h

Notifications

NSTaskDidTerminateNotification
Posted when the task has stopped execution. This notification can be posted either when the task has exited
normally or as a result of terminate (page 1634) being sent to the NSTask object. If the NSTask object gets
released, however, this notification will not get sent, as the port the message would have been sent on was
released as part of the task release. The observer method can use terminationStatus (page 1635) to
determine why the task died. See “Ending an NSTask” for an example.

The notification object is the NSTask object that was terminated. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTask.h

1636 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTask Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSThread.h

Companion guide Threading Programming Guide

Related sample code ExtractMovieAudioToAIFF
QTAudioExtractionPanel
SimpleThreads
TrivialThreads
Vertex Optimization

Overview

An NSThread object controls a thread of execution. Use this class when you want to have an Objective-C
method run in its own thread of execution. Threads are especially useful when you need to perform a lengthy
task, but don’t want it to block the execution of the rest of the application. In particular, you can use threads
to avoid blocking the main thread of the application, which handles user interface and event-related actions.
Threads can also be used to divide a large job into several smaller jobs, which can lead to performance
increases on multi-core computers.

Prior to Mac OS X v10.5, the only way to start a new thread is to use the
detachNewThreadSelector:toTarget:withObject: (page 1640) method. In Mac OS X v10.5 and later,
you can create instances of NSThread and start them at a later time using the start (page 1650) method.

In Mac OS Xv10.5, the NSThread class supports semantics similar to those of NSOperation for monitoring
the runtime condition of a thread. You can use these semantics to cancel the execution of a thread or
determine if the thread is still executing or has finished its task. Canceling a thread requires support from
your thread code; see the description for cancel (page 1645) for more information.

Subclassing Notes

In Mac OS X v10.5 and later, you can subclass NSThread and override the main method to implement your
thread’s main entry point. If you override main, you do not need to invoke the inherited behavior by calling
super.

Overview 1637
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Tasks

Initializing an NSThread Object

– init (page 1645)
Returns an initialized NSThread object.

– initWithTarget:selector:object: (page 1646)
Returns an NSThread object initialized with the given arguments.

Starting a Thread

+ detachNewThreadSelector:toTarget:withObject: (page 1640)
Detaches a new thread and uses the specified selector as the thread entry point.

– start (page 1650)
Starts the receiver.

– main (page 1648)
The main entry point routine for the thread.

Stopping a Thread

+ sleepUntilDate: (page 1644)
Blocks the current thread until the time specified.

+ sleepForTimeInterval: (page 1643)
Sleeps the thread for a given time interval.

+ exit (page 1641)
Terminates the current thread.

– cancel (page 1645)
Changes the cancelled state of the receiver to indicate that it should exit.

Determining the Thread’s Execution State

– isExecuting (page 1647)
Returns a Boolean value that indicates whether the receiver is executing.

– isFinished (page 1647)
Returns a Boolean value that indicates whether the receiver has finished execution.

– isCancelled (page 1647)
Returns a Boolean value that indicates whether the receiver is cancelled.

1638 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Working with the Main Thread

+ isMainThread (page 1642)
Returns a Boolean value that indicates whether the current thread is the main thread.

– isMainThread (page 1648)
Returns a Boolean value that indicates whether the receiver is the main thread.

+ mainThread (page 1642)
Returns the NSThread object representing the main thread.

Querying the Environment

+ isMultiThreaded (page 1642)
Returns whether the application is multithreaded.

+ currentThread (page 1640)
Returns the thread object representing the current thread of execution.

+ callStackReturnAddresses (page 1640)
Returns an array containing the call stack return addresses.

Working with Thread Properties

– threadDictionary (page 1650)
Returns the thread object's dictionary.

– name (page 1648)
Returns the name of the receiver.

– setName: (page 1649)
Sets the name of the receiver.

– stackSize (page 1650)
Returns the stack size of the receiver.

– setStackSize: (page 1649)
Sets the stack size of the receiver.

Working with Thread Priorities

+ threadPriority (page 1644)
Returns the current thread’s priority.

+ setThreadPriority: (page 1643)
Sets the current thread’s priority.

Tasks 1639
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Class Methods

callStackReturnAddresses
Returns an array containing the call stack return addresses.

+ (NSArray *)callStackReturnAddresses

Return Value
An array containing the call stack return addresses. This value is nil by default.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSThread.h

currentThread
Returns the thread object representing the current thread of execution.

+ (NSThread *)currentThread

Return Value
A thread object representing the current thread of execution.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ detachNewThreadSelector:toTarget:withObject: (page 1640)

Declared In
NSThread.h

detachNewThreadSelector:toTarget:withObject:
Detaches a new thread and uses the specified selector as the thread entry point.

+ (void)detachNewThreadSelector:(SEL)aSelector toTarget:(id)aTarget
withObject:(id)anArgument

Parameters
aSelector

The selector for the message to send to the target. This selector must take only one argument and
must not have a return value.

aTarget
The object that will receive the message aSelector on the new thread.

anArgument
The single argument passed to the target. May be nil.

1640 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Discussion
For non garbage-collected applications, the method aSelector is responsible for setting up an autorelease
pool for the newly detached thread and freeing that pool before it exits. Garbage-collected applications do
not need to create an autorelease pool.

The objects aTarget and anArgument are retained during the execution of the detached thread, then
released. The detached thread is exited (using the exit (page 1641) class method) as soon as aTarget has
completed executing the aSelector method.

If this thread is the first thread detached in the application, this method posts the
NSWillBecomeMultiThreadedNotification (page 1651) with objectnil to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentThread (page 1640)
+ isMultiThreaded (page 1642)
– start (page 1650)

Related Sample Code
ExtractMovieAudioToAIFF
MassiveImage
OpenGLCaptureToMovie
QTAudioExtractionPanel
SharedMemory

Declared In
NSThread.h

exit
Terminates the current thread.

+ (void)exit

Discussion
This method uses the currentThread (page 1640) class method to access the current thread. Before exiting
the thread, this method posts the NSThreadWillExitNotification (page 1651) with the thread being
exited to the default notification center. Because notifications are delivered synchronously, all observers of
NSThreadWillExitNotification (page 1651) are guaranteed to receive the notification before the thread
exits.

Invoking this method should be avoided as it does not give your thread a chance to clean up any resources
it allocated during its execution.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentThread (page 1640)
+ sleepUntilDate: (page 1644)

Class Methods 1641
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Related Sample Code
SimpleThreads
Vertex Optimization

Declared In
NSThread.h

isMainThread
Returns a Boolean value that indicates whether the current thread is the main thread.

+ (BOOL)isMainThread

Return Value
YES if the current thread is the main thread, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ mainThread (page 1642)

Declared In
NSThread.h

isMultiThreaded
Returns whether the application is multithreaded.

+ (BOOL)isMultiThreaded

Return Value
YES if the application is multithreaded, NO otherwise.

Discussion
An application is considered multithreaded if a thread was ever detached from the main thread using either
detachNewThreadSelector:toTarget:withObject: (page 1640) orstart (page 1650). If you detached a
thread in your application using a non-Cocoa API, such as the POSIX or Multiprocessing Services APIs, this
method could still return NO. The detached thread does not have to be currently running for the application
to be considered multithreaded—this method only indicates whether a single thread has been spawned.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSThread.h

mainThread
Returns the NSThread object representing the main thread.

+ (NSThread *)mainThread

1642 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Return Value
The NSThread object representing the main thread.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isMainThread (page 1648)

Declared In
NSThread.h

setThreadPriority:
Sets the current thread’s priority.

+ (BOOL)setThreadPriority:(double)priority

Parameters
priority

The new priority, specified with a floating point number from 0.0 to 1.0, where 1.0 is highest priority.

Return Value
YES if the priority assignment succeeded, NO otherwise.

Discussion
The priorities in this range are mapped to the operating system's priority values.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ threadPriority (page 1644)

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
Vertex Optimization

Declared In
NSThread.h

sleepForTimeInterval:
Sleeps the thread for a given time interval.

+ (void)sleepForTimeInterval:(NSTimeInterval)ti

Class Methods 1643
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Parameters
ti

The duration of the sleep.

Discussion
No run loop processing occurs while the thread is blocked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSThread.h

sleepUntilDate:
Blocks the current thread until the time specified.

+ (void)sleepUntilDate:(NSDate *)aDate

Parameters
aDate

The time at which to resume processing.

Discussion
No run loop processing occurs while the thread is blocked.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentThread (page 1640)
+ exit (page 1641)

Related Sample Code
Core Data HTML Store
SharedMemory
SimpleThreads
TrivialThreads

Declared In
NSThread.h

threadPriority
Returns the current thread’s priority.

+ (double)threadPriority

Return Value
The current thread’s priority, which is specified by a floating point number from 0.0 to 1.0, where 1.0 is highest
priority.

1644 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Discussion
The priorities in this range are mapped to the operating system's priority values. A “typical” thread priority
might be 0.5, but because the priority is determined by the kernel, there is no guarantee what this value
actually will be.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ setThreadPriority: (page 1643)

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
NSThread.h

Instance Methods

cancel
Changes the cancelled state of the receiver to indicate that it should exit.

- (void)cancel

Discussion
The semantics of this method are the same as those used for the NSOperation object. This method sets
state information in the receiver that is then reflected by the isCancelled method. Threads that support
cancellation should periodically call the isCancelled method to determine if the thread has in fact been
cancelled, and exit if it has been.

For more information about cancellation and operation objects, see NSOperation Class Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isCancelled (page 1647)

Declared In
NSThread.h

init
Returns an initialized NSThread object.

- (id)init

Instance Methods 1645
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Return Value
An initialized NSThread object.

Discussion
This is the designated initializer for NSThread.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithTarget:selector:object: (page 1646)
– start (page 1650)

Declared In
NSThread.h

initWithTarget:selector:object:
Returns an NSThread object initialized with the given arguments.

- (id)initWithTarget:(id)target
selector:(SEL)selector
object:(id)argument

Parameters
target

The object to which the message specified by selector is sent.

selector
The selector for the message to send to target. This selector must take only one argument and must
not have a return value.

argument
The single argument passed to the target. May be nil.

Return Value
An NSThread object initialized with the given arguments.

Discussion
For non garbage-collected applications, the method selector is responsible for setting up an autorelease
pool for the newly detached thread and freeing that pool before it exits. Garbage-collected applications do
not need to create an autorelease pool.

The objects target and argument are retained during the execution of the detached thread. They are
released when the thread finally exits.

Availability
Available in Mac OS X v10.5 and later.

See Also
– init (page 1645)
– start (page 1650)

Declared In
NSThread.h

1646 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

isCancelled
Returns a Boolean value that indicates whether the receiver is cancelled.

- (BOOL)isCancelled

Return Value
YES if the receiver has been cancelled, otherwise NO.

Discussion
If your thread supports cancellation, it should call this method periodically and exit if it ever returns YES.

Availability
Available in Mac OS X v10.5 and later.

See Also
– cancel (page 1645)
– isExecuting (page 1647)
– isFinished (page 1647)

Declared In
NSThread.h

isExecuting
Returns a Boolean value that indicates whether the receiver is executing.

- (BOOL)isExecuting

Return Value
YES if the receiver is executing, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isCancelled (page 1647)
– isFinished (page 1647)

Declared In
NSThread.h

isFinished
Returns a Boolean value that indicates whether the receiver has finished execution.

- (BOOL)isFinished

Return Value
YES if the receiver has finished execution, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 1647
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

See Also
– isCancelled (page 1647)
– isExecuting (page 1647)

Declared In
NSThread.h

isMainThread
Returns a Boolean value that indicates whether the receiver is the main thread.

- (BOOL)isMainThread

Return Value
YES if the receiver is the main thread, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSThread.h

main
The main entry point routine for the thread.

- (void)main

Discussion
The default implementation of this method takes the target and selector used to initialize the receiver and
invokes the selector on the specified target. If you subclass NSThread, you can override this method and
use it to implement the main body of your thread instead. If you do so, you do not need to invoke super.

You should never invoke this method directly. You should always start your thread by invoking the start
method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– start (page 1650)

Declared In
NSThread.h

name
Returns the name of the receiver.

- (NSString *)name

1648 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Return Value
The name of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setName: (page 1649)

Declared In
NSThread.h

setName:
Sets the name of the receiver.

- (void)setName:(NSString *)n

Parameters
n

The name for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– name (page 1648)

Declared In
NSThread.h

setStackSize:
Sets the stack size of the receiver.

- (void)setStackSize:(NSUInteger)s

Parameters
s

The stack size for the receiver. This value must be a multiple of 4KB.

Discussion
You must call this method before starting your thread. Setting the stack size after the thread has started
changes the attribute size (which is reflected by the stackSize (page 1650) method), but it does not affect
the actual number of pages set aside for the thread.

Availability
Available in Mac OS X v10.5 and later.

See Also
– stackSize (page 1650)

Declared In
NSThread.h

Instance Methods 1649
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

stackSize
Returns the stack size of the receiver.

- (NSUInteger)stackSize

Return Value
The stack size of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setStackSize: (page 1649)

Declared In
NSThread.h

start
Starts the receiver.

- (void)start

Discussion
This method spawns the new thread and invokes the receiver’s main method on the new thread. If you
initialized the receiver with a target and selector, the default mainmethod invokes that selector automatically.

If this thread is the first thread detached in the application, this method posts the
NSWillBecomeMultiThreadedNotification (page 1651) with objectnil to the default notification center.

Availability
Available in Mac OS X v10.5 and later.

See Also
– init (page 1645)
– initWithTarget:selector:object: (page 1646)
– main (page 1648)

Declared In
NSThread.h

threadDictionary
Returns the thread object's dictionary.

- (NSMutableDictionary *)threadDictionary

Return Value
The thread object's dictionary.

1650 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Discussion
You can use the returned dictionary to store thread-specific data. The thread dictionary is not used during
any manipulations of the NSThread object—it is simply a place where you can store any interesting data.
For example, Foundation uses it to store the thread’s default NSConnection and NSAssertionHandler
instances. You may define your own keys for the dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSThread.h

Notifications

NSDidBecomeSingleThreadedNotification
Not implemented.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSThread.h

NSThreadWillExitNotification
An NSThread object posts this notification when it receives the exit (page 1641) message, before the thread
exits. Observer methods invoked to receive this notification execute in the exiting thread, before it exits.

The notification object is the exiting NSThread object. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSThread.h

NSWillBecomeMultiThreadedNotification
Posted when the first thread is detached from the current thread. The NSThread class posts this notification
at most once—the first time a thread is detached using
detachNewThreadSelector:toTarget:withObject: (page 1640) or the start (page 1650) method.
Subsequent invocations of those methods do not post this notification. Observers of this notification have
their notification method invoked in the main thread, not the new thread. The observer notification methods
always execute before the new thread begins executing.

This notification does not contain a notification object or a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Notifications 1651
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Declared In
NSThread.h

1652 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 141

NSThread Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSTimer.h

Companion guides Timer Programming Topics for Cocoa
Run Loops

Related sample code FunkyOverlayWindow
ImageClient
NSOperationSample
ThreadsImporter
ThreadsImportMovie

Overview

NSTimer creates timer objects or, more simply, timers. A timer waits until a certain time interval has elapsed
and then fires, sending a specified message to a specified object. For example, you could create an NSTimer
object that sends a message to a window, telling it to update itself after a certain time interval.

Timers work in conjunction with run loops. To use a timer effectively, you should be aware of how run loops
operate—see NSRunLoop and Run Loops. Note in particular that run loops retain their timers, so you can
release a timer after you have added it to a run loop.

A timer is not a real-time mechanism; it fires only when one of the run loop modes to which the timer has
been added is running and able to check if the timer’s firing time has passed. Because of the various input
sources a typical run loop manages, the effective resolution of the time interval for a timer is limited to on
the order of 50-100 milliseconds. If a timer’s firing time occurs while the run loop is in a mode that is not
monitoring the timer or during a long callout, the timer does not fire until the next time the run loop checks
the timer. Therefore, the actual time at which the timer fires potentially can be a significant period of time
after the scheduled firing time.

A repeating timer reschedules itself based on the scheduled firing time, not the actual firing time. For example,
if a timer is scheduled to fire at a particular time and every 5 seconds after that, the scheduled firing time
will always fall on the original 5 second time intervals, even if the actual firing time gets delayed. If the firing
time is delayed so far that it passes one or more of the scheduled firing times, the timer is fired only once
for that time period; the timer is then rescheduled, after firing, for the next scheduled firing time in the future.

Overview 1653
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTimer Class Reference

Each run loop timer can be registered in only one run loop at a time, although it can be added to multiple
run loop modes within that run loop.

There are three ways to create a timer. The
scheduledTimerWithTimeInterval:invocation:repeats: (page 1655) and
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: (page 1656) class methods
automatically add the new timer to the current NSRunLoop object in the default mode
(NSDefaultRunLoopMode). The timerWithTimeInterval:invocation:repeats: (page 1657) and
timerWithTimeInterval:target:selector:userInfo:repeats: (page 1657) class methods create
timers that you may add to a run loop at a later time by sending the message addTimer:forMode: (page
1333) to the NSRunLoop object. Finally, you can allocate the timer directly and initialize it with
initWithFireDate:interval:target:selector:userInfo:repeats: (page 1659), which allows you
to specify both an initial fire date and a repeating interval. If you specify that the timer should repeat, it
automatically reschedules itself after it fires. If you specify that the timer should not repeat, it is automatically
invalidated after it fires.

To request the removal of a timer from an NSRunLoop object, send the timer the invalidate (page 1660)
message from the same thread on which the timer was installed. This message immediately disables the
timer, so it no longer affects the NSRunLoop object. The run loop removes and releases the timer, either just
before the invalidate (page 1660) method returns or at some later point.

NSTimer is “toll-free bridged” with its Core Foundation counterpart, CFRunLoopTimer Reference. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSTimer * parameter, you can pass a CFRunLoopTimerRef,
and in a function where you see a CFRunLoopTimerRef parameter, you can pass an NSTimer instance (you
cast one type to the other to suppress compiler warnings). See Interchangeable Data Types for more
information on toll-free bridging.

Tasks

Creating a Timer

+ scheduledTimerWithTimeInterval:invocation:repeats: (page 1655)
Returns a new NSTimer object, scheduled with the current NSRunLoop object in the default mode.

+ scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: (page 1656)
Returns a new NSTimer object, scheduled the current NSRunLoop object in the default mode.

+ timerWithTimeInterval:invocation:repeats: (page 1657)
Returns a new NSTimer that, when added to a run loop, will fire after a given number of seconds.

+ timerWithTimeInterval:target:selector:userInfo:repeats: (page 1657)
Returns a new NSTimer that, when added to a run loop, will fire after a specified number of seconds.

– initWithFireDate:interval:target:selector:userInfo:repeats: (page 1659)
Initializes a new NSTimer that, when added to a run loop, will fire at a given date.

Firing a Timer

– fire (page 1658)
Causes the receiver’s message to be sent to its target.

1654 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTimer Class Reference

Stopping a Timer

– invalidate (page 1660)
Stops the receiver from ever firing again and requests its removal from its NSRunLoop object.

Information About a Timer

– isValid (page 1661)
Returns a Boolean value that indicates whether the receiver is currently valid.

– fireDate (page 1659)
Returns the date at which the receiver will fire.

– setFireDate: (page 1661)
Resets the receiver to fire next at a given date.

– timeInterval (page 1661)
Returns the receiver’s time interval.

– userInfo (page 1661)
Returns the receiver's userInfo object.

Class Methods

scheduledTimerWithTimeInterval:invocation:repeats:
Returns a new NSTimer object, scheduled with the current NSRunLoop object in the default mode.

+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)seconds
invocation:(NSInvocation *)invocation repeats:(BOOL)repeats

Parameters
seconds

The number of seconds between firings of the timer.

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval.

invocation
The invocation to use when the timer fires.

The timer instructs the invocation object to retain its arguments.

repeats
If YES, the timer will repeatedly reschedule itself until invalidated. If NO, the timer will be invalidated
after it fires.

Return Value
A new NSTimer object, configured according to the specified parameters.

Discussion
After seconds seconds have elapsed, the timer fires, invoking invocation.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 1655
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTimer Class Reference

Declared In
NSTimer.h

scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:
Returns a new NSTimer object, scheduled the current NSRunLoop object in the default mode.

+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)seconds
target:(id)target selector:(SEL)aSelector userInfo:(id)userInfo
repeats:(BOOL)repeats

Parameters
seconds

The number of seconds between firings of the timer.

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval.

target
The object to which to send the message specified by aSelector when the timer fires.

aSelector
The message to send to target when the timer fires.

The selector must have the following signature:

- (void)timerFireMethod:(NSTimer*)theTimer

The timer passes itself as the argument to this method.

userInfo
The user info the new timer.

This parameter may be nil.

repeats
If YES, the timer will repeatedly reschedule itself until invalidated. If NO, the timer will be invalidated
after it fires.

Return Value
A new NSTimer object, configured according to the specified parameters.

Discussion
After seconds seconds have elapsed, the timer fires, sending the message aSelector to target.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Draw Pixels
FunkyOverlayWindow
ImageClient
TextureRange
UIElementInspector

Declared In
NSTimer.h

1656 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTimer Class Reference

timerWithTimeInterval:invocation:repeats:
Returns a new NSTimer that, when added to a run loop, will fire after a given number of seconds.

+ (NSTimer *)timerWithTimeInterval:(NSTimeInterval)seconds invocation:(NSInvocation
 *)invocation repeats:(BOOL)repeats

Parameters
seconds

The number of seconds between firings of the timer.

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval.

invocation
The invocation to use when the timer fires.

The timer instructs the invocation object to retain its arguments.

repeats
If YES, the timer will repeatedly reschedule itself until invalidated. If NO, the timer will be invalidated
after it fires.

Return Value
A new NSTimer object, configured according to the specified parameters.

Discussion
You must add the new timer to a run loop, using addTimer:forMode: (page 1333). Then, after seconds have
elapsed, the timer fires, invoking invocation. (If the timer is configured to repeat, there is no need to
subsequently re-add the timer to the run loop.)

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimer.h

timerWithTimeInterval:target:selector:userInfo:repeats:
Returns a new NSTimer that, when added to a run loop, will fire after a specified number of seconds.

+ (NSTimer *)timerWithTimeInterval:(NSTimeInterval)seconds target:(id)target
selector:(SEL)aSelector userInfo:(id)userInfo repeats:(BOOL)repeats

Parameters
seconds

The number of seconds between firings of the timer.

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval.

target
The object to which to send the message specified by aSelector when the timer fires.

aSelector
The message to send to target when the timer fires.

The selector must have the following signature:

- (void)timerFireMethod:(NSTimer*)theTimer

The timer passes itself as the argument to this method.

Class Methods 1657
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTimer Class Reference

userInfo
The user info for the new timer.

This parameter may be nil.

repeats
If YES, the timer will repeatedly reschedule itself until invalidated. If NO, the timer will be invalidated
after it fires.

Return Value
A new NSTimer object, configured according to the specified parameters.

Discussion
You must add the new timer to a run loop, using addTimer:forMode: (page 1333). Then, after seconds
seconds have elapsed, the timer fires, sending the message aSelector to target. (If the timer is configured
to repeat, there is no need to subsequently re-add the timer to the run loop.)

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLChildWindowDemo
NSGLImage
Quartz Composer QCTV
Quartz Composer Texture
SillyFrequencyLevels

Declared In
NSTimer.h

Instance Methods

fire
Causes the receiver’s message to be sent to its target.

- (void)fire

Discussion
You can use this method to fire a repeating timer without interrupting its regular firing schedule.

If the timer is non-repeating, it is automatically invalidated after firing, even if its scheduled fire date has not
arrived.

Availability
Available in Mac OS X v10.0 and later.

See Also
– invalidate (page 1660)

Declared In
NSTimer.h

1658 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTimer Class Reference

fireDate
Returns the date at which the receiver will fire.

- (NSDate *)fireDate

Return Value
The date at which the receiver will fire. If the timer is no longer valid, this method returns the last date at
which the timer fired.

Discussion
Use isValid (page 1661) to verify that the timer is valid.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFireDate: (page 1661)

Declared In
NSTimer.h

initWithFireDate:interval:target:selector:userInfo:repeats:
Initializes a new NSTimer that, when added to a run loop, will fire at a given date.

- (id)initWithFireDate:(NSDate *)date interval:(NSTimeInterval)seconds
target:(id)target selector:(SEL)aSelector userInfo:(id)userInfo
repeats:(BOOL)repeats

Parameters
date

The time at which the timer should first fire.

seconds
The number of seconds between firings of the timer.

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval.

target
The object to which to send the message specified by aSelector when the timer fires.

aSelector
The message to send to target when the timer fires.

The selector must have the following signature:

- (void)timerFireMethod:(NSTimer*)theTimer

The timer passes itself as the argument to this method.

userInfo
The user info for the new timer.

This parameter may be nil.

repeats
If YES, the timer will repeatedly reschedule itself until invalidated. If NO, the timer will be invalidated
after it fires.

Instance Methods 1659
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTimer Class Reference

Return Value
The receiver, initialized such that, when added to a run loop, it will fire at date and then, if repeats is YES,
every seconds after that.

Discussion
You must add the new timer to a run loop, using addTimer:forMode: (page 1333). Upon firing, the timer
sends the message aSelector to target. (If the timer is configured to repeat, there is no need to
subsequently re-add the timer to the run loop.)

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
WhackedTV

Declared In
NSTimer.h

invalidate
Stops the receiver from ever firing again and requests its removal from its NSRunLoop object.

- (void)invalidate

Discussion
This is the only way to remove a timer from an NSRunLoop object. The NSRunLoop object removes and
releases the timer, either just before the invalidate (page 1660) method returns or at some later point.

If it was configured with a target and user info, the receiver releases its references to the them at the point
of invalidation.

Special Considerations

You must send this message from the thread on which the timer was installed. If you send this message from
another thread, the input source associated with the timer may not be removed from its run loop, which
could prevent the thread from exiting properly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fire (page 1658)

Related Sample Code
FunkyOverlayWindow
LiveVideoMixer2
Mountains
NSOperationSample
WhackedTV

Declared In
NSTimer.h

1660 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTimer Class Reference

isValid
Returns a Boolean value that indicates whether the receiver is currently valid.

- (BOOL)isValid

Return Value
YES if the receiver is currently valid, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimer.h

setFireDate:
Resets the receiver to fire next at a given date.

- (void)setFireDate:(NSDate *)date

Parameters
date

The date at which to fire the receiver.

Availability
Available in Mac OS X v10.2 and later.

See Also
– fireDate (page 1659)

Declared In
NSTimer.h

timeInterval
Returns the receiver’s time interval.

- (NSTimeInterval)timeInterval

Return Value
The receiver’s time interval. If the receiver is a non-repeating timer, returns 0 (even if a time interval was set).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimer.h

userInfo
Returns the receiver's userInfo object.

Instance Methods 1661
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTimer Class Reference

- (id)userInfo

Return Value
The receiver's userInfo object.

Discussion
Do not invoke this method after the timer is invalidated. Use isValid (page 1661) to test whether the timer
is valid.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: (page 1656)
+ timerWithTimeInterval:target:selector:userInfo:repeats: (page 1657)
– invalidate (page 1660)

Declared In
NSTimer.h

1662 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTimer Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSTimeZone.h

Companion guide Date and Time Programming Guide for Cocoa

Overview

NSTimeZone is an abstract class that defines the behavior of time zone objects. Time zone objects represent
geopolitical regions. Consequently, these objects have names for these regions. Time zone objects also
represent a temporal offset, either plus or minus, from Greenwich Mean Time (GMT) and an abbreviation
(such as PST for Pacific Standard Time).

NSTimeZone provides several class methods to get time zone objects: timeZoneWithName: (page 1670),
timeZoneWithName:data: (page 1670), timeZoneWithAbbreviation: (page 1669), and
timeZoneForSecondsFromGMT: (page 1669). The class also permits you to set the default time zone within
your application (setDefaultTimeZone: (page 1668)). You can access this default time zone at any time with
thedefaultTimeZone (page 1666) class method, and with thelocalTimeZone (page 1667) class method, you
can get a relative time zone object that decodes itself to become the default time zone for any locale in
which it finds itself.

Cocoa does not provide any API to change the time zone of the computer, or of other applications.

Some NSCalendarDate methods return date objects that are automatically bound to time zone objects.
These date objects use the functionality of NSTimeZone to adjust dates for the proper locale. Unless you
specify otherwise, objects returned from NSCalendarDate are bound to the default time zone for the current
locale.

Note that, strictly, time zone database entries such as “America/Los_Angeles” are IDs not names. An example
of a time zone name is “Pacific Daylight Time”. Although many NSTimeZone method names include the
word “name”, they refer to IDs.

NSTimeZone is “toll-free bridged” with its Core Foundation counterpart, CFTimeZone Reference. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSTimeZone * parameter, you can pass a CFTimeZoneRef,

Overview 1663
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

and in a function where you see a CFTimeZoneRef parameter, you can pass an NSTimeZone instance (you
cast one type to the other to suppress compiler warnings). See Interchangeable Data Types for more
information on toll-free bridging.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

Tasks

Creating and Initializing Time Zone Objects

+ timeZoneWithAbbreviation: (page 1669)
Returns the time zone object identified by a given abbreviation.

+ timeZoneWithName: (page 1670)
Returns the time zone object identified by a given ID.

+ timeZoneWithName:data: (page 1670)
Returns the time zone with a given ID whose data has been initialized using given data,

+ timeZoneForSecondsFromGMT: (page 1669)
Returns a time zone object offset from Greenwich Mean Time by a given number of seconds.

– initWithName: (page 1673)
Returns a time zone initialized with a given ID.

– initWithName:data: (page 1674)
Initializes a time zone with a given ID and time zone data.

Working with System Time Zones

+ localTimeZone (page 1667)
Returns an object that forwards all messages to the default time zone for the current application.

+ defaultTimeZone (page 1666)
Returns the default time zone for the current application.

+ setDefaultTimeZone: (page 1668)
Sets the default time zone for the current application to a given time zone.

+ resetSystemTimeZone (page 1668)
Resets the system time zone object cached by the application, if any.

1664 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

+ systemTimeZone (page 1668)
Returns the time zone currently used by the system.

Getting Time Zone Information

+ abbreviationDictionary (page 1666)
Returns a dictionary holding the mappings of time zone abbreviations to time zone names.

+ knownTimeZoneNames (page 1667)
Returns an array of strings listing the IDs of all the time zones known to the system.

Getting Information About a Specific Time Zone

– abbreviation (page 1671)
Returns the abbreviation for the receiver.

– abbreviationForDate: (page 1671)
Returns the abbreviation for the receiver at a given date.

– name (page 1676)
Returns the geopolitical region ID that identifies the receiver.

– secondsFromGMT (page 1677)
Returns the current difference in seconds between the receiver and Greenwich Mean Time.

– secondsFromGMTForDate: (page 1677)
Returns the difference in seconds between the receiver and Greenwich Mean Time at a given date.

– data (page 1672)
Returns the data that stores the information used by the receiver.

Comparing Time Zones

– isEqualToTimeZone: (page 1675)
Returns a Boolean value that indicates whether the receiver has the same name and data as another
given time zone.

Describing a Time Zone

– description (page 1673)
Returns the description of the receiver.

– localizedName:locale: (page 1675)
Returns the name of the receiver localized for a given locale.

Getting Information About Daylight Saving

– isDaylightSavingTime (page 1674)
Returns a Boolean value that indicates whether the receiver is currently using daylight saving time.

Tasks 1665
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

– daylightSavingTimeOffset (page 1672)
Returns the current daylight saving time offset of the receiver.

– isDaylightSavingTimeForDate: (page 1675)
Returns a Boolean value that indicates whether the receiver uses daylight savings time at a given
date.

– daylightSavingTimeOffsetForDate: (page 1673)
Returns the daylight saving time offset for a given date.

– nextDaylightSavingTimeTransition (page 1676)
Returns the date of the next daylight saving time transition for the receiver.

– nextDaylightSavingTimeTransitionAfterDate: (page 1677)
Returns the next daylight saving time transition after a given date.

Class Methods

abbreviationDictionary
Returns a dictionary holding the mappings of time zone abbreviations to time zone names.

+ (NSDictionary *)abbreviationDictionary

Return Value
A dictionary holding the mappings of time zone abbreviations to time zone names.

Discussion
Note that more than one time zone may have the same abbreviation—for example, US/Pacific and
Canada/Pacific both use the abbreviation “PST.” In these cases, abbreviationDictionary chooses a single
name to map the abbreviation to.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

defaultTimeZone
Returns the default time zone for the current application.

+ (NSTimeZone *)defaultTimeZone

Return Value
The default time zone for the current application. If no default time zone has been set, this method invokes
systemTimeZone (page 1668) and returns the system time zone.

Discussion
The default time zone is the one that the application is running with, which you can change (so you can
make the application run as if it were in a different time zone).

1666 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

If you get the default time zone and hold onto the returned object, it does not change if a subsequent
invocation of setDefaultTimeZone: (page 1668) changes the default time zone—you still have the specific
time zone you originally got. Contrast this behavior with the object returned by localTimeZone (page 1667).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ localTimeZone (page 1667)
+ setDefaultTimeZone: (page 1668)
+ systemTimeZone (page 1668)

Declared In
NSTimeZone.h

knownTimeZoneNames
Returns an array of strings listing the IDs of all the time zones known to the system.

+ (NSArray *)knownTimeZoneNames

Return Value
An array of strings listing the IDs of all the time zones known to the system.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

localTimeZone
Returns an object that forwards all messages to the default time zone for the current application.

+ (NSTimeZone *)localTimeZone

Return Value
An object that forwards all messages to the default time zone for the current application.

Discussion
The local time zone represents the current state of the default time zone at all times. If you get the default
time zone (using defaultTimeZone (page 1666)) and hold onto the returned object, it does not change if a
subsequent invocation of setDefaultTimeZone: (page 1668) changes the default time zone—you still have
the specific time zone you originally got. The local time zone adds a level of indirection, it acts as if it were
the current default time zone whenever you invoke a method on it.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultTimeZone (page 1666)
+ setDefaultTimeZone: (page 1668)

Class Methods 1667
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

Declared In
NSTimeZone.h

resetSystemTimeZone
Resets the system time zone object cached by the application, if any.

+ (void)resetSystemTimeZone

Discussion
If the application has cached the system time zone, this method clears that cached object. If you subsequently
invoke systemTimeZone (page 1668), NSTimeZonewill attempt to redetermine the system time zone and a
new object will be created and cached (see systemTimeZone (page 1668)).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ systemTimeZone (page 1668)

Declared In
NSTimeZone.h

setDefaultTimeZone:
Sets the default time zone for the current application to a given time zone.

+ (void)setDefaultTimeZone:(NSTimeZone *)aTimeZone

Parameters
aTimeZone

The new default time zone for the current application.

Discussion
There can be only one default time zone, so by setting a new default time zone, you lose the previous one.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultTimeZone (page 1666)
+ localTimeZone (page 1667)

Declared In
NSTimeZone.h

systemTimeZone
Returns the time zone currently used by the system.

+ (NSTimeZone *)systemTimeZone

1668 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

Return Value
The time zone currently used by the system. If the current time zone cannot be determined, returns the GMT
time zone.

Special Considerations

If you get the system time zone, it is cached by the application and does not change if the user subsequently
changes the system time zone. The next time you invoke systemTimeZone, you get back the same time
zone you originally got. You have to invoke resetSystemTimeZone (page 1668) to clear the cached object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ resetSystemTimeZone (page 1668)

Declared In
NSTimeZone.h

timeZoneForSecondsFromGMT:
Returns a time zone object offset from Greenwich Mean Time by a given number of seconds.

+ (id)timeZoneForSecondsFromGMT:(NSInteger)seconds

Parameters
seconds

The number of seconds by which the new time zone is offset from GMT.

Return Value
A time zone object offset from Greenwich Mean Time by seconds.

Discussion
The name of the new time zone is GMT +/– the offset, in hours and minutes. Time zones created with this
method never have daylight savings, and the offset is constant no matter the date.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ timeZoneWithAbbreviation: (page 1669)
+ timeZoneWithName: (page 1670)

Declared In
NSTimeZone.h

timeZoneWithAbbreviation:
Returns the time zone object identified by a given abbreviation.

+ (id)timeZoneWithAbbreviation:(NSString *)abbreviation

Class Methods 1669
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

Parameters
abbreviation

An abbreviation for a time zone.

Return Value
The time zone object identified by abbreviation determined by resolving the abbreviation to a name
using the abbreviation dictionary and then returning the time zone for that name. Returns nil if there is no
match for abbreviation.

Discussion
In general, you are discouraged from using abbreviations except for unique instances such as “UTC” or “GMT”.
Time Zone abbreviations are not standardized and so a given abbreviation may have multiple meanings—for
example, “EST” refers to Eastern Time in both the United States and Australia

Availability
Available in Mac OS X v10.0 and later.

See Also
+ abbreviationDictionary (page 1666)
+ timeZoneForSecondsFromGMT: (page 1669)
+ timeZoneWithName: (page 1670)

Declared In
NSTimeZone.h

timeZoneWithName:
Returns the time zone object identified by a given ID.

+ (id)timeZoneWithName:(NSString *)aTimeZoneName

Parameters
aName

The ID for the time zone.

Return Value
The time zone in the information directory with a name matching aName. Returns nil if there is no match
for the name.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ timeZoneForSecondsFromGMT: (page 1669)
+ timeZoneWithAbbreviation: (page 1669)
+ knownTimeZoneNames (page 1667)

Declared In
NSTimeZone.h

timeZoneWithName:data:
Returns the time zone with a given ID whose data has been initialized using given data,

1670 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

+ (id)timeZoneWithName:(NSString *)aTimeZoneName data:(NSData *)data

Parameters
aTimeZoneName

The ID for the time zone.

data
The data from the time-zone files located at /usr/share/zoneinfo.

Return Value
The time zone with the ID aTimeZoneName whose data has been initialized using the contents of data.

Discussion
You should not call this method directly—use timeZoneWithName: (page 1670) to get the time zone object
for a given name.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ timeZoneWithName: (page 1670)

Declared In
NSTimeZone.h

Instance Methods

abbreviation
Returns the abbreviation for the receiver.

- (NSString *)abbreviation

Return Value
The abbreviation for the receiver, such as “EDT” (Eastern Daylight Time).

Discussion
Invokes abbreviationForDate: (page 1671) with the current date as the argument.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

abbreviationForDate:
Returns the abbreviation for the receiver at a given date.

- (NSString *)abbreviationForDate:(NSDate *)aDate

Instance Methods 1671
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

Parameters
aDate

The date for which to get the abbreviation for the receiver.

Return Value
The abbreviation for the receiver at aDate.

Discussion
Note that the abbreviation may be different at different dates. For example, during daylight savings time the
US/Eastern time zone has an abbreviation of “EDT.” At other times, its abbreviation is “EST.”

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

data
Returns the data that stores the information used by the receiver.

- (NSData *)data

Return Value
The data that stores the information used by the receiver.

Discussion
This data should be treated as an opaque object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

daylightSavingTimeOffset
Returns the current daylight saving time offset of the receiver.

- (NSTimeInterval)daylightSavingTimeOffset

Return Value
The daylight current saving time offset of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isDaylightSavingTime (page 1674)
– isDaylightSavingTimeForDate: (page 1675)
– daylightSavingTimeOffsetForDate: (page 1673)

Declared In
NSTimeZone.h

1672 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

daylightSavingTimeOffsetForDate:
Returns the daylight saving time offset for a given date.

- (NSTimeInterval)daylightSavingTimeOffsetForDate:(NSDate *)aDate

Parameters
aDate

A date.

Return Value
The daylight saving time offset for aDate.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isDaylightSavingTime (page 1674)
– daylightSavingTimeOffset (page 1672)
– isDaylightSavingTimeForDate: (page 1675)
– nextDaylightSavingTimeTransitionAfterDate: (page 1677)

Declared In
NSTimeZone.h

description
Returns the description of the receiver.

- (NSString *)description

Return Value
The description of the receiver, including the name, abbreviation, offset from GMT, and whether or not
daylight savings time is currently in effect.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

initWithName:
Returns a time zone initialized with a given ID.

- (id)initWithName:(NSString *)aName

Parameters
aName

The ID for the time zone.

Return Value
A time zone object initialized with the ID aName.

Instance Methods 1673
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

Discussion
If aName is a known ID, this method calls initWithName:data: (page 1674) with the appropriate data object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

initWithName:data:
Initializes a time zone with a given ID and time zone data.

- (id)initWithName:(NSString *)aName data:(NSData *)data

Parameters
aName

The ID for the time zone.

data
The data from the time-zone files located at /usr/share/zoneinfo.

Discussion
You should not call this method directly—use initWithName: (page 1673) to get a time zone object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

isDaylightSavingTime
Returns a Boolean value that indicates whether the receiver is currently using daylight saving time.

- (BOOL)isDaylightSavingTime

Return Value
YES if the receiver is currently using daylight savings time, otherwise NO.

Discussion
This method invokes isDaylightSavingTimeForDate: (page 1675) with the current date as the argument.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isDaylightSavingTimeForDate: (page 1675)
– daylightSavingTimeOffset (page 1672)
– daylightSavingTimeOffsetForDate: (page 1673)
– nextDaylightSavingTimeTransition (page 1676)
– nextDaylightSavingTimeTransitionAfterDate: (page 1677)

1674 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

Declared In
NSTimeZone.h

isDaylightSavingTimeForDate:
Returns a Boolean value that indicates whether the receiver uses daylight savings time at a given date.

- (BOOL)isDaylightSavingTimeForDate:(NSDate *)aDate

Parameters
aDate

The date against which to test the receiver.

Return Value
YES if the receiver uses daylight savings time at aDate, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isDaylightSavingTime (page 1674)
– daylightSavingTimeOffset (page 1672)
– daylightSavingTimeOffsetForDate: (page 1673)
– nextDaylightSavingTimeTransitionAfterDate: (page 1677)

Declared In
NSTimeZone.h

isEqualToTimeZone:
Returns a Boolean value that indicates whether the receiver has the same name and data as another given
time zone.

- (BOOL)isEqualToTimeZone:(NSTimeZone *)aTimeZone

Parameters
aTimeZone

The time zone to compare with the receiver.

Return Value
YES if aTimeZone and the receiver have the same name and data, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

localizedName:locale:
Returns the name of the receiver localized for a given locale.

Instance Methods 1675
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

- (NSString *)localizedName:(NSTimeZoneNameStyle)style locale:(NSLocale *)locale

Parameters
style

The format style for the returned string.

locale
The locale for which to format the name.

Return Value
The name of the receiver localized for locale using style.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTimeZone.h

name
Returns the geopolitical region ID that identifies the receiver.

- (NSString *)name

Return Value
The geopolitical region ID that identifies the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

nextDaylightSavingTimeTransition
Returns the date of the next daylight saving time transition for the receiver.

- (NSDate *)nextDaylightSavingTimeTransition

Return Value
The date of the next (after the current instant) daylight saving time transition for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isDaylightSavingTime (page 1674)
– isDaylightSavingTimeForDate: (page 1675)
– nextDaylightSavingTimeTransitionAfterDate: (page 1677)

Declared In
NSTimeZone.h

1676 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

nextDaylightSavingTimeTransitionAfterDate:
Returns the next daylight saving time transition after a given date.

- (NSDate *)nextDaylightSavingTimeTransitionAfterDate:(NSDate *)aDate

Parameters
aDate

A date.

Return Value
The next daylight saving time transition after aDate.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isDaylightSavingTime (page 1674)
– isDaylightSavingTimeForDate: (page 1675)
– nextDaylightSavingTimeTransition (page 1676)

Declared In
NSTimeZone.h

secondsFromGMT
Returns the current difference in seconds between the receiver and Greenwich Mean Time.

- (NSInteger)secondsFromGMT

Return Value
The current difference in seconds between the receiver and Greenwich Mean Time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

secondsFromGMTForDate:
Returns the difference in seconds between the receiver and Greenwich Mean Time at a given date.

- (NSInteger)secondsFromGMTForDate:(NSDate *)aDate

Parameters
aDate

The date against which to test the receiver.

Return Value
The difference in seconds between the receiver and Greenwich Mean Time at aDate.

Instance Methods 1677
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

Discussion
The difference may be different from the current difference if the time zone changes its offset from GMT at
different points in the year—for example, the U.S. time zones change with daylight savings time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTimeZone.h

Constants

NSTimeZoneNameStyle
Defines a type for time zone name styles.

typedef NSInteger NSTimeZoneNameStyle;

Discussion
See “Time Zone Name Styles” (page 1678) for possible values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTimeZone.h

Time Zone Name Styles
Specify styles for presenting time zone names.

enum {
 NSTimeZoneNameStyleStandard,
 NSTimeZoneNameStyleShortStandard,
 NSTimeZoneNameStyleDaylightSaving,
 NSTimeZoneNameStyleShortDaylightSaving
};

Constants
NSTimeZoneNameStyleStandard

Specifies a standard name style.

Available in Mac OS X v10.5 and later.

Declared in NSTimeZone.h.

NSTimeZoneNameStyleShortStandard
Specifies a short name style.

Available in Mac OS X v10.5 and later.

Declared in NSTimeZone.h.

1678 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

NSTimeZoneNameStyleDaylightSaving
Specifies a daylight saving name style.

Available in Mac OS X v10.5 and later.

Declared in NSTimeZone.h.

NSTimeZoneNameStyleShortDaylightSaving
Specifies a short daylight saving name style.

Available in Mac OS X v10.5 and later.

Declared in NSTimeZone.h.

Declared In
NSTimeZone.h

Notifications

NSSystemTimeZoneDidChangeNotification
Sent when the time zone changed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTimeZone.h

Notifications 1679
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

1680 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTimeZone Class Reference

Inherits from NSCoder : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSArchiver.h

Companion guide Archives and Serializations Programming Guide for Cocoa

Related sample code Departments and Employees
MenuItemView
QTMetadataEditor
Sketch-112
StickiesExample

Overview

NSUnarchiver, a concrete subclass of NSCoder, defines methods for decoding a set of Objective-C objects
from an archive. Such archives are produced by objects of the NSArchiver class.

In Mac OS X v10.2 and later, NSArchiver and NSUnarchiver have been replaced by NSKeyedArchiver
and NSKeyedUnarchiver respectively—see Archives and Serializations Programming Guide for Cocoa.

Tasks

Initializing an NSUnarchiver

– initForReadingWithData: (page 1686)
Returns an NSUnarchiver object initialized to read an archive from a given data object.

Decoding Objects

+ unarchiveObjectWithData: (page 1684)
Decodes and returns the object archived in a given NSData object.

Overview 1681
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 144

NSUnarchiver Class Reference

+ unarchiveObjectWithFile: (page 1684)
Decodes and returns the object archived in the file path.

Managing an NSUnarchiver

– isAtEnd (page 1686)
Returns a Boolean value that indicates whether the receiver has reached the end of the encoded data
while decoding.

– objectZone (page 1687)
Returns the memory zone used to allocate decoded objects.

– setObjectZone: (page 1688)
Sets the memory zone used to allocate decoded objects.

– systemVersion (page 1688)
Returns the system version number in effect when the archive was created.

Substituting Classes or Objects

+ classNameDecodedForArchiveClassName: (page 1682)
Returns the name of the class used when instantiating objects whose ostensible class, according to
the archived data, is a given name.

+ decodeClassName:asClassName: (page 1683)
Instructs instances of NSUnarchiver to use the class with a given name when instantiating objects
whose ostensible class, according to the archived data, is another given name.

– classNameDecodedForArchiveClassName: (page 1685)
Returns the name of the class that will be used when instantiating objects whose ostensible class,
according to the archived data, is a given name.

– decodeClassName:asClassName: (page 1685)
Instructs the receiver to use the class with a given name when instantiating objects whose ostensible
class, according to the archived data, is another given name.

– replaceObject:withObject: (page 1687)
Causes the receiver to substitute one given object for another whenever the latter is extracted from
the archive.

Class Methods

classNameDecodedForArchiveClassName:
Returns the name of the class used when instantiating objects whose ostensible class, according to the
archived data, is a given name.

+ (NSString *)classNameDecodedForArchiveClassName:(NSString *)nameInArchive

1682 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 144

NSUnarchiver Class Reference

Parameters
nameInArchive

The name of a class.

Return Value
The name of the class used when instantiating objects whose ostensible class, according to the archived
data, is nameInArchive. Returns nameInArchive if no substitute name has been specified using the class
method (not the instance method) decodeClassName:asClassName: (page 1683).

Discussion
Note that each individual instance of NSUnarchiver can be given its own class name mappings by invoking
the instance method decodeClassName:asClassName: (page 1685). The NSUnarchiver class has no
information about these instance-specific mappings, however, so they don’t affect the return value of
classNameDecodedForArchiveClassName:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– classNameDecodedForArchiveClassName: (page 1685)

Declared In
NSArchiver.h

decodeClassName:asClassName:
Instructs instances of NSUnarchiver to use the class with a given name when instantiating objects whose
ostensible class, according to the archived data, is another given name.

+ (void)decodeClassName:(NSString *)nameInArchive asClassName:(NSString *)trueName

Parameters
nameInArchive

The ostensible name of a class in an archive.

trueName
The name of the class to use when instantiating objects whose ostensible class, according to the
archived data, is nameInArchive.

Discussion
This method enables easy conversion of unarchived data when the name of a class has changed since the
archive was created.

Note that there is also an instance method of the same name. An instance of NSUnarchiver can maintain
its own mapping of class names. However, if both the class method and the instance method have been
invoked using an identical value for nameInArchive, the class method takes precedence.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ classNameDecodedForArchiveClassName: (page 1682)
– decodeClassName:asClassName: (page 1685)

Class Methods 1683
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 144

NSUnarchiver Class Reference

Declared In
NSArchiver.h

unarchiveObjectWithData:
Decodes and returns the object archived in a given NSData object.

+ (id)unarchiveObjectWithData:(NSData *)data

Parameters
data

An NSData object that contains an archive created using NSArchiver.

Return Value
The object, or object graph, that was archived in data. Returns nil if data cannot be unarchived.

Discussion
This method invokes initForReadingWithData: (page 1686) and decodeObject (page 279) to create a
temporary NSUnarchiver object that decodes the object. If the archived object is the root of a graph of
objects, the entire graph is unarchived.

Availability
Available in Mac OS X v10.0 and later.

See Also
encodeRootObject: (page 101) (NSArchiver)

Related Sample Code
Departments and Employees
MenuItemView
QTMetadataEditor
Sketch-112
StickiesExample

Declared In
NSArchiver.h

unarchiveObjectWithFile:
Decodes and returns the object archived in the file path.

+ (id)unarchiveObjectWithFile:(NSString *)path

Parameters
path

The path to a file than contains an archive created using NSArchiver.

Return Value
The object, or object graph, that was archived in the file at path. Returns nil if the file at path cannot be
unarchived.

1684 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 144

NSUnarchiver Class Reference

Discussion
This convenience method reads the file by invoking the NSDatamethod dataWithContentsOfFile: (page
372) and then invokes unarchiveObjectWithData: (page 1684).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

Instance Methods

classNameDecodedForArchiveClassName:
Returns the name of the class that will be used when instantiating objects whose ostensible class, according
to the archived data, is a given name.

- (NSString *)classNameDecodedForArchiveClassName:(NSString *)nameInArchive

Parameters
nameInArchive

The ostensible name of a class in an archive.

Return Value
The name of the class that will be used when instantiating objects whose ostensible class, according to the
archived data, is nameInArchive. Returns nameInArchive unless a substitute name has been specified
using the instance method (not the class method) decodeClassName:asClassName: (page 1685).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ classNameDecodedForArchiveClassName: (page 1682)

Declared In
NSArchiver.h

decodeClassName:asClassName:
Instructs the receiver to use the class with a given name when instantiating objects whose ostensible class,
according to the archived data, is another given name.

- (void)decodeClassName:(NSString *)nameInArchive asClassName:(NSString *)trueName

Parameters
nameInArchive

The ostensible name of a class in an archive.

trueName
The name of the class to use when instantiating objects whose ostensible class, according to the
archived data, is nameInArchive.

Instance Methods 1685
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 144

NSUnarchiver Class Reference

Discussion
This method enables easy conversion of unarchived data when the name of a class has changed since the
archive was created.

Note that there’s also a class method of the same name. The class method has precedence in case of conflicts.

Availability
Available in Mac OS X v10.0 and later.

See Also
– classNameDecodedForArchiveClassName: (page 1685)
+ decodeClassName:asClassName: (page 1683)

Declared In
NSArchiver.h

initForReadingWithData:
Returns an NSUnarchiver object initialized to read an archive from a given data object.

- (id)initForReadingWithData:(NSData *)data

Parameters
data

The archive data.

Return Value
An NSUnarchiver object initialized to read an archive from data. Returns nil if data is not a valid archive.

Discussion
The method decodes the system version number that was archived in data prepares the NSUnarchiver
object for a subsequent invocation of decodeObject (page 279).

Raises an NSInvalidArgumentException if data is nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– systemVersion (page 1688)

Declared In
NSArchiver.h

isAtEnd
Returns a Boolean value that indicates whether the receiver has reached the end of the encoded data while
decoding.

- (BOOL)isAtEnd

Return Value
YES if the receiver has reached the end of the encoded data while decoding, otherwise NO.

1686 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 144

NSUnarchiver Class Reference

Discussion
You can invoke this method after invoking decodeObject to discover whether the archive contains extra
data following the encoded object graph. If it does, you can either ignore this anomaly or consider it an error.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

objectZone
Returns the memory zone used to allocate decoded objects.

- (NSZone *)objectZone

Return Value
The memory zone used to allocate decoded objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setObjectZone: (page 1688)

Declared In
NSArchiver.h

replaceObject:withObject:
Causes the receiver to substitute one given object for another whenever the latter is extracted from the
archive.

- (void)replaceObject:(id)object withObject:(id)newObject

Parameters
object

The archived object to replace.

newObject
The object with which to replace object.

Discussion
newObject can be of a different class from object, and the class mappings set by
classNameDecodedForArchiveClassName: (page 1682) anddecodeClassName:asClassName: (page
1685) are ignored.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

Instance Methods 1687
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 144

NSUnarchiver Class Reference

setObjectZone:
Sets the memory zone used to allocate decoded objects.

- (void)setObjectZone:(NSZone *)zone

Parameters
zone

The memory zone used to allocate decoded objects.

Discussion
If zone is nil, or if this method is never invoked, the default zone is used, as given by
NSDefaultMallocZone().

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectZone (page 1687)

Declared In
NSArchiver.h

systemVersion
Returns the system version number in effect when the archive was created.

- (unsigned)systemVersion

Return Value
The system version number in effect when the archive was created.

Discussion
This information is available as soon as the receiver has been initialized.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSArchiver.h

1688 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 144

NSUnarchiver Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSUndoManager.h

Companion guide Undo Architecture

Related sample code CoreRecipes
iSpend
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Overview

NSUndoManager is a general-purpose recorder of operations for undo and redo.

You register an undo operation by specifying the object that’s changing (or the owner of that object), along
with a method to invoke to revert its state, and the arguments for that method. When performing undo an
NSUndoManager saves the operations reverted so that you can redo the undos. If used in a Cocoa Application
Kit-based application, NSUndoManager groups all operations within a single cycle of the run loop, so that
performing an undo reverts all changes that occurred during the cycle.

NSUndoManager is implemented as a class of the Foundation framework because executables other than
applications might want to revert changes to their states. For example, you might have an interactive
command-line tool with undo and redo commands, or there could be distributed object implementations
that can revert operations “over the wire.” However, users typically see undo and redo as application features.
The Application Kit implements undo and redo in its NSTextView object and makes it easy to implement it
in objects along the responder chain.

Overview 1689
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

Tasks

Registering Undo Operations

– registerUndoWithTarget:selector:object: (page 1700)
Records a single undo operation for a given target, so that when an undo is performed it is sent a
specified selector with a given object as the sole argument.

– prepareWithInvocationTarget: (page 1698)
Prepares the receiver for invocation-based undo with the given target as the subject of the next undo
operation and returns self.

– forwardInvocation: (page 1695)
Overrides NSObject's implementation to record the given invocation as an undo operation.

Checking Undo Ability

– canUndo (page 1693)
Returns a Boolean value that indicates whether the receiver has any actions to undo.

– canRedo (page 1693)
Returns a Boolean value that indicates whether the receiver has any actions to redo.

Performing Undo and Redo

– undo (page 1704)
Closes the top-level undo group if necessary and invokes undoNestedGroup (page 1706).

– undoNestedGroup (page 1706)
Performs the undo operations in the last undo group (whether top-level or nested), recording the
operations on the redo stack as a single group.

– redo (page 1699)
Performs the operations in the last group on the redo stack, if there are any, recording them on the
undo stack as a single group.

Limiting the Undo Stack

– setLevelsOfUndo: (page 1703)
Sets the maximum number of top-level undo groups the receiver holds.

– levelsOfUndo (page 1698)
Returns the maximum number of top-level undo groups the receiver holds.

Creating Undo Groups

– beginUndoGrouping (page 1692)
Marks the beginning of an undo group.

1690 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

– endUndoGrouping (page 1694)
Marks the end of an undo group.

– enableUndoRegistration (page 1694)
Enables the recording of undo operations.

– groupsByEvent (page 1696)
Returns a Boolean value that indicates whether the receiver automatically creates undo groups around
each pass of the run loop.

– setGroupsByEvent: (page 1703)
Sets a Boolean value that specifies whether the receiver automatically groups undo operations during
the run loop.

– groupingLevel (page 1696)
Returns the number of nested undo groups (or redo groups, if Redo was invoked last) in the current
event loop.

Disabling Undo

– disableUndoRegistration (page 1694)
Disables the recording of undo operations, whether by
registerUndoWithTarget:selector:object: (page 1700) or by invocation-based undo.

– isUndoRegistrationEnabled (page 1697)
Returns a Boolean value that indicates whether the recording of undo operations is enabled.

Checking Whether Undo or Redo Is Being Performed

– isUndoing (page 1697)
Returns a Boolean value that indicates whether the receiver is in the process of performing its
undo (page 1704) or undoNestedGroup (page 1706) method.

– isRedoing (page 1696)
Returns a Boolean value that indicates whether the receiver is in the process of performing its
redo (page 1699) method.

Clearing Undo Operations

– removeAllActions (page 1701)
Clears the undo and redo stacks and re-enables the receiver.

– removeAllActionsWithTarget: (page 1701)
Clears the undo and redo stacks of all operations involving the specified target as the recipient of the
undo message.

Managing the Action Name

– setActionName: (page 1702)
Sets the name of the action associated with the Undo or Redo command.

Tasks 1691
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

– redoActionName (page 1699)
Returns the name identifying the redo action.

– undoActionName (page 1705)
Returns the name identifying the undo action.

Getting and Localizing the Menu Item Title

– redoMenuItemTitle (page 1699)
Returns the complete title of the Redo menu command, for example, “Redo Paste.”

– undoMenuItemTitle (page 1705)
Returns the complete title of the Undo menu command, for example, “Undo Paste.”

– redoMenuTitleForUndoActionName: (page 1700)
Returns the complete, localized title of the Redo menu command for the action identified by the
given name.

– undoMenuTitleForUndoActionName: (page 1706)
Returns the complete, localized title of the Undo menu command for the action identified by the
given name.

Working with Run Loops

– runLoopModes (page 1702)
Returns the modes governing the types of input handled during a cycle of the run loop.

– setRunLoopModes: (page 1704)
Sets the modes that determine the types of input handled during a cycle of the run loop.

Instance Methods

beginUndoGrouping
Marks the beginning of an undo group.

- (void)beginUndoGrouping

Discussion
All individual undo operations before a subsequent endUndoGrouping (page 1694) message are grouped
together and reversed by a later undo (page 1704) message. By default undo groups are begun automatically
at the start of the event loop, but you can begin your own undo groups with this method, and nest them
within other groups.

This method posts an NSUndoManagerCheckpointNotification (page 1707) unless a top-level undo is in
progress. It posts an NSUndoManagerDidOpenUndoGroupNotification (page 1707) if a new group was
successfully created.

Availability
Available in Mac OS X v10.0 and later.

1692 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

Declared In
NSUndoManager.h

canRedo
Returns a Boolean value that indicates whether the receiver has any actions to redo.

- (BOOL)canRedo

Return Value
YES if the receiver has any actions to redo, otherwise NO.

Discussion
Because any undo operation registered clears the redo stack, this method posts an
NSUndoManagerCheckpointNotification (page 1707) to allow clients to apply their pending operations
before testing the redo stack.

Availability
Available in Mac OS X v10.0 and later.

See Also
– canUndo (page 1693)
– redo (page 1699)

Declared In
NSUndoManager.h

canUndo
Returns a Boolean value that indicates whether the receiver has any actions to undo.

- (BOOL)canUndo

Return Value
YES if the receiver has any actions to undo, otherwise NO.

Discussion
The return value does not mean you can safely invokeundo (page 1704) orundoNestedGroup (page 1706)—you
may have to close open undo groups first.

Availability
Available in Mac OS X v10.0 and later.

See Also
– canRedo (page 1693)
– enableUndoRegistration (page 1694)
– registerUndoWithTarget:selector:object: (page 1700)

Declared In
NSUndoManager.h

Instance Methods 1693
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

disableUndoRegistration
Disables the recording of undo operations, whether by
registerUndoWithTarget:selector:object: (page 1700) or by invocation-based undo.

- (void)disableUndoRegistration

Discussion
This method can be invoked multiple times by multiple clients. The enableUndoRegistration (page 1694)
method must be invoked an equal number of times to re-enable undo registration.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Departments and Employees
File Wrappers with Core Data Documents

Declared In
NSUndoManager.h

enableUndoRegistration
Enables the recording of undo operations.

- (void)enableUndoRegistration

Discussion
Because undo registration is enabled by default, it is often used to balance a prior
disableUndoRegistration (page 1694) message. Undo registration isn’t actually re-enabled until an enable
message balances the last disable message in effect. Raises an NSInternalInconsistencyException if
invoked while no disableUndoRegistration (page 1694) message is in effect.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Departments and Employees
File Wrappers with Core Data Documents

Declared In
NSUndoManager.h

endUndoGrouping
Marks the end of an undo group.

- (void)endUndoGrouping

1694 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

Discussion
All individual undo operations back to the matching beginUndoGrouping (page 1692) message are grouped
together and reversed by a later undo (page 1704) or undoNestedGroup (page 1706) message. Undo groups
can be nested, thus providing functionality similar to nested transactions. Raises an
NSInternalInconsistencyException if there’s no beginUndoGrouping (page 1692) message in effect.

This method posts an NSUndoManagerCheckpointNotification (page 1707) and an
NSUndoManagerWillCloseUndoGroupNotification (page 1708) just before the group is closed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– levelsOfUndo (page 1698)

Declared In
NSUndoManager.h

forwardInvocation:
Overrides NSObject's implementation to record the given invocation as an undo operation.

- (void)forwardInvocation:(NSInvocation *)anInvocation

Parameters
anInvocation

The invocation to record.

Discussion
Also clears the redo stack. anInvocation and its arguments that are objects are retained. You can override
this method if you want different or supplementary invocation-based behavior. See “Registering Undo
Operations” for more information.

Raises an NSInternalInconsistencyException if prepareWithInvocationTarget: (page 1698) was
not invoked before this method. This method then clears the prepared invocation target. Also raises an
NSInternalInconsistencyException if invoked when no undo group has been established using
beginUndoGrouping (page 1692). Undo groups are normally set by default, so you should rarely need to
begin a top-level undo group explicitly.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

See Also
– undoNestedGroup (page 1706)
– registerUndoWithTarget:selector:object: (page 1700)
– groupingLevel (page 1696)

Declared In
NSUndoManager.h

Instance Methods 1695
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

groupingLevel
Returns the number of nested undo groups (or redo groups, if Redo was invoked last) in the current event
loop.

- (NSInteger)groupingLevel

Return Value
An integer indicating the number of nested groups. If 0 is returned, there is no open undo or redo group.

Availability
Available in Mac OS X v10.0 and later.

See Also
– levelsOfUndo (page 1698)
– setLevelsOfUndo: (page 1703)

Declared In
NSUndoManager.h

groupsByEvent
Returns a Boolean value that indicates whether the receiver automatically creates undo groups around each
pass of the run loop.

- (BOOL)groupsByEvent

Return Value
YES if the receiver automatically creates undo groups around each pass of the run loop, otherwise NO.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– beginUndoGrouping (page 1692)
– setGroupsByEvent: (page 1703)

Declared In
NSUndoManager.h

isRedoing
Returns a Boolean value that indicates whether the receiver is in the process of performing its redo (page
1699) method.

- (BOOL)isRedoing

Return Value
YES if the method is being performed, otherwise NO.

1696 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– isUndoing (page 1697)

Declared In
NSUndoManager.h

isUndoing
Returns a Boolean value that indicates whether the receiver is in the process of performing its undo (page
1704) or undoNestedGroup (page 1706) method.

- (BOOL)isUndoing

Return Value
YES if the method is being performed, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isRedoing (page 1696)

Declared In
NSUndoManager.h

isUndoRegistrationEnabled
Returns a Boolean value that indicates whether the recording of undo operations is enabled.

- (BOOL)isUndoRegistrationEnabled

Return Value
YES if registration is enabled; otherwise, NO.

Discussion
Undo registration is enabled by default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– disableUndoRegistration (page 1694)
– enableUndoRegistration (page 1694)

Declared In
NSUndoManager.h

Instance Methods 1697
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

levelsOfUndo
Returns the maximum number of top-level undo groups the receiver holds.

- (NSUInteger)levelsOfUndo

Return Value
An integer specifying the number of undo groups. A limit of 0 indicates no limit, so old undo groups are
never dropped.

Discussion
When ending an undo group results in the number of groups exceeding this limit, the oldest groups are
dropped from the stack. The default is 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableUndoRegistration (page 1694)
– setLevelsOfUndo: (page 1703)

Declared In
NSUndoManager.h

prepareWithInvocationTarget:
Prepares the receiver for invocation-based undo with the given target as the subject of the next undo
operation and returns self.

- (id)prepareWithInvocationTarget:(id)target

Parameters
target

The target of the undo operation.

Return Value
self.

Discussion
See “Registering Undo Operations” for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– forwardInvocation: (page 1695)

Related Sample Code
Squiggles

Declared In
NSUndoManager.h

1698 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

redo
Performs the operations in the last group on the redo stack, if there are any, recording them on the undo
stack as a single group.

- (void)redo

Discussion
Raises an NSInternalInconsistencyException if the method is invoked during an undo operation.

This method posts an NSUndoManagerCheckpointNotification (page 1707) and
NSUndoManagerWillRedoChangeNotification (page 1708) before it performs the redo operation, and it
posts the NSUndoManagerDidRedoChangeNotification (page 1708) after it performs the redo operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– registerUndoWithTarget:selector:object: (page 1700)

Declared In
NSUndoManager.h

redoActionName
Returns the name identifying the redo action.

- (NSString *)redoActionName

Return Value
The redo action name. Returns an empty string (@"") if no action name has been assigned or if there is
nothing to redo.

Discussion
For example, if the menu title is “Redo Delete,” the string returned is “Delete.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– setActionName: (page 1702)
– undoActionName (page 1705)

Declared In
NSUndoManager.h

redoMenuItemTitle
Returns the complete title of the Redo menu command, for example, “Redo Paste.”

- (NSString *)redoMenuItemTitle

Return Value
The menu item title.

Instance Methods 1699
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

Discussion
Returns “Redo” if no action name has been assigned or nil if there is nothing to redo.

Availability
Available in Mac OS X v10.0 and later.

See Also
– undoMenuItemTitle (page 1705)

Declared In
NSUndoManager.h

redoMenuTitleForUndoActionName:
Returns the complete, localized title of the Redo menu command for the action identified by the given name.

- (NSString *)redoMenuTitleForUndoActionName:(NSString *)actionName

Parameters
actionName

The name of the undo action.

Return Value
The localized title of the redo menu item.

Discussion
Override this method if you want to customize the localization behavior. This method is invoked by
redoMenuItemTitle (page 1699).

Availability
Available in Mac OS X v10.0 and later.

See Also
– undoMenuTitleForUndoActionName: (page 1706)

Declared In
NSUndoManager.h

registerUndoWithTarget:selector:object:
Records a single undo operation for a given target, so that when an undo is performed it is sent a specified
selector with a given object as the sole argument.

- (void)registerUndoWithTarget:(id)target selector:(SEL)aSelector object:(id)anObject

Parameters
target

The target of the undo operation.

aSelector
The selector for the undo operation.

anObject
The argument sent with the selector.

1700 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

Discussion
Also clears the redo stack. Does not retain target, but does retain anObject. See “Registering Undo
Operations” for more information.

Raises an NSInternalInconsistencyException if invoked when no undo group has been established
using beginUndoGrouping (page 1692). Undo groups are normally set by default, so you should rarely need
to begin a top-level undo group explicitly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– undoNestedGroup (page 1706)
– forwardInvocation: (page 1695)
– groupingLevel (page 1696)

Related Sample Code
File Wrappers with Core Data Documents

Declared In
NSUndoManager.h

removeAllActions
Clears the undo and redo stacks and re-enables the receiver.

- (void)removeAllActions

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableUndoRegistration (page 1694)
– removeAllActionsWithTarget: (page 1701)

Related Sample Code
Departments and Employees

Declared In
NSUndoManager.h

removeAllActionsWithTarget:
Clears the undo and redo stacks of all operations involving the specified target as the recipient of the undo
message.

- (void)removeAllActionsWithTarget:(id)target

Parameters
target

The recipient of the undo messages to be removed.

Instance Methods 1701
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

Discussion
Doesn’t re-enable the receiver if it’s disabled. An object that shares an NSUndoManager with other clients
should invoke this message in its implementation of dealloc.

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableUndoRegistration (page 1694)
– removeAllActions (page 1701)

Declared In
NSUndoManager.h

runLoopModes
Returns the modes governing the types of input handled during a cycle of the run loop.

- (NSArray *)runLoopModes

Return Value
An array of string constants specifying the current run-loop modes.

Discussion
By default, the sole run-loop mode is NSDefaultRunLoopMode (which excludes data from NSConnection
objects).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRunLoopModes: (page 1704)
– performSelector:target:argument:order:modes: (page 1336) (NSRunLoop)

Declared In
NSUndoManager.h

setActionName:
Sets the name of the action associated with the Undo or Redo command.

- (void)setActionName:(NSString *)actionName

Parameters
actionName

The name of the action.

Discussion
If actionName is an empty string, the action name currently associated with the menu command is removed.
There is no effect if actionName is nil.

Availability
Available in Mac OS X v10.0 and later.

1702 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

See Also
– redoActionName (page 1699)
– undoActionName (page 1705)

Related Sample Code
Sketch-112

Declared In
NSUndoManager.h

setGroupsByEvent:
Sets a Boolean value that specifies whether the receiver automatically groups undo operations during the
run loop.

- (void)setGroupsByEvent:(BOOL)flag

Parameters
flag

If YES, the receiver creates undo groups around each pass through the run loop; if NO it doesn’t.

Discussion
The default is YES. If you turn automatic grouping off, you must close groups explicitly before invoking either
undo (page 1704) or undoNestedGroup (page 1706).

Availability
Available in Mac OS X v10.0 and later.

See Also
– groupingLevel (page 1696)
– groupsByEvent (page 1696)

Declared In
NSUndoManager.h

setLevelsOfUndo:
Sets the maximum number of top-level undo groups the receiver holds.

- (void)setLevelsOfUndo:(NSUInteger)anInt

Parameters
anInt

The maximum number of undo groups. A limit of 0 indicates no limit, so that old undo groups are
never dropped.

Discussion
When ending an undo group results in the number of groups exceeding this limit, the oldest groups are
dropped from the stack. The default is 0.

If invoked with a limit below the prior limit, old undo groups are immediately dropped.

Instance Methods 1703
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableUndoRegistration (page 1694)
– levelsOfUndo (page 1698)

Declared In
NSUndoManager.h

setRunLoopModes:
Sets the modes that determine the types of input handled during a cycle of the run loop.

- (void)setRunLoopModes:(NSArray *)modes

Parameters
modes

An array of string constants specifying the run-loop modes to set.

Discussion
By default, the sole run-loop mode is NSDefaultRunLoopMode (which excludes data from NSConnection
objects). With this method, you could limit the input to data received during a mouse-tracking session by
setting the mode to NSEventTrackingRunLoopMode, or you could limit it to data received from a modal
panel with NSModalPanelRunLoopMode.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runLoopModes (page 1702)
– performSelector:target:argument:order:modes: (page 1336) (NSRunLoop)

Declared In
NSUndoManager.h

undo
Closes the top-level undo group if necessary and invokes undoNestedGroup (page 1706).

- (void)undo

Discussion
This method also invokes endUndoGrouping (page 1694) if the nesting level is 1. Raises an
NSInternalInconsistencyException if more than one undo group is open (that is, if the last group isn’t
at the top level).

This method posts an NSUndoManagerCheckpointNotification (page 1707).

Availability
Available in Mac OS X v10.0 and later.

1704 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

See Also
– enableUndoRegistration (page 1694)
– groupingLevel (page 1696)

Declared In
NSUndoManager.h

undoActionName
Returns the name identifying the undo action.

- (NSString *)undoActionName

Return Value
The undo action name. Returns an empty string (@"") if no action name has been assigned or if there is
nothing to undo.

Discussion
For example, if the menu title is “Undo Delete,” the string returned is “Delete.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– redoActionName (page 1699)
– setActionName: (page 1702)

Declared In
NSUndoManager.h

undoMenuItemTitle
Returns the complete title of the Undo menu command, for example, “Undo Paste.”

- (NSString *)undoMenuItemTitle

Return Value
The menu item title.

Discussion
Returns “Undo” if no action name has been assigned or nil if there is nothing to undo.

Availability
Available in Mac OS X v10.0 and later.

See Also
– redoMenuItemTitle (page 1699)

Declared In
NSUndoManager.h

Instance Methods 1705
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

undoMenuTitleForUndoActionName:
Returns the complete, localized title of the Undo menu command for the action identified by the given name.

- (NSString *)undoMenuTitleForUndoActionName:(NSString *)actionName

Parameters
actionName

The name of the undo action.

Return Value
The localized title of the undo menu item.

Discussion
Override this method if you want to customize the localization behavior. This method is invoked by
undoMenuItemTitle (page 1705).

Availability
Available in Mac OS X v10.0 and later.

See Also
– redoMenuTitleForUndoActionName: (page 1700)

Declared In
NSUndoManager.h

undoNestedGroup
Performs the undo operations in the last undo group (whether top-level or nested), recording the operations
on the redo stack as a single group.

- (void)undoNestedGroup

Discussion
Raises an NSInternalInconsistencyException if any undo operations have been registered since the
last enableUndoRegistration (page 1694) message.

This method posts an NSUndoManagerCheckpointNotification (page 1707) and
NSUndoManagerWillUndoChangeNotification (page 1708) before it performs the undo operation, and it
posts an NSUndoManagerDidUndoChangeNotification (page 1708) after it performs the undo operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– undo (page 1704)

Declared In
NSUndoManager.h

1706 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

Constants

NSUndoCloseGroupingRunLoopOrdering
NSUndoManager provides this constant as a convenience; you can use it to compare to values returned by
some NSUndoManager methods.

enum {
 NSUndoCloseGroupingRunLoopOrdering = 350000
};

Constants
NSUndoCloseGroupingRunLoopOrdering

Used with NSRunLoop's performSelector:target:argument:order:modes: (page 1336).

Available in Mac OS X v10.0 and later.

Declared in NSUndoManager.h.

Declared In
NSUndoManager.h

Notifications

NSUndoManagerCheckpointNotification
Posted whenever an NSUndoManager object opens or closes an undo group (except when it opens a top-level
group) and when checking the redo stack in canRedo (page 1693). The notification object is the
NSUndoManager object. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUndoManager.h

NSUndoManagerDidOpenUndoGroupNotification
Posted whenever an NSUndoManager object opens an undo group, which occurs in the implementation of
the beginUndoGrouping (page 1692) method. The notification object is the NSUndoManager object. This
notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUndoManager.h

Constants 1707
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

NSUndoManagerDidRedoChangeNotification
Posted just after an NSUndoManager object performs a redo operation (redo (page 1699)). The notification
object is the NSUndoManager object. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUndoManager.h

NSUndoManagerDidUndoChangeNotification
Posted just after an NSUndoManager object performs an undo operation. If you invoke undo (page 1704) or
undoNestedGroup (page 1706), this notification is posted. The notification object is the NSUndoManager
object. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUndoManager.h

NSUndoManagerWillCloseUndoGroupNotification
Posted before an NSUndoManager object closes an undo group, which occurs in the implementation of the
endUndoGrouping (page 1694) method. The notification object is theNSUndoManagerobject. This notification
does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUndoManager.h

NSUndoManagerWillRedoChangeNotification
Posted just before an NSUndoManager object performs a redo operation (redo (page 1699)). The notification
object is the NSUndoManager object. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUndoManager.h

NSUndoManagerWillUndoChangeNotification
Posted just before an NSUndoManager object performs an undo operation. If you invoke undo (page 1704)
or undoNestedGroup (page 1706), this notification is posted. The notification object is the NSUndoManager
object. This notification does not contain a userInfo dictionary.

1708 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUndoManager.h

Notifications 1709
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

1710 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 145

NSUndoManager Class Reference

Inherits from NSScriptObjectSpecifier : NSObject

Conforms to NSCoding (NSScriptObjectSpecifier)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSScriptObjectSpecifiers.h

Availability Available in Mac OS X v10.2 and later.

Companion guide Cocoa Scripting Guide

Related sample code SimpleScriptingObjects

Overview

Specifies an object in a collection (or container) by unique ID. This specifier works only for objects that have
an ID property. The unique ID object passed to an instance of NSUniqueIDSpecifier must be either an
NSNumber object or an NSString object. The exact type should match the scripting dictionary declaration
of the ID attribute for the relevant scripting class.

You can expect that the ID property will be read only for any object that supports it. Therefore a scripter can
obtain the unique ID for an object and refer to the object by the ID, but cannot set the unique ID.

You don’t normally subclass NSUniqueIDSpecifier.

The evaluation of NSUniqueIDSpecifier objects follows these steps until the specified object is found:

1. If the container implements a method whose selector matches the relevant
valueIn<Key>WithUniqueID: pattern established by scripting key-value coding, the method is
invoked. This method can potentially be very fast, and it may be relatively easy to implement.

2. As is the case when evaluating any script object specifier, the container of the specified object is given
a chance to evaluate the object specifier. If the container class implements the
indicesOfObjectsByEvaluatingObjectSpecifier: (page 2123) method, the method is invoked.
This method can potentially be very fast, but it is relatively difficult to implement.

3. An NSWhoseSpecifier object that specifies the first object whose relevant 'ID ' attribute matches
the ID is synthesized and evaluated. The NSWhoseSpecifier object must search through all of the
keyed elements in the container, looking for a match. The search is potentially very slow.

Overview 1711
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 146

NSUniqueIDSpecifier Class Reference

Tasks

Initializing a Unique ID Specifier

– initWithContainerClassDescription:containerSpecifier:key:uniqueID: (page 1712)
Returns an NSUniqueIDSpecifier object, initialized with the given arguments.

Accessing Unique ID Information

– setUniqueID: (page 1713)
Sets the ID encapsulated by the receiver.

– uniqueID (page 1713)
Returns the ID encapsulated by the receiver.

Instance Methods

initWithContainerClassDescription:containerSpecifier:key:uniqueID:
Returns an NSUniqueIDSpecifier object, initialized with the given arguments.

- (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDesc
containerSpecifier:(NSScriptObjectSpecifier *)container key:(NSString *)property
uniqueID:(id)uniqueID

Parameters
classDesc

The class description for the new object.

container
The container for the new object.

property
The property for the new object.

uniqueID
The unique ID for the new object.

uniqueID must be an instance of NSNumber or NSString. The type should match the declared type
of the attribute of the specified scriptable class whose four-character code is 'ID '.

Return Value
An NSUniqueIDSpecifier object, initialized with the given arguments.

Discussion
Invokes the super class’s initWithContainerClassDescription:containerSpecifier:key: (page
1418) method and sets the ID to uniqueID.

Availability
Available in Mac OS X v10.2 and later.

1712 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 146

NSUniqueIDSpecifier Class Reference

Related Sample Code
SimpleScriptingObjects

Declared In
NSScriptObjectSpecifiers.h

setUniqueID:
Sets the ID encapsulated by the receiver.

- (void)setUniqueID:(id)uniqueID

Parameters
uniqueID

The ID for the receiver.

uniqueID must be an instance of NSNumber or NSString. The type should match the declared type
of the attribute of the specified scriptable class whose four-character code is 'ID '.

Discussion
Although NSUniqueIDSpecifier supports setting the unique ID, the ID for a specified object is likely to
remain static over the life of the object.

Availability
Available in Mac OS X v10.2 and later.

See Also
– uniqueID (page 1713)

Declared In
NSScriptObjectSpecifiers.h

uniqueID
Returns the ID encapsulated by the receiver.

- (id)uniqueID

Return Value
The ID encapsulated by the receiver.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setUniqueID: (page 1713)

Declared In
NSScriptObjectSpecifiers.h

Instance Methods 1713
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 146

NSUniqueIDSpecifier Class Reference

1714 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 146

NSUniqueIDSpecifier Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSURLHandleClient
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSURL.h

Companion guide URL Loading System

Related sample code CoreRecipes
ImageClient
iSpend
LSMSmartCategorizer
StickiesExample

Overview

The NSURL class provides a way to manipulate URLs and the resources they reference. NSURL objects
understand URLs as specified in RFCs 1808, 1738, and 2732. The litmus test for conformance to RFC 1808 is
as recommended in RFC 1808—whether the first two characters of resourceSpecifier (page 1730) are
@"//".

NSURL objects can be used to refer to files, and are the preferred way to do so. ApplicationKit objects that
can read data from or write data to a file generally have methods that accept an NSURL object instead of a
pathname as the file reference. NSWorkspace provides openURL: to open a location specified by a URL. To
get the contents of a URL, NSString provides stringWithContentsOfURL: (page 1532) and NSData provides
dataWithContentsOfURL: (page 374).

An NSURL object is composed of two parts—a potentially nil base URL and a string that is resolved relative
to the base URL. An NSURL object whose string is fully resolved without a base is considered absolute; all
others are considered relative.

The NSURL class will fail to create a new NSURL object if the path being passed is not well-formed—the path
must comply with RFC 2396. Examples of cases that will not succeed are strings containing space characters
and high-bit characters. Should creating an NSURL object fail, the creation methods will return nil, which
you must be prepared to handle. If you are creating NSURL objects using file system paths, you should use

Overview 1715
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

fileURLWithPath: (page 1718) orinitFileURLWithPath: (page 1722), which handle the subtle differences
between URL paths and file system paths. If you wish to be tolerant of malformed path strings, you’ll need
to use functions provided by the Core Foundation framework to clean up the strings.

The informal protocol NSURLClient defines a set of methods useful for managing the loading of a URL
resource in the background.

See also NSURL Additions in the Application Kit framework, which add methods supporting pasteboards.

NSURL is “toll-free bridged” with its Core Foundation counterpart, CFURL. This means that the Core Foundation
type is interchangeable in function or method calls with the bridged Foundation object, providing you cast
one type to the other. In an API where you see an NSURL * parameter, you can pass in a CFURLRef, and in
an API where you see a CFURLRef parameter, you can pass in a pointer to an NSURL instance. This approach
also applies to your concrete subclasses of NSURL. See Interchangeable Data Types for more information on
toll-free bridging.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 2034)
– initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

NSURLHandleClient
– URLHandleResourceDidBeginLoading: (page 2134)
– URLHandleResourceDidCancelLoading: (page 2135)
– URLHandleResourceDidFinishLoading: (page 2135)
– URLHandle:resourceDataDidBecomeAvailable: (page 2134)
– URLHandle:resourceDidFailLoadingWithReason: (page 2134)

Tasks

Creating an NSURL

– initWithScheme:host:path: (page 1724)
Initializes a newly created NSURL with a specified scheme, host, and path.

+ URLWithString: (page 1720)
Creates and returns an NSURL object initialized with a provided string.

– initWithString: (page 1724)
Initializes an NSURL object with a provided string.

+ URLWithString:relativeToURL: (page 1720)
Creates and returns an NSURL object initialized with a base URL and a relative string.

1716 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

– initWithString:relativeToURL: (page 1725)
Initializes an NSURL object with a base URL and a relative string.

+ fileURLWithPath:isDirectory: (page 1719)
Initializes and returns a newly created NSURL object as a file URL with a specified path.

+ fileURLWithPath: (page 1718)
Initializes and returns a newly created NSURL object as a file URL with a specified path.

– initFileURLWithPath:isDirectory: (page 1723)
Initializes a newly created NSURL referencing the local file or directory at path.

– initFileURLWithPath: (page 1722)
Initializes a newly created NSURL referencing the local file or directory at path.

Identifying and Comparing Objects

– isEqual: (page 1725)
Returns a Boolean value that indicates whether the receiver and a given object are equal.

Querying an NSURL

– isFileURL (page 1726)
Returns whether the receiver uses the file scheme.

Loading the Resource of an NSURL Object

– loadResourceDataNotifyingClient:usingCache: (page 1726) Deprecated in Mac OS X v10.4
Loads the receiver’s resource data in the background.

– propertyForKey: (page 1728) Deprecated in Mac OS X v10.4
Returns the specified property of the receiver’s resource.

– resourceDataUsingCache: (page 1729) Deprecated in Mac OS X v10.4
Returns the receiver’s resource data, loading it if necessary.

– setProperty:forKey: (page 1731) Deprecated in Mac OS X v10.4
Changes the specified property of the receiver’s resource.

– setResourceData: (page 1731) Deprecated in Mac OS X v10.4
Attempts to set the resource data for the receiver.

– URLHandleUsingCache: (page 1732) Deprecated in Mac OS X v10.4
Returns a URL handle to service the receiver.

Accessing the Parts of the URL

– absoluteString (page 1721)
Returns the string for the receiver as if it were an absolute URL.

– absoluteURL (page 1721)
Returns an absolute URL that refers to the same resource as the receiver.

Tasks 1717
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

– baseURL (page 1722)
Returns the base URL of the receiver.

– fragment (page 1722)
Returns the fragment of a URL conforming to RFC 1808.

– host (page 1722)
Returns the host of a URL conforming to RFC 1808.

– parameterString (page 1727)
Returns the parameter string of a URL conforming to RFC 1808.

– password (page 1727)
Returns the password of a URL conforming to RFC 1808.

– path (page 1727)
Returns the path of a URL conforming to RFC 1808.

– port (page 1728)
Returns the port number of a URL conforming to RFC 1808.

– query (page 1728)
Returns the query of a URL conforming to RFC 1808.

– relativePath (page 1729)
Returns the path of a URL conforming to RFC 1808, without resolving against the receiver’s base URL.

– relativeString (page 1729)
Returns a string representation of the relative portion of the URL.

– resourceSpecifier (page 1730)
Returns the resource specifier of the URL.

– scheme (page 1730)
Returns the scheme of the URL.

– standardizedURL (page 1731)
Returns a new NSURL object with any instances of ".." or "." removed from its path.

– user (page 1732)
Returns the user portion of a URL conforming to RFC 1808.

Class Methods

fileURLWithPath:
Initializes and returns a newly created NSURL object as a file URL with a specified path.

+ (id)fileURLWithPath:(NSString *)path

Parameters
path

The path that the NSURL object will represent. path should be a valid system path. If path begins
with a tilde, it must first be expanded with stringByExpandingTildeInPath (page 1602).

Return Value
An NSURL object initialized with path.

1718 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Discussion
This method examines path in the file system to determine if it is a directory. If path is a directory, then a
trailing slash is appended. If the file does not exist, it is assumed that path represents a directory and a
trailing slash is appended. As an alternative, consider using fileURLWithPath:isDirectory: (page 1719)
which allows you to explicitly specify whether the returned NSURL object represents a file or directory.

Availability
Available in Mac OS X v10.0 and later.

See Also
initFileURLWithPath: (page 1722)

Related Sample Code
CoreRecipes
iSpend
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Declared In
NSURL.h

fileURLWithPath:isDirectory:
Initializes and returns a newly created NSURL object as a file URL with a specified path.

+ (id)fileURLWithPath:(NSString *)path
isDirectory:(BOOL)isDir

Parameters
path

The path that the NSURL object will represent. path should be a valid system path. If path begins
with a tilde, it must first be expanded with stringByExpandingTildeInPath (page 1602).

isDir
A Boolean value that specifies whether path is treated as a directory path when resolving against
relative path components. Pass YES if the path indicates a directory, NO otherwise.

Return Value
An NSURL object initialized with path.

Availability
Available in Mac OS X v10.5 and later.

See Also
initFileURLWithPath: (page 1722)

Related Sample Code
AutoSample
IKSlideshowDemo

Declared In
NSURL.h

Class Methods 1719
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

URLWithString:
Creates and returns an NSURL object initialized with a provided string.

+ (id)URLWithString:(NSString *)URLString

Parameters
URLString

The string with which to initialize the NSURL object. Must conform to RFC 2396. This method parses
URLString according to RFCs 1738 and 1808.

Return Value
An NSURL object initialized with URLString. If the string was malformed, returns nil.

Discussion
This method expects URLString to contain any necessary percent escape codes, which are ‘:’, ‘/’, ‘%’, ‘#’, ‘;’,
and ‘@’. Note that ‘%’ escapes are translated via UTF-8.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AutoUpdater
Core Data HTML Store
NewsReader
ObjectPath
VertexPerformanceTest

Declared In
NSURL.h

URLWithString:relativeToURL:
Creates and returns an NSURL object initialized with a base URL and a relative string.

+ (id)URLWithString:(NSString *)URLString
relativeToURL:(NSURL *)baseURL

Parameters
URLString

The string with which to initialize the NSURL object. May not be nil. Must conform to RFC 2396.
URLString is interpreted relative to baseURL.

baseURL
The base URL for the NSURL object.

Return Value
An NSURL object initialized with URLString and baseURL. If URLString was malformed, returns nil.

Discussion
This method expects URLString to contain any necessary percent escape codes.

Availability
Available in Mac OS X v10.0 and later.

1720 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Related Sample Code
CocoaHTTPServer
CocoaSOAP
Quartz Composer WWDC 2005 TextEdit
Reducer
TextEditPlus

Declared In
NSURL.h

Instance Methods

absoluteString
Returns the string for the receiver as if it were an absolute URL.

- (NSString *)absoluteString

Return Value
An absolute string for the URL. Creating by resolving the receiver's string against its base according to the
algorithm given in RFC 1808.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaDragAndDrop
CoreRecipes
NewsReader
Reducer

Declared In
NSURL.h

absoluteURL
Returns an absolute URL that refers to the same resource as the receiver.

- (NSURL *)absoluteURL

Return Value
An absolute URL that refers to the same resource as the receiver. If the receiver is already absolute, returns
self. Resolution is performed per RFC 1808.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

Instance Methods 1721
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

baseURL
Returns the base URL of the receiver.

- (NSURL *)baseURL

Return Value
The base URL of the receiver. If the receiver is an absolute URL, returns nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

fragment
Returns the fragment of a URL conforming to RFC 1808.

- (NSString *)fragment

Return Value
The fragment of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

host
Returns the host of a URL conforming to RFC 1808.

- (NSString *)host

Return Value
The host of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes

Declared In
NSURL.h

initFileURLWithPath:
Initializes a newly created NSURL referencing the local file or directory at path.

- (id)initFileURLWithPath:(NSString *)path

1722 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Parameters
path

The path that the NSURL object will represent. path should be a valid system path. If path begins
with a tilde, it must first be expanded with stringByExpandingTildeInPath (page 1602).

Return Value
An NSURL object initialized with path.

Discussion
Invoking this method is equivalent to invoking initWithScheme:host:path: (page 1724) with scheme
NSFileScheme, a nil host, and path.

This method examines path in the file system to determine if it is a directory. If path is a directory, then a
trailing slash is appended. If the file does not exist, it is assumed that path represents a directory and a
trailing slash is appended. As an alternative, consider using initFileURLWithPath:isDirectory: (page
1723) which allows you to explicitly specify whether the returned NSURL represents a file or directory.

Availability
Available in Mac OS X v10.0 and later.

See Also
fileURLWithPath: (page 1718)

Related Sample Code
AttachAScript
bMoviePaletteCocoa
CoreRecipes
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSURL.h

initFileURLWithPath:isDirectory:
Initializes a newly created NSURL referencing the local file or directory at path.

- (id)initFileURLWithPath:(NSString *)path
isDirectory:(BOOL)isDir

Parameters
path

The path that the NSURL object will represent. path should be a valid system path. If path begins
with a tilde, it must first be expanded with stringByExpandingTildeInPath (page 1602).

isDir
A Boolean value that specifies whether path is treated as a directory path when resolving against
relative path components. Pass YES if the path indicates a directory, NO otherwise

Return Value
An NSURL object initialized with path.

Instance Methods 1723
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Discussion
Invoking this method is equivalent to invoking initWithScheme:host:path: (page 1724) with scheme
NSFileScheme, a nil host, and path.

Availability
Available in Mac OS X v10.5 and later.

See Also
fileURLWithPath: (page 1718)

Declared In
NSURL.h

initWithScheme:host:path:
Initializes a newly created NSURL with a specified scheme, host, and path.

- (id)initWithScheme:(NSString *)scheme
host:(NSString *)host
path:(NSString *)path

Parameters
scheme

The scheme for the NSURL object.

host
The host for the NSURL object. May be the empty string.

path
The path for the NSURL object. If path begins with a tilde, it must first be expanded with
stringByExpandingTildeInPath (page 1602).

Return Value
The newly initialized NSURL object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes

Declared In
NSURL.h

initWithString:
Initializes an NSURL object with a provided string.

- (id)initWithString:(NSString *)URLString

Parameters
URLString

The string with which to initialize the NSURL object. Must conform to RFC 2396. This method parses
URLString according to RFCs 1738 and 1808.

1724 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Return Value
An NSURL object initialized with URLString. If the string was malformed, returns nil.

Discussion
This method expects URLString to contain any necessary percent escape codes, which are ‘:’, ‘/’, ‘%’, ‘#’, ‘;’,
and ‘@’. Note that ‘%’ escapes are translated via UTF-8.

Availability
Available in Mac OS X v10.0 and later.

See Also
URLWithString: (page 1720)

Declared In
NSURL.h

initWithString:relativeToURL:
Initializes an NSURL object with a base URL and a relative string.

- (id)initWithString:(NSString *)URLString
relativeToURL:(NSURL *)baseURL

Parameters
URLString

The string with which to initialize the NSURL object. Must conform to RFC 2396. URLString is
interpreted relative to baseURL.

baseURL
The base URL for the NSURL object.

Return Value
An NSURL object initialized with URLString and baseURL. If URLString was malformed, returns nil.

Discussion
This method expects URLString to contain any necessary percent escape codes.

initWithString:relativeToURL: is the designated initializer for NSURL.

Availability
Available in Mac OS X v10.0 and later.

See Also
– baseURL (page 1722)
– relativeString (page 1729)
URLWithString:relativeToURL: (page 1720)

Declared In
NSURL.h

isEqual:
Returns a Boolean value that indicates whether the receiver and a given object are equal.

Instance Methods 1725
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

- (BOOL)isEqual:(id)anObject

Parameters
anObject

The object to be compared to the receiver.

Return Value
YES if the receiver and anObject are equal, otherwise NO.

Discussion
This method defines what it means for instances to be equal. For example, two NSURLs are considered equal
if they both have the same base baseURL (page 1722) and relativeString (page 1729).

isFileURL
Returns whether the receiver uses the file scheme.

- (BOOL)isFileURL

Return Value
Returns YES if the receiver uses the file scheme, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

loadResourceDataNotifyingClient:usingCache:
Loads the receiver’s resource data in the background. (Deprecated in Mac OS X v10.4.)

- (void)loadResourceDataNotifyingClient:(id)client
usingCache:(BOOL)shouldUseCache

Parameters
client

The client of the loading operation. client is notified of the receiver’s progress loading the resource
data using the NSURLClient informal protocol. The NSURLClient messages are delivered on the current
thread and require the run loop to be running.

shouldUseCache
Whether the URL should use cached resource data from an already loaded URL that refers to the same
resource. If YES, the cache is consulted when loading data. If NO, the data is always loaded directly,
without consulting the cache.

Discussion
A given NSURL object can perform only one background load at a time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

1726 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Declared In
NSURL.h

parameterString
Returns the parameter string of a URL conforming to RFC 1808.

- (NSString *)parameterString

Return Value
The parameter string of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

password
Returns the password of a URL conforming to RFC 1808.

- (NSString *)password

Return Value
The password of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

path
Returns the path of a URL conforming to RFC 1808.

- (NSString *)path

Return Value
The path of the URL. If the receiver does not conform to RFC 1808, returns nil. If isFileURL (page 1726)
returnsYES, the return value is suitable for input into NSFileManager or NSPathUtilities. If the path has a
trailing slash it is stripped.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
File Wrappers with Core Data Documents
iSpend
QTKitCreateMovie

Instance Methods 1727
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Quartz Composer WWDC 2005 TextEdit

Declared In
NSURL.h

port
Returns the port number of a URL conforming to RFC 1808.

- (NSNumber *)port

Return Value
The port number of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

propertyForKey:
Returns the specified property of the receiver’s resource. (Deprecated in Mac OS X v10.4.)

- (id)propertyForKey:(NSString *)propertyKey

Parameters
propertyKey

The key of the desired property.

Return Value
The value of the property of the receiver's resource for the provided key. Returns nil if there is no such key.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
setProperty:forKey: (page 1731)

Declared In
NSURL.h

query
Returns the query of a URL conforming to RFC 1808.

- (NSString *)query

Return Value
The query of the URL. If the receiver does not conform to RFC 1808, returns nil.

1728 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

relativePath
Returns the path of a URL conforming to RFC 1808, without resolving against the receiver’s base URL.

- (NSString *)relativePath

Return Value
The relative path of the URL without resolving against the base URL. If the receiver is an absolute URL, this
method returns the same value as path (page 1727). If the receiver does not conform to RFC 1808, returns
nil.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
IdentitySample

Declared In
NSURL.h

relativeString
Returns a string representation of the relative portion of the URL.

- (NSString *)relativeString

Return Value
A string representation of the relative portion of the URL. If the receiver is an absolute URL this method
returns the same value as absoluteString (page 1721).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

resourceDataUsingCache:
Returns the receiver’s resource data, loading it if necessary. (Deprecated in Mac OS X v10.4.)

- (NSData *)resourceDataUsingCache:(BOOL)shouldUseCache

Instance Methods 1729
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Parameters
shouldUseCache

Whether the URL should use cached resource data from an already loaded URL that refers to the same
resource. If YES, the cache is consulted when loading data. If NO, the data is always loaded directly,
without consulting the cache.

Return Value
The receiver's resource data.

Discussion
If the receiver has not already loaded its resource data, it will attempt to load it as a blocking operation.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Related Sample Code
ImageClient

Declared In
NSURL.h

resourceSpecifier
Returns the resource specifier of the URL.

- (NSString *)resourceSpecifier

Return Value
The resource specifier of the URL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

scheme
Returns the scheme of the URL.

- (NSString *)scheme

Return Value
The scheme of the URL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NewsReader

Declared In
NSURL.h

1730 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

setProperty:forKey:
Changes the specified property of the receiver’s resource. (Deprecated in Mac OS X v10.4.)

- (BOOL)setProperty:(id)propertyValue
forKey:(NSString *)propertyKey

Parameters
propertyValue

The new value of the property of the receiver's resource.

propertyKey
The key of the desired property.

Return Value
Returns YES if the modification was successful, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSURL.h

setResourceData:
Attempts to set the resource data for the receiver. (Deprecated in Mac OS X v10.4.)

- (BOOL)setResourceData:(NSData *)data

Parameters
data

The data to set for the URL.

Return Value
Returns YES if successful, NO otherwise.

Discussion
In the case of a file URL, setting the data involves writing data to the specified file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSURL.h

standardizedURL
Returns a new NSURL object with any instances of ".." or "." removed from its path.

- (NSURL *)standardizedURL

Instance Methods 1731
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Return Value
A new NSURL object initialized with a version of the receiver’s URL that has had any instances of ".." or "."
removed from its path.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

URLHandleUsingCache:
Returns a URL handle to service the receiver. (Deprecated in Mac OS X v10.4.)

- (NSURLHandle *)URLHandleUsingCache:(BOOL)shouldUseCache

Parameters
shouldUseCache

Whether to use a cached URL handle. If shouldUseCache is YES, the cache is searched for a URL
handle that has serviced the receiver or another identical URL. If shouldUseCache is NO, a newly
instantiated handle is returned, even if an equivalent URL has been loaded.

Return Value
A URL handle to service the receiver.

Discussion
Sophisticated clients use the URL handle directly for additional control.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
cachedHandleForURL: (page 1795) (NSURLHandle)

Declared In
NSURL.h

user
Returns the user portion of a URL conforming to RFC 1808.

- (NSString *)user

Return Value
The user portion of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURL.h

1732 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Constants

NSURL Schemes
These schemes are the ones that NSURL can parse.

extern NSString *NSURLFileScheme;

Constants
NSURLFileScheme

Identifies a URL that points to a file on a mounted volume.

Available in Mac OS X v10.0 and later.

Declared in NSURL.h.

Discussion
For more information, see initWithScheme:host:path: (page 1724).

Declared In
NSURL.h

NSURLHandle FTP Property Keys
FTP-specific property keys.

extern NSString *NSFTPPropertyUserLoginKey;
extern NSString *NSFTPPropertyUserPasswordKey;
extern NSString *NSFTPPropertyActiveTransferModeKey;
extern NSString *NSFTPPropertyFileOffsetKey;
extern NSString *NSFTPPropertyFTPProxy;

Constants
NSFTPPropertyUserLoginKey

Key for the user login, returned as an NSString object.

The default value for this key is “anonymous”.

Available in Mac OS X v10.2 and later.

Deprecated in Mac OS X v10.4.

Declared in NSURLHandle.h.

NSFTPPropertyUserPasswordKey
Key for the user password, returned as an NSString object.

The default value for this key is "NSURLHandle@apple.com".

Available in Mac OS X v10.2 and later.

Deprecated in Mac OS X v10.4.

Declared in NSURLHandle.h.

Constants 1733
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

NSFTPPropertyActiveTransferModeKey
Key for retrieving whether in active transfer mode, returned as a boolean wrapped in an NSNumber
object.

The default value for this key is NO (passive mode).

Available in Mac OS X v10.2 and later.

Deprecated in Mac OS X v10.4.

Declared in NSURLHandle.h.

NSFTPPropertyFileOffsetKey
Key for retrieving the file offset, returned as an NSNumber object. The default value for this key is zero.

Available in Mac OS X v10.2 and later.

Deprecated in Mac OS X v10.4.

Declared in NSURLHandle.h.

NSFTPPropertyFTPProxy
NSDictionary containing proxy information to use in place of proxy identified in
SystemConfiguration.framework.

To avoid any proxy use, pass an empty dictionary.

Available in Mac OS X v10.3 and later.

Deprecated in Mac OS X v10.4.

Declared in NSURLHandle.h.

Discussion
Pass these keys to NSURLHandle’s propertyForKeyIfAvailable: (page 1803) to request specific data. All
keys are optional. The default configuration allows an anonymous, passive-mode, one-off transfer of the
specified URL.

Declared In
NSURL.h

NSURLHandle HTTP Property Keys
HTTP-specific property keys.

extern NSString *NSHTTPPropertyStatusCodeKey;
extern NSString *NSHTTPPropertyStatusReasonKey;
extern NSString *NSHTTPPropertyServerHTTPVersionKey;
extern NSString *NSHTTPPropertyRedirectionHeadersKey;
extern NSString *NSHTTPPropertyErrorPageDataKey;
extern NSString *NSHTTPPropertyHTTPProxy;

Constants
NSHTTPPropertyStatusCodeKey

Key for the status code, returned as an integer wrapped in an NSNumber object.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Declared in NSURLHandle.h.

1734 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

NSHTTPPropertyStatusReasonKey
Key for the remainder of the HTTP status line following the status code, returned as an NSString
object.

This string usually contains an explanation of the error in English. Because this string is taken straight
from the server response, it’s not localized.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Declared in NSURLHandle.h.

NSHTTPPropertyServerHTTPVersionKey
Key for retrieving the HTTP version as an NSString object containing the initial server status line up
to the first space.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Declared in NSURLHandle.h.

NSHTTPPropertyRedirectionHeadersKey
Key for retrieving the redirection headers as an NSDictionary object with each header value keyed
to the header name.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Declared in NSURLHandle.h.

NSHTTPPropertyErrorPageDataKey
Key for retrieving an error page as an NSData object.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Declared in NSURLHandle.h.

NSHTTPPropertyHTTPProxy
Key for retrieving the NSDictionary object containing proxy information to use in place of proxy
identified in SystemConfiguration.framework.

To avoid any proxy use, pass an empty dictionary.

Available in Mac OS X v10.2 and later.

Deprecated in Mac OS X v10.4.

Declared in NSURLHandle.h.

Discussion
Pass these keys to NSURLHandle's propertyForKeyIfAvailable: (page 1803) to request specific data.

Declared In
NSURL.h

Constants 1735
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

1736 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 147

NSURL Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLAuthenticationChallenge.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

NSURLAuthenticationChallenge encapsulates a challenge from a server requiring authentication from the
client.

Tasks

Creating an Authentication Challenge Instance

– initWithAuthenticationChallenge:sender: (page 1739)
Returns an initialized NSURLAuthenticationChallenge object copying the properties from challenge,
and setting the authentication sender to sender.

– initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse:error:sender: (page
1739)

Returns an initialized NSURLAuthenticationChallenge object for the specified space using the
credential, or nil if there is no proposed credential.

Getting Authentication Challenge Properties

– error (page 1738)
Returns the NSError object representing the last authentication failure.

– failureResponse (page 1738)
Returns the NSURLResponse object representing the last authentication failure.

Overview 1737
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 148

NSURLAuthenticationChallenge Class
Reference

– previousFailureCount (page 1739)
Returns the receiver’s count of failed authentication attempts.

– proposedCredential (page 1740)
Returns the proposed credential for this challenge.

– protectionSpace (page 1740)
Returns the receiver’s protection space.

– sender (page 1740)
Returns the receiver’s sender.

Instance Methods

error
Returns the NSError object representing the last authentication failure.

- (NSError *)error

Discussion
This method returns nil if the protocol doesn’t use errors to indicate an authentication failure.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– failureResponse (page 1738)

Declared In
NSURLAuthenticationChallenge.h

failureResponse
Returns the NSURLResponse object representing the last authentication failure.

- (NSURLResponse *)failureResponse

Discussion
This method will return nil if the protocol doesn’t use responses to indicate an authentication failure.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– error (page 1738)

Declared In
NSURLAuthenticationChallenge.h

1738 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 148

NSURLAuthenticationChallenge Class Reference

initWithAuthenticationChallenge:sender:
Returns an initialized NSURLAuthenticationChallenge object copying the properties from challenge, and
setting the authentication sender to sender.

- (id)initWithAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge
sender:(id < NSURLAuthenticationChallengeSender >)sender

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse:error:sender: (page
1739)

Declared In
NSURLAuthenticationChallenge.h

initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse:
error:sender:
Returns an initialized NSURLAuthenticationChallenge object for the specified space using the credential,
or nil if there is no proposed credential.

- (id)initWithProtectionSpace:(NSURLProtectionSpace *)space
proposedCredential:(NSURLCredential *)credential
previousFailureCount:(NSInteger)count failureResponse:(NSURLResponse *)response
error:(NSError *)error sender:(id < NSURLAuthenticationChallengeSender >)sender

Discussion
The previous failure count is set to count. The response should contain the NSURLResponse for the
authentication failure, or nil if it is not applicable to the challenge. The error should contain the NSError
for the authentication failure, or nil if it is not applicable to the challenge. The object that initiated the
authentication challenge is set to sender.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– initWithAuthenticationChallenge:sender: (page 1739)

Declared In
NSURLAuthenticationChallenge.h

previousFailureCount
Returns the receiver’s count of failed authentication attempts.

- (NSInteger)previousFailureCount

Instance Methods 1739
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 148

NSURLAuthenticationChallenge Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLAuthenticationChallenge.h

proposedCredential
Returns the proposed credential for this challenge.

- (NSURLCredential *)proposedCredential

Discussion
This method will return nil if there is no default credential for this challenge.

If the proposed credential is not nil and returns YESwhen sent the message hasPassword (page 1769), then
the credential is ready to use as-is. If the proposed credential returns NO for hasPassword, then the credential
provides a default user name and the client must prompt the user for a corresponding password.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLAuthenticationChallenge.h

protectionSpace
Returns the receiver’s protection space.

- (NSURLProtectionSpace *)protectionSpace

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLAuthenticationChallenge.h

sender
Returns the receiver’s sender.

- (id < NSURLAuthenticationChallengeSender >)sender

Discussion
The sender should be sent a useCredential:forAuthenticationChallenge: (page 2126),
continueWithoutCredentialForAuthenticationChallenge: (page 2126) or
cancelAuthenticationChallenge: (page 2126) when the client is finished processing the authentication
challenge.

1740 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 148

NSURLAuthenticationChallenge Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLAuthenticationChallenge.h

Instance Methods 1741
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 148

NSURLAuthenticationChallenge Class Reference

1742 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 148

NSURLAuthenticationChallenge Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLCache.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Related sample code URL CacheInfo

Overview

NSURLCache implements the caching of responses to URL load requests by mapping NSURLRequest objects
to NSCachedURLResponse objects. It is a composite of an in-memory and an on-disk cache.

Methods are provided to manipulate the sizes of each of these caches as well as to control the path on disk
to use for persistent storage of cache data.

Tasks

Getting and Setting Shared Cache

+ sharedURLCache (page 1745)
Returns the shared NSURLCache instance.

+ setSharedURLCache: (page 1744)
Sets the shared NSURLCache instance to a specified cache object.

Creating a New Cache Object

– initWithMemoryCapacity:diskCapacity:diskPath: (page 1747)
Initializes an NSURLCache object with the specified values.

Overview 1743
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 149

NSURLCache Class Reference

Getting and Storing Cached Objects

– cachedResponseForRequest: (page 1746)
Returns the cached URL response in the cache for the specified URL request.

– storeCachedResponse:forRequest: (page 1750)
Stores a cached URL response for a specified request

Removing Cached Objects

– removeAllCachedResponses (page 1748)
Clears the receiver’s cache, removing all stored cached URL responses.

– removeCachedResponseForRequest: (page 1749)
Removes the cached URL response for a specified URL request.

Getting and Setting On-disk Cache Properties

– currentDiskUsage (page 1746)
Returns the current size of the receiver’s on-disk cache, in bytes.

– diskCapacity (page 1747)
Returns the capacity of the receiver’s on-disk cache, in bytes.

– setDiskCapacity: (page 1749)
Sets the receiver’s on-disk cache capacity

Getting and Setting In-memory Cache Properties

– currentMemoryUsage (page 1747)
Returns the current size of the receiver’s in-memory cache, in bytes.

– memoryCapacity (page 1748)
Returns the capacity of the receiver’s in-memory cache, in bytes.

– setMemoryCapacity: (page 1750)
Sets the receiver’s in-memory cache capacity.

Class Methods

setSharedURLCache:
Sets the shared NSURLCache instance to a specified cache object.

+ (void)setSharedURLCache:(NSURLCache *)cache

Parameters
cache

The cache object to use as the shared cache object.

1744 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 149

NSURLCache Class Reference

Discussion
Applications that have special caching requirements or constraints should use this method to specify an
NSURLCache instance with customized cache settings.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ sharedURLCache (page 1745)

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

sharedURLCache
Returns the shared NSURLCache instance.

+ (NSURLCache *)sharedURLCache

Return Value
The shared NSURLCache instance.

Discussion
The disk path is set to: <user_home_directory>/Library/Caches/<current_process_name>. The
user’s home directory is determined by calling NSHomeDirectory (page 2199) and the current process name
is determined using [[NSProcessInfo processInfo] processName].

Applications that do not have special caching requirements or constraints should find the default shared
cache instance acceptable. Applications with more specific needs can create a custom NSURLCache object
and set it as the shared cache instance using setSharedURLCache: (page 1744).

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ setSharedURLCache: (page 1744)

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

Class Methods 1745
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 149

NSURLCache Class Reference

Instance Methods

cachedResponseForRequest:
Returns the cached URL response in the cache for the specified URL request.

- (NSCachedURLResponse *)cachedResponseForRequest:(NSURLRequest *)request

Parameters
request

The URL request whose cached response is desired.

Return Value
The cached URL response for request, or nil if no response has been cached.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– storeCachedResponse:forRequest: (page 1750)

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

currentDiskUsage
Returns the current size of the receiver’s on-disk cache, in bytes.

- (NSUInteger)currentDiskUsage

Return Value
The current size of the receiver’s on-disk cache, in bytes.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– diskCapacity (page 1747)
– setDiskCapacity: (page 1749)

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

1746 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 149

NSURLCache Class Reference

currentMemoryUsage
Returns the current size of the receiver’s in-memory cache, in bytes.

- (NSUInteger)currentMemoryUsage

Return Value
The current size of the receiver’s in-memory cache, in bytes.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– memoryCapacity (page 1748)
– setMemoryCapacity: (page 1750)

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

diskCapacity
Returns the capacity of the receiver’s on-disk cache, in bytes.

- (NSUInteger)diskCapacity

Return Value
The capacity of the receiver’s on-disk cache, in bytes.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– currentDiskUsage (page 1746)
– setDiskCapacity: (page 1749)

Declared In
NSURLCache.h

initWithMemoryCapacity:diskCapacity:diskPath:
Initializes an NSURLCache object with the specified values.

- (id)initWithMemoryCapacity:(NSUInteger)memoryCapacity
diskCapacity:(NSUInteger)diskCapacity diskPath:(NSString *)path

Parameters
memoryCapacity

The memory capacity of the cache, in bytes.

Instance Methods 1747
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 149

NSURLCache Class Reference

diskCapacity
The disk capacity of the cache, in bytes.

path
The location at which to store the on-disk cache.

Return Value
The initialized NSURLCache object.

Discussion
The returned NSURLCache is backed by disk, so developers can be more liberal with space when choosing
the capacity for this kind of cache. A disk cache measured in the tens of megabytes should be acceptable in
most cases.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ sharedURLCache (page 1745)

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

memoryCapacity
Returns the capacity of the receiver’s in-memory cache, in bytes.

- (NSUInteger)memoryCapacity

Return Value
The capacity of the receiver’s in-memory cache, in bytes.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– currentMemoryUsage (page 1747)
– setMemoryCapacity: (page 1750)

Declared In
NSURLCache.h

removeAllCachedResponses
Clears the receiver’s cache, removing all stored cached URL responses.

- (void)removeAllCachedResponses

1748 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 149

NSURLCache Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– removeCachedResponseForRequest: (page 1749)

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

removeCachedResponseForRequest:
Removes the cached URL response for a specified URL request.

- (void)removeCachedResponseForRequest:(NSURLRequest *)request

Parameters
request

The URL request whose cached URL response should be removed. If there is no corresponding cached
URL response, no action is taken.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– removeAllCachedResponses (page 1748)

Declared In
NSURLCache.h

setDiskCapacity:
Sets the receiver’s on-disk cache capacity

- (void)setDiskCapacity:(NSUInteger)diskCapacity

Parameters
diskCapacity

The new on-disk cache capacity, in bytes. The on-disk cache will truncate its contents to diskCapacity,
if necessary.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– currentDiskUsage (page 1746)
– diskCapacity (page 1747)

Instance Methods 1749
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 149

NSURLCache Class Reference

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

setMemoryCapacity:
Sets the receiver’s in-memory cache capacity.

- (void)setMemoryCapacity:(NSUInteger)memoryCapacity

Parameters
memoryCapacity

The new in-memory cache capacity, in bytes. The in-memory cache will truncate its contents to
memoryCapacity, if necessary.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– currentMemoryUsage (page 1747)
– memoryCapacity (page 1748)

Related Sample Code
URL CacheInfo

Declared In
NSURLCache.h

storeCachedResponse:forRequest:
Stores a cached URL response for a specified request

- (void)storeCachedResponse:(NSCachedURLResponse *)cachedResponse
forRequest:(NSURLRequest *)request

Parameters
cachedResponse

The cached URL response to store.

request
The request for which the cached URL response is being stored.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– cachedResponseForRequest: (page 1746)

1750 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 149

NSURLCache Class Reference

Declared In
NSURLCache.h

Instance Methods 1751
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 149

NSURLCache Class Reference

1752 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 149

NSURLCache Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLConnection.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Related sample code URL CacheInfo

Overview

An NSURLConnection object provides support to perform the loading of a URL request. The interface for
NSURLConnection is sparse, providing only the controls to start and cancel asynchronous loads of a URL
request.

NSURLConnection’s delegate methods allow an object to receive informational callbacks about the
asynchronous load of a URL request. Other delegate methods provide facilities that allow the delegate to
customize the process of performing an asynchronous URL load.

Note that these delegate methods will be called on the thread that started the asynchronous load operation
for the associated NSURLConnection object.

The following contract governs the delegate methods defined in this interface:

 ■ Zero or moreconnection:willSendRequest:redirectResponse: (page 1764) messages will be sent
to the delegate before any further messages are sent if it is determined that the download must redirect
to a new location. The delegate can allow the redirect, modify the destination or deny the redirect.

 ■ Zero or more connection:didReceiveAuthenticationChallenge: (page 1761) messages will be
sent to the delegate if it is necessary to authenticate in order to download the request and
NSURLConnection does not already have authenticated credentials.

 ■ Zero or moreconnection:didCancelAuthenticationChallenge: (page 1761) messages will be sent
to the delegate if the connection cancels the authentication challenge due to the protocol implementation
encountering an error.

Overview 1753
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

 ■ Zero or more connection:didReceiveResponse: (page 1763) messages will be sent to the delegate
before receiving a connection:didReceiveData: (page 1762) message. The only case where
connection:didReceiveResponse: is not sent to a delegate is when the protocol implementation
encounters an error before a response could be created.

 ■ Zero or more connection:didReceiveData: (page 1762) messages will be sent before any of the
following messages are sent to the delegate: connection:willCacheResponse: (page 1764),
connectionDidFinishLoading: (page 1765), connection:didFailWithError: (page 1761).

 ■ Zero or one connection:willCacheResponse: (page 1764) messages will be sent to the delegate after
connection:didReceiveData: (page 1762) is sent but before aconnectionDidFinishLoading: (page
1765) message is sent.

 ■ Unless a NSURLConnection receives a cancel (page 1758) message, the delegate will receive one and
only one ofconnectionDidFinishLoading: (page 1765), orconnection:didFailWithError: (page
1761) message, but never both. In addition, once either of messages are sent, the delegate will receive no
further messages for the given NSURLConnection.

NSURLConnection also has a convenience class method,
sendSynchronousRequest:returningResponse:error: (page 1757), to load a URL request synchronously.

NSHTTPURLResponse is a subclass of NSURLResponse that provides methods for accessing information
specific to HTTP protocol responses. An NSHTTPURLResponse object represents a response to an HTTP URL
load request.

Tasks

Preflighting a Request

+ canHandleRequest: (page 1756)
Returns whether a request can be handled based on a "preflight" evaluation.

Loading Data Synchronously

+ sendSynchronousRequest:returningResponse:error: (page 1757)
Performs a synchronous load of the specified URL request.

Loading Data Asynchronously

+ connectionWithRequest:delegate: (page 1756)
Creates and returns an initialized URL connection and begins to load the data for the URL request.

– initWithRequest:delegate: (page 1758)
Returns an initialized URL connection and begins to load the data for the URL request.

– initWithRequest:delegate:startImmediately: (page 1759)
Returns an initialized URL connection and begins to load the data for the URL request, if specified.

– start (page 1760)
Causes the receiver to begin loading data, if it has not already.

1754 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

Stopping a Connection

– cancel (page 1758)
Cancels an asynchronous load of a request.

Runloop Scheduling

– scheduleInRunLoop:forMode: (page 1759)
Determines the runloop and mode that the receiver uses to send delegate messages to the receiver.

– unscheduleFromRunLoop:forMode: (page 1760)
Causes the receiver to stop sending delegate messages using the specified runloop and mode.

Connection Authentication

– connection:didCancelAuthenticationChallenge: (page 1761) delegate method
Sent when a connection cancels an authentication challenge.

– connection:didReceiveAuthenticationChallenge: (page 1761) delegate method
Sent when a connection must authenticate a challenge in order to download its request.

Connection Data and Responses

– connection:willCacheResponse: (page 1764) delegate method
Sent before the connection stores a cached response in the cache, to give the delegate an opportunity
to alter it.

– connection:didReceiveResponse: (page 1763) delegate method
Sent when the connection has received sufficient data to construct the URL response for its request.

– connection:didReceiveData: (page 1762) delegate method
Sent as a connection loads data incrementally.

– connection:willSendRequest:redirectResponse: (page 1764) delegate method
Sent when the connection determines that it must change URLs in order to continue loading a request.

Connection Completion

– connection:didFailWithError: (page 1761) delegate method
Sent when a connection fails to load its request successfully.

– connectionDidFinishLoading: (page 1765) delegate method
Sent when a connection has finished loading successfully.

Tasks 1755
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

Class Methods

canHandleRequest:
Returns whether a request can be handled based on a "preflight" evaluation.

+ (BOOL)canHandleRequest:(NSURLRequest *)request

Parameters
request

The request to evaluate.

Return Value
YES if a “preflight” operation determines that a connection with request can be created and the associated
I/O can be started, NO otherwise.

Discussion
The result of this method is valid as long as no NSURLProtocol classes are registered or unregistered, and
the specified request remains unchanged. Applications should be prepared to handle failures even if they
have performed request preflighting by calling this method.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ registerClass: (page 1819)
+ unregisterClass: (page 1821)

Declared In
NSURLConnection.h

connectionWithRequest:delegate:
Creates and returns an initialized URL connection and begins to load the data for the URL request.

+ (NSURLConnection *)connectionWithRequest:(NSURLRequest *)request
delegate:(id)delegate

Parameters
request

The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for the
loading process.

delegate
The delegate object for the connection. The delegate will receive delegate messages as the load
progresses. Messages to the delegate will be sent on the thread that calls this method. For the
connection to work correctly the calling thread’s run loop must be operating in the default run loop
mode.]

Return Value
The URL connection for the URL request. Returns nil if a connection can't be created.

1756 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– initWithRequest:delegate: (page 1758)

Declared In
NSURLConnection.h

sendSynchronousRequest:returningResponse:error:
Performs a synchronous load of the specified URL request.

+ (NSData *)sendSynchronousRequest:(NSURLRequest *)request
returningResponse:(NSURLResponse **)response error:(NSError **)error

Parameters
request

The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for the
loading process.

response
Out parameter for the URL response returned by the server.

error
Out parameter used if an error occurs while processing the request. May be NULL.

Return Value
The downloaded data for the URL request. Returns nil if a connection could not be created or if the download
fails.

Discussion
A synchronous load is built on top of the asynchronous loading code made available by the class. The calling
thread is blocked while the asynchronous loading system performs the URL load on a thread spawned
specifically for this load request. No special threading or run loop configuration is necessary in the calling
thread in order to perform a synchronous load.

If authentication is required in order to download the request, the required credentials must be specified as
part of the URL. If authentication fails, or credentials are missing, the connection will attempt to continue
without credentials.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLConnection.h

Class Methods 1757
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

Instance Methods

cancel
Cancels an asynchronous load of a request.

- (void)cancel

Discussion
Once this method is called, the receiver’s delegate will no longer receive any messages for this
NSURLConnection.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ connectionWithRequest:delegate: (page 1756)
– initWithRequest:delegate: (page 1758)

Declared In
NSURLConnection.h

initWithRequest:delegate:
Returns an initialized URL connection and begins to load the data for the URL request.

- (id)initWithRequest:(NSURLRequest *)request delegate:(id)delegate

Parameters
request

The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for the
loading process.

delegate
The delegate object for the connection. The delegate will receive delegate messages as the load
progresses. Messages to the delegate will be sent on the thread that calls this method. By default, for
the connection to work correctly the calling thread’s run loop must be operating in the default run
loop mode. See scheduleInRunLoop:forMode: (page 1759) to change the runloop and mode.

Return Value
The URL connection for the URL request. Returns nil if a connection can't be initialized.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ connectionWithRequest:delegate: (page 1756)
– initWithRequest:delegate:startImmediately: (page 1759)

1758 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

Declared In
NSURLConnection.h

initWithRequest:delegate:startImmediately:
Returns an initialized URL connection and begins to load the data for the URL request, if specified.

- (id)initWithRequest:(NSURLRequest *)request delegate:(id)delegate
startImmediately:(BOOL)startImmediately

Parameters
request

The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for the
loading process.

delegate
The delegate object for the connection. The delegate will receive delegate messages as the load
progresses. Messages to the delegate will be sent on the thread that calls this method. By default, for
the connection to work correctly the calling thread’s run loop must be operating in the default run
loop mode. See scheduleInRunLoop:forMode: (page 1759) to change the runloop and mode.]

startImmediately
YES if the connection should being loading data immediately, otherwise NO.

Return Value
The URL connection for the URL request. Returns nil if a connection can't be initialized.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
URL CacheInfo

Declared In
NSURLConnection.h

scheduleInRunLoop:forMode:
Determines the runloop and mode that the receiver uses to send delegate messages to the receiver.

- (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The NSRunloop instance to use for delegate messages.

mode
The mode in which to supply delegate messages.

Discussion
At creation, a connection is scheduled on the current thread (the one where the creation takes place) in the
default mode. That can be changed to add or remove runloop + mode pairs using the following methods.
It is permissible to be scheduled on multiple run loops and modes, or on the same run loop in multiple
modes, so scheduling in one place does not cause unscheduling in another.

Instance Methods 1759
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

You may call these methods after the connection has started. However, if the connection is scheduled on
multiple threads or if you are not calling these methods from the thread where the connection is scheduled,
there is a race between these methods and the delivery of delegate methods on the other threads. The caller
must either be prepared for additional delegation messages on the other threads, or must halt the run loops
on the other threads before calling these methods to guarantee that no further callbacks will occur.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSURLConnection.h

start
Causes the receiver to begin loading data, if it has not already.

- (void)start

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSURLConnection.h

unscheduleFromRunLoop:forMode:
Causes the receiver to stop sending delegate messages using the specified runloop and mode.

- (void)unscheduleFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters
aRunLoop

The runloop instance to unschedule.

mode
The mode to unschedule.

Discussion
At creation, a connection is scheduled on the current thread (the one where the creation takes place) in the
default mode. That can be changed to add or remove runloop + mode pairs using the following methods.
It is permissible to be scheduled on multiple run loops and modes, or on the same run loop in multiple
modes, so scheduling in one place does not cause unscheduling in another.

You may call these methods after the connection has started. However, if the connection is scheduled on
multiple threads or if you are not calling these methods from the thread where the connection is scheduled,
there is a race between these methods and the delivery of delegate methods on the other threads. The caller
must either be prepared for additional delegation messages on the other threads, or must halt the run loops
on the other threads before calling these methods to guarantee that no further callbacks will occur.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSURLConnection.h

1760 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

Delegate Methods

connection:didCancelAuthenticationChallenge:
Sent when a connection cancels an authentication challenge.

- (void)connection:(NSURLConnection *)connection
didCancelAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
connection

The connection sending the message.

challenge
The challenge that was canceled.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLConnection.h

connection:didFailWithError:
Sent when a connection fails to load its request successfully.

- (void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)error

Parameters
connection

The connection sending the message.

error
An error object containing details of why the connection failed to load the request successfully.

Discussion
Once the delegate receives this message, it will receive no further messages for connection.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLConnection.h

connection:didReceiveAuthenticationChallenge:
Sent when a connection must authenticate a challenge in order to download its request.

- (void)connection:(NSURLConnection *)connection
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Delegate Methods 1761
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

Parameters
connection

The connection sending the message.

challenge
The challenge that connection must authenticate in order to download its request.

Discussion
This method gives the delegate the opportunity to determine the course of action taken for the challenge:
provide credentials, continue without providing credentials, or cancel the authentication challenge and the
download.

The delegate can determine the number of previous authentication challenges by sending the message
previousFailureCount (page 1739) to challenge.

If the previous failure count is 0 and the value returned by proposedCredential (page 1740) is nil, the
delegate can create a new NSURLCredential object, providing a user name and password, and send a
useCredential:forAuthenticationChallenge: (page 2126) message to[challenge sender], passing
the credential and challenge as parameters. If proposedCredential is not nil, the value is a credential
from the URL or the shared credential storage that can be provided to the user as feedback.

The delegate may decide to abandon further attempts at authentication at any time by sending [challenge
sender] a continueWithoutCredentialForAuthenticationChallenge: (page 2126) or a
cancelAuthenticationChallenge: (page 2126) message. The specific action will be implementation
dependent.

If the delegate implements this method, the download will suspend until [challenge sender] is sent one
of the following messages: useCredential:forAuthenticationChallenge: (page 2126),
continueWithoutCredentialForAuthenticationChallenge: (page 2126) or
cancelAuthenticationChallenge: (page 2126).

If the delegate does not implement this method the default implementation is used. If a valid credential for
the request is provided as part of the URL, or is available from the NSURLCredentialStorage the [challenge
sender] is sent a useCredential:forAuthenticationChallenge: (page 2126) with the credential. If the
challenge has no credential or the credentials fail to authorize access, then
continueWithoutCredentialForAuthenticationChallenge: (page 2126) is sent to [challenge
sender] instead.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– cancelAuthenticationChallenge: (page 2126)
– continueWithoutCredentialForAuthenticationChallenge: (page 2126)
– useCredential:forAuthenticationChallenge: (page 2126)

Declared In
NSURLConnection.h

connection:didReceiveData:
Sent as a connection loads data incrementally.

1762 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data

Parameters
connection

The connection sending the message.

data
The newly available data. The delegate should concatenate the contents of each data object delivered
to build up the complete data for a URL load.

Discussion
This method provides the only way for an asynchronous delegate to retrieve the loaded data. It is the
responsibility of the delegate to retain or copy this data as it is delivered.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLConnection.h

connection:didReceiveResponse:
Sent when the connection has received sufficient data to construct the URL response for its request.

- (void)connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse
 *)response

Parameters
connection

The connection sending the message.

response
The URL response for the connection's request. This object is immutable and will not be modified by
the URL loading system once it is presented to the delegate.

Discussion
In rare cases, for example in the case of an HTTP load where the content type of the load data is
multipart/x-mixed-replace, the delegate will receive more than one
connection:didReceiveResponse: message. In the event this occurs, delegates should discard all data
previously delivered by connection:didReceiveData:, and should be prepared to handle the, potentially
different, MIME type reported by the newly reported URL response.

The only case where this message is not sent to the delegate is when the protocol implementation encounters
an error before a response could be created.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLConnection.h

Delegate Methods 1763
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

connection:willCacheResponse:
Sent before the connection stores a cached response in the cache, to give the delegate an opportunity to
alter it.

- (NSCachedURLResponse *)connection:(NSURLConnection *)connection
willCacheResponse:(NSCachedURLResponse *)cachedResponse

Parameters
connection

The connection sending the message.

cachedResponse
The proposed cached response to store in the cache.

Return Value
The actual cached response to store in the cache. The delegate may return cachedResponse unmodified,
return a modified cached response, or return nil if no cached response should be stored for the connection.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLConnection.h

connection:willSendRequest:redirectResponse:
Sent when the connection determines that it must change URLs in order to continue loading a request.

- (NSURLRequest *)connection:(NSURLConnection *)connection
willSendRequest:(NSURLRequest *)request redirectResponse:(NSURLResponse
*)redirectResponse

Parameters
connection

The connection sending the message.

request
The proposed redirected request. The delegate should inspect the redirected request to verify that
it meets its needs, and create a copy with new attributes to return to the connection if necessary.

redirectResponse
The URL response that caused the redirect. May be nil in cases where this method is not being sent
as a result of involving the delegate in redirect processing.

Return Value
The actual URL request to use in light of the redirection response. The delegate may copy and modify request
as necessary to change its attributes, return request unmodified, or return nil.

Discussion
If the delegate wishes to cancel the redirect, it should call the connection object’s cancel method.
Alternatively, the delegate method can return nil to cancel the redirect, and the connection will continue
to process. This has special relevance in the case where redirectResponse is not nil. In this case, any data
that is loaded for the connection will be sent to the delegate, and the delegate will receive a
connectionDidFinishLoading or connection:didFailLoadingWithError:message, as appropriate.

1764 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

Special Considerations

The delegate can receive this message as a result of transforming a request’s URL to its canonical form, or
for protocol-specific reasons, such as an HTTP redirect. The delegate implementation should be prepared to
receive this message multiple times.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLConnection.h

connectionDidFinishLoading:
Sent when a connection has finished loading successfully.

- (void)connectionDidFinishLoading:(NSURLConnection *)connection

Parameters
connection

The connection sending the message.

Discussion
The delegate will receive no further messages for connection.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLConnection.h

Delegate Methods 1765
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

1766 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 150

NSURLConnection Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLCredential.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

NSURLCredential is an immutable object representing an authentication credential consisting of the user
name, a password and the type of persistent storage to use, if any.

Adopted Protocols

NSCopying
copyWithZone: (page 2042)

Tasks

Creating a Credential

+ credentialWithUser:password:persistence: (page 1768)
Creates and returns an NSURLCredential object with a given user name and password using a given
persistence setting.

– initWithUser:password:persistence: (page 1769)
Returns an NSURLCredential object initialized with a given user name and password using a given
persistence setting.

Overview 1767
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 151

NSURLCredential Class Reference

Getting Credential Properties

– hasPassword (page 1769)
Returns a Boolean value that indicates whether the receiver has a password.

– password (page 1770)
Returns the receiver’s password.

– persistence (page 1770)
Returns the receiver’s persistence setting.

– user (page 1770)
Returns the receiver’s user name.

Class Methods

credentialWithUser:password:persistence:
Creates and returns an NSURLCredential object with a given user name and password using a given
persistence setting.

+ (NSURLCredential *)credentialWithUser:(NSString *)user password:(NSString
*)password persistence:(NSURLCredentialPersistence)persistence

Parameters
user

The user for the credential.

password
The password for user.

persistence
The persistence setting for the credential.

Return Value
An NSURLCredential object with user name user, password password, and using persistence setting
persistence.

Discussion
If persistence is NSURLCredentialPersistencePermanent the credential is stored in the keychain.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– initWithUser:password:persistence: (page 1769)

Declared In
NSURLCredential.h

1768 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 151

NSURLCredential Class Reference

Instance Methods

hasPassword
Returns a Boolean value that indicates whether the receiver has a password.

- (BOOL)hasPassword

Return Value
YES if the receiver has a password, NO otherwise.

Discussion
This method does not attempt to retrieve the password.

If this credential's password is stored in the user’s keychain, password (page 1770) may return NO even if this
method returns YES, since getting the password may fail, or the user may refuse access.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLCredential.h

initWithUser:password:persistence:
Returns an NSURLCredential object initialized with a given user name and password using a given
persistence setting.

- (id)initWithUser:(NSString *)user password:(NSString *)password
persistence:(NSURLCredentialPersistence)persistence

Parameters
user

The user for the credential.

password
The password for user.

persistence
The persistence setting for the credential.

Return Value
An NSURLCredential object initialized with user name user, password password, and using persistence
setting persistence.

Discussion
If persistence is NSURLCredentialPersistencePermanent the credential is stored in the keychain.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Instance Methods 1769
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 151

NSURLCredential Class Reference

See Also
+ credentialWithUser:password:persistence: (page 1768)

Declared In
NSURLCredential.h

password
Returns the receiver’s password.

- (NSString *)password

Return Value
The receiver’s password.

Discussion
If the password is stored in the user’s keychain, this method may result in prompting the user for access.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– hasPassword (page 1769)

Declared In
NSURLCredential.h

persistence
Returns the receiver’s persistence setting.

- (NSURLCredentialPersistence)persistence

Return Value
The receiver’s persistence setting.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLCredential.h

user
Returns the receiver’s user name.

- (NSString *)user

Return Value
The receiver’s user name.

1770 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 151

NSURLCredential Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLCredential.h

Constants

NSURLCredentialPersistence
These constants specify how long the credential will be kept.

typedef enum {
 NSURLCredentialPersistenceNone,
 NSURLCredentialPersistenceForSession,
 NSURLCredentialPersistencePermanent
} NSURLCredentialPersistence;

Constants
NSURLCredentialPersistenceNone

Credential won't be stored.

Available in Mac OS X v10.2 and later.

Declared in NSURLCredential.h.

NSURLCredentialPersistenceForSession
Credential will be stored only for this session.

Available in Mac OS X v10.2 and later.

Declared in NSURLCredential.h.

NSURLCredentialPersistencePermanent
Credential will be stored in the user’s keychain and shared with other applications.

Available in Mac OS X v10.2 and later.

Declared in NSURLCredential.h.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLCredential.h

Constants 1771
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 151

NSURLCredential Class Reference

1772 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 151

NSURLCredential Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLCredentialStorage.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

NSURLCredentialStorage implements a singleton (shared object) that manages the credential storage.

Tasks

Getting the Credential Storage

+ sharedCredentialStorage (page 1774)
Returns the shared URL credential storage object.

Getting and Setting Default Credentials

– defaultCredentialForProtectionSpace: (page 1775)
Returns the default credential for the specified protectionSpace.

– setDefaultCredential:forProtectionSpace: (page 1777)
Sets the default credential for a specified protection space.

Adding and Removing Credentials

– removeCredential:forProtectionSpace: (page 1776)
Removes a specified credential from the credential storage for the specified protection space.

Overview 1773
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 152

NSURLCredentialStorage Class Reference

– setCredential:forProtectionSpace: (page 1776)
Adds credential to the credential storage for the specified protectionSpace.

Retrieving Credentials

– allCredentials (page 1774)
Returns a dictionary containing the credentials for all available protection spaces.

– credentialsForProtectionSpace: (page 1775)
Returns a dictionary containing the credentials for the specified protection space.

Class Methods

sharedCredentialStorage
Returns the shared URL credential storage object.

+ (NSURLCredentialStorage *)sharedCredentialStorage

Return Value
The shared NSURLCredentialStorage object.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLCredentialStorage.h

Instance Methods

allCredentials
Returns a dictionary containing the credentials for all available protection spaces.

- (NSDictionary *)allCredentials

Return Value
A dictionary containing the credentials for all available protection spaces. The dictionary has keys
corresponding to the NSURLProtectionSpace objects. The values for the NSURLProtectionSpace keys
consist of dictionaries where the keys are user name strings, and the value is the corresponding
NSURLCredential object.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

1774 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 152

NSURLCredentialStorage Class Reference

See Also
– credentialsForProtectionSpace: (page 1775)

Declared In
NSURLCredentialStorage.h

credentialsForProtectionSpace:
Returns a dictionary containing the credentials for the specified protection space.

- (NSDictionary *)credentialsForProtectionSpace:(NSURLProtectionSpace
*)protectionSpace

Parameters
protectionSpace

The protection space whose credentials you want to retrieve.

Return Value
A dictionary containing the credentials for protectionSpace. The dictionary’s keys are user name strings,
and the value is the corresponding NSURLCredential.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– allCredentials (page 1774)

Declared In
NSURLCredentialStorage.h

defaultCredentialForProtectionSpace:
Returns the default credential for the specified protectionSpace.

- (NSURLCredential *)defaultCredentialForProtectionSpace:(NSURLProtectionSpace
*)protectionSpace

Parameters
protectionSpace

The URL protection space of interest.

Return Value
The default credential for protectionSpace or nil if no default has been set.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– setDefaultCredential:forProtectionSpace: (page 1777)

Instance Methods 1775
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 152

NSURLCredentialStorage Class Reference

Declared In
NSURLCredentialStorage.h

removeCredential:forProtectionSpace:
Removes a specified credential from the credential storage for the specified protection space.

- (void)removeCredential:(NSURLCredential *)credential
forProtectionSpace:(NSURLProtectionSpace *)protectionSpace

Parameters
credential

The credential to remove.

protectionSpace
The protection space from which to remove the credential.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– setCredential:forProtectionSpace: (page 1776)

Declared In
NSURLCredentialStorage.h

setCredential:forProtectionSpace:
Adds credential to the credential storage for the specified protectionSpace.

- (void)setCredential:(NSURLCredential *)credential
forProtectionSpace:(NSURLProtectionSpace *)protectionSpace

Parameters
credential

The credential to add. If a credential with the same user name already exists in protectionSpace,
then credential replaces the existing object.

protectionSpace
The protection space to which to add the credential.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– removeCredential:forProtectionSpace: (page 1776)

Declared In
NSURLCredentialStorage.h

1776 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 152

NSURLCredentialStorage Class Reference

setDefaultCredential:forProtectionSpace:
Sets the default credential for a specified protection space.

- (void)setDefaultCredential:(NSURLCredential *)credential
forProtectionSpace:(NSURLProtectionSpace *)protectionSpace

Parameters
credential

The URL credential to set as the default for protectionSpace. If the receiver does not contain
credential in the specified protectionSpace it will be added.

protectionSpace
The protection space whose default credential is being set.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– defaultCredentialForProtectionSpace: (page 1775)

Declared In
NSURLCredentialStorage.h

Notifications

NSURLCredentialStorageChangedNotification
This notification is posted when the set of stored credentials changes.

The notification object is the NSURLCredentialStorage instance. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLCredentialStorage.h

Notifications 1777
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 152

NSURLCredentialStorage Class Reference

1778 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 152

NSURLCredentialStorage Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLDownload.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

NSURLDownload downloads a request asynchronously and saves the data to a file. The interface for
NSURLDownload is sparse, providing methods to initialize a download, set the destination path and cancel
loading the request.

NSURLDownload’s delegate methods allow an object to receive informational callbacks about the asynchronous
load of the URL request. Other delegate methods provide facilities that allow the delegate to customize the
process of performing an asynchronous URL load.

Note that these delegate methods will be called on the thread that started the asynchronous load operation
for the associated NSURLDownload object.

 ■ A downloadDidBegin: (page 1791) message will be sent to the delegate immediately upon starting the
download.

 ■ Zero or more download:willSendRequest:redirectResponse: (page 1791) messages will be sent
to the delegate before any further messages are sent if it is determined that the download must redirect
to a new location. The delegate can allow the redirect, modify the destination or deny the redirect.

 ■ Zero or more download:didReceiveAuthenticationChallenge: (page 1788) messages will be sent
to the delegate if it is necessary to authenticate in order to download the request and NSURLDownload
does not already have authenticated credentials.

 ■ Zero or more download:didCancelAuthenticationChallenge: (page 1786) messages will be sent
to the delegate if NSURLDownload cancels the authentication challenge due to encountering a protocol
implementation error.

 ■ Zero or more download:didReceiveResponse: (page 1789) messages will be sent to the delegate
before receiving a download:didReceiveDataOfLength: (page 1789) message. The only case where
download:didReceiveResponse: is not sent to a delegate is when the protocol implementation
encounters an error before a response could be created.

Overview 1779
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

 ■ Zero or more download:didReceiveDataOfLength: (page 1789) messages will be sent before
downloadDidFinish: (page 1792) ordownload:didFailWithError: (page 1787) is sent to the delegate.

 ■ Zero or one download:decideDestinationWithSuggestedFilename: (page 1786) will be sent to
the delegate when sufficient information has been received to determine the suggested filename for
the downloaded file. The delegate will not receive this message if
setDestination:allowOverwrite: (page 1785) has already been sent to the NSURLDownload instance.

 ■ A download:didCreateDestination: (page 1787) message will be sent to the delegate when the
NSURLDownload instance creates the file on disk.

 ■ If NSURLDownload determines that the downloaded file is in a format that it is able to decode (MacBinary,
Binhex or gzip), the delegate will receive a download:shouldDecodeSourceDataOfMIMEType: (page
1790). The delegate should return YES to decode the data, NO otherwise.

 ■ Unless an NSURLDownload instance receives a cancel (page 1782) message, the delegate will receive
one and only one downloadDidFinish: (page 1792) or download:didFailWithError: (page 1787)
message, but never both. In addition, once either of messages are sent, the delegate will receive no
further messages for the given NSURLDownload.

Tasks

Creating a Download Instance

– initWithRequest:delegate: (page 1783)
Returns an initialized URL download for a URL request and begins to download the data for the
request.

Resuming Partial Downloads

+ canResumeDownloadDecodedWithEncodingMIMEType: (page 1782)
Returns whether a URL download object can resume a download that was decoded with the specified
MIME type.

– initWithResumeData:delegate:path: (page 1783)
Returns an initialized NSURLDownload object that will resume downloading the specified data to the
specified file and begins the download.

– resumeData (page 1784)
Returns the resume data for a download that is not yet complete.

– setDeletesFileUponFailure: (page 1785)
Specifies whether the receiver deletes the partially downloaded file when a download stops
prematurely.

– deletesFileUponFailure (page 1783)
Returns whether the receiver deletes partially downloaded files when a download stops prematurely.

1780 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

Canceling a Download

– cancel (page 1782)
Cancels the receiver’s download and deletes the downloaded file.

Getting Download Properties

– request (page 1784)
Returns the request that initiated the receiver’s download.

Setting the Destination Path

– setDestination:allowOverwrite: (page 1785)
Sets the destination path of the downloaded file.

Download progress

– download:decideDestinationWithSuggestedFilename: (page 1786) delegate method
The delegate receives this message when download has determined a suggested filename for the
downloaded file.

– download:didCancelAuthenticationChallenge: (page 1786) delegate method
Sent if an authentication challenge is canceled due to the protocol implementation encountering an
error.

– download:didCreateDestination: (page 1787) delegate method
Sent when the destination file is created.

– download:didFailWithError: (page 1787) delegate method
Sent if the download fails or if an I/O error occurs when the file is written to disk.

– download:didReceiveAuthenticationChallenge: (page 1788) delegate method
Sent when the URL download must authenticate a challenge in order to download the request.

– download:didReceiveDataOfLength: (page 1789) delegate method
Sent as a download object receives data incrementally.

– download:didReceiveResponse: (page 1789) delegate method
Sent when a download object has received sufficient load data to construct the NSURLResponse
object for the download.

– download:shouldDecodeSourceDataOfMIMEType: (page 1790) delegate method
Sent when a download object determines that the downloaded file is encoded to inquire whether
the file should be automatically decoded.

– download:willSendRequest:redirectResponse: (page 1791) delegate method
Sent when the download object determines that it must change URLs in order to continue loading a
request.

– downloadDidBegin: (page 1791) delegate method
Sent immediately after a download object begins a download.

Tasks 1781
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

– downloadDidFinish: (page 1792) delegate method
Sent when a download object has completed downloading successfully and has written its results to
disk.

– download:willResumeWithResponse:fromByte: (page 1790) delegate method
Sent when a download object has received a response from the server after attempting to resume a
download.

Class Methods

canResumeDownloadDecodedWithEncodingMIMEType:
Returns whether a URL download object can resume a download that was decoded with the specified MIME
type.

+ (BOOL)canResumeDownloadDecodedWithEncodingMIMEType:(NSString *)MIMEType

Parameters
MIMEType

The MIME type the caller wants to know about.

Return Value
YES if the URL download object can resume a download that was decoded with the specified MIME type, NO
otherwise.

Discussion
NSURLDownload cannot resume a download that was partially decoded in the gzip format.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSURLDownload.h

Instance Methods

cancel
Cancels the receiver’s download and deletes the downloaded file.

- (void)cancel

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

1782 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

deletesFileUponFailure
Returns whether the receiver deletes partially downloaded files when a download stops prematurely.

- (BOOL)deletesFileUponFailure

Return Value
YES if partially downloaded files should be deleted when a download stops prematurely, NO otherwise. The
default is YES.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDeletesFileUponFailure: (page 1785)

Declared In
NSURLDownload.h

initWithRequest:delegate:
Returns an initialized URL download for a URL request and begins to download the data for the request.

- (id)initWithRequest:(NSURLRequest *)request delegate:(id)delegate

Parameters
request

The URL request to download. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for the
loading process.

delegate
The delegate for the download. This object will receive delegate messages as the download progresses.
Delegate messages will be sent on the thread which calls this method. For the download to work
correctly the calling thread’s run loop must be operating in the default run loop mode.

Return Value
An initialized NSURLDownload object for request.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

initWithResumeData:delegate:path:
Returns an initialized NSURLDownload object that will resume downloading the specified data to the specified
file and begins the download.

- (id)initWithResumeData:(NSData *)resumeData delegate:(id)delegate path:(NSString
 *)path

Instance Methods 1783
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

Parameters
resumeData

Specifies the data to resume downloading.

delegate
The delegate for the download. This object will receive delegate messages as the download progresses.
Delegate messages will be sent on the thread which calls this method. For the download to work
correctly the calling thread’s run loop must be operating in the default run loop mode.

path
The location for the downloaded data.

Return Value
An initialized NSURLDownload object.

Availability
Available in Mac OS X v10.4 and later.

See Also
resumeData (page 1784)

Declared In
NSURLDownload.h

request
Returns the request that initiated the receiver’s download.

- (NSURLRequest *)request

Return Value
The URL request that initiated the receiver's download.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

resumeData
Returns the resume data for a download that is not yet complete.

- (NSData *)resumeData

Return Value
The resume data for a download that is not yet complete. This data represents the necessary state information
that an NSURLDownload object needs to resume a download. The resume data can later be used when
initializing a download withinitWithResumeData:delegate:path: (page 1783). Returnsnil if the download
is not able to be resumed.

1784 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

Discussion
Resume data will only be returned if the protocol of the download as well as the server support resuming.
In order to later resume a download you must call setDeletesFileUponFailure: (page 1785) passing NO
so the partially downloaded data is not deleted when the initial connection is lost or canceled.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSURLDownload.h

setDeletesFileUponFailure:
Specifies whether the receiver deletes the partially downloaded file when a download stops prematurely.

- (void)setDeletesFileUponFailure:(BOOL)deletesFileUponFailure

Parameters
deletesFileUponFailure

YES if partially downloaded files should be deleted when a download stops prematurely, NO otherwise.
The default is YES.

Discussion
To allow the download to be resumed in case the download ends prematurely you should call this method
as soon as possible after starting the download.

Availability
Available in Mac OS X v10.4 and later.

See Also
– deletesFileUponFailure (page 1783)

Declared In
NSURLDownload.h

setDestination:allowOverwrite:
Sets the destination path of the downloaded file.

- (void)setDestination:(NSString *)path allowOverwrite:(BOOL)allowOverwrite

Parameters
path

The path for the downloaded file.

allowOverwrite
YES if an existing file at path can be replaced, NO otherwise.

Discussion
If allowOverwrite is NO and a file already exists at path, a unique filename will be created for the
downloaded file by appending a number to the filename. The delegate can implement
download:didCreateDestination: (page 1787) to determine the filename used when the file is written
to disk.

Instance Methods 1785
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

Special Considerations

An NSURLDownload instance ignores multiple calls to this method.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– download:decideDestinationWithSuggestedFilename: (page 1786)
– download:didCreateDestination: (page 1787)

Declared In
NSURLDownload.h

Delegate Methods

download:decideDestinationWithSuggestedFilename:
The delegate receives this message when download has determined a suggested filename for the downloaded
file.

- (void)download:(NSURLDownload *)download
decideDestinationWithSuggestedFilename:(NSString *)filename

Parameters
download

The URL download object sending the message.

filename
The suggested filename for the download.

Discussion
The suggested filename is either derived from the last path component of the URL and the MIME type or, if
the download was encoded, from the encoding. If the delegate wishes to modify the path, it should send
setDestination:allowOverwrite: (page 1785) to download.

Special Considerations

The delegate will not receive this message if setDestination:allowOverwrite: has already been called
for the download.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

download:didCancelAuthenticationChallenge:
Sent if an authentication challenge is canceled due to the protocol implementation encountering an error.

1786 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

- (void)download:(NSURLDownload *)download
didCancelAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
download

The URL download object sending the message.

challenge
The authentication challenge that caused the download object to cancel the download.

Discussion
If the delegate receives this message the download will fail and the delegate will receive a
download:didFailWithError: (page 1787) message.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

download:didCreateDestination:
Sent when the destination file is created.

- (void)download:(NSURLDownload *)download didCreateDestination:(NSString *)path

Parameters
download

The URL download object sending the message.

path
The path to the destination file.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

download:didFailWithError:
Sent if the download fails or if an I/O error occurs when the file is written to disk.

- (void)download:(NSURLDownload *)download didFailWithError:(NSError *)error

Parameters
download

The URL download object sending the message.

error
The error that caused the failure of the download.

Delegate Methods 1787
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

Discussion
Any partially downloaded file will be deleted.

Special Considerations

Once the delegate receives this message, it will receive no further messages for download.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

download:didReceiveAuthenticationChallenge:
Sent when the URL download must authenticate a challenge in order to download the request.

- (void)download:(NSURLDownload *)download
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
download

The URL download object sending the message.

challenge
The URL authentication challenge that must be authenticated in order to download the request.

Discussion
This method gives the delegate the opportunity to determine the course of action taken for the challenge:
provide credentials, continue without providing credentials or cancel the authentication challenge and the
download.

The delegate can determine the number of previous authentication challenges by sending the message
previousFailureCount (page 1739) to challenge.

If the previous failure count is 0 and the value returned by proposedCredential (page 1740) is nil, the
delegate can create a new NSURLCredential object, providing a user name and password, and send a
useCredential:forAuthenticationChallenge: (page 2126) message to[challenge sender], passing
the credential and challenge as parameters. If proposedCredential is not nil, the value is a credential
from the URL or the shared credential storage that can be provided to the user as feedback.

The delegate may decide to abandon further attempts at authentication at any time by sending [challenge
sender] a continueWithoutCredentialForAuthenticationChallenge: (page 2126) or a
cancelAuthenticationChallenge: (page 2126) message. The specific action will be implementation
dependent.

If the delegate implements this method, the download will suspend until [challenge sender] is sent one
of the following messages: useCredential:forAuthenticationChallenge: (page 2126),
continueWithoutCredentialForAuthenticationChallenge: (page 2126) or
cancelAuthenticationChallenge: (page 2126).

If the delegate does not implement this method the default implementation is used. If a valid credential for
the request is provided as part of the URL, or is available from the NSURLCredentialStorage the [challenge
sender] is sent a useCredential:forAuthenticationChallenge: (page 2126) with the credential. If the

1788 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

challenge has no credential or the credentials fail to authorize access, then
continueWithoutCredentialForAuthenticationChallenge: (page 2126) is sent to [challenge
sender] instead.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

download:didReceiveDataOfLength:
Sent as a download object receives data incrementally.

- (void)download:(NSURLDownload *)download didReceiveDataOfLength:(NSUInteger)length

Parameters
download

The URL download object sending the message.

length
The amount of data received in this increment of the download, measured in bytes.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

download:didReceiveResponse:
Sent when a download object has received sufficient load data to construct the NSURLResponse object for
the download.

- (void)download:(NSURLDownload *)download didReceiveResponse:(NSURLResponse
*)response

Parameters
download

The URL download object sending the message.

response
The URL response object received as part of the download. response is immutable and will not be
modified after this method is called.

Discussion
In some rare cases, multiple responses may be received for a single download. In this case, the client should
assume that each new response resets the download progress to 0 and should check the new response for
the expected content length.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.

Delegate Methods 1789
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

download:shouldDecodeSourceDataOfMIMEType:
Sent when a download object determines that the downloaded file is encoded to inquire whether the file
should be automatically decoded.

- (BOOL)download:(NSURLDownload *)download shouldDecodeSourceDataOfMIMEType:(NSString
 *)encodingType

Parameters
download

The URL download object sending the message.

encodingType
The type of encoding used by the downloaded file. The supported encoding formats are MacBinary
("application/macbinary"), Binhex ("application/mac-binhex40") and gzip
("application/gzip").

Return Value
YES to decode the file, NO otherwise.

Special Considerations

The delegate may receive this message more than once if the file has been encoded multiple times. This
method is not called if the downloaded file is not encoded.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

download:willResumeWithResponse:fromByte:
Sent when a download object has received a response from the server after attempting to resume a download.

- (void)download:(NSURLDownload *)download willResumeWithResponse:(NSURLResponse
*)response fromByte:(long long)startingByte

Parameters
download

The URL download object sending the message.

response
The URL response received from the server in response to an attempt to resume a download.

startingByte
The location of the start of the resumed data, in bytes.

Availability
Available in Mac OS X v10.4 and later.

1790 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

Declared In
NSURLDownload.h

download:willSendRequest:redirectResponse:
Sent when the download object determines that it must change URLs in order to continue loading a request.

- (NSURLRequest *)download:(NSURLDownload *)download willSendRequest:(NSURLRequest
 *)request redirectResponse:(NSURLResponse *)redirectResponse

Parameters
download

The URL download object sending the message.

request
The proposed redirected request. The delegate should inspect the redirected request to verify that
it meets its needs, and create a copy with new attributes to return to the connection if necessary.

redirectResponse
The URL response that caused the redirect. May be nil in cases where this method is not being sent
as a result of involving the delegate in redirect processing.

Return Value
The actual URL request to use in light of the redirection response. The delegate may copy and modify request
as necessary to change its attributes, return request unmodified, or return nil.

Discussion
If the delegate wishes to cancel the redirect, it should call the download object’s cancel (page 1782) method.
Alternatively, the delegate method can return nil to cancel the redirect, and the download will continue to
process. This has special relevance in the case where redirectResponse is not nil. In this case, any data
that is loaded for the download will be sent to the delegate, and the delegate will receive a
downloadDidFinish: (page 1792) ordownload:didFailWithError: (page 1787) message, as appropriate.

Special Considerations

The delegate can receive this message as a result of transforming a request’s URL to its canonical form, or
for protocol-specific reasons, such as an HTTP redirect. The delegate implementation should be prepared to
receive this message multiple times.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

downloadDidBegin:
Sent immediately after a download object begins a download.

- (void)downloadDidBegin:(NSURLDownload *)download

Parameters
download

The URL download object sending the message.

Delegate Methods 1791
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

downloadDidFinish:
Sent when a download object has completed downloading successfully and has written its results to disk.

- (void)downloadDidFinish:(NSURLDownload *)download

Parameters
download

The URL download object sending the message.

Discussion
The delegate will receive no further messages for download.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLDownload.h

1792 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 153

NSURLDownload Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSURLHandle.h

NSURLHandle is deprecated in Mac OS X v10.4 and later. Applications that are intended for deployment on
Mac OS X v10.3 or later should use NSURLConnection or NSURLDownload instead; see URL Loading System.

Overview

NSURLHandle declares the programmatic interface for an object that accesses and manages resource data
indicated by an NSURL object. A single NSURLHandle can service multiple equivalent NSURL objects, but
only if these URLs map to the same resource.

Cocoa provides private concrete subclasses to handle HTTP and file URL schemes. If you want to implement
support for additional URL schemes, you would do so by creating a subclass of NSURLHandle. You can use
NSURL and NSURLHandle to download from FTP sites without subclassing.

Tasks

Constructing NSURLHandles

+ cachedHandleForURL: (page 1795) Deprecated in Mac OS X v10.4 and later
Returns the URL handle from the cache that has serviced the specified URL or another identical URL.
(Deprecated. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

– initWithURL:cached: (page 1801) Deprecated in Mac OS X v10.4 and later
Initializes a newly created URL handle with the specified URL. (Deprecated. Use NSURLConnection
or NSURLDownload instead; see URL Loading System.)

Overview 1793
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

Managing Subclasses

+ canInitWithURL: (page 1796) Deprecated in Mac OS X v10.4 and later
Returns whether a URL handle can be initialized with a given URL. (Deprecated. Use NSURLConnection
or NSURLDownload instead; see URL Loading System.)

+ registerURLHandleClass: (page 1796) Deprecated in Mac OS X v10.4 and later
Registers a subclass of NSURLHandle as an available subclass for handling URLs (Deprecated. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

+ URLHandleClassForURL: (page 1797) Deprecated in Mac OS X v10.4 and later
Returns the class of the URL handle that will be used for a specified URL. (Deprecated. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

Managing Clients

– addClient: (page 1797) Deprecated in Mac OS X v10.4 and later
Adds a client of the URL handle. (Deprecated. Use NSURLConnection or NSURLDownload instead;
see URL Loading System.)

– removeClient: (page 1803) Deprecated in Mac OS X v10.4 and later
Removes client as an NSURLHandleClient of the receiver. (Deprecated. Use NSURLConnection
or NSURLDownload instead; see URL Loading System.)

Setting and Getting Resource Properties

– propertyForKey: (page 1802) Deprecated in Mac OS X v10.4 and later
Returns the property for the specified key. (Deprecated. Use NSURLConnection or NSURLDownload
instead; see URL Loading System.)

– propertyForKeyIfAvailable: (page 1803) Deprecated in Mac OS X v10.4 and later
Returns the property for the specified key only if the value is already available; that is, the client doesn’t
need to do any work. (Deprecated. Use NSURLConnection or NSURLDownload instead; see URL
Loading System.)

– writeProperty:forKey: (page 1804) Deprecated in Mac OS X v10.4 and later
Sets the property of the receiver’s resource for a specified key to the specified value. (Deprecated.
Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

Loading Resource Data

– availableResourceData (page 1798) Deprecated in Mac OS X v10.4 and later
Immediately returns the currently available resource data managed by the URL handle. (Deprecated.
Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

– backgroundLoadDidFailWithReason: (page 1798) Deprecated in Mac OS X v10.4 and later
Called when a background load fails. (Deprecated. Use NSURLConnection or NSURLDownload instead;
see URL Loading System.)

– beginLoadInBackground (page 1798) Deprecated in Mac OS X v10.4 and later
Called when a background load begins. (Deprecated. Use NSURLConnection or NSURLDownload
instead; see URL Loading System.)

1794 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

– cancelLoadInBackground (page 1799) Deprecated in Mac OS X v10.4 and later
Called to cancel a load currently in progress. (Deprecated. Use NSURLConnection or NSURLDownload
instead; see URL Loading System.)

– didLoadBytes:loadComplete: (page 1799) Deprecated in Mac OS X v10.4 and later
Appends new data to the receiver’s resource data. (Deprecated. Use NSURLConnection or
NSURLDownload instead; see URL Loading System.)

– endLoadInBackground (page 1800) Deprecated in Mac OS X v10.4 and later
Halts any background loading. (Deprecated. Use NSURLConnection or NSURLDownload instead; see
URL Loading System.)

– expectedResourceDataSize (page 1800) Deprecated in Mac OS X v10.4 and later
Returns the expected length of the resource data if it is provided by the server. (Deprecated. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

– failureReason (page 1800) Deprecated in Mac OS X v10.4 and later
Returns a string describing the reason a load failed. (Deprecated. Use NSURLConnection or
NSURLDownload instead; see URL Loading System.)

– flushCachedData (page 1801) Deprecated in Mac OS X v10.4 and later
Flushes any cached data for the URL served by this URL handle. (Deprecated. Use NSURLConnection
or NSURLDownload instead; see URL Loading System.)

– loadInBackground (page 1801) Deprecated in Mac OS X v10.4 and later
Loads the receiver’s data in the background. (Deprecated. Use NSURLConnection or NSURLDownload
instead; see URL Loading System.)

– loadInForeground (page 1802) Deprecated in Mac OS X v10.4 and later
Loads the receiver’s data synchronously. (Deprecated. Use NSURLConnection or NSURLDownload
instead; see URL Loading System.)

– resourceData (page 1803) Deprecated in Mac OS X v10.4 and later
Returns the resource data managed by the receiver, loading it if necessary. (Deprecated. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

– status (page 1804) Deprecated in Mac OS X v10.4 and later
Returns the status of the receiver. (Deprecated. Use NSURLConnection or NSURLDownload instead;
see URL Loading System.)

Writing Resource Data

– writeData: (page 1804) Deprecated in Mac OS X v10.4 and later
Attempts to write a specified set of data to the location specified by the receiver’s URL. (Deprecated.
Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

Class Methods

cachedHandleForURL:
Returns the URL handle from the cache that has serviced the specified URL or another identical URL.
(Deprecated in Mac OS X v10.4 and later. Use NSURLConnection or NSURLDownload instead; see URL Loading
System.)

Class Methods 1795
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

+ (NSURLHandle *)cachedHandleForURL:(NSURL *)aURL

Parameters
aURL

The URL whose cached URL handle is desired.

Return Value
The URL handle from the cache that has serviced aURL or another identical URL. Returns nil if there is no
such handle.

Discussion
Subclasses of NSURLHandle must override this method.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

canInitWithURL:
Returns whether a URL handle can be initialized with a given URL. (Deprecated in Mac OS X v10.4 and later.
Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

+ (BOOL)canInitWithURL:(NSURL *)aURL

Parameters
aURL

The URL in question.

Return Value
YES if a URL handle can be initialized with aURL, NO otherwise.

Discussion
Subclasses of NSURLHandle must override this method to identify which URLs they can service.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

registerURLHandleClass:
Registers a subclass of NSURLHandle as an available subclass for handling URLs (Deprecated in Mac OS X
v10.4 and later. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

+ (void)registerURLHandleClass:(Class)aURLHandleSubclass

Parameters
aURLHandleSubclass

The new subclass to register as an available subclass.

Availability
Deprecated in Mac OS X v10.4 and later.

1796 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

Declared In
NSURLHandle.h

URLHandleClassForURL:
Returns the class of the URL handle that will be used for a specified URL. (Deprecated in Mac OS X v10.4 and
later. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

+ (Class)URLHandleClassForURL:(NSURL *)aURL

Parameters
aURL

The URL in question.

Return Value
The class of the URL handle that will be used for aURL.

Discussion
Subclasses of NSURLHandle must be registered via the registerURLHandleClass: (page 1796) method.
The subclass is determined by asking the list of registered subclasses if it canInitWithURL: (page 1796); the
first class to respond YES is selected.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

Instance Methods

addClient:
Adds a client of the URL handle. (Deprecated in Mac OS X v10.4 and later. Use NSURLConnection or
NSURLDownload instead; see URL Loading System.)

- (void)addClient:(id < NSURLHandleClient >)client

Parameters
client

An object conforming to the NSURLHandleClient protocol.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

Instance Methods 1797
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

availableResourceData
Immediately returns the currently available resource data managed by the URL handle. (Deprecated in Mac
OS X v10.4 and later. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (NSData *)availableResourceData

Return Value
The currently available resource data managed by the URL handle. Returns nil if a previous attempt to load
the data failed.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

backgroundLoadDidFailWithReason:
Called when a background load fails. (Deprecated in Mac OS X v10.4 and later. Use NSURLConnection or
NSURLDownload instead; see URL Loading System.)

- (void)backgroundLoadDidFailWithReason:(NSString *)reason

Parameters
reason

The status message indicating why the background load failed.

Discussion
This method is provided mainly for subclasses that wish to take some action before passing along the failure
notification to the URL client. This method should invoke super’s implementation before returning.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

beginLoadInBackground
Called when a background load begins. (Deprecated in Mac OS X v10.4 and later. Use NSURLConnection
or NSURLDownload instead; see URL Loading System.)

- (void)beginLoadInBackground

Discussion
This method is provided mainly for subclasses that wish to take advantage of the superclass failure-reporting
mechanism.

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
– endLoadInBackground (page 1800)

1798 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

– loadInBackground (page 1801)

Declared In
NSURLHandle.h

cancelLoadInBackground
Called to cancel a load currently in progress. (Deprecated in Mac OS X v10.4 and later. Use NSURLConnection
or NSURLDownload instead; see URL Loading System.)

- (void)cancelLoadInBackground

Discussion
This method is provided mainly for subclasses that wish to take some action before a background load is
canceled. This method should invoke super’s implementation before returning.

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
– endLoadInBackground (page 1800)

Declared In
NSURLHandle.h

didLoadBytes:loadComplete:
Appends new data to the receiver’s resource data. (Deprecated in Mac OS X v10.4 and later. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (void)didLoadBytes:(NSData *)newBytes loadComplete:(BOOL)done

Parameters
newBytes

The newly loaded bytes.

done
YES if newBytes contains the last piece of data for the URL, NO otherwise.

Discussion
You should call this method when loading the resource data in the background.

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
– loadInBackground (page 1801)

Declared In
NSURLHandle.h

Instance Methods 1799
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

endLoadInBackground
Halts any background loading. (Deprecated in Mac OS X v10.4 and later. Use NSURLConnection or
NSURLDownload instead; see URL Loading System.)

- (void)endLoadInBackground

Discussion
This method is called by cancelLoadInBackground (page 1799).

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
– beginLoadInBackground (page 1798)
– cancelLoadInBackground (page 1799)
– loadInBackground (page 1801)

Declared In
NSURLHandle.h

expectedResourceDataSize
Returns the expected length of the resource data if it is provided by the server. (Deprecated in Mac OS X
v10.4 and later. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (long long)expectedResourceDataSize

Return Value
The expected size of the resource data, in bytes. A negative value if the length is unknown.

Discussion
This information can be queried before all the data has arrived.

Availability
Deprecated in Mac OS X v10.4 and later.
Available in Mac OS X v10.3 and later.

Declared In
NSURLHandle.h

failureReason
Returns a string describing the reason a load failed. (Deprecated in Mac OS X v10.4 and later. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (NSString *)failureReason

Return Value
A string describing the reason a load failed. If the load has not failed, returns nil.

Availability
Deprecated in Mac OS X v10.4 and later.

1800 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

Declared In
NSURLHandle.h

flushCachedData
Flushes any cached data for the URL served by this URL handle. (Deprecated in Mac OS X v10.4 and later. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (void)flushCachedData

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

initWithURL:cached:
Initializes a newly created URL handle with the specified URL. (Deprecated in Mac OS X v10.4 and later. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (id)initWithURL:(NSURL *)aURL cached:(BOOL)willCache

Parameters
aURL

The URL for the new handle.

willCache
YES if the URL handle should cache its data and respond to requests from equivalent URLs for the
cached data, NO otherwise.

Discussion
Subclasses of NSURLHandle must override this method.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

loadInBackground
Loads the receiver’s data in the background. (Deprecated in Mac OS X v10.4 and later. Use NSURLConnection
or NSURLDownload instead; see URL Loading System.)

- (void)loadInBackground

Discussion
Each subclass determines its own loading policy. Clients should not assume that multiple background loads
can proceed simultaneously. For example, a subclass may maintain only one thread for background loading,
so only one background loading operation can be in progress at a time. If multiple background loads are
requested, the later requests will wait in a queue until earlier requests are handled.

Instance Methods 1801
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
– beginLoadInBackground (page 1798)

Declared In
NSURLHandle.h

loadInForeground
Loads the receiver’s data synchronously. (Deprecated in Mac OS X v10.4 and later. Use NSURLConnection
or NSURLDownload instead; see URL Loading System.)

- (NSData *)loadInForeground

Return Value
The loaded data.

Discussion
Called by resourceData (page 1803). Subclasses of NSURLHandle must override this method.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

propertyForKey:
Returns the property for the specified key. (Deprecated in Mac OS X v10.4 and later. Use NSURLConnection
or NSURLDownload instead; see URL Loading System.)

- (id)propertyForKey:(NSString *)propertyKey

Parameters
propertyKey

The key of the desired property.

Return Value
The value associated with propertyKey. Returns nil if there is no such key.

Discussion
Subclasses of NSURLHandle must override this method.

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
– writeProperty:forKey: (page 1804)
– propertyForKeyIfAvailable: (page 1803)

Declared In
NSURLHandle.h

1802 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

propertyForKeyIfAvailable:
Returns the property for the specified key only if the value is already available; that is, the client doesn’t need
to do any work. (Deprecated in Mac OS X v10.4 and later. Use NSURLConnection or NSURLDownload instead;
see URL Loading System.)

- (id)propertyForKeyIfAvailable:(NSString *)propertyKey

Parameters
propertyKey

The key of the desired property.

Return Value
The value associated with propertyKey. Returns nil if there is no such key or if the client would have to
do work to fetch the property.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

removeClient:
Removes client as an NSURLHandleClient of the receiver. (Deprecated in Mac OS X v10.4 and later. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (void)removeClient:(id < NSURLHandleClient >)client

Parameters
client

An object conforming to the NSURLHandleClient protocol.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

resourceData
Returns the resource data managed by the receiver, loading it if necessary. (Deprecated in Mac OS X v10.4
and later. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (NSData *)resourceData

Return Value
The resource data managed by the receiver.

Discussion
Blocks until all data is available.

Availability
Deprecated in Mac OS X v10.4 and later.

Instance Methods 1803
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

Declared In
NSURLHandle.h

status
Returns the status of the receiver. (Deprecated in Mac OS X v10.4 and later. Use NSURLConnection or
NSURLDownload instead; see URL Loading System.)

- (NSURLHandleStatus)status

Return Value
The status of the receiver. Possible return statuses are described in “Constants” (page 1805).

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

writeData:
Attempts to write a specified set of data to the location specified by the receiver’s URL. (Deprecated in Mac
OS X v10.4 and later. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (BOOL)writeData:(NSData *)data

Parameters
data

The data to write.

Return Value
YES if successful, NO otherwise.

Discussion
Must be overridden by subclasses.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

writeProperty:forKey:
Sets the property of the receiver’s resource for a specified key to the specified value. (Deprecated in Mac OS
X v10.4 and later. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (BOOL)writeProperty:(id)propertyValue forKey:(NSString *)propertyKey

Parameters
propertyValue

The new value for the property.

1804 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

propertyKey
The key of the desired property.

Return Value
YES if the modification was successful, NO otherwise.

Discussion
Must be overridden by subclasses.

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
– propertyForKey: (page 1802)

Declared In
NSURLHandle.h

Constants

NSURLHandleStatus
These following constants are defined by NSURLHandle and are returned by status (page 1804).

typedef enum {
 NSURLHandleNotLoaded = 0,
 NSURLHandleLoadSucceeded,
 NSURLHandleLoadInProgress,
 NSURLHandleLoadFailed
} NSURLHandleStatus;

Constants
NSURLHandleNotLoaded

The resource data has not been loaded. (Deprecated. Use NSURLConnection or NSURLDownload
instead; see URL Loading System.)

Available in Mac OS X v10.0 and later.

Declared in NSURLHandle.h.

NSURLHandleLoadSucceeded

The resource data was successfully loaded. (Deprecated. Use NSURLConnection or NSURLDownload
instead; see URL Loading System.)

Available in Mac OS X v10.0 and later.

Declared in NSURLHandle.h.

NSURLHandleLoadInProgress

The resource data is in the process of loading. (Deprecated. Use NSURLConnection or
NSURLDownload instead; see URL Loading System.)

Available in Mac OS X v10.0 and later.

Declared in NSURLHandle.h.

Constants 1805
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

NSURLHandleLoadFailed

The resource data failed to load. (Deprecated. Use NSURLConnection or NSURLDownload instead;
see URL Loading System.)

Available in Mac OS X v10.0 and later.

Declared in NSURLHandle.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSURLHandle.h

1806 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 154

NSURLHandle Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLProtectionSpace.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

NSURLProtectionSpace represents a server or an area on a server, commonly referred to as a realm, that
requires authentication. An NSURLProtectionSpace’s credentials apply to any requests within that protection
space.

Adopted Protocols

NSCopying
– copyWithZone: (page 2042)

Tasks

Creating a Protection Space

– initWithHost:port:protocol:realm:authenticationMethod: (page 1809)
Initializes a protection space object.

– initWithProxyHost:port:type:realm:authenticationMethod: (page 1809)
Initializes a protection space object representing a proxy server.

Overview 1807
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 155

NSURLProtectionSpace Class Reference

Getting Protection Space Properties

– authenticationMethod (page 1808)
Returns the authentication method used by the receiver.

– host (page 1808)
Returns the receiver’s host.

– isProxy (page 1810)
Returns whether the receiver represents a proxy server.

– port (page 1810)
Returns the receiver’s port.

– protocol (page 1811)
Returns the receiver’s protocol.

– proxyType (page 1811)
Returns the receiver's proxy type.

– realm (page 1811)
Returns the receiver’s authentication realm

– receivesCredentialSecurely (page 1812)
Returns whether the credentials for the protection space can be sent securely.

Instance Methods

authenticationMethod
Returns the authentication method used by the receiver.

- (NSString *)authenticationMethod

Return Value
The authentication method used by the receiver. The supported authentication methods are listed in
“Constants” (page 1812).

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

host
Returns the receiver’s host.

- (NSString *)host

Return Value
The receiver's host.

1808 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 155

NSURLProtectionSpace Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

initWithHost:port:protocol:realm:authenticationMethod:
Initializes a protection space object.

- (id)initWithHost:(NSString *)host port:(NSInteger)port protocol:(NSString
*)protocol realm:(NSString *)realm authenticationMethod:(NSString
*)authenticationMethod

Parameters
host

The host name for the protection space object.

port
The port for the protection space object. If port is 0 the default port for the specified protocol is used,
for example, port 80 for HTTP. Note that servers can, and do, treat these values differently.

protocol
The protocol for the protection space object. The value of protocol is equivalent to the scheme for
a URL in the protection space, for example, “http”, “https”, “ftp”, etc.

realm
A string indicating a protocol specific subdivision of the host. realmmay be nil if there is no specified
realm or if the protocol doesn’t support realms.

authenticationMethod
The type of authentication to use. authenticationMethod should be set to one of the values in
“Constants” (page 1812) or nil to use the default, NSURLAuthenticationMethodDefault.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– initWithProxyHost:port:type:realm:authenticationMethod: (page 1809)

Declared In
NSURLProtectionSpace.h

initWithProxyHost:port:type:realm:authenticationMethod:
Initializes a protection space object representing a proxy server.

- (id)initWithProxyHost:(NSString *)host port:(NSInteger)port type:(NSString
*)proxyType realm:(NSString *)realm authenticationMethod:(NSString
*)authenticationMethod

Instance Methods 1809
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 155

NSURLProtectionSpace Class Reference

Parameters
host

The host of the proxy server for the protection space object.

port
The port for the protection space object. If port is 0 the default port for the specified proxy type is
used, for example, port 80 for HTTP. Note that servers can, and do, treat these values differently.

proxyType
The type of proxy server. The value of proxyType should be set to one of the values specified in
“Constants” (page 1812).

realm
A string indicating a protocol specific subdivision of the host. realmmay be nil if there is no specified
realm or if the protocol doesn’t support realms.

authenticationMethod
The type of authentication to use. authenticationMethod should be set to one of the values in
“Constants” (page 1812) or nil to use the default, NSURLAuthenticationMethodDefault.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– initWithHost:port:protocol:realm:authenticationMethod: (page 1809)

Declared In
NSURLProtectionSpace.h

isProxy
Returns whether the receiver represents a proxy server.

- (BOOL)isProxy

Return Value
YES if the receiver represents a proxy server, NO otherwise.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

port
Returns the receiver’s port.

- (NSInteger)port

Return Value
The receiver's port.

1810 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 155

NSURLProtectionSpace Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

protocol
Returns the receiver’s protocol.

- (NSString *)protocol

Return Value
The receiver's protocol, or nil if the receiver represents a proxy protection space.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

proxyType
Returns the receiver's proxy type.

- (NSString *)proxyType

Return Value
The receiver's proxy type, or nil if the receiver does not represent a proxy protection space. The supported
proxy types are listed in “Constants” (page 1812).

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

realm
Returns the receiver’s authentication realm

- (NSString *)realm

Return Value
The receiver’s authentication realm, or nil if no realm has been set.

Discussion
A realm is generally only specified for HTTP and HTTPS authentication.

Instance Methods 1811
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 155

NSURLProtectionSpace Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

receivesCredentialSecurely
Returns whether the credentials for the protection space can be sent securely.

- (BOOL)receivesCredentialSecurely

Return Value
YES if the credentials for the protection space represented by the receiver can be sent securely, NO otherwise.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

Constants

NSURLProtectionSpace Proxy Types
These constants describe the supported proxy types used in
initWithProxyHost:port:type:realm:authenticationMethod: (page 1809) and returned by
proxyType (page 1811).

extern NSString *NSURLProtectionSpaceHTTPProxy;
extern NSString *NSURLProtectionSpaceHTTPSProxy;
extern NSString *NSURLProtectionSpaceFTPProxy;
extern NSString *NSURLProtectionSpaceSOCKSProxy;

Constants
NSURLProtectionSpaceHTTPProxy

The proxy type for HTTP proxies.

Available in Mac OS X v10.2 and later.

Declared in NSURLProtectionSpace.h.

NSURLProtectionSpaceHTTPSProxy
The proxy type for HTTPS proxies.

Available in Mac OS X v10.2 and later.

Declared in NSURLProtectionSpace.h.

1812 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 155

NSURLProtectionSpace Class Reference

NSURLProtectionSpaceFTPProxy
The proxy type for FTP proxies.

Available in Mac OS X v10.2 and later.

Declared in NSURLProtectionSpace.h.

NSURLProtectionSpaceSOCKSProxy
The proxy type for SOCKS proxies.

Available in Mac OS X v10.2 and later.

Declared in NSURLProtectionSpace.h.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

NSURLProtectionSpace Authentication Methods
These constants describe the available authentication methods used in
initWithHost:port:protocol:realm:authenticationMethod: (page 1809),
initWithProxyHost:port:type:realm:authenticationMethod: (page 1809) and returned by
authenticationMethod (page 1808).

extern NSString *NSURLAuthenticationMethodDefault;
extern NSString *NSURLAuthenticationMethodHTTPBasic;
extern NSString *NSURLAuthenticationMethodHTTPDigest;
extern NSString *NSURLAuthenticationMethodHTMLForm;

Constants
NSURLAuthenticationMethodDefault

Use the default authentication method for a protocol.

Available in Mac OS X v10.2 and later.

Declared in NSURLProtectionSpace.h.

NSURLAuthenticationMethodHTTPBasic
Use HTTP basic authentication for this protection space.

This is equivalent to NSURLAuthenticationMethodDefault for HTTP.

Available in Mac OS X v10.2 and later.

Declared in NSURLProtectionSpace.h.

NSURLAuthenticationMethodHTTPDigest
Use HTTP digest authentication for this protection space.

Available in Mac OS X v10.2 and later.

Declared in NSURLProtectionSpace.h.

NSURLAuthenticationMethodHTMLForm
Use HTML form authentication for this protection space.

This authentication method can apply to any protocol.

Available in Mac OS X v10.2 and later.

Declared in NSURLProtectionSpace.h.

Constants 1813
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 155

NSURLProtectionSpace Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

1814 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 155

NSURLProtectionSpace Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLProtocol.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

NSURLProtocol is an abstract class that provides the basic structure for performing protocol-specific loading
of URL data. Concrete subclasses handle the specifics associated with one or more protocols or URL schemes.

An application should never need to directly instantiate an NSURLProtocol subclass. The instance of the
appropriate NSURLProtocol subclass for an NSURLRequest is created by NSURLConnection when a
download is started.

The NSURLProtocolClient protocol describes the methods an implementation uses to drive the URL
loading system from a NSURLProtocol subclass.

To support customization of protocol-specific requests, protocol implementors are encouraged to provide
categories on NSURLRequest and NSMutableURLRequest. Protocol implementors who need to extend the
capabilities of NSURLRequest and NSMutableURLRequest in this way can store and retrieve protocol-specific
request data by using NSURLProtocol’s class methods propertyForKey:inRequest: (page 1818) and
setProperty:forKey:inRequest: (page 1820).

An essential responsibility for a protocol implementor is creating a NSURLResponse for each request it
processes successfully. A protocol implementor may wish to create a custom, mutable NSURLResponse class
to provide protocol specific information.

Overview 1815
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 156

NSURLProtocol Class Reference

Tasks

Creating Protocol Objects

– initWithRequest:cachedResponse:client: (page 1822)
Initializes an NSURLProtocol object.

Registering and Unregistering Protocol Classes

+ registerClass: (page 1819)
Attempts to register a subclass of NSURLProtocol, making it visible to the URL loading system.

+ unregisterClass: (page 1821)
Unregisters the specified subclass of NSURLProtocol.

Getting and Setting Request Properties

+ propertyForKey:inRequest: (page 1818)
Returns the property associated with the specified key in the specified request.

+ setProperty:forKey:inRequest: (page 1820)
Sets the property associated with the specified key in the specified request.

+ removePropertyForKey:inRequest: (page 1819)
Removes the property associated with the specified key in the specified request.

Determining If a Subclass Can Handle a Request

+ canInitWithRequest: (page 1817)
Returns whether the protocol subclass can handle the specified request.

Providing a Canonical Version of a Request

+ canonicalRequestForRequest: (page 1817)
Returns a canonical version of the specified request.

Determining If Requests Are Cache Equivalent

+ requestIsCacheEquivalent:toRequest: (page 1820)
Returns whether two requests are equivalent for cache purposes.

1816 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 156

NSURLProtocol Class Reference

Starting and Stopping Downloads

– startLoading (page 1823)
Starts protocol-specific loading of the request.

– stopLoading (page 1823)
Stops protocol-specific loading of the request.

Getting Protocol Attributes

– cachedResponse (page 1821)
Returns the receiver’s cached response.

– client (page 1822)
Returns the object the receiver uses to communicate with the URL loading system.

– request (page 1822)
Returns the receiver’s request.

Class Methods

canInitWithRequest:
Returns whether the protocol subclass can handle the specified request.

+ (BOOL)canInitWithRequest:(NSURLRequest *)request

Parameters
request

The request to be handled.

Return Value
YES if the protocol subclass can handle request, otherwise NO.

Discussion
A subclass should inspect request and determine whether or not the implementation can perform a load
with that request.

This is an abstract method and subclasses must provide an implementation.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

canonicalRequestForRequest:
Returns a canonical version of the specified request.

Class Methods 1817
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 156

NSURLProtocol Class Reference

+ (NSURLRequest *)canonicalRequestForRequest:(NSURLRequest *)request

Parameters
request

The request whose canonical version is desired.

Return Value
The canonical form of request.

Discussion
It is up to each concrete protocol implementation to define what “canonical” means. A protocol should
guarantee that the same input request always yields the same canonical form.

Special consideration should be given when implementing this method, because the canonical form of a
request is used to lookup objects in the URL cache, a process which performs equality checks between
NSURLRequest objects.

This is an abstract method and subclasses must provide an implementation.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

propertyForKey:inRequest:
Returns the property associated with the specified key in the specified request.

+ (id)propertyForKey:(NSString *)key inRequest:(NSURLRequest *)request

Parameters
key

The key of the desired property.

request
The request whose properties are to be queried.

Return Value
The property associated with key, or nil if no property has been stored for key.

Discussion
This method provides an interface for protocol implementors to access protocol-specific information associated
with NSURLRequest objects.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ setProperty:forKey:inRequest: (page 1820)

Declared In
NSURLProtocol.h

1818 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 156

NSURLProtocol Class Reference

registerClass:
Attempts to register a subclass of NSURLProtocol, making it visible to the URL loading system.

+ (BOOL)registerClass:(Class)protocolClass

Parameters
protocolClass

The subclass of NSURLProtocol to register.

Return Value
YES if the registration is successful, NO otherwise. The only failure condition is if protocolClass is not a
subclass of NSURLProtocol.

Discussion
When the URL loading system begins to load a request, each registered protocol class is consulted in turn
to see if it can be initialized with the specified request. The first NSURLProtocol subclass to return YESwhen
sent a canInitWithRequest: (page 1817) message is used to perform the URL load. There is no guarantee
that all registered protocol classes will be consulted.

Classes are consulted in the reverse order of their registration. A similar design governs the process to create
the canonical form of a request with canonicalRequestForRequest: (page 1817).

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ unregisterClass: (page 1821)

Declared In
NSURLProtocol.h

removePropertyForKey:inRequest:
Removes the property associated with the specified key in the specified request.

+ (void)removePropertyForKey:((NSString *)key inRequest:(NSMutableURLRequest
*)request

Parameters
key

The key whose value should be removed.

request
The request from which to remove the property value.

Discussion
This method is used to provide an interface for protocol implementors to customize protocol-specific
information associated with NSMutableURLRequest objects.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ propertyForKey:inRequest: (page 1818)

Class Methods 1819
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 156

NSURLProtocol Class Reference

Declared In
NSURLProtocol.h

requestIsCacheEquivalent:toRequest:
Returns whether two requests are equivalent for cache purposes.

+ (BOOL)requestIsCacheEquivalent:(NSURLRequest *)aRequest toRequest:(NSURLRequest
 *)bRequest

Parameters
aRequest

The request to compare with bRequest.

bRequest
The request to compare with aRequest.

Return Value
YES if aRequest and bRequest are equivalent for cache purposes, NO otherwise. Requests are considered
equivalent for cache purposes if and only if they would be handled by the same protocol and that protocol
declares them equivalent after performing implementation-specific checks.

Discussion
The NSURLProtocol implementation of this method compares the URLs of the requests to determine if the
requests should be considered equivalent. Subclasses can override this method to provide protocol-specific
comparisons.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

setProperty:forKey:inRequest:
Sets the property associated with the specified key in the specified request.

+ (void)setProperty:(id)value forKey:(NSString *)key inRequest:(NSMutableURLRequest
 *)request

Parameters
value

The value to set for the specified property.

key
The key for the specified property.

request
The request for which to create the property.

Discussion
This method is used to provide an interface for protocol implementors to customize protocol-specific
information associated with NSMutableURLRequest objects.

1820 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 156

NSURLProtocol Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ propertyForKey:inRequest: (page 1818)

Declared In
NSURLProtocol.h

unregisterClass:
Unregisters the specified subclass of NSURLProtocol.

+ (void)unregisterClass:(Class)protocolClass

Parameters
protocolClass

The subclass of NSURLProtocol to unregister.

Discussion
After this method is invoked, protocolClass is no longer consulted by the URL loading system.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ registerClass: (page 1819)

Declared In
NSURLProtocol.h

Instance Methods

cachedResponse
Returns the receiver’s cached response.

- (NSCachedURLResponse *)cachedResponse

Return Value
The receiver's cached response.

Discussion
Subclasses must implement this method.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Instance Methods 1821
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 156

NSURLProtocol Class Reference

Declared In
NSURLProtocol.h

client
Returns the object the receiver uses to communicate with the URL loading system.

- (id < NSURLProtocolClient >)client

Return Value
The object the receiver uses to communicate with the URL loading system.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

initWithRequest:cachedResponse:client:
Initializes an NSURLProtocol object.

- (id)initWithRequest:(NSURLRequest *)request cachedResponse:(NSCachedURLResponse
 *)cachedResponse client:(id < NSURLProtocolClient >)client

Parameters
request

The URL request for the URL protocol object.

cachedResponse
A cached response for the request; may be nil if there is no existing cached response for the request.

client
An object that provides an implementation of the NSURLProtocolClient protocol that the receiver
uses to communicate with the URL loading system.

Discussion
Subclasses should override this method to do any custom initialization. An application should never explicitly
call this method.

This is the designated intializer for NSURLProtocol.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

request
Returns the receiver’s request.

1822 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 156

NSURLProtocol Class Reference

- (NSURLRequest *)request

Return Value
The receiver's request.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

startLoading
Starts protocol-specific loading of the request.

- (void)startLoading

Discussion
When this method is called, the subclass implementation should start loading the request, providing feedback
to the URL loading system via the NSURLProtocolClient protocol.

Subclasses must implement this method.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– stopLoading (page 1823)

Declared In
NSURLProtocol.h

stopLoading
Stops protocol-specific loading of the request.

- (void)stopLoading

Discussion
When this method is called, the subclass implementation should stop loading a request. This could be in
response to a cancel operation, so protocol implementations must be able to handle this call while a load is
in progress.

Subclasses must implement this method.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– startLoading (page 1823)

Instance Methods 1823
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 156

NSURLProtocol Class Reference

Declared In
NSURLProtocol.h

1824 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 156

NSURLProtocol Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLRequest.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Related sample code URL CacheInfo

Overview

NSURLRequest objects represent a URL load request in a manner independent of protocol and URL scheme.

NSURLRequest encapsulates two basic data elements of a load request: the URL to load, and the policy to
use when consulting the URL content cache made available by the implementation.

NSURLRequest is designed to be extended to support additional protocols by adding categories that access
protocol specific values from a property object using NSURLProtocol’s propertyForKey:inRequest: (page
1818) and setProperty:forKey:inRequest: (page 1820) methods.

The mutable subclass of NSURLRequest is NSMutableURLRequest.

Adopted Protocols

NSCopying
– copyWithZone: (page 2042)

NSMutableCopying
– mutableCopyWithZone: (page 2094)

Overview 1825
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 157

NSURLRequest Class Reference

Tasks

Creating Requests

+ requestWithURL: (page 1827)
Creates and returns a URL request for a specified URL with default cache policy and timeout value.

– initWithURL: (page 1830)
Returns a URL request for a specified URL with default cache policy and timeout value.

+ requestWithURL:cachePolicy:timeoutInterval: (page 1827)
Creates and returns an initialized URL request with specified values.

– initWithURL:cachePolicy:timeoutInterval: (page 1830)
Returns an initialized URL request with specified values.

Getting Request Properties

– cachePolicy (page 1828)
Returns the receiver’s cache policy.

– mainDocumentURL (page 1831)
Returns the main document URL associated with the request.

– timeoutInterval (page 1831)
Returns the receiver’s timeout interval, in seconds.

– URL (page 1832)
Returns the request's URL.

Getting HTTP Request Properties

– allHTTPHeaderFields (page 1828)
Returns a dictionary containing all the receiver’s HTTP header fields.

– HTTPBody (page 1828)
Returns the receiver’s HTTP body data.

– HTTPBodyStream (page 1829)
Returns the receiver’s HTTP body stream.

– HTTPMethod (page 1829)
Returns the receiver’s HTTP request method.

– HTTPShouldHandleCookies (page 1830)
Returns whether the default cookie handling will be used for this request.

– valueForHTTPHeaderField: (page 1832)
Returns the value of the specified HTTP header field.

1826 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 157

NSURLRequest Class Reference

Class Methods

requestWithURL:
Creates and returns a URL request for a specified URL with default cache policy and timeout value.

+ (id)requestWithURL:(NSURL *)theURL

Parameters
theURL

The URL for the new request.

Return Value
The newly created URL request.

Discussion
The default cache policy is NSURLRequestUseProtocolCachePolicy and the default timeout interval is
60 seconds.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
+ requestWithURL:cachePolicy:timeoutInterval: (page 1827)

Declared In
NSURLRequest.h

requestWithURL:cachePolicy:timeoutInterval:
Creates and returns an initialized URL request with specified values.

+ (id)requestWithURL:(NSURL *)theURL cachePolicy:(NSURLRequestCachePolicy)cachePolicy
timeoutInterval:(NSTimeInterval)timeoutInterval

Parameters
theURL

The URL for the new request.

cachePolicy
The cache policy for the new request.

timeoutInterval
The timeout interval for the new request, in seconds.

Return Value
The newly created URL request.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Class Methods 1827
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 157

NSURLRequest Class Reference

See Also
– initWithURL:cachePolicy:timeoutInterval: (page 1830)

Related Sample Code
URL CacheInfo

Declared In
NSURLRequest.h

Instance Methods

allHTTPHeaderFields
Returns a dictionary containing all the receiver’s HTTP header fields.

- (NSDictionary *)allHTTPHeaderFields

Return Value
A dictionary containing all the receiver’s HTTP header fields.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– valueForHTTPHeaderField: (page 1832)

Declared In
NSURLRequest.h

cachePolicy
Returns the receiver’s cache policy.

- (NSURLRequestCachePolicy)cachePolicy

Return Value
The receiver’s cache policy.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLRequest.h

HTTPBody
Returns the receiver’s HTTP body data.

1828 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 157

NSURLRequest Class Reference

- (NSData *)HTTPBody

Return Value
The receiver's HTTP body data.

Discussion
This data is sent as the message body of a request, as in an HTTP POST request.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLRequest.h

HTTPBodyStream
Returns the receiver’s HTTP body stream.

- (NSInputStream *)HTTPBodyStream

Return Value
The receiver’s HTTP body stream, or nil if it has not been set. The returned stream is for examination only,
it is not safe to manipulate the stream in any way.

Discussion
The receiver will have either an HTTP body or an HTTP body stream, only one may be set for a request. A
HTTP body stream is preserved when copying an NSURLRequest object, but is lost when a request is archived
using the NSCoding protocol.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSURLRequest.h

HTTPMethod
Returns the receiver’s HTTP request method.

- (NSString *)HTTPMethod

Return Value
The receiver’s HTTP request method.

Discussion
The default HTTP method is “GET”.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLRequest.h

Instance Methods 1829
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 157

NSURLRequest Class Reference

HTTPShouldHandleCookies
Returns whether the default cookie handling will be used for this request.

- (BOOL)HTTPShouldHandleCookies

Return Value
YES if the default cookie handling will be used for this request, NO otherwise.

Discussion
The default is YES.

Special Considerations

In Mac OS X v10.2 with Safari 1.0 the value set by this method is not respected by the framework.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLRequest.h

initWithURL:
Returns a URL request for a specified URL with default cache policy and timeout value.

- (id)initWithURL:(NSURL *)theURL

Parameters
theURL

The URL for the request.

Return Value
The initialized URL request.

Discussion
The default cache policy is NSURLRequestUseProtocolCachePolicy and the default timeout interval is
60 seconds.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– initWithURL:cachePolicy:timeoutInterval: (page 1830)

Declared In
NSURLRequest.h

initWithURL:cachePolicy:timeoutInterval:
Returns an initialized URL request with specified values.

1830 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 157

NSURLRequest Class Reference

- (id)initWithURL:(NSURL *)theURL cachePolicy:(NSURLRequestCachePolicy)cachePolicy
timeoutInterval:(NSTimeInterval)timeoutInterval

Parameters
theURL

The URL for the request.

cachePolicy
The cache policy for the request.

timeoutInterval
The timeout interval for the request, in seconds.

Return Value
The initialized URL request.

Discussion
This is the designated initializer for NSURLRequest.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

See Also
– initWithURL: (page 1830)

Declared In
NSURLRequest.h

mainDocumentURL
Returns the main document URL associated with the request.

- (NSURL *)mainDocumentURL

Return Value
The main document URL associated with the request.

Discussion
This URL is used for the cookie “same domain as main document” policy.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLRequest.h

timeoutInterval
Returns the receiver’s timeout interval, in seconds.

- (NSTimeInterval)timeoutInterval

Instance Methods 1831
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 157

NSURLRequest Class Reference

Return Value
The receiver's timeout interval, in seconds.

Discussion
If during a connection attempt the request remains idle for longer than the timeout interval, the request is
considered to have timed out.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLRequest.h

URL
Returns the request's URL.

- (NSURL *)URL

Return Value
The request's URL.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLRequest.h

valueForHTTPHeaderField:
Returns the value of the specified HTTP header field.

- (NSString *)valueForHTTPHeaderField:(NSString *)field

Parameters
field

The name of the header field whose value is to be returned. In keeping with the HTTP RFC, HTTP
header field names are case-insensitive.

Return Value
The value associated with the header field field, or nil if there is no corresponding header field.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLRequest.h

1832 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 157

NSURLRequest Class Reference

Constants

NSURLRequestCachePolicy
These constants are used to specify interaction with the cached responses.

enum
{
 NSURLRequestUseProtocolCachePolicy = 0,
 NSURLRequestReloadIgnoringLocalCacheData = 1,
 NSURLRequestReloadIgnoringLocalAndRemoteCacheData =4,
 NSURLRequestReloadIgnoringCacheData = NSURLRequestReloadIgnoringLocalCacheData,
 NSURLRequestReturnCacheDataElseLoad = 2,
 NSURLRequestReturnCacheDataDontLoad = 3,
 NSURLRequestReloadRevalidatingCacheData = 5
};
typedef NSUInteger NSURLRequestCachePolicy;

Constants
NSURLRequestUseProtocolCachePolicy

Specifies that the caching logic defined in the protocol implementation, if any, is used for a particular
URL load request. This is the default policy for URL load requests.

Available in Mac OS X v10.2 and later.

Declared in NSURLRequest.h.

NSURLRequestReloadIgnoringLocalCacheData
Specifies that the data for the URL load should be loaded from the originating source. No existing
cache data should be used to satisfy a URL load request.

Available in Mac OS X v10.5 and later.

Declared in NSURLRequest.h.

NSURLRequestReloadIgnoringLocalAndRemoteCacheData
Specifies that not only should the local cache data be ignored, but that proxies and other intermediates
should be instructed to disregard their caches so far as the protocol allows.

Available in Mac OS X v10.5 and later.

Declared in NSURLRequest.h.

NSURLRequestReloadIgnoringCacheData
Replaced by NSURLRequestReloadIgnoringLocalCacheData (page 1833).

Available in Mac OS X v10.2 and later.

Declared in NSURLRequest.h.

NSURLRequestReturnCacheDataElseLoad
Specifies that the existing cached data should be used to satisfy the request, regardless of its age or
expiration date. If there is no existing data in the cache corresponding the request, the data is loaded
from the originating source.

Available in Mac OS X v10.2 and later.

Declared in NSURLRequest.h.

Constants 1833
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 157

NSURLRequest Class Reference

NSURLRequestReturnCacheDataDontLoad
Specifies that the existing cache data should be used to satisfy a request, regardless of its age or
expiration date. If there is no existing data in the cache corresponding to a URL load request, no
attempt is made to load the data from the originating source, and the load is considered to have
failed. This constant specifies a behavior that is similar to an “offline” mode.

Available in Mac OS X v10.2 and later.

Declared in NSURLRequest.h.

NSURLRequestReloadRevalidatingCacheData
Specifies that the existing cache data may be used provided the origin source confirms its validity,
otherwise the URL is loaded from the origin source.

Available in Mac OS X v10.5 and later.

Declared in NSURLRequest.h.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSURLRequest.h

1834 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 157

NSURLRequest Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLResponse.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Related sample code URL CacheInfo

Overview

NSURLResponse declares the programmatic interface for an object that accesses the response returned by
an NSURLRequest instance.

NSURLResponse encapsulates the metadata associated with a URL load in a manner independent of protocol
and URL scheme.

NSHTTPURLResponse is a subclass of NSURLResponse that provides methods for accessing information
specific to HTTP protocol responses. An NSHTTPURLResponse object represents a response to an HTTP URL
load request.

Note: NSURLResponse objects do not contain the actual bytes representing the content of a URL. See
NSURLConnection for more information about receiving the content data for a URL load.

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

NSCopying

Overview 1835
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 158

NSURLResponse Class Reference

copyWithZone: (page 2042)

Tasks

Creating a Response

– initWithURL:MIMEType:expectedContentLength:textEncodingName: (page 1837)
Returns an initialized NSURLResponse object with the URL, MIME type, length, and text encoding
set to given values.

Getting the Response Properties

– expectedContentLength (page 1836)
Returns the receiver’s expected content length

– suggestedFilename (page 1838)
Returns a suggested filename for the response data.

– MIMEType (page 1837)
Returns the receiver’s MIME type.

– textEncodingName (page 1838)
Returns the name of the receiver’s text encoding provided by the response’s originating source.

– URL (page 1839)
Returns the receiver’s URL.

Instance Methods

expectedContentLength
Returns the receiver’s expected content length

- (long long)expectedContentLength

Return Value
The receiver’s expected content length, or NSURLResponseUnknownLength if the length can’t be determined.

Discussion
Some protocol implementations report the content length as part of the response, but not all protocols
guarantee to deliver that amount of data. Clients should be prepared to deal with more or less data.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLResponse.h

1836 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 158

NSURLResponse Class Reference

initWithURL:MIMEType:expectedContentLength:textEncodingName:
Returns an initialized NSURLResponse object with the URL, MIME type, length, and text encoding set to
given values.

- (id)initWithURL:(NSURL *)URL MIMEType:(NSString *)MIMEType
expectedContentLength:(NSInteger)length textEncodingName:(NSString *)name

Parameters
URL

The URL for the new object.

MIMEType
The MIME type.

length
The expected content length.This value should be –1 if the expected length is undetermined

name
The text encoding name. This value may be nil.

Return Value
An initialized NSURLResponse object with the URL set to URL, the MIME type set to MIMEType, length set
to length, and text encoding name set to name.

Discussion
This is the designated initializer for NSURLResponse.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLResponse.h

MIMEType
Returns the receiver’s MIME type.

- (NSString *)MIMEType

Return Value
The receiver’s MIME type.

Discussion
The MIME type is often provided by the response’s originating source. However, that value may be changed
or corrected by a protocol implementation if it can be determined that the response’s source reported the
information incorrectly.

If the response’s originating source does not provide a MIME type, an attempt to guess the MIME type may
be made.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Instance Methods 1837
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 158

NSURLResponse Class Reference

Declared In
NSURLResponse.h

suggestedFilename
Returns a suggested filename for the response data.

- (NSString *)suggestedFilename

Return Value
A suggested filename for the response data.

Discussion
The method tries to create a filename using the following, in order:

1. A filename specified using the content disposition header.

2. The last path component of the URL.

3. The host of the URL.

If the host of URL can't be converted to a valid filename, the filename “unknown” is used.

In most cases, this method appends the proper file extension based on the MIME type. This method will
always return a valid filename regardless of whether or not the resource is saved to disk.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLResponse.h

textEncodingName
Returns the name of the receiver’s text encoding provided by the response’s originating source.

- (NSString *)textEncodingName

Return Value
The name of the receiver’s text encoding provided by the response’s originating source, or nil if no text
encoding was provided by the protocol

Discussion
Clients can convert this string to an NSStringEncoding or a CFStringEncoding using the methods and
functions available in the appropriate framework.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLResponse.h

1838 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 158

NSURLResponse Class Reference

URL
Returns the receiver’s URL.

- (NSURL *)URL

Return Value
The receiver’s URL.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLResponse.h

Constants

Response Length Unknown Error
The following error code is returned by expectedContentLength (page 1836).

#define NSURLResponseUnknownLength ((long long)-1)

Constants
NSURLResponseUnknownLength

Returned when the response length cannot be determined in advance of receiving the data from the
server. For example, NSURLResponseUnknownLength is returned when the server HTTP response
does not include a Content-Length header.

Available in Mac OS X v10.2 and later.

Declared in NSURLResponse.h.

Constants 1839
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 158

NSURLResponse Class Reference

1840 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 158

NSURLResponse Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSUserDefaults.h

Companion guide User Defaults Programming Topics for Cocoa

Related sample code Dicey
Quartz Composer QCTV
Quartz Composer WWDC 2005 TextEdit
Sproing
TextEditPlus

Overview

The NSUserDefaults class provides a programmatic interface for interacting with the defaults system. The
defaults system allows an application to customize its behavior to match a user’s preferences. For example,
you can allow users to determine what units of measurement your application displays or how often documents
are automatically saved. Applications record such preferences by assigning values to a set of parameters in
a user’s defaults database. The parameters are referred to as defaults since they’re commonly used to determine
an application’s default state at startup or the way it acts by default.

At runtime, you use an NSUserDefaults object to read the defaults that your application uses from a user’s
defaults database. NSUserDefaults caches the information to avoid having to open the user’s defaults
database each time you need a default value. The synchronize (page 1861) method, which is automatically
invoked at periodic intervals, keeps the in-memory cache in sync with a user’s defaults database.

A default’s value must be a property list, that is, an instance of (or for collections a combination of instances
of): NSData, NSString, NSNumber, NSDate, NSArray, or NSDictionary. If you want to store any other
type of object, you should typically archive it to create an instance of NSData. For more details, see User
Defaults Programming Topics for Cocoa.

Values returned from NSUserDefaults are immutable, even if you set a mutable object as the value. For
example, if you set a mutable string as the value for "MyStringDefault", the string you later retrieve using
stringForKey: (page 1860) will be immutable.

Overview 1841
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

A defaults database is created automatically for each user. The NSUserDefaults class does not currently
support per-host preferences. To do this, you must use the CFPreferences API (see Preferences Utilities Reference).
However, NSUserDefaults correctly reads per-host preferences, so you can safely mix CFPreferences code
with NSUserDefaults code.

If your application supports managed environments, you can use an NSUserDefaults object to determine
which preferences are managed by an administrator for the benefit of the user. Managed environments
correspond to computer labs or classrooms where an administrator or teacher may want to configure the
systems in a particular way. In these situations, the teacher can establish a set of default preferences and
force those preferences on users. If a preference is managed in this manner, applications should prevent
users from editing that preference by disabling any appropriate controls.

The NSUserDefaults class is thread-safe.

Tasks

Getting the Shared NSUserDefaults Instance

+ standardUserDefaults (page 1845)
Returns the shared defaults object.

+ resetStandardUserDefaults (page 1844)
Synchronizes any changes made to the shared user defaults object and releases it from memory.

Initializing an NSUserDefaults Object

– init (page 1850)
Returns an NSUserDefaults object initialized with the defaults for the current user account.

– initWithUser: (page 1850)
Returns an NSUserDefaults object initialized with the defaults for the specified user account.

Getting a Default Value

– arrayForKey: (page 1846)
Returns the array associated with the specified key.

– boolForKey: (page 1847)
Returns the Boolean value associated with the specified key.

– dataForKey: (page 1847)
Returns the data object associated with the specified key.

– dictionaryForKey: (page 1848)
Returns the dictionary object associated with the specified key.

– floatForKey: (page 1849)
Returns the floating-point value associated with the specified key.

– integerForKey: (page 1851)
Returns the integer value associated with the specified key..

1842 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

– objectForKey: (page 1851)
Returns the object associated with the first occurrence of the specified default.

– stringArrayForKey: (page 1859)
Returns the array of strings associated with the specified key.

– stringForKey: (page 1860)
Returns the string associated with the specified key.

Setting and Removing Defaults

– removeObjectForKey: (page 1855)
Removes the value of the specified default key in the standard application domain.

– setBool:forKey: (page 1856)
Sets the value of the specified default key to a string containing a Boolean value.

– setFloat:forKey: (page 1857)
Sets the value of the specified default key to a string containing a floating-point value.

– setInteger:forKey: (page 1857)
Sets the value of the specified default key to a string containing an integer value.

– setObject:forKey: (page 1858)
Sets the value of the specified default key in the standard application domain.

Registering Defaults

– registerDefaults: (page 1854)
Adds the contents the specified dictionary to the registration domain.

Maintaining Persistent Domains

– synchronize (page 1861)
Writes any modifications to the persistent domains to disk and updates all unmodified persistent
domains to what is on disk.

– persistentDomainForName: (page 1853)
Returns a dictionary containing the keys and values in the specified persistent domain.

– persistentDomainNames (page 1854)
Returns an array of the current persistent domain names.

– removePersistentDomainForName: (page 1855)
Removes the contents of the specified persistent domain from the user’s defaults.

– setPersistentDomain:forName: (page 1858)
Sets the dictionary for the specified persistent domain.

Accessing Managed Environment Keys

– objectIsForcedForKey: (page 1852)
Returns a Boolean value indicating whether the specified key is managed by an administrator.

Tasks 1843
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

– objectIsForcedForKey:inDomain: (page 1853)
Returns a Boolean value indicating whether the key in the specified domain is managed by an
administrator.

Managing the Search List

– dictionaryRepresentation (page 1849)
Returns a dictionary that contains a union of all key-value pairs in the domains in the search list.

Maintaining Volatile Domains

– removeVolatileDomainForName: (page 1856)
Removes the specified volatile domain from the user’s defaults.

– setVolatileDomain:forName: (page 1859)
Sets the dictionary for the specified volatile domain.

– volatileDomainForName: (page 1861)
Returns the dictionary for the specified volatile domain.

– volatileDomainNames (page 1862)
Returns an array of the current volatile domain names.

Maintaining Suites

– addSuiteNamed: (page 1845)
Inserts the specified domain name into the receiver’s search list.

– removeSuiteNamed: (page 1855)
Removes the specified domain name from the receiver’s search list.

Class Methods

resetStandardUserDefaults
Synchronizes any changes made to the shared user defaults object and releases it from memory.

+ (void)resetStandardUserDefaults

Discussion
A subsequent invocation of standardUserDefaults (page 1845) creates a new shared user defaults object
with the standard search list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUserDefaults.h

1844 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

standardUserDefaults
Returns the shared defaults object.

+ (NSUserDefaults *)standardUserDefaults

Return Value
The shared defaults object.

Discussion
If the shared defaults object does not exist yet, it is created with a search list containing the names of the
following domains, in this order:

 ■ NSArgumentDomain, consisting of defaults parsed from the application’s arguments

 ■ A domain identified by the application’s bundle identifier

 ■ NSGlobalDomain, consisting of defaults meant to be seen by all applications

 ■ Separate domains for each of the user’s preferred languages

 ■ NSRegistrationDomain, a set of temporary defaults whose values can be set by the application to
ensure that searches will always be successful

The defaults are initialized for the current user. Subsequent modifications to the standard search list remain
in effect even when this method is invoked again—the search list is guaranteed to be standard only the first
time this method is invoked. The shared instance is provided as a convenience—you can create custom
instances using alloc along with initWithUser: (page 1850) or init (page 1850).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dicey
IKSlideshowDemo
Quartz Composer QCTV
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSUserDefaults.h

Instance Methods

addSuiteNamed:
Inserts the specified domain name into the receiver’s search list.

- (void)addSuiteNamed:(NSString *)suiteName

Parameters
suiteName

The domain name to insert. This domain is inserted after the application domain.

Instance Methods 1845
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

Discussion
The suiteName domain is similar to a bundle identifier string, but is not tied to a particular application or
bundle. A suite can be used to hold preferences that are shared between multiple applications.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ standardUserDefaults (page 1845)
– removeSuiteNamed: (page 1855)

Declared In
NSUserDefaults.h

arrayForKey:
Returns the array associated with the specified key.

- (NSArray *)arrayForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The array associated with the specified key, or nil if the key does not exist or its value is not an NSArray
object.

Special Considerations

The returned array and its contents are immutable, even if the values you originally set were mutable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– boolForKey: (page 1847)
– dataForKey: (page 1847)
– dictionaryForKey: (page 1848)
– floatForKey: (page 1849)
– integerForKey: (page 1851)
– objectForKey: (page 1851)
– stringArrayForKey: (page 1859)
– stringForKey: (page 1860)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSUserDefaults.h

1846 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

boolForKey:
Returns the Boolean value associated with the specified key.

- (BOOL)boolForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
If a boolean value is associated with defaultName in the user defaults, that value is returned. Otherwise, NO
is returned.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arrayForKey: (page 1846)
– dataForKey: (page 1847)
– dictionaryForKey: (page 1848)
– floatForKey: (page 1849)
– integerForKey: (page 1851)
– objectForKey: (page 1851)
– stringArrayForKey: (page 1859)
– stringForKey: (page 1860)

Related Sample Code
Sproing

Declared In
NSUserDefaults.h

dataForKey:
Returns the data object associated with the specified key.

- (NSData *)dataForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The data object associated with the specified key, or nil if the key does not exist or its value is not an NSData
object.

Special Considerations

The returned data object is immutable, even if the value you originally set was a mutable data object.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1847
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

See Also
– arrayForKey: (page 1846)
– boolForKey: (page 1847)
– dictionaryForKey: (page 1848)
– floatForKey: (page 1849)
– integerForKey: (page 1851)
– objectForKey: (page 1851)
– stringArrayForKey: (page 1859)
– stringForKey: (page 1860)

Related Sample Code
QTQuartzPlayer

Declared In
NSUserDefaults.h

dictionaryForKey:
Returns the dictionary object associated with the specified key.

- (NSDictionary *)dictionaryForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The dictionary object associated with the specified key, or nil if the key does not exist or its value is not an
NSDictionary object.

Special Considerations

The returned dictionary and its contents are immutable, even if the values you originally set were mutable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arrayForKey: (page 1846)
– boolForKey: (page 1847)
– dataForKey: (page 1847)
– floatForKey: (page 1849)
– integerForKey: (page 1851)
– objectForKey: (page 1851)
– stringArrayForKey: (page 1859)
– stringForKey: (page 1860)

Declared In
NSUserDefaults.h

1848 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

dictionaryRepresentation
Returns a dictionary that contains a union of all key-value pairs in the domains in the search list.

- (NSDictionary *)dictionaryRepresentation

Return Value
A dictionary containing the keys. The keys are names of defaults and the value corresponding to each key is
a property list object (NSData, NSString, NSNumber, NSDate, NSArray, or NSDictionary).

Discussion
As with objectForKey: (page 1851), key-value pairs in domains that are earlier in the search list take
precedence. The combined result does not preserve information about which domain each entry came from.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NewsReader

Declared In
NSUserDefaults.h

floatForKey:
Returns the floating-point value associated with the specified key.

- (float)floatForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The floating-point value associated with the specified key. If the key does not exist, this method returns 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arrayForKey: (page 1846)
– boolForKey: (page 1847)
– dataForKey: (page 1847)
– dictionaryForKey: (page 1848)
– integerForKey: (page 1851)
– objectForKey: (page 1851)
– stringArrayForKey: (page 1859)
– stringForKey: (page 1860)

Related Sample Code
MungSaver

Declared In
NSUserDefaults.h

Instance Methods 1849
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

init
Returns an NSUserDefaults object initialized with the defaults for the current user account.

- (id)init

Return Value
An initialized NSUserDefaults object whose argument and registration domains are already set up.

Discussion
This method does not put anything in the search list. Invoke it only if you’ve allocated your own
NSUserDefaults instance instead of using the shared one.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ standardUserDefaults (page 1845)

Declared In
NSUserDefaults.h

initWithUser:
Returns an NSUserDefaults object initialized with the defaults for the specified user account.

- (id)initWithUser:(NSString *)username

Parameters
username

The name of the user account.

Return Value
An initialized NSUserDefaults object whose argument and registration domains are already set up. If the
current user does not have access to the specified user account, this method returns nil.

Discussion
This method does not put anything in the search list. Invoke it only if you’ve allocated your own
NSUserDefaults instance instead of using the shared one.

You do not normally use this method to initialize an instance of NSUserDefaults. Applications used by a
superuser might use this method to update the defaults databases for a number of users. The user who
started the application must have appropriate access (read, write, or both) to the defaults database of the
new user, or this method returns nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ standardUserDefaults (page 1845)

Declared In
NSUserDefaults.h

1850 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

integerForKey:
Returns the integer value associated with the specified key..

- (NSInteger)integerForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The integer value associated with the specified key. If the specified key does not exist, this method returns
0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arrayForKey: (page 1846)
– boolForKey: (page 1847)
– dataForKey: (page 1847)
– dictionaryForKey: (page 1848)
– floatForKey: (page 1849)
– objectForKey: (page 1851)
– stringArrayForKey: (page 1859)
– stringForKey: (page 1860)

Related Sample Code
IKSlideshowDemo
MungSaver
NumberInput_IMKit_Sample
Sproing

Declared In
NSUserDefaults.h

objectForKey:
Returns the object associated with the first occurrence of the specified default.

- (id)objectForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The object associated with the specified key, or nil if the key was not found.

Discussion
This method searches the domains included in the search list in the order they are listed.

Instance Methods 1851
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

Special Considerations

The returned object is immutable, even if the value you originally set was mutable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arrayForKey: (page 1846)
– boolForKey: (page 1847)
– dataForKey: (page 1847)
– dictionaryForKey: (page 1848)
– floatForKey: (page 1849)
– stringArrayForKey: (page 1859)
– stringForKey: (page 1860)

Related Sample Code
PrefsPane
QTKitPlayer
Quartz Composer QCTV
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSUserDefaults.h

objectIsForcedForKey:
Returns a Boolean value indicating whether the specified key is managed by an administrator.

- (BOOL)objectIsForcedForKey:(NSString *)key

Parameters
key

The key whose status you want to check.

Return Value
YES if the value of the specified key is managed by an administrator, otherwise NO.

Discussion
This method assumes that the key is a preference associated with the current user and application. For
managed keys, the application should disable any user interface that allows the user to modify the value of
key.

Availability
Available in Mac OS X v10.2 and later.

See Also
– objectIsForcedForKey:inDomain: (page 1853)

Declared In
NSUserDefaults.h

1852 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

objectIsForcedForKey:inDomain:
Returns a Boolean value indicating whether the key in the specified domain is managed by an administrator.

- (BOOL)objectIsForcedForKey:(NSString *)key inDomain:(NSString *)domain

Parameters
key

The key whose status you want to check.

domain
The domain of the key.

Return Value
YES if the key is managed by an administrator in the specified domain, otherwise NO.

Discussion
This method assumes that the key is a preference associated with the current user. For managed keys, the
application should disable any user interface that allows the user to modify the value of key.

Availability
Available in Mac OS X v10.2 and later.

See Also
– objectIsForcedForKey: (page 1852)

Declared In
NSUserDefaults.h

persistentDomainForName:
Returns a dictionary containing the keys and values in the specified persistent domain.

- (NSDictionary *)persistentDomainForName:(NSString *)domainName

Parameters
domainName

The domain whose keys and values you want. This value should be equal to your application's bundle
identifier.

Return Value
A dictionary containing the keys. The keys are names of defaults and the value corresponding to each key is
a property list object (NSData, NSString, NSNumber, NSDate, NSArray, or NSDictionary).

Availability
Available in Mac OS X v10.0 and later.

See Also
– removePersistentDomainForName: (page 1855)
– setPersistentDomain:forName: (page 1858)

Declared In
NSUserDefaults.h

Instance Methods 1853
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

persistentDomainNames
Returns an array of the current persistent domain names.

- (NSArray *)persistentDomainNames

Return Value
An array of NSString objects containing the domain names.

Discussion
You can get the keys and values for each domain by passing the returned domain names to the
persistentDomainForName: (page 1853) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removePersistentDomainForName: (page 1855)
– setPersistentDomain:forName: (page 1858)

Declared In
NSUserDefaults.h

registerDefaults:
Adds the contents the specified dictionary to the registration domain.

- (void)registerDefaults:(NSDictionary *)dictionary

Parameters
dictionary

The dictionary of keys and values you want to register.

Discussion
If there is no registration domain, one is created using the specified dictionary, and NSRegistrationDomain
is added to the end of the search list.

The contents of the registration domain are not written to disk; you need to call this method each time your
application starts. You can place a plist file in the application's Resources directory and call
registerDefaults: with the contents that you read in from that file.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DeskPictAppDockMenu
Dicey
Sproing
TemperatureTester

Declared In
NSUserDefaults.h

1854 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

removeObjectForKey:
Removes the value of the specified default key in the standard application domain.

- (void)removeObjectForKey:(NSString *)defaultName

Parameters
defaultName

The key whose value you want to remove.

Discussion
Removing a default has no effect on the value returned by the objectForKey: (page 1851) method if the
same key exists in a domain that precedes the standard application domain in the search list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setObject:forKey: (page 1858)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSUserDefaults.h

removePersistentDomainForName:
Removes the contents of the specified persistent domain from the user’s defaults.

- (void)removePersistentDomainForName:(NSString *)domainName

Parameters
domainName

The domain whose keys and values you want. This value should be equal to your application's bundle
identifier.

Discussion
When a persistent domain is changed, an NSUserDefaultsDidChangeNotification (page 1870) is posted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPersistentDomain:forName: (page 1858)

Declared In
NSUserDefaults.h

removeSuiteNamed:
Removes the specified domain name from the receiver’s search list.

Instance Methods 1855
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

- (void)removeSuiteNamed:(NSString *)suiteName

Parameters
suiteName

The domain name to remove.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addSuiteNamed: (page 1845)

Declared In
NSUserDefaults.h

removeVolatileDomainForName:
Removes the specified volatile domain from the user’s defaults.

- (void)removeVolatileDomainForName:(NSString *)domainName

Parameters
domainName

The volatile domain you want to remove.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setVolatileDomain:forName: (page 1859)

Declared In
NSUserDefaults.h

setBool:forKey:
Sets the value of the specified default key to a string containing a Boolean value.

- (void)setBool:(BOOL)value forKey:(NSString *)defaultName

Parameters
value

The Boolean value to store in the defaults database.

defaultName
The key with which to associate with the value.

Discussion
Invokes setObject:forKey: (page 1858) as part of its implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– boolForKey: (page 1847)

1856 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

Related Sample Code
Sproing

Declared In
NSUserDefaults.h

setFloat:forKey:
Sets the value of the specified default key to a string containing a floating-point value.

- (void)setFloat:(float)value forKey:(NSString *)defaultName

Parameters
value

The floating-point value to store in the defaults database.

defaultName
The key with which to associate with the value.

Discussion
Invokes setObject:forKey: (page 1858) as part of its implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– floatForKey: (page 1849)

Declared In
NSUserDefaults.h

setInteger:forKey:
Sets the value of the specified default key to a string containing an integer value.

- (void)setInteger:(NSInteger)value forKey:(NSString *)defaultName

Parameters
value

The integer value to store in the defaults database.

defaultName
The key with which to associate with the value.

Discussion
Invokes setObject:forKey: (page 1858) as part of its implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– integerForKey: (page 1851)

Related Sample Code
IKSlideshowDemo

Instance Methods 1857
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

MungSaver
Sproing

Declared In
NSUserDefaults.h

setObject:forKey:
Sets the value of the specified default key in the standard application domain.

- (void)setObject:(id)value forKey:(NSString *)defaultName

Parameters
value

The object to store in the defaults database. A default’s value can be only property list objects: NSData,
NSString, NSNumber, NSDate, NSArray, or NSDictionary.

defaultName
The key with which to associate with the value.

Discussion
Setting a default has no effect on the value returned by the objectForKey: (page 1851) method if the same
key exists in a domain that precedes the application domain in the search list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeObjectForKey: (page 1855)

Related Sample Code
CIVideoDemoGL
PrefsPane
QTAudioExtractionPanel
QTKitPlayer
Quartz Composer QCTV

Declared In
NSUserDefaults.h

setPersistentDomain:forName:
Sets the dictionary for the specified persistent domain.

- (void)setPersistentDomain:(NSDictionary *)domain forName:(NSString *)domainName

Parameters
domain

The dictionary of keys and values you want to assign to the domain.

domainName
The domain whose keys and values you want to set. This value should be equal to your application's
bundle identifier.

1858 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

Discussion
When a persistent domain is changed, an NSUserDefaultsDidChangeNotification (page 1870) is posted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– persistentDomainForName: (page 1853)
– persistentDomainNames (page 1854)

Declared In
NSUserDefaults.h

setVolatileDomain:forName:
Sets the dictionary for the specified volatile domain.

- (void)setVolatileDomain:(NSDictionary *)domain forName:(NSString *)domainName

Parameters
domain

The dictionary of keys and values you want to assign to the domain.

domainName
The domain whose keys and values you want to set.

Discussion
This method raises an NSInvalidArgumentException if a volatile domain with the specified name already
exists.

Availability
Available in Mac OS X v10.0 and later.

See Also
– volatileDomainForName: (page 1861)
– volatileDomainNames (page 1862)

Declared In
NSUserDefaults.h

stringArrayForKey:
Returns the array of strings associated with the specified key.

- (NSArray *)stringArrayForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The array of NSString objects, or nil if the specified default does not exist, the default does not contain
an array, or the array does not contain NSString objects.

Instance Methods 1859
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

Special Considerations

The returned array and its contents are immutable, even if the values you originally set were mutable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arrayForKey: (page 1846)
– boolForKey: (page 1847)
– dataForKey: (page 1847)
– dictionaryForKey: (page 1848)
– floatForKey: (page 1849)
– integerForKey: (page 1851)
– objectForKey: (page 1851)
– stringForKey: (page 1860)

Declared In
NSUserDefaults.h

stringForKey:
Returns the string associated with the specified key.

- (NSString *)stringForKey:(NSString *)defaultName

Parameters
defaultName

A key in the current user's defaults database.

Return Value
The string associated with the specified key, or nil if the default does not exist or does not contain a string.

Special Considerations

The returned string is immutable, even if the value you originally set was a mutable string.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arrayForKey: (page 1846)
– boolForKey: (page 1847)
– dataForKey: (page 1847)
– dictionaryForKey: (page 1848)
– floatForKey: (page 1849)
– integerForKey: (page 1851)
– objectForKey: (page 1851)
– stringArrayForKey: (page 1859)

Related Sample Code
CIVideoDemoGL
Core Animation QuickTime Layer

1860 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

DeskPictAppDockMenu

Declared In
NSUserDefaults.h

synchronize
Writes any modifications to the persistent domains to disk and updates all unmodified persistent domains
to what is on disk.

- (BOOL)synchronize

Return Value
YES if the data was saved successfully to disk, otherwise NO.

Discussion
Because this method is automatically invoked at periodic intervals, use this method only if you cannot wait
for the automatic synchronization (for example, if your application is about to exit) or if you want to update
the user defaults to what is on disk even though you have not made any changes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– persistentDomainForName: (page 1853)
– persistentDomainNames (page 1854)
– removePersistentDomainForName: (page 1855)
– setPersistentDomain:forName: (page 1858)

Related Sample Code
CIVideoDemoGL
MungSaver
QTAudioExtractionPanel
QTKitPlayer
Quartz Composer QCTV

Declared In
NSUserDefaults.h

volatileDomainForName:
Returns the dictionary for the specified volatile domain.

- (NSDictionary *)volatileDomainForName:(NSString *)domainName

Parameters
domainName

The domain whose keys and values you want.

Instance Methods 1861
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

Return Value
The dictionary of keys and values belonging to the domain. The keys in the dictionary are names of defaults,
and the value corresponding to each key is a property list object (NSData, NSString, NSNumber, NSDate,
NSArray, or NSDictionary).

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeVolatileDomainForName: (page 1856)
– setVolatileDomain:forName: (page 1859)

Declared In
NSUserDefaults.h

volatileDomainNames
Returns an array of the current volatile domain names.

- (NSArray *)volatileDomainNames

Return Value
An array of NSString objects with the volatile domain names.

Discussion
You can get the contents of each domain by passing the returned domain names to the
volatileDomainForName: (page 1861) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeVolatileDomainForName: (page 1856)
– setVolatileDomain:forName: (page 1859)

Declared In
NSUserDefaults.h

Constants

NSUserDefaults Domains
These constants specify various user defaults domains.

1862 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

extern NSString *NSGlobalDomain;
extern NSString *NSArgumentDomain;
extern NSString *NSRegistrationDomain;

Constants
NSGlobalDomain

The domain consisting of defaults meant to be seen by all applications.

Available in Mac OS X v10.0 and later.

Declared in NSUserDefaults.h.

NSArgumentDomain
The domain consisting of defaults parsed from the application’s arguments. These are one or more
pairs of the form -default value included in the command-line invocation of the application.

Available in Mac OS X v10.0 and later.

Declared in NSUserDefaults.h.

NSRegistrationDomain
The domain consisting of a set of temporary defaults whose values can be set by the application to
ensure that searches will always be successful.

Available in Mac OS X v10.0 and later.

Declared in NSUserDefaults.h.

Declared In
NSUserDefaults.h

Language-Dependent Date/Time Information
The NSUserDefaults class provides the following constants as a convenience. They provide access to values
of the keys to the locale dictionary, which is discussed in User Defaults Programming Topics for Cocoa.
(Deprecated. These constants are deprecated in Mac OS X v10.5. Where there are direct replacements, you
can find typically them in NSDateFormatter—for example, monthSymbols (page 437),
shortWeekdaySymbols (page 454), and AMSymbol (page 430)—otherwise you should use the patterns
described in Data Formatting Programming Guide for Cocoa.)

Constants 1863
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

extern NSString *NSAMPMDesignation;
extern NSString *NSDateFormatString;
extern NSString *NSDateTimeOrdering;
extern NSString *NSEarlierTimeDesignations;
extern NSString *NSHourNameDesignations;
extern NSString *NSLaterTimeDesignations;
extern NSString *NSMonthNameArray;
extern NSString *NSNextDayDesignations;
extern NSString *NSNextNextDayDesignations;
extern NSString *NSPriorDayDesignations;
extern NSString *NSShortDateFormatString;
extern NSString *NSShortMonthNameArray;
extern NSString *NSShortTimeDateFormatString;
extern NSString *NSShortWeekDayNameArray;
extern NSString *NSThisDayDesignations;
extern NSString *NSTimeDateFormatString;
extern NSString *NSTimeFormatString;
extern NSString *NSWeekDayNameArray;
extern NSString *NSYearMonthWeekDesignations;

Constants
NSAMPMDesignation

Key for the value that specifies how the morning and afternoon designations are printed, affecting
strings that use the %p format specifier. (Deprecated. Use AMSymbol (page 430) or PMSymbol (page
437) (NSDateFormatter) instead.)

The defaults are “AM” and “PM”.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSDateFormatString

Key for the format string that specifies how how dates are printed using the date format specifiers.
(Deprecated. Use the appropriate API from NSDateFormatter instead—see Data Formatting
Programming Guide for Cocoa.)

The default is to use weekday names with full month names and full years, as in “Saturday, March 24,
2001.”

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

1864 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

NSDateTimeOrdering
Key for the string that specifies how to use ambiguous numbers in date strings.

Specify this value as a permutation of the letters M (month), D (day), Y (year), and H (hour). For example,
MDYH treats “2/3/01 10” as the 3rd day of February 2001 at 10:00 am, whereas DMYH treats the same
value as the 2nd day of March 2001 at 10:00 am. If fewer numbers are specified than are needed, the
numbers are prioritized to satisfy day first, then month, and then year. For example, if you supply only
the value 12, it means the 12th day of this month in this year because the day must be specified. If
you supply “2 12” it means either February 12 or December 2, depending on if the ordering is “MDYH”
or “DMYH.”

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSEarlierTimeDesignations

Key for an array of strings that denote a time in the past. (Deprecated. There is no direct replacement.
If you need to localize words such as “prior,” you should use a strings file as you would for any other
localizable text—see Strings Files.)

These are adjectives that modify values from NSYearMonthWeekDesignations. The defaults are
“prior,” “last,” “past,” and “ago.”

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSHourNameDesignations
Key for strings that identify the time of day.

These strings should be bound to an hour. The default is this array of arrays: (0, midnight), (10, morning),
(12, noon, lunch), (14, afternoon), (19, dinner).

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSLaterTimeDesignations

Key for an array of strings that denote a time in the future. (Deprecated. There is no direct replacement.
If you need to localize words such as “next,” you should use a strings file as you would for any other
localizable text—see Strings Files.)

Strings in this array are adjectives that modify a value from NSYearMonthWeekDesignations.

The default is an array that contains a single string, "next".

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

Constants 1865
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

NSMonthNameArray

Key for the value that specifies the names for the months, affecting strings that use the %B format
specifier. (Deprecated. Use monthSymbols (page 437) or—if you are going to display these in the
user interface by themselves—standaloneMonthSymbols (page 455) (NSDateFormatter) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSNextDayDesignations

Key for an array of strings that denote the day after today. (Deprecated. There is no direct replacement.
If you need to localize words such as “tomorrow,” you should use a strings file as you would for any
other localizable text—see Strings Files.)

The default is an array that contains a single string, "tomorrow".

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSNextNextDayDesignations

Key for an array of strings that denote the day after tomorrow. (Deprecated. There is no direct
replacement. If you need to localize words such as “nextday,” you should use a strings file as you
would for any other localizable text—see Strings Files.)

The default is an array that contains a single string, "nextday".

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSPriorDayDesignations

Key for an array of strings that denote the day before today. (Deprecated. There is no direct
replacement. If you need to localize words such as “yesterday,” you should use a strings file as you
would for any other localizable text—see Strings Files.)

The default is an array that contains a single string, "yesterday".

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSShortDateFormatString

Key for a format string that specifies how dates are abbreviated. (Deprecated. Use the appropriate
API from NSDateFormatter instead—see Data Formatting Programming Guide for Cocoa.)

The default is to separate the day month and year with slashes and to put the day first, as in 31/10/01.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

1866 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

NSShortWeekDayNameArray

Key for an array of strings that specify the abbreviations for the days of the week, affecting strings
that use the %a format specifier. (Deprecated. Use shortWeekdaySymbols (page 454) or—if you are
going to display these in the user interface by themselves—shortStandaloneWeekdaySymbols (page
454) (NSDateFormatter) instead.)

Sunday should be the first day of the week.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSShortMonthNameArray

Key for an array of strings that specify the abbreviations for the months, affecting strings that use the
%b format specifier. (Deprecated. Use shortMonthSymbols (page 452)or—if you are going to display
these in the user interface by themselves—shortStandaloneMonthSymbols (page 453)
(NSDateFormatter) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSShortTimeDateFormatString

Key for a format string that specifies how times and dates are abbreviated. (Deprecated. Use the
appropriate API fromNSDateFormatter instead—see Data Formatting Programming Guide for Cocoa.)

The default is to use dashes to separate the day, month, and year and to use a 12-hour clock, as in
"31-Jan-01 1:30 PM."]

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSThisDayDesignations

Key for an array of strings that specify what this day is called. (Deprecated. There is no direct
replacement. If you need to localize words such as “today,” you should use a strings file as you would
for any other localizable text—see Strings Files.)

The default is an array containing two strings, "today" and "now".

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

Constants 1867
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

NSTimeDateFormatString

Key for the value that specifies how dates with times are printed, affecting strings that use the format
specifiers %c, %X, or %x. (Deprecated. Use the appropriate API from NSDateFormatter instead—see
Data Formatting Programming Guide for Cocoa.)

The default is to use full month names and days with a 24-hour clock, as in "Sunday, January 01, 2001
23:00:00 Pacific Standard Time."

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSTimeFormatString

Key for a format string that specifies how dates with times are printed. (Deprecated. Use the
appropriate API from NSDateFormatter instead—see Data Formatting Programming Guide for Cocoa.)

The default is to use a 12-hour clock.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSWeekDayNameArray

Key for an array of strings that specify the names for the days of the week, affecting strings that use
the %A format specifier. (Deprecated. Use weekdaySymbols (page 459) or—if you are going to display
these in the user interface by themselves—standaloneWeekdaySymbols (page 455)
(NSDateFormatter) instead.)

Sunday should be the first day of the week.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSYearMonthWeekDesignations

Key for an array of strings that specify the words for year, month, and week in the current locale.
(Deprecated. There is no direct replacement. If you need to localize words such as “year,” you should
use a strings file as you would for any other localizable text—see Strings Files.)

The defaults are “year,” “month,” and “week.”

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

Declared In
NSUserDefaults.h

Language-Dependent Numeric Information
The NSUserDefaults class provides the following constants as a convenience. They provide access to values
of the keys to the locale dictionary, which is discussed in User Defaults Programming Topics for Cocoa.
(Deprecated. These constants are deprecated in Mac OS X v10.5. Where there are replacements, you can

1868 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

typically find them in NSNumberFormatter or NSLocale—for example, currencySymbol (page 1092),
currencyDecimalSeparator (page 1091), andthousandSeparator (page 1139)—otherwise you should use
the patterns described in Data Formatting Programming Guide for Cocoa.)

extern NSString *NSCurrencySymbol;
extern NSString *NSDecimalDigits;
extern NSString *NSDecimalSeparator;
extern NSString *NSInternationalCurrencyString;
extern NSString *NSNegativeCurrencyFormatString;
extern NSString *NSPositiveCurrencyFormatString;
extern NSString *NSThousandsSeparator;

Constants
NSCurrencySymbol

A string that specifies the symbol used to denote currency in this language. (Deprecated. Use
currencySymbol (page 1092) (NSNumberFormatter) or retrieve the NSLocaleCurrencySymbol
from the current locale instead.)

The default is “$”.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSDecimalDigits
Strings that identify the decimal digits in addition to or instead of the ASCII digits.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSDecimalSeparator

A string that specifies the decimal separator. (Deprecated. Use decimalSeparator (page 1092) or
currencyDecimalSeparator (page 1091) (NSNumberFormatter) or retrieve the
NSLocaleDecimalSeparator from the current locale instead.)

The decimal separator separates the ones place from the tenths place. The default is “.”.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSInternationalCurrencyString

A string containing a three-letter abbreviation for currency, following the ISO 4217 standard.
(Deprecated. Retrieve the NSLocaleCurrencySymbol from the current locale instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

Constants 1869
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

NSNegativeCurrencyFormatString

A format string that specifies how negative numbers are printed when representing a currency value.
(Deprecated. Use the appropriate API from NSNumberFormatter instead—see Data Formatting
Programming Guide for Cocoa.)

The default is –$9,999.00.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSPositiveCurrencyFormatString

A format string that specifies how positive numbers are printed when representing a currency value.
(Deprecated. Use the appropriate API from NSNumberFormatter instead—see Data Formatting
Programming Guide for Cocoa.)

The default is $9,999.00.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

NSThousandsSeparator

A string that specifies the separator character for the thousands place of a decimal number.
(Deprecated. Retrieve the NSLocaleGroupingSeparator from the current locale instead.)

The default is a comma.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSUserDefaults.h.

Declared In
NSUserDefaults.h

Notifications

NSUserDefaultsDidChangeNotification
This notification is posted when a change is made to defaults in a persistent domain.

The notification object is the NSUserDefaults object. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUserDefaults.h

1870 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 159

NSUserDefaults Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSValue.h
Foundation/NSGeometry.h
Foundation/NSRange.h

Companion guide Number and Value Programming Topics for Cocoa

Related sample code iSpend
QTAudioExtractionPanel
QTKitMovieShuffler
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Overview

An NSValue object is a simple container for a single C or Objective-C data item. It can hold any of the scalar
types such as int, float, and char, as well as pointers, structures, and object ids. The purpose of this class
is to allow items of such data types to be added to collections such as instances of NSArray and NSSet,
which require their elements to be objects. NSValue objects are always immutable.

Adopted Protocols

NSCoding
encodeWithCoder: (page 2034)
initWithCoder: (page 2034)

NSCopying
– copyWithZone: (page 2042)

Overview 1871
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

Tasks

Creating an NSValue

– initWithBytes:objCType: (page 1878)
Initializes and returns an NSValue object that contains a given value, which is interpreted as being
of a given Objective-C type.

+ valueWithBytes:objCType: (page 1873)
Creates and returns an NSValue object that contains a given value, which is interpreted as being of
a given Objective-C type.

+ value:withObjCType: (page 1873)
Creates and returns an NSValue object that contains a given value which is interpreted as being of
a given Objective-C type.

+ valueWithNonretainedObject: (page 1874)
Creates and returns an NSValue object that contains a given object.

+ valueWithPointer: (page 1875)
Creates and returns an NSValue object that contains a given pointer.

+ valueWithPoint: (page 1875)
Creates and returns an NSValue object that contains a given NSPoint structure.

+ valueWithRange: (page 1876)
Creates and returns an NSValue object that contains a given NSRange structure.

+ valueWithRect: (page 1876)
Creates and returns an NSValue object that contains a given NSRect structure.

+ valueWithSize: (page 1877)
Creates and returns an NSValue object that contains a given NSSize structure.

Accessing Data

– getValue: (page 1877)
Copies the receiver’s value into a given buffer.

– nonretainedObjectValue (page 1879)
Returns the receiver's value as an id.

– objCType (page 1879)
Returns a C string containing the Objective-C type of the data contained in the receiver.

– pointValue (page 1880)
Returns an NSPoint structure representation of the receiver.

– pointerValue (page 1879)
Returns the receiver's value as a pointer to void.

– rangeValue (page 1880)
Returns an NSRange structure representation of the receiver.

– rectValue (page 1880)
Returns an NSRect structure representation of the receiver.

1872 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

– sizeValue (page 1881)
Returns an NSSize structure representation of the receiver.

Comparing Objects

– isEqualToValue: (page 1878)
Returns a Boolean value that indicates whether the receiver and another value are equal.

Class Methods

value:withObjCType:
Creates and returns an NSValue object that contains a given value which is interpreted as being of a given
Objective-C type.

+ (NSValue *)value:(const void *)value withObjCType:(const char *)type

Parameters
value

The value for the new NSValue object.

type
The Objective-C type of value. type should be created with the Objective-C @encode() compiler
directive; it should not be hard-coded as a C string.

Return Value
A new NSValue object that contains value, which is interpreted as being of the Objective-C type type.

Discussion
This method has the same effect as valueWithBytes:objCType: (page 1873) and may be deprecated in a
future release. You should use valueWithBytes:objCType: (page 1873) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ valueWithBytes:objCType: (page 1873)

Related Sample Code
VideoViewer

Declared In
NSValue.h

valueWithBytes:objCType:
Creates and returns an NSValue object that contains a given value, which is interpreted as being of a given
Objective-C type.

+ (NSValue *)valueWithBytes:(const void *)value objCType:(const char *)type

Class Methods 1873
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

Parameters
value

The value for the new NSValue object.

type
The Objective-C type of value. type should be created with the Objective-C @encode() compiler
directive; it should not be hard-coded as a C string.

Return Value
A new NSValue object that contains value, which is interpreted as being of the Objective-C type type.

Discussion
See Number and Value Programming Topics for Cocoa for other considerations in creating an NSValue object
and code examples.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithBytes:objCType: (page 1878)

Declared In
NSValue.h

valueWithNonretainedObject:
Creates and returns an NSValue object that contains a given object.

+ (NSValue *)valueWithNonretainedObject:(id)anObject

Parameters
anObject

The value for the new object.

Return Value
A new NSValue object that contains anObject.

Discussion
This method is equivalent to invoking value:withObjCType: (page 1873) in this manner:

NSValue *theValue = [NSValue value:&anObject withObjCType:@encode(void *)];

This method is useful for preventing an object from being retained when it’s added to a collection object
(such as an instance of NSArray or NSDictionary).

Availability
Available in Mac OS X v10.0 and later.

See Also
– nonretainedObjectValue (page 1879)

Declared In
NSValue.h

1874 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

valueWithPoint:
Creates and returns an NSValue object that contains a given NSPoint structure.

+ (NSValue *)valueWithPoint:(NSPoint)aPoint

Parameters
aPoint

The value for the new object.

Return Value
A new NSValue object that contains the value of point.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pointValue (page 1880)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
Dicey
ImageMapExample
PDF Annotation Editor
TrackBall

Declared In
NSGeometry.h

valueWithPointer:
Creates and returns an NSValue object that contains a given pointer.

+ (NSValue *)valueWithPointer:(const void *)aPointer

Parameters
aPointer

The value for the new object.

Return Value
A new NSValue object that contains aPointer.

Discussion
This method is equivalent to invoking value:withObjCType: (page 1873) in this manner:

NSValue *theValue = [NSValue value:&aPointer withObjCType:@encode(void *)];

This method does not copy the contents of aPointer, so you must not to deallocate the memory at the
pointer destination while the NSValue object exists. NSData objects may be more suited for arbitrary pointers
than NSValue objects.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 1875
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

See Also
– pointerValue (page 1879)

Declared In
NSValue.h

valueWithRange:
Creates and returns an NSValue object that contains a given NSRange structure.

+ (NSValue *)valueWithRange:(NSRange)range

Parameters
range

The value for the new object.

Return Value
A new NSValue object that contains the value of range.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rangeValue (page 1880)

Declared In
NSRange.h

valueWithRect:
Creates and returns an NSValue object that contains a given NSRect structure.

+ (NSValue *)valueWithRect:(NSRect)rect

Parameters
rect

The value for the new object.

Return Value
A new NSValue object that contains the value of rect.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rectValue (page 1880)

Related Sample Code
IBFragmentView
iSpend
QTCoreVideo301
Reducer

1876 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

Declared In
NSGeometry.h

valueWithSize:
Creates and returns an NSValue object that contains a given NSSize structure.

+ (NSValue *)valueWithSize:(NSSize)size

Parameters
size

The value for the new object.

Return Value
A new NSValue object that contains the value of size.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sizeValue (page 1881)

Related Sample Code
Dicey
ImageMapExample
QTKitMovieShuffler
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSGeometry.h

Instance Methods

getValue:
Copies the receiver’s value into a given buffer.

- (void)getValue:(void *)buffer

Parameters
buffer

A buffer into which to copy the receiver's value. buffer must be large enough to hold the value.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
VideoViewer

Instance Methods 1877
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

Declared In
NSValue.h

initWithBytes:objCType:
Initializes and returns an NSValue object that contains a given value, which is interpreted as being of a given
Objective-C type.

- (id)initWithBytes:(const void *)value objCType:(const char *)type

Parameters
value

The value for the new NSValue object.

type
The Objective-C type of value. type should be created with the Objective-C @encode() compiler
directive; it should not be hard-coded as a C string.

Return Value
An initialized NSValue object that contains value, which is interpreted as being of the Objective-C type
type. The returned object might be different than the original receiver.

Discussion
See Number and Value Programming Topics for Cocoa for other considerations in creating an NSValue object.

This is the designated initializer for the NSValue class.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

isEqualToValue:
Returns a Boolean value that indicates whether the receiver and another value are equal.

- (BOOL)isEqualToValue:(NSValue *)value

Parameters
aValue

The value with which to compare the receiver.

Return Value
YES if the receiver and aValue are equal, otherwise NO. For NSValue objects, the class, type, and contents
are compared to determine equality.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

1878 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

nonretainedObjectValue
Returns the receiver's value as an id.

- (id)nonretainedObjectValue

Return Value
The receiver's value as an id. If the receiver was not created to hold a pointer-sized data item, the result is
undefined.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getValue: (page 1877)

Declared In
NSValue.h

objCType
Returns a C string containing the Objective-C type of the data contained in the receiver.

- (const char *)objCType

Return Value
A C string containing the Objective-C type of the data contained in the receiver, as encoded by the @encode()
compiler directive.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSValue.h

pointerValue
Returns the receiver's value as a pointer to void.

- (void *)pointerValue

Return Value
The receiver's value as a pointer to void. If the receiver was not created to hold a pointer-sized data item,
the result is undefined.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getValue: (page 1877)

Declared In
NSValue.h

Instance Methods 1879
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

pointValue
Returns an NSPoint structure representation of the receiver.

- (NSPoint)pointValue

Return Value
An NSPoint structure representation of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rectValue (page 1880)
– sizeValue (page 1881)

Declared In
NSGeometry.h

rangeValue
Returns an NSRange structure representation of the receiver.

- (NSRange)rangeValue

Return Value
An NSRange structure representation of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ valueWithRange: (page 1876)

Declared In
NSRange.h

rectValue
Returns an NSRect structure representation of the receiver.

- (NSRect)rectValue

Return Value
An NSRect structure representation of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pointValue (page 1880)
– sizeValue (page 1881)

1880 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

Related Sample Code
IBFragmentView

Declared In
NSGeometry.h

sizeValue
Returns an NSSize structure representation of the receiver.

- (NSSize)sizeValue

Return Value
An NSSize structure representation of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pointValue (page 1880)
– rectValue (page 1880)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
QTKitAdvancedDocument
QTKitFrameStepper
QTKitMovieShuffler
QTKitTimeCode

Declared In
NSGeometry.h

Instance Methods 1881
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

1882 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 160

NSValue Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSValueTransformer.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Value Transformer Programming Guide

Related sample code BindingsJoystick
CustomAtomicStoreSubclass
NewsReader
RGB ValueTransformers
TemperatureTester

Overview

NSValueTransformer is an abstract class that is used by the Cocoa Bindings technology to transform values
from one representation to another.

An application creates a subclass of NSValueTransformer, overriding the necessary methods to provide
the required custom transformation.

Example

A relatively trivial value transformer takes an object of type id and returns a string based on the object’s
class type. This transformer is not reversible as it’s probably unreasonable to transform a class name into an
object. The value transformer class you write to accomplish this simple task could look like:

@interface ClassNameTransformer: NSValueTransformer {}
@end
@implementation ClassNameTransformer
+ (Class)transformedValueClass { return [NSString class]; }
+ (BOOL)allowsReverseTransformation { return NO; }
- (id)transformedValue:(id)value {
 return (value == nil) ? nil : NSStringFromClass([value class]);
}
@end

Overview 1883
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 161

NSValueTransformer Class Reference

Tasks

Using Name-based Registry

+ setValueTransformer:forName: (page 1885)
Registers the value transformer a given transformer with a given identifier.

+ valueTransformerForName: (page 1886)
Returns the value transformer identified by a given identifier.

+ valueTransformerNames (page 1886)
Returns an array of all the registered value transformers.

Getting Information About a Transformer

+ allowsReverseTransformation (page 1884)
Returns a Boolean value that indicates whether the receiver can reverse a transformation.

+ transformedValueClass (page 1885)
Returns the class of the value returned by the receiver for a forward transformation.

Using Transformers

– transformedValue: (page 1887)
Returns the result of transforming a given value.

– reverseTransformedValue: (page 1887)
Returns the result of the reverse transformation of a given value.

Class Methods

allowsReverseTransformation
Returns a Boolean value that indicates whether the receiver can reverse a transformation.

+ (BOOL)allowsReverseTransformation

Return Value
YES if the receiver supports reverse value transformations, otherwise NO.

The default is NO.

Discussion
A subclass should override this method to return YES if it supports reverse value transformations.

Availability
Available in Mac OS X v10.3 and later.

1884 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 161

NSValueTransformer Class Reference

Related Sample Code
CoreRecipes
DerivedProperty

Declared In
NSValueTransformer.h

setValueTransformer:forName:
Registers the value transformer a given transformer with a given identifier.

+ (void)setValueTransformer:(NSValueTransformer *)transformer forName:(NSString
*)name

Parameters
transformer

The transformer to register.

name
The name for transformer.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ valueTransformerForName: (page 1886)

Related Sample Code
CoreRecipes
GridCalendar
NewsReader
RGB ValueTransformers
TemperatureTester

Declared In
NSValueTransformer.h

transformedValueClass
Returns the class of the value returned by the receiver for a forward transformation.

+ (Class)transformedValueClass

Return Value
The class of the value returned by the receiver for a forward transformation.

Discussion
A subclass should override this method to return the appropriate class.

Availability
Available in Mac OS X v10.3 and later.

Class Methods 1885
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 161

NSValueTransformer Class Reference

Related Sample Code
DerivedProperty
GridCalendar
RGB ValueTransformers
StickiesExample

Declared In
NSValueTransformer.h

valueTransformerForName:
Returns the value transformer identified by a given identifier.

+ (NSValueTransformer *)valueTransformerForName:(NSString *)name

Parameters
name

The transformer identifier.

Return Value
The value transformer identified by name in the shared registry, or nil if not found.

Discussion
If valueTransformerForName: does not find a registered transformer instance for name, it will attempt to
find a class with the specified name. If a corresponding class is found an instance will be created and initialized
using its init: method and then automatically registered with name.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ setValueTransformer:forName: (page 1885)

Related Sample Code
BindingsJoystick
RGB ValueTransformers
TemperatureTester

Declared In
NSValueTransformer.h

valueTransformerNames
Returns an array of all the registered value transformers.

+ (NSArray *)valueTransformerNames

Return Value
An array of all the registered value transformers.

Availability
Available in Mac OS X v10.3 and later.

1886 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 161

NSValueTransformer Class Reference

Declared In
NSValueTransformer.h

Instance Methods

reverseTransformedValue:
Returns the result of the reverse transformation of a given value.

- (id)reverseTransformedValue:(id)value

Parameters
value

The value to reverse transform.

Return Value
The reverse transformation of value.

Discussion
The default implementation raises an exception if allowsReverseTransformation (page 1884) returns NO;
otherwise it will invoke transformedValue: (page 1887) with value.

A subclass should override this method if they require a reverse transformation that is not the same as simply
reapplying the original transform (as would be the case with negation, for example). For example, if a value
transformer converts a value in Fahrenheit to Celsius, this method would converts a value from Celsius to
Fahrenheit.

Availability
Available in Mac OS X v10.3 and later.

See Also
– transformedValue: (page 1887)

Related Sample Code
TemperatureTester

Declared In
NSValueTransformer.h

transformedValue:
Returns the result of transforming a given value.

- (id)transformedValue:(id)value

Parameters
value

The value to transform.

Return Value
The result of transforming value.

Instance Methods 1887
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 161

NSValueTransformer Class Reference

The default implementation simply returns value.

Discussion
A subclass should override this method to transform and return an object based on value.

Availability
Available in Mac OS X v10.3 and later.

See Also
– reverseTransformedValue: (page 1887)

Related Sample Code
BindingsJoystick
CoreRecipes
RGB ValueTransformers
TemperatureTester

Declared In
NSValueTransformer.h

Constants

Named Value Transformers
The following named value transformers are defined by NSValueTransformer:

NSString * const NSNegateBooleanTransformerName;
NSString * const NSIsNilTransformerName ;
NSString * const NSIsNotNilTransformerName ;
NSString * const NSUnarchiveFromDataTransformerName ;
NSString * const NSKeyedUnarchiveFromDataTransformerName ;

Constants
NSNegateBooleanTransformerName

This value transformer negates a boolean value, transforming YES to NO and NO to YES.

This transformer is reversible.

Available in Mac OS X v10.3 and later.

Declared in NSValueTransformer.h.

NSIsNilTransformerName
This value transformer returns YES if the value is nil.

This transformer is not reversible.

Available in Mac OS X v10.3 and later.

Declared in NSValueTransformer.h.

1888 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 161

NSValueTransformer Class Reference

NSIsNotNilTransformerName
This value transformer returns YES if the value is non-nil.

This transformer is not reversible.

Available in Mac OS X v10.3 and later.

Declared in NSValueTransformer.h.

NSUnarchiveFromDataTransformerName
This value transformer returns an object created by attempting to unarchive the data in the NSData
object passed as the value.

The reverse transformation returns an NSData instance created by archiving the value. The archived
object must implement the NSCoding protocol using sequential archiving in order to be unarchived
and archived with this transformer.

Available in Mac OS X v10.3 and later.

Declared in NSValueTransformer.h.

NSKeyedUnarchiveFromDataTransformerName
This value transformer returns an object created by attempting to unarchive the data in the NSData
object passed as the value. The archived object must be created using keyed archiving in order to be
unarchived and archived with this transformer.

The reverse transformation returns an NSData instance created by archiving the value using keyed
archiving. The archived object must implement the NSCoding protocol using keyed archiving in order
to be unarchived and archived with this transformer.

Available in Mac OS X v10.5 and later.

Declared in NSValueTransformer.h.

Declared In
NSValueTransformer.h

Constants 1889
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 161

NSValueTransformer Class Reference

1890 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 161

NSValueTransformer Class Reference

Inherits from NSScriptObjectSpecifier : NSObject

Conforms to NSCoding (NSScriptObjectSpecifier)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSScriptObjectSpecifiers.h

Companion guide Cocoa Scripting Guide

Overview

NSWhoseSpecifier specifies every object in a collection (or every element in a container) that matches the
condition defined by a single Boolean expression or multiple Boolean expressions connected by logical
operators. NSWhoseSpecifier is unique among object specifiers in that its top-level container is typically
not the application object but an evaluated object specifier involved in the tested-for condition. An
NSWhoseSpecifier object encapsulates a “test” object for defining this condition. A test object is instantiated
from a subclass of the abstract NSScriptWhoseTest class, whose one declared method is isTrue (page
1438). See "Boolean Expressions and Logical Operations" in NSScriptObjectSpecifier and the descriptions
in NSComparisonMethods and NSScriptingComparisonMethods for more information.

The set of elements specified by an NSWhoseSpecifier object can be a subset of those that pass the
NSWhoseSpecifier object's test. This subset is specified by the various sub-element properties of the
NSWhoseSpecifier object . Consider as an example the specifier paragraphs where color of third
word is blue. This would be represented by an NSWhoseSpecifier object that uses a test specifier and
another object specifier to identify a subset of the objects with the specified property. That is, the specifier’s
property is paragraphs; the test specifier is an index specifier with property words and index 3; and the
qualifier is a key value qualifier for key color and value [NSColor blueColor]. The test object specifier
(word at index 3) is evaluated for each object (paragraph) using that object as the container; the resulting
objects (if any) are tested with the qualifier (color blue).

NSWhoseSpecifier is part of Cocoa’s built-in script handling. You don’t normally subclass it.

Overview 1891
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 162

NSWhoseSpecifier Class Reference

Tasks

Initializing a Whose Specifier

– initWithContainerClassDescription:containerSpecifier:key:test: (page 1893)
Returns an NSWhoseSpecifier object initialized with the given attributes.

Accessing Information About a Whose Specifier

– endSubelementIdentifier (page 1892)
Returns the end sub-element identifier for the receiver.

– endSubelementIndex (page 1893)
Returns the index position of the last sub-element within the range of objects being tested that passes
the receiver's test.

– setEndSubelementIdentifier: (page 1894)
Sets the end sub-element identifier for the specifier to the value of a given sub-element.

– setEndSubelementIndex: (page 1894)
Sets the index position of the last sub-element within the range of objects being tested that pass the
specifier’s test.

– setStartSubelementIdentifier: (page 1894)
Sets the start sub-element identifier for the specifier.

– setStartSubelementIndex: (page 1895)
Sets the index position of the first sub-element within the range of objects being tested that passes
the specifier’s test.

– setTest: (page 1895)
Sets the test object that is encapsulated by the receiver.

– startSubelementIdentifier (page 1895)
Returns the start sub-element identifier for the receiver.

– startSubelementIndex (page 1896)
Returns the index position of the first sub-element within the range of objects being tested that pass
the receiver's test.

– test (page 1896)
Returns the test object encapsulated by the receiver.

Instance Methods

endSubelementIdentifier
Returns the end sub-element identifier for the receiver.

- (NSWhoseSubelementIdentifier)endSubelementIdentifier

1892 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 162

NSWhoseSpecifier Class Reference

Return Value
The end sub-element identifier for the receiver, or NSNoSubelement if there is none.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

endSubelementIndex
Returns the index position of the last sub-element within the range of objects being tested that passes the
receiver's test.

- (NSInteger)endSubelementIndex

Return Value
The index position of the last sub-element within the range of objects being tested that passes the receiver's
test.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

initWithContainerClassDescription:containerSpecifier:key:test:
Returns an NSWhoseSpecifier object initialized with the given attributes.

- (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDescription
containerSpecifier:(NSScriptObjectSpecifier *)specifier key:(NSString *)property
test:(NSScriptWhoseTest *)test

Parameters
classDescription

Class description for the receiver's container object.

specifier
An object specifier for the receiver's container object.

property
The key for the property for which to test.

test
The test condition.

Return Value
An NSWhoseSpecifier object initialized with the given attributes.

Discussion
Invokes the super class’s initWithContainerClassDescription:containerSpecifier:key: (page
1418) and sets the whose test condition to test.

Instance Methods 1893
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 162

NSWhoseSpecifier Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

setEndSubelementIdentifier:
Sets the end sub-element identifier for the specifier to the value of a given sub-element.

- (void)setEndSubelementIdentifier:(NSWhoseSubelementIdentifier)subelement

Parameters
subelement

The end sub-element for the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

setEndSubelementIndex:
Sets the index position of the last sub-element within the range of objects being tested that pass the specifier’s
test.

- (void)setEndSubelementIndex:(NSInteger)index

Parameters
index

The index position of the end sub-element.

Discussion
Used only if the end sub-element identifier is NSIndexSubelement.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

setStartSubelementIdentifier:
Sets the start sub-element identifier for the specifier.

- (void)setStartSubelementIdentifier:(NSWhoseSubelementIdentifier)subelement

Parameters
subelement

The start sub-element for the receiver.

1894 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 162

NSWhoseSpecifier Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

setStartSubelementIndex:
Sets the index position of the first sub-element within the range of objects being tested that passes the
specifier’s test.

- (void)setStartSubelementIndex:(NSInteger)index

Parameters
index

The index position of the start sub-element.

Discussion
Used only if the start sub-element identifier is NSIndexSubelement.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

setTest:
Sets the test object that is encapsulated by the receiver.

- (void)setTest:(NSScriptWhoseTest *)test

Parameters
test

The test object for the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

startSubelementIdentifier
Returns the start sub-element identifier for the receiver.

- (NSWhoseSubelementIdentifier)startSubelementIdentifier

Return Value
The start sub-element identifier for the receiver.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1895
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 162

NSWhoseSpecifier Class Reference

Declared In
NSScriptObjectSpecifiers.h

startSubelementIndex
Returns the index position of the first sub-element within the range of objects being tested that pass the
receiver's test.

- (NSInteger)startSubelementIndex

Return Value
The index position of the first sub-element within the range of objects being tested that pass the receiver's
test.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

test
Returns the test object encapsulated by the receiver.

- (NSScriptWhoseTest *)test

Return Value
The test object encapsulated by the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

Constants

NSWhoseSubelementIdentifier
NSWhoseSpecifier uses these constants to specify sub-elements within the collection of objects being
tested that pass the specifier’s test.

1896 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 162

NSWhoseSpecifier Class Reference

typedef enum {
 NSIndexSubelement = 0,
 NSEverySubelement = 1,
 NSMiddleSubelement = 2,
 NSRandomSubelement = 3,
 NSNoSubelement = 4
} NSWhoseSubelementIdentifier;

Constants
NSIndexSubelement

An element at a given index that meets the specifier test.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSEverySubelement
Every element that meets the specifier test.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSMiddleSubelement
The middle element that meets the specifier test.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSRandomSubelement
Any element that meets the specifier test.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

NSNoSubelement
No sub-element met the specifier test. Valid only for specifying the end sub-element.; that is, there
is no end, so consider all elements.

Available in Mac OS X v10.0 and later.

Declared in NSScriptObjectSpecifiers.h.

Discussion
These constants are used by startSubelementIdentifier (page 1895),
setStartSubelementIdentifier: (page 1894), endSubelementIdentifier (page 1892), and
setEndSubelementIdentifier: (page 1894).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

Constants 1897
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 162

NSWhoseSpecifier Class Reference

1898 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 162

NSWhoseSpecifier Class Reference

Inherits from NSXMLNode : NSObject

Conforms to NSCopying (NSXMLNode)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSXMLDocument.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Tree-Based XML Programming Guide for Cocoa

Related sample code AlbumToSlideshow
CocoaSOAP
Core Data HTML Store
TimelineToTC

Overview

An instance of NSXMLDocument represents an XML document as internalized into a logical tree structure.
An NSXMLDocument object can have multiple child nodes but only one element, the root element. Any other
node must be a NSXMLNode object representing a comment or a processing instruction. If you attempt to
add any other kind of child node to an NSXMLDocument object, such as an attribute, namespace, another
document object, or an element other than the root, NSXMLDocument raises an exception. If you add a valid
child node and that object already has a parent, NSXMLDocument raises an exception. An NSXMLDocument
object may also have document-global attributes, such as XML version, character encoding, referenced DTD,
and MIME type.

The initializers of the NSXMLDocument class read an external source of XML, whether it be a local file or
remote website, parse it, and process it into the tree representation. You can also construct an NSXMLDocument
programmatically. There are accessor methods for getting and setting document attributes, methods for
transforming documents using XSLT, a method for dynamically validating a document, and methods for
printing out the content of an NSXMLDocument as XML, XHTML, HTML, or plain text.

Overview 1899
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

Subclassing Notes

Methods to Override

To subclass NSXMLDocument you need to override the primary initializer,
initWithData:options:error: (page 1906), and the methods listed below. In most cases, you need only
invoke the superclass implementation, adding any subclass-specific code before or after the invocation, as
necessary.

 ■ rootElement (page 1913)

 ■ setChildren: (page 1914)

 ■ removeChildAtIndex: (page 1912)

 ■ insertChild:atIndex: (page 1908)

 ■ characterEncoding (page 1904)

 ■ setCharacterEncoding: (page 1913)

 ■ documentContentKind (page 1905)

 ■ setDocumentContentKind: (page 1914)

 ■ DTD (page 1905)

 ■ setDTD: (page 1915)

 ■ MIMEType (page 1909)

 ■ setMIMEType: (page 1915)

 ■ isStandalone (page 1909)

 ■ setStandalone: (page 1916)

 ■ version (page 1918)

 ■ setURI: (page 1916)

 ■ setVersion: (page 1917)

By default NSXMLDocument implements the NSObject isEqual: (page 2101) method to perform a deep
comparison: two NSXMLDocument objects are not considered equal unless they have the same name, same
child nodes, same attributes, and so on. The comparison does not consider the parent node (and hence the
node’s location). If you want a different standard of comparison, override isEqual:.

Special Considerations

Because of the architecture and data model of NSXML, when it parses and processes a source of XML it cannot
know about your subclass unless you override the class method replacementClassForClass: (page 1903)
to return your custom class in place of an NSXML class. If your custom class has no direct NSXML
counterpart—for example, it is a subclass of NSXMLNode that represents CDATA sections—then you can walk
the tree after it has been created and insert the new node where appropriate.

1900 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

Tasks

Initializing NSXMLDocument Objects

– initWithContentsOfURL:options:error: (page 1905)
Initializes and returns an NSXMLDocument object created from the XML or HTML contents of a
URL-referenced source

– initWithData:options:error: (page 1906)
Initializes and returns an NSXMLDocument object created from an NSData object.

– initWithRootElement: (page 1907)
Returns an NSXMLDocument object initialized with a single child, the root element.

– initWithXMLString:options:error: (page 1907)
Initializes and returns an NSXMLDocument object created from a string containing XML markup text.

+ replacementClassForClass: (page 1903)
Overridden by subclasses to substitute a custom class for an NSXML class that the parser uses to
create node instances.

Managing Document Attributes

– characterEncoding (page 1904)
Returns the character encoding used for the XML.

– setCharacterEncoding: (page 1913)
Sets the character encoding of the receiver to encoding,

– documentContentKind (page 1905)
Returns the kind of document content for output.

– setDocumentContentKind: (page 1914)
Sets the kind of output content for the receiver.

– DTD (page 1905)
Returns an NSXMLDTD object representing the internal DTD associated with the receiver.

– setDTD: (page 1915)
Sets the internal DTD to be associated with the receiver.

– isStandalone (page 1909)
Returns whether the receiver represents a standalone XML document—that is, one without an external
DTD.

– setStandalone: (page 1916)
Sets a Boolean value that specifies whether the receiver represents a standalone XML document.

– MIMEType (page 1909)
Returns the MIME type for the receiver.

– setMIMEType: (page 1915)
Sets the MIME type of the receiver.

– URI (page 1917)
Returns the URI identifying the source of this document.

Tasks 1901
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

– setURI: (page 1916)
Sets the URI identifying the source of this document.

– version (page 1918)
Returns the version of the receiver’s XML.

– setVersion: (page 1917)
Sets the version of the receiver’s XML.

Managing the Root Element

– rootElement (page 1913)
Returns the root element of the receiver.

– setRootElement: (page 1915)
Set the root element of the receiver.

Adding and Removing Child Nodes

– addChild: (page 1904)
Adds a child node after the last of the receiver’s existing children.

– insertChild:atIndex: (page 1908)
Inserts a node object at specified position in the receiver’s array of children.

– insertChildren:atIndex: (page 1908)
Inserts an array of children at a specified position in the receiver’s array of children.

– removeChildAtIndex: (page 1912)
Removes the child node of the receiver located at a specified position in its array of children.

– replaceChildAtIndex:withNode: (page 1912)
Replaces the child node of the receiver located at a specified position in its array of children with
another node.

– setChildren: (page 1914)
Sets the child nodes of the receiver.

Transforming a Document Using XSLT

– objectByApplyingXSLT:arguments:error: (page 1910)
Applies the XSLT pattern rules and templates (specified as a data object) to the receiver and returns
a document object containing transformed XML or HTML markup.

– objectByApplyingXSLTString:arguments:error: (page 1911)
Applies the XSLT pattern rules and templates (specified as a string) to the receiver and returns a
document object containing transformed XML or HTML markup.

– objectByApplyingXSLTAtURL:arguments:error: (page 1910)
Applies the XSLT pattern rules and templates located at a specified URL to the receiver and returns
a document object containing transformed XML markup or an NSData object containing plain text,
RTF text, and so on.

1902 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

Writing a Document as XML Data

– XMLData (page 1918)
Returns the XML string representation of the receiver—that is, the entire document—encapsulated
in a data object.

– XMLDataWithOptions: (page 1919)
Returns the XML string representation of the receiver—that is, the entire document—encapsulated
in a data object.

Validating a Document

– validateAndReturnError: (page 1917)
Validates the document against the governing schema and returns whether the document conforms
to the schema.

Class Methods

replacementClassForClass:
Overridden by subclasses to substitute a custom class for an NSXML class that the parser uses to create node
instances.

+ (Class)replacementClassForClass:(Class)class

Parameters
class

A Class object identifying an NSXML class that is to be replaced by your custom class.

Return Value
The substituted class.

Discussion
For example, if you have a custom subclass of NSXMLElement that you want to be used in place of
NSXMLElement, you would make the following override:

+ (Class)replacementClassForClass:(Class)currentClass {
 if (currentClass == [NSXMLElement class]) {
 return [MyCustomElementClass class];
 }
}

This method is invoked before a document is parsed. The substituted class must be a subclass of NSXMLNode,
NSXMLDocument, NSXMLElement, NSXMLDTD, or NSXMLDTDNode.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setRootElement: (page 1915)

Class Methods 1903
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

Declared In
NSXMLDocument.h

Instance Methods

addChild:
Adds a child node after the last of the receiver’s existing children.

- (void)addChild:(NSXMLNode *)child

Parameters
child

The NSXMLNode object to be added.

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertChild:atIndex: (page 1908)
– removeChildAtIndex: (page 1912)
– setChildren: (page 1914)

Declared In
NSXMLDocument.h

characterEncoding
Returns the character encoding used for the XML.

- (NSString *)characterEncoding

Return Value
The character encoding used for the XML, or nil if no encoding is specified.

Discussion
Typically the encoding is specified in the XML declaration of a document that is processed, but it can be set
at any time. If the specified encoding does not match the actual encoding, parsing of the document may
fail.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCharacterEncoding: (page 1913)

Declared In
NSXMLDocument.h

1904 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

documentContentKind
Returns the kind of document content for output.

- (NSXMLDocumentContentKind)documentContentKind

Discussion
Most of the differences among content kind have to do with the handling of content-less tags such as
.
The valid NSXMLDocumentContentKind constants are NSXMLDocumentXMLKind,
NSXMLDocumentXHTMLKind, NSXMLDocumentHTMLKind, and NSXMLDocumentTextKind.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDocumentContentKind: (page 1914)

Declared In
NSXMLDocument.h

DTD
Returns an NSXMLDTD object representing the internal DTD associated with the receiver.

- (NSXMLDTD *)DTD

Return Value
An NSXMLDTD object representing the internal DTD associated with the receiver or nil if no DTD has been
associated.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDTD: (page 1915)

Declared In
NSXMLDocument.h

initWithContentsOfURL:options:error:
Initializes and returns an NSXMLDocument object created from the XML or HTML contents of a URL-referenced
source

- (id)initWithContentsOfURL:(NSURL *)url options:(NSUInteger)mask error:(NSError
**)error

Parameters
url

An NSURL object specifying a URL source.

mask
A bit mask for input options. You can specify multiple options by bit-OR'ing them. See “Constants” (page
1919) for a list of valid input options.

Instance Methods 1905
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

error
An error object that, on return, identifies any parsing errors and warnings or connection problems.

Return Value
An initialized NSXMLDocument object, or nil if initialization fails because of parsing errors or other reasons.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithData:options:error: (page 1906)
– initWithRootElement: (page 1907)
– initWithXMLString:options:error: (page 1907)

Declared In
NSXMLDocument.h

initWithData:options:error:
Initializes and returns an NSXMLDocument object created from an NSData object.

- (id)initWithData:(NSData *)data options:(NSUInteger)mask error:(NSError **)error

Parameters
data

A data object with XML content.

mask
A bit mask for input options. You can specify multiple options by bit-OR'ing them. See “Constants” (page
1919) for a list of valid input options.

error
An error object that, on return, identifies any parsing errors and warnings or connection problems.

Return Value
An initialized NSXMLDocument object, or nil if initialization fails because of parsing errors or other reasons.

Discussion
This method is the designated initializer for the NSXMLDocument class.

If you specify NSXMLDocumentTidyXML as one of the options, NSXMLDocument performs several clean-up
operations on the document XML (such as removing leading tabs). It does however, respect the
xmlns:space="preserve" attribute when it attempts to tidy the XML.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithContentsOfURL:options:error: (page 1905)
– initWithRootElement: (page 1907)
– initWithXMLString:options:error: (page 1907)

Declared In
NSXMLDocument.h

1906 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

initWithRootElement:
Returns an NSXMLDocument object initialized with a single child, the root element.

- (id)initWithRootElement:(NSXMLElement *)root

Parameters
root

An NSXMLElement object representing an XML element.

Return Value
An initialized NSXMLDocument object, or nil if initialization fails for any reason.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithContentsOfURL:options:error: (page 1905)
– initWithData:options:error: (page 1906)
– initWithXMLString:options:error: (page 1907)

Related Sample Code
AlbumToSlideshow

Declared In
NSXMLDocument.h

initWithXMLString:options:error:
Initializes and returns an NSXMLDocument object created from a string containing XML markup text.

- (id)initWithXMLString:(NSString *)string options:(NSUInteger)mask error:(NSError
 **)error

Parameters
string

A string object containing XML markup text.

mask
A bit mask for input options. You can specify multiple options by bit-OR'ing them. See “Constants” (page
1919) for a list of valid input options.

error
An error object that, on return, identifies any parsing errors and warnings or connection problems.

Return Value
An initialized NSXMLDocument object, or nil if initialization fails because of parsing errors or other reasons.

Discussion
The encoding of the document is set to UTF-8.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithContentsOfURL:options:error: (page 1905)

Instance Methods 1907
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

– initWithData:options:error: (page 1906)
– initWithRootElement: (page 1907)

Related Sample Code
CocoaSOAP

Declared In
NSXMLDocument.h

insertChild:atIndex:
Inserts a node object at specified position in the receiver’s array of children.

- (void)insertChild:(NSXMLNode *)child atIndex:(NSUInteger)index

Parameters
child

The NSXMLNode object to be inserted. The added node must be an NSXMLNode object representing
a comment, processing instruction, or the root element.

index
An integer specifying the index of the children array to insert child. The indexes of children after
the new child are incremented. If index is less than zero or greater than the number of children, an
out-of-bounds exception is raised.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addChild: (page 1904)
– insertChildren:atIndex: (page 1908)
– removeChildAtIndex: (page 1912)
– replaceChildAtIndex:withNode: (page 1912)

Declared In
NSXMLDocument.h

insertChildren:atIndex:
Inserts an array of children at a specified position in the receiver’s array of children.

- (void)insertChildren:(NSArray *)children atIndex:(NSUInteger)index

Parameters
children

An array of NSXMLNode objects representing comments, processing instructions, or the root element.

index
An integer identifying the location in the receiver's children array for insertion. The indexes of children
after the new child are increased by [children count]. If index is less than zero or greater than
the number of children, an out-of-bounds exception is raised.

1908 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– addChild: (page 1904)
– removeChildAtIndex: (page 1912)
– replaceChildAtIndex:withNode: (page 1912)
– setChildren: (page 1914)

Declared In
NSXMLDocument.h

isStandalone
Returns whether the receiver represents a standalone XML document—that is, one without an external DTD.

- (BOOL)isStandalone

Return Value
YES if the receiver represents a standalone XML document, NO if the “standalone” declaration was not present
in the original document and hasn’t been set since.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setStandalone: (page 1916)

Declared In
NSXMLDocument.h

MIMEType
Returns the MIME type for the receiver.

- (NSString *)MIMEType

Return Value
The MIME type for the receiver (for example, “text/xml”).

Discussion
MIME types are assigned by IANA (see http://www.iana.org/assignments/media-types/index.html).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMIMEType: (page 1915)

Declared In
NSXMLDocument.h

Instance Methods 1909
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

http://www.iana.org/assignments/media-types/index.html

objectByApplyingXSLT:arguments:error:
Applies the XSLT pattern rules and templates (specified as a data object) to the receiver and returns a
document object containing transformed XML or HTML markup.

- (id)objectByApplyingXSLT:(NSData *)xslt arguments:(NSDictionary *)arguments
error:(NSError **)error

Parameters
xslt

A data object containing the XSLT pattern rules and templates.

arguments
A dictionary containing NSString key-value pairs that are passed as runtime parameters to the XSLT
processor. Pass in nil if you have no parameters to pass.

Note: Several XML websites discuss XSLT parameters, including O'Reilly Media’s http://www.xml.com.

error
If an error occurs, indirectly returns an NSError object encapsulating error or warning messages
generated by XSLT processing.

Return Value
Depending on intended output, the method returns an NSXMLDocument object or an NSData data containing
transformed XML or HTML markup. If the message is supposed to create plain text or RTF, then an NSData
object is returned, otherwise an XML document object. The method returns nil if XSLT processing did not
succeed.

Availability
Available in Mac OS X v10.4 and later.

See Also
– objectByApplyingXSLTAtURL:arguments:error: (page 1910)
– objectByApplyingXSLTString:arguments:error: (page 1911)

Declared In
NSXMLDocument.h

objectByApplyingXSLTAtURL:arguments:error:
Applies the XSLT pattern rules and templates located at a specified URL to the receiver and returns a document
object containing transformed XML markup or an NSData object containing plain text, RTF text, and so on.

- (id)objectByApplyingXSLTAtURL:(NSURL *)xsltURL arguments:(NSDictionary *)arguments
error:(NSError **)error

Parameters
xsltURL

An NSURL object specifying a valid URL.

1910 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

http://www.xml.com

arguments
A dictionary containing NSString key-value pairs that are passed as runtime parameters to the XSLT
processor. Pass in nil if you have no parameters to pass.

Note: Several XML websites discuss XSLT parameters, including O'Reilly Media’s http://www.xml.com.

error
If an error occurs, indirectly returns an NSError object encapsulating error or warning messages
generated by XSLT processing or from an attempt to connect to a website identified by the URL.

Return Value
Depending on intended output, the returns an NSXMLDocument object or an NSData data containing
transformed XML or HTML markup. If the message is supposed to create plain text or RTF, then an NSData
object is returned, otherwise an XML document object. The method returns nil if XSLT processing did not
succeed.

Availability
Available in Mac OS X v10.4 and later.

See Also
– objectByApplyingXSLT:arguments:error: (page 1910)
– objectByApplyingXSLTString:arguments:error: (page 1911)

Declared In
NSXMLDocument.h

objectByApplyingXSLTString:arguments:error:
Applies the XSLT pattern rules and templates (specified as a string) to the receiver and returns a document
object containing transformed XML or HTML markup.

- (id)objectByApplyingXSLTString:(NSString *)xsltarguments:(NSDictionary
*)argumentserror:(NSError **)error

Parameters
xslt

A string object containing the XSLT pattern rules and templates.

arguments
A dictionary containing NSString key-value pairs that are passed as runtime parameters to the XSLT
processor. Pass in nil if you have no parameters to pass.

Note: Several XML websites discuss XSLT parameters, including O'Reilly Media’s http://www.xml.com.

error
If an error occurs, indirectly returns an NSError object encapsulating error or warning messages
generated by XSLT processing.

Instance Methods 1911
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

http://www.xml.com
http://www.xml.com

Return Value
Depending on intended output, the method returns an NSXMLDocument object or an NSData data containing
transformed XML or HTML markup. If the message is supposed to create plain text or RTF, then an NSData
object is returned, otherwise an XML document object. The method returns nil if XSLT processing did not
succeed.

Availability
Available in Mac OS X v10.4 and later.

See Also
– objectByApplyingXSLT:arguments:error: (page 1910)
– objectByApplyingXSLTAtURL:arguments:error: (page 1910)

Declared In
NSXMLDocument.h

removeChildAtIndex:
Removes the child node of the receiver located at a specified position in its array of children.

- (void)removeChildAtIndex:(NSUInteger)index

Parameters
index

An integer identifying the position of an child in the receiver's array. If index is less than zero or
greater than the number of children minus one, an out-of-bounds exception is raised.

Discussion
Subsequent children have their indexes decreased by one. The removed NSXMLNode object is autoreleased.

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertChild:atIndex: (page 1908)
– replaceChildAtIndex:withNode: (page 1912)

Declared In
NSXMLDocument.h

replaceChildAtIndex:withNode:
Replaces the child node of the receiver located at a specified position in its array of children with another
node.

- (void)replaceChildAtIndex:(NSUInteger)index withNode:(NSXMLNode *)node

Parameters
index

An integer identifying a position in the receiver's array of children. If index is less than zero or greater
than the number of children minus one, an out-of-bounds exception is raised.

1912 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

node
An NSXMLNode object to replace the one at index; it must represent a comment, a processing
instruction, or the root element.

Discussion
The removed NSXMLNode object is autoreleased.

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertChild:atIndex: (page 1908)
– removeChildAtIndex: (page 1912)

Declared In
NSXMLDocument.h

rootElement
Returns the root element of the receiver.

- (NSXMLElement *)rootElement

Return Value
The root element of the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setRootElement: (page 1915)

Declared In
NSXMLDocument.h

setCharacterEncoding:
Sets the character encoding of the receiver to encoding,

- (void)setCharacterEncoding:(NSString *)encoding

Parameters
encoding

A string that specifies an encoding; it must match the name of an IANA character set. See
http://www.iana.org/assignments/character-sets for a list of valid encoding specifiers.

Discussion
Typically the encoding is specified in the XML declaration of a document that is processed, but it can be set
at any time. If the specified encoding does not match the actual encoding, parsing of the document might
fail.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1913
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

http://www.iana.org/assignments/character-sets

See Also
– characterEncoding (page 1904)

Related Sample Code
AlbumToSlideshow

Declared In
NSXMLDocument.h

setChildren:
Sets the child nodes of the receiver.

- (void)setChildren:(NSArray *)children

Parameters
children

An array of NSXMLNode objects. Each of these objects must represent comments, processing
instructions, or the root element; otherwise, an exception is raised. Pass in nil to remove all children.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addChild: (page 1904)
– insertChildren:atIndex: (page 1908)

Declared In
NSXMLDocument.h

setDocumentContentKind:
Sets the kind of output content for the receiver.

- (void)setDocumentContentKind:(NSXMLDocumentContentKind)kind

Parameters
kind

An enum constant identifying a kind of document content. The valid NSXMLDocumentContentKind
constants are NSXMLDocumentXMLKind, NSXMLDocumentXHTMLKind, NSXMLDocumentHTMLKind,
and NSXMLDocumentTextKind.

Discussion
Most of the differences among document-content kind have to do with the handling of content-less tags
such as
.

Availability
Available in Mac OS X v10.4 and later.

See Also
– documentContentKind (page 1905)

1914 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

Declared In
NSXMLDocument.h

setDTD:
Sets the internal DTD to be associated with the receiver.

- (void)setDTD:(NSXMLDTD *)documentTypeDeclaration

Parameters
documentTypeDeclaration

An NSXMLDTD object representing the internal DTD to be associated with the receiver.

Discussion
When the receiver is written out, this document type declaration appears in the output, just after the XML
declaration.

Availability
Available in Mac OS X v10.4 and later.

See Also
– DTD (page 1905)

Declared In
NSXMLDocument.h

setMIMEType:
Sets the MIME type of the receiver.

- (void)setMIMEType:(NSString *)MIMEType

Parameters
MIMEType

A string object identifying a MIME type, for example, “text/xml”. MIME types are assigned by IANA
(see http://www.iana.org/assignments/media-types/index.html).

Availability
Available in Mac OS X v10.4 and later.

See Also
– MIMEType (page 1909)

Declared In
NSXMLDocument.h

setRootElement:
Set the root element of the receiver.

- (void)setRootElement:(NSXMLNode *)root

Instance Methods 1915
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

http://www.iana.org/assignments/media-types/index.html

Parameters
root

An NSXMLNode object that is to be the root element.

Discussion
As a side effect, this method removes all other children, including NSXMLNode objects representing comments
and processing-instructions.

Availability
Available in Mac OS X v10.4 and later.

See Also
– rootElement (page 1913)

Declared In
NSXMLDocument.h

setStandalone:
Sets a Boolean value that specifies whether the receiver represents a standalone XML document.

- (void)setStandalone:(BOOL)standalone

Parameters
standalone

YES if the receiver represents a standalone XML document, NO otherwise.

Discussion
A standalone document does not have an external DTD associated with it.

Availability
Available in Mac OS X v10.4 and later.

See Also
– isStandalone (page 1909)

Declared In
NSXMLDocument.h

setURI:
Sets the URI identifying the source of this document.

- (void)setURI:(NSString *)URI

Parameters
URI

A string object representing a URI source, or nil to remove the current URI.

Discussion
This attribute is automatically set when the receiver is initialized using
initWithContentsOfURL:options:error: (page 1905).

1916 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

See Also
– URI (page 1917)

setVersion:
Sets the version of the receiver’s XML.

- (void)setVersion:(NSString *)version

Parameters
version

A string object identifying the version of the XML.

Discussion
Currently, the version should be either “1.0 “or “1.1”.

Availability
Available in Mac OS X v10.4 and later.

See Also
– version (page 1918)

Related Sample Code
AlbumToSlideshow

Declared In
NSXMLDocument.h

URI
Returns the URI identifying the source of this document.

- (NSString *)URI

Return Value
The URI identifying the source of this document or nil if this attribute has not been set.

See Also
– setURI: (page 1916)

validateAndReturnError:
Validates the document against the governing schema and returns whether the document conforms to the
schema.

- (BOOL)validateAndReturnError:(NSError **)error

Parameters
error

If validation fails, on return contains an NSError object describing the reason or reasons for failure.

Instance Methods 1917
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

Return Value
YES if the validation operation succeeded, otherwise NO.

Discussion
The constants indicating the kind of validation errors are emitted by the underlying parser; see NSXMLParser.h
for most of these constants. If the schema is defined with a DTD, this method uses the NSXMLDTD object set
for the receiver for validation. If the schema is based on XML Schema, the method uses the URL specified as
the value of the xsi:schemaLocation attribute of the root element.

You can validate an XML document when it is first processed by specifying the NSXMLDocumentValidate
option when you initialize an NSXMLDocument object with the
initWithContentsOfURL:options:error: (page 1905),initWithData:options:error: (page 1906),
or initWithXMLString:options:error: (page 1907) methods.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDTD: (page 1915)

Declared In
NSXMLDocument.h

version
Returns the version of the receiver’s XML.

- (NSString *)version

Return Value
The version of the receiver’s XML or nil if the version has not be set.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setVersion: (page 1917)

Declared In
NSXMLDocument.h

XMLData
Returns the XML string representation of the receiver—that is, the entire document—encapsulated in a data
object.

- (NSData *)XMLData

Discussion
This method invokes XMLDataWithOptions: with an option of NSXMLNodeOptionsNone. The encoding
used is based on the value returned from characterEncoding (page 1904) or UTF-8 if no valid encoding is
returned by that method.

1918 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– XMLDataWithOptions: (page 1919)

Related Sample Code
CocoaSOAP

Declared In
NSXMLDocument.h

XMLDataWithOptions:
Returns the XML string representation of the receiver—that is, the entire document—encapsulated in a data
object.

- (NSData *)XMLDataWithOptions:(NSUInteger)options

Parameters
options

One or more options (bit-OR'd if multiple) to affect the output of the document; see “Constants” (page
1919) for the valid output options.

Discussion
The encoding used is based on the value returned from characterEncoding (page 1904).

Availability
Available in Mac OS X v10.4 and later.

See Also
– XMLData (page 1918)

Related Sample Code
AlbumToSlideshow

Declared In
NSXMLDocument.h

Constants

Input and Output Options
Input and output options specifically intended for NSXMLDocument objects.

Constants 1919
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

NSXMLDocumentTidyHTML = 1 << 9,
NSXMLDocumentTidyXML = 1 << 10,
NSXMLDocumentValidate = 1 << 13,
NSXMLDocumentXInclude = 1 << 16,
NSXMLDocumentIncludeContentTypeDeclaration = 1 << 18,

Constants
NSXMLDocumentTidyHTML

Formats HTML into valid XHTML during processing of the document.

When tidying, NSXMLDocument adds a line break before the close tag of a block-level element (<p>,
<div>, <h1>, and so on); it also makes the string value of
 or <hr> a line break. These operations
make the string value of the HTML <body> more readable. After using this option, avoid outputting
the document as anything other than the default kind, NSXMLDocumentXHTMLKind.

(Input)

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLDocumentTidyXML
Changes malformed XML into valid XML during processing of the document.

It also eliminates “pretty-printing” formatting, such as leading tab characters. However, it respects
the xmlns:space="preserve" attribute.

(Input)

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLDocumentValidate
Validates this document against its DTD (internal or external) or XML Schema.

(Input)

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLDocumentXInclude
Replaces all XInclude nodes in the document with the nodes referred to.

XInclude allows clients to include parts of another XML document within a document.

(Input)

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLDocumentIncludeContentTypeDeclaration
Includes a content type declaration for HTML or XHTML in the output of the document.

(Output)

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

Discussion
Because NSXMLDocument is a subclass of NSXMLNode, you can also use the relevant input and output options
described in “Constants” (page 1992) in the NSXMLNode class reference. You can specify input options in the
NSXMLDocument methods initWithContentsOfURL:options:error: (page 1905),
initWithData:options:error: (page 1906), initWithXMLString:options:error: (page 1907). The
XMLDataWithOptions: (page 1919) method takes output options.

1920 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

Declared In
NSXMLNodeOptions.h

NSXMLDocumentContentKind
Type used to define the kind of document content.

typedef NSUInteger NSXMLDocumentContentKind;

Discussion
For possible values, see “Document Content Types” (page 1921).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLDocument.h

Document Content Types
Define document types.

enum {
 NSXMLDocumentXMLKind = 0,
 NSXMLDocumentXHTMLKind,
 NSXMLDocumentHTMLKind,
 NSXMLDocumentTextKind
};

Constants
NSXMLDocumentXMLKind

The default type of document content type, which is XML.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDocument.h.

NSXMLDocumentXHTMLKind
The document output is XHTML.

This is set automatically if the NSXMLDocumentTidyHTML option is set and NSXML detects HTML.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDocument.h.

NSXMLDocumentHTMLKind
Outputs empty tags in HTML without a close tag, such as
.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDocument.h.

NSXMLDocumentTextKind
Outputs the string value of the document by extracting the string values from all text nodes.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDocument.h.

Constants 1921
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

Discussion
You specify one of the NSXMLDocumentContentKind constants in setDocumentContentKind: (page 1914)
to indicate the kind of content required for document output.

Declared In
NSXMLDocument.h

1922 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 163

NSXMLDocument Class Reference

Inherits from NSXMLNode : NSObject

Conforms to NSCopying (NSXMLNode)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/Foundation.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Tree-Based XML Programming Guide for Cocoa

Overview

An instance of the NSXMLDTD class represents a Document Type Definition. It is held as a property of an
NSXMLDocument instance, accessed through the NSXMLDocument method DTD (page 1905) (and set via
setDTD: (page 1915)).

In the data model, an NSXMLDTD object is conceptually similar to namespace and attribute nodes: it is not
considered to be a child of the NSXMLDocument object although it is closely associated with it. It is at the
“root” of a shallow tree consisting primarily of nodes representing DTD declarations. Acceptable child nodes
are instances of the NSXMLDTDNode class as well as NSXMLNode objects representing comment nodes and
processing-instruction nodes.

You create an NSXMLDTD object in one of three ways:

 ■ By processing an XML document with its own internal (in-line) DTD

 ■ By process a standalone (external) DTD

 ■ Programmatically

Once an NSXMLDTD instance is in place, you can add, remove, and change the NSXMLDTDNode objects
representing various DTD declarations. When you write the document out as XML, the new or modified
internal DTD is included (assuming you set the DTD in the NSXMLDocument instance). You may also
programmatically create an external DTD and write that out to its own file.

Overview 1923
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

Tasks

Initializing an NSXMLDTD Object

– initWithContentsOfURL:options:error: (page 1927)
Initializes and returns an NSXMLDTD object created from the DTD declarations in a URL-referenced
source.

– initWithData:options:error: (page 1928)
Initializes and returns an NSXMLDTD object created from the DTD declarations encapsulated in an
NSData object

Managing DTD Identifiers

– setPublicID: (page 1932)
Sets the public identifier of the receiver.

– publicID (page 1930)
Returns the receiver’s public identifier.

– setSystemID: (page 1932)
Sets the system identifier of the receiver.

– systemID (page 1933)
Returns the receiver’s system identifier.

Manipulating Child Nodes

– addChild: (page 1925)
Adds a child node to the end of the list of existing children.

– insertChild:atIndex: (page 1929)
Inserts a child node in the receiver’s list of children at a specific location in the list.

– insertChildren:atIndex: (page 1929)
Inserts an array of child nodes at a specified location in the receiver’s list of children.

– removeChildAtIndex: (page 1930)
Removes the child node at a particular location in the receiver’s list of children.

– replaceChildAtIndex:withNode: (page 1931)
Replaces a child at a particular index with another child.

– setChildren: (page 1931)
Removes all existing children of the receiver and replaces them with an array of new child nodes.

Getting DTD Nodes by Name

+ predefinedEntityDeclarationForName: (page 1925)
Returns a DTD node representing the predefined entity declaration with the specified name.

1924 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

– elementDeclarationForName: (page 1926)
Returns the DTD node representing an element declaration for a specified element.

– attributeDeclarationForName:elementName: (page 1926)
Returns the DTD node representing an attribute-list declaration for a given attribute and its element.

– entityDeclarationForName: (page 1927)
Returns the DTD node representing the entity declaration for a specified entity.

– notationDeclarationForName: (page 1930)
Returns the DTD node representing the notation declaration identified by the specified notation
name.

Class Methods

predefinedEntityDeclarationForName:
Returns a DTD node representing the predefined entity declaration with the specified name.

+ (NSXMLDTDNode *)predefinedEntityDeclarationForName:(NSString *)name

Parameters
name

A string identifying a predefined entity declaration.

Return Value
An autoreleased NSXMLDTDNode object, or nil if there is no match for name.

Discussion
The five predefined entity references (or character references) are “<” (less-than sign), “>” (greater-than
sign), “&” (ampersand), “"” (quotation mark), and “'” (apostrophe).

Availability
Available in Mac OS X v10.4 and later.

See Also
– entityDeclarationForName: (page 1927)

Declared In
NSXMLDTD.h

Instance Methods

addChild:
Adds a child node to the end of the list of existing children.

- (void)addChild:(NSXMLNode *)child

Class Methods 1925
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

Parameters
child

The node object to add to the existing children.

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertChild:atIndex: (page 1929)
– insertChildren:atIndex: (page 1929)
– removeChildAtIndex: (page 1930)
– replaceChildAtIndex:withNode: (page 1931)
– setChildren: (page 1931)

Declared In
NSXMLDTD.h

attributeDeclarationForName:elementName:
Returns the DTD node representing an attribute-list declaration for a given attribute and its element.

- (NSXMLDTDNode *)attributeDeclarationForName:(NSString *)attrName
elementName:(NSString *)elementName

Parameters
attrName

A string object identifying the name of an attribute.

elementName
A string object identifying the name of an element.

Return Value
An autoreleased NSXMLDTDNode object, or nil if there is no matching attribute-list declaration.

Discussion
For example, in the attribute-list declaration:

<!ATTLIST person idnum CDATA "0000">

“idnum” would correspond to attrName and “person” would correspond to elementName.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLDTD.h

elementDeclarationForName:
Returns the DTD node representing an element declaration for a specified element.

- (NSXMLDTDNode *)elementDeclarationForName:(NSString *)elementName

1926 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

Parameters
elementName

A string that is the name of an element.

Return Value
An autoreleased NSXMLDTDNode object, or nil if there is no match.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLDTD.h

entityDeclarationForName:
Returns the DTD node representing the entity declaration for a specified entity.

- (NSXMLDTDNode *)entityDeclarationForName:(NSString *)entityName

Parameters
entityName

A string that is the name of an entity.

Return Value
An autoreleased NSXMLDTDNode object, or nil if there is no match.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLDTD.h

initWithContentsOfURL:options:error:
Initializes and returns an NSXMLDTD object created from the DTD declarations in a URL-referenced source.

- (id)initWithContentsOfURL:(NSURL *)url options:(NSUInteger)mask error:(NSError
**)error

Parameters
url

An NSURL object identifying a URL source.

mask
A bit mask specifying input options; bit-OR multiple options. The current valid options are
NSXMLNodePreserveWhitespace andNSXMLNodePreserveEntities; these constants are described
in the "Constants" section of the NSXMLNode reference.

error
On return, this parameter holds an NSError object describing any errors and warnings related to
parsing and remote connection.

Return Value
An initialized NSXMLDTD object or nil if initialization fails because of parsing errors or other reasons.

Instance Methods 1927
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

Discussion
You use this method to create a stand-alone DTD which you can thereafter query and use for validation. You
can associate the DTD created through this message with a document by sending setDTD: (page 1915) to an
NSXMLDocument object.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithData:options:error: (page 1928)
– validateAndReturnError: (page 1917) (NSXMLDocument)

Declared In
NSXMLDTD.h

initWithData:options:error:
Initializes and returns an NSXMLDTD object created from the DTD declarations encapsulated in an NSData
object

- (id)initWithData:(NSData *)data options:(NSUInteger)mask error:(NSError **)error

Parameters
data

A data object containing DTD declarations.

mask
A bit mask specifying input options; bit-OR multiple options. The current valid options are
NSXMLNodePreserveWhitespace andNSXMLNodePreserveEntities; these constants are described
in the "Constants" section of the NSXMLNode reference.

error
On return, this parameter holds an NSError object describing any errors and warnings related to
parsing and remote connection.

Return Value
An initialized NSXMLDTD object or nil if initialization fails because of parsing errors or other reasons.

Discussion
This method is the designated initializer for the NSXMLDTD class. You use this method to create a stand-alone
DTD which you can thereafter query and use for validation. You can associate the DTD created through this
message with a document by sending setDTD: (page 1915) to an NSXMLDocument object.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithContentsOfURL:options:error: (page 1927)
– validateAndReturnError: (page 1917) (NSXMLDocument)

Declared In
NSXMLDTD.h

1928 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

insertChild:atIndex:
Inserts a child node in the receiver’s list of children at a specific location in the list.

- (void)insertChild:(NSXMLNode *)child atIndex:(NSUInteger)index

Parameters
child

An XML-node object that represents the child to insert.

index
An integer identifying the location in the receiver's list of children to insert child. The indices of
subsequent children in the list are incremented by one.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addChild: (page 1925)
– insertChildren:atIndex: (page 1929)
– removeChildAtIndex: (page 1930)
– replaceChildAtIndex:withNode: (page 1931)
– setChildren: (page 1931)

Declared In
NSXMLDTD.h

insertChildren:atIndex:
Inserts an array of child nodes at a specified location in the receiver’s list of children.

- (void)insertChildren:(NSArray *)children atIndex:(NSUInteger)index

Parameters
children

An array of NSXMLNode objects to insert as children of the receiver.

index
An integer identifying the location in the list of current children to make the insertion. The indices of
subsequent children in the list are incremented by the number of inserted children.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addChild: (page 1925)
– insertChild:atIndex: (page 1929)
– removeChildAtIndex: (page 1930)
– replaceChildAtIndex:withNode: (page 1931)
– setChildren: (page 1931)

Declared In
NSXMLDTD.h

Instance Methods 1929
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

notationDeclarationForName:
Returns the DTD node representing the notation declaration identified by the specified notation name.

- (NSXMLDTDNode *)notationDeclarationForName:(NSString *)notationName

Parameters
notationName

A string that is the name of a notation.

Return Value
An autoreleased NSXMLDTDNode object, or nil if there is no match.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLDTD.h

publicID
Returns the receiver’s public identifier.

- (NSString *)publicID

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPublicID: (page 1932)

Declared In
NSXMLDTD.h

removeChildAtIndex:
Removes the child node at a particular location in the receiver’s list of children.

- (void)removeChildAtIndex:(NSUInteger)index

Parameters
index

An integer identifying the child node to remove. The indices of subsequent children in the list are
decremented by one.

Discussion
The removed child node is released.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addChild: (page 1925)
– insertChild:atIndex: (page 1929)

1930 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

– insertChildren:atIndex: (page 1929)
– replaceChildAtIndex:withNode: (page 1931)
– setChildren: (page 1931)

Declared In
NSXMLDTD.h

replaceChildAtIndex:withNode:
Replaces a child at a particular index with another child.

- (void)replaceChildAtIndex:(NSUInteger)index withNode:(NSXMLNode *)node

Parameters
index

An integer identifying the position of a node in the receiver's list of child nodes.

node
An NSXMLNode object to replace the object at index.

Discussion
The replaced child node is released.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addChild: (page 1925)
– insertChild:atIndex: (page 1929)
– insertChildren:atIndex: (page 1929)
– removeChildAtIndex: (page 1930)
– setChildren: (page 1931)

Declared In
NSXMLDTD.h

setChildren:
Removes all existing children of the receiver and replaces them with an array of new child nodes.

- (void)setChildren:(NSArray *)children

Parameters
children

An array of NSXMLNode objects. To remove all existing children, pass in nil.

Discussion
Replaced or removed child nodes are released.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1931
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

See Also
– addChild: (page 1925)
– insertChild:atIndex: (page 1929)
– insertChildren:atIndex: (page 1929)
– removeChildAtIndex: (page 1930)
– replaceChildAtIndex:withNode: (page 1931)

Declared In
NSXMLDTD.h

setPublicID:
Sets the public identifier of the receiver.

- (void)setPublicID:(NSString *)publicID

Parameters
publicID

A string object specifying a public identifier.

Discussion
This identifier should be in the default catalog in /etc/xml/catalog or in a path specified by the environment
variable XML_CATALOG_FILES. When the public ID is set the system ID must also be set.

Availability
Available in Mac OS X v10.4 and later.

See Also
– publicID (page 1930)
– setSystemID: (page 1932)

Declared In
NSXMLDTD.h

setSystemID:
Sets the system identifier of the receiver.

- (void)setSystemID:(NSString *)systemID

Parameters
systemID

A string object that encapsulates a URL locating a valid DTD.

Availability
Available in Mac OS X v10.4 and later.

See Also
– systemID (page 1933)

Declared In
NSXMLDTD.h

1932 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

systemID
Returns the receiver’s system identifier.

- (NSString *)systemID

Availability
Available in Mac OS X v10.4 and later.

See Also
– setSystemID: (page 1932)

Declared In
NSXMLDTD.h

Instance Methods 1933
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

1934 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 164

NSXMLDTD Class Reference

Inherits from NSXMLNode : NSObject

Conforms to NSCopying (NSXMLNode)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/Foundation.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Tree-Based XML Programming Guide for Cocoa

Overview

Instances of the NSXMLDTDNode class represent element, attribute-list, entity, and notation declarations in
a Document Type Definition. NSXMLDTDNode objects are the sole children of a NSXMLDTD object (possibly
along with comment nodes and processing-instruction nodes). They themselves cannot have any children.

NSXMLDTDNode objects can be of four kinds—element, attribute-list, entity, or notation declaration—and
can also be of a subkind, as specified by a NSXMLDTDNodeKind constant. For example, a DTD entity-declaration
node could represent an unparsed entity declaration (NSXMLEntityUnparsedKind) rather than a parameter
entity declaration (NSXMLEntityParameterKind). You can use a DTD node’s subkind to help determine
how to handle the value of the node.

You can create anNSXMLDTDNodeobject with theinitWithXMLString: (page 1937) method, theNSXMLNode
class method DTDNodeWithXMLString: (page 1970), or with the NSXMLNode initializer
initWithKind:options: (page 1979) (in the latter method supplying the appropriate NSXMLNodeKind
constant).

Setting the object value or string value of an NSXMLDTDNode objects affects different parts of different kinds
of declaration. See the related programming topic for more information.

Tasks

Initializing an NSXMLDTDNode Object

– initWithXMLString: (page 1937)
Returns an NSXMLDTDNode object initialized with the DTD declaration in a given string.

Overview 1935
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 165

NSXMLDTDNode Class Reference

Managing the DTD Node Kind

– DTDKind (page 1936)
Returns the receiver’s DTD kind.

– setDTDKind: (page 1938)
Sets the receiver’s DTD kind.

Managing DTD Identifiers

– isExternal (page 1937)
Returns a Boolean value that indicates whether the receiver represents a declaration from an external
DTD (the system ID is set).

– setNotationName: (page 1939)
Sets the notation name associated with the receiver.

– notationName (page 1938)
Returns the name of the notation associated with the receiver.

– setPublicID: (page 1939)
Sets the public identifier associated with the receiver.

– publicID (page 1938)
Returns the public identifier associated with the receiver.

– setSystemID: (page 1940)
Sets the system identifier associated with the receiver.

– systemID (page 1940)
Returns the system identifier associated with the receiver.

Instance Methods

DTDKind
Returns the receiver’s DTD kind.

- (NSXMLDTDNodeKind)DTDKind

Return Value
The receiver’s DTD kind. See “Constants” (page 1940) for a list of valid NSXMLDTDNodeKind constants.

Discussion
The DTD kind is distinct from a NSXMLDTDNode object’s node kind (returned by the NSXMLNode kind (page
1980) method).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDTDKind: (page 1938)

1936 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 165

NSXMLDTDNode Class Reference

Declared In
NSXMLDTDNode.h

initWithXMLString:
Returns an NSXMLDTDNode object initialized with the DTD declaration in a given string.

- (id)initWithXMLString:(NSString *)string

Parameters
string

The DTD declaration.

Return Value
An NSXMLDTDNode object initialized with the DTD declaration in string. Returns nil if initialization did not
succeed, as might occur if the passed-in declaration is malformed.

Discussion
The node kind (NSXMLNode) assigned to the returned object—element, attribute, entity, or notation
declaration— is based on the full XML string that is parsed. To assign a subkind, use the setDTDKind: (page
1938) method.

You may also use theDTDNodeWithXMLString: (page 1970) orinitWithKind: (page 1979) methods to create
NSXMLDTDNode instances. However, you cannot use the latter method to create NSXMLDTDNode instances
for attribute-list declarations.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLDTDNode.h

isExternal
Returns a Boolean value that indicates whether the receiver represents a declaration from an external DTD
(the system ID is set).

- (BOOL)isExternal

Return Value
YES if receiver represents a declaration from an external DTD (the system ID is set), otherwise NO.

Discussion
This method is valid only for objects representing entities and notations.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setSystemID: (page 1940)

Declared In
NSXMLDTDNode.h

Instance Methods 1937
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 165

NSXMLDTDNode Class Reference

notationName
Returns the name of the notation associated with the receiver.

- (NSString *)notationName

Return Value
The name of the notation associated with the receiver.

Discussion
Notations are applicable to unparsed external entities, processing instructions, and some attribute values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setNotationName: (page 1939)

Declared In
NSXMLDTDNode.h

publicID
Returns the public identifier associated with the receiver.

- (NSString *)publicID

Return Value
The public identifier associated with the receiver.

Discussion
The public ID is applicable to entities and notations.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLDTDNode.h

setDTDKind:
Sets the receiver’s DTD kind.

- (void)setDTDKind:(NSXMLDTDNodeKind)kind

Parameters
kind

The receiver’s DTD kind. See “Constants” (page 1940) for a list of valid NSXMLDTDNodeKind constants.

Discussion
The DTD kind is a finer grain of an NSXMLDTDNode object’s node kind (returned by the NSXMLNode kind (page
1980) method).

Availability
Available in Mac OS X v10.4 and later.

1938 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 165

NSXMLDTDNode Class Reference

See Also
– DTDKind (page 1936)

Declared In
NSXMLDTDNode.h

setNotationName:
Sets the notation name associated with the receiver.

- (void)setNotationName:(NSString *)notationName

Parameters
notationName

The notation name associated with the receiver.

Discussion
This method is valid for entities only.

Availability
Available in Mac OS X v10.4 and later.

See Also
– notationName (page 1938)

Declared In
NSXMLDTDNode.h

setPublicID:
Sets the public identifier associated with the receiver.

- (void)setPublicID:(NSString *)publicID

Parameters
publicID

The public identifier associated with the receiver. This identifier should be in the default catalog in
/etc/xml/catalog or in a path specified by the environment variable XML_CATALOG_FILES.

Discussion
This method is valid for entities and notations only. When the public ID is set the system ID must also be set.

Availability
Available in Mac OS X v10.4 and later.

See Also
– publicID (page 1938)
– setSystemID: (page 1940)

Declared In
NSXMLDTDNode.h

Instance Methods 1939
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 165

NSXMLDTDNode Class Reference

setSystemID:
Sets the system identifier associated with the receiver.

- (void)setSystemID:(NSString *)systemID

Parameters
systemID

The system identifier associated with the receiver. This value must be a valid URI.

Availability
Available in Mac OS X v10.4 and later.

See Also
– systemID (page 1940)

Declared In
NSXMLDTDNode.h

systemID
Returns the system identifier associated with the receiver.

- (NSString *)systemID

Return Value
The system identifier associated with the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setSystemID: (page 1940)

Declared In
NSXMLDTDNode.h

Constants

NSXMLDTDNodeKind
The type defined for the constants that specify the kind and subkind of DTD declaration represented by an
NSXMLDTDNode object. You set the DTD-node kind using the setDTDKind: (page 1938) method.

typedef NSUInteger NSXMLDTDNodeKind;

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLDTDNode.h

1940 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 165

NSXMLDTDNode Class Reference

DTD Node Kind Constants
Constants that specify the kind and subkind of DTD declaration represented by an NSXMLDTDNode object.
You set the DTD-node kind using the setDTDKind: (page 1938) method.

enum {
 NSXMLEntityGeneralKind = 1,
 NSXMLEntityParsedKind,
 NSXMLEntityUnparsedKind,
 NSXMLEntityParameterKind,
 NSXMLEntityPredefined,

 NSXMLAttributeCDATAKind,
 NSXMLAttributeIDKind,
 NSXMLAttributeIDRefKind,
 NSXMLAttributeIDRefsKind,
 NSXMLAttributeEntityKind,
 NSXMLAttributeEntitiesKind,
 NSXMLAttributeNMTokenKind,
 NSXMLAttributeNMTokensKind,
 NSXMLAttributeEnumerationKind,
 NSXMLAttributeNotationKind,

 NSXMLElementDeclarationUndefinedKind,
 NSXMLElementDeclarationEmptyKind,
 NSXMLElementDeclarationAnyKind,
 NSXMLElementDeclarationMixedKind,
 NSXMLElementDeclarationElementKind
};

Constants
NSXMLEntityGeneralKind

Identifies a general entity declaration.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLEntityParsedKind
Identifies a parsed entity declaration.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLEntityUnparsedKind
Identifies an unparsed entity declaration.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLEntityParameterKind
Identifies a parameter entity declaration.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLEntityPredefined
Identifies a predefined entity declaration.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

Constants 1941
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 165

NSXMLDTDNode Class Reference

NSXMLAttributeCDATAKind
Identifies an attribute-list declaration with a CDATA (character data) value type.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLAttributeIDKind
Identifies an attribute-list declaration with an ID value type (per-document unique element name).

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLAttributeIDRefKind
Identifies an attribute-list declaration with an IDREF value type (refers to element ID type).

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLAttributeIDRefsKind
Identifies an attribute-list declaration with an IDREFS value type (refers to multiple elements of ID
type).

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLAttributeEntityKind
Identifies an attribute-list declaration with an ENTITY value type (refers to unparsed entity declared
in document).

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLAttributeEntitiesKind
Identifies an attribute-list declaration with an ENTITIES value type (refers to multiple unparsed
entities declared elsewhere in document).

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLAttributeNMTokenKind
Identifies an attribute-list declaration with a NMTOKEN value type (name token).

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLAttributeNMTokensKind
Identifies an attribute-list declaration with a NMTOKENS value type (multiple name tokens)

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLAttributeEnumerationKind
Identifies an attribute-list declaration with an enumeration value type (list of all possible values).

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLAttributeNotationKind
Identifies an attribute-list declaration with a NOTATION value type (name of declared notation).

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

1942 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 165

NSXMLDTDNode Class Reference

NSXMLElementDeclarationUndefinedKind
Identifies an undefined element declaration.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLElementDeclarationEmptyKind
Identifies a declaration (EMPTY) of an empty element.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLElementDeclarationAnyKind
Identifies an ANY element declaration.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLElementDeclarationMixedKind
Identifies a declaration of an element with mixed content ((#PCDATA | child)).

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

NSXMLElementDeclarationElementKind
Identifies a declaration of an element with child elements.

Available in Mac OS X v10.4 and later.

Declared in NSXMLDTDNode.h.

Declared In
NSXMLDTDNode.h

Constants 1943
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 165

NSXMLDTDNode Class Reference

1944 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 165

NSXMLDTDNode Class Reference

Inherits from NSXMLNode : NSObject

Conforms to NSCopying (NSXMLNode)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSXMLElement.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Tree-Based XML Programming Guide for Cocoa

Related sample code AlbumToSlideshow
Core Data HTML Store
NewsReader
TimelineToTC

Overview

Instances of the NSXMLElement class represent element nodes in an XML tree structure. An NSXMLElement
object may have child nodes, specifically comment nodes, processing-instruction nodes, text nodes, and
other NSXMLElement nodes. It may also have attribute nodes and namespace nodes associated with it
(however, namespace and attribute nodes are not considered children). Any attempt to add a NSXMLDocument
node, NSXMLDTD node, namespace node, or attribute node as a child raises an exception. If you add a child
node to an NSXMLElement object and that child already has a parent, NSXMLElement raises an exception;
the child must be detached or copied first.

Subclassing Notes

You can subclass NSXMLElement if you want element nodes with more specialized attributes or behavior,
for example, paragraph and font attributes that specify how the string value of the element should appear.

Methods to Override

To subclass NSXMLElement you need to override the primary initializer, initWithName:URI: (page 1953),
and the methods listed below. In most cases, you need only invoke the superclass implementation, adding
any subclass-specific code before or after the invocation, as necessary.

Overview 1945
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

removeNamespaceForPrefix: (page 1958)addAttribute: (page 1948)

setNamespaces: (page 1962)removeAttributeForName: (page 1957)

namespaces (page 1956)setAttributes: (page 1960)

insertChild:atIndex: (page 1954)attributeForLocalName:URI: (page 1950)

removeChildAtIndex: (page 1958)attributes (page 1951)

setChildren: (page 1961)addNamespace: (page 1949)

By default NSXMLElement implements the NSObject isEqual: (page 2101) method to perform a deep
comparison: two NSXMLDocument objects are not considered equal unless they have the same name, same
child nodes, same attributes, and so on. If you want a different standard of comparison, override isEqual:.

Special Considerations

Because of the architecture and data model of NSXML, when it parses and processes a source of XML it cannot
know about your subclass unless you override the class method replacementClassForClass: (page 1903)
to return your custom class in place of an NSXML class. If your custom class has no direct NSXML
counterpart—for example, it is a subclass of NSXMLNode that represents CDATA sections—then you can walk
the tree after it has been created and insert the new node where appropriate.

Note that you can safely set the root element of the XML document (using the NSXMLDocument
setRootElement: (page 1915)method) to be an instance of your subclass since this method only checks to
see if the added node is of an element kind (NSXMLElementKind). These precautions do not apply, of course,
if you are creating an XML tree programmatically.

Tasks

Initializing NSXMLElement Objects

– initWithName: (page 1952)
Returns an NSXMLElement object initialized with the specified name.

– initWithName:stringValue: (page 1953)
Returns an NSXMLElement object initialized with a specified name and a single text-node child
containing a specified value.

– initWithXMLString:error: (page 1954)
Returns an NSXMLElement object created from a specified string containing XML markup.

– initWithName:URI: (page 1953)
Returns an NSXMLElement object initialized with the specified name and URI.

1946 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

Obtaining Child Elements

– elementsForName: (page 1952)
Returns the child element nodes (as NSXMLElement objects) of the receiver that have a specified
name.

– elementsForLocalName:URI: (page 1951)
Returns the child element nodes (as NSXMLElement objects) of the receiver that are matched with
the specified local name and URI.

Manipulating Child Elements

– addChild: (page 1949)
Adds a child node at the end of the receiver’s current list of children.

– insertChild:atIndex: (page 1954)
Inserts a new child node at a specified location in the receiver’s list of child nodes.

– insertChildren:atIndex: (page 1955)
Inserts an array of child nodes at a specified location in the receiver’s list of children.

– removeChildAtIndex: (page 1958)
Removes the child node of the receiver identified by a given index.

– replaceChildAtIndex:withNode: (page 1959)
Replaces a child node at a specified location with another child node.

– setChildren: (page 1961)
Sets all child nodes of the receiver at once, replacing any existing children.

– normalizeAdjacentTextNodesPreservingCDATA: (page 1957)
Coalesces adjacent text nodes of the receiver that you have explicitly added, optionally including
CDATA sections.

Handling Attributes

– addAttribute: (page 1948)
Adds an attribute node to the receiver.

– attributeForName: (page 1950)
Returns the attribute node of the receiver with the specified name.

– attributeForLocalName:URI: (page 1950)
Returns the attribute node of the receiver that is identified by a local name and URI.

– attributes (page 1951)
Returns the receiver’s attributes

– removeAttributeForName: (page 1957)
Removes an attribute node that is identified by its name.

– setAttributes: (page 1960)
Sets all attributes of the receiver at once, replacing any existing attribute nodes.

– setAttributesAsDictionary: (page 1961)
Sets the attributes of the receiver based on the key-value pairs specified in the passed-in dictionary.

Tasks 1947
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

Handling Namespaces

– addNamespace: (page 1949)
Adds a namespace node to the receiver.

– namespaces (page 1956)
Returns the namespace nodes of the receiver.

– namespaceForPrefix: (page 1956)
Returns the namespace node with a specified prefix.

– removeNamespaceForPrefix: (page 1958)
Removes a namespace node that is identified by a given prefix.

– resolveNamespaceForName: (page 1959)
Returns the namespace node with the prefix matching the given qualified name.

– resolvePrefixForNamespaceURI: (page 1960)
Returns the prefix associated with the specified URI.

– setNamespaces: (page 1962)
Sets all of the namespace nodes of the receiver at once, replacing any existing namespace nodes.

Instance Methods

addAttribute:
Adds an attribute node to the receiver.

- (void)addAttribute:(NSXMLNode *)anAttribute

Parameters
anAttribute

An XML node object representing an attribute. If the receiver already has an attribute with the same
name, anAttribute is not added.

Discussion
The order of multiple attributes is preserved if the NSXMLPreserveAttributeOrder option is specified
when the element is created.

Availability
Available in Mac OS X v10.4 and later.

See Also
– attributeForName: (page 1950)
– attributes (page 1951)
– removeAttributeForName: (page 1957)
– setAttributes: (page 1960)

Related Sample Code
AlbumToSlideshow
Core Data HTML Store

1948 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

Declared In
NSXMLElement.h

addChild:
Adds a child node at the end of the receiver’s current list of children.

- (void)addChild:(NSXMLNode *)child

Parameters
child

An XML node object to add to the receiver's children.

Discussion
The new node has an index value that is one greater than the last of the current children.

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertChild:atIndex: (page 1954)
– removeChildAtIndex: (page 1958)
– replaceChildAtIndex:withNode: (page 1959)
– setChildren: (page 1961)

Related Sample Code
AlbumToSlideshow
Core Data HTML Store

Declared In
NSXMLElement.h

addNamespace:
Adds a namespace node to the receiver.

- (void)addNamespace:(NSXMLNode *)aNamespace

Parameters
aNamespace

An XML node object of kind NSXMLNamespaceKind. If the receiver already has a namespace with
the same name, aNamespace is not added.

Availability
Available in Mac OS X v10.4 and later.

See Also
– namespaces (page 1956)
– namespaceForPrefix: (page 1956)
– removeNamespaceForPrefix: (page 1958)
– resolveNamespaceForName: (page 1959)
– resolvePrefixForNamespaceURI: (page 1960)

Instance Methods 1949
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

– setNamespaces: (page 1962)

Declared In
NSXMLElement.h

attributeForLocalName:URI:
Returns the attribute node of the receiver that is identified by a local name and URI.

- (NSXMLNode *)attributeForLocalName:(NSString *)localName URI:(NSString *)URI

Parameters
localName

A string specifying the local name of an attribute.

URI
A sting identifying the URI associated with an attribute.

Return Value
An XML node object representing a matching attribute or nil if no such node was found.

Availability
Available in Mac OS X v10.4 and later.

See Also
– attributeForName: (page 1950)
– attributes (page 1951)
– removeAttributeForName: (page 1957)
– setAttributes: (page 1960)

Declared In
NSXMLElement.h

attributeForName:
Returns the attribute node of the receiver with the specified name.

- (NSXMLNode *)attributeForName:(NSString *)name

Parameters
name

A string specifying the name of an attribute.

Return Value
An XML node object representing a matching attribute or nil if no such node was found.

Discussion
If name is a qualified name, then this method invokes attributeForLocalName:URI: (page 1950) with the
URI parameter set to the URI associated with the prefix. Otherwise comparison is based on string equality of
the qualified or non-qualified name.

Availability
Available in Mac OS X v10.4 and later.

1950 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

See Also
– attributes (page 1951)
– removeAttributeForName: (page 1957)
– setAttributes: (page 1960)

Related Sample Code
Core Data HTML Store

Declared In
NSXMLElement.h

attributes
Returns the receiver’s attributes

- (NSArray *)attributes

Return Value
An array of NSXMLNode objects of kind NSXMLAttributeKind or nil if the receiver has no attribute nodes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– attributeForLocalName:URI: (page 1950)
– attributeForName: (page 1950)
– removeAttributeForName: (page 1957)
– setAttributes: (page 1960)

Declared In
NSXMLElement.h

elementsForLocalName:URI:
Returns the child element nodes (as NSXMLElement objects) of the receiver that are matched with the
specified local name and URI.

- (NSArray *)elementsForLocalName:(NSString *)localName URI:(NSString *)URI

Parameters
localName

A string specifying a local name of an element.

URI
A string specifying a URI associated with an element.

Return Value
An array of NSXMLElement objects or nil if no matching children could be found.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1951
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

See Also
– elementsForName: (page 1952)

Declared In
NSXMLElement.h

elementsForName:
Returns the child element nodes (as NSXMLElement objects) of the receiver that have a specified name.

- (NSArray *)elementsForName:(NSString *)name

Parameters
name

A string specifying the name of the child element nodes to find and return. If name is a qualified name,
then this method invokes elementsForLocalName:URI: (page 1951) with the URI parameter set to
the URI associated with the prefix. Otherwise comparison is based on string equality of the qualified
or non-qualified name.

Return Value
An array of of NSXMLElement objects or an empty array if no matching children can be found.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Core Data HTML Store
NewsReader

Declared In
NSXMLElement.h

initWithName:
Returns an NSXMLElement object initialized with the specified name.

- (id)initWithName:(NSString *)name

Parameters
name

A string specifying the name of the element.

Return Value
The initialized NSXMLElement object or nil if initialization did not succeed.

Discussion
The XML string representation of this object is <name></name>. This method invokes
initWithName:URI: (page 1953) with the URI parameter set to nil.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithName:stringValue: (page 1953)

1952 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

– initWithXMLString:error: (page 1954)

Declared In
NSXMLElement.h

initWithName:stringValue:
Returns an NSXMLElement object initialized with a specified name and a single text-node child containing
a specified value.

- (id)initWithName:(NSString *)name stringValue:(NSString *)string

Parameters
name

A string specifying the name of the element.

string
The string value of the receiver's text node.

Return Value
The initialized NSXMLElement object or nil if initialization did not succeed.

Discussion
The string representation of this object is <name>string</name>.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithName:URI: (page 1953)
– initWithName: (page 1952)
– initWithXMLString:error: (page 1954)

Declared In
NSXMLElement.h

initWithName:URI:
Returns an NSXMLElement object initialized with the specified name and URI.

- (id)initWithName:(NSString *)name URI:(NSString *)URI

Parameters
name

A string that specifies the qualified name of the element.

URI
A string that specifies the namespace URI associated with the element.

Return Value
The initialized NSXMLElement object or nil if initialization did not succeed.

Instance Methods 1953
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

Discussion
You can look up the namespace prefix for this element node based on its URI using
resolvePrefixForNamespaceURI: (page 1960). This method is the primary initializer for theNSXMLElement
class.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithName: (page 1952)
– initWithName:stringValue: (page 1953)
– initWithXMLString:error: (page 1954)

Declared In
NSXMLElement.h

initWithXMLString:error:
Returns an NSXMLElement object created from a specified string containing XML markup.

- (id)initWithXMLString:(NSString *)string error:(NSError **)error

Parameters
string

A string containing XML markup for an element.

error
On return, an NSError object that describes any errors or warnings resulting from the parsing of the
markup.

Return Value
The initialized NSXMLElement object or nil if initialization did not succeed.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithName:URI: (page 1953)
– initWithName: (page 1952)
– initWithName:stringValue: (page 1953)

Declared In
NSXMLElement.h

insertChild:atIndex:
Inserts a new child node at a specified location in the receiver’s list of child nodes.

- (void)insertChild:(NSXMLNode *)child atIndex:(NSUInteger)index

Parameters
child

An XML node object to be inserted as a child of the receiver.

1954 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

index
An integer identifying a position in the receiver's list of children. An exception is raised if index is
out of bounds.

Discussion
Insertion of the node increments the indexes of sibling nodes after it.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addChild: (page 1949)
– insertChildren:atIndex: (page 1955)
– removeChildAtIndex: (page 1958)
– replaceChildAtIndex:withNode: (page 1959)
– setChildren: (page 1961)

Declared In
NSXMLElement.h

insertChildren:atIndex:
Inserts an array of child nodes at a specified location in the receiver’s list of children.

- (void)insertChildren:(NSArray *)children atIndex:(NSUInteger)index

Parameters
children

An array of XML node objects to add as children of the receiver.

index
An integer identifying a position in the receiver's list of children. An exception is raised if index is
out of bounds.

Discussion
Insertion of the node increases the indexes of sibling nodes after it by the count of children.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addChild: (page 1949)
– insertChild:atIndex: (page 1954)
– removeChildAtIndex: (page 1958)
– replaceChildAtIndex:withNode: (page 1959)
– setChildren: (page 1961)

Declared In
NSXMLElement.h

Instance Methods 1955
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

namespaceForPrefix:
Returns the namespace node with a specified prefix.

- (NSXMLNode *)namespaceForPrefix:(NSString *)name

Parameters
name

A string specifying a namespace prefix.

Return Value
An NSXMLNode object of kind NSXMLNamespaceKind or nil if there is no namespace node with that prefix.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addNamespace: (page 1949)
– namespaces (page 1956)
– removeNamespaceForPrefix: (page 1958)
– resolveNamespaceForName: (page 1959)
– resolvePrefixForNamespaceURI: (page 1960)
– setNamespaces: (page 1962)

Declared In
NSXMLElement.h

namespaces
Returns the namespace nodes of the receiver.

- (NSArray *)namespaces

Return Value
An array of NSXMLNode objects of kind NSXMLNamespaceKind. Returns nil if the receiver has no namespace
nodes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addNamespace: (page 1949)
– namespaceForPrefix: (page 1956)
– removeNamespaceForPrefix: (page 1958)
– resolveNamespaceForName: (page 1959)
– resolvePrefixForNamespaceURI: (page 1960)
– setNamespaces: (page 1962)

Declared In
NSXMLElement.h

1956 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

normalizeAdjacentTextNodesPreservingCDATA:
Coalesces adjacent text nodes of the receiver that you have explicitly added, optionally including CDATA
sections.

- (void)normalizeAdjacentTextNodesPreservingCDATA:(BOOL)preserve

Parameters
preserve

YES if CDATA sections are left alone as text nodes, NO otherwise.

Discussion
A text node with a value of an empty string is removed. When you process an input source of XML, adjacent
text nodes are automatically normalized. You should invoke this method (with preserve as NO) before using
the NSXMLNode methods objectsForXQuery:constants:error: (page 1983) or
nodesForXPath:error: (page 1982).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setChildren: (page 1961)

Declared In
NSXMLElement.h

removeAttributeForName:
Removes an attribute node that is identified by its name.

- (void)removeAttributeForName:(NSString *)attrName

Parameters
attrName

A string specifying the name of an attribute.

Discussion
The removed XML node object is released.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addAttribute: (page 1948)
– attributeForName: (page 1950)
– attributes (page 1951)
– removeAttributeForName: (page 1957)
– setAttributes: (page 1960)

Declared In
NSXMLElement.h

Instance Methods 1957
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

removeChildAtIndex:
Removes the child node of the receiver identified by a given index.

- (void)removeChildAtIndex:(NSUInteger)nodeIndex

Parameters
nodeIndex

An integer identifying the node in the receiver's list of children to remove. An exception is raised if
index is out of bounds.

Discussion
The XML node object is released upon removal. The indices of subsequent children are decremented by one.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addChild: (page 1949)
– insertChild:atIndex: (page 1954)
– replaceChildAtIndex:withNode: (page 1959)
– setChildren: (page 1961)

Related Sample Code
Core Data HTML Store

Declared In
NSXMLElement.h

removeNamespaceForPrefix:
Removes a namespace node that is identified by a given prefix.

- (void)removeNamespaceForPrefix:(NSString *)name

Parameters
name

A string that is the prefix for a namespace.

Discussion
The removed XML node object is removed.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addNamespace: (page 1949)
– namespaces (page 1956)
– namespaceForPrefix: (page 1956)
– setNamespaces: (page 1962)

Declared In
NSXMLElement.h

1958 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

replaceChildAtIndex:withNode:
Replaces a child node at a specified location with another child node.

- (void)replaceChildAtIndex:(NSUInteger)index withNode:(NSXMLNode *)node

Parameters
index

An integer identifying a position in the receiver's list of children. An exception is raised if index is
out of bounds.

node
An XML node object that will replace the current child.

Discussion
The replaced XML node object is released upon removal.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addChild: (page 1949)
– insertChild:atIndex: (page 1954)
– insertChildren:atIndex: (page 1955)
– removeChildAtIndex: (page 1958)
– setChildren: (page 1961)

Declared In
NSXMLElement.h

resolveNamespaceForName:
Returns the namespace node with the prefix matching the given qualified name.

- (NSXMLNode *)resolveNamespaceForName:(NSString *)name

Parameters
name

A string that is the qualified name for a namespace (a qualified name is prefix plus local name).

Return Value
An NSXMLNode object of kind NSXMLNamespaceKind or nil if there is no matching namespace node.

Discussion
The method looks in the entire namespace chain for the prefix.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addNamespace: (page 1949)
– namespaces (page 1956)
– namespaceForPrefix: (page 1956)
– resolvePrefixForNamespaceURI: (page 1960)

Instance Methods 1959
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

– setNamespaces: (page 1962)

Declared In
NSXMLElement.h

resolvePrefixForNamespaceURI:
Returns the prefix associated with the specified URI.

- (NSString *)resolvePrefixForNamespaceURI:(NSString *)namespaceURI

Parameters
namespaceURI

A string identifying the URI associated with the namespace.

Return Value
A string that is the matching prefix or nil if it finds no matching prefix.

Discussion
The method looks in the entire namespace chain for the URI.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addNamespace: (page 1949)
– namespaces (page 1956)
– namespaceForPrefix: (page 1956)
– resolveNamespaceForName: (page 1959)
– setNamespaces: (page 1962)

Declared In
NSXMLElement.h

setAttributes:
Sets all attributes of the receiver at once, replacing any existing attribute nodes.

- (void)setAttributes:(NSArray *)attributes

Parameters
attributes

An array of NSXMLNode objects of kind NSXMLAttributeKind. If there are attribute nodes with the
same name, the first attribute with that name is used. Send this message with attributes as nil
to remove all attributes.

Discussion
To set attributes in an element node using an NSDictionary object as the input parameter, see
setAttributesAsDictionary: (page 1961).

Availability
Available in Mac OS X v10.4 and later.

1960 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

See Also
– addAttribute: (page 1948)
– attributeForName: (page 1950)
– attributes (page 1951)
– removeAttributeForName: (page 1957)

Declared In
NSXMLElement.h

setAttributesAsDictionary:
Sets the attributes of the receiver based on the key-value pairs specified in the passed-in dictionary.

- (void)setAttributesAsDictionary:(NSDictionary *)attributes

Parameters
attributes

A dictionary of key-value pairs where the attribute name is the key and the object value of the attribute
is the dictionary value.

Discussion
The method uses these names and object values to create NSXMLNode objects of kind NSXMLAttributeKind.
Existing attributes are removed.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addAttribute: (page 1948)
– attributes (page 1951)
– removeAttributeForName: (page 1957)
– setAttributes: (page 1960)

Declared In
NSXMLElement.h

setChildren:
Sets all child nodes of the receiver at once, replacing any existing children.

- (void)setChildren:(NSArray *)children

Parameters
children

An array of NSXMLElement objects or NSXMLNode objects of kinds NSXMLElementKind,
NSXMLProcessingInstructionKind, NSXMLTextKind, or NSXMLCommentKind.

Discussion
Send this message with children as nil to remove all child nodes.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1961
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

See Also
– insertChild:atIndex: (page 1954)
– insertChildren:atIndex: (page 1955)
– removeChildAtIndex: (page 1958)
– replaceChildAtIndex:withNode: (page 1959)
– setChildren: (page 1961)

Related Sample Code
Core Data HTML Store

Declared In
NSXMLElement.h

setNamespaces:
Sets all of the namespace nodes of the receiver at once, replacing any existing namespace nodes.

- (void)setNamespaces:(NSArray *)namespaces

Parameters
namespaces

An array of NSXMLNode objects of kind NSXMLNamespaceKind. If there are namespace nodes with
the same prefix, the first attribute with that prefix is used. Send this message with namespaces as
nil to remove all namespace nodes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addNamespace: (page 1949)
– namespaces (page 1956)
– namespaceForPrefix: (page 1956)
– removeNamespaceForPrefix: (page 1958)
– resolveNamespaceForName: (page 1959)
– resolvePrefixForNamespaceURI: (page 1960)

Declared In
NSXMLElement.h

1962 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 166

NSXMLElement Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in NSXML/NSXMLNode.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Tree-Based XML Programming Guide for Cocoa

Related sample code AlbumToSlideshow
CocoaSOAP
Core Data HTML Store
TimelineToTC

Overview

Objects of the NSXMLNode class are nodes in the abstract, logical tree structure that represents an XML
document. Node objects can be of different kinds, corresponding to the following markup constructs in an
XML document: element, attribute, text, processing instruction, namespace, and comment. In addition, a
document-node object (specifically, an instance of NSXMLDocument) represents an XML document in its
entirety. NSXMLNode objects can also represent document type declarations as well as declarations in
Document Type Definitions (DTDs). Class factory methods of NSXMLNode enable you to create nodes of each
kind. Only document, element, and DTD nodes may have child nodes.

Among the NSXML family of classes—that is, the Foundation classes with the prefix “NSXML” (excluding
NSXMLParser)—the NSXMLNode class is the base class. Inheriting from it are the classes NSXMLElement,
NSXMLDocument, NSXMLDTD, and NSXMLDTDNode. NSXMLNode specifies the interface common to all XML
node objects and defines common node behavior and attributes, for example hierarchy level, node name
and value, tree traversal, and the ability to emit representative XML markup text.

Subclassing Notes

You can subclass NSXMLNode if you want nodes of kinds different from the supported ones, You can also
create a subclass with more specialized attributes or behavior than NSXMLNode.

Overview 1963
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Methods to Override

To subclass NSXMLNode you need to override the primary initializer, initWithKind:options: (page 1979),
and the methods listed below. In most cases, you need only invoke the superclass implementation, adding
any subclass-specific code before or after the invocation, as necessary.

parent (page 1985)kind (page 1980)

childAtIndex: (page 1976)name (page 1981)

childCount (page 1977)setName: (page 1987)

children (page 1977)objectValue (page 1984)

detach (page 1978)setObjectValue: (page 1987)

localName (page 1981)stringValue (page 1989)

prefix (page 1985)setStringValue:resolvingEntities: (page 1988)

URI (page 1990)index (page 1978)

By defaultNSXMLNode implements theNSObjectisEqual: (page 2101) method to perform a deep comparison:
two NSXMLNode objects are not considered equal unless they have the same name, same child nodes, same
attributes, and so on. The comparison looks at the node and its children, but does not include the node’s
parent. If you want a different standard of comparison, override isEqual:.

Special Considerations

Because of the architecture and data model of NSXML, when it parses and processes a source of XML it cannot
know about your subclass unless you override the NSXMLDocument class method
replacementClassForClass: (page 1903) to return your custom class in place of an NSXML class. If your
custom class has no direct NSXML counterpart—for example, it is a subclass of NSXMLNode that represents
CDATA sections—then you can walk the tree after it has been created and insert the new node where
appropriate.

Adopted Protocols

NSCopying
– copyWithZone: (page 2042)

1964 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Tasks

Creating and Initializing Node Objects

– initWithKind: (page 1979)
Returns an NSXMLNode instance initialized with the constant indicating node kind.

– initWithKind:options: (page 1979)
Returns an NSXMLNode instance initialized with the constant indicating node kind and one or more
initialization options.

+ document (page 1969)
Returns an empty document node.

+ documentWithRootElement: (page 1969)
Returns an NSXMLDocument object initialized with a given root element.

+ elementWithName: (page 1970)
Returns an NSXMLElement object with a given tag identifier, or name

+ elementWithName:children:attributes: (page 1971)
Returns an NSXMLElement object with the given tag (name), attributes, and children.

+ elementWithName:stringValue: (page 1971)
Returns an NSXMLElement object with a single text-node child containing the specified text.

+ elementWithName:URI: (page 1972)
Returns an element whose fully qualified name is specified.

+ attributeWithName:stringValue: (page 1968)
Returns an NSXMLNode object representing an attribute node with a given name and string.

+ attributeWithName:URI:stringValue: (page 1968)
Returns an NSXMLNode object representing an attribute node with a given qualified name and string.

+ textWithStringValue: (page 1975)
Returns an NSXMLNode object representing a text node with specified content.

+ commentWithStringValue: (page 1969)
Returns an NSXMLNode object representing an comment node containing given text.

+ namespaceWithName:stringValue: (page 1973)
Returns an NSXMLNode object representing a namespace with a specified name and URI.

+ DTDNodeWithXMLString: (page 1970)
Returns a NSXMLDTDNode object representing the DTD declaration for an element, attribute, entity,
or notation based on a given string.

+ predefinedNamespaceForPrefix: (page 1973)
Returns an NSXMLNode object representing one of the predefined namespaces with the specified
prefix.

+ processingInstructionWithName:stringValue: (page 1974)
Returns an NSXMLNode object representing a processing instruction with a specified name and value.

Tasks 1965
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Managing XML Node Objects

– index (page 1978)
Returns the index of the receiver identifying its position relative to its sibling nodes.

– kind (page 1980)
Returns the kind of node the receiver is as a constant of type NSXMLNodeKind (page 1992).

– level (page 1980)
Returns the nesting level of the receiver within the tree hierarchy.

– setName: (page 1987)
Sets the name of the receiver.

– name (page 1981)
Returns the name of the receiver.

– setObjectValue: (page 1987)
Sets the content of the receiver to an object value.

– objectValue (page 1984)
Returns the object value of the receiver.

– setStringValue: (page 1988)
Sets the content of the receiver as a string value.

– setStringValue:resolvingEntities: (page 1988)
Sets the content of the receiver as a string value and, optionally, resolves character references,
predefined entities, and user-defined entities as declared in the associated DTD.

– stringValue (page 1989)
Returns the content of the receiver as a string value.

– setURI: (page 1989)
Sets the URI of the receiver.

– URI (page 1990)
Returns the URI associated with the receiver.

Navigating the Tree of Nodes

– rootDocument (page 1986)
Returns the NSXMLDocument object containing the root element and representing the XML document
as a whole.

– parent (page 1985)
Returns the parent node of the receiver.

– childAtIndex: (page 1976)
Returns the child node of the receiver at the specified location.

– childCount (page 1977)
Returns the number of child nodes the receiver has.

– children (page 1977)
Returns an immutable array containing the child nodes of the receiver (as NSXMLNode objects).

– nextNode (page 1982)
Returns the next NSXMLNode object in document order.

1966 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

– nextSibling (page 1982)
Returns the next NSXMLNode object that is a sibling node to the receiver.

– previousNode (page 1986)
Returns the previous NSXMLNode object in document order.

– previousSibling (page 1986)
Returns the previous NSXMLNode object that is a sibling node to the receiver.

– detach (page 1978)
Detaches the receiver from its parent node.

Emitting Node Content

– XMLString (page 1990)
Returns the string representation of the receiver as it would appear in an XML document.

– XMLStringWithOptions: (page 1991)
Returns the string representation of the receiver as it would appear in an XML document, with one
or more output options specified.

– canonicalXMLStringPreservingComments: (page 1975)
Returns a string object encapsulating the receiver’s XML in canonical form.

– description (page 1977)
Returns a description of the receiver.

Executing Queries

– nodesForXPath:error: (page 1982)
Returns the nodes resulting from executing an XPath query upon the receiver.

– objectsForXQuery:error: (page 1984)
Returns the objects resulting from executing an XQuery query upon the receiver.

– objectsForXQuery:constants:error: (page 1983)
Returns the objects resulting from executing an XQuery query upon the receiver.

– XPath (page 1991)
Returns the XPath expression identifying the receiver’s location in the document tree.

Managing Namespaces

– localName (page 1981)
Returns the local name of the receiver.

+ localNameForName: (page 1972)
Returns the local name from the specified qualified name.

– prefix (page 1985)
Returns the prefix of the receiver’s name.

+ prefixForName: (page 1974)
Returns the prefix from the specified qualified name.

Tasks 1967
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Class Methods

attributeWithName:stringValue:
Returns an NSXMLNode object representing an attribute node with a given name and string.

+ (id)attributeWithName:(NSString *)name stringValue:(NSString *)value

Parameters
name

A string that is the name of an attribute.

value
A string that is the value of an attribute.

Return Value
An NSXMLNode object of kind NSXMLAttributeKind or nil if the object couldn't be created.

Discussion
For example, in the attribute “id=`12345’”, “id” is the attribute name and “12345” is the attribute value.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
AlbumToSlideshow
Core Data HTML Store

Declared In
NSXMLNode.h

attributeWithName:URI:stringValue:
Returns an NSXMLNode object representing an attribute node with a given qualified name and string.

+ (id)attributeWithName:(NSString *)name URI:(NSString *)URI stringValue:(NSString
 *)value

Parameters
name

A string that is the name of an attribute.

URI
A URI (Universal Resource Identifier) that qualifies name.

value
A string that is the value of the attribute.

Return Value
An NSXMLNode object of kind NSXMLAttributeKind or nil if the object couldn't be created.

Discussion
For example, in the attribute “bst:id=`12345’”, “bst” is the name qualifier (derived from the URI), “id” is the
attribute name, and “12345” is the attribute value.

1968 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

commentWithStringValue:
Returns an NSXMLNode object representing an comment node containing given text.

+ (id)commentWithStringValue:(NSString *)stringValue

Parameters
stringValue

A string specifying the text of the comment. You may specify nil or an empty string (see Return
Value).

Return Value
AnNSXMLNodeobject representing an comment node (NSXMLCommentKind) containing the textstringValue
or nil if the object couldn't be created. If stringValue is nil or an empty string, a content-less comment
node is returned (<!--->).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

document
Returns an empty document node.

+ (id)document

Return Value
An empty document node—that is, an NSXMLDocument instance without a root element or XML-declaration
information (version, encoding, standalone flag). Returns nil if the object couldn't be created.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

documentWithRootElement:
Returns an NSXMLDocument object initialized with a given root element.

+ (id)documentWithRootElement:(NSXMLElement *)element

Class Methods 1969
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Parameters
element

An NSXMLElement object representing an element.

Return Value
An NSXMLDocument object initialized with the root element element or nil if the object couldn't be created.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

DTDNodeWithXMLString:
Returns a NSXMLDTDNode object representing the DTD declaration for an element, attribute, entity, or notation
based on a given string.

+ (id)DTDNodeWithXMLString:(NSString *)string

Parameters
string

A string that is a DTD declaration. The receiver parses this string to determine the kind of DTD node
to create.

Return Value
An NSXMLDTDNode object representing the DTD declaration or nil if the object couldn't be created.

Discussion
For example, if string is the following:

<!ENTITY name (#PCDATA)>

NSXMLNode is able to assign the created node object a kind of NSXMLEntityDeclarationKind by parsing
“ENTITY”.

Note that if an attribute-list declaration (<!ATTLIST...>)has multiple attributes NSXMLNode only creates
an NSXMLDTDNode object for the last attribute in the declaration.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

elementWithName:
Returns an NSXMLElement object with a given tag identifier, or name

+ (id)elementWithName:(NSString *)name

Parameters
name

A string that is the name (or tag identifier) of an element.

1970 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Return Value
An NSXMLElement object or nil if the object couldn't be created.

Discussion
The equivalent XML markup is <name></name>.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
AlbumToSlideshow
Core Data HTML Store

Declared In
NSXMLNode.h

elementWithName:children:attributes:
Returns an NSXMLElement object with the given tag (name), attributes, and children.

+ (id)elementWithName:(NSString *)name children:(NSArray *)children
attributes:(NSArray *)attributes

Parameters
name

A string that is the name (tag identifier) of the element.

children
An array of NSXMLElement objects or NSXMLNode objects of kinds NSXMLElementKind,
NSXMLProcessingInstructionKind, NSXMLCommentKind, and NSXMLTextKind. Specify nil if
there are no children to add to this node object.

attributes
An array of NSXMLNode objects of kind NSXMLAttributeKind. Specify nil if there are no attributes
to add to this node object.

Return Value
An NSXMLElement object or nil if the object couldn't be created.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

elementWithName:stringValue:
Returns an NSXMLElement object with a single text-node child containing the specified text.

+ (id)elementWithName:(NSString *)name stringValue:(NSString *)string

Parameters
name

A string that is the name (tag identifier) of the element.

Class Methods 1971
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

string
A string that is the content of the receiver's text node.

Return Value
An NSXMLElement object with a single text-node child—an NSXMLNode object of kind
NSXMLTextKind—containing the text specified in string. Returns nil if the object couldn't be created.

Discussion
The equivalent XML markup is <name>string</name>.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
AlbumToSlideshow
Core Data HTML Store

Declared In
NSXMLNode.h

elementWithName:URI:
Returns an element whose fully qualified name is specified.

+ (id)elementWithName:(NSString *)name URI:(NSString *)URI

Parameters
name

A string that is the name (or tag identifier) of an element.

URI
A URI (Universal Resource Identifier) that qualifies name.

Return Value
An NSXMLElement object or nil if the object cannot be created.

Discussion

The equivalent XML markup is <URI:name></URI:name>.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

localNameForName:
Returns the local name from the specified qualified name.

+ (NSString *)localNameForName:(NSString *)qName

Parameters
qName

A string that is a qualified name.

1972 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Discussion
For example, if the qualified name is “bst:title”, this method returns “title”.

Availability
Available in Mac OS X v10.4 and later.

See Also
– localName (page 1981)
+ predefinedNamespaceForPrefix: (page 1973)
+ prefixForName: (page 1974)

Declared In
NSXMLNode.h

namespaceWithName:stringValue:
Returns an NSXMLNode object representing a namespace with a specified name and URI.

+ (id)namespaceWithName:(NSString *)name stringValue:(NSString *)value

Parameters
name

A string that is the name of the namespace. Specify nil or an empty string for name if this object
represents the default namespace.

value
A string that identifies the URI associated with the namespace.

Return Value
An NSXMLNode object of kind NSXMLNamespaceKind or nil if the object couldn't be created.

Discussion
The equivalent namespace declaration in XML markup is xmlns:name="value".

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

predefinedNamespaceForPrefix:
Returns an NSXMLNode object representing one of the predefined namespaces with the specified prefix.

+ (NSXMLNode *)predefinedNamespaceForPrefix:(NSString *)name

Parameters
name

A string specifying a prefix for a predefined namespace, for example “xml”, “xs”, or “xsi”.

Return Value
An NSXMLNode object of kind NSXMLNamespaceKind or nil if the object couldn't be created. If something
other than a predefined-namespace prefix is specified, the method returns nil.

Class Methods 1973
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
+ localNameForName: (page 1972)
+ prefixForName: (page 1974)

Declared In
NSXMLNode.h

prefixForName:
Returns the prefix from the specified qualified name.

+ (NSString *)prefixForName:(NSString *)qName

Parameters
qName

A string that is a qualified name.

Discussion
For example, if the qualified name is “bst:title”, this method returns “bst”.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ localNameForName: (page 1972)
– prefix (page 1985)
+ predefinedNamespaceForPrefix: (page 1973)

Declared In
NSXMLNode.h

processingInstructionWithName:stringValue:
Returns an NSXMLNode object representing a processing instruction with a specified name and value.

+ (id)processingInstructionWithName:(NSString *)name stringValue:(NSString *)value

Parameters
name

A string that is the name of the processing instruction.

value
A string that is the value of the processing instruction.

Return Value
An NSXMLNode object of kind NSXMLProcessingInstructionKind or nil if the object couldn't be created.

Discussion
The equivalent XML markup is <?name value?>.

1974 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

textWithStringValue:
Returns an NSXMLNode object representing a text node with specified content.

+ (id)textWithStringValue:(NSString *)value

Parameters
value

A string that is the textual content of the node.

Return Value
An NSXMLNode object of kind NSXMLTextKind initialized with the textual value or nil if the object couldn't
be created.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

Instance Methods

canonicalXMLStringPreservingComments:
Returns a string object encapsulating the receiver’s XML in canonical form.

- (NSString *)canonicalXMLStringPreservingComments:(BOOL)comments

Parameters
comments

YES to preserve comments, NO otherwise.

Discussion
Be sure to set the input option NSXMLNodePreserveWhitespace for true canonical form. The canonical
form of an XML document is defined by the World Wide Web Consortium at
http://www.w3.org/TR/xml-c14n. Generally, if two documents with varying physical representations
have the same canonical form, then they are considered logically equivalent within the given application
context. The following list summarizes most key aspects of canonical form as defined by the W3C
recommendation:

 ■ Encodes the document in UTF-8.

 ■ Normalizes line breaks to “#xA” on input before parsing.

 ■ Normalizes attribute values in the manner of a validating processor.

 ■ Replaces character and parsed entity references with their character content.

Instance Methods 1975
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

 ■ Replaces CDATA sections with their character content.

 ■ Removes the XML declaration and the document type declaration (DTD).

 ■ Converts empty elements to start-end tag pairs.

 ■ Normalizes whitespace outside of the document element and within start and end tags.

 ■ Retains all whitespace characters in content (excluding characters removed during line-feed normalization).

 ■ Sets attribute value delimiters to quotation marks (double quotes).

 ■ Replaces special characters in attribute values and character content with character references.

 ■ Removes superfluous namespace declarations from each element.

 ■ Adds default attributes to each element.

 ■ Imposes lexicographic order on the namespace declarations and attributes of each element.

Availability
Available in Mac OS X v10.4 and later.

See Also
– XMLString (page 1990)
– XMLStringWithOptions: (page 1991)

Declared In
NSXMLNode.h

childAtIndex:
Returns the child node of the receiver at the specified location.

- (NSXMLNode *)childAtIndex:(NSUInteger)index

Parameters
index

An integer specifying a node position in the receiver's array of children. If index is out of bounds, an
exception is raised.

Return Value
An NSXMLNode object or nil f the receiver has no children.

Discussion
The receiver should be an NSXMLNode object representing a document, element, or document type declaration.
The returned node object can represent an element, comment, text, or processing instruction.

Availability
Available in Mac OS X v10.4 and later.

See Also
– childCount (page 1977)

Related Sample Code
Core Data HTML Store

1976 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Declared In
NSXMLNode.h

childCount
Returns the number of child nodes the receiver has.

- (NSUInteger)childCount

Discussion
This receiver should be anNSXMLNode object representing a document, element, or document type declaration.
For performance reasons, use this method instead of getting the count from the array returned by
children (page 1977) (for example, [[thisNode children] count]).

Availability
Available in Mac OS X v10.4 and later.

See Also
– childAtIndex: (page 1976)
– children (page 1977)
– parent (page 1985)

Related Sample Code
Core Data HTML Store

Declared In
NSXMLNode.h

children
Returns an immutable array containing the child nodes of the receiver (as NSXMLNode objects).

- (NSArray *)children

Availability
Available in Mac OS X v10.4 and later.

See Also
– childAtIndex: (page 1976)
– childCount (page 1977)
– parent (page 1985)

Declared In
NSXMLNode.h

description
Returns a description of the receiver.

- (NSString *)description

Instance Methods 1977
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Discussion
Use this method for debugging rather than for generating XML output. It could yield more information than
XMLString (page 1990) and XMLStringWithOptions: (page 1991).

Availability
Available in Mac OS X v10.4 and later.

See Also
– XMLString (page 1990)
– XMLStringWithOptions: (page 1991)

Declared In
NSXMLNode.h

detach
Detaches the receiver from its parent node.

- (void)detach

Discussion
This method is applicable to NSXMLNode objects representing elements, text, comments, processing
instructions, attributes, and namespaces. Once the node object is detached, you can add it as a child node
of another parent.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

index
Returns the index of the receiver identifying its position relative to its sibling nodes.

- (NSUInteger)index

Return Value
An integer that is the index of the receiver relative to its sibling nodes.

Discussion
The first child node of a parent has an index of zero.

Availability
Available in Mac OS X v10.4 and later.

See Also
– childAtIndex: (page 1976)

Declared In
NSXMLNode.h

1978 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

initWithKind:
Returns an NSXMLNode instance initialized with the constant indicating node kind.

- (id)initWithKind:(NSXMLNodeKind)kind

Parameters
kind

An enum constant of type NSXMLNodeKind (page 1992) that indicates the type of node. See
“Constants” (page 1992) for a list of valid NSXMLNodeKind constants.

Return Value
An NSXMLNode object initialized with kind or nil if the object couldn't be created. If kind is not a valid
NSXMLNodeKind constant, the method returns an NSXMLNode object of kind NSXMLInvalidKind.

Discussion
This method invokes initWithKind:options: (page 1979) with the options parameter set to
NSXMLNodeOptionsNone.

Do not use this initializer for creating instances of NSXMLDTDNode for attribute-list declarations. Instead, use
the DTDNodeWithXMLString: (page 1970) class method of this class or the initWithXMLString: (page
1937) method of the NSXMLDTDNode class.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

initWithKind:options:
Returns an NSXMLNode instance initialized with the constant indicating node kind and one or more initialization
options.

- (id)initWithKind:(NSXMLNodeKind)kind options:(NSUInteger)options

Parameters
kind

An enum constant of type NSXMLNodeKind (page 1992) that indicates the type of node. See
“Constants” (page 1992) for a list of valid NSXMLNodeKind constants.

options
One or more constants that specify initialization options; if there are multiple constants, bit-OR them
together. These options request operations on the represented XML related to fidelity (for example,
preserving entities), quoting style, handling of empty elements, and other things. See “Constants” (page
1992) for a list of valid node-initialization constants.

Return Value
An NSXMLNode object initialized with the given kind and options, or nil if the object couldn't be created. If
kind is not a valid NSXMLNodeKind constant, the method returns an NSXMLNode object of kind
NSXMLInvalidKind.

Discussion
Do not use this initializer for creating instances of NSXMLDTDNode for attribute-list declarations. Instead, use
the DTDNodeWithXMLString: (page 1970) class method of this class or the initWithXMLString: (page
1937) method of the NSXMLDTDNode class.

Instance Methods 1979
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithKind: (page 1979)

Related Sample Code
Core Data HTML Store

Declared In
NSXMLNode.h

kind
Returns the kind of node the receiver is as a constant of type NSXMLNodeKind (page 1992).

- (NSXMLNodeKind)kind

Discussion
NSXMLNode objects can represent documents, elements, attributes, namespaces, text, processing instructions,
comments, document type declarations, and specific declarations within DTDs. See “Constants” (page 1992)
for a list of valid NSXMLNodeKind constants

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithKind: (page 1979)

Declared In
NSXMLNode.h

level
Returns the nesting level of the receiver within the tree hierarchy.

- (NSUInteger)level

Return Value
An integer indicating a nesting level.

Discussion
The root element of a document has a nesting level of one.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

1980 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

localName
Returns the local name of the receiver.

- (NSString *)localName

Discussion
The local name is the part of a node name that follows a namespace-qualifying colon or the full name if there
is no colon. For example, “chapter” is the local name in the qualified name “acme:chapter”.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ localNameForName: (page 1972)

Declared In
NSXMLNode.h

name
Returns the name of the receiver.

- (NSString *)name

Return Value
Returns a string specifying the name of the receiver. May return nil if the receiver is not a valid kind of node
(see discussion).

Discussion
This method is applicable only to NSXMLNode objects representing elements, attributes, namespaces,
processing instructions, and DTD-declaration nodes. If the receiver is not an object of one of these kinds, this
method returns nil. For example, in the following construction:

<title>Chapter One</title>

The returned name for the element is “title”. If the name is associated with a namespace, the qualified name
is returned. For example, if you create an element with local name “foo” and URI “http://bar.com” and the
namespace “xmlns:baz=‘http://bar.com’” is applied to this node, when you invoke this method on the node
you get “baz:foo”.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setName: (page 1987)

Related Sample Code
Core Data HTML Store

Declared In
NSXMLNode.h

Instance Methods 1981
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

nextNode
Returns the next NSXMLNode object in document order.

- (NSXMLNode *)nextNode

Discussion
You use this method to “walk” forward through the tree structure representing an XML document or document
section. (Use previousNode (page 1986) to traverse the tree in the opposite direction.) Document order is
the natural order that XML constructs appear in markup text. If you send this message to the last node in
the tree, nil is returned. NSXMLNode bypasses namespace and attribute nodes when it traverses a tree in
document order.

Availability
Available in Mac OS X v10.4 and later.

See Also
– nextSibling (page 1982)
– previousSibling (page 1986)

Declared In
NSXMLNode.h

nextSibling
Returns the next NSXMLNode object that is a sibling node to the receiver.

- (NSXMLNode *)nextSibling

Discussion
This object will have an index (page 1978) value that is one more than the receiver’s. If there are no more
subsequent siblings (that is, other child nodes of the receiver’s parent) the method returns nil.

Availability
Available in Mac OS X v10.4 and later.

See Also
– nextNode (page 1982)
– previousNode (page 1986)
– previousSibling (page 1986)

Declared In
NSXMLNode.h

nodesForXPath:error:
Returns the nodes resulting from executing an XPath query upon the receiver.

- (NSArray *)nodesForXPath:(NSString *)xpath error:(NSError **)error

Parameters
xpath

A string that expresses an XPath query.

1982 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

error
If query errors occur, indirectly returns an NSError object describing the errors.

Return Value
An array of NSXMLNode objects that match the query, or an empty array if there are no matches.

Discussion
The receiver acts as the context item for the query (“.”). If you have explicitly added adjacent text nodes as
children of an element, you should invoke the NSXMLElement method
normalizeAdjacentTextNodesPreservingCDATA: (page 1957) (with an argument of NO) on the element
before applying any XPath queries to it; this method coalesces these text nodes. The same precaution applies
if you have processed a document preserving CDATA sections and these sections are adjacent to text nodes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– XPath (page 1991)

Related Sample Code
CocoaSOAP
Core Data HTML Store

Declared In
NSXMLNode.h

objectsForXQuery:constants:error:
Returns the objects resulting from executing an XQuery query upon the receiver.

- (NSArray *)objectsForXQuery:(NSString *)xquery constants:(NSDictionary *)constants
error:(NSError **)error

Parameters
xquery

A string that expresses an XQuery query.

constants
A dictionary containing externally declared constants where the name of each constant variable is a
key.

error
If query errors occur, indirectly returns an NSError object describing the errors.

Discussion
The receiver acts as the context item for the query (“.”). If the receiver has been changed after parsing to
have multiple adjacent text nodes, you should invoke the NSXMLElement method
normalizeAdjacentTextNodesPreservingCDATA: (page 1957) (with an argument of NO) to coalesce the
text nodes before querying.

Availability
Available in Mac OS X v10.4 and later.

See Also
– XPath (page 1991)

Instance Methods 1983
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Declared In
NSXMLNode.h

objectsForXQuery:error:
Returns the objects resulting from executing an XQuery query upon the receiver.

- (NSArray *)objectsForXQuery:(NSString *)xquery error:(NSError **)error

Parameters
xquery

A string that expresses an XQuery query.

error
If query errors occur, indirectly returns an NSError object describing the errors.

Discussion
The receiver acts as the context item for the query (“.”). If the receiver has been changed after parsing to
have multiple adjacent text nodes, you should invoke the NSXMLElement method
normalizeAdjacentTextNodesPreservingCDATA: (page 1957) (with an argument of NO) to coalesce the
text nodes before querying .This convenience method invokes
objectsForXQuery:constants:error: (page 1983) with nil for the constants dictionary.

Availability
Available in Mac OS X v10.4 and later.

See Also
– XPath (page 1991)

Related Sample Code
TimelineToTC

Declared In
NSXMLNode.h

objectValue
Returns the object value of the receiver.

- (id)objectValue

Return Value
The object value of the receiver, which may be the same as the value returned by stringValue (page 1989).
For nodes without content (for example, document nodes), this method returns the string value, or an empty
string if there is no string value.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setObjectValue: (page 1987)
– setStringValue: (page 1988)

1984 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Related Sample Code
CocoaSOAP
Core Data HTML Store

Declared In
NSXMLNode.h

parent
Returns the parent node of the receiver.

- (NSXMLNode *)parent

Discussion
Document nodes and standalone nodes (that is, the root of a detached branch of a tree) have no parent, and
sending this message to them returns nil. A one-to-one relationship does not always exists between a
parent and its children; although a namespace or attribute node cannot be a child, it still has a parent element.

Availability
Available in Mac OS X v10.4 and later.

See Also
– childCount (page 1977)
– children (page 1977)

Related Sample Code
Core Data HTML Store

Declared In
NSXMLNode.h

prefix
Returns the prefix of the receiver’s name.

- (NSString *)prefix

Discussion
The prefix is the part of a namespace-qualified name that precedes the colon. For example, “acme” is the
local name in the qualified name “acme:chapter”. This method returns an empty string if the receiver’s name
is not qualified by a namespace.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ prefixForName: (page 1974)

Declared In
NSXMLNode.h

Instance Methods 1985
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

previousNode
Returns the previous NSXMLNode object in document order.

- (NSXMLNode *)previousNode

Discussion
You use this method to “walk” backward through the tree structure representing an XML document or
document section. (Use nextNode (page 1982) to traverse the tree in the opposite direction.) Document order
is the natural order that XML constructs appear in markup text. If you send this message to the first node in
the tree (that is, the root element), nil is returned. NSXMLNode bypasses namespace and attribute nodes
when it traverses a tree in document order.

Availability
Available in Mac OS X v10.4 and later.

See Also
– nextSibling (page 1982)
– previousSibling (page 1986)

Declared In
NSXMLNode.h

previousSibling
Returns the previous NSXMLNode object that is a sibling node to the receiver.

- (NSXMLNode *)previousSibling

Discussion
This object will have an index (page 1978) value that is one less than the receiver’s. If there are no more
previous siblings (that is, other child nodes of the receiver’s parent) the method returns nil

Availability
Available in Mac OS X v10.4 and later.

See Also
– nextNode (page 1982)
– nextSibling (page 1982)
– previousNode (page 1986)

Declared In
NSXMLNode.h

rootDocument
Returns the NSXMLDocument object containing the root element and representing the XML document as a
whole.

- (NSXMLDocument *)rootDocument

1986 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Discussion
If the receiver is a standalone node (that is, a node at the head of a detached branch of the tree), this method
returns nil.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

setName:
Sets the name of the receiver.

- (void)setName:(NSString *)name

Parameters
name

A string that is the name to assign to the receiver.

Discussion
This method is effective for the following node kinds: element, attribute, namespace, processing-instruction,
document type declaration, element declaration, attribute declaration, entity declaration, and notation
declaration. If an NSXMLNode object that requires a name doesn’t have one, it cannot be written out as an
XML string.

Availability
Available in Mac OS X v10.4 and later.

See Also
– name (page 1981)

Declared In
NSXMLNode.h

setObjectValue:
Sets the content of the receiver to an object value.

- (void)setObjectValue:(id)value

Parameters
value

An object to assign as the value to the receiver.

Discussion
This method can only be invoked on NSXMLNode objects that may have content, specifically elements,
attributes, namespaces, processing instructions, text, and DTD-declaration nodes. The given object is usually
a Foundation equivalent to one of the atomic types in the XQuery data model: NSNumber (integer, decimal,
float, double, Boolean), NSString (string), NSCalendarDate (date), NSData (base64Binary and hexBinary),
NSURL (URI), and NSArray (NMTOKENS, IDREFS, ENTITIES). However, you can also set the object value to be
a custom value and register a value transformer (that is, an instance of NSValueTransformer) to convert
the object value to an XML string representation when the node is asked for its string value. Setting a node’s

Instance Methods 1987
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

object value removes all existing children, including processing instructions and comments. Setting an
element node’s object value creates a text node as the sole child. When an NSXMLNode object emits its
object-value contents as a string, and it can determine the type of the value, it ensures that it the string is in
a canonical form as defined by the W3C XML Schema Data Types specification.

Availability
Available in Mac OS X v10.4 and later.

See Also
– objectValue (page 1984)
– setStringValue:resolvingEntities: (page 1988)

Related Sample Code
Core Data HTML Store

Declared In
NSXMLNode.h

setStringValue:
Sets the content of the receiver as a string value.

- (void)setStringValue:(NSString *)string

Parameters
string

A string to assign as the value of the receiver.

Discussion
This method invokes setStringValue:resolvingEntities: (page 1988), passing in an argument of NO
for the second parameter. This method can only be invoked on NSXMLNode objects that may have content,
specifically elements, attributes, namespaces, processing instructions, text, and DTD-declaration nodes.
Setting the string value of a node object removes all existing children, including processing instructions and
comments. Setting the string value of an element-node object creates a text node as the sole child.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setObjectValue: (page 1987)
– stringValue (page 1989)

Related Sample Code
Core Data HTML Store

Declared In
NSXMLNode.h

setStringValue:resolvingEntities:
Sets the content of the receiver as a string value and, optionally, resolves character references, predefined
entities, and user-defined entities as declared in the associated DTD.

1988 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

- (void)setStringValue:(NSString *)string resolvingEntities:(BOOL)resolve

Parameters
string

A string to assign as the value of the receiver.

resolve
YES to resolve character references, predefined entities, and user-defined entities as declared in the
associated DTD; NO otherwise. Namespace and processing-instruction nodes have their entities
resolved even if resolve is NO.

Discussion
User-defined entities not declared in the DTD remain in their unresolved form. This method can only be
invoked on NSXMLNode objects that may have content, specifically elements, attributes, namespaces,
processing instructions, text, and DTD-declaration nodes. Setting the string value of a node object removes
all existing children, including processing instructions and comments. Setting the string value of an element
-node object creates a text node as the sole child.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setObjectValue: (page 1987)
– setStringValue: (page 1988)
– stringValue (page 1989)

Declared In
NSXMLNode.h

setURI:
Sets the URI of the receiver.

- (void)setURI:(NSString *)URI

Parameters
URI

The URI to associate with the receiver. A URI (Universal Resource Identifier) is a scheme such as “http”
or “ftp” followed by a colon character, and then a scheme-specific part.

Discussion
The receiver must be an NSXMLElement or NSXMLDocument document, or an attribute (that is, anNSXMLNode
object of type NSXMLAttributeKind). For documents it is the URI of document origin.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

stringValue
Returns the content of the receiver as a string value.

Instance Methods 1989
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

- (NSString *)stringValue

Discussion
If the receiver is a node object of element kind, the content is that of any text-node children. This method
recursively visits elements nodes and concatenates their text nodes in document order with no intervening
spaces. If the receiver’s content is set as an object value, this method returns the string value representing
the object. If the object value is one of the standard, built-in ones (NSNumber, NSCalendarDate, and so on),
the string value is in canonical format as defined by the W3C XML Schema Data Types specification. If the
object value is not represented by one of these classes (or if the default value transformer for a class has
been overridden), the string value is generated by the NSValueTransformer registered for that object type.

Availability
Available in Mac OS X v10.4 and later.

See Also
– objectValue (page 1984)
– setStringValue: (page 1988)
– setStringValue:resolvingEntities: (page 1988)

Related Sample Code
Core Data HTML Store
TimelineToTC

Declared In
NSXMLNode.h

URI
Returns the URI associated with the receiver.

- (NSString *)URI

Discussion
A node’s URI is derived from its namespace or a document’s URI; for documents, the URI comes either from
the parsed XML or is explicitly set. You cannot change the URI for a particular node other for than a namespace
or document node.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setURI: (page 1916) (NSXMLDocument)

Declared In
NSXMLNode.h

XMLString
Returns the string representation of the receiver as it would appear in an XML document.

- (NSString *)XMLString

1990 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Discussion
The returned string includes the string representations of all children. This method invokes
XMLStringWithOptions: (page 1991) with an options argument of NSXMLNodeOptionsNone.

Availability
Available in Mac OS X v10.4 and later.

See Also
– canonicalXMLStringPreservingComments: (page 1975)
– description (page 1977)

Declared In
NSXMLNode.h

XMLStringWithOptions:
Returns the string representation of the receiver as it would appear in an XML document, with one or more
output options specified.

- (NSString *)XMLStringWithOptions:(NSUInteger)options

Parameters
options

One or more enum constants identifying an output option; bit-OR multiple constants together. See
“Constants” (page 1992) for a list of valid constants for specifying output options.

Discussion
The returned string includes the string representations of all children.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

XPath
Returns the XPath expression identifying the receiver’s location in the document tree.

- (NSString *)XPath

Discussion
For example, this method might return a string such as “foo/bar[2]/baz”. The result of this method can be
used directly in thenodesForXPath:error: (page 1982) andobjectsForXQuery:constants:error: (page
1983) methods.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

Instance Methods 1991
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Constants

NSXMLNodeKind
A type defined for the node-kind constants described in “Node Kind Constants” (page 1992).

typedef NSUInteger NSXMLNodeKind;

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSXMLNode.h

Node Kind Constants
NSXMLNode declares the following constants of type NSXMLNodeKind for specifying a node’s kind in the
initializer methods initWithKind: (page 1979) and initWithKind:options: (page 1979):

enum {
 NSXMLInvalidKind = 0,
 NSXMLDocumentKind,
 NSXMLElementKind,
 NSXMLAttributeKind,
 NSXMLNamespaceKind,
 NSXMLProcessingInstructionKind,
 NSXMLCommentKind,
 NSXMLTextKind,
 NSXMLDTDKind,
 NSXMLEntityDeclarationKind,
 NSXMLAttributeDeclarationKind,
 NSXMLElementDeclarationKind,
 NSXMLNotationDeclarationKind
};

Constants
NSXMLInvalidKind

Indicates a node object created without a valid kind being specified (as returned by the kind (page
1980) method).

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

NSXMLDocumentKind
Specifies a document node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

NSXMLElementKind
Specifies an element node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

1992 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

NSXMLAttributeKind
Specifies an attribute node

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

NSXMLNamespaceKind
Specifies a namespace node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

NSXMLProcessingInstructionKind
Specifies a processing-instruction node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

NSXMLCommentKind
Specifies a comment node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

NSXMLTextKind
Specifies a text node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

NSXMLDTDKind
Specifies a document-type declaration (DTD) node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

NSXMLEntityDeclarationKind
Specifies an entity-declaration node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

NSXMLAttributeDeclarationKind
Specifies an attribute-list declaration node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

NSXMLElementDeclarationKind
Specifies an element declaration node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

NSXMLNotationDeclarationKind
Specifies a notation declaration node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNode.h.

Declared In
NSXMLNode.h

Constants 1993
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Input and Output Options
These constants are input and output options for all NSXMLNode objects (unless otherwise indicated), including
NSXMLDocument objects. You can specify these options (OR’ing multiple options) in the NSXMLNodemethods
initWithKind:options: (page 1979) and XMLStringWithOptions: (page 1991).

enum {
 NSXMLNodeOptionsNone = 0,
 NSXMLNodeIsCDATA = 1 << 0,
 NSXMLNodeExpandEmptyElement = 1 << 1, // <a>
 NSXMLNodeCompactEmptyElement = 1 << 2, // <a/>
 NSXMLNodeUseSingleQuotes = 1 << 3,
 NSXMLNodeUseDoubleQuotes = 1 << 4,
 NSXMLDocumentTidyHTML = 1 << 9,
 NSXMLDocumentTidyXML = 1 << 10,
 NSXMLDocumentValidate = 1 << 13,
 NSXMLDocumentXInclude = 1 << 16,
 NSXMLNodePrettyPrint = 1 << 17,
 NSXMLDocumentIncludeContentTypeDeclaration = 1 << 18,
 NSXMLNodePreserveNamespaceOrder = 1 << 20,
 NSXMLNodePreserveAttributeOrder = 1 << 21,
 NSXMLNodePreserveEntities = 1 << 22,
 NSXMLNodePreservePrefixes = 1 << 23,
 NSXMLNodePreserveCDATA = 1 << 24,
 NSXMLNodePreserveWhitespace = 1 << 25,
 NSXMLNodePreserveDTD = 1 << 26,
 NSXMLNodePreserveCharacterReferences = 1 << 27,
 NSXMLNodePreserveEmptyElements =
 (NSXMLNodeExpandEmptyElement | NSXMLNodeCompactEmptyElement),
 NSXMLNodePreserveQuotes =
 (NSXMLNodeUseSingleQuotes | NSXMLNodeUseDoubleQuotes),
 NSXMLNodePreserveAll = (
 NSXMLNodePreserveNamespaceOrder |
 NSXMLNodePreserveAttributeOrder |
 NSXMLNodePreserveEntities |
 NSXMLNodePreservePrefixes |
 NSXMLNodePreserveCDATA |
 NSXMLNodePreserveEmptyElements |
 NSXMLNodePreserveQuotes |
 NSXMLNodePreserveWhitespace |
 NSXMLNodePreserveDTD |
 NSXMLNodePreserveCharacterReferences |
 0xFFF00000) // high 12 bits
};

Constants
NSXMLNodeOptionsNone

No options are requested for this input or output action.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodeIsCDATA
Specifies that a text node contains and is written out as a CDATA section.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

1994 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

NSXMLNodeExpandEmptyElement
Requests that an element should be expanded when empty; for example, <flag></flag>. This is
the default.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodeCompactEmptyElement
Requests that an element should be contracted when empty; for example, <flag/>.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodeUseSingleQuotes
Requests that NSXML use single quotes for the value of an attribute or namespace node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodeUseDoubleQuotes
Requests that NSXML use double quotes for the value of an attribute or namespace node. This is the
default.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodePrettyPrint
Print this node with extra space for readability. (Output)

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodePreserveNamespaceOrder
Requests NSXML to preserve the order of namespace URI definitions as in the source XML.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodePreserveAttributeOrder
Requests that NSXMLNode preserve the order of attributes as in the source XML.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodePreserveEntities
Specifies that entities (&xyz;) should not be resolved for XML output of this node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodePreserveCharacterReferences
Specifies that character references (&#nnn;) should not be resolved for XML output of this node.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodePreservePrefixes
Requests NSXMLNode not to choose prefixes based on the closest namespace URI definition.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

Constants 1995
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

NSXMLNodePreserveCDATA
Requests that NSXMLNode preserve CDATA blocks where defined in the input XML.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodePreserveWhitespace
Requests NSXMLNode to preserve whitespace characters (such as tabs and carriage returns) in the
XML source that are not part of node content.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodePreserveEmptyElements
Specifies that empty elements in the input XML be preserved in their contracted or expanded form.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodePreserveQuotes
Specifies that the quoting style used in the input XML (single or double quotes) be preserved.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodePreserveDTD
Specifies that declarations in a DTD should be preserved until it the DTD is modified. For example,
parameter entities are by default expanded; with this option, they are written out as they originally
occur in the DTD.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

NSXMLNodePreserveAll
Turns on all preservation options: attribute and namespace order, entities, prefixes, CDATA, whitespace,
quotes, and empty elements. You should try to turn on preservation options selectively because
turning on all preservation options significantly affects performance.

Available in Mac OS X v10.4 and later.

Declared in NSXMLNodeOptions.h.

Discussion
The options with “Preserve” in their names are applicable only when external sources of XML are parsed;
they have no effect on node objects that are programmatically created. Other options are used in initialization
and output methods of NSXMLDocument; see the NSXMLDocument reference documentation for details.

Declared In
NSXMLNodeOptions.hj

1996 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 167

NSXMLNode Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.3 and later.

Declared in Foundation/NSXMLParser.h

Companion guide Event-Driven XML Programming Guide for Cocoa

Related sample code ImageMapExample

Overview

Instances of this class parse XML documents (including DTD declarations) in an event-driven manner. An
NSXMLParser notifies its delegate about the items (elements, attributes, CDATA blocks, comments, and so
on) that it encounters as it processes an XML document. It does not itself do anything with those parsed
items except report them. It also reports parsing errors. For convenience, an NSXMLParser object in the
following descriptions is sometimes referred to as a parser object.

Note: Namespace support was implemented in NSXMLParser for Mac OS X v10.4. Namespace-related
methods of NSXMLParser prior to this version have no effect.

Tasks

Initializing a Parser Object

– initWithContentsOfURL: (page 2001)
Initializes the receiver with the XML content referenced by the given URL.

– initWithData: (page 2002)
Initializes the receiver with the XML contents encapsulated in a given data object.

Overview 1997
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

Managing Delegates

– setDelegate: (page 2003)
Sets the receiver’s delegate.

– delegate (page 2001)
Returns the receiver’s delegate.

Managing Parser Behavior

– setShouldProcessNamespaces: (page 2004)
Specifies whether the receiver reports the namespace and the qualified name of an element in related
delegation methods .

– shouldProcessNamespaces (page 2005)
Indicates whether the receiver reports the namespace and the qualified name of an element in related
delegation methods.

– setShouldReportNamespacePrefixes: (page 2004)
Specifies whether the receiver reports the scope of namespace declarations using related delegation
methods.

– shouldReportNamespacePrefixes (page 2006)
Indicates whether the receiver reports the prefixes indicating the scope of namespace declarations
using related delegation methods.

– setShouldResolveExternalEntities: (page 2005)
Specifies whether the receiver reports declarations of external entities using the delegate method
parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 2011).

– shouldResolveExternalEntities (page 2006)
Indicates whether the receiver reports declarations of external entities using the delegate method
parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 2011).

Parsing

– parse (page 2002)
Starts the event-driven parsing operation.

– abortParsing (page 2000)
Stops the parser object.

– parserError (page 2003)
Returns an NSError object from which you can obtain information about a parsing error.

Handling XML

– parserDidStartDocument: (page 2017) delegate method
Sent by the parser object to the delegate when it begins parsing a document.

– parserDidEndDocument: (page 2016) delegate method
Sent by the parser object to the delegate when it has successfully completed parsing.

1998 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 2008) delegate
method

Sent by a parser object to its delegate when it encounters a start tag for a given element.

– parser:didEndElement:namespaceURI:qualifiedName: (page 2007) delegate method
Sent by a parser object to its delegate when it encounters an end tag for a specific element.

– parser:didStartMappingPrefix:toURI: (page 2009) delegate method
Sent by a parser object to its delegate the first time it encounters a given namespace prefix, which is
mapped to a URI.

– parser:didEndMappingPrefix: (page 2008) delegate method
Sent by a parser object to its delegate when a given namespace prefix goes out of scope.

– parser:resolveExternalEntityName:systemID: (page 2015) delegate method
Sent by a parser object to its delegate when it encounters a given external entity with a specific system
ID.

– parser:parseErrorOccurred: (page 2015) delegate method
Sent by a parser object to its delegate when it encounters a fatal error.

– parser:validationErrorOccurred: (page 2016) delegate method
Sent by a parser object to its delegate when it encounters a fatal validation error. NSXMLParser
currently does not invoke this method and does not perform validation.

– parser:foundCharacters: (page 2010) delegate method
Sent by a parser object to provide its delegate with a string representing all or part of the characters
of the current element.

– parser:foundIgnorableWhitespace: (page 2012) delegate method
Reported by a parser object to provide its delegate with a string representing all or part of the ignorable
whitespace characters of the current element.

– parser:foundProcessingInstructionWithTarget:data: (page 2014) delegate method
Sent by a parser object to its delegate when it encounters a processing instruction.

– parser:foundComment: (page 2011) delegate method
Sent by a parser object to its delegate when it encounters a comment in the XML.

– parser:foundCDATA: (page 2010) delegate method
Sent by a parser object to its delegate when it encounters a CDATA block.

Handling the DTD

– parser:foundAttributeDeclarationWithName:forElement:type:defaultValue: (page
2009) delegate method

Sent by a parser object to its delegate when it encounters a declaration of an attribute that is associated
with a specific element.

– parser:foundElementDeclarationWithName:model: (page 2011) delegate method
Sent by a parser object to its delegate when it encounters a declaration of an element with a given
model.

– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 2011) delegate
method

Sent by a parser object to its delegate when it encounters an external entity declaration.

– parser:foundInternalEntityDeclarationWithName:value: (page 2013) delegate method
Sent by a parser object to the delegate when it encounters an internal entity declaration.

Tasks 1999
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
2014) delegate method

Sent by a parser object to its delegate when it encounters an unparsed entity declaration.

– parser:foundNotationDeclarationWithName:publicID:systemID: (page 2013) delegate method
Sent by a parser object to its delegate when it encounters a notation declaration.

Obtaining Parser State

– columnNumber (page 2000)
Returns the column number of the XML document being processed by the receiver.

– lineNumber (page 2002)
Returns the line number of the XML document being processed by the receiver.

– publicID (page 2003)
Returns the public identifier of the external entity referenced in the XML document.

– systemID (page 2007)
Returns the system identifier of the external entity referenced in the XML document.

Instance Methods

abortParsing
Stops the parser object.

- (void)abortParsing

Discussion
If you invoke this method, the delegate, if it implements parser:parseErrorOccurred: (page 2015), is
informed of the cancelled parsing operation.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parse (page 2002)
– parserError (page 2003)

Related Sample Code
ImageMapExample

Declared In
NSXMLParser.h

columnNumber
Returns the column number of the XML document being processed by the receiver.

- (NSInteger)columnNumber

2000 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

Discussion
The column refers to the nesting level of the XML elements in the document. You may invoke this method
once a parsing operation has begun or after an error occurs.

Availability
Available in Mac OS X v10.3 and later.

See Also
– lineNumber (page 2002)

Declared In
NSXMLParser.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Availability
Available in Mac OS X v10.3 and later.

See Also
– setDelegate: (page 2003)

Declared In
NSXMLParser.h

initWithContentsOfURL:
Initializes the receiver with the XML content referenced by the given URL.

- (id)initWithContentsOfURL:(NSURL *)url

Parameters
url

An NSURL object specifying a URL. The URL must be fully qualified and refer to a scheme that is
supported by the NSURL class.

Return Value
An initialized NSXMLParser object or nil if an error occurs.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initWithData: (page 2002)

Declared In
NSXMLParser.h

Instance Methods 2001
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

initWithData:
Initializes the receiver with the XML contents encapsulated in a given data object.

- (id)initWithData:(NSData *)data

Parameters
data

An NSData object containing XML markup.

Return Value
An initialized NSXMLParser object or nil if an error occurs.

Discussion
This method is the designated initializer.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initWithContentsOfURL: (page 2001)

Declared In
NSXMLParser.h

lineNumber
Returns the line number of the XML document being processed by the receiver.

- (NSInteger)lineNumber

Discussion
You may invoke this method once a parsing operation has begun or after an error occurs.

Availability
Available in Mac OS X v10.3 and later.

See Also
– columnNumber (page 2000)

Declared In
NSXMLParser.h

parse
Starts the event-driven parsing operation.

- (BOOL)parse

Return Value
YES if parsing is successful and NO in there is an error or if the parsing operation is aborted.

Availability
Available in Mac OS X v10.3 and later.

2002 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

See Also
– abortParsing (page 2000)
– parserError (page 2003)

Related Sample Code
ImageMapExample

Declared In
NSXMLParser.h

parserError
Returns an NSError object from which you can obtain information about a parsing error.

- (NSError *)parserError

Discussion
You may invoke this method after a parsing operation abnormally terminates to determine the cause of error.

Availability
Available in Mac OS X v10.3 and later.

See Also
– abortParsing (page 2000)
– parse (page 2002)

Declared In
NSXMLParser.h

publicID
Returns the public identifier of the external entity referenced in the XML document.

- (NSString *)publicID

Discussion
You may invoke this method once a parsing operation has begun or after an error occurs.

Availability
Available in Mac OS X v10.3 and later.

See Also
– systemID (page 2007)

Declared In
NSXMLParser.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Instance Methods 2003
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

Parameters
delegate

An object that is the new delegate. It is not retained.

Availability
Available in Mac OS X v10.3 and later.

See Also
– delegate (page 2001)

Related Sample Code
ImageMapExample

Declared In
NSXMLParser.h

setShouldProcessNamespaces:
Specifies whether the receiver reports the namespace and the qualified name of an element in related
delegation methods .

- (void)setShouldProcessNamespaces:(BOOL)shouldProcessNamespaces

Parameters
shouldProcessNamespaces

YES if the receiver should report the namespace and qualified name of each element, NO otherwise.
The default value is NO.

Discussion
The invoked delegation methods are
parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 2008) and
parser:didEndElement:namespaceURI:qualifiedName: (page 2007).

Availability
Available in Mac OS X v10.3 and later.

See Also
– shouldProcessNamespaces (page 2005)

Declared In
NSXMLParser.h

setShouldReportNamespacePrefixes:
Specifies whether the receiver reports the scope of namespace declarations using related delegation methods.

- (void)setShouldReportNamespacePrefixes:(BOOL)shouldReportNamespacePrefixes

Parameters
shouldReportNamespacePrefixes

YES if the receiver should report the scope of namespace declarations, NO otherwise. The default
value is NO.

2004 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

Discussion
The invoked delegation methods are parser:didStartMappingPrefix:toURI: (page 2009) and
parser:didEndMappingPrefix: (page 2008).

Availability
Available in Mac OS X v10.3 and later.

See Also
– shouldReportNamespacePrefixes (page 2006)

Declared In
NSXMLParser.h

setShouldResolveExternalEntities:
Specifies whether the receiver reports declarations of external entities using the delegate method
parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 2011).

- (void)setShouldResolveExternalEntities:(BOOL)shouldResolveExternalEntities

Parameters
shouldResolveExternalEntities

YES if the receiver should report declarations of external entities, NO otherwise. The default value is
NO.

Discussion
If you pass in YES, you may cause other I/O operations, either network-based or disk-based, to load the
external DTD.

Availability
Available in Mac OS X v10.3 and later.

See Also
– shouldResolveExternalEntities (page 2006)

Declared In
NSXMLParser.h

shouldProcessNamespaces
Indicates whether the receiver reports the namespace and the qualified name of an element in related
delegation methods.

- (BOOL)shouldProcessNamespaces

Return Value
YES if the receiver reports namespace and qualified name, NO otherwise.

Discussion
The invoked delegation methods are
parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 2008) and
parser:didEndElement:namespaceURI:qualifiedName: (page 2007).

Instance Methods 2005
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– setShouldProcessNamespaces: (page 2004)

Declared In
NSXMLParser.h

shouldReportNamespacePrefixes
Indicates whether the receiver reports the prefixes indicating the scope of namespace declarations using
related delegation methods.

- (BOOL)shouldReportNamespacePrefixes

Return Value
YES if the receiver reports the scope of namespace declarations, NO otherwise. The default value is NO.

Discussion
The invoked delegation methods are parser:didStartMappingPrefix:toURI: (page 2009) and
parser:didEndMappingPrefix: (page 2008).

Availability
Available in Mac OS X v10.3 and later.

See Also
– setShouldReportNamespacePrefixes: (page 2004)

Declared In
NSXMLParser.h

shouldResolveExternalEntities
Indicates whether the receiver reports declarations of external entities using the delegate method
parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 2011).

- (BOOL)shouldResolveExternalEntities

Return Value
YES if the receiver reports declarations of external entities, NO otherwise. The default value is NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setShouldResolveExternalEntities: (page 2005)

Declared In
NSXMLParser.h

2006 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

systemID
Returns the system identifier of the external entity referenced in the XML document.

- (NSString *)systemID

Discussion
You may invoke this method once a parsing operation has begun or after an error occurs.

Availability
Available in Mac OS X v10.3 and later.

See Also
– publicID (page 2003)

Declared In
NSXMLParser.h

Delegate Methods

parser:didEndElement:namespaceURI:qualifiedName:
Sent by a parser object to its delegate when it encounters an end tag for a specific element.

- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName

Parameters
parser

A parser object.

elementName
A string that is the name of an element (in its end tag).

namespaceURI
If namespace processing is turned on, contains the URI for the current namespace as a string object.

qName
If namespace processing is turned on, contains the qualified name for the current namespace as a
string object..

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 2008)
– setShouldProcessNamespaces: (page 2004)

Declared In
NSXMLParser.h

Delegate Methods 2007
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

parser:didEndMappingPrefix:
Sent by a parser object to its delegate when a given namespace prefix goes out of scope.

- (void)parser:(NSXMLParser *)parser didEndMappingPrefix:(NSString *)prefix

Parameters
parser

A parser object.

prefix
A string that is a namespace prefix.

Discussion
The parser sends this message only when namespace-prefix reporting is turned on through the
setShouldReportNamespacePrefixes: (page 2004) method.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:didStartMappingPrefix:toURI: (page 2009)

Declared In
NSXMLParser.h

parser:didStartElement:namespaceURI:qualifiedName:attributes:
Sent by a parser object to its delegate when it encounters a start tag for a given element.

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qualifiedName
attributes:(NSDictionary *)attributeDict

Parameters
parser

A parser object.

elementName
A string that is the name of an element (in its start tag).

namespaceURI
If namespace processing is turned on, contains the URI for the current namespace as a string object.

qualifiedName
If namespace processing is turned on, contains the qualified name for the current namespace as a
string object..

attributeDict
A dictionary that contains any attributes associated with the element. Keys are the names of attributes,
and values are attribute values.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:didEndElement:namespaceURI:qualifiedName: (page 2007)
– setShouldProcessNamespaces: (page 2004)

2008 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

Declared In
NSXMLParser.h

parser:didStartMappingPrefix:toURI:
Sent by a parser object to its delegate the first time it encounters a given namespace prefix, which is mapped
to a URI.

- (void)parser:(NSXMLParser *)parser didStartMappingPrefix:(NSString *)prefix
toURI:(NSString *)namespaceURI

Parameters
parser

A parser object.

prefix
A string that is a namespace prefix.

namespaceURI
A string that specifies a namespace URI.

Discussion
The parser object sends this message only when namespace-prefix reporting is turned on through the
setShouldReportNamespacePrefixes: (page 2004) method.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:didEndMappingPrefix: (page 2008)

Declared In
NSXMLParser.h

parser:foundAttributeDeclarationWithName:forElement:type:defaultValue:
Sent by a parser object to its delegate when it encounters a declaration of an attribute that is associated with
a specific element.

- (void)parser:(NSXMLParser *)parser foundAttributeDeclarationWithName:(NSString
*)attributeName forElement:(NSString *)elementName type:(NSString *)type
defaultValue:(NSString *)defaultValue

Parameters
parser

An NSXMLParser object parsing XML.

attributeName
A string that is the name of an attribute.

elementName
A string that is the name of an element that has the attribute attributeName.

type
A string, such as "ENTITY", "NOTATION", or "ID", that indicates the type of the attribute.

Delegate Methods 2009
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

defaultValue
A string that specifies the default value of the attribute.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 2008)

Declared In
NSXMLParser.h

parser:foundCDATA:
Sent by a parser object to its delegate when it encounters a CDATA block.

- (void)parser:(NSXMLParser *)parser foundCDATA:(NSData *)CDATABlock

Parameters
parser

An NSXMLParser object parsing XML.

CDATABlock
A data object containing a block of CDATA.

Discussion
Through this method the parser object passes the contents of the block to its delegate in an NSData object.
The CDATA block is character data that is ignored by the parser. The encoding of the character data is UTF-8.
To convert the data object to a string object, use the NSString method initWithData:encoding: (page
1572).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSXMLParser.h

parser:foundCharacters:
Sent by a parser object to provide its delegate with a string representing all or part of the characters of the
current element.

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string

Parameters
parser

A parser object.

string
A string representing the complete or partial textual content of the current element.

Discussion
The parser object may send the delegate several parser:foundCharacters: messages to report the
characters of an element. Because string may be only part of the total character content for the current
element, you should append it to the current accumulation of characters until the element changes.

2010 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSXMLParser.h

parser:foundComment:
Sent by a parser object to its delegate when it encounters a comment in the XML.

- (void)parser:(NSXMLParser *)parser foundComment:(NSString *)comment

Parameters
parser

An NSXMLParser object parsing XML.

comment
A string that is a the content of a comment in the XML.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSXMLParser.h

parser:foundElementDeclarationWithName:model:
Sent by a parser object to its delegate when it encounters a declaration of an element with a given model.

- (void)parser:(NSXMLParser *)parser foundElementDeclarationWithName:(NSString
*)elementName model:(NSString *)model

Parameters
parser

An NSXMLParser object parsing XML.

elementName
A string that is the name of an element.

model
A string that specifies a model for elementName.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 2008)

Declared In
NSXMLParser.h

parser:foundExternalEntityDeclarationWithName:publicID:systemID:
Sent by a parser object to its delegate when it encounters an external entity declaration.

Delegate Methods 2011
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

- (void)parser:(NSXMLParser *)parser foundExternalEntityDeclarationWithName:(NSString
 *)entityName publicID:(NSString *)publicID systemID:(NSString *)systemID

Parameters
parser

An NSXMLParser object parsing XML.

entityName
A string that is the name of an entity.

publicID
A string that specifies the public ID associated with entityName.

systemID
A string that specifies the system ID associated with entityName.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:foundInternalEntityDeclarationWithName:value: (page 2013)
– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
2014)
– parser:resolveExternalEntityName:systemID: (page 2015)

Declared In
NSXMLParser.h

parser:foundIgnorableWhitespace:
Reported by a parser object to provide its delegate with a string representing all or part of the ignorable
whitespace characters of the current element.

- (void)parser:(NSXMLParser *)parser foundIgnorableWhitespace:(NSString
*)whitespaceString

Parameters
parser

A parser object.

whitespaceString
A string representing all or part of the ignorable whitespace characters of the current element.

Discussion
All the whitespace characters of the element (including carriage returns, tabs, and new-line characters) may
not be provided through an individual invocation of this method. The parser may send the delegate several
parser:foundIgnorableWhitespace: messages to report the whitespace characters of an element. You
should append the characters in each invocation to the current accumulation of characters.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:foundCharacters: (page 2010)

2012 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

Declared In
NSXMLParser.h

parser:foundInternalEntityDeclarationWithName:value:
Sent by a parser object to the delegate when it encounters an internal entity declaration.

- (void)parser:(NSXMLParser *)parser foundInternalEntityDeclarationWithName:(NSString
 *)name value:(NSString *)value

Parameters
parser

An NSXMLParser object parsing XML.

name
A string that is the declared name of an internal entity.

value
A string that is the value of entity name.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 2011)
– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
2014)

Declared In
NSXMLParser.h

parser:foundNotationDeclarationWithName:publicID:systemID:
Sent by a parser object to its delegate when it encounters a notation declaration.

- (void)parser:(NSXMLParser *)parser foundNotationDeclarationWithName:(NSString
*)name publicID:(NSString *)publicID systemID:(NSString *)systemID

Parameters
parser

An NSXMLParser object parsing XML.

name
A string that is the name of the notation.

publicID
A string specifying the public ID associated with the notation name.

systemID
A string specifying the system ID associated with the notation name.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSXMLParser.h

Delegate Methods 2013
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

parser:foundProcessingInstructionWithTarget:data:
Sent by a parser object to its delegate when it encounters a processing instruction.

- (void)parser:(NSXMLParser *)parser foundProcessingInstructionWithTarget:(NSString
 *)target data:(NSString *)data

Parameters
parser

A parser object.

target
A string representing the target of a processing instruction.

data
A string representing the data for a processing instruction.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSXMLParser.h

parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName:
Sent by a parser object to its delegate when it encounters an unparsed entity declaration.

- (void)parser:(NSXMLParser *)parser foundUnparsedEntityDeclarationWithName:(NSString
 *)name publicID:(NSString *)publicID systemID:(NSString *)systemID
notationName:(NSString *)notationName

Parameters
parser

An NSXMLParser object parsing XML.

name
A string that is the name of the unparsed entity in the declaration.

publicID
A string specifying the public ID associated with the entity name.

systemID
A string specifying the system ID associated with the entity name.

notationName
A string specifying a notation of the declaration of entity name.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 2011)
– parser:foundInternalEntityDeclarationWithName:value: (page 2013)
– parser:resolveExternalEntityName:systemID: (page 2015)

Declared In
NSXMLParser.h

2014 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

parser:parseErrorOccurred:
Sent by a parser object to its delegate when it encounters a fatal error.

- (void)parser:(NSXMLParser *)parser parseErrorOccurred:(NSError *)parseError

Parameters
parser

A parser object.

parseError
An NSError object describing the parsing error that occurred.

Discussion
When this method is invoked, parsing is stopped. For further information about the error, you can query
parseError or you can send the receiver a parserError (page 2003) message. You can also send the parser
lineNumber (page 2002) andcolumnNumber (page 2000) messages to further isolate where the error occurred.
Typically you implement this method to display information about the error to the user.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:validationErrorOccurred: (page 2016)

Declared In
NSXMLParser.h

parser:resolveExternalEntityName:systemID:
Sent by a parser object to its delegate when it encounters a given external entity with a specific system ID.

- (NSData *)parser:(NSXMLParser *)parser resolveExternalEntityName:(NSString
*)entityName systemID:(NSString *)systemID

Parameters
parser

A parser object.

entityName
A string that specifies the external name of an entity.

systemID
A string that specifies the system ID for the external entity.

Return Value
An NSData object that contains the resolution of the given external entity.

Discussion
The delegate can resolve the external entity (for example, locating and reading an externally declared DTD)
and provide the result to the parser object as an NSData object.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 2011)

Delegate Methods 2015
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
2014)

Declared In
NSXMLParser.h

parser:validationErrorOccurred:
Sent by a parser object to its delegate when it encounters a fatal validation error. NSXMLParser currently
does not invoke this method and does not perform validation.

- (void)parser:(NSXMLParser *)parser validationErrorOccurred:(NSError *)validError

Parameters
parser

A parser object.

validError
An NSError object describing the validation error that occurred.

Discussion
If you want to validate an XML document, use the validation features of the NSXMLDocument class.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parser:parseErrorOccurred: (page 2015)

Declared In
NSXMLParser.h

parserDidEndDocument:
Sent by the parser object to the delegate when it has successfully completed parsing.

- (void)parserDidEndDocument:(NSXMLParser *)parser

Parameters
parser

A parser object.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parserDidStartDocument: (page 2017)

Declared In
NSXMLParser.h

2016 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

parserDidStartDocument:
Sent by the parser object to the delegate when it begins parsing a document.

- (void)parserDidStartDocument:(NSXMLParser *)parser

Parameters
parser

A parser object.

Availability
Available in Mac OS X v10.3 and later.

See Also
– parserDidEndDocument: (page 2016)

Declared In
NSXMLParser.h

Constants

NSXMLParserErrorDomain
This constant defines the NSXMLParser error domain.

NSString * const NSXMLParserErrorDomain

Constants
NSXMLParserErrorDomain

Indicates an error in XML parsing.

Used by NSError.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

Declared In
NSXMLParser.h

NSXMLParserError
A type defined for the contants listed in “Parser Error Constants” (page 2018).

typedef NSInteger NSXMLParserError;

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSXMLParser.h

Constants 2017
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

Parser Error Constants
The following error types are defined by NSXMLParser.

2018 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

typedef enum {
 NSXMLParserInternalError = 1,
 NSXMLParserOutOfMemoryError = 2,
 NSXMLParserDocumentStartError = 3,
 NSXMLParserEmptyDocumentError = 4,
 NSXMLParserPrematureDocumentEndError = 5,
 NSXMLParserInvalidHexCharacterRefError = 6,
 NSXMLParserInvalidDecimalCharacterRefError = 7,
 NSXMLParserInvalidCharacterRefError = 8,
 NSXMLParserInvalidCharacterError = 9,
 NSXMLParserCharacterRefAtEOFError = 10,
 NSXMLParserCharacterRefInPrologError = 11,
 NSXMLParserCharacterRefInEpilogError = 12,
 NSXMLParserCharacterRefInDTDError = 13,
 NSXMLParserEntityRefAtEOFError = 14,
 NSXMLParserEntityRefInPrologError = 15,
 NSXMLParserEntityRefInEpilogError = 16,
 NSXMLParserEntityRefInDTDError = 17,
 NSXMLParserParsedEntityRefAtEOFError = 18,
 NSXMLParserParsedEntityRefInPrologError = 19,
 NSXMLParserParsedEntityRefInEpilogError = 20,
 NSXMLParserParsedEntityRefInInternalSubsetError = 21,
 NSXMLParserEntityReferenceWithoutNameError = 22,
 NSXMLParserEntityReferenceMissingSemiError = 23,
 NSXMLParserParsedEntityRefNoNameError = 24,
 NSXMLParserParsedEntityRefMissingSemiError = 25,
 NSXMLParserUndeclaredEntityError = 26,
 NSXMLParserUnparsedEntityError = 28,
 NSXMLParserEntityIsExternalError = 29,
 NSXMLParserEntityIsParameterError = 30,
 NSXMLParserUnknownEncodingError = 31,
 NSXMLParserEncodingNotSupportedError = 32,
 NSXMLParserStringNotStartedError = 33,
 NSXMLParserStringNotClosedError = 34,
 NSXMLParserNamespaceDeclarationError = 35,
 NSXMLParserEntityNotStartedError = 36,
 NSXMLParserEntityNotFinishedError = 37,
 NSXMLParserLessThanSymbolInAttributeError = 38,
 NSXMLParserAttributeNotStartedError = 39,
 NSXMLParserAttributeNotFinishedError = 40,
 NSXMLParserAttributeHasNoValueError = 41,
 NSXMLParserAttributeRedefinedError = 42,
 NSXMLParserLiteralNotStartedError = 43,
 NSXMLParserLiteralNotFinishedError = 44,
 NSXMLParserCommentNotFinishedError = 45,
 NSXMLParserProcessingInstructionNotStartedError = 46,
 NSXMLParserProcessingInstructionNotFinishedError = 47,
 NSXMLParserNotationNotStartedError = 48,
 NSXMLParserNotationNotFinishedError = 49,
 NSXMLParserAttributeListNotStartedError = 50,
 NSXMLParserAttributeListNotFinishedError = 51,
 NSXMLParserMixedContentDeclNotStartedError = 52,
 NSXMLParserMixedContentDeclNotFinishedError = 53,
 NSXMLParserElementContentDeclNotStartedError = 54,
 NSXMLParserElementContentDeclNotFinishedError = 55,
 NSXMLParserXMLDeclNotStartedError = 56,
 NSXMLParserXMLDeclNotFinishedError = 57,
 NSXMLParserConditionalSectionNotStartedError = 58,

Constants 2019
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

 NSXMLParserConditionalSectionNotFinishedError = 59,
 NSXMLParserExternalSubsetNotFinishedError = 60,
 NSXMLParserDOCTYPEDeclNotFinishedError = 61,
 NSXMLParserMisplacedCDATAEndStringError = 62,
 NSXMLParserCDATANotFinishedError = 63,
 NSXMLParserMisplacedXMLDeclarationError = 64,
 NSXMLParserSpaceRequiredError = 65,
 NSXMLParserSeparatorRequiredError = 66,
 NSXMLParserNMTOKENRequiredError = 67,
 NSXMLParserNAMERequiredError = 68,
 NSXMLParserPCDATARequiredError = 69,
 NSXMLParserURIRequiredError = 70,
 NSXMLParserPublicIdentifierRequiredError = 71,
 NSXMLParserLTRequiredError = 72,
 NSXMLParserGTRequiredError = 73,
 NSXMLParserLTSlashRequiredError = 74,
 NSXMLParserEqualExpectedError = 75,
 NSXMLParserTagNameMismatchError = 76,
 NSXMLParserUnfinishedTagError = 77,
 NSXMLParserStandaloneValueError = 78,
 NSXMLParserInvalidEncodingNameError = 79,
 NSXMLParserCommentContainsDoubleHyphenError = 80,
 NSXMLParserInvalidEncodingError = 81,
 NSXMLParserExternalStandaloneEntityError = 82,
 NSXMLParserInvalidConditionalSectionError = 83,
 NSXMLParserEntityValueRequiredError = 84,
 NSXMLParserNotWellBalancedError = 85,
 NSXMLParserExtraContentError = 86,
 NSXMLParserInvalidCharacterInEntityError = 87,
 NSXMLParserParsedEntityRefInInternalError = 88,
 NSXMLParserEntityRefLoopError = 89,
 NSXMLParserEntityBoundaryError = 90,
 NSXMLParserInvalidURIError = 91,
 NSXMLParserURIFragmentError = 92,
 NSXMLParserNoDTDError = 94,
 NSXMLParserDelegateAbortedParseError = 512
} NSXMLParserError;

Constants
NSXMLParserInternalError

The parser object encountered an internal error.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserOutOfMemoryError
The parser object ran out of memory.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserDocumentStartError
The parser object is unable to start parsing.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

2020 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

NSXMLParserEmptyDocumentError
The document is empty.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserPrematureDocumentEndError
The document ended unexpectedly.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidHexCharacterRefError
Invalid hexadecimal character reference encountered.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidDecimalCharacterRefError
Invalid decimal character reference encountered.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidCharacterRefError
Invalid character reference encountered.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidCharacterError
Invalid character encountered.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserCharacterRefAtEOFError
Target of character reference cannot be found.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserCharacterRefInPrologError
Invalid character found in the prolog.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserCharacterRefInEpilogError
Invalid character found in the epilog.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserCharacterRefInDTDError
Invalid character encountered in the DTD.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

Constants 2021
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

NSXMLParserEntityRefAtEOFError
Target of entity reference is not found.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityRefInPrologError
Invalid entity reference found in the prolog.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityRefInEpilogError
Invalid entity reference found in the epilog.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityRefInDTDError
Invalid entity reference found in the DTD.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefAtEOFError
Target of parsed entity reference is not found.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefInPrologError
Target of parsed entity reference is not found in prolog.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefInEpilogError
Target of parsed entity reference is not found in epilog.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefInInternalSubsetError
Target of parsed entity reference is not found in internal subset.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityReferenceWithoutNameError
Entity reference is without name.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityReferenceMissingSemiError
Entity reference is missing semicolon.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

2022 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

NSXMLParserParsedEntityRefNoNameError
Parsed entity reference is without an entity name.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefMissingSemiError
Parsed entity reference is missing semicolon.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserUndeclaredEntityError
Entity is not declared.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserUnparsedEntityError
Cannot parse entity.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityIsExternalError
Cannot parse external entity.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityIsParameterError
Entity is a parameter.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserUnknownEncodingError
Document encoding is unknown.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEncodingNotSupportedError
Document encoding is not supported.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserStringNotStartedError
String is not started.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserStringNotClosedError
String is not closed.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

Constants 2023
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

NSXMLParserNamespaceDeclarationError
Invalid namespace declaration encountered.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityNotStartedError
Entity is not started.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityNotFinishedError
Entity is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserLessThanSymbolInAttributeError
Angle bracket is used in attribute.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeNotStartedError
Attribute is not started.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeNotFinishedError
Attribute is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeHasNoValueError
Attribute doesn’t contain a value.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeRedefinedError
Attribute is redefined.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserLiteralNotStartedError
Literal is not started.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserLiteralNotFinishedError
Literal is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

2024 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

NSXMLParserCommentNotFinishedError
Comment is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserProcessingInstructionNotStartedError
Processing instruction is not started.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserProcessingInstructionNotFinishedError
Processing instruction is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserNotationNotStartedError
Notation is not started.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserNotationNotFinishedError
Notation is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeListNotStartedError
Attribute list is not started.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserAttributeListNotFinishedError
Attribute list is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserMixedContentDeclNotStartedError
Mixed content declaration is not started.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserMixedContentDeclNotFinishedError
Mixed content declaration is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserElementContentDeclNotStartedError
Element content declaration is not started.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

Constants 2025
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

NSXMLParserElementContentDeclNotFinishedError
Element content declaration is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserXMLDeclNotStartedError
XML declaration is not started.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserXMLDeclNotFinishedError
XML declaration is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserConditionalSectionNotStartedError
Conditional section is not started.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserConditionalSectionNotFinishedError
Conditional section is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserExternalSubsetNotFinishedError
External subset is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserDOCTYPEDeclNotFinishedError
Document type declaration is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserMisplacedCDATAEndStringError
Misplaced CDATA end string.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserCDATANotFinishedError
CDATA block is not finished.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserMisplacedXMLDeclarationError
Misplaced XML declaration.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

2026 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

NSXMLParserSpaceRequiredError
Space is required.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserSeparatorRequiredError
Separator is required.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserNMTOKENRequiredError
Name token is required.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserNAMERequiredError
Name is required.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserPCDATARequiredError
CDATA is required.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserURIRequiredError
URI is required.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserPublicIdentifierRequiredError
Public identifier is required.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserLTRequiredError
Left angle bracket is required.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserGTRequiredError
Right angle bracket is required.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserLTSlashRequiredError
Left angle bracket slash is required.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

Constants 2027
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

NSXMLParserEqualExpectedError
Equal sign expected.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserTagNameMismatchError
Tag name mismatch.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserUnfinishedTagError
Unfinished tag found.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserStandaloneValueError
Standalone value found.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidEncodingNameError
Invalid encoding name found.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserCommentContainsDoubleHyphenError
Comment contains double hyphen.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidEncodingError
Invalid encoding.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserExternalStandaloneEntityError
External standalone entity.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidConditionalSectionError
Invalid conditional section.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityValueRequiredError
Entity value is required.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

2028 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

NSXMLParserNotWellBalancedError
Document is not well balanced.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserExtraContentError
Error in content found.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidCharacterInEntityError
Invalid character in entity found.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserParsedEntityRefInInternalError
Internal error in parsed entity reference found.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityRefLoopError
Entity reference loop encountered.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserEntityBoundaryError
Entity boundary error.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserInvalidURIError
Invalid URI specified.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserURIFragmentError
URI fragment.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserNoDTDError
Missing DTD.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

NSXMLParserDelegateAbortedParseError
Delegate aborted parse.

Available in Mac OS X v10.3 and later.

Declared in NSXMLParser.h.

Declared In
NSXMLParser.h

Constants 2029
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

2030 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 168

NSXMLParser Class Reference

2031
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART II

Protocols

2032
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART II

Protocols

Adopted by Various Cocoa classes

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSObject.h

Companion guide Archives and Serializations Programming Guide for Cocoa

Related sample code Squiggles

Overview

The NSCoding protocol declares the two methods that a class must implement so that instances of that class
can be encoded and decoded. This capability provides the basis for archiving (where objects and other
structures are stored on disk) and distribution (where objects are copied to different address spaces).

In keeping with object-oriented design principles, an object being encoded or decoded is responsible for
encoding and decoding its instance variables. A coder instructs the object to do so by invoking
encodeWithCoder: (page 2034) orinitWithCoder: (page 2034).encodeWithCoder: (page 2034) instructs
the object to encode its instance variables to the coder provided; an object can receive this method any
number of times. initWithCoder: (page 2034) instructs the object to initialize itself from data in the coder
provided; as such, it replaces any other initialization method and is sent only once per object. Any object
class that should be codable must adopt the NSCoding protocol and implement its methods.

It is important to consider the possible types of archiving that a coder supports. On Mac OS X version 10.2
and later, keyed archiving is preferred. You may, however, need to support classic archiving. For details, see
Archives and Serializations Programming Guide for Cocoa.

Tasks

Initializing with a Coder

– initWithCoder: (page 2034)
Returns an object initialized from data in a given unarchiver.

Overview 2033
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 169

NSCoding Protocol Reference

Encoding with a Coder

– encodeWithCoder: (page 2034)
Encodes the receiver using a given archiver.

Instance Methods

encodeWithCoder:
Encodes the receiver using a given archiver.

- (void)encodeWithCoder:(NSCoder *)encoder

Parameters
encoder

An archiver object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

initWithCoder:
Returns an object initialized from data in a given unarchiver.

- (id)initWithCoder:(NSCoder *)decoder

Parameters
decoder

An unarchiver object.

Return Value
self, initialized using the data in decoder.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

2034 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 169

NSCoding Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSScriptWhoseTests.h

Companion guide Cocoa Scripting Guide

Overview

This informal protocol defines a set of default comparison methods useful for the comparisons in
NSSpecifierTest.

If you have scriptable objects that need to perform comparisons for scripting purposes, you may need to
implement some of the methods declared inNSScriptingComparisonMethods. The default implementation
provided for many of these methods by NSObject is appropriate for objects that implement a single
comparison method whose selector, signature, and description match the following:

- (NSComparisonResult)compare:(id)object;

This method should return NSOrderedAscending if the receiver is less than object, NSOrderedDescending
if the receiver is greater than object, and NSOrderedSame if the receiver and object are equal. For example,
NSString does not implement most of the methods declared in this informal protocol, but NSString objects
still handle messages conforming to this protocol properly because NSString implements a compare:
method that meets the necessary requirements. Cocoa also includes appropriate compare: method
implementations for the NSDate, NSDecimalNumber, and NSValue classes.

Tasks

Performing Comparisons

– doesContain: (page 2036)
Returns a Boolean value that indicates whether the receiver contains a given object.

– isCaseInsensitiveLike: (page 2036)
Returns a Boolean value that indicates whether receiver is considered to be “like” a given string when
the case of characters in the receiver is ignored.

– isEqualTo: (page 2037)
Returns a Boolean value that indicates whether the receiver is equal to another given object.

– isGreaterThan: (page 2037)
Returns a Boolean value that indicates whether the receiver is greater than another given object.

Overview 2035
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 170

NSComparisonMethods Protocol Reference
(informal protocol)

– isGreaterThanOrEqualTo: (page 2038)
Returns a Boolean value that indicates whether the receiver is greater than or equal to another given
object.

– isLessThan: (page 2039)
Returns a Boolean value that indicates whether the receiver is less than another given object.

– isLessThanOrEqualTo: (page 2039)
Returns a Boolean value that indicates whether the receiver is less than or equal to another given
object.

– isLike: (page 2040)
Returns a Boolean value that indicates whether the receiver is "like" another given object.

– isNotEqualTo: (page 2040)
Returns a Boolean value that indicates whether the receiver is not equal to another given object.

Instance Methods

doesContain:
Returns a Boolean value that indicates whether the receiver contains a given object.

- (BOOL)doesContain:(id)object

Parameters
object

The object to search for in the receiver.

Return Value
YES if the receiver contains object, otherwise NO.

Discussion
Currently, doesContain: messages are never sent to any object from within Cocoa itself.

The default implementation for this method provided by NSObject returns YES if the receiver is actually an
NSArray object and an indexOfObjectIdenticalTo: (page 124) message sent to the same object would
return something other than NSNotFound.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

isCaseInsensitiveLike:
Returns a Boolean value that indicates whether receiver is considered to be “like” a given string when the
case of characters in the receiver is ignored.

- (BOOL)isCaseInsensitiveLike:(NSString *)aString

2036 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 170

NSComparisonMethods Protocol Reference

Parameters
aString

The string with which to compare the receiver.

Return Value
YES if the receiver is considered to be “like” aString when the case of characters in the receiver is ignored,
otherwise NO.

Discussion
Currently, isCaseInsensitiveLike: messages are never sent to any object from within Cocoa itself.

The default implementation for this method provided by NSObject returns NO. NSString also provides an
implementation of this method, which returns YES if the receiver matches a pattern described by aString,
ignoring the case of the characters in the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

isEqualTo:
Returns a Boolean value that indicates whether the receiver is equal to another given object.

- (BOOL)isEqualTo:(id)object

Parameters
object

The object with which to compare the receiver.

Return Value
YES if the receiver is equal to object, otherwise NO. In effect returns NO if receiver is nil.

Discussion
During the evaluation of an NSWhoseSpecifier object that contains a test whose operator is
NSEqualToComparison, an isEqualTo:message may be sent to each potentially specified object, if neither
the potentially specified object nor the object being tested against implements a
scriptingIsEqualTo: (page 2115) method.

The default implementation for this method provided by NSObject returns YES if an isEqualTo: message
sent to the same object would return YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

isGreaterThan:
Returns a Boolean value that indicates whether the receiver is greater than another given object.

- (BOOL)isGreaterThan:(id)object

Instance Methods 2037
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 170

NSComparisonMethods Protocol Reference

Parameters
object

The object with which to compare the receiver.

Return Value
YES if the receiver is greater than object, otherwise NO.

Discussion
During the evaluation of an NSWhoseSpecifier object that contains a test whose operator is
NSGreaterThanComparison, an isGreaterThan: message may be sent to each potentially specified
object, if the potentially specified object does not implement a scriptingIsGreaterThan: (page 2115)
method and the object being tested against does not implement ascriptingIsLessThanOrEqualTo: (page
2116) method.

The default implementation for this method provided by NSObject returns YES if a compare:message sent
to the same object would return NSOrderedDescending.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

isGreaterThanOrEqualTo:
Returns a Boolean value that indicates whether the receiver is greater than or equal to another given object.

- (BOOL)isGreaterThanOrEqualTo:(id)object

Parameters
object

The object with which to compare the receiver.

Return Value
YES if the receiver is greater than or equal to object, otherwise NO.

Discussion
During the evaluation of an NSWhoseSpecifier object that contains a test whose operator is
NSGreaterThanOrEqualToComparison, anisGreaterThanOrEqualTo: message may be sent to each
potentially specified object, if the potentially specified object does not implement a
scriptingIsGreaterThanOrEqualTo: (page 2115) method and the object being tested against does not
implement a scriptingIsLessThan: (page 2116) method.

The default implementation for this method provided by NSObject returns YES if a compare:message sent
to the same object would return NSOrderedSame or NSOrderedDescending.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

2038 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 170

NSComparisonMethods Protocol Reference

isLessThan:
Returns a Boolean value that indicates whether the receiver is less than another given object.

- (BOOL)isLessThan:(id)object

Parameters
object

The object with which to compare the receiver.

Return Value
YES if the receiver is less than object, otherwise NO.

Discussion
During the evaluation of an NSWhoseSpecifier object that contains a test whose operator is
NSLessThanComparison, an isLessThan: message may be sent to each potentially specified object, if
the potentially specified object does not implement a scriptingIsLessThan: (page 2116) method and the
object being tested against does not implement a scriptingIsGreaterThanOrEqualTo: (page 2115)
method.

The default implementation for this method provided by NSObject method returns YES if a compare:
message sent to the same object would return NSOrderedAscending.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

isLessThanOrEqualTo:
Returns a Boolean value that indicates whether the receiver is less than or equal to another given object.

- (BOOL)isLessThanOrEqualTo:(id)object

Parameters
object

The object with which to compare the receiver.

Return Value
YES if the receiver is less than or equal to object, otherwise NO.

Discussion
During the evaluation of an NSWhoseSpecifier object that contains a test whose operator is
NSLessThanOrEqualToComparison, an isLessThanOrEqualTo:message may be sent to each potentially
specified object, if the potentially specified object does not implement a
scriptingIsLessThanOrEqualTo: (page 2116) method and the object being tested against does not
implement a scriptingIsGreaterThan: (page 2115) method.

The default implementation for this method provided by NSObject method returns YES if a compare:
message sent to the same object would return NSOrderedAscending or NSOrderedSame.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2039
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 170

NSComparisonMethods Protocol Reference

Declared In
NSScriptWhoseTests.h

isLike:
Returns a Boolean value that indicates whether the receiver is "like" another given object.

- (BOOL)isLike:(NSString *)object

Parameters
object

The object with which to compare the receiver.

Return Value
YES if the receiver is considered to be “like” object, otherwise NO.

Discussion
Currently, isLike: messages are never sent to any object from within Cocoa itself.

The default implementation for this method provided by NSObject method returns NO. NSString also
provides an implementation of this method, which returns YES if the receiver matches a pattern described
by object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

isNotEqualTo:
Returns a Boolean value that indicates whether the receiver is not equal to another given object.

- (BOOL)isNotEqualTo:(id)object

Parameters
object

The object with which to compare the receiver.

Return Value
YES if the receiver is not equal to object, otherwise NO.

Discussion
Currently, isNotEqualTo: messages are never sent to any object from within Cocoa itself.

The default implementation for this method provided by NSObject method returns YES if an isEqual:
message sent to the same object would return NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

2040 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 170

NSComparisonMethods Protocol Reference

Adopted by Various Cocoa classes

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSObject.h

Companion guide Memory Management Programming Guide for Cocoa

Overview

The NSCopying protocol declares a method for providing functional copies of an object. The exact meaning
of “copy” can vary from class to class, but a copy must be a functionally independent object with values
identical to the original at the time the copy was made. A copy produced with NSCopying is implicitly
retained by the sender, who is responsible for releasing it.

NSCopying declares one method, copyWithZone: (page 2042), but copying is commonly invoked with the
convenience method copy. The copymethod is defined for all objects inheriting from NSObject and simply
invokes copyWithZone: (page 2042) with the default zone.

Your options for implementing this protocol are as follows:

 ■ Implement NSCopying using alloc (page 1152) and init... in classes that don’t inherit
copyWithZone: (page 2042).

 ■ Implement NSCopying by invoking the superclass’s copyWithZone: (page 2042) when NSCopying
behavior is inherited. If the superclass implementation might use the NSCopyObject (page 2175) function,
make explicit assignments to pointer instance variables for retained objects.

 ■ Implement NSCopying by retaining the original instead of creating a new copy when the class and its
contents are immutable.

If a subclass inherits NSCopying from its superclass and declares additional instance variables, the subclass
has to override copyWithZone: (page 2042) to properly handle its own instance variables, invoking the
superclass’s implementation first.

Overview 2041
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 171

NSCopying Protocol Reference

Tasks

Copying

– copyWithZone: (page 2042)
Returns a new instance that’s a copy of the receiver.

Instance Methods

copyWithZone:
Returns a new instance that’s a copy of the receiver.

- (id)copyWithZone:(NSZone *)zone

Parameters
zone

The zone identifies an area of memory from which to allocate for the new instance. If zone is NULL,
the new instance is allocated from the default zone, which is returned from the function
NSDefaultMallocZone.

Discussion
The returned object is implicitly retained by the sender, who is responsible for releasing it. The copy returned
is immutable if the consideration “immutable vs. mutable” applies to the receiving object; otherwise the
exact nature of the copy is determined by the class.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mutableCopyWithZone: (page 2094) (NSMutableCopying protocol)
– copy (page 1172) (NSObject class)

Declared In
NSObject.h

2042 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 171

NSCopying Protocol Reference

Adopted by NSDecimalNumberHandler

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSDecimalNumber.h

Companion guide Number and Value Programming Topics for Cocoa

Overview

The NSDecimalBehaviors protocol declares three methods that control the discretionary aspects of working
with NSDecimalNumber objects.

Thescale (page 2045) androundingMode (page 2044) methods determine the precision ofNSDecimalNumber’s
return values and the way in which those values should be rounded to fit that precision. The
exceptionDuringOperation:error:leftOperand:rightOperand: (page 2044) method determines the
way in which an NSDecimalNumber object should handle different calculation errors.

For an example of a class that adopts the NSDecimalBehaviors protocol, see the specification for
NSDecimalNumberHandler.

Tasks

Rounding

– roundingMode (page 2044)
Returns the way that NSDecimalNumber's decimalNumberBy...methods round their return values.

– scale (page 2045)
Returns the number of digits allowed after the decimal separator.

Handling Errors

– exceptionDuringOperation:error:leftOperand:rightOperand: (page 2044)
Specifies what an NSDecimalNumber object will do when it encounters an error.

Overview 2043
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 172

NSDecimalNumberBehaviors Protocol
Reference

Instance Methods

exceptionDuringOperation:error:leftOperand:rightOperand:
Specifies what an NSDecimalNumber object will do when it encounters an error.

- (NSDecimalNumber *)exceptionDuringOperation:(SEL)method
error:(NSCalculationError)error leftOperand:(NSDecimalNumber *)leftOperand
rightOperand:(NSDecimalNumber *)rightOperand

Parameters
method

The method that was being executed when the error occurred.

error
The type of error that was generated.

leftOperand
The left operand.

rightOperand
The right operand.

Discussion
There are four possible values for error, described in NSCalculationError (page 2047). The first three have to
do with limits on the ability of NSDecimalNumber to represent decimal numbers. An NSDecimalNumber
object can represent any number that can be expressed as mantissa x 10^exponent, where mantissa is a
decimal integer up to 38 digits long, and exponent is between –256 and 256. The fourth results from the
caller trying to divide by 0.

In implementing exceptionDuringOperation:error:leftOperand:rightOperand:, you can handle
each of these errors in several ways:

 ■ Raise an exception. For an explanation of exceptions, see Exception Programming Topics for Cocoa.

 ■ Return nil. The calling method will return its value as though no error had occurred. If error is
NSCalculationLossOfPrecision, method will return an imprecise value—that is, one constrained
to 38 significant digits. If error is NSCalculationUnderflow or NSCalculationOverflow, method
will return NSDecimalNumber's notANumber. You shouldn’t return nil if error is NSDivideByZero.

 ■ Correct the error and return a valid NSDecimalNumber object. The calling method will use this as its
own return value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

roundingMode
Returns the way that NSDecimalNumber's decimalNumberBy... methods round their return values.

- (NSRoundingMode)roundingMode

2044 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 172

NSDecimalNumberBehaviors Protocol Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

scale
Returns the number of digits allowed after the decimal separator.

- (short)scale

Return Value
The number of digits allowed after the decimal separator.

Discussion
This method limits the precision of the values returned by NSDecimalNumber’s decimalNumberBy...
methods. If scale returns a negative value, it affects the digits before the decimal separator as well. If scale
returns NSDecimalNoScale, the number of digits is unlimited.

Assuming thatroundingMode (page 2044) returnsNSRoundPlain, different values ofscalehave the following
effects on the number 123.456:

Return ValueScale

123.456NSDecimalNoScale

123.452

1230

100–2

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimalNumber.h

Constants

NSRoundingMode
These constants specify rounding behaviors.

Constants 2045
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 172

NSDecimalNumberBehaviors Protocol Reference

typedef enum {
 NSRoundPlain,
 NSRoundDown,
 NSRoundUp,
 NSRoundBankers
} NSRoundingMode;

Constants
NSRoundPlain

Round to the closest possible return value; when caught halfway between two positive numbers,
round up; when caught between two negative numbers, round down.

Available in Mac OS X v10.0 and later.

Declared in NSDecimal.h.

NSRoundDown
Round return values down.

Available in Mac OS X v10.0 and later.

Declared in NSDecimal.h.

NSRoundUp
Round return values up.

Available in Mac OS X v10.0 and later.

Declared in NSDecimal.h.

NSRoundBankers
Round to the closest possible return value; when halfway between two possibilities, return the
possibility whose last digit is even.

In practice, this means that, over the long run, numbers will be rounded up as often as they are
rounded down; there will be no systematic bias.

Available in Mac OS X v10.0 and later.

Declared in NSDecimal.h.

Discussion
The rounding mode matters only if the scale (page 2045) method sets a limit on the precision of
NSDecimalNumber return values. It has no effect if scale returns NSDecimalNoScale. Assuming that
scale (page 2045) returns 1, the rounding mode has the following effects on various original values:

NSRoundBankersNSRoundUpNSRoundDownNSRoundPlainOriginal Value

1.21.31.21.21.24

1.31.31.21.31.26

1.21.31.21.31.25

1.41.41.31.41.35

–1.4–1.3–1.4–1.4–1.35

Availability
Available in Mac OS X version 10.0 and later.

Declared In
NSDecimal.h

2046 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 172

NSDecimalNumberBehaviors Protocol Reference

NSCalculationError
Calculation error constants used to describe an error in
exceptionDuringOperation:error:leftOperand:rightOperand: (page 2044).

typedef enum {
 NSCalculationNoError = 0,
 NSCalculationLossOfPrecision,
 NSCalculationUnderflow,
 NSCalculationOverflow,
 NSCalculationDivideByZero
} NSCalculationError;

Constants
NSCalculationNoError

No error occurred.

Available in Mac OS X v10.0 and later.

Declared in NSDecimal.h.

NSCalculationLossOfPrecision
The number can’t be represented in 38 significant digits.

Available in Mac OS X v10.0 and later.

Declared in NSDecimal.h.

NSCalculationOverflow
The number is too large to represent.

Available in Mac OS X v10.0 and later.

Declared in NSDecimal.h.

NSCalculationUnderflow
The number is too small to represent.

Available in Mac OS X v10.0 and later.

Declared in NSDecimal.h.

NSCalculationDivideByZero
The caller tried to divide by 0.

Available in Mac OS X v10.0 and later.

Declared in NSDecimal.h.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
NSDecimal.h

Constants 2047
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 172

NSDecimalNumberBehaviors Protocol Reference

2048 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 172

NSDecimalNumberBehaviors Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSErrorRecoveryAttempting.h

Overview

The NSErrorRecoveryAttempting informal protocol provides methods that allow your application to
attempt to recover from an error. These methods are invoked when an NSError object is returned that
specifies the implementing object as the error recoveryAttempter and the user has selected one of the
error’s localized recovery options.

Which method is invoked is dependent on how the error is presented to the user. If the error is presented
in a document-modal sheet,
attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo: (page
2050) is invoked. If the error is presented in an application-modal dialog,
attemptRecoveryFromError:optionIndex: (page 2049) is invoked.

Tasks

Attempting Recovery From Errors

– attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo: (page
2050)

Implemented to attempt a recovery from an error noted in an document-modal sheet.

– attemptRecoveryFromError:optionIndex: (page 2049)
Implemented to attempt a recovery from an error noted in an application-modal dialog.

Instance Methods

attemptRecoveryFromError:optionIndex:
Implemented to attempt a recovery from an error noted in an application-modal dialog.

- (BOOL)attemptRecoveryFromError:(NSError *)error
optionIndex:(NSUInteger)recoveryOptionIndex

Overview 2049
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 173

NSErrorRecoveryAttempting Protocol
Reference
(informal protocol)

Parameters
error

An NSError object that describes the error, including error recovery options.

recoveryOptionIndex
The index of the user selected recovery option in error's localized recovery array.

Return Value
YES if the error recovery was completed successfully, NO otherwise.

Discussion
Invoked when an error alert is been presented to the user in an application-modal dialog, and the user has
selected an error recovery option specified by error.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSError.h

attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo:
Implemented to attempt a recovery from an error noted in an document-modal sheet.

- (void)attemptRecoveryFromError:(NSError *)error
optionIndex:(NSUInteger)recoveryOptionIndex delegate:(id)delegate
didRecoverSelector:(SEL)didRecoverSelector contextInfo:(void *)contextInfo

Parameters
error

An NSError object that describes the error, including error recovery options.

recoveryOptionIndex
The index of the user selected recovery option in error’s localized recovery array.

delegate
An object that is the modal delegate.

didRecoverSelector
A selector identifying the method implemented by the modal delegate.

contextInfo
Arbitrary data associated with the attempt at error recovery, to be passed to delegate in
didRecoverSelector.

Discussion
Invoked when an error alert is presented to the user in a document-modal sheet, and the user has selected
an error recovery option specified by error. After recovery is attempted, your implementation should send
delegate the message specified in didRecoverSelector, passing the provided contextInfo.

The didRecoverSelector should have the following signature:

- (void)didPresentErrorWithRecovery:(BOOL)didRecover contextInfo:(void
*)contextInfo;

where didRecover is YES if the error recovery attempt was successful; otherwise it is NO.

2050 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 173

NSErrorRecoveryAttempting Protocol Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSError.h

Instance Methods 2051
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 173

NSErrorRecoveryAttempting Protocol Reference

2052 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 173

NSErrorRecoveryAttempting Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.5 and later.

Declared in Foundation/NSEnumerator.h

Companion guide The Objective-C 2.0 Programming Language

Overview

The fast enumeration protocol NSFastEnumeration must be adopted and implemented by objects used
in conjunction with the for language construct used in conjunction with Cocoa objects.

The abstract class NSEnumerator provides a convenience implementation that uses nextObject (page
558) to return items one at a time. For more details, see Fast Enumeration.

Tasks

Enumeration

– countByEnumeratingWithState:objects:count: (page 2053)
Returns by reference a C array of objects over which the sender should iterate, and as the return value
the number of objects in the array.

Instance Methods

countByEnumeratingWithState:objects:count:
Returns by reference a C array of objects over which the sender should iterate, and as the return value the
number of objects in the array.

- (NSUInteger)countByEnumeratingWithState:(NSFastEnumerationState *)state
objects:(id *)stackbuf
count:(NSUInteger)len

Overview 2053
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 174

NSFastEnumeration Protocol Reference

Parameters
state

Context information that is used in the enumeration to, in addition to other possibilities, ensure that
the collection has not been mutated.

stackbuf
A C array of objects over which the sender is to iterate.

len
The maximum number of objects to return in stackbuf.

Return Value
The number of objects returned in stackbuf. Returns 0 when the iteration is finished.

Discussion
The state structure is assumed to be of stack local memory and, from a garbage collection perspective, does
not require write-barriers on stores, so you can recast the passed in state structure to one more suitable for
your iteration.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSEnumerator.h

Constants

NSFastEnumerationState
This defines the structure used as contextual information in the NSFastEnumeration protocol.

typedef struct {
 unsigned long state;
 id *itemsPtr;
 unsigned long *mutationsPtr;
 unsigned long extra[5];
} NSFastEnumerationState;

Fields
state

Arbitrary state information used by the iterator. Typically this is set to 0 at the beginning of the
iteration.

itemsPtr
A C array of objects.

mutationsPtr
Arbitrary state information used to detect whether the collection has been mutated.

extra
A C array that you can use to hold returned values.

Discussion
For more information, see countByEnumeratingWithState:objects:count: (page 2053).

2054 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 174

NSFastEnumeration Protocol Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSEnumerator.h

Constants 2055
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 174

NSFastEnumeration Protocol Reference

2056 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 174

NSFastEnumeration Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSKeyValueCoding.h

Companion guide Key-Value Coding Programming Guide

Overview

The NSKeyValueCoding informal protocol defines a mechanism by which you can access the properties of
an object indirectly by name (or key), rather than directly through invocation of an accessor method or as
instance variables. Thus, all of an object’s properties can be accessed in a consistent manner.

The basic methods for accessing an object’s values are setValue:forKey: (page 2064), which sets the value
for the property identified by the specified key, and valueForKey: (page 2070), which returns the value for
the property identified by the specified key. The default implementation uses the accessor methods normally
implemented by objects (or to access instance variables directly if need be).

Tasks

Getting Values

– valueForKey: (page 2070)
Returns the value for the property identified by a given key.

– valueForKeyPath: (page 2071)
Returns the value for the derived property identified by a given key path.

– dictionaryWithValuesForKeys: (page 2060)
Returns a dictionary containing the property values identified by each of the keys in a given array.

– valueForUndefinedKey: (page 2071)
Invoked by valueForKey: (page 2070) when it finds no property corresponding to a given key.

– mutableArrayValueForKey: (page 2061)
Returns a mutable array proxy that provides read-write access to an ordered to-many relationship
specified by a given key.

– mutableArrayValueForKeyPath: (page 2062)
Returns a mutable array that provides read-write access to the ordered to-many relationship specified
by a given key path.

Overview 2057
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference
(informal protocol)

– mutableSetValueForKey: (page 2062)
Returns a mutable set proxy that provides read-write access to the unordered to-many relationship
specified by a given key.

– mutableSetValueForKeyPath: (page 2063)
Returns a mutable set that provides read-write access to the unordered to-many relationship specified
by a given key path.

Setting Values

– setValue:forKeyPath: (page 2065)
Sets the value for the property identified by a given key path to a given value.

– setValuesForKeysWithDictionary: (page 2066)
Sets properties of the receiver with values from a given dictionary, using its keys to identify the
properties.

– setNilValueForKey: (page 2064)
Invoked by setValue:forKey: (page 2064) when it’s given a nil value for a scalar value (such as an
int or float).

– setValue:forKey: (page 2064)
Sets the property of the receiver specified by a given key to a given value.

– setValue:forUndefinedKey: (page 2065)
Invoked by setValue:forKey: (page 2064) when it finds no property for a given key.

Changing Default Behavior

+ accessInstanceVariablesDirectly (page 2059)
Returns a Boolean value that indicates whether the key-value coding methods should access the
corresponding instance variable directly on finding no accessor method for a property.

Validation

– validateValue:forKey:error: (page 2069)
Returns a Boolean value that indicates whether the value specified by a given pointer is valid for the
property identified by a given key.

– validateValue:forKeyPath:error: (page 2069)
Returns a Boolean value that indicates whether the value specified by a given pointer is valid for a
given key path relative to the receiver.

Deprecated Methods

– handleQueryWithUnboundKey: (page 2061) Deprecated in Mac OS X v10.3
Invoked by valueForKey: (page 2070) when it finds no property corresponding to key. (Deprecated.
Use valueForUndefinedKey: (page 2071) instead.)

2058 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

– handleTakeValue:forUnboundKey: (page 2061) Deprecated in Mac OS X v10.3
Invoked by takeValue:forKey: (page 2068) when it finds no property binding for key. (Deprecated.
Use setValue:forUndefinedKey: (page 2065) instead.)

– takeValue:forKey: (page 2068) Deprecated in Mac OS X v10.3
Sets the value for the property identified by key to value. (Deprecated. Use setValue:forKey: (page
2064) instead.)

– takeValue:forKeyPath: (page 2068) Deprecated in Mac OS X v10.3
Sets the value for the property identified by keyPath to value. (Deprecated. Use
setValue:forKeyPath: (page 2065) instead.)

– takeValuesFromDictionary: (page 2068) Deprecated in Mac OS X v10.3
Sets properties of the receiver with values from a given dictionary, using its keys to identify the
properties (Deprecated. Use setValuesForKeysWithDictionary: (page 2066) instead.)

– unableToSetNilForKey: (page 2068) Deprecated in Mac OS X v10.3
Invoked if key is represented by a scalar attribute. (Deprecated. Use setNilValueForKey: (page
2064) instead.)

– valuesForKeys: (page 2072) Deprecated in Mac OS X v10.3
Returns a dictionary containing as keys the property names in keys, with corresponding values being
the corresponding property values. (Deprecated. Use dictionaryWithValuesForKeys: (page 2060)
instead.)

+ useStoredAccessor (page 2060) Deprecated in Mac OS X v10.4
Returns YES if the stored value methods storedValueForKey: (page 2066) and
takeStoredValue:forKey: (page 2067) should use private accessor methods in preference to public
accessors. (Deprecated. This method has no direct replacement, although see
accessInstanceVariablesDirectly (page 2059).)

– storedValueForKey: (page 2066) Deprecated in Mac OS X v10.4
Returns the property identified by a given key. (Deprecated. If you are using the NSManagedObject
class, use primitiveValueForKey: instead.)

– takeStoredValue:forKey: (page 2067) Deprecated in Mac OS X v10.4
Sets the value of the property identified by a given key. (Deprecated. If you are using the
NSManagedObject class, use setPrimitiveValue:forKey: instead.)

Class Methods

accessInstanceVariablesDirectly
Returns a Boolean value that indicates whether the key-value coding methods should access the corresponding
instance variable directly on finding no accessor method for a property.

+ (BOOL)accessInstanceVariablesDirectly

Return Value
YES if the key-value coding methods should access the corresponding instance variable directly on finding
no accessor method for a property, otherwise NO.

Discussion
The default returns YES. Subclasses can override it to return NO, in which case the key-value coding methods
won’t access instance variables.

Class Methods 2059
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSKeyValueCoding.h

useStoredAccessor
ReturnsYES if the stored value methodsstoredValueForKey: (page 2066) andtakeStoredValue:forKey:
 (page 2067) should use private accessor methods in preference to public accessors. (Deprecated in Mac OS X
v10.4. This method has no direct replacement, although see accessInstanceVariablesDirectly (page 2059).)

+ (BOOL)useStoredAccessor

Discussion
Returning NO causes the stored value methods to use the same accessor method or instance variable search
order as the corresponding basic key-value coding methods (valueForKey: (page 2070) and
takeValue:forKey: (page 2068)). The default implementation returns YES.

Applications should use the valueForKey: and setValue:forKey: methods instead of
storedValueForKey: and takeStoredValue:forKey:.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSKeyValueCoding.h

Instance Methods

dictionaryWithValuesForKeys:
Returns a dictionary containing the property values identified by each of the keys in a given array.

- (NSDictionary *)dictionaryWithValuesForKeys:(NSArray *)keys

Parameters
keys

An array containing NSString objects that identify properties of the receiver.

Return Value
A dictionary containing as keys the property names in keys, with corresponding values being the
corresponding property values.

Discussion
The default implementation invokes valueForKey: (page 2070) for each key in keys and substitutes NSNull
values in the dictionary for returned nil values.

Availability
Available in Mac OS X v10.3 and later.

2060 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

See Also
– setValuesForKeysWithDictionary: (page 2066)

Declared In
NSKeyValueCoding.h

handleQueryWithUnboundKey:
Invoked by valueForKey: (page 2070) when it finds no property corresponding to key. (Deprecated in Mac
OS X v10.3. Use valueForUndefinedKey: (page 2071) instead.)

- (id)handleQueryWithUnboundKey:(NSString *)key

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
NSKeyValueCoding.h

handleTakeValue:forUnboundKey:
Invoked by takeValue:forKey: (page 2068) when it finds no property binding for key. (Deprecated in Mac
OS X v10.3. Use setValue:forUndefinedKey: (page 2065) instead.)

- (void)handleTakeValue:(id)value forUnboundKey:(NSString *)key

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
NSKeyValueCoding.h

mutableArrayValueForKey:
Returns a mutable array proxy that provides read-write access to an ordered to-many relationship specified
by a given key.

- (NSMutableArray *)mutableArrayValueForKey:(NSString *)key

Parameters
key

The name of an ordered to-many relationship.

Return Value
A mutable array proxy that provides read-write access to the ordered to-many relationship specified by key.

Instance Methods 2061
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

Discussion
Objects added to the mutable array become related to the receiver, and objects removed from the mutable
array become unrelated. The default implementation recognizes the same simple accessor methods and
array accessor methods as valueForKey: (page 2070), and follows the same direct instance variable access
policies, but always returns a mutable collection proxy object instead of the immutable collection that
valueForKey: would return.

The search pattern that mutableArrayValueForKey: uses is described in Accessor Search Implementation
Details in Key-Value Coding Programming Guide.

Availability
Available in Mac OS X v10.3 and later.

See Also
– mutableArrayValueForKeyPath: (page 2062)

Declared In
NSKeyValueCoding.h

mutableArrayValueForKeyPath:
Returns a mutable array that provides read-write access to the ordered to-many relationship specified by a
given key path.

- (NSMutableArray *)mutableArrayValueForKeyPath:(NSString *)keyPath

Parameters
keyPath

A key path, relative to the receiver, to an ordered to-many relationship.

Return Value
A mutable array that provides read-write access to the ordered to-many relationship specified by keyPath.

Discussion
See mutableArrayValueForKey: (page 2061) for additional details.

Availability
Available in Mac OS X v10.3 and later.

See Also
– mutableArrayValueForKey: (page 2061)

Declared In
NSKeyValueCoding.h

mutableSetValueForKey:
Returns a mutable set proxy that provides read-write access to the unordered to-many relationship specified
by a given key.

- (NSMutableSet *)mutableSetValueForKey:(NSString *)key

2062 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

Parameters
key

The name of an unordered to-many relationship.

Return Value
A mutable set that provides read-write access to the unordered to-many relationship specified by key.

Discussion
Objects added to the mutable set proxy become related to the receiver, and objects removed from the
mutable set become unrelated. The default implementation recognizes the same simple accessor methods
and set accessor methods as valueForKey: (page 2070), and follows the same direct instance variable access
policies, but always returns a mutable collection proxy object instead of the immutable collection that
valueForKey: would return.

The search pattern that mutableSetValueForKey: uses is described in Accessor Search Implementation
Details in Key-Value Coding Programming Guide.

Availability
Available in Mac OS X v10.4 and later.

See Also
– mutableArrayValueForKeyPath: (page 2062)

Related Sample Code
CoreRecipes
QTMetadataEditor

Declared In
NSKeyValueCoding.h

mutableSetValueForKeyPath:
Returns a mutable set that provides read-write access to the unordered to-many relationship specified by a
given key path.

- (NSMutableSet *)mutableSetValueForKeyPath:(NSString *)keyPath

Parameters
keyPath

A key path, relative to the receiver, to an unordered to-many relationship.

Return Value
A mutable set that provides read-write access to the unordered to-many relationship specified by keyPath.

Discussion
See mutableSetValueForKey: (page 2062) for additional details.

Availability
Available in Mac OS X v10.4 and later.

See Also
– mutableArrayValueForKey: (page 2061)

Declared In
NSKeyValueCoding.h

Instance Methods 2063
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

setNilValueForKey:
Invoked by setValue:forKey: (page 2064) when it’s given a nil value for a scalar value (such as an int or
float).

- (void)setNilValueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Discussion
Subclasses can override this method to handle the request in some other way, such as by substituting 0 or
a sentinel value for nil and invoking setValue:forKey: again or setting the variable directly. The default
implementation raises an NSInvalidArgumentException.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSKeyValueCoding.h

setValue:forKey:
Sets the property of the receiver specified by a given key to a given value.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters
value

The value for the property identified by key.

key
The name of one of the receiver's properties.

Discussion
If key identifies a to-one relationship, relate the object specified by value to the receiver, unrelating the
previously related object if there was one. Given a collection object and a key that identifies a to-many
relationship, relate the objects contained in the collection to the receiver, unrelating previously related objects
if there were any.

The search pattern that setValue:forKey: uses is described in Accessor Search Implementation Details
in Key-Value Coding Programming Guide.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CarbonCocoaCoreImageTab
CIAnnotation
CITransitionSelectorSample2
Reducer
StickiesExample

2064 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

Declared In
NSKeyValueCoding.h

setValue:forKeyPath:
Sets the value for the property identified by a given key path to a given value.

- (void)setValue:(id)value forKeyPath:(NSString *)keyPath

Parameters
value

The value for the property identified by keyPath.

keyPath
A key path of the form relationship.property (with one or more relationships): for example
“department.name” or “department.manager.lastName.”

Discussion
The default implementation of this method gets the destination object for each relationship using
valueForKey: (page 2070), and sends the final object a setValue:forKey: message.

Availability
Available in Mac OS X v10.3 and later.

See Also
– valueForKeyPath: (page 2071)

Declared In
NSKeyValueCoding.h

setValue:forUndefinedKey:
Invoked by setValue:forKey: (page 2064) when it finds no property for a given key.

- (void)setValue:(id)value forUndefinedKey:(NSString *)key

Parameters
value

The value for the key identified by key.

key
A string that is not equal to the name of any of the receiver's properties.

Discussion
Subclasses can override this method to handle the request in some other way. The default implementation
raises an NSUndefinedKeyException.

Availability
Available in Mac OS X v10.3 and later.

See Also
– valueForUndefinedKey: (page 2071)

Declared In
NSKeyValueCoding.h

Instance Methods 2065
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

setValuesForKeysWithDictionary:
Sets properties of the receiver with values from a given dictionary, using its keys to identify the properties.

- (void)setValuesForKeysWithDictionary:(NSDictionary *)keyedValues

Parameters
keyedValues

A dictionary whose keys identify properties in the receiver. The values of the properties in the receiver
are set to the corresponding values in the dictionary.

Discussion
The default implementation invokes setValue:forKey: (page 2064) for each key-value pair, substituting
nil for NSNull values in keyedValues.

Availability
Available in Mac OS X v10.3 and later.

See Also
– dictionaryWithValuesForKeys: (page 2060)

Related Sample Code
Core Data HTML Store
Departments and Employees

Declared In
NSKeyValueCoding.h

storedValueForKey:
Returns the property identified by a given key. (Deprecated in Mac OS X v10.4. If you are using the
NSManagedObject class, use primitiveValueForKey: instead.)

- (id)storedValueForKey:(NSString *)key

Discussion
This method is used when the value is retrieved for storage in an object store (generally, this storage is
ultimately in a database) or for inclusion in a snapshot. The default implementation is similar to the
implementation of valueForKey: (page 2070), but it resolves keywith a different method/instance variable
search order:

1. Searches for a private accessor method based on key (a method preceded by an underbar). For example,
with a key of “lastName”, storedValueForKey: looks for a method named _getLastName or
_lastName.

2. If a private accessor is not found, searches for an instance variable based on key and returns its value
directly. For example, with a key of “lastName”, storedValueForKey: looks for an instance variable
named _lastName or lastName.

3. If neither a private accessor nor an instance variable is found, storedValueForKey: searches for a
public accessor method based on key. For the key “lastName”, this would be getLastName or lastName.

4. If key is unknown, storedValueForKey: calls handleTakeValue:forUnboundKey: (page 2061).

2066 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

This different search order allows an object to bypass processing that is performed before returning a value
through a public API. However, if you always want to use the search order in valueForKey: (page 2070), you
can implement the class method useStoredAccessor (page 2060) to return NO. And as with
valueForKey: (page 2070), you can prevent direct access of an instance variable with the class method
accessInstanceVariablesDirectly (page 2059).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSKeyValueCoding.h

takeStoredValue:forKey:
Sets the value of the property identified by a given key. (Deprecated in Mac OS X v10.4. If you are using the
NSManagedObject class, use setPrimitiveValue:forKey: instead.)

- (void)takeStoredValue:(id)value forKey:(NSString *)key

Discussion
This method is used to initialize the receiver with values from an object store (generally, this storage is
ultimately from a database) or to restore a value from a snapshot. The default implementation is similar to
the implementation of takeValue:forKey: (page 2068), but it resolves keywith a different method/instance
variable search order:

1. Searches for a private accessor method based on key (a method preceded by an underbar). For example,
with a key of “lastName”, takeStoredValue:forKey: looks for a method named _setLastName:.

2. If a private accessor is not found, searches for an instance variable based on key and sets its value
directly. For example, with a key of “lastName”, takeStoredValue:forKey: looks for an instance
variable named _lastName or lastName.

3. If neither a private accessor nor an instance variable is found, takeStoredValue:forKey: searches
for a public accessor method based on key. For the key “lastName”, this would be setLastName:.

4. If key is unknown, takeStoredValue:forKey: calls handleTakeValue:forUnboundKey: (page
2061).

This different search order allows an object to bypass processing that is performed before setting a value
through a public API. However, if you always want to use the search order in takeValue:forKey: (page
2068), you can implement the class method useStoredAccessor (page 2060) to return NO. And as with
valueForKey: (page 2070), you can prevent direct access of an instance variable with the class method
accessInstanceVariablesDirectly (page 2059).

Availability
Deprecated in Mac OS X v10.4.

Related Sample Code
StickiesExample

Declared In
NSKeyValueCoding.h

Instance Methods 2067
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

takeValue:forKey:
Sets the value for the property identified by key to value. (Deprecated in Mac OS X v10.3. Use
setValue:forKey: (page 2064) instead.)

- (void)takeValue:(id)value forKey:(NSString *)key

Availability
Deprecated in Mac OS X v10.3.

Declared In
NSKeyValueCoding.h

takeValue:forKeyPath:
Sets the value for the property identified by keyPath to value. (Deprecated in Mac OS X v10.3. Use
setValue:forKeyPath: (page 2065) instead.)

- (void)takeValue:(id)value forKeyPath:(NSString *)keyPath

Availability
Deprecated in Mac OS X v10.3.

Declared In
NSKeyValueCoding.h

takeValuesFromDictionary:
Sets properties of the receiver with values from a given dictionary, using its keys to identify the properties
(Deprecated in Mac OS X v10.3. Use setValuesForKeysWithDictionary: (page 2066) instead.)

- (void)takeValuesFromDictionary:(NSDictionary *)aDictionary

Availability
Deprecated in Mac OS X v10.3.

Declared In
NSKeyValueCoding.h

unableToSetNilForKey:
Invoked if key is represented by a scalar attribute. (Deprecated in Mac OS X v10.3. Use
setNilValueForKey: (page 2064) instead.)

- (void)unableToSetNilForKey:(NSString *)key

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
NSKeyValueCoding.h

2068 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

validateValue:forKey:error:
Returns a Boolean value that indicates whether the value specified by a given pointer is valid for the property
identified by a given key.

- (BOOL)validateValue:(id *)ioValue forKey:(NSString *)key error:(NSError **)outError

Parameters
ioValue

A pointer to a new value for the property identified by key. This method may modify or replace the
value in order to make it valid.

key
The name of one of the receiver's properties. The key must specify an attribute or a to-one relationship.

outError
If validation is necessary and ioValue is not transformed into a valid value, upon return contains an
NSError object that describes the reason that ioValue is not a valid value.

Return Value
YES if *ioValue is a valid value for the property identified by key, or of the method is able to modify the
value to *ioValue to make it valid; otherwise NO.

Discussion
The default implementation of this method searches the class of the receiver for a validation method whose
name matches the pattern validate<Key>:error:. If such a method is found it is invoked and the result
is returned. If no such method is found, YES is returned.

The sender of the message is never given responsibility for releasing ioValue or outError.

See “Key-Value Validation” for more information.

Availability
Available in Mac OS X v10.3 and later.

See Also
– validateValue:forKeyPath:error: (page 2069)

Declared In
NSKeyValueCoding.h

validateValue:forKeyPath:error:
Returns a Boolean value that indicates whether the value specified by a given pointer is valid for a given key
path relative to the receiver.

- (BOOL)validateValue:(id *)ioValue forKeyPath:(NSString *)inKeyPath error:(NSError
 **)outError

Parameters
ioValue

A pointer to a new value for the property identified by keyPath. This method may modify or replace
the value in order to make it valid.

Instance Methods 2069
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

key
The name of one of the receiver's properties. The key path must specify an attribute or a to-one
relationship. The key path has the form relationship.property (with one or more relationships); for
example “department.name” or “department.manager.lastName”.

outError
If validation is necessary and ioValue is not transformed into a valid value, upon return contains an
NSError object that describes the reason that ioValue is not a valid value.

Discussion
The default implementation gets the destination object for each relationship using valueForKey: (page
2070) and returns the result of a validateValue:forKey:error: message to the final object.

Availability
Available in Mac OS X v10.3 and later.

See Also
– validateValue:forKey:error: (page 2069)

Declared In
NSKeyValueCoding.h

valueForKey:
Returns the value for the property identified by a given key.

- (id)valueForKey:(NSString *)key

Parameters
key

The name of one of the receiver's properties.

Return Value
The value for the property identified by key.

Discussion
The search pattern that valueForKey: uses to find the correct value to return is described in Accessor Search
Implementation Details in Key-Value Coding Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
– valueForKeyPath: (page 2071)

Related Sample Code
CIAnnotation
CITransitionSelectorSample2
CustomAtomicStoreSubclass
DynamicProperties
QTCarbonCoreImage101

Declared In
NSKeyValueCoding.h

2070 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

valueForKeyPath:
Returns the value for the derived property identified by a given key path.

- (id)valueForKeyPath:(NSString *)keyPath

Parameters
keyPath

A key path of the form relationship.property (with one or more relationships); for example
“department.name” or “department.manager.lastName”.

Return Value
The value for the derived property identified by keyPath.

Discussion
The default implementation gets the destination object for each relationship using valueForKey: (page
2070) and returns the result of a valueForKey: message to the final object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setValue:forKeyPath: (page 2065)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
Core Data HTML Store
CoreRecipes
Dicey
Spotlight

Declared In
NSKeyValueCoding.h

valueForUndefinedKey:
Invoked by valueForKey: (page 2070) when it finds no property corresponding to a given key.

- (id)valueForUndefinedKey:(NSString *)key

Parameters
key

A string that is not equal to the name of any of the receiver's properties.

Discussion
Subclasses can override this method to return an alternate value for undefined keys. The default
implementation raises an NSUndefinedKeyException.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setValue:forUndefinedKey: (page 2065)

Instance Methods 2071
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

Declared In
NSKeyValueCoding.h

valuesForKeys:
Returns a dictionary containing as keys the property names in keys, with corresponding values being the
corresponding property values. (Deprecated in Mac OS X v10.3. Use dictionaryWithValuesForKeys: (page
2060) instead.)

- (NSDictionary *)valuesForKeys:(NSArray *)keys

Availability
Deprecated in Mac OS X v10.3.

Related Sample Code
Core Data HTML Store
Departments and Employees

Declared In
NSKeyValueCoding.h

Constants

Key Value Coding Exception Names
This constant defines the name of an exception raised when a key value coding operation fails.

extern NSString *NSUndefinedKeyException;

Constants
NSUndefinedKeyException

Raised when a key value coding operation fails. userInfo keys are described in
“NSUndefinedKeyException userInfo Keys” (page 2072)

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueCoding.h.

Declared In
NSKeyValueCoding.h

NSUndefinedKeyException userInfo Keys
These constants are keys into an NSUndefinedKeyException userInfo dictionary

extern NSString *NSTargetObjectUserInfoKey;
extern NSString *NSUnknownUserInfoKey;

Constants
NSTargetObjectUserInfoKey

The object on which the key value coding operation failed.

2072 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

NSUnknownUserInfoKey
The key for which the key value coding operation failed.

Discussion
For additional information see “Key Value Coding Exception Names” (page 2072).

Declared In
NSKeyValueCoding.h

Array operators
These constants define the available array operators. See Set and Array Operators for more information.

NSString *const NSAverageKeyValueOperator;
NSString *const NSCountKeyValueOperator;
NSString *const NSDistinctUnionOfArraysKeyValueOperator;
NSString *const NSDistinctUnionOfObjectsKeyValueOperator;
NSString *const NSDistinctUnionOfSetsKeyValueOperator;
NSString *const NSMaximumKeyValueOperator;
NSString *const NSMinimumKeyValueOperator;
NSString *const NSSumKeyValueOperator;
NSString *const NSUnionOfArraysKeyValueOperator;
NSString *const NSUnionOfObjectsKeyValueOperator;
NSString *const NSUnionOfSetsKeyValueOperator;

Constants
NSAverageKeyValueOperator

The @avg array operator.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueCoding.h.

NSCountKeyValueOperator
The @count array operator.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueCoding.h.

NSDistinctUnionOfArraysKeyValueOperator
The @distinctUnionOfArrays array operator.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueCoding.h.

NSDistinctUnionOfObjectsKeyValueOperator
The @distinctUnionOfObjects array operator.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueCoding.h.

NSDistinctUnionOfSetsKeyValueOperator
The @distinctUnionOfSets array operator.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueCoding.h.

Constants 2073
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

NSMaximumKeyValueOperator
The @max array operator.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueCoding.h.

NSMinimumKeyValueOperator
The @min array operator.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueCoding.h.

NSSumKeyValueOperator
The @sum array operator.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueCoding.h.

NSUnionOfArraysKeyValueOperator
The @unionOfArrays array operator.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueCoding.h.

NSUnionOfObjectsKeyValueOperator
The @unionOfObjects array operator.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueCoding.h.

NSUnionOfSetsKeyValueOperator
The @unionOfSets array operator.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueCoding.h.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
NSKeyValueCoding.h

2074 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 175

NSKeyValueCoding Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSKeyValueObserving.h

Companion guide Key-Value Observing Programming Guide

Overview

The NSKeyValueObserving (KVO) informal protocol defines a mechanism that allows objects to be notified
of changes to the specified properties of other objects.

You can observe any object properties including simple attributes, to-one relationships, and to-many
relationships. Observers of to-many relationships are informed of the type of change made — as well as
which objects are involved in the change.

NSObject provides an implementation of the NSKeyValueObserving protocol that provides an automatic
observing capability for all objects. You can further refine notifications by disabling automatic observer
notifications and implementing manual notifications using the methods in this protocol.

Note: Key-value observing is not available for Java applications.

Tasks

Change Notification

– observeValueForKeyPath:ofObject:change:context: (page 2081)
This message is sent to the receiver when the value at the specified key path relative to the given
object has changed.

Registering for Observation

– addObserver:forKeyPath:options:context: (page 2079)
Registers anObserver to receive KVO notifications for the specified key-path relative to the receiver.

– removeObserver:forKeyPath: (page 2082)
Stops a given object from receiving change notifications for the property specified by a given key-path
relative to the receiver.

Overview 2075
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference
(informal protocol)

Notifying Observers of Changes

– willChangeValueForKey: (page 2084)
Invoked to inform the receiver that the value of a given property is about to change.

– didChangeValueForKey: (page 2080)
Invoked to inform the receiver that the value of a given property has changed.

– willChange:valuesAtIndexes:forKey: (page 2083)
Invoked to inform the receiver that the specified change is about to be executed at given indexes for
a specified ordered to-many relationship.

– didChange:valuesAtIndexes:forKey: (page 2079)
Invoked to inform the receiver that the specified change has occurred on the indexes for a specified
ordered to-many relationship.

– willChangeValueForKey:withSetMutation:usingObjects: (page 2084)
Invoked to inform the receiver that the specified change is about to be made to a specified unordered
to-many relationship.

– didChangeValueForKey:withSetMutation:usingObjects: (page 2080)
Invoked to inform the receiver that the specified change was made to a specified unordered to-many
relationship.

Observing Customization

+ automaticallyNotifiesObserversForKey: (page 2076)
Returns a Boolean value that indicates whether the receiver supports automatic key-value observation
for the given key.

+ keyPathsForValuesAffectingValueForKey: (page 2077)
Returns a set of key paths for properties whose values affect the value of the specified key.

– setObservationInfo: (page 2083)
Sets the observation info for the receiver.

– observationInfo (page 2081)
Returns a pointer that identifies information about all of the observers that are registered with the
receiver.

+ setKeys:triggerChangeNotificationsForDependentKey: (page 2078) Deprecated in Mac OS X v10.5
and later

Configures the receiver to post change notifications for a given property if any of the properties
specified in a given array changes. (Deprecated. You should use the method
keyPathsForValuesAffectingValueForKey: (page 2077) instead.)

Class Methods

automaticallyNotifiesObserversForKey:
Returns a Boolean value that indicates whether the receiver supports automatic key-value observation for
the given key.

+ (BOOL)automaticallyNotifiesObserversForKey:(NSString *)key

2076 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

Return Value
YES if the key-value observing machinery should automatically invoke willChangeValueForKey: (page
2084)/didChangeValueForKey: (page 2080) and willChange:valuesAtIndexes:forKey: (page
2083)/didChange:valuesAtIndexes:forKey: (page 2079) whenever instances of the class receive key-value
coding messages for the key, or mutating key-value-coding-compliant methods for the key are invoked;
otherwise NO.

Discussion
The default implementation returns YES.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSKeyValueObserving.h

keyPathsForValuesAffectingValueForKey:
Returns a set of key paths for properties whose values affect the value of the specified key.

+ (NSSet *)keyPathsForValuesAffectingValueForKey:(NSString *)key

Parameters
key

The key whose value is affected by the key paths.

Return Value

Discussion
When an observer for the key is registered with an instance of the receiving class, key-value observing itself
automatically observes all of the key paths for the same instance, and sends change notifications for the key
to the observer when the value for any of those key paths changes.

The default implementation of this method searches the receiving class for a method whose name matches
the pattern +keyPathsForValuesAffecting<Key>, and returns the result of invoking that method if it is
found. Any such method must return an NSSet. If no such method is found, an NSSet that is computed from
information provided by previous invocations of the now-deprecated
setKeys:triggerChangeNotificationsForDependentKey: (page 2078) method is returned, for backward
binary compatibility.

You can override this method when the getter method of one of your properties computes a value to return
using the values of other properties, including those that are located by key paths. Your override should
typically invoke super and return a set that includes any members in the set that result from doing that (so
as not to interfere with overrides of this method in superclasses).

Note: You must not override this method when you add a computed property to an existing class using a
category, overriding methods in categories is unsupported. In that case, implement a matching
+keyPathsForValuesAffecting<Key> to take advantage of this mechanism.

Availability
Available in Mac OS X v10.5 and later.

Class Methods 2077
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

Declared In
NSKeyValueObserving.h

setKeys:triggerChangeNotificationsForDependentKey:
Configures the receiver to post change notifications for a given property if any of the properties specified in
a given array changes. (Deprecated in Mac OS X v10.5 and later. You should use the method
keyPathsForValuesAffectingValueForKey: (page 2077) instead.)

+ (void)setKeys:(NSArray *)keys
triggerChangeNotificationsForDependentKey:(NSString *)dependentKey

Parameters
keys

The names of the properties upon which the value of the property identified by dependentKey
depends.

dependentKey
The name of a property whose value depends on the properties specified by keys.

Discussion
Invocations of will- and did-change KVO notification methods for any key in keys will automatically invoke
the corresponding change notification methods for dependentKey. The receiver will not receive
willChange/didChange messages to generate the notifications.

Dependencies should be registered before any instances of the receiving class are created, so you typically
invoke this method in a class's initialize (page 1158) method, as illustrated in the following example.

+ (void)initialize
{
 [self setKeys:[NSArray arrayWithObjects:@"firstName", @"lastName", nil]
 triggerChangeNotificationsForDependentKey:@"fullName"];
}

Availability
Deprecated in Mac OS X v10.5 and later.

Related Sample Code
CoreRecipes
Dicey
iSpend
QTRecorder
Reducer

Declared In
NSKeyValueObserving.h

2078 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

Instance Methods

addObserver:forKeyPath:options:context:
Registers anObserver to receive KVO notifications for the specified key-path relative to the receiver.

- (void)addObserver:(NSObject *)anObserver
forKeyPath:(NSString *)keyPath
options:(NSKeyValueObservingOptions)options
context:(void *)context

Parameters
anObserver

The object to register for KVO notifications. The observer must implement the key-value observing
method observeValueForKeyPath:ofObject:change:context: (page 2081).

keyPath
The key path, relative to the receiver, of the property to observe. This value must not be nil.

options
A combination of the NSKeyValueObservingOptions values that specifies what is included in
observation notifications. For possible values, see NSKeyValueObservingOptions (page 2086).

context
Arbitrary data that is passed toanObserver in observeValueForKeyPath:ofObject:change:context: (page
2081).

Discussion
Neither the receiver, nor anObserver, are retained.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeObserver:forKeyPath: (page 2082)

Declared In
NSKeyValueObserving.h

didChange:valuesAtIndexes:forKey:
Invoked to inform the receiver that the specified change has occurred on the indexes for a specified ordered
to-many relationship.

- (void)didChange:(NSKeyValueChange)change
valuesAtIndexes:(NSIndexSet *)indexes
forKey:(NSString *)key

Parameters
change

The type of change that was made.

indexes
The indexes of the to-many relationship that were affected by the change.

Instance Methods 2079
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

key
The name of a property that is an ordered to-many relationship.

Discussion
You should invoke this method when implementing key-value-observing compliance manually.

Availability
Available in Mac OS X v10.3 and later.

See Also
– willChange:valuesAtIndexes:forKey: (page 2083)
– didChangeValueForKey: (page 2080)

Declared In
NSKeyValueObserving.h

didChangeValueForKey:
Invoked to inform the receiver that the value of a given property has changed.

- (void)didChangeValueForKey:(NSString *)key

Parameters
key

The name of the property that changed.

Discussion
You should invoke this method when implementing key-value observer compliance manually.

Availability
Available in Mac OS X v10.3 and later.

See Also
– willChangeValueForKey: (page 2084)
– didChange:valuesAtIndexes:forKey: (page 2079)

Declared In
NSKeyValueObserving.h

didChangeValueForKey:withSetMutation:usingObjects:
Invoked to inform the receiver that the specified change was made to a specified unordered to-many
relationship.

- (void)didChangeValueForKey:(NSString *)key
withSetMutation:(NSKeyValueSetMutationKind)mutationKind
usingObjects:(NSSet *)objects

Parameters
key

The name of a property that is an unordered to-many relationship

mutationKind
The type of change that was made.

2080 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

objects
The objects that were involved in the change (see NSKeyValueSetMutationKind (page 2088)).

Discussion
You invoke this method when implementing key-value observer compliance manually.

Availability
Available in Mac OS X v10.4 and later.

See Also
– willChangeValueForKey:withSetMutation:usingObjects: (page 2084)

Declared In
NSKeyValueObserving.h

observationInfo
Returns a pointer that identifies information about all of the observers that are registered with the receiver.

- (void *)observationInfo

Return Value
A pointer that identifies information about all of the observers that are registered with the receiver, the
options that were used at registration-time, and so on.

Discussion
The default implementation of this method retrieves the information from a global dictionary keyed by the
receiver’s pointers.

For improved performance, this method and setObservationInfo: can be overridden to store the opaque
data pointer in an instance variable. Overrides of this method must not attempt to send Objective-C messages
to the stored data, including retain and release.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setObservationInfo: (page 2083)

Declared In
NSKeyValueObserving.h

observeValueForKeyPath:ofObject:change:context:
This message is sent to the receiver when the value at the specified key path relative to the given object has
changed.

- (void)observeValueForKeyPath:(NSString *)keyPath
ofObject:(id)object
change:(NSDictionary *)change
context:(void *)context

Instance Methods 2081
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

Parameters
keyPath

The key path, relative to object, to the value that has changed.

object
The source object of the key path keyPath.

change
A dictionary that describes the changes that have been made to the value of the property at the key
path keyPath relative to object. Entries are described in “Keys used by the change dictionary” (page
2087).

context
The value that was provided when the receiver was registered to receive key-value observation
notifications.

Discussion
The receiver must be registered as an observer for the specified keyPath and object.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSKeyValueObserving.h

removeObserver:forKeyPath:
Stops a given object from receiving change notifications for the property specified by a given key-path
relative to the receiver.

- (void)removeObserver:(NSObject *)anObserver
forKeyPath:(NSString *)keyPath

Parameters
anObserver

The object to remove as an observer.

keyPath
A key-path, relative to the receiver, for which anObserver is registered to receive KVO change
notifications.

Availability
Available in Mac OS X v10.3 and later.

See Also
– addObserver:forKeyPath:options:context: (page 2079)

Related Sample Code
Departments and Employees

Declared In
NSKeyValueObserving.h

2082 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

setObservationInfo:
Sets the observation info for the receiver.

- (void)setObservationInfo:(void *)observationInfo

Parameters
observationInfo

The observation info for the receiver.

Discussion
The observationInfo is a pointer that identifies information about all of the observers that are registered
with the receiver. The default implementation of this method stores observationInfo in a global dictionary
keyed by the receiver’s pointers.

For improved performance, this method and observationInfo can be overridden to store the opaque data
pointer in an instance variable. Classes that override this method must not attempt to send Objective-C
messages to observationInfo, including retain and release.

Availability
Available in Mac OS X v10.3 and later.

See Also
– observationInfo (page 2081)

Declared In
NSKeyValueObserving.h

willChange:valuesAtIndexes:forKey:
Invoked to inform the receiver that the specified change is about to be executed at given indexes for a
specified ordered to-many relationship.

- (void)willChange:(NSKeyValueChange)change
valuesAtIndexes:(NSIndexSet *)indexes
forKey:(NSString *)key

Parameters
change

The type of change that is about to be made.

indexes
The indexes of the to-many relationship that will be affected by the change.

key
The name of a property that is an ordered to-many relationship.

Discussion
You should invoke this method when implementing key-value-observing compliance manually.

Important: After the values have been changed, a corresponding
didChange:valuesAtIndexes:forKey: (page 2079) must be invoked with the same parameters.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 2083
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

See Also
– didChange:valuesAtIndexes:forKey: (page 2079)
– willChangeValueForKey: (page 2084)

Declared In
NSKeyValueObserving.h

willChangeValueForKey:
Invoked to inform the receiver that the value of a given property is about to change.

- (void)willChangeValueForKey:(NSString *)key

Parameters
key

The name of the property that will change.

Discussion
You should invoke this method when implementing key-value observer compliance manually.

The change type of this method is NSKeyValueChangeSetting.

Important: After the values have been changed, a corresponding didChangeValueForKey: (page 2080)
must be invoked with the same parameter.

Availability
Available in Mac OS X v10.3 and later.

See Also
– didChangeValueForKey: (page 2080)
– willChange:valuesAtIndexes:forKey: (page 2083)

Declared In
NSKeyValueObserving.h

willChangeValueForKey:withSetMutation:usingObjects:
Invoked to inform the receiver that the specified change is about to be made to a specified unordered to-many
relationship.

- (void)willChangeValueForKey:(NSString *)key
withSetMutation:(NSKeyValueSetMutationKind)mutationKind
usingObjects:(NSSet *)objects

Parameters
key

The name of a property that is an unordered to-many relationship

mutationKind
The type of change that will be made.

2084 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

objects
The objects that are involved in the change (see NSKeyValueSetMutationKind (page 2088)).

Discussion
You invoke this method when implementing key-value observer compliance manually.

Important: After the values have been changed, a corresponding
didChangeValueForKey:withSetMutation:usingObjects: (page 2080) must be invoked with the same
parameters.

Availability
Available in Mac OS X v10.4 and later.

See Also
– didChangeValueForKey:withSetMutation:usingObjects: (page 2080)

Declared In
NSKeyValueObserving.h

Constants

NSKeyValueChange
These constants are returned as the value for a NSKeyValueChangeKindKey key in the change dictionary
passed to observeValueForKeyPath:ofObject:change:context: (page 2081) indicating the type of
change made:

enum {
 NSKeyValueChangeSetting = 1,
 NSKeyValueChangeInsertion = 2,
 NSKeyValueChangeRemoval = 3,
 NSKeyValueChangeReplacement = 4
};
typedef NSUInteger NSKeyValueChange;

Constants
NSKeyValueChangeSetting

Indicates that the value of the observed key path was set to a new value. This change can occur when
observing an attribute of an object, as well as properties that specify to-one and to-many relationships.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueChangeInsertion
Indicates that an object has been inserted into the to-many relationship that is being observed.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueObserving.h.

Constants 2085
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

NSKeyValueChangeRemoval
Indicates that an object has been removed from the to-many relationship that is being observed.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueChangeReplacement
Indicates that an object has been replaced in the to-many relationship that is being observed.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueObserving.h.

Declared In
NSKeyValueObserving.h

NSKeyValueObservingOptions
These constants are passed to addObserver:forKeyPath:options:context: (page 2079) and determine
the values that are returned as part of the change dictionary passed to an
observeValueForKeyPath:ofObject:change:context: (page 2081). You can pass 0 if you require no
change dictionary values.

enum {
 NSKeyValueObservingOptionNew = 0x01,
 NSKeyValueObservingOptionOld = 0x02,
 NSKeyValueObservingOptionInitial = 0x04,
 NSKeyValueObservingOptionPrior = 0x08
};
typedef NSUInteger NSKeyValueObservingOptions;

Constants
NSKeyValueObservingOptionNew

Indicates that the change dictionary should provide the new attribute value, if applicable.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueObservingOptionOld
Indicates that the change dictionary should contain the old attribute value, if applicable.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueObservingOptionInitial
If specified, a notification should be sent to the observer immediately, before the observer registration
method even returns. The change dictionary in the notification will always contain an
NSKeyValueChangeNewKey entry if NSKeyValueObservingOptionNew is also specified but will
never contain an NSKeyValueChangeOldKey entry. (In an initial notification the current value of the
observed property may be old, but it's new to the observer.) You can use this option instead of
explicitly invoking, at the same time, code that is also invoked by the observer's
observeValueForKeyPath:ofObject:change:context: method. When this option is used
withaddObserver:forKeyPath:options:context: a notification will be sent for each indexed
object to which the observer is being added.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueObserving.h.

2086 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

NSKeyValueObservingOptionPrior
Whether separate notifications should be sent to the observer before and after each change, instead
of a single notification after the change. The change dictionary in a notification sent before a change
always contains an NSKeyValueChangeNotificationIsPriorKey entry whose value is [NSNumber
numberWithBool:YES], but never contains an NSKeyValueChangeNewKey entry. When this option
is specified the change dictionary in a notification sent after a change contains the same entries that
it would contain if this option were not specified. You can use this option when the observer's own
key-value observing-compliance requires it to invoke one of the -willChange... methods for one
of its own properties, and the value of that property depends on the value of the observed object's
property. (In that situation it's too late to easily invoke -willChange... properly in response to
receiving an observeValueForKeyPath:ofObject:change:context:message after the change.)

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueObserving.h.

Declared In
NSKeyValueObserving.h

Keys used by the change dictionary
These constants are used as keys in the change dictionary passed to
observeValueForKeyPath:ofObject:change:context: (page 2081).

NSString *const NSKeyValueChangeKindKey;
NSString *const NSKeyValueChangeNewKey;
NSString *const NSKeyValueChangeOldKey;
NSString *const NSKeyValueChangeIndexesKey;

Constants
NSKeyValueChangeKindKey

An NSNumber object that contains a value corresponding to one of the NSKeyValueChangeKindKey
enumerations, indicating what sort of change has occurred.

A value of NSKeyValueChangeSetting indicates that the observed object has received a
setValue:forKey: message, or that the key-value-coding-compliant set method for the key has
been invoked, or thatwillChangeValueForKey: (page 2084)/didChangeValueForKey: (page 2080)
has otherwise been invoked.

A value of NSKeyValueChangeInsertion, NSKeyValueChangeRemoval, or
NSKeyValueChangeReplacement indicates that mutating messages have been sent to the array
returned by a mutableArrayValueForKey: message sent to the object, or that one of the
key-value-coding-compliant array mutation methods for the key has been invoked, or that
willChange:valuesAtIndexes:forKey: (page
2083)/didChange:valuesAtIndexes:forKey: (page 2079) has otherwise been invoked.

You can use NSNumber's intValue (page 1073) method to retrieve the integer value of the change
kind.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueObserving.h.

Constants 2087
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

NSKeyValueChangeNewKey
If the value of the NSKeyValueChangeKindKey entry is NSKeyValueChangeSetting, and
NSKeyValueObservingOptionNew was specified when the observer was registered, the value of
this key is the new value for the attribute.

For NSKeyValueChangeInsertion or NSKeyValueChangeReplacement, if
NSKeyValueObservingOptionNew was specified when the observer was registered, the value for
this key is an NSArray instance that contains the objects that have been inserted or replaced other
objects, respectively.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueChangeOldKey
If the value of the NSKeyValueChangeKindKey entry is NSKeyValueChangeSetting, and
NSKeyValueObservingOptionOld was specified when the observer was registered, the value of
this key is the value before the attribute was changed.

For NSKeyValueChangeRemoval or NSKeyValueChangeReplacement, if
NSKeyValueObservingOptionOld was specified when the observer was registered, the value is an
NSArray instance that contains the objects that have been removed or have been replaced by other
objects, respectively.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueChangeIndexesKey
If the value of the NSKeyValueChangeKindKey entry is NSKeyValueChangeInsertion,
NSKeyValueChangeRemoval, or NSKeyValueChangeReplacement, the value of this key is an
NSIndexSet object that contains the indexes of the inserted, removed, or replaced objects.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueObserving.h.

Declared In
NSKeyValueObserving.h

NSKeyValueSetMutationKind
These constants are specified as the parameter to the methods
willChangeValueForKey:withSetMutation:usingObjects: (page 2084) and
didChangeValueForKey:withSetMutation:usingObjects: (page 2080).

enum {
 NSKeyValueUnionSetMutation = 1,
 NSKeyValueMinusSetMutation = 2,
 NSKeyValueIntersectSetMutation = 3,
 NSKeyValueSetSetMutation = 4

2088 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

};
typedef NSUInteger NSKeyValueSetMutationKind;

Constants
NSKeyValueUnionSetMutation

Indicates that objects in the specified set are being added to the receiver. This mutation kind results
in a NSkeyValueChangeKindKey value of NSKeyValueChangeInsertion.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueMinusSetMutation
Indicates that the objects in the specified set are being removed from the receiver. This mutation
kind results in a NSkeyValueChangeKindKey value of NSKeyValueChangeRemoval.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueIntersectSetMutation
Indicates that the objects not in the specified set are being removed from the receiver. This mutation
kind results in a NSkeyValueChangeKindKey value of NSKeyValueChangeRemoval.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueObserving.h.

NSKeyValueSetSetMutation
Indicates that set of objects are replacing the existing objects in the receiver. This mutation kind
results in a NSkeyValueChangeKindKey value of NSKeyValueChangeReplacement.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueObserving.h.

Declared In
NSKeyValueObserving.h

Constants 2089
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

2090 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 176

NSKeyValueObserving Protocol Reference

Adopted by NSConditionLock
NSLock
NSRecursiveLock

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSLock.h

Companion guide Threading Programming Guide

Overview

The NSLocking protocol declares the elementary methods adopted by classes that define lock objects. A
lock object is used to coordinate the actions of multiple threads of execution within a single application. By
using a lock object, an application can protect critical sections of code from being executed simultaneously
by separate threads, thus protecting shared data and other shared resources from corruption.

Tasks

Working with Locks

– lock (page 2091)
Attempts to acquire a lock, blocking a thread’s execution until the lock can be acquired.

– unlock (page 2092)
Relinquishes a previously acquired lock.

Instance Methods

lock
Attempts to acquire a lock, blocking a thread’s execution until the lock can be acquired.

- (void)lock

Overview 2091
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 177

NSLocking Protocol Reference

Discussion
An application protects a critical section of code by requiring a thread to acquire a lock before executing the
code. Once the critical section is past, the thread relinquishes the lock by invoking unlock (page 2092).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SimpleThreads

Declared In
NSLock.h

unlock
Relinquishes a previously acquired lock.

- (void)unlock

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SimpleThreads

Declared In
NSLock.h

2092 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 177

NSLocking Protocol Reference

Adopted by Various Cocoa classes

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSObject.h

Companion guide Memory Management Programming Guide for Cocoa

Overview

The NSMutableCopying protocol declares a method for providing mutable copies of an object. Only classes
that define an “immutable vs. mutable” distinction should adopt this protocol. Classes that don’t define such
a distinction should adopt NSCopying instead.

NSMutableCopying declares one method, mutableCopyWithZone: (page 2094), but mutable copying is
commonly invoked with the convenience method mutableCopy. The mutableCopy method is defined for
all NSObjects and simply invokes mutableCopyWithZone: (page 2094) with the default zone.

If a subclass inherits NSMutableCopying from its superclass and declares additional instance variables, the
subclass has to override mutableCopyWithZone: (page 2094) to properly handle its own instance variables,
invoking the superclass’s implementation first.

Tasks

Copying

– mutableCopyWithZone: (page 2094)
Returns a new instance that’s a mutable copy of the receiver.

Overview 2093
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 178

NSMutableCopying Protocol Reference

Instance Methods

mutableCopyWithZone:
Returns a new instance that’s a mutable copy of the receiver.

- (id)mutableCopyWithZone:(NSZone *)zone

Parameters
zone

The zone from which memory is allocated for the new instance. If zone is NULL, the new instance is
allocated from the default zone, which is returned by NSDefaultMallocZone (page 2188).

Discussion
The returned object is implicitly retained by the sender, which is responsible for releasing it. The copy returned
is mutable whether the original is mutable or not.

Availability
Available in Mac OS X v10.0 and later.

See Also
– copyWithZone: (page 2042) (NSCopying protocol)
– mutableCopy (page 1182) (NSObject class)

Declared In
NSObject.h

2094 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 178

NSMutableCopying Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSSerialization.h

Availability Deprecated in Mac OS X v10.2.

Companion guide Archives and Serializations Programming Guide for Cocoa

Overview

NSObjCTypeSerializationCallBack is obsolete and had been deprecated.

An object conforms to the NSObjCTypeSerializationCallBack protocol so that it can intervene in the
serialization and deserialization process. The primary purpose of this protocol is to allow for the serialization
of objects and other data types that are not directly supported by Cocoa’s serialization facility.

Tasks

Serializing

– serializeObjectAt:ofObjCType:intoData: (page 2096) Deprecated in Mac OS X v10.2
Encodes the referenced object object (which should always be of type “@”) in the data object.

Deserializing

– deserializeObjectAt:ofObjCType:fromData:atCursor: (page 2096) Deprecated in Mac OS X v10.2
Decodes the referenced object object (which should always be of type “@”) located at the cursor
position in the data object.

Overview 2095
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 179

NSObjCTypeSerializationCallBack Protocol
Reference

Instance Methods

deserializeObjectAt:ofObjCType:fromData:atCursor:
Decodes the referenced object object (which should always be of type “@”) located at the cursor position
in the data object. (Deprecated in Mac OS X v10.2.)

- (void)deserializeObjectAt:(id *)object ofObjCType:(const char *)type
fromData:(NSData *)data atCursor:(unsigned *)cursor

Discussion
The decoded object is not autoreleased.

Availability
Deprecated in Mac OS X v10.2.

See Also
– deserializeDataAt:ofObjCType:atCursor:context: (NSData)

Declared In
NSSerialization.h

serializeObjectAt:ofObjCType:intoData:
Encodes the referenced object object (which should always be of type “@”) in the data object. (Deprecated
in Mac OS X v10.2.)

- (void)serializeObjectAt:(id *)object ofObjCType:(const char *)type
intoData:(NSMutableData *)data

Availability
Deprecated in Mac OS X v10.2.

See Also
– serializeDataAt:ofObjCType:context: (NSMutableData)

Declared In
NSSerialization.h

2096 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 179

NSObjCTypeSerializationCallBack Protocol Reference

Adopted by NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSObject.h

Companion guides Cocoa Fundamentals Guide
Memory Management Programming Guide for Cocoa

Overview

The NSObject protocol groups methods that are fundamental to all Objective-C objects.

If an object conforms to this protocol, it can be considered a first-class object. Such an object can be asked
about its:

 ■ Class, and the place of its class in the inheritance hierarchy

 ■ Conformance to protocols

 ■ Ability to respond to a particular message

In addition, objects that conform to this protocol—with its retain (page 2108), release (page 2106), and
autorelease (page 2099) methods—can also integrate with the object management and deallocation scheme
defined in Foundation (for more information see, for example, Memory Management Programming Guide for
Cocoa). Thus, an object that conforms to the NSObject protocol can be managed by container objects like
those defined by NSArray and NSDictionary.

The Cocoa root class, NSObject, adopts this protocol, so all objects inheriting from NSObject have the
features described by this protocol.

Tasks

Identifying Classes

– class (page 2100)
Returns the class object for the receiver’s class.

Overview 2097
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

– superclass (page 2110)
Returns the class object for the receiver’s superclass.

Identifying and Comparing Objects

– isEqual: (page 2101)
Returns a Boolean value that indicates whether the receiver and a given object are equal.

– hash (page 2101)
Returns an integer that can be used as a table address in a hash table structure.

– self (page 2109)
Returns the receiver.

Managing Reference Counts

– retain (page 2108)
Increments the receiver’s reference count.

– release (page 2106)
Decrements the receiver’s reference count.

– autorelease (page 2099)
Adds the receiver to the current autorelease pool.

– retainCount (page 2109)
Returns the receiver’s reference count.

Testing Object Inheritance, Behavior, and Conformance

– isKindOfClass: (page 2102)
Returns a Boolean value that indicates whether the receiver is an instance of given class or an instance
of any class that inherits from that class.

– isMemberOfClass: (page 2103)
Returns a Boolean value that indicates whether the receiver is an instance of a given class.

– respondsToSelector: (page 2107)
Returns a Boolean value that indicates whether the receiver implements or inherits a method that
can respond to a specified message.

– conformsToProtocol: (page 2100)
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

Describing Objects

– description (page 2100)
Returns a string that describes the contents of the receiver.

2098 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

Sending Messages

– performSelector: (page 2104)
Sends a specified message to the receiver and returns the result of the message.

– performSelector:withObject: (page 2105)
Sends a message to the receiver with an object as the argument.

– performSelector:withObject:withObject: (page 2105)
Sends a message to the receiver with two objects as as arguments.

Determining Allocation Zones

– zone (page 2110)
Returns a pointer to the zone from which the receiver was allocated.

Identifying Proxies

– isProxy (page 2104)
Returns a Boolean value that indicates whether the receiver does not descend from NSObject.

Instance Methods

autorelease
Adds the receiver to the current autorelease pool.

- (id)autorelease

Return Value
self.

Discussion
You add an object to an autorelease pool so it will receive a release message—and thus might be
deallocated—when the pool is destroyed. For more information on the autorelease mechanism, see Memory
Management Programming Guide for Cocoa.

Special Considerations

If garbage collection is enabled, this method is a no-op.

Availability
Available in Mac OS X v10.0 and later.

See Also
– retain (page 2108)

Related Sample Code
CoreRecipes
GridCalendar

Instance Methods 2099
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

iSpend
Mountains
PDFKitLinker2

Declared In
NSObject.h

class
Returns the class object for the receiver’s class.

- (Class)class

Return Value
The class object for the receiver’s class.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ class (page 1155) (NSObject class)

Declared In
NSObject.h

conformsToProtocol:
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

- (BOOL)conformsToProtocol:(Protocol *)aProtocol

Parameters
aProtocol

A protocol object that represents a particular protocol.

Return Value
YES if the receiver conforms to aProtocol, otherwise NO.

Discussion
This method works identically to theconformsToProtocol: (page 1156) class method declared inNSObject.
It’s provided as a convenience so that you don’t need to get the class object to find out whether an instance
can respond to a given set of messages.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

description
Returns a string that describes the contents of the receiver.

2100 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

- (NSString *)description

Return Value
A string that describes the contents of the receiver.

Discussion
The debugger’s print-object command indirectly invokes this method to produce a textual description of an
object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

hash
Returns an integer that can be used as a table address in a hash table structure.

- (NSUInteger)hash

Return Value
An integer that can be used as a table address in a hash table structure.

Discussion
If two objects are equal (as determined by the isEqual: (page 2101) method), they must have the same hash
value. This last point is particularly important if you define hash in a subclass and intend to put instances of
that subclass into a collection.

If a mutable object is added to a collection that uses hash values to determine the object’s position in the
collection, the value returned by the hash method of the object must not change while the object is in the
collection. Therefore, either the hash method must not rely on any of the object’s internal state information
or you must make sure the object’s internal state information does not change while the object is in the
collection. Thus, for example, a mutable dictionary can be put in a hash table but you must not change it
while it is in there. (Note that it can be difficult to know whether or not a given object is in a collection.)

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEqual: (page 2101)

Related Sample Code
ImageMapExample
TrackBall

Declared In
NSObject.h

isEqual:
Returns a Boolean value that indicates whether the receiver and a given object are equal.

Instance Methods 2101
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

- (BOOL)isEqual:(id)anObject

Parameters
anObject

The object to be compared to the receiver.

Return Value
YES if the receiver and anObject are equal, otherwise NO.

Discussion
This method defines what it means for instances to be equal. For example, a container object might define
two containers as equal if their corresponding objects all respond YES to an isEqual: request. See the
NSData, NSDictionary, NSArray, and NSString class specifications for examples of the use of this method.

If two objects are equal, they must have the same hash value. This last point is particularly important if you
define isEqual: in a subclass and intend to put instances of that subclass into a collection. Make sure you
also define hash (page 2101) in your subclass.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hash (page 2101)

Related Sample Code
IdentitySample
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSObject.h

isKindOfClass:
Returns a Boolean value that indicates whether the receiver is an instance of given class or an instance of
any class that inherits from that class.

- (BOOL)isKindOfClass:(Class)aClass

Parameters
aClass

A class object representing the Objective-C class to be tested.

Return Value
YES if the receiver is an instance of aClass or an instance of any class that inherits from aClass, otherwise
NO.

Discussion
For example, in this code, isKindOfClass: would return YES because, in Foundation, the NSArchiver
class inherits from NSCoder:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];
id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];
if ([anArchiver isKindOfClass:[NSCoder class]])

2102 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

 ...

Be careful when using this method on objects represented by a class cluster. Because of the nature of class
clusters, the object you get back may not always be the type you expected. If you call a method that returns
a class cluster, the exact type returned by the method is the best indicator of what you can do with that
object. For example, if a method returns a pointer to an NSArray object, you should not use this method to
see if the array is mutable, as shown in the following code:

// DO NOT DO THIS!
if ([myArray isKindOfClass:[NSMutableArray class]])
{
 // Modify the object
}

If you use such constructs in your code, you might think it is alright to modify an object that in reality should
not be modified. Doing so might then create problems for other code that expected the object to remain
unchanged.

If the receiver is a class object, this method returns YES if aClass is a Class object of the same type, NO
otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isMemberOfClass: (page 2103)

Declared In
NSObject.h

isMemberOfClass:
Returns a Boolean value that indicates whether the receiver is an instance of a given class.

- (BOOL)isMemberOfClass:(Class)aClass

Parameters
aClass

A class object representing the Objective-C class to be tested.

Return Value
YES if the receiver is an instance of aClass, otherwise NO.

Discussion
For example, in this code, isMemberOfClass: would return NO:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];
id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];
if ([anArchiver isMemberOfClass:[NSCoder class]])
 ...

Class objects may be compiler-created objects but they still support the concept of membership. Thus, you
can use this method to verify that the receiver is a specific Class object.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2103
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

See Also
– isKindOfClass: (page 2102)

Declared In
NSObject.h

isProxy
Returns a Boolean value that indicates whether the receiver does not descend from NSObject.

- (BOOL)isProxy

Return Value
NO if the receiver really descends from NSObject, otherwise YES.

Discussion
This method is necessary because sending isKindOfClass: (page 2102) or isMemberOfClass: (page 2103)
to an NSProxy object will test the object the proxy stands in for, not the proxy itself. Use this method to test
if the receiver is a proxy (or a member of some other root class).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

performSelector:
Sends a specified message to the receiver and returns the result of the message.

- (id)performSelector:(SEL)aSelector

Parameters
aSelector

A selector identifying the message to send. If aSelector is NULL, an NSInvalidArgumentException
is raised.

Return Value
An object that is the result of the message.

Discussion
The performSelector: method is equivalent to sending an aSelector message directly to the receiver.
For example, all three of the following messages do the same thing:

id myClone = [anObject copy];
id myClone = [anObject performSelector:@selector(copy)];
id myClone = [anObject performSelector:sel_getUid("copy")];

However, the performSelector:method allows you to send messages that aren’t determined until runtime.
A variable selector can be passed as the argument:

SEL myMethod = findTheAppropriateSelectorForTheCurrentSituation();
[anObject performSelector:myMethod];

2104 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

The aSelector argument should identify a method that takes no arguments. For methods that return
anything other than an object, use NSInvocation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– performSelector:withObject: (page 2105)
– performSelector:withObject:withObject: (page 2105)

Declared In
NSObject.h

performSelector:withObject:
Sends a message to the receiver with an object as the argument.

- (id)performSelector:(SEL)aSelector withObject:(id)anObject

Parameters
aSelector

A selector identifying the message to send. If aSelector is NULL, an NSInvalidArgumentException
is raised.

anObject
An object that is the sole argument of the message.

Return Value
An object that is the result of the message.

Discussion
This method is the same as performSelector: (page 2104) except that you can supply an argument for
aSelector. aSelector should identify a method that takes a single argument of type id. For methods
with other argument types and return values, use NSInvocation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– performSelector:withObject:withObject: (page 2105)
– methodForSelector: (page 1181) (NSObject class)

Related Sample Code
SearchField
ToolbarSample

Declared In
NSObject.h

performSelector:withObject:withObject:
Sends a message to the receiver with two objects as as arguments.

Instance Methods 2105
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

- (id)performSelector:(SEL)aSelector withObject:(id)anObject
withObject:(id)anotherObject

Parameters
aSelector

A selector identifying the message to send. If aSelector is NULL, an NSInvalidArgumentException
is raised.

anObject
An object that is the first argument of the message.

anotherObject
An object that is the second argument of the message

Return Value
An object that is the result of the message.

Discussion
This method is the same as performSelector: (page 2104) except that you can supply two arguments for
aSelector. aSelector should identify a method that can take two arguments of type id. For methods
with other argument types and return values, use NSInvocation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– performSelector:withObject: (page 2105)
– methodForSelector: (page 1181) (NSObject class)

Declared In
NSObject.h

release
Decrements the receiver’s reference count.

- (oneway void)release

Discussion
The receiver is sent a dealloc (page 1174) message when its reference count reaches 0.

You would only implement this method to define your own reference-counting scheme. Such implementations
should not invoke the inherited method; that is, they should not include a release message to super.

For more information on the reference counting mechanism, see Memory Management Programming Guide
for Cocoa.

Special Considerations

If garbage collection is enabled, this method is a no-op.

You must complete the object initialization (using an init method) before invoking release. For example,
the following code shows an error:

id anObject = [MyObject alloc];
[anObject release];

2106 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

You may call release from within an init method if initialization fails for some reason provided that you
have at least called superclass's designated initializer.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus
WhackedTV

Declared In
NSObject.h

respondsToSelector:
Returns a Boolean value that indicates whether the receiver implements or inherits a method that can respond
to a specified message.

- (BOOL)respondsToSelector:(SEL)aSelector

Parameters
aSelector

A selector that identifies a message.

Return Value
YES if the receiver implements or inherits a method that can respond to aSelector, otherwise NO.

Discussion
The application is responsible for determining whether a NO response should be considered an error.

You cannot test whether an object inherits a method from its superclass by sending respondsToSelector:
to the object using the super keyword. This method will still be testing the object as a whole, not just the
superclass’s implementation. Therefore, sending respondsToSelector: to super is equivalent to sending
it to self. Instead, you must invoke the NSObject class method instancesRespondToSelector: (page
1161) directly on the object’s superclass, as illustrated in the following code fragment.

if([MySuperclass instancesRespondToSelector:@selector(aMethod)]) {
 // invoke the inherited method
 [super aMethod];
}

You cannot simply use [[self superclass] instancesRespondToSelector:@selector(aMethod)]
since this may cause the method to fail if it is invoked by a subclass.

Note that if the receiver is able to forward aSelector messages to another object, it will be able to respond
to the message, albeit indirectly, even though this method returns NO.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2107
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

See Also
– forwardInvocation: (page 1177) (NSObject class)
+ instancesRespondToSelector: (page 1161) (NSObject class)

Declared In
NSObject.h

retain
Increments the receiver’s reference count.

- (id)retain

Return Value
self.

Discussion
You send an object a retain message when you want to prevent it from being deallocated without your
express permission.

An object is deallocated automatically when its reference count reaches 0. retain messages increment the
reference count, and release (page 2106) messages decrement it. For more information on this mechanism,
see Memory Management Programming Guide for Cocoa.

As a convenience, retain returns self because it is often used in nested expressions:

NSString *systemApps = [[NSString
 stringWithCString:"/Applications"] retain];

You would implement this method only if you were defining your own reference-counting scheme. Such
implementations must return self and should not invoke the inherited method by sending a retain
message to super.

Special Considerations

If garbage collection is enabled, this method is a no-op.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autorelease (page 2099)
– release (page 2106)

Related Sample Code
CIAnnotation
CoreRecipes
GridCalendar
Reducer
Sketch-112

Declared In
NSObject.h

2108 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

retainCount
Returns the receiver’s reference count.

- (NSUInteger)retainCount

Return Value
The receiver’s reference count.

Discussion
You might override this method in a class to implement your own reference-counting scheme. For objects
that never get released (that is, their release (page 2106) method does nothing), this method should return
UINT_MAX, as defined in <limits.h>.

The retainCount method does not account for any pending autorelease (page 2099) messages sent to
the receiver.

Important: This method is typically of no value in debugging memory management issues. Because any
number of framework objects may have retained an object in order to hold references to it, while at the same
time autorelease pools may be holding any number of deferred releases on an object, it is very unlikely that
you can get useful information from this method.

To understand the fundamental rules of memory management that you must abide by, read Memory
Management Rules. To diagnose memory management problems, use a suitable tool:

 ■ The LLVM/Clang Static analyzer can typically find memory management problems even before you run
your program.

 ■ The Object Alloc instrument in the Instruments application (see Instruments User Guide) can track object
allocation and destruction.

 ■ Shark (see Shark User Guide) also profiles memory allocations (amongst numerous other aspects of your
program).

Special Considerations

If garbage collection is enabled, the return value is undefined.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autorelease (page 2099)
– retain (page 2108)

Related Sample Code
SimpleThreads

Declared In
NSObject.h

self
Returns the receiver.

Instance Methods 2109
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

http://clang.llvm.org/StaticAnalysis.html

- (id)self

Return Value
The receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– class (page 2100)

Related Sample Code
GridCalendar
iSpend
Quartz Composer WWDC 2005 TextEdit
StickiesExample
TextEditPlus

Declared In
NSObject.h

superclass
Returns the class object for the receiver’s superclass.

- (Class)superclass

Return Value
The class object for the receiver’s superclass.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ superclass (page 1167) (NSObject class)

Declared In
NSObject.h

zone
Returns a pointer to the zone from which the receiver was allocated.

- (NSZone *)zone

Return Value
A pointer to the zone from which the receiver was allocated.

Discussion
Objects created without specifying a zone are allocated from the default zone.

Availability
Available in Mac OS X v10.0 and later.

2110 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

See Also
+ allocWithZone: (page 1152) (NSObject class)

Related Sample Code
QTCoreVideo102
QTCoreVideo103
QTCoreVideo201
QTCoreVideo202
QTCoreVideo301

Declared In
NSObject.h

Instance Methods 2111
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

2112 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 180

NSObject Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSScriptWhoseTests.h

Companion guide Cocoa Scripting Guide

Overview

This informal protocol defines a set of methods useful for comparing script objects.

Often the correct way to compare two objects for scripting is different from the correct way to compare
objects programmatically. This informal protocol defines a set of methods that can be implemented to
perform a comparison appropriate for scripting that is independent of other methods for doing comparisons.

Cocoa scripting uses these scripting comparison methods, if available, in the process of evaluating specifier
tests. If the first object being tested implements the appropriate method for the comparison operation, it
will be used. If the first object doesn’t implement the appropriate method but the second object implements
the inverse, the inverted comparison is performed. For example, instead of determining whether object one
is less than object two, Cocoa determines whether object two is greater than object one (but only for the
operations is equal, is less than or equal, is less than, is greater than or equal, or is
greater than). If neither of the objects implements the appropriate method, Cocoa falls back on similar
comparison operators in the protocol NSComparisonMethods (but again, only for the operations is equal,
is less than or equal, is less than, is greater than or equal, or is greater than).

Cocoa provides default implementations of these scripting comparison methods for NSString and
NSAttributedString. You should define implementations of these methods for any of your scriptable
objects that need to perform comparisons for scripting purposes that are different than the comparisons
provided by NSComparisonMethods. If none require different comparison methods, you can implement
only the methods you need from NSScriptingComparisonMethods.

Tasks

Performing Comparisons

– scriptingBeginsWith: (page 2114)
Returns YES if, in a scripting comparison, the compared object matches the beginning of object. A
default implementation is provided for NSString and NSAttributedString.

Overview 2113
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 181

NSScriptingComparisonMethods Protocol
Reference
(informal protocol)

– scriptingContains: (page 2114)
Returns YES if, in a scripting comparison, the compared object contains object. A default
implementation is provided for NSString and NSAttributedString.

– scriptingEndsWith: (page 2115)
Returns YES if, in a scripting comparison, the compared object matches the end of object. A default
implementation is provided for NSString and NSAttributedString.

– scriptingIsEqualTo: (page 2115)
Returns YES if, in a scripting comparison, the compared object is equal to object. A default
implementation is provided for NSString and NSAttributedString.

– scriptingIsGreaterThan: (page 2115)
Returns YES if, in a scripting comparison, the compared object is greater than object. A default
implementation is provided for NSString and NSAttributedString.

– scriptingIsGreaterThanOrEqualTo: (page 2115)
Returns YES if, in a scripting comparison, the compared object is greater than or equal to object. A
default implementation is provided for NSString and NSAttributedString.

– scriptingIsLessThan: (page 2116)
Returns YES if, in a scripting comparison, the compared object is less than object. A default
implementation is provided for NSString and NSAttributedString.

– scriptingIsLessThanOrEqualTo: (page 2116)
Returns YES if, in a scripting comparison, the compared object is less than or equal to object. A
default implementation is provided for NSString and NSAttributedString.

Instance Methods

scriptingBeginsWith:
Returns YES if, in a scripting comparison, the compared object matches the beginning of object. A default
implementation is provided for NSString and NSAttributedString.

- (BOOL)scriptingBeginsWith:(id)object

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

scriptingContains:
Returns YES if, in a scripting comparison, the compared object contains object. A default implementation
is provided for NSString and NSAttributedString.

- (BOOL)scriptingContains:(id)object

Availability
Available in Mac OS X v10.0 and later.

2114 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 181

NSScriptingComparisonMethods Protocol Reference

Declared In
NSScriptWhoseTests.h

scriptingEndsWith:
Returns YES if, in a scripting comparison, the compared object matches the end of object. A default
implementation is provided for NSString and NSAttributedString.

- (BOOL)scriptingEndsWith:(id)object

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

scriptingIsEqualTo:
Returns YES if, in a scripting comparison, the compared object is equal to object. A default implementation
is provided for NSString and NSAttributedString.

- (BOOL)scriptingIsEqualTo:(id)object

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

scriptingIsGreaterThan:
Returns YES if, in a scripting comparison, the compared object is greater than object. A default
implementation is provided for NSString and NSAttributedString.

- (BOOL)scriptingIsGreaterThan:(id)object

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

scriptingIsGreaterThanOrEqualTo:
Returns YES if, in a scripting comparison, the compared object is greater than or equal to object. A default
implementation is provided for NSString and NSAttributedString.

- (BOOL)scriptingIsGreaterThanOrEqualTo:(id)object

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2115
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 181

NSScriptingComparisonMethods Protocol Reference

Declared In
NSScriptWhoseTests.h

scriptingIsLessThan:
Returns YES if, in a scripting comparison, the compared object is less than object. A default implementation
is provided for NSString and NSAttributedString.

- (BOOL)scriptingIsLessThan:(id)object

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

scriptingIsLessThanOrEqualTo:
Returns YES if, in a scripting comparison, the compared object is less than or equal to object. A default
implementation is provided for NSString and NSAttributedString.

- (BOOL)scriptingIsLessThanOrEqualTo:(id)object

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptWhoseTests.h

2116 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 181

NSScriptingComparisonMethods Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSScriptKeyValueCoding.h

Companion guides Cocoa Scripting Guide
Key-Value Coding Programming Guide

Overview

Cocoa scripting takes advantage of key-value coding to get and set information in scriptable objects. The
methods in this category provide additional capabilities for working with key-value coding, including getting
and setting key values by index in multivalue keys and coercing (or converting) a key value. Additional
methods allow the implementer of a scriptable container class to provide fast access to elements that are
being referenced by name and unique ID.

Because Cocoa scripting invokes setValue:forKey: and mutableArrayValueForKey:, changes to model
objects made by AppleScript scripts are observable using automatic key-value observing.

Note: In Mac OS X version 10.3 and earlier, Cocoa scripting did not invoke setValue:forKey: or
mutableArrayValueForKey:, so automatic key-value observing notification was not always done for model
object changes caused by scripts. Also, In Mac OS X version 10.4, for backward binary compatibility, Cocoa
invokes the now-deprecated method takeValue:forKey: instead of setValue:forKey:, if
takeValue:forKey: is overridden.

Tasks

Indexed Access

– insertValue:atIndex:inPropertyWithKey: (page 2118)
Inserts an object at the specified index in the collection specified by the passed key.

– removeValueAtIndex:fromPropertyWithKey: (page 2119)
Removes the object at the specified index from the collection specified by the passed key.

– replaceValueAtIndex:inPropertyWithKey:withValue: (page 2119)
Replaces the object at the specified index in the collection specified by the passed key.

– valueAtIndex:inPropertyWithKey: (page 2120)
Retrieves an indexed object from the collection specified by the passed key.

Overview 2117
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 182

NSScriptKeyValueCoding Protocol Reference
(informal protocol)

Access by Name, Key, or ID

– insertValue:inPropertyWithKey: (page 2119)
Inserts an object in the collection specified by the passed key.

– valueWithName:inPropertyWithKey: (page 2120)
Retrieves a named object from the collection specified by the passed key.

– valueWithUniqueID:inPropertyWithKey: (page 2120)
Retrieves an object by ID from the collection specified by the passed key.

Coercion

– coerceValue:forKey: (page 2118)
Uses type info from the class description and NSScriptCoercionHandler to attempt to convert
value for key to the proper type, if necessary.

Instance Methods

coerceValue:forKey:
Uses type info from the class description and NSScriptCoercionHandler to attempt to convert value
for key to the proper type, if necessary.

- (id)coerceValue:(id)value forKey:(NSString *)key

Discussion
The method coerceValueFor<Key>: is used if it exists.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptKeyValueCoding.h

insertValue:atIndex:inPropertyWithKey:
Inserts an object at the specified index in the collection specified by the passed key.

- (void)insertValue:(id)value atIndex:(NSUInteger)index inPropertyWithKey:(NSString
 *)key

Discussion
The method insertIn<Key>:atIndex: is invoked if it exists. If no corresponding scripting-KVC-compliant
method (insertIn<Key>:atIndex:) is found, this method invokes mutableArrayValueForKey: and
mutates the result.

2118 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 182

NSScriptKeyValueCoding Protocol Reference

Note: Prior to Mac OS X version 10.4, this method did not invoke -mutableArrayValueForKey:.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptKeyValueCoding.h

insertValue:inPropertyWithKey:
Inserts an object in the collection specified by the passed key.

- (void)insertValue:(id)value inPropertyWithKey:(NSString *)key

Discussion
The method insertIn<Key>: is used if it exists. Otherwise, raises an NSUndefinedKeyException. This is
part of Cocoa’s scripting support for inserting newly-created objects into containers without explicitly
specifying a location.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSScriptKeyValueCoding.h

removeValueAtIndex:fromPropertyWithKey:
Removes the object at the specified index from the collection specified by the passed key.

- (void)removeValueAtIndex:(NSUInteger)index fromPropertyWithKey:(NSString *)key

Discussion
The method removeFrom<Key>AtIndex: is invoked if it exists. If no corresponding scripting-KVC-compliant
method (-removeFrom<Key>AtIndex:) is found, this method invokes -mutableArrayValueForKey:
and mutates the result.

Note: Prior to Mac OS X version 10.4, this method did not invoke -mutableArrayValueForKey:.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptKeyValueCoding.h

replaceValueAtIndex:inPropertyWithKey:withValue:
Replaces the object at the specified index in the collection specified by the passed key.

Instance Methods 2119
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 182

NSScriptKeyValueCoding Protocol Reference

- (void)replaceValueAtIndex:(NSUInteger)index inPropertyWithKey:(NSString *)key
withValue:(id)value

Discussion
The method replaceIn<Key>:atIndex: is invoked if it exists. If no corresponding scripting-KVC-compliant
method (-replaceIn<Key>atIndex:) is found, this method invokes -mutableArrayValueForKey: and
mutates the result.

Note: Prior to Mac OS X version 10.4, this method did not invoke -mutableArrayValueForKey:.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptKeyValueCoding.h

valueAtIndex:inPropertyWithKey:
Retrieves an indexed object from the collection specified by the passed key.

- (id)valueAtIndex:(NSUInteger)index inPropertyWithKey:(NSString *)key

Discussion
This actually works with a single-value key as well if index is 0. The method valueIn<Key>AtIndex: is
used if it exists.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptKeyValueCoding.h

valueWithName:inPropertyWithKey:
Retrieves a named object from the collection specified by the passed key.

- (id)valueWithName:(NSString *)name inPropertyWithKey:(NSString *)key

Discussion
The method valueIn<Key>WithName: is used if it exists. Otherwise, raises an NSUndefinedKeyException.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSScriptKeyValueCoding.h

valueWithUniqueID:inPropertyWithKey:
Retrieves an object by ID from the collection specified by the passed key.

2120 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 182

NSScriptKeyValueCoding Protocol Reference

- (id)valueWithUniqueID:(id)uniqueID inPropertyWithKey:(NSString *)key

Discussion
The method valueIn<Key>WithUniqueID: is invoked if it exists. Otherwise, raises an
NSUndefinedKeyException. The declared type of uniqueID in the constructed method must be id,
NSNumber *, NSString *, or one of the scalar types that can be encapsulated by NSNumber.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSScriptKeyValueCoding.h

Constants

NSScriptKeyValueCoding Exception Names
NSScriptKeyValueCoding defines the following exception.

extern NSString *NSOperationNotSupportedForKeyException;

Constants
NSOperationNotSupportedForKeyException

Can be raised by key-value coding methods that want to explicitly disallow certain manipulations or
accesses.

For instance, a setKey: method for a read-only key can raise this exception.

Available in Mac OS X v10.0 and later.

Declared in NSScriptKeyValueCoding.h.

Declared In
NSScriptKeyValueCoding.h

Constants 2121
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 182

NSScriptKeyValueCoding Protocol Reference

2122 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 182

NSScriptKeyValueCoding Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSScriptObjectSpecifiers.h

Companion guide Cocoa Scripting Guide

Overview

Informal protocol. Allows scriptable objects that can provide a fully specified object specifier to themselves
within an application to do so. It also enables containers of objects to perform their own specifier evaluation.

For a comprehensive treatment of object specifiers, including sample code, see Object Specifiers in Cocoa
Scripting Guide.

Tasks

Working with Object Specifiers

– objectSpecifier (page 2124)
Returns an object specifier for the receiver.

– indicesOfObjectsByEvaluatingObjectSpecifier: (page 2123)
Returns the indices of the specified container objects.

Instance Methods

indicesOfObjectsByEvaluatingObjectSpecifier:
Returns the indices of the specified container objects.

- (NSArray *)indicesOfObjectsByEvaluatingObjectSpecifier:(NSScriptObjectSpecifier
 *)specifier

Parameters
specifier

An object specifier for the container objects for which to obtain the indices.

Overview 2123
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 183

NSScriptObjectSpecifiers Protocol Reference
(informal protocol)

Return Value
A zero-based array of NSNumber objects that identify the zero-based indices of the container objects that
match specifier, or nil if no matching objects were found.

Discussion
Containers that want to evaluate some specifiers on their own should implement this method. If this method
returns nil, the object specifier will go on to do its own evaluation, so you should only return nil if that's
the behavior you want, or if an error occurs. If this method returns an array, the object specifier will use the
NSNumber objects in it as the indices. So, if you evaluate the specifier and there are no objects that match,
you should return an empty array, not nil. If you find only one object, you should still return its index in an
array. Returning an array with a single index where the index is –1 is interpreted to mean all the objects.

For an example implementation, see "Implementing Object Specifiers" in Object Specifiers in Cocoa Scripting
Guide

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScriptObjectSpecifiers.h

objectSpecifier
Returns an object specifier for the receiver.

- (NSScriptObjectSpecifier *)objectSpecifier

Return Value
A fully specified object specifier to the receiver within the application.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSScriptObjectSpecifiers.h

2124 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 183

NSScriptObjectSpecifiers Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLAuthenticationChallenge.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

The NSURLAuthenticationChallengeSender protocol represents the interface that the sender of an
authentication challenge must implement.

The methods in the protocol are generally sent by a delegate in response to receiving a
connection:didReceiveAuthenticationChallenge: (page 1761) or
download:didReceiveAuthenticationChallenge: (page 1788). The different methods provide different
ways of responding to authentication challenges.

Tasks

Protocol Methods

– cancelAuthenticationChallenge: (page 2126)
Cancels a given authentication challenge.

– continueWithoutCredentialForAuthenticationChallenge: (page 2126)
Attempt to continue downloading a request without providing a credential for a given challenge.

– useCredential:forAuthenticationChallenge: (page 2126)
Attempt to use a given credential for a given authentication challenge.

Overview 2125
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 184

NSURLAuthenticationChallengeSender
Protocol Reference

Instance Methods

cancelAuthenticationChallenge:
Cancels a given authentication challenge.

- (void)cancelAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
challenge

The authentication challenge to cancel.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLAuthenticationChallenge.h

continueWithoutCredentialForAuthenticationChallenge:
Attempt to continue downloading a request without providing a credential for a given challenge.

-
(void)continueWithoutCredentialForAuthenticationChallenge:(NSURLAuthenticationChallenge
 *)challenge

Parameters
challenge

A challenge without authentication credentials.

Discussion
This method has no effect if it is called with an authentication challenge that has already been handled.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLAuthenticationChallenge.h

useCredential:forAuthenticationChallenge:
Attempt to use a given credential for a given authentication challenge.

- (void)useCredential:(NSURLCredential *)credential
forAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
credential

The credential to use for authentication.

2126 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 184

NSURLAuthenticationChallengeSender Protocol Reference

challenge
The challenge for which to use credential.

Discussion
This method has no effect if it is called with an authentication challenge that has already been handled.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLAuthenticationChallenge.h

Instance Methods 2127
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 184

NSURLAuthenticationChallengeSender Protocol Reference

2128 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 184

NSURLAuthenticationChallengeSender Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURL.h

Availability Deprecated in Mac OS X v10.4 and later.

Important: NSURLClient is deprecated in Mac OS X v10.4 and later. Applications that are intended for
deployment on Mac OS X v10.3 or later should use NSURLConnection or NSURLDownload instead; see URL
Loading System.

Overview

NSURLClient is deprecated in Mac OS X v10.4 and later. Applications that are intended for deployment on
Mac OS X v10.3 or later should use NSURLConnection or NSURLDownload instead; see URL Loading System.

Tasks

Working with URL Clients

– URL:resourceDataDidBecomeAvailable: (page 2129) Deprecated in Mac OS X v10.4 and later
Notifies the URL client that the URL has loaded new data.

– URL:resourceDidFailLoadingWithReason: (page 2130) Deprecated in Mac OS X v10.4 and later
Notifies the URL client that the URL failed to load its resource data.

– URLResourceDidCancelLoading: (page 2130) Deprecated in Mac OS X v10.4 and later
Notifies the URL client that the URL stopped loading its resource data because loading was canceled.

– URLResourceDidFinishLoading: (page 2131) Deprecated in Mac OS X v10.4 and later
Notifies the URL client that the URL has finished loading its resource data.

Instance Methods

URL:resourceDataDidBecomeAvailable:
Notifies the URL client that the URL has loaded new data. (Deprecated in Mac OS X v10.4 and later.)

Overview 2129
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 185

NSURLClient Protocol Reference (Not
Recommended)
(informal protocol)

- (void)URL:(NSURL *)sender resourceDataDidBecomeAvailable:(NSData *)newBytes

Parameters
sender

The URL that has loaded new data.

newBytes
The newly loaded data.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURL.h

URL:resourceDidFailLoadingWithReason:
Notifies the URL client that the URL failed to load its resource data. (Deprecated in Mac OS X v10.4 and later.)

- (void)URL:(NSURL *)sender resourceDidFailLoadingWithReason:(NSString *)reason

Parameters
sender

The URL that failed to load its resource data.

reason
The reason the load failed.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURL.h

URLResourceDidCancelLoading:
Notifies the URL client that the URL stopped loading its resource data because loading was canceled.
(Deprecated in Mac OS X v10.4 and later.)

- (void)URLResourceDidCancelLoading:(NSURL *)sender

Parameters
sender

The URL that stopped loading its resource data because loading was canceled.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURL.h

2130 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 185

NSURLClient Protocol Reference (Not Recommended)

URLResourceDidFinishLoading:
Notifies the URL client that the URL has finished loading its resource data. (Deprecated in Mac OS X v10.4
and later.)

- (void)URLResourceDidFinishLoading:(NSURL *)sender

Parameters
sender

The URL that has finished loading its resource data.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURL.h

Instance Methods 2131
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 185

NSURLClient Protocol Reference (Not Recommended)

2132 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 185

NSURLClient Protocol Reference (Not Recommended)

Adopted by NSURL

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSURLHandle.h

NSURLHandleClient is deprecated in Mac OS X v10.4 and later. Applications that are intended for deployment
on Mac OS X v10.3 or later should use NSURLConnection or NSURLDownload instead; see URL Loading
System.

Overview

This protocol defines the interface for clients to NSURLHandle.

Tasks

Notification Methods

– URLHandle:resourceDataDidBecomeAvailable: (page 2134) Deprecated in Mac OS X v10.4 and later
Sent periodically by an URL handle when new resource data becomes available. (Deprecated. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

– URLHandle:resourceDidFailLoadingWithReason: (page 2134) Deprecated in Mac OS X v10.4 and
later

Sent when the URL handle failed to load resource data for some reason other than being canceled.
(Deprecated. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

– URLHandleResourceDidBeginLoading: (page 2134) Deprecated in Mac OS X v10.4 and later
Sent when an URL handle begins loading resource data. (Deprecated. Use NSURLConnection or
NSURLDownload instead; see URL Loading System.)

– URLHandleResourceDidCancelLoading: (page 2135) Deprecated in Mac OS X v10.4 and later
Sent when an URL handle has canceled loading resource data in response to a programmatic request.
(Deprecated. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

– URLHandleResourceDidFinishLoading: (page 2135) Deprecated in Mac OS X v10.4 and later
Sent when an URL handle finishes loading resource data. (Deprecated. Use NSURLConnection or
NSURLDownload instead; see URL Loading System.)

Overview 2133
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 186

NSURLHandleClient Protocol Reference

Instance Methods

URLHandle:resourceDataDidBecomeAvailable:
Sent periodically by an URL handle when new resource data becomes available. (Deprecated in Mac OS X
v10.4 and later. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (void)URLHandle:(NSURLHandle *)sender resourceDataDidBecomeAvailable:(NSData
*)newBytes

Parameters
sender

The URL handle sending the message.

newBytes
The newly available data.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

URLHandle:resourceDidFailLoadingWithReason:
Sent when the URL handle failed to load resource data for some reason other than being canceled. (Deprecated
in Mac OS X v10.4 and later. Use NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (void)URLHandle:(NSURLHandle *)sender resourceDidFailLoadingWithReason:(NSString
 *)reason

Parameters
sender

The URL handle sending the message.

reason
A human-readable, localized string describing why the load failed.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

URLHandleResourceDidBeginLoading:
Sent when an URL handle begins loading resource data. (Deprecated in Mac OS X v10.4 and later. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (void)URLHandleResourceDidBeginLoading:(NSURLHandle *)sender

2134 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 186

NSURLHandleClient Protocol Reference

Parameters
sender

The URL handle sending the message.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

URLHandleResourceDidCancelLoading:
Sent when an URL handle has canceled loading resource data in response to a programmatic request.
(Deprecated in Mac OS X v10.4 and later. Use NSURLConnection or NSURLDownload instead; see URL Loading
System.)

- (void)URLHandleResourceDidCancelLoading:(NSURLHandle *)sender

Parameters
sender

The URL handle sending the message.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

URLHandleResourceDidFinishLoading:
Sent when an URL handle finishes loading resource data. (Deprecated in Mac OS X v10.4 and later. Use
NSURLConnection or NSURLDownload instead; see URL Loading System.)

- (void)URLHandleResourceDidFinishLoading:(NSURLHandle *)sender

Parameters
sender

The URL handle sending the message.

Availability
Deprecated in Mac OS X v10.4 and later.

Declared In
NSURLHandle.h

Instance Methods 2135
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 186

NSURLHandleClient Protocol Reference

2136 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 186

NSURLHandleClient Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/Foundation.framework

Declared in Foundation/NSURLProtocol.h

Availability Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Companion guide URL Loading System

Overview

The NSURLProtocolClient protocol provides the interface used by NSURLProtocol subclasses to
communicate with the URL loading system. An application should never have the need to implement this
protocol.

Tasks

Protocol Methods

– URLProtocol:cachedResponseIsValid: (page 2138)
Sent to indicate to the URL loading system that a cached response is valid.

– URLProtocol:didCancelAuthenticationChallenge: (page 2138)
Sent to indicate to the URL loading system that an authentication challenge has been canceled.

– URLProtocol:didFailWithError: (page 2139)
Sent when the load request fails due to an error.

– URLProtocol:didLoadData: (page 2139)
An NSURLProtocol subclass instance, protocol, sends this message to [protocol client] as it
loads data.

– URLProtocol:didReceiveAuthenticationChallenge: (page 2139)
Sent to indicate to the URL loading system that an authentication challenge has been received.

– URLProtocol:didReceiveResponse:cacheStoragePolicy: (page 2140)
Sent to indicate to the URL loading system that the protocol implementation has created a response
object for the request.

Overview 2137
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 187

NSURLProtocolClient Protocol Reference

– URLProtocol:wasRedirectedToRequest:redirectResponse: (page 2140)
Sent to indicate to the URL loading system that the protocol implementation has been redirected.

– URLProtocolDidFinishLoading: (page 2141)
Sent to indicate to the URL loading system that the protocol implementation has finished loading.

Instance Methods

URLProtocol:cachedResponseIsValid:
Sent to indicate to the URL loading system that a cached response is valid.

- (void)URLProtocol:(NSURLProtocol *)protocol
cachedResponseIsValid:(NSCachedURLResponse *)cachedResponse

Parameters
protocol

The URL protocol object sending the message.

cachedResponse
The cached response whose validity is being communicated.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

URLProtocol:didCancelAuthenticationChallenge:
Sent to indicate to the URL loading system that an authentication challenge has been canceled.

- (void)URLProtocol:(NSURLProtocol *)protocol
didCancelAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
protocol

The URL protocol object sending the message.

challenge
The authentication challenge that was canceled.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

2138 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 187

NSURLProtocolClient Protocol Reference

URLProtocol:didFailWithError:
Sent when the load request fails due to an error.

- (void)URLProtocol:(NSURLProtocol *)protocol didFailWithError:(NSError *)error

Parameters
protocol

The URL protocol object sending the message.

error
The error that caused the failure of the load request.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

URLProtocol:didLoadData:
An NSURLProtocol subclass instance, protocol, sends this message to [protocol client] as it loads
data.

- (void)URLProtocol:(NSURLProtocol *)protocol didLoadData:(NSData *)data

Discussion
The data object must contain only new data loaded since the previous invocation of this method.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

URLProtocol:didReceiveAuthenticationChallenge:
Sent to indicate to the URL loading system that an authentication challenge has been received.

- (void)URLProtocol:(NSURLProtocol *)protocol
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters
protocol

The URL protocol object sending the message.

challenge
The authentication challenge that has been received.

Discussion
The protocol client guarantees that it will answer the request on the same thread that called this method.
The client may add a default credential to the challenge it issues to the connection delegate, if protocol
did not provide one.

Instance Methods 2139
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 187

NSURLProtocolClient Protocol Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

URLProtocol:didReceiveResponse:cacheStoragePolicy:
Sent to indicate to the URL loading system that the protocol implementation has created a response object
for the request.

- (void)URLProtocol:(NSURLProtocol *)protocol didReceiveResponse:(NSURLResponse
*)response cacheStoragePolicy:(NSURLCacheStoragePolicy)policy

Parameters
protocol

The URL protocol object sending the message.

response
The newly available response object.

policy
The cache storage policy for the response.

Discussion
The implementation should provide the NSURLCacheStoragePolicy that should be used if the response is to
be stored in a cache as the policy value.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

URLProtocol:wasRedirectedToRequest:redirectResponse:
Sent to indicate to the URL loading system that the protocol implementation has been redirected.

- (void)URLProtocol:(NSURLProtocol *)protocol wasRedirectedToRequest:(NSURLRequest
 *)request redirectResponse:(NSURLResponse *)redirectResponse

Parameters
protocol

The URL protocol object sending the message.

request
The new request that the original request was redirected to.

redirectResponse
The response from the original request that caused the redirect.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.

2140 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 187

NSURLProtocolClient Protocol Reference

Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

URLProtocolDidFinishLoading:
Sent to indicate to the URL loading system that the protocol implementation has finished loading.

- (void)URLProtocolDidFinishLoading:(NSURLProtocol *)protocol

Parameters
protocol

The URL protocol object sending the message.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtocol.h

Instance Methods 2141
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 187

NSURLProtocolClient Protocol Reference

2142 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 187

NSURLProtocolClient Protocol Reference

2143
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART III

Functions

2144
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART III

Functions

Framework: Foundation/Foundation.h

Overview

This chapter describes the functions and function-like macros defined in the Foundation Framework.

Functions by Task

Assertions
For additional information about Assertions, see Assertions and Logging.

NSAssert (page 2159)
Generates an assertion if a given condition is false.

NSAssert1 (page 2160)
Generates an assertion if a given condition is false.

NSAssert2 (page 2161)
Generates an assertion if a given condition is false.

NSAssert3 (page 2162)
Generates an assertion if a given condition is false.

NSAssert4 (page 2163)
Generates an assertion if a given condition is false.

NSAssert5 (page 2165)
Generates an assertion if a given condition is false.

NSCAssert (page 2166)
Generates an assertion if the given condition is false.

NSCAssert1 (page 2166)
NSCAssert1 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert2 (page 2167)
NSCAssert2 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert3 (page 2168)
NSCAssert3 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert4 (page 2169)
NSCAssert4 is one of a series of macros that generate assertions if the given condition is false.

Overview 2145
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSCAssert5 (page 2169)
NSCAssert5 is one of a series of macros that generate assertions if the given condition is false.

NSCParameterAssert (page 2177)
Evaluates the specified parameter.

NSParameterAssert (page 2225)
Validates the specified parameter.

Bundles
For additional information on generating strings files see Strings Files in Internationalization Programming
Topics.

NSLocalizedString (page 2209)
Returns a localized version of a string.

NSLocalizedStringFromTable (page 2209)
Returns a localized version of a string.

NSLocalizedStringFromTableInBundle (page 2210)
Returns a localized version of a string.

NSLocalizedStringWithDefaultValue (page 2210)
Returns a localized version of a string.

Byte Ordering

NSConvertHostDoubleToSwapped (page 2172)
Performs a type conversion.

NSConvertHostFloatToSwapped (page 2172)
Performs a type conversion.

NSConvertSwappedDoubleToHost (page 2173)
Performs a type conversion.

NSConvertSwappedFloatToHost (page 2173)
Performs a type conversion.

NSHostByteOrder (page 2200)
Returns the endian format.

NSSwapBigDoubleToHost (page 2242)
A utility for swapping the bytes of a number.

NSSwapBigFloatToHost (page 2243)
A utility for swapping the bytes of a number.

NSSwapBigIntToHost (page 2243)
A utility for swapping the bytes of a number.

NSSwapBigLongLongToHost (page 2243)
A utility for swapping the bytes of a number.

NSSwapBigLongToHost (page 2244)
A utility for swapping the bytes of a number.

2146 Functions by Task
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSSwapBigShortToHost (page 2244)
A utility for swapping the bytes of a number.

NSSwapDouble (page 2245)
A utility for swapping the bytes of a number.

NSSwapFloat (page 2245)
A utility for swapping the bytes of a number.

NSSwapHostDoubleToBig (page 2246)
A utility for swapping the bytes of a number.

NSSwapHostDoubleToLittle (page 2246)
A utility for swapping the bytes of a number.

NSSwapHostFloatToBig (page 2246)
A utility for swapping the bytes of a number.

NSSwapHostFloatToLittle (page 2247)
A utility for swapping the bytes of a number.

NSSwapHostIntToBig (page 2247)
A utility for swapping the bytes of a number.

NSSwapHostIntToLittle (page 2248)
A utility for swapping the bytes of a number.

NSSwapHostLongLongToBig (page 2248)
A utility for swapping the bytes of a number.

NSSwapHostLongLongToLittle (page 2249)
A utility for swapping the bytes of a number.

NSSwapHostLongToBig (page 2249)
A utility for swapping the bytes of a number.

NSSwapHostLongToLittle (page 2249)
A utility for swapping the bytes of a number.

NSSwapHostShortToBig (page 2250)
A utility for swapping the bytes of a number.

NSSwapHostShortToLittle (page 2250)
A utility for swapping the bytes of a number.

NSSwapInt (page 2251)
A utility for swapping the bytes of a number.

NSSwapLittleDoubleToHost (page 2251)
A utility for swapping the bytes of a number.

NSSwapLittleFloatToHost (page 2252)
A utility for swapping the bytes of a number.

NSSwapLittleIntToHost (page 2252)
A utility for swapping the bytes of a number.

NSSwapLittleLongLongToHost (page 2252)
A utility for swapping the bytes of a number.

NSSwapLittleLongToHost (page 2253)
A utility for swapping the bytes of a number.

NSSwapLittleShortToHost (page 2253)
A utility for swapping the bytes of a number.

Functions by Task 2147
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSSwapLong (page 2254)
A utility for swapping the bytes of a number.

NSSwapLongLong (page 2254)
A utility for swapping the bytes of a number.

NSSwapShort (page 2255)
A utility for swapping the bytes of a number.

Decimals
You can also use the class NSDecimalNumber for decimal arithmetic.

NSDecimalAdd (page 2181)
Adds two decimal values.

NSDecimalCompact (page 2182)
Compacts the decimal structure for efficiency.

NSDecimalCompare (page 2182)
Compares two decimal values.

NSDecimalCopy (page 2183)
Copies the value of a decimal number.

NSDecimalDivide (page 2183)
Divides one decimal value by another.

NSDecimalIsNotANumber (page 2183)
Returns a Boolean that indicates whether a given decimal contains a valid number.

NSDecimalMultiply (page 2184)
Multiplies two decimal numbers together.

NSDecimalMultiplyByPowerOf10 (page 2184)
Multiplies a decimal by the specified power of 10.

NSDecimalNormalize (page 2185)
Normalizes the internal format of two decimal numbers to simplify later operations.

NSDecimalPower (page 2185)
Raises the decimal value to the specified power.

NSDecimalRound (page 2186)
Rounds off the decimal value.

NSDecimalString (page 2186)
Returns a string representation of the decimal value.

NSDecimalSubtract (page 2187)
Subtracts one decimal value from another.

Exception Handling
You can find the following macros implemented in NSException.h. Exception Programming Topics for Cocoa
discusses these macros and gives examples of their usage. These macros are useful for code that needs to
run on versions of the system prior to Mac OS X v10.3 For later versions of the operating system, you should
use the Objective-C compiler directives @try, @catch, @throw, and @finally; for information about these
directives, see Exception Handling in The Objective-C 2.0 Programming Language.

2148 Functions by Task
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NS_DURING (page 2261)
Marks the start of the exception-handling domain.

NS_ENDHANDLER (page 2261)
Marks the end of the local event handler.

NS_HANDLER (page 2262)
Marks the end of the exception-handling domain and the start of the local exception handler.

NS_VALUERETURN (page 2262)
Permits program control to exit from an exception-handling domain with a value of a specified type.

NS_VOIDRETURN (page 2262)
Permits program control to exit from an exception-handling domain.

Java Setup

NSJavaBundleCleanup (page 2205) Deprecated in Mac OS X v10.5
This function has been deprecated.

NSJavaBundleSetup (page 2205) Deprecated in Mac OS X v10.5
This function has been deprecated.

NSJavaClassesForBundle (page 2205) Deprecated in Mac OS X v10.5
Loads the Java classes located in the specified bundle.

NSJavaClassesFromPath (page 2206) Deprecated in Mac OS X v10.5
Loads the Java classes located at the specified path.

NSJavaNeedsToLoadClasses (page 2206) Deprecated in Mac OS X v10.5
Returns a Boolean value that indicates whether a virtual machine is needed or if Java classes are
provided.

NSJavaNeedsVirtualMachine (page 2207) Deprecated in Mac OS X v10.5
Returns a Boolean value that indicates whether a Java virtual machine is required.

NSJavaObjectNamedInPath (page 2207) Deprecated in Mac OS X v10.5
Creates an instance of the named class using the class loader previously specified at the given path.

NSJavaProvidesClasses (page 2207) Deprecated in Mac OS X v10.5
Returns a Boolean value that indicates whether Java classes are provided.

NSJavaSetup (page 2208) Deprecated in Mac OS X v10.5
Loads the Java virtual machine with specified parameters.

NSJavaSetupVirtualMachine (page 2208) Deprecated in Mac OS X v10.5
Sets up the Java virtual machine.

Hash Tables

NSAllHashTableObjects (page 2157)
Returns all of the elements in the specified hash table.

NSCompareHashTables (page 2171)
Returns a Boolean value that indicates whether the elements of two hash tables are equal.

NSCopyHashTableWithZone (page 2174)
Performs a shallow copy of the specified hash table.

Functions by Task 2149
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSCountHashTable (page 2176)
Returns the number of elements in a hash table.

NSCreateHashTable (page 2177)
Creates and returns a new hash table.

NSCreateHashTableWithZone (page 2178)
Creates a new hash table in a given zone.

NSEndHashTableEnumeration (page 2189)
Used when finished with an enumerator.

NSEnumerateHashTable (page 2190)
Creates an enumerator for the specified hash table.

NSFreeHashTable (page 2193)
Deletes the specified hash table.

NSHashGet (page 2195)
Returns an element of the hash table.

NSHashInsert (page 2196)
Adds an element to the specified hash table.

NSHashInsertIfAbsent (page 2196)
Adds an element to the specified hash table only if the table does not already contain the element.

NSHashInsertKnownAbsent (page 2197)
Adds an element to the specified hash table.

NSHashRemove (page 2197)
Removes an element from the specified hash table.

NSNextHashEnumeratorItem (page 2223)
Returns the next hash-table element in the enumeration.

NSResetHashTable (page 2232)
Deletes the elements of the specified hash table.

NSStringFromHashTable (page 2239)
Returns a string describing the hash table’s contents.

HFS File Types

NSFileTypeForHFSTypeCode (page 2193)
Returns a string encoding a file type code.

NSHFSTypeCodeFromFileType (page 2198)
Returns a file type code.

NSHFSTypeOfFile (page 2199)
Returns a string encoding a file type.

Managing Map Tables

NSAllMapTableKeys (page 2157)
Returns all of the keys in the specified map table.

2150 Functions by Task
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSAllMapTableValues (page 2158)
Returns all of the values in the specified table.

NSCompareMapTables (page 2171)
Compares the elements of two map tables for equality.

NSCopyMapTableWithZone (page 2174)
Performs a shallow copy of the specified map table.

NSCountMapTable (page 2176)
Returns the number of elements in a map table.

NSCreateMapTable (page 2178)
Creates a new map table in the default zone.

NSCreateMapTableWithZone (page 2179)
Creates a new map table in the specified zone.

NSEndMapTableEnumeration (page 2190)
Used when finished with an enumerator.

NSEnumerateMapTable (page 2190)
Creates an enumerator for the specified map table.

NSFreeMapTable (page 2194)
Deletes the specified map table.

NSMapGet (page 2215)
Returns a map table value for the specified key.

NSMapInsert (page 2216)
Inserts a key-value pair into the specified table.

NSMapInsertIfAbsent (page 2216)
Inserts a key-value pair into the specified table.

NSMapInsertKnownAbsent (page 2217)
Inserts a key-value pair into the specified table if the pair had not been previously added.

NSMapMember (page 2218)
Indicates whether a given table contains a given key.

NSMapRemove (page 2218)
Removes a key and corresponding value from the specified table.

NSNextMapEnumeratorPair (page 2223)
Returns a Boolean value that indicates whether the next map-table pair in the enumeration are set.

NSResetMapTable (page 2232)
Deletes the elements of the specified map table.

NSStringFromMapTable (page 2239)
Returns a string describing the map table’s contents.

Managing Object Allocation and Deallocation

NSAllocateObject (page 2159)
Creates and returns a new instance of a given class.

NSCopyObject (page 2175)
Creates an exact copy of an object.

Functions by Task 2151
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSDeallocateObject (page 2181)
Destroys an existing object.

NSDecrementExtraRefCountWasZero (page 2187)
Decrements the specified object’s reference count.

NSExtraRefCount (page 2193)
Returns the specified object’s reference count.

NSIncrementExtraRefCount (page 2201)
Increments the specified object’s reference count.

NSShouldRetainWithZone (page 2236)
Indicates whether an object should be retained.

Interacting with the Objective-C Runtime

NSGetSizeAndAlignment (page 2195)
Obtains the actual size and the aligned size of an encoded type.

NSClassFromString (page 2170)
Obtains a class by name.

NSStringFromClass (page 2238)
Returns the name of a class as a string.

NSSelectorFromString (page 2234)
Returns the selector with a given name.

NSStringFromSelector (page 2241)
Returns a string representation of a given selector.

NSStringFromProtocol (page 2240)
Returns the name of a protocol as a string.

NSProtocolFromString (page 2228)
Returns a the protocol with a given name.

Logging Output

NSLog (page 2211)
Logs an error message to the Apple System Log facility.

NSLogv (page 2212)
Logs an error message to the Apple System Log facility.

Managing File Paths

NSFullUserName (page 2194)
Returns a string containing the full name of the current user.

NSHomeDirectory (page 2199)
Returns the path to the current user’s home directory.

NSHomeDirectoryForUser (page 2200)
Returns the path to a given user’s home directory.

2152 Functions by Task
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSOpenStepRootDirectory (page 2225)
Returns the root directory of the user’s system.

NSSearchPathForDirectoriesInDomains (page 2234)
Creates a list of directory search paths.

NSTemporaryDirectory (page 2255)
Returns the path of the temporary directory for the current user.

NSUserName (page 2257)
Returns the logon name of the current user.

Managing Points

NSEqualPoints (page 2191)
Returns a Boolean value that indicates whether two points are equal.

NSMakePoint (page 2214)
Creates a new NSPoint from the specified values.

NSPointFromString (page 2227)
Returns a point from a text-based representation.

NSStringFromPoint (page 2239)
Returns a string representation of a point.

NSPointFromCGPoint (page 2226)
Returns an NSPoint typecast from a CGPoint.

NSPointToCGPoint (page 2228)
Returns a CGPoint typecast from an NSPoint.

Managing Ranges

NSEqualRanges (page 2191)
Returns a Boolean value that indicates whether two given ranges are equal.

NSIntersectionRange (page 2203)
Returns the intersection of the specified ranges.

NSLocationInRange (page 2211)
Returns a Boolean value that indicates whether a specified position is in a given range.

NSMakeRange (page 2214)
Creates a new NSRange from the specified values.

NSMaxRange (page 2219)
Returns the number 1 greater than the maximum value within the range.

NSRangeFromString (page 2229)
Returns a range from a text-based representation.

NSStringFromRange (page 2240)
Returns a string representation of a range.

NSUnionRange (page 2256)
Returns the union of the specified ranges.

Functions by Task 2153
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Managing Rectangles

NSContainsRect (page 2172)
Returns a Boolean value that indicates whether one rectangle completely encloses another.

NSDivideRect (page 2188)
Divides a rectangle into two new rectangles.

NSEqualRects (page 2192)
Returns a Boolean value that indicates whether the two rectangles are equal.

NSIsEmptyRect (page 2204)
Returns a Boolean value that indicates whether a given rectangle is empty.

NSHeight (page 2198)
Returns the height of a given rectangle.

NSInsetRect (page 2201)
Insets a rectangle by a specified amount.

NSIntegralRect (page 2202)
Adjusts the sides of a rectangle to integer values.

NSIntersectionRect (page 2203)
Calculates the intersection of two rectangles.

NSIntersectsRect (page 2204)
Returns a Boolean value that indicates whether two rectangles intersect.

NSMakeRect (page 2214)
Creates a new NSRect from the specified values.

NSMaxX (page 2219)
Returns the largest x coordinate of a given rectangle.

NSMaxY (page 2220)
Returns the largest y coordinate of a given rectangle.

NSMidX (page 2220)
Returns the x coordinate of a given rectangle’s midpoint.

NSMidY (page 2221)
Returns the y coordinate of a given rectangle’s midpoint.

NSMinX (page 2221)
Returns the smallest x coordinate of a given rectangle.

NSMinY (page 2222)
Returns the smallest y coordinate of a given rectangle.

NSMouseInRect (page 2222)
Returns a Boolean value that indicates whether the point is in the specified rectangle.

NSOffsetRect (page 2224)
Offsets the rectangle by the specified amount.

NSPointInRect (page 2227)
Returns a Boolean value that indicates whether a given point is in a given rectangle.

NSRectFromString (page 2231)
Returns a rectangle from a text-based representation.

NSStringFromRect (page 2241)
Returns a string representation of a rectangle.

2154 Functions by Task
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSRectFromCGRect (page 2230)
Returns an NSRect typecast from a CGRect.

NSRectToCGRect (page 2231)
Returns a CGRect typecast from an NSRect.

NSUnionRect (page 2256)
Calculates the union of two rectangles.

NSWidth (page 2257)
Returns the width of the specified rectangle.

Managing Sizes

NSEqualSizes (page 2192)
Returns a Boolean that indicates whether two size values are equal.

NSMakeSize (page 2215)
Returns a new NSSize from the specified values.

NSSizeFromString (page 2237)
Returns an NSSize from a text-based representation.

NSStringFromSize (page 2242)
Returns a string representation of a size.

NSSizeFromCGSize (page 2237)
Returns an NSSize typecast from a CGSize.

NSSizeToCGSize (page 2237)
Returns a CGSize typecast from an NSSize.

Uncaught Exception Handlers
Whether there’s an uncaught exception handler function, any uncaught exceptions cause the program to
terminate, unless the exception is raised during the posting of a notification.

NSGetUncaughtExceptionHandler (page 2195)
Returns the top-level error handler.

NSSetUncaughtExceptionHandler (page 2235)
Changes the top-level error handler.

Managing Memory

NSDefaultMallocZone (page 2188)
Returns the default zone.

NSAllocateCollectable (page 2158)
Allocates collectable memory.

NSReallocateCollectable (page 2229)
Reallocates collectable memory.

NSMakeCollectable (page 2213)
Makes a newly allocated Core Foundation object eligible for collection.

Functions by Task 2155
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSAllocateMemoryPages (page 2158)
Allocates a new block of memory.

NSCopyMemoryPages (page 2175)
Copies a block of memory.

NSDeallocateMemoryPages (page 2180)
Deallocates the specified block of memory.

NSLogPageSize (page 2212)
Returns the binary log of the page size.

NSPageSize (page 2225)
Returns the number of bytes in a page.

NSRealMemoryAvailable (page 2230)
Returns information about the user’s system.

NSRoundDownToMultipleOfPageSize (page 2233)
Returns the specified number of bytes rounded down to a multiple of the page size.

NSRoundUpToMultipleOfPageSize (page 2233)
Returns the specified number of bytes rounded up to a multiple of the page size.

Managing Zones

NSCreateZone (page 2180)
Creates a new zone.

NSRecycleZone (page 2232)
Frees memory in a zone.

NSSetZoneName (page 2236)
Sets the name of the specified zone.

NSZoneCalloc (page 2258)
Allocates memory in a zone.

NSZoneFree (page 2258)
Deallocates a block of memory in the specified zone.

NSZoneFromPointer (page 2259)
Gets the zone for a given block of memory.

NSZoneMalloc (page 2259)
Allocates memory in a zone.

NSZoneName (page 2260)
Returns the name of the specified zone.

NSZoneRealloc (page 2260)
Allocates memory in a zone.

2156 Functions by Task
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Functions

NSAllHashTableObjects
Returns all of the elements in the specified hash table.

NSArray * NSAllHashTableObjects (
 NSHashTable *table
);

Return Value
An array object containing all the elements of table.

Discussion
This function should be called only when the table elements are objects, not when they’re any other data
type.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCreateHashTable (page 2177)
NSFreeHashTable (page 2193)

Declared In
NSHashTable.h

NSAllMapTableKeys
Returns all of the keys in the specified map table.

NSArray * NSAllMapTableKeys (
 NSMapTable *table
);

Return Value
An array object containing all the keys in table. This function should be called only when table keys are
objects, not when they’re any other type of pointer.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSMapMember (page 2218)
NSMapGet (page 2215)
NSEnumerateMapTable (page 2190)
NSNextMapEnumeratorPair (page 2223)
NSAllMapTableValues (page 2158)

Declared In
NSMapTable.h

Functions 2157
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSAllMapTableValues
Returns all of the values in the specified table.

NSArray * NSAllMapTableValues (
 NSMapTable *table
);

Return Value
An array object containing all the values in table. This function should be called only when table values
are objects, not when they’re any other type of pointer.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSMapMember (page 2218)
NSMapGet (page 2215)
NSEnumerateMapTable (page 2190)
NSNextMapEnumeratorPair (page 2223)
NSAllMapTableKeys (page 2157)

Declared In
NSMapTable.h

NSAllocateCollectable
Allocates collectable memory.

void *__strong NSAllocateCollectable (
 NSUInteger size,
 NSUInteger options
);

Parameters
size

The number of bytes of memory to allocate.

options
0 or NSScannedOption: A value of 0 allocates nonscanned memory; a value of NSScannedOption
allocates scanned memory.

Return Value
A pointer to the allocated memory, or NULL if the function is unable to allocate the requested memory.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSZone.h

NSAllocateMemoryPages
Allocates a new block of memory.

2158 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

void * NSAllocateMemoryPages (
 NSUInteger bytes
);

Discussion
Allocates the integral number of pages whose total size is closest to, but not less than, byteCount. The
allocated pages are guaranteed to be filled with zeros. If the allocation fails, raises
NSInvalidArgumentException.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCopyMemoryPages (page 2175)
NSDeallocateMemoryPages (page 2180)

Declared In
NSZone.h

NSAllocateObject
Creates and returns a new instance of a given class.

id NSAllocateObject (
 Class aClass,
 NSUInteger extraBytes,
 NSZone *zone
);

Parameters
aClass

The class of which to create an instance.

extraBytes
The number of extra bytes required for indexed instance variables (this value is typically 0).

zone
The zone in which to create the new instance (pass NULL to specify the default zone).

Return Value
A new instance of aClass or nil if an instance could not be created.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCopyObject (page 2175)
NSDeallocateObject (page 2181)

Declared In
NSObject.h

NSAssert
Generates an assertion if a given condition is false.

Functions 2159
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

#define NSAssert(condition, desc)

Parameters
condition

An expression that evaluates to YES or NO.

desc
An NSString object that contains an error message describing the failure condition.

Discussion
The NSAssert macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 145) on
the assertion handler for the current thread, passing desc as the description string.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSAssert1 (page 2160)
NSCAssert (page 2166)
NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Related Sample Code
CocoaVideoFrameToGWorld
CocoaVideoFrameToNSImage
ColorMatching
SGDevices
SimpleThreads

Declared In
NSException.h

NSAssert1
Generates an assertion if a given condition is false.

#define NSAssert1(condition, desc, arg1)

Parameters
condition

An expression that evaluates to YES or NO.

2160 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

desc
An NSString object that contains a printf-style string containing an error message describing the
failure condition and a placeholder for a single argument.

arg1
An argument to be inserted, in place, into desc.

Discussion
The NSAssert1 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 145) on
the assertion handler for the current thread, passing desc as the description string and arg1 as a substitution
variable.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSAssert (page 2159)
NSAssert2 (page 2161)
NSAssert3 (page 2162)
NSAssert4 (page 2163)
NSAssert5 (page 2165)
NSCAssert (page 2166)
NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Related Sample Code
CocoaDVDPlayer
Core Data HTML Store

Declared In
NSException.h

NSAssert2
Generates an assertion if a given condition is false.

#define NSAssert2(condition, desc, arg1, arg2)

Parameters
condition

An expression that evaluates to YES or NO.

Functions 2161
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

desc
An NSString object that contains a printf-style string containing an error message describing the
failure condition and placeholders for two arguments.

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

Discussion
The NSAssert2 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 145) on
the assertion handler for the current thread, passing desc as the description string and arg1 and arg2 as
substitution variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSAssert (page 2159)
NSAssert1 (page 2160)
NSAssert3 (page 2162)
NSAssert4 (page 2163)
NSAssert5 (page 2165)
NSCAssert (page 2166)
NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Related Sample Code
CoreRecipes

Declared In
NSException.h

NSAssert3
Generates an assertion if a given condition is false.

2162 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

#define NSAssert3(condition, desc, arg1, arg2, arg3)

Parameters
condition

An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing the
failure condition and placeholders for three arguments.

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

arg3
An argument to be inserted, in place, into desc.

Discussion
The NSAssert3 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 145) on
the assertion handler for the current thread, passing desc as the description string and arg1, arg2, and
arg3 as substitution variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSAssert (page 2159)
NSAssert1 (page 2160)
NSAssert2 (page 2161)
NSAssert4 (page 2163)
NSAssert5 (page 2165)
NSCAssert (page 2166)
NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Declared In
NSException.h

NSAssert4
Generates an assertion if a given condition is false.

Functions 2163
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

#define NSAssert4(condition, desc, arg1, arg2, arg3, arg4)

Parameters
condition

An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing the
failure condition and placeholders for four arguments.

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

arg3
An argument to be inserted, in place, into desc.

arg4
An argument to be inserted, in place, into desc.

Discussion
The NSAssert4 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 145) on
the assertion handler for the current thread, passing desc as the description string and arg1, arg2, arg3,
and arg4 as substitution variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSAssert (page 2159)
NSAssert1 (page 2160)
NSAssert2 (page 2161)
NSAssert3 (page 2162)
NSAssert5 (page 2165)
NSCAssert (page 2166)
NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Declared In
NSException.h

2164 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSAssert5
Generates an assertion if a given condition is false.

#define NSAssert5(condition, desc, arg1, arg2, arg3, arg4, arg5)

Parameters
condition

An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing the
failure condition and placeholders for five arguments.

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

arg3
An argument to be inserted, in place, into desc.

arg4
An argument to be inserted, in place, into desc.

arg5
An argument to be inserted, in place, into desc.

Discussion
The NSAssert5 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When invoked,
an assertion handler prints an error message that includes the method and class names (or the function
name). It then raises an NSInternalInconsistencyException exception. If condition evaluates to NO,
the macro invokes handleFailureInMethod:object:file:lineNumber:description: (page 145) on
the assertion handler for the current thread, passing desc as the description string and arg1, arg2, arg3,
arg4, and arg5 as substitution variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSAssert (page 2159)
NSAssert1 (page 2160)
NSAssert2 (page 2161)
NSAssert3 (page 2162)
NSAssert4 (page 2163)
NSCAssert (page 2166)
NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Functions 2165
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSException.h

NSCAssert
Generates an assertion if the given condition is false.

NSCAssert(condition, NSString *description)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert macro evaluates the condition and serves as a front end to the assertion handler. This macro
should be used only within C functions. NSCAssert takes no arguments other than the condition and format
string.

The condition must be an expression that evaluates to true or false. description is a printf-style format
string that describes the failure condition.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSAssert (page 2159)
NSCAssert1 (page 2166)
NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Related Sample Code
EnhancedAudioBurn

Declared In
NSException.h

NSCAssert1
NSCAssert1 is one of a series of macros that generate assertions if the given condition is false.

2166 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSCAssert1(condition, NSString *description, arg1)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert1 macro evaluates the condition and serves as a front end to the assertion handler. This
macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string that
describes the failure condition. arg1 is an argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSCAssert (page 2166)
NSCAssert2 (page 2167)
NSCAssert3 (page 2168)
NSCAssert4 (page 2169)
NSCAssert5 (page 2169)
NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Declared In
NSException.h

NSCAssert2
NSCAssert2 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert2(condition, NSString *description, arg1, arg2)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert2 macro evaluates the condition and serves as a front end to the assertion handler. This
macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string that
describes the failure condition. Each argn is an argument to be inserted, in place, into the description.

Functions 2167
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSCAssert (page 2166)
NSCAssert1 (page 2166)
NSCAssert3 (page 2168)
NSCAssert4 (page 2169)
NSCAssert5 (page 2169)
NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Declared In
NSException.h

NSCAssert3
NSCAssert3 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert3(condition, NSString *description, arg1, arg2, arg3)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert3 macro evaluates the condition and serves as a front end to the assertion handler. This
macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string that
describes the failure condition. Each argn is an argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSCAssert (page 2166)
NSCAssert1 (page 2166)
NSCAssert2 (page 2167)
NSCAssert4 (page 2169)
NSCAssert5 (page 2169)

2168 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Declared In
NSException.h

NSCAssert4
NSCAssert4 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert4(condition, NSString *description, arg1, arg2, arg3, arg4)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert4 macro evaluates the condition and serves as a front end to the assertion handler. This
macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string that
describes the failure condition. Each argn is an argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSCAssert (page 2166)
NSCAssert1 (page 2166)
NSCAssert2 (page 2167)
NSCAssert3 (page 2168)
NSCAssert5 (page 2169)
NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Declared In
NSException.h

NSCAssert5
NSCAssert5 is one of a series of macros that generate assertions if the given condition is false.

Functions 2169
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSCAssert5(condition, NSString *description, arg1, arg2, arg3, arg4, arg5)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

The NSCAssert5 macro evaluates the condition and serves as a front end to the assertion handler. This
macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string that
describes the failure condition. Each argn is an argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSCAssert (page 2166)
NSCAssert1 (page 2166)
NSCAssert2 (page 2167)
NSCAssert3 (page 2168)
NSCAssert4 (page 2169)
NSCParameterAssert (page 2177)
NSParameterAssert (page 2225)

Declared In
NSException.h

NSClassFromString
Obtains a class by name.

Class NSClassFromString (
 NSString *aClassName
);

Parameters
aClassName

The name of a class.

Return Value
The class object named by aClassName, or nil if no class by that name is currently loaded. If aClassName
is nil, returns nil.

Availability
Available in Mac OS X v10.0 and later.

2170 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

See Also
NSStringFromClass (page 2238)
NSProtocolFromString (page 2228)
NSSelectorFromString (page 2234)

Related Sample Code
Sketch-112

Declared In
NSObjCRuntime.h

NSCompareHashTables
Returns a Boolean value that indicates whether the elements of two hash tables are equal.

BOOL NSCompareHashTables (
 NSHashTable *table1,
 NSHashTable *table2
);

Return Value
YES if the two hash tables are equal—that is, if each element of table1 is in table2 and the two tables are
the same size, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCreateHashTable (page 2177)
NSCreateHashTableWithZone (page 2178)

Declared In
NSHashTable.h

NSCompareMapTables
Compares the elements of two map tables for equality.

BOOL NSCompareMapTables (
 NSMapTable *table1,
 NSMapTable *table2
);

Return Value
YES if each key of table1 is in table2, and the two tables are the same size, otherwise NO.

Discussion
Note that this function does not compare values, only keys.

Availability
Available in Mac OS X v10.0 and later.

Functions 2171
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

See Also
NSCreateMapTable (page 2178)
NSCreateMapTableWithZone (page 2179)

Declared In
NSMapTable.h

NSContainsRect
Returns a Boolean value that indicates whether one rectangle completely encloses another.

BOOL NSContainsRect (
 NSRect aRect,
 NSRect bRect
);

Return Value
YES if aRect completely encloses bRect. For this condition to be true, bRect cannot be empty, and must
not extend beyond aRect in any direction.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

NSConvertHostDoubleToSwapped
Performs a type conversion.

NSSwappedDouble NSConvertHostDoubleToSwapped (
 double x
);

Discussion
Converts the double value in x to a value whose bytes can be swapped. This function does not actually swap
the bytes of x. You should not need to call this function directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostDoubleToBig (page 2246)
NSSwapHostDoubleToLittle (page 2246)

Declared In
NSByteOrder.h

NSConvertHostFloatToSwapped
Performs a type conversion.

2172 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSSwappedFloat NSConvertHostFloatToSwapped (
 float x
);

Discussion
Converts the float value in x to a value whose bytes can be swapped. This function does not actually swap
the bytes of x. You should not need to call this function directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostFloatToBig (page 2246)
NSSwapHostFloatToLittle (page 2247)

Declared In
NSByteOrder.h

NSConvertSwappedDoubleToHost
Performs a type conversion.

double NSConvertSwappedDoubleToHost (
 NSSwappedDouble x
);

Discussion
Converts the value in x to a double value. This function does not actually swap the bytes of x. You should
not need to call this function directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapBigDoubleToHost (page 2242)
NSSwapLittleDoubleToHost (page 2251)

Declared In
NSByteOrder.h

NSConvertSwappedFloatToHost
Performs a type conversion.

float NSConvertSwappedFloatToHost (
 NSSwappedFloat x
);

Discussion
Converts the value in x to a float value. This function does not actually swap the bytes of x. You should not
need to call this function directly.

Availability
Available in Mac OS X v10.0 and later.

Functions 2173
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

See Also
NSSwapBigFloatToHost (page 2243)
NSSwapLittleFloatToHost (page 2252)

Declared In
NSByteOrder.h

NSCopyHashTableWithZone
Performs a shallow copy of the specified hash table.

NSHashTable * NSCopyHashTableWithZone (
 NSHashTable *table,
 NSZone *zone
);

Return Value
A pointer to a new copy of table, created in zone and containing pointers to the data elements of table.

Discussion
If zone is NULL, the new table is created in the default zone.

The new table adopts the callback functions of table and calls the hash and retain callback functions as
appropriate when inserting elements into the new table.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCreateHashTable (page 2177)
NSCreateHashTableWithZone (page 2178)
NSHashTableCallBacks (page 2270) (structure)

Declared In
NSHashTable.h

NSCopyMapTableWithZone
Performs a shallow copy of the specified map table.

NSMapTable * NSCopyMapTableWithZone (
 NSMapTable *table,
 NSZone *zone
);

Return Value
A pointer to a new copy of table, created in zone and containing pointers to the keys and values of table.

Discussion
If zone is NULL, the new table is created in the default zone.

The new table adopts the callback functions of table and calls the hash and retain callback functions as
appropriate when inserting elements into the new table.

2174 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCreateMapTable (page 2178)
NSCreateMapTableWithZone (page 2179)
NSMapTableKeyCallBacks (page 2272) (structure)
NSMapTableValueCallBacks (page 2273) (structure)

Declared In
NSMapTable.h

NSCopyMemoryPages
Copies a block of memory.

void NSCopyMemoryPages (
 const void *source,
 void *dest,
 NSUInteger bytes
);

Discussion
Copies (or copies on write) byteCount bytes from source to destination.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSAllocateMemoryPages (page 2158)
NSDeallocateMemoryPages (page 2180)

Declared In
NSZone.h

NSCopyObject
Creates an exact copy of an object.

id NSCopyObject (
 id object,
 NSUInteger extraBytes,
 NSZone *zone
);

Parameters
object

The object to copy.

extraBytes
The number of extra bytes required for indexed instance variables (this value is typically 0).

zone
The zone in which to create the new instance (pass NULL to specify the default zone).

Functions 2175
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Return Value
A new object that’s an exact copy of anObject, or nil if object is nil or if object could not be copied.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSAllocateObject (page 2159)
NSDeallocateObject (page 2181)

Declared In
NSObject.h

NSCountHashTable
Returns the number of elements in a hash table.

NSUInteger NSCountHashTable (
 NSHashTable *table
);

Return Value
The number of elements currently in table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSHashTable.h

NSCountMapTable
Returns the number of elements in a map table.

NSUInteger NSCountMapTable (
 NSMapTable *table
);

Parameters
table

A reference to a map table structure.

Return Value
The number of key-value pairs currently in table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMapTable.h

2176 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSCParameterAssert
Evaluates the specified parameter.

NSCParameterAssert(condition)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

This macro validates a parameter for a C function. Simply provide the parameter as the condition argument.
The macro evaluates the parameter and, if the parameter evaluates to false, logs an error message that
includes the parameter and then raises an exception.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return void.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSAssert (page 2159)
NSCAssert (page 2166)
NSParameterAssert (page 2225)

Declared In
NSException.h

NSCreateHashTable
Creates and returns a new hash table.

NSHashTable * NSCreateHashTable (
 NSHashTableCallBacks callBacks,
 NSUInteger capacity
);

Return Value
A pointer to an NSHashTable created in the default zone.

Discussion
The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small hash table
is created. The NSHashTableCallBacks (page 2270) structure callBacks has five pointers to functions, with
the following defaults: pointer hashing, if hash is NULL; pointer equality, if isEqual is NULL; no callback
upon adding an element, if retain is NULL; no callback upon removing an element, if release is NULL; and
a function returning a pointer’s hexadecimal value as a string, if describe is NULL. The hashing function
must be defined such that if two data elements are equal, as defined by the comparison function, the values
produced by hashing on these elements must also be equal. Also, data elements must remain invariant if
the value of the hashing function depends on them; for example, if the hashing function operates directly
on the characters of a string, that string can’t change.

Functions 2177
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCopyHashTableWithZone (page 2174)
NSCreateHashTableWithZone (page 2178)

Declared In
NSHashTable.h

NSCreateHashTableWithZone
Creates a new hash table in a given zone.

NSHashTable * NSCreateHashTableWithZone (
 NSHashTableCallBacks callBacks,
 NSUInteger capacity,
 NSZone *zone
);

Return Value
A pointer to a new hash table created in the specified zone. If zone is NULL, the hash table is created in the
default zone.

Discussion
The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small hash table
is created. The NSHashTableCallBacks (page 2270) structure callBacks has five pointers to functions, with
the following defaults: pointer hashing, if hash is NULL; pointer equality, if isEqual is NULL; no callback
upon adding an element, if retain is NULL; no callback upon removing an element, if release is NULL; and
a function returning a pointer’s hexadecimal value as a string, if describe is NULL. The hashing function
must be defined such that if two data elements are equal, as defined by the comparison function, the values
produced by hashing on these elements must also be equal. Also, data elements must remain invariant if
the value of the hashing function depends on them; for example, if the hashing function operates directly
on the characters of a string, that string can’t change.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCreateHashTable (page 2177)

Declared In
NSHashTable.h

NSCreateMapTable
Creates a new map table in the default zone.

2178 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSMapTable * NSCreateMapTable (
 NSMapTableKeyCallBacks keyCallBacks,
 NSMapTableValueCallBacks valueCallBacks,
 NSUInteger capacity
);

Discussion
Creates and returns a pointer to an NSMapTable structure in the default zone; the table’s size is dependent
on (but generally not equal to) capacity. If capacity is 0, a small map table is created. The
NSMapTableKeyCallBacks (page 2272) arguments are structures that are very similar to the callback structure
used by NSCreateHashTable (page 2177)—they have the same defaults as documented for that function.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCopyMapTableWithZone (page 2174)
NSCreateMapTableWithZone (page 2179)

Declared In
NSMapTable.h

NSCreateMapTableWithZone
Creates a new map table in the specified zone.

NSMapTable * NSCreateMapTableWithZone (
 NSMapTableKeyCallBacks keyCallBacks,
 NSMapTableValueCallBacks valueCallBacks,
 NSUInteger capacity,
 NSZone *zone
);

Return Value
A new map table in allocated in zone. If zone is NULL, the hash table is created in the default zone.

Discussion
The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small map table
is created. The NSMapTableKeyCallBacks (page 2272) arguments are structures that are very similar to the
callback structure used byNSCreateHashTable (page 2177); in fact, they have the same defaults as documented
for that function.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCopyMapTableWithZone (page 2174)
NSCreateMapTable (page 2178)

Declared In
NSMapTable.h

Functions 2179
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSCreateZone
Creates a new zone.

NSZone * NSCreateZone (
 NSUInteger startSize,
 NSUInteger granularity,
 BOOL canFree
);

Return Value
A pointer to a new zone of startSize bytes, which will grow and shrink by granularity bytes. If canFree
is 0, the allocator will never free memory, and malloc will be fast. Returns NULL if a new zone could not be
created.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDefaultMallocZone (page 2188)
NSRecycleZone (page 2232)
NSSetZoneName (page 2236)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSZone.h

NSDeallocateMemoryPages
Deallocates the specified block of memory.

void NSDeallocateMemoryPages (
 void *ptr,
 NSUInteger bytes
);

Discussion
This function deallocates memory that was allocated with NSAllocateMemoryPages.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCopyMemoryPages (page 2175)
NSAllocateMemoryPages (page 2158)

Declared In
NSZone.h

2180 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSDeallocateObject
Destroys an existing object.

void NSDeallocateObject (
 id object
);

Parameters
object

An object.

Discussion
This function deallocates object, which must have been allocated using NSAllocateObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCopyObject (page 2175)
NSAllocateObject (page 2159)

Declared In
NSObject.h

NSDecimalAdd
Adds two decimal values.

NSCalculationError NSDecimalAdd (
 NSDecimal *result,
 const NSDecimal *leftOperand,
 const NSDecimal *rightOperand,
 NSRoundingMode roundingMode
);

Discussion
Adds leftOperand to rightOperand and stores the sum in result.

An NSDecimal can represent a number with up to 38 significant digits. If a number is more precise than that,
it must be rounded off. roundingMode determines how to round it off. There are four possible rounding
modes:

Round return values down.NSRoundDown

Round return values up.NSRoundUp

Round to the closest possible return value; when caught halfway between
two positive numbers, round up; when caught between two negative
numbers, round down.

NSRoundPlain

Round to the closest possible return value; when halfway between two
possibilities, return the possibility whose last digit is even.

NSRoundBankers

Functions 2181
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

The return value indicates whether any machine limitations were encountered in the addition. If none were
encountered, the function returns NSCalculationNoError. Otherwise it may return one of the following
values: NSCalculationLossOfPrecision, NSCalculationOverflow or NSCalculationUnderflow.
For descriptions of all these error conditions, see
exceptionDuringOperation:error:leftOperand:rightOperand: (page 2044) in
NSDecimalNumberBehaviors.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecimalCompact
Compacts the decimal structure for efficiency.

void NSDecimalCompact (
 NSDecimal *number
);

Discussion
Formats number so that calculations using it will take up as little memory as possible. All the NSDecimal...
arithmetic functions expect compact NSDecimal arguments.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecimalCompare
Compares two decimal values.

NSComparisonResult NSDecimalCompare (
 const NSDecimal *leftOperand,
 const NSDecimal *rightOperand
);

Return Value
NSOrderedDescending if leftOperand is bigger than rightOperand; NSOrderedAscending if
rightOperand is bigger than leftOperand; or NSOrderedSame if the two operands are equal.

Discussion
For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

2182 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSDecimal.h

NSDecimalCopy
Copies the value of a decimal number.

void NSDecimalCopy (
 NSDecimal *destination,
 const NSDecimal *source
);

Discussion
Copies the value in source to destination.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecimalDivide
Divides one decimal value by another.

NSCalculationError NSDecimalDivide (
 NSDecimal *result,
 const NSDecimal *leftOperand,
 const NSDecimal *rightOperand,
 NSRoundingMode roundingMode
);

Discussion
Divides leftOperand by rightOperand and stores the quotient, possibly rounded off according to
roundingMode, in result. If rightOperand is 0, returns NSDivideByZero.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 2181).

Note that repeating decimals or numbers with a mantissa larger than 38 digits cannot be represented precisely.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecimalIsNotANumber
Returns a Boolean that indicates whether a given decimal contains a valid number.

Functions 2183
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

BOOL NSDecimalIsNotANumber (
 const NSDecimal *dcm
);

Return Value
YES if the value in decimal represents a valid number, otherwise NO.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecimalMultiply
Multiplies two decimal numbers together.

NSCalculationError NSDecimalMultiply (
 NSDecimal *result,
 const NSDecimal *leftOperand,
 const NSDecimal *rightOperand,
 NSRoundingMode roundingMode
);

Discussion
Multiplies rightOperand by leftOperand and stores the product, possibly rounded off according to
roundingMode, in result.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 2181).

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecimalMultiplyByPowerOf10
Multiplies a decimal by the specified power of 10.

NSCalculationError NSDecimalMultiplyByPowerOf10 (
 NSDecimal *result,
 const NSDecimal *number,
 short power,
 NSRoundingMode roundingMode
);

Discussion
Multiplies number by power of 10 and stores the product, possibly rounded off according to roundingMode,
in result.

2184 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 2181).

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecimalNormalize
Normalizes the internal format of two decimal numbers to simplify later operations.

NSCalculationError NSDecimalNormalize (
 NSDecimal *number1,
 NSDecimal *number2,
 NSRoundingMode roundingMode
);

Discussion
An NSDecimal is represented in memory as a mantissa and an exponent, expressing the value mantissa x
10exponent. A number can have many NSDecimal representations; for example, the following table lists
several valid NSDecimal representations for the number 100:

ExponentMantissa

0100

110

21

Format number1 and number2 so that they have equal exponents. This format makes addition and subtraction
very convenient. Both NSDecimalAdd (page 2181) and NSDecimalSubtract (page 2187) call
NSDecimalNormalize. You may want to use it if you write more complicated addition or subtraction
routines.

For explanations of the possible return values, see NSDecimalAdd (page 2181).

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecimalPower
Raises the decimal value to the specified power.

Functions 2185
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSCalculationError NSDecimalPower (
 NSDecimal *result,
 const NSDecimal *number,
 NSUInteger power,
 NSRoundingMode roundingMode
);

Discussion
Raises number to power, possibly rounding off according to roundingMode, and stores the resulting value
in result.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 2181).

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecimalRound
Rounds off the decimal value.

void NSDecimalRound (
 NSDecimal *result,
 const NSDecimal *number,
 NSInteger scale,
 NSRoundingMode roundingMode
);

Discussion
Rounds number off according to the parameters scale and roundingMode and stores the result in result.

The scale value specifies the number of digits result can have after its decimal point. roundingMode
specifies the way that number is rounded off. There are four possible values for roundingMode: NSRoundDown,
NSRoundUp, NSRoundPlain, and NSRoundBankers. For thorough discussions of scale and roundingMode,
see NSDecimalNumberBehaviors.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecimalString
Returns a string representation of the decimal value.

2186 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSString * NSDecimalString (
 const NSDecimal *dcm,
 id locale
);

Discussion
Returns a string representation of decimal. locale determines the format of the decimal separator.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecimalSubtract
Subtracts one decimal value from another.

NSCalculationError NSDecimalSubtract (
 NSDecimal *result,
 const NSDecimal *leftOperand,
 const NSDecimal *rightOperand,
 NSRoundingMode roundingMode
);

Discussion
Subtracts rightOperand from leftOperand and stores the difference, possibly rounded off according to
roundingMode, in result.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 2181).

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSDecrementExtraRefCountWasZero
Decrements the specified object’s reference count.

BOOL NSDecrementExtraRefCountWasZero (
 id object
);

Parameters
object

An object.

Functions 2187
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Return Value
NO if anObject had an extra reference count, or YES if anObject didn’t have an extra reference
count—indicating that the object should be deallocated (with dealloc).

Discussion
Decrements the “extra reference” count of anObject. Newly created objects have only one actual reference,
so that a single release message results in the object being deallocated. Extra references are those beyond
the single original reference and are usually created by sending the object a retain message. Your code should
generally not use these functions unless it is overriding theretain (page 2108) orrelease (page 2106) methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSExtraRefCount (page 2193)
NSIncrementExtraRefCount (page 2201)

Declared In
NSObject.h

NSDefaultMallocZone
Returns the default zone.

NSZone * NSDefaultMallocZone (void);

Return Value
The default zone, which is created automatically at startup.

Discussion
This zone is used by the standard C function malloc.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCreateZone (page 2180)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSZone.h

NSDivideRect
Divides a rectangle into two new rectangles.

2188 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

void NSDivideRect (
 NSRect inRect,
 NSRect *slice,
 NSRect *rem,
 CGFloat amount,
 NSRectEdge edge
);

Discussion
Creates two rectangles—slice and rem—from inRect, by dividing inRect with a line that’s parallel to
the side of inRect specified by edge. The size of slice is determined by amount, which specifies the
distance from edge.

slice and rem must not be NULL.

For more information, see NSRectEdge (page 2277).

Availability
Available in Mac OS X v10.0 and later.

See Also
NSInsetRect (page 2201)
NSIntegralRect (page 2202)
NSOffsetRect (page 2224)

Related Sample Code
EnhancedDataBurn
ImageBackground
QTKitMovieShuffler
QTSSInspector
TrackBall

Declared In
NSGeometry.h

NSEndHashTableEnumeration
Used when finished with an enumerator.

void NSEndHashTableEnumeration (
 NSHashEnumerator *enumerator
);

Discussion
This function should be called when you have finished using the enumeration struct enumerator.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSHashTable.h

Functions 2189
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSEndMapTableEnumeration
Used when finished with an enumerator.

void NSEndMapTableEnumeration (
 NSMapEnumerator *enumerator
);

Discussion
This function should be called when you have finished using the enumeration struct enumerator.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMapTable.h

NSEnumerateHashTable
Creates an enumerator for the specified hash table.

NSHashEnumerator NSEnumerateHashTable (
 NSHashTable *table
);

Return Value
An NSHashEnumerator structure that will cause successive elements of table to be returned each time this
enumerator is passed to NSNextHashEnumeratorItem.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSNextHashEnumeratorItem (page 2223)

Declared In
NSHashTable.h

NSEnumerateMapTable
Creates an enumerator for the specified map table.

NSMapEnumerator NSEnumerateMapTable (
 NSMapTable *table
);

Parameters
table

A reference to a map table structure.

Return Value
An NSMapEnumerator structure that will cause successive key-value pairs of table to be visited each time
this enumerator is passed to NSNextMapEnumeratorPair.

2190 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
NSNextMapEnumeratorPair (page 2223)
NSMapMember (page 2218)
NSMapGet (page 2215)
NSAllMapTableKeys (page 2157)
NSAllMapTableValues (page 2158)

Declared In
NSMapTable.h

NSEqualPoints
Returns a Boolean value that indicates whether two points are equal.

BOOL NSEqualPoints (
 NSPoint aPoint,
 NSPoint bPoint
);

Return Value
YES if the two points aPoint and bPoint are identical, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DragItemAround
GLChildWindowDemo
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSGeometry.h

NSEqualRanges
Returns a Boolean value that indicates whether two given ranges are equal.

BOOL NSEqualRanges (
 NSRange range1,
 NSRange range2
);

Return Value
YES if range1 and range2 have the same locations and lengths.

Availability
Available in Mac OS X v10.0 and later.

Functions 2191
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSRange.h

NSEqualRects
Returns a Boolean value that indicates whether the two rectangles are equal.

BOOL NSEqualRects (
 NSRect aRect,
 NSRect bRect
);

Return Value
YES if aRect and bRect are identical, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend
JSPong
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSGeometry.h

NSEqualSizes
Returns a Boolean that indicates whether two size values are equal.

BOOL NSEqualSizes (
 NSSize aSize,
 NSSize bSize
);

Return Value
YES if aSize and bSize are identical, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Aperture Edit Plugin - Borders & Titles
Quartz Composer QCTV
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSGeometry.h

2192 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSExtraRefCount
Returns the specified object’s reference count.

NSUInteger NSExtraRefCount (
 id object
);

Parameters
object

An object.

Return Value
The current reference count of object.

Discussion
This function is used in conjunction with NSIncrementExtraRefCount (page 2201) and
NSDecrementExtraRefCountWasZero (page 2187) in situations where you need to override an object’s
retain (page 2108) and release (page 2106) methods.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObject.h

NSFileTypeForHFSTypeCode
Returns a string encoding a file type code.

NSString * NSFileTypeForHFSTypeCode (
 OSType hfsFileTypeCode
);

Parameters
hfsFileTypeCode

An HFS file type code.

Return Value
A string that encodes hfsFileTypeCode.

Discussion
For more information, see HFS File Types.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSHFSFileTypes.h

NSFreeHashTable
Deletes the specified hash table.

Functions 2193
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

void NSFreeHashTable (
 NSHashTable *table
);

Discussion
Releases each element of the specified hash table and frees the table itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSResetHashTable (page 2232)

Declared In
NSHashTable.h

NSFreeMapTable
Deletes the specified map table.

void NSFreeMapTable (
 NSMapTable *table
);

Parameters
table

A reference to a map table structure.

Discussion
Releases each key and value of the specified map table and frees the table itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSResetMapTable (page 2232)

Declared In
NSMapTable.h

NSFullUserName
Returns a string containing the full name of the current user.

NSString * NSFullUserName (void);

Return Value
A string containing the full name of the current user.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSUserName (page 2257)

2194 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSPathUtilities.h

NSGetSizeAndAlignment
Obtains the actual size and the aligned size of an encoded type.

const char * NSGetSizeAndAlignment (
 const char *typePtr,
 NSUInteger *sizep,
 NSUInteger *alignp
);

Discussion
Obtains the actual size and the aligned size of the first data type represented by typePtr and returns a
pointer to the position of the next data type in typePtr. You can specify NULL for either sizep or alignp
to ignore the corresponding information.

The value returned in alignp is the aligned size of the data type; for example, on some platforms, the aligned
size of a char might be 2 bytes while the actual physical size is 1 byte.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObjCRuntime.h

NSGetUncaughtExceptionHandler
Returns the top-level error handler.

NSUncaughtExceptionHandler * NSGetUncaughtExceptionHandler (void);

Return Value
A pointer to the top-level error-handling function where you can perform last-minute logging before the
program terminates.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSetUncaughtExceptionHandler (page 2235)

Declared In
NSException.h

NSHashGet
Returns an element of the hash table.

Functions 2195
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

void * NSHashGet (
 NSHashTable *table,
 const void *pointer
);

Return Value
The pointer in the table that matches pointer (as defined by the isEqual callback function). If there is no
matching element, returns NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSHashTable.h

NSHashInsert
Adds an element to the specified hash table.

void NSHashInsert (
 NSHashTable *table,
 const void *pointer
);

Discussion
Inserts pointer, which must not be NULL, into table. If pointer matches an item already in the table, the
previous pointer is released using the release callback function that was specified when the table was
created.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSHashRemove (page 2197)
NSHashInsertKnownAbsent (page 2197)
NSHashInsertIfAbsent (page 2196)

Declared In
NSHashTable.h

NSHashInsertIfAbsent
Adds an element to the specified hash table only if the table does not already contain the element.

void * NSHashInsertIfAbsent (
 NSHashTable *table,
 const void *pointer
);

Return Value
If pointer matches an item already in table, returns the preexisting pointer; otherwise, pointer is added
to the table and returns NULL.

2196 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Discussion
You must not specify NULL for pointer.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSHashRemove (page 2197)
NSHashInsert (page 2196)
NSHashInsertKnownAbsent (page 2197)

Declared In
NSHashTable.h

NSHashInsertKnownAbsent
Adds an element to the specified hash table.

void NSHashInsertKnownAbsent (
 NSHashTable *table,
 const void *pointer
);

Discussion
Inserts pointer, which must not be NULL, into table. Unlike NSHashInsert, this function raises
NSInvalidArgumentException if table already includes an element that matches pointer.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSHashRemove (page 2197)
NSHashInsert (page 2196)
NSHashInsertIfAbsent (page 2196)

Declared In
NSHashTable.h

NSHashRemove
Removes an element from the specified hash table.

void NSHashRemove (
 NSHashTable *table,
 const void *pointer
);

Discussion
If pointer matches an item already in table, this function releases the preexisting item.

Availability
Available in Mac OS X v10.0 and later.

Functions 2197
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

See Also
NSHashInsert (page 2196)
NSHashInsertKnownAbsent (page 2197)
NSHashInsertIfAbsent (page 2196)

Declared In
NSHashTable.h

NSHeight
Returns the height of a given rectangle.

CGFloat NSHeight (
 NSRect aRect
);

Return Value
The height of aRect.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSMaxX (page 2219)
NSMaxY (page 2220)
NSMidX (page 2220)
NSMidY (page 2221)
NSMinX (page 2221)
NSMinY (page 2222)
NSWidth (page 2257)

Related Sample Code
Clock Control
CocoaVideoFrameToGWorld
iSpend
OpenGLCompositorLab
WebKitDOMElementPlugIn

Declared In
NSGeometry.h

NSHFSTypeCodeFromFileType
Returns a file type code.

2198 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

OSType NSHFSTypeCodeFromFileType (
 NSString *fileTypeString
);

Parameters
fileTypeString

A string of the sort encoded by NSFileTypeForHFSTypeCode().

Return Value
The HFS file type code corresponding to fileTypeString, or 0 if it cannot be found.

Discussion
For more information, see HFS File Types.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSHFSFileTypes.h

NSHFSTypeOfFile
Returns a string encoding a file type.

NSString * NSHFSTypeOfFile (
 NSString *fullFilePath
);

Parameters
fullFilePath

The full absolute path of a file.

Return Value
A string that encodes fullFilePath‘s HFS file type, or nil if the operation was not successful

Discussion
For more information, see HFS File Types.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DeskPictAppDockMenu

Declared In
NSHFSFileTypes.h

NSHomeDirectory
Returns the path to the current user’s home directory.

NSString * NSHomeDirectory (void);

Return Value
The path to the current user’s home directory.

Functions 2199
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Discussion
For more information on file-system utilities, see Low-Level File Management Programming Topics.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSFullUserName (page 2194)
NSUserName (page 2257)
NSHomeDirectoryForUser (page 2200)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSPathUtilities.h

NSHomeDirectoryForUser
Returns the path to a given user’s home directory.

NSString * NSHomeDirectoryForUser (
 NSString *userName
);

Parameters
userName

The name of a user.

Return Value
The path to the home directory for the user specified by userName.

Discussion
For more information on file system utilities, see Low-Level File Management Programming Topics.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSFullUserName (page 2194)
NSUserName (page 2257)
NSHomeDirectory (page 2199)

Declared In
NSPathUtilities.h

NSHostByteOrder
Returns the endian format.

2200 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

long NSHostByteOrder (void);

Return Value
The endian format, either NS_LittleEndian or NS_BigEndian.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSByteOrder.h

NSIncrementExtraRefCount
Increments the specified object’s reference count.

void NSIncrementExtraRefCount (
 id object
);

Parameters
object

An object.

Discussion
This function increments the “extra reference” count of object. Newly created objects have only one actual
reference, so that a single release message results in the object being deallocated. Extra references are those
beyond the single original reference and are usually created by sending the object a retain message. Your
code should generally not use these functions unless it is overriding the retain or release methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSExtraRefCount (page 2193)
NSDecrementExtraRefCountWasZero (page 2187)

Declared In
NSObject.h

NSInsetRect
Insets a rectangle by a specified amount.

NSRect NSInsetRect (
 NSRect aRect,
 CGFloat dX,
 CGFloat dY
);

Return Value
A copy of aRect, altered by moving the two sides that are parallel to the y axis inward by dX, and the two
sides parallel to the x axis inwards by dY.

Functions 2201
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDivideRect (page 2188)
NSIntegralRect (page 2202)
NSOffsetRect (page 2224)

Related Sample Code
Dicey
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus
WebKitDOMElementPlugIn

Declared In
NSGeometry.h

NSIntegralRect
Adjusts the sides of a rectangle to integer values.

NSRect NSIntegralRect (
 NSRect aRect
);

Return Value
A copy of aRect, expanded outward just enough to ensure that none of its four defining values (x, y, width,
and height) have fractional parts. If the width or height of aRect is 0 or negative, this function returns a
rectangle with origin at (0.0, 0.0) and with zero width and height.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDivideRect (page 2188)
NSInsetRect (page 2201)
NSOffsetRect (page 2224)

Related Sample Code
CIAnnotation
FilterDemo
PDF Annotation Editor
PDFKitLinker2
Worm

Declared In
NSGeometry.h

2202 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSIntersectionRange
Returns the intersection of the specified ranges.

NSRange NSIntersectionRange (
 NSRange range1,
 NSRange range2
);

Return Value
A range describing the intersection of range1 and range2—that is, a range containing the indices that exist
in both ranges.

Discussion
If the returned range’s length field is 0, then the two ranges don’t intersect, and the value of the location
field is undefined.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSUnionRange (page 2256)

Related Sample Code
LayoutManagerDemo

Declared In
NSRange.h

NSIntersectionRect
Calculates the intersection of two rectangles.

NSRect NSIntersectionRect (
 NSRect aRect,
 NSRect bRect
);

Return Value
The graphic intersection of aRect and bRect. If the two rectangles don’t overlap, the returned rectangle
has its origin at (0.0, 0.0) and zero width and height (including situations where the intersection is a point or
a line segment).

Availability
Available in Mac OS X v10.0 and later.

See Also
NSUnionRect (page 2256)

Related Sample Code
Cropped Image
FilterDemo
Link Snoop
Sketch-112
TextLinks

Functions 2203
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSGeometry.h

NSIntersectsRect
Returns a Boolean value that indicates whether two rectangles intersect.

BOOL NSIntersectsRect (
 NSRect aRect,
 NSRect bRect
);

Return Value
YES if aRect intersects bRect, otherwise NO. Returns NO if either aRect or bRect has a width or height that
is 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSIntersectionRect (page 2203)

Related Sample Code
JSPong
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus
Worm

Declared In
NSGeometry.h

NSIsEmptyRect
Returns a Boolean value that indicates whether a given rectangle is empty.

BOOL NSIsEmptyRect (
 NSRect aRect
);

Return Value
YES if aRect encloses no area at all—that is, if its width or height is 0 or negative, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
Cropped Image
Dicey
IBFragmentView
Sketch-112

2204 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSGeometry.h

NSJavaBundleCleanup
This function has been deprecated. (Deprecated in Mac OS X v10.5.)

void NSJavaBundleCleanup (
 NSBundle *bundle,
 NSDictionary *plist
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSJavaSetup.h

NSJavaBundleSetup
This function has been deprecated. (Deprecated in Mac OS X v10.5.)

id NSJavaBundleSetup (
 NSBundle *bundle,
 NSDictionary *plist
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSJavaSetup.h

NSJavaClassesForBundle
Loads the Java classes located in the specified bundle. (Deprecated in Mac OS X v10.5.)

NSArray * NSJavaClassesForBundle (
 NSBundle *bundle,
 BOOL usesyscl,
 id *vm
);

Discussion
Loads and returns the Java classes in the specified bundle. If the Java virtual machine is not loaded, load it
first. A reference to the Java virtual machine is returned in the vm parameter. You can pass nil for the vm
parameter if you do not want this information. Pass NO for usesyscl if you want to use a new instance of
the class loader to load the classes; otherwise, the system can reuse an existing instance of the class loader.
If you pass NO for usesyscl, the new class loader will be released when you are done with it; otherwise, the
class loader will be cached for use next time.

Functions 2205
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSJavaSetup.h

NSJavaClassesFromPath
Loads the Java classes located at the specified path. (Deprecated in Mac OS X v10.5.)

NSArray * NSJavaClassesFromPath (
 NSArray *path,
 NSArray *wanted,
 BOOL usesyscl,
 id *vm
);

Discussion
Loads and returns the Java classes in the specified bundle. If the Java virtual machine is not loaded, load it
first. A reference to the Java virtual machine is returned in the vm parameter. You can pass nil for the vm
parameter if you do not want this information. Pass an array of names of classes to load in the wanted
parameter. If you pass nil for the wanted parameter, all classes at the specified path will be loaded. Pass
NO for usesyscl if you want to use a new instance of the class loader to load the classes; otherwise, the
system can reuse an existing instance of the class loader. If you pass NO for usesyscl, the new class loader
will be released when you are done with it; otherwise, the class loader will be cached for use next time.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSJavaSetup.h

NSJavaNeedsToLoadClasses
Returns a Boolean value that indicates whether a virtual machine is needed or if Java classes are provided.
(Deprecated in Mac OS X v10.5.)

BOOL NSJavaNeedsToLoadClasses (
 NSDictionary *plist
);

Discussion
Returns YES if a virtual machine is needed or if a virtual machine already exists and there’s an indication that
Java classes are provided.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSJavaSetup.h

2206 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSJavaNeedsVirtualMachine
Returns a Boolean value that indicates whether a Java virtual machine is required. (Deprecated in Mac OS X
v10.5.)

BOOL NSJavaNeedsVirtualMachine (
 NSDictionary *plist
);

Discussion
Returns YES if plist contains a key saying that it requires Java.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSJavaSetup.h

NSJavaObjectNamedInPath
Creates an instance of the named class using the class loader previously specified at the given path.
(Deprecated in Mac OS X v10.5.)

id NSJavaObjectNamedInPath (
 NSString *name,
 NSArray *path
);

Discussion
Returns a new instance of the class name. The class loader must be already be set up for the specified path
(you can do this using a function such as NSJavaClassesFromPath (page 2206)).

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSJavaSetup.h

NSJavaProvidesClasses
Returns a Boolean value that indicates whether Java classes are provided. (Deprecated in Mac OS X v10.5.)

BOOL NSJavaProvidesClasses (
 NSDictionary *plist
);

Discussion
Returns YES if plist contains an NSJavaPath key.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Functions 2207
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSJavaSetup.h

NSJavaSetup
Loads the Java virtual machine with specified parameters. (Deprecated in Mac OS X v10.5.)

id NSJavaSetup (
 NSDictionary *plist
);

Discussion
Part of the Java-to-Objective-C bridge. You normally shouldn’t use it yourself.

You can pass nil for the plist dictionary, in which case the Java virtual machine will not be loaded, so you
should probably just use NSJavaSetupVirtualMachine (page 2208) instead. The plist dictionary may
contain the following key-value pairs.

 ■ NSJavaRoot—An NSString indicating the root of the location where the application’s classes are.

 ■ NSJavaPath—An NSArray of NSStrings, each string containing one component of a class path whose
components will be prepended by NSJavaRoot if they are not absolute locations.

 ■ NSJavaUserPath—An NSString indicating another segment of the class path so that the application
developer can customize where the class loader should search for classes. When searching for classes,
this path is searched after the application’s class path so that one cannot replace the classes used by the
application.

 ■ NSJavaLibraryPath—An NSArray of NSStrings, each string containing one component of a path to
search for dynamic shared libraries needed by Java wrappers.

 ■ NSJavaClasses—An NSArray of NSStrings, each string containing the name of one class that the VM
should load so that their associated frameworks will be loaded.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSJavaSetup.h

NSJavaSetupVirtualMachine
Sets up the Java virtual machine. (Deprecated in Mac OS X v10.5.)

id NSJavaSetupVirtualMachine (void);

Discussion
Sets up and returns a reference to the Java virtual machine.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

2208 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSJavaSetup.h

NSLocalizedString
Returns a localized version of a string.

NSString *NSLocalizedString(NSString *key, NSString *comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 180) on the main bundle and a nil
table.

Discussion
You can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings utility.

For more information, see NSBundle.

Special Considerations

In Mac OS X v10.4 and earlier, to ensure correct parsing by the genstrings utility, the key parameter must
not contain any high-ASCII characters.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedAudioBurn
GridCalendar
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
TrackBall

Declared In
NSBundle.h

NSLocalizedStringFromTable
Returns a localized version of a string.

NSString *NSLocalizedStringFromTable(NSString *key, NSString *tableName, NSString
 *comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 180) on the main bundle, passing
it the specified key and tableName.

Discussion
You can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings utility.

For more information, see NSBundle.

Functions 2209
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Special Considerations

In Mac OS X v10.4 and earlier, to ensure correct parsing by the genstrings utility, the key parameter must
not contain any high-ASCII characters.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BindingsJoystick
Mountains
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSBundle.h

NSLocalizedStringFromTableInBundle
Returns a localized version of a string.

NSString *NSLocalizedStringFromTableInBundle(NSString *key, NSString *tableName,
NSBundle *bundle, NSString *comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 180) on bundle, passing it the
specified key and tableName.

Discussion
You can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings utility.

For more information, see NSBundle.

Special Considerations

In Mac OS X v10.4 and earlier, to ensure correct parsing by the genstrings utility, the key parameter must
not contain any high-ASCII characters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBundle.h

NSLocalizedStringWithDefaultValue
Returns a localized version of a string.

NSString NSLocalizedStringWithDefaultValue(NSString *key, NSString *tableName,
NSBundle *bundle, NSString *value, NSString *comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 180) on bundle, passing it the
specified key, value, and tableName.

2210 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Discussion
You can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings utility.

If you use genstrings to parse your code for localizable strings, you can use this method to specify an initial
value that is different from key.

For more information, see NSBundle.

Special Considerations

In Mac OS X v10.4 and earlier, to ensure correct parsing by the genstrings utility, the key parameter must
not contain any high-ASCII characters.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSBundle.h

NSLocationInRange
Returns a Boolean value that indicates whether a specified position is in a given range.

BOOL NSLocationInRange (
 NSUInteger loc,
 NSRange range
);

Return Value
YES if loc lies within range—that is, if it’s greater than or equal to range.location and less than
range.location plus range.length.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRange.h

NSLog
Logs an error message to the Apple System Log facility.

void NSLog (
 NSString *format,
 ...
);

Discussion
Simply calls NSLogv (page 2212), passing it a variable number of arguments.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLogv (page 2212)

Functions 2211
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Related Sample Code
GLSLShowpiece
OpenGLCaptureToMovie
Quartz Composer QCTV
Quartz Composer WWDC 2005 TextEdit
StickiesExample

Declared In
NSObjCRuntime.h

NSLogPageSize
Returns the binary log of the page size.

NSUInteger NSLogPageSize (void);

Return Value
The binary log of the page size.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSRoundDownToMultipleOfPageSize (page 2233)
NSRoundUpToMultipleOfPageSize (page 2233)
NSPageSize (page 2225)

Declared In
NSZone.h

NSLogv
Logs an error message to the Apple System Log facility.

void NSLogv (
 NSString *format,
 va_list args
);

Discussion
Logs an error message to the Apple System Log facility (see man 3 asl). If the STDERR_FILENO file descriptor
has been redirected away from the default or is going to a tty, it will also be written there. If you want to
direct output elsewhere, you need to use a custom logging facility.

The message consists of a timestamp and the process ID prefixed to the string you pass in. You compose
this string with a format string, format, and one or more arguments to be inserted into the string. The format
specification allowed by these functions is that which is understood by NSString’s formatting capabilities
(which is not necessarily the set of format escapes and flags understood by printf). The supported format
specifiers are described in String Format Specifiers. A final hard return is added to the error message if one
is not present in the format.

2212 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

In general, you should use the NSLog (page 2211) function instead of calling this function directly. If you do
use this function directly, you must have prepared the variable argument list in the args argument by calling
the standard C macro va_start. Upon completion, you must similarly call the standard C macro va_end
for this list.

Output from NSLogv is serialized, in that only one thread in a process can be doing the writing/logging
described above at a time. All attempts at writing/logging a message complete before the next thread can
begin its attempts.

The effects of NSLogv are not serialized with subsystems other than those discussed above (such as the
standard I/O package) and do not produce side effects on those subsystems (such as causing buffered output
to be flushed, which may be undesirable).

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)

Declared In
NSObjCRuntime.h

NSMakeCollectable
Makes a newly allocated Core Foundation object eligible for collection.

NS_INLINE id NSMakeCollectable(CFTypeRef cf) {
 return cf ? (id)CFMakeCollectable(cf) : nil;
}

Discussion
This function is a wrapper for CFMakeCollectable, but its return type is id—avoiding the need for casting
when using Cocoa objects.

This function may be useful when returning Core Foundation objects in code that must support both
garbage-collected and non-garbage-collected environments, as illustrated in the following example.

- (CFDateRef)foo {
 CFDateRef aCFDate;
 // ...
 return [NSMakeCollectable(aCFDate) autorelease];
}

CFTypeRef style objects are garbage collected, yet only sometime after the last CFRelease is performed.
Particularly for fully-bridged CFTypeRef objects such as CFStrings and collections (such as CFDictionary), you
must call either CFMakeCollectable or the more type safe NSMakeCollectable, preferably right upon
allocation.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSZone.h

Functions 2213
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSMakePoint
Creates a new NSPoint from the specified values.

NSPoint NSMakePoint (
 CGFloat x,
 CGFloat y
);

Return Value
An NSPoint having the coordinates x and y.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Clock Control
Dicey
Reducer
Sketch-112
WhackedTV

Declared In
NSGeometry.h

NSMakeRange
Creates a new NSRange from the specified values.

NSRange NSMakeRange (
 NSUInteger loc,
 NSUInteger len
);

Return Value
An NSRange with location location and length length.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
iSpend
LayoutManagerDemo
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSRange.h

NSMakeRect
Creates a new NSRect from the specified values.

2214 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSRect NSMakeRect (
 CGFloat x,
 CGFloat y,
 CGFloat w,
 CGFloat h
);

Return Value
An NSRect having the specified origin of [x, y] and size of [w, h].

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dicey
FilterDemo
GLSLShowpiece
WhackedTV
Worm

Declared In
NSGeometry.h

NSMakeSize
Returns a new NSSize from the specified values.

NSSize NSMakeSize (
 CGFloat w,
 CGFloat h
);

Return Value
An NSSize having the specified width and height.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitPlayer
QTQuartzPlayer
Quartz Composer QCTV
Reducer
Sketch-112

Declared In
NSGeometry.h

NSMapGet
Returns a map table value for the specified key.

Functions 2215
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

void * NSMapGet (
 NSMapTable *table,
 const void *key
);

Return Value
The value that table maps to key, or NULL if table doesn’t contain key.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSMapMember (page 2218)
NSEnumerateMapTable (page 2190)
NSNextMapEnumeratorPair (page 2223)
NSAllMapTableKeys (page 2157)
NSAllMapTableValues (page 2158)

Declared In
NSMapTable.h

NSMapInsert
Inserts a key-value pair into the specified table.

void NSMapInsert (
 NSMapTable *table,
 const void *key,
 const void *value
);

Discussion
Inserts key and value into table. If keymatches a key already in table, value is retained and the previous
value is released, using the retain and release callback functions that were specified when the table was
created. Raises NSInvalidArgumentException if key is equal to the notAKeyMarker field of the table’s
NSMapTableKeyCallBacks (page 2272) structure.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSMapRemove (page 2218)
NSMapInsertIfAbsent (page 2216)
NSMapInsertKnownAbsent (page 2217)

Declared In
NSMapTable.h

NSMapInsertIfAbsent
Inserts a key-value pair into the specified table.

2216 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

void * NSMapInsertIfAbsent (
 NSMapTable *table,
 const void *key,
 const void *value
);

Return Value
If key matches a key already in table, the preexisting key; otherwise, key and value are added to table
and returns NULL.

Discussion
Raises NSInvalidArgumentException if key is equal to the notAKeyMarker field of the table’s
NSMapTableKeyCallBacks structure.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSMapRemove (page 2218)
NSMapInsert (page 2216)
NSMapInsertKnownAbsent (page 2217)

Declared In
NSMapTable.h

NSMapInsertKnownAbsent
Inserts a key-value pair into the specified table if the pair had not been previously added.

void NSMapInsertKnownAbsent (
 NSMapTable *table,
 const void *key,
 const void *value
);

Discussion
Inserts key (which must not be notAKeyMarker) and value into table. Unlike NSMapInsert, this function
raises NSInvalidArgumentException if table already includes a key that matches key.

key is compared with notAKeyMarker using pointer comparison; if key is identical to notAKeyMarker,
raises NSInvalidArgumentException.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSMapRemove (page 2218)
NSMapInsert (page 2216)
NSMapInsertIfAbsent (page 2216)

Declared In
NSMapTable.h

Functions 2217
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSMapMember
Indicates whether a given table contains a given key.

BOOL NSMapMember (
 NSMapTable *table,
 const void *key,
 void **originalKey,
 void **value
);

Return Value
YES if table contains a key equal to key, otherwise NO.

Discussion
If table contains a key equal to key, originalKey is set to key, and value is set to the value that table
maps to key.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSMapGet (page 2215)
NSEnumerateMapTable (page 2190)
NSNextMapEnumeratorPair (page 2223)
NSAllMapTableKeys (page 2157)
NSAllMapTableValues (page 2158)

Declared In
NSMapTable.h

NSMapRemove
Removes a key and corresponding value from the specified table.

void NSMapRemove (
 NSMapTable *table,
 const void *key
);

Discussion
If key matches a key already in table, this function releases the preexisting key and its corresponding value.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSMapInsert (page 2216)
NSMapInsertIfAbsent (page 2216)
NSMapInsertKnownAbsent (page 2217)

Declared In
NSMapTable.h

2218 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSMaxRange
Returns the number 1 greater than the maximum value within the range.

NSUInteger NSMaxRange (
 NSRange range
);

Return Value
range.location + range.length—in other words, the number 1 greater than the maximum value within
the range.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend
Quartz Composer WWDC 2005 TextEdit
TextEditPlus
TextLinks
TipWrapper

Declared In
NSRange.h

NSMaxX
Returns the largest x coordinate of a given rectangle.

CGFloat NSMaxX (
 NSRect aRect
);

Return Value
The largest x coordinate value within aRect.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSWidth (page 2257)
NSHeight (page 2198)
NSMaxY (page 2220)

Related Sample Code
Dicey
QTQuartzPlayer
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSGeometry.h

Functions 2219
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSMaxY
Returns the largest y coordinate of a given rectangle.

CGFloat NSMaxY (
 NSRect aRect
);

Return Value
The largest y coordinate value within aRect.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSWidth (page 2257)
NSHeight (page 2198)
NSMaxX (page 2219)

Related Sample Code
Dicey
QTQuartzPlayer
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextEditPlus

Declared In
NSGeometry.h

NSMidX
Returns the x coordinate of a given rectangle’s midpoint.

CGFloat NSMidX (
 NSRect aRect
);

Return Value
Returns the x coordinate of the center of aRect.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSWidth (page 2257)
NSHeight (page 2198)
NSMidY (page 2221)

Related Sample Code
CALayerEssentials
Polygons
QTQuartzPlayer
Sketch-112

2220 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

TrackBall

Declared In
NSGeometry.h

NSMidY
Returns the y coordinate of a given rectangle’s midpoint.

CGFloat NSMidY (
 NSRect aRect
);

Return Value
The y coordinate of aRect’s center point.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSWidth (page 2257)
NSHeight (page 2198)
NSMidX (page 2220)

Related Sample Code
CALayerEssentials
PDFKitLinker2
Polygons
Sketch-112
TrackBall

Declared In
NSGeometry.h

NSMinX
Returns the smallest x coordinate of a given rectangle.

CGFloat NSMinX (
 NSRect aRect
);

Return Value
The smallest x coordinate value within aRect.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSWidth (page 2257)
NSHeight (page 2198)
NSMinY (page 2222)

Functions 2221
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Related Sample Code
Clock Control
Dicey
OpenGLCompositorLab
QTQuartzPlayer
Sketch-112

Declared In
NSGeometry.h

NSMinY
Returns the smallest y coordinate of a given rectangle.

CGFloat NSMinY (
 NSRect aRect
);

Return Value
The smallest y coordinate value within aRect.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSWidth (page 2257)
NSHeight (page 2198)
NSMinX (page 2221)

Related Sample Code
Clock Control
Dicey
OpenGLCompositorLab
QTQuartzPlayer
Sketch-112

Declared In
NSGeometry.h

NSMouseInRect
Returns a Boolean value that indicates whether the point is in the specified rectangle.

BOOL NSMouseInRect (
 NSPoint aPoint,
 NSRect aRect,
 BOOL flipped
);

Return Value
YES if the hot spot of the cursor lies inside a given rectangle, otherwise NO.

2222 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Discussion
This method assumes an unscaled and unrotated coordinate system. Specify YES for isFlipped if the
underlying view uses a flipped coordinate system.

Point-in-rectangle functions generally assume that the bottom edge of a rectangle is outside of the rectangle
boundaries, while the upper edge is inside the boundaries. This method views aRect from the point of view
of the user—that is, this method always treats the bottom edge of the rectangle as the one closest to the
bottom edge of the user’s screen. By making this adjustment, this function ensures consistent mouse-detection
behavior from the user’s perspective.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSPointInRect (page 2227)

Related Sample Code
ImageMapExample

Declared In
NSGeometry.h

NSNextHashEnumeratorItem
Returns the next hash-table element in the enumeration.

void * NSNextHashEnumeratorItem (
 NSHashEnumerator *enumerator
);

Return Value
The next element in the table that enumerator is associated with, or NULL if enumerator has already
iterated over all the elements.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSEnumerateHashTable (page 2190)

Declared In
NSHashTable.h

NSNextMapEnumeratorPair
Returns a Boolean value that indicates whether the next map-table pair in the enumeration are set.

Functions 2223
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

BOOL NSNextMapEnumeratorPair (
 NSMapEnumerator *enumerator,
 void **key,
 void **value
);

Return Value
NO if enumerator has already iterated over all the elements in the table that enumerator is associated with;
otherwise, sets key and value to match the next key-value pair in the table and returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSEnumerateMapTable (page 2190)
NSMapMember (page 2218)
NSMapGet (page 2215)
NSAllMapTableKeys (page 2157)
NSAllMapTableValues (page 2158)

Declared In
NSMapTable.h

NSOffsetRect
Offsets the rectangle by the specified amount.

NSRect NSOffsetRect (
 NSRect aRect,
 CGFloat dX,
 CGFloat dY
);

Return Value
A copy of aRect, with its location shifted by dX along the x axis and by dY along the y axis.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDivideRect (page 2188)
NSInsetRect (page 2201)
NSIntegralRect (page 2202)

Related Sample Code
PDFView
Sketch-112
TextLinks

Declared In
NSGeometry.h

2224 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSOpenStepRootDirectory
Returns the root directory of the user’s system.

NSString * NSOpenStepRootDirectory (void);

Return Value
A string identifying the root directory of the user’s system.

Discussion
For more information on file system utilities, see Low-Level File Management Programming Topics.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSHomeDirectory (page 2199)
NSHomeDirectoryForUser (page 2200)

Declared In
NSPathUtilities.h

NSPageSize
Returns the number of bytes in a page.

NSUInteger NSPageSize (void);

Return Value
The number of bytes in a page.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSRoundDownToMultipleOfPageSize (page 2233)
NSRoundUpToMultipleOfPageSize (page 2233)
NSLogPageSize (page 2212)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSZone.h

NSParameterAssert
Validates the specified parameter.

Functions 2225
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSParameterAssert(condition)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for the
current thread, passing it a format string and a variable number of arguments. Each thread has its own
assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion handler
prints an error message that includes method and class names (or the function name). It then raises an
NSInternalInconsistencyException exception.

This macro validates a parameter for an Objective-C method. Simply provide the parameter as the condition
argument. The macro evaluates the parameter and, if it is false, it logs an error message that includes the
parameter and then raises an exception.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All assertion macros
return void.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSLog (page 2211)
NSLogv (page 2212)
NSAssert (page 2159)
NSCAssert (page 2166)
NSCParameterAssert (page 2177)

Related Sample Code
MethodReplacement
NewsReader
Sketch-112
TimelineToTC
TrackBall

Declared In
NSException.h

NSPointFromCGPoint
Returns an NSPoint typecast from a CGPoint.

NSPoint NSPointFromCGPoint(CGPoint cgpoint) {
 return (*(NSPoint *)&(cgpoint));
}

Return Value
An NSPoint typecast from a CGPoint.

Availability
Available in Mac OS X v10.5 and later.

See Also
NSPointToCGPoint (page 2228)
NSRectFromCGRect (page 2230)

2226 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSSizeFromCGSize (page 2237)

Declared In
NSGeometry.h

NSPointFromString
Returns a point from a text-based representation.

NSPoint NSPointFromString (
 NSString *aString
);

Parameters
aString

A string of the form “{x, y}”.

Return Value
If aString is of the form “{x, y}” an NSPoint structure that uses x and y as the x and y coordinates, in that
order.

If aString only contains a single number, it is used as the x coordinate. If aString does not contain any
numbers, returns an NSPoint object whose x and y coordinates are both 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSStringFromPoint (page 2239)

Declared In
NSGeometry.h

NSPointInRect
Returns a Boolean value that indicates whether a given point is in a given rectangle.

BOOL NSPointInRect (
 NSPoint aPoint,
 NSRect aRect
);

Return Value
YES if aPoint is located within the rectangle represented by aRect, otherwise NO.

Discussion
Point-in-rectangle functions generally assume that the “upper” and “left” edges of a rectangle are inside the
rectangle boundaries, while the “lower” and “right” edges are outside the boundaries. This method treats
the “upper” and “left” edges of the rectangle as the ones containing the origin of the rectangle.

Special Considerations

The meanings of “upper” and “lower” (and “left” and “right”) are relative to the current coordinate system
and the location of the rectangle. For a rectangle of positive height located in positive x and y coordinates:

Functions 2227
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

 ■ In the default Mac OS X desktop coordinate system—where the origin is at the bottom left—the rectangle
edge closest to the bottom of the screen is the “upper” edge (and is considered inside the rectangle).

 ■ On iPhone OS and in a flipped coordinate system on Mac OS X desktop—where the origin is at the top
left—the rectangle edge closest to the bottom of the screen is the “lower” edge (and is considered
outside the rectangle).

Availability
Available in Mac OS X v10.0 and later.

See Also
NSMouseInRect (page 2222)

Related Sample Code
FunkyOverlayWindow
LiveVideoMixer2
LiveVideoMixer3
Sketch-112
TrackBall

Declared In
NSGeometry.h

NSPointToCGPoint
Returns a CGPoint typecast from an NSPoint.

CGPoint NSPointToCGPoint(NSPoint nspoint) {
 union _ {NSPoint ns; CGPoint cg;};
 return ((union _ *)&nspoint)->cg;
}

Return Value
A CGPoint typecast from an NSPoint.

Availability
Available in Mac OS X v10.5 and later.

See Also
NSPointFromCGPoint (page 2226)
NSRectToCGRect (page 2231)
NSSizeToCGSize (page 2237)

Declared In
NSGeometry.h

NSProtocolFromString
Returns a the protocol with a given name.

2228 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Protocol *NSProtocolFromString (
 NSString *namestr
);

Parameters
namestr

The name of a protocol.

Return Value
The protocol object named by namestr, or nil if no protocol by that name is currently loaded. If namestr
is nil, returns nil.

Availability
Available in Mac OS X v10.5 and later.

See Also
NSStringFromProtocol (page 2240)
NSClassFromString (page 2170)
NSSelectorFromString (page 2234)

Declared In
NSObjCRuntime.h

NSRangeFromString
Returns a range from a text-based representation.

NSRange NSRangeFromString (
 NSString *aString
);

Discussion
Scans aString for two integers which are used as the location and length values, in that order, to create an
NSRange struct. If aString only contains a single integer, it is used as the location value. If aString does
not contain any integers, this function returns an NSRange struct whose location and length values are both
0.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSStringFromRange (page 2240)

Declared In
NSRange.h

NSReallocateCollectable
Reallocates collectable memory.

Functions 2229
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

void *__strong NSReallocateCollectable (
 void *ptr,
 NSUInteger size,
 NSUInteger options
);

Discussion
Changes the size of the block of memory pointed to by ptr to size bytes. It may allocate new memory to
replace the old, in which case it moves the contents of the old memory block to the new block, up to a
maximum of size bytes.

options can be 0 or NSScannedOption: A value of 0 allocates nonscanned memory; a value of
NSScannedOption allocates scanned memory.

This function returns NULL if it’s unable to allocate the requested memory.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSZone.h

NSRealMemoryAvailable
Returns information about the user’s system.

NSUInteger NSRealMemoryAvailable (void);

Return Value
The number of bytes available in RAM.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSZone.h

NSRectFromCGRect
Returns an NSRect typecast from a CGRect.

NSRect NSRectFromCGRect(CGRect cgrect) {
 return (*(NSRect *)&(cgrect));
}

Return Value
An NSRect typecast from a CGRect.

Availability
Available in Mac OS X v10.5 and later.

See Also
NSRectToCGRect (page 2231)
NSPointFromCGPoint (page 2226)

2230 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSSizeFromCGSize (page 2237)

Declared In
NSGeometry.h

NSRectFromString
Returns a rectangle from a text-based representation.

NSRect NSRectFromString (
 NSString *aString
);

Discussion
Scans aString for four numbers which are used as the x and y coordinates and the width and height, in
that order, to create an NSPoint object. If aString does not contain four numbers, those numbers that were
scanned are used, and 0 is used for the remaining values. If aString does not contain any numbers, this
function returns an NSRect object with a rectangle whose origin is (0, 0) and width and height are both 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSStringFromRect (page 2241)

Related Sample Code
DynamicProperties

Declared In
NSGeometry.h

NSRectToCGRect
Returns a CGRect typecast from an NSRect.

CGRect NSRectToCGRect(NSRect nsrect) {
 return (*(CGRect *)&(nsrect));
}

Return Value
A CGRect typecast from an NSRect.

Availability
Available in Mac OS X v10.5 and later.

See Also
NSRectFromCGRect (page 2230)
NSPointToCGPoint (page 2228)
NSSizeToCGSize (page 2237)

Declared In
NSGeometry.h

Functions 2231
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSRecycleZone
Frees memory in a zone.

void NSRecycleZone (
 NSZone *zone
);

Discussion
Frees zone after adding any of its pointers still in use to the default zone. (This strategy prevents retained
objects from being inadvertently destroyed.)

Availability
Available in Mac OS X v10.0 and later.

See Also
NSCreateZone (page 2180)
NSZoneMalloc (page 2259)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSZone.h

NSResetHashTable
Deletes the elements of the specified hash table.

void NSResetHashTable (
 NSHashTable *table
);

Discussion
Releases each element but doesn’t deallocate table. This function is useful for preserving the capacity of
table.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSFreeHashTable (page 2193)

Declared In
NSHashTable.h

NSResetMapTable
Deletes the elements of the specified map table.

2232 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

void NSResetMapTable (
 NSMapTable *table
);

Parameters
table

A reference to a map table structure.

Discussion
Releases each key and value but doesn’t deallocate table. This method is useful for preserving the capacity
of table.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSFreeMapTable (page 2194)

Declared In
NSMapTable.h

NSRoundDownToMultipleOfPageSize
Returns the specified number of bytes rounded down to a multiple of the page size.

NSUInteger NSRoundDownToMultipleOfPageSize (
 NSUInteger bytes
);

Return Value
In bytes, the multiple of the page size that is closest to, but not greater than, byteCount (that is, the number
of bytes rounded down to a multiple of the page size).

Availability
Available in Mac OS X v10.0 and later.

See Also
NSPageSize (page 2225)
NSLogPageSize (page 2212)
NSRoundUpToMultipleOfPageSize (page 2233)

Declared In
NSZone.h

NSRoundUpToMultipleOfPageSize
Returns the specified number of bytes rounded up to a multiple of the page size.

Functions 2233
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSUInteger NSRoundUpToMultipleOfPageSize (
 NSUInteger bytes
);

Return Value
In bytes, the multiple of the page size that is closest to, but not less than, byteCount (that is, the number
of bytes rounded up to a multiple of the page size).

Availability
Available in Mac OS X v10.0 and later.

See Also
NSPageSize (page 2225)
NSLogPageSize (page 2212)
NSRoundDownToMultipleOfPageSize (page 2233)

Declared In
NSZone.h

NSSearchPathForDirectoriesInDomains
Creates a list of directory search paths.

NSArray * NSSearchPathForDirectoriesInDomains (
 NSSearchPathDirectory directory,
 NSSearchPathDomainMask domainMask,
 BOOL expandTilde
);

Discussion
Creates a list of path strings for the specified directories in the specified domains. The list is in the order in
which you should search the directories. If expandTilde is YES, tildes are expanded as described in
stringByExpandingTildeInPath (page 1602).

For more information on file system utilities, see Locating Directories on the System.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BundleLoader
Core Data HTML Store
CoreRecipes
SampleScannerApp
SpotlightFortunes

Declared In
NSPathUtilities.h

NSSelectorFromString
Returns the selector with a given name.

2234 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

SEL NSSelectorFromString (
 NSString *aSelectorName
);

Parameters
aSelectorName

A string of any length, with any characters, that represents the name of a selector.

Return Value
The selector named by aSelectorName. If aSelectorName is nil, or cannot be converted to UTF-8 (this
should be only due to insufficient memory), returns (SEL)0.

Discussion
To make a selector, NSSelectorFromString passes a UTF-8 encoded character representation of
aSelectorName to sel_registerName and returns the value returned by that function. Note, therefore,
that if the selector does not exist it is registered and the newly-registered selector is returned.

Recall that a colon (“:”) is part of a method name; setHeight is not the same as setHeight:. For more
about methods names, see The Language in The Objective-C 2.0 Programming Language.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSStringFromSelector (page 2241)
NSProtocolFromString (page 2228)
NSClassFromString (page 2170)

Related Sample Code
CoreRecipes
ImageMapExample

Declared In
NSObjCRuntime.h

NSSetUncaughtExceptionHandler
Changes the top-level error handler.

void NSSetUncaughtExceptionHandler (
 NSUncaughtExceptionHandler *
);

Discussion
Sets the top-level error-handling function where you can perform last-minute logging before the program
terminates.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSGetUncaughtExceptionHandler (page 2195)
reportException: (NSApplication)

Functions 2235
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSException.h

NSSetZoneName
Sets the name of the specified zone.

void NSSetZoneName (
 NSZone *zone,
 NSString *name
);

Discussion
Sets the name of zone to name, which can aid in debugging.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSZoneName (page 2260)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSZone.h

NSShouldRetainWithZone
Indicates whether an object should be retained.

BOOL NSShouldRetainWithZone (
 id anObject,
 NSZone *requestedZone
);

Parameters
anObject

An object.

requestedZone
A memory zone.

Return Value
Returns YES if requestedZone is NULL, the default zone, or the zone in which anObject was allocated;
otherwise NO.

Discussion
This function is typically called from inside anNSObject’scopyWithZone: (page 1157), when deciding whether
to retain anObject as opposed to making a copy of it.

Availability
Available in Mac OS X v10.0 and later.

2236 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSObject.h

NSSizeFromCGSize
Returns an NSSize typecast from a CGSize.

NSSize NSSizeFromCGSize(CGSize cgsize) {
 return (*(NSSize *)&(cgsize));
}

Return Value
An NSSize typecast from a CGSize.

Availability
Available in Mac OS X v10.5 and later.

See Also
NSSizeToCGSize (page 2237)
NSPointFromCGPoint (page 2226)
NSRectFromCGRect (page 2230)

Declared In
NSGeometry.h

NSSizeFromString
Returns an NSSize from a text-based representation.

NSSize NSSizeFromString (
 NSString *aString
);

Discussion
Scans aString for two numbers which are used as the width and height, in that order, to create an NSSize
struct. If aString only contains a single number, it is used as the width. The aString argument should be
formatted like the output of NSStringFromSize (page 2242), for example, @"{10,20}". If aString does not
contain any numbers, this function returns an NSSize struct whose width and height are both 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSStringFromSize (page 2242)

Declared In
NSGeometry.h

NSSizeToCGSize
Returns a CGSize typecast from an NSSize.

Functions 2237
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

CGSize NSSizeToCGSize(NSSize nssize) {
 return (*(CGSize *)&(nssize));
}

Return Value
A CGSize typecast from an NSSize.

Availability
Available in Mac OS X v10.5 and later.

See Also
NSSizeFromCGSize (page 2237)
NSPointToCGPoint (page 2228)
NSRectToCGRect (page 2231)

Related Sample Code
Quartz 2D Shadings

Declared In
NSGeometry.h

NSStringFromClass
Returns the name of a class as a string.

NSString * NSStringFromClass (
 Class aClass
);

Parameters
aClass

A class.

Return Value
A string containing the name of aClass. If aClass is nil, returns nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSClassFromString (page 2170)
NSStringFromProtocol (page 2240)
NSStringFromSelector (page 2241)

Related Sample Code
Sketch-112
ToolbarSample

Declared In
NSObjCRuntime.h

2238 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSStringFromHashTable
Returns a string describing the hash table’s contents.

NSString * NSStringFromHashTable (
 NSHashTable *table
);

Return Value
A string describing table’s contents.

Discussion
The function iterates over the elements of table, and for each one appends the string returned by the
describe callback function. If NULL was specified for the callback function, the hexadecimal value of each
pointer is added to the string.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSHashTable.h

NSStringFromMapTable
Returns a string describing the map table’s contents.

NSString * NSStringFromMapTable (
 NSMapTable *table
);

Parameters
table

A reference to a map table structure.

Return Value
A string describing the map table’s contents.

Discussion
The function iterates over the key-value pairs of table and for each one appends the string “a = b;\n”, where
a and b are the key and value strings returned by the corresponding describe callback functions. If NULL
was specified for the callback function, a and b are the key and value pointers, expressed as hexadecimal
numbers.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMapTable.h

NSStringFromPoint
Returns a string representation of a point.

Functions 2239
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSString * NSStringFromPoint (
 NSPoint aPoint
);

Parameters
aPoint

A point structure.

Return Value
A string of the form “{a, b}”, where a and b are the x and y coordinates of aPoint.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSPointFromString (page 2227)

Declared In
NSGeometry.h

NSStringFromProtocol
Returns the name of a protocol as a string.

NSString * NSStringFromProtocol (
 Protocol *proto
);

Parameters
proto

A protocol.

Return Value
A string containing the name of proto.

Availability
Available in Mac OS X v10.5 and later.

See Also
NSProtocolFromString (page 2228)
NSStringFromClass (page 2238)
NSStringFromSelector (page 2241)

Declared In
NSObjCRuntime.h

NSStringFromRange
Returns a string representation of a range.

2240 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSString * NSStringFromRange (
 NSRange range
);

Return Value
A string of the form “{a, b}”, where a and b are non-negative integers representing aRange.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRange.h

NSStringFromRect
Returns a string representation of a rectangle.

NSString * NSStringFromRect (
 NSRect aRect
);

Discussion
Returns a string of the form “{{a, b}, {c, d}}”, where a, b, c, and d are the x and y coordinates and the width
and height, respectively, of aRect.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSRectFromString (page 2231)

Related Sample Code
DynamicProperties

Declared In
NSGeometry.h

NSStringFromSelector
Returns a string representation of a given selector.

NSString *NSStringFromSelector (
 SEL *aSelector
);

Parameters
aSelector

A selector.

Return Value
A string representation of aSelector.

Availability
Available in Mac OS X v10.0 and later.

Functions 2241
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

See Also
NSSelectorFromString (page 2234)
NSStringFromProtocol (page 2240)
NSStringFromClass (page 2238)

Related Sample Code
CallJS
EnhancedAudioBurn
QT Capture Widget
SpecialPictureProtocol
WebKitPluginWithJavaScript

Declared In
NSObjCRuntime.h

NSStringFromSize
Returns a string representation of a size.

NSString * NSStringFromSize (
 NSSize aSize
);

Return Value
A string of the form “{a, b}”, where a and b are the width and height, respectively, of aSize.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSizeFromString (page 2237)

Declared In
NSGeometry.h

NSSwapBigDoubleToHost
A utility for swapping the bytes of a number.

double NSSwapBigDoubleToHost (
 NSSwappedDouble x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapDouble (page 2245) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostDoubleToBig (page 2246)

2242 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSSwapLittleDoubleToHost (page 2251)

Declared In
NSByteOrder.h

NSSwapBigFloatToHost
A utility for swapping the bytes of a number.

float NSSwapBigFloatToHost (
 NSSwappedFloat x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapFloat (page 2245) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostFloatToBig (page 2246)
NSSwapLittleFloatToHost (page 2252)

Declared In
NSByteOrder.h

NSSwapBigIntToHost
A utility for swapping the bytes of a number.

unsigned int NSSwapBigIntToHost (
 unsigned int x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapInt (page 2251) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostIntToBig (page 2247)
NSSwapLittleIntToHost (page 2252)

Declared In
NSByteOrder.h

NSSwapBigLongLongToHost
A utility for swapping the bytes of a number.

Functions 2243
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

unsigned long long NSSwapBigLongLongToHost (
 unsigned long long x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapLongLong (page 2254) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostLongLongToBig (page 2248)
NSSwapLittleLongLongToHost (page 2252)

Declared In
NSByteOrder.h

NSSwapBigLongToHost
A utility for swapping the bytes of a number.

unsigned long NSSwapBigLongToHost (
 unsigned long x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapLong (page 2254) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostLongToBig (page 2249)
NSSwapLittleLongToHost (page 2253)

Declared In
NSByteOrder.h

NSSwapBigShortToHost
A utility for swapping the bytes of a number.

unsigned short NSSwapBigShortToHost (
 unsigned short x
);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it is necessary
to swap the bytes of x, this function calls NSSwapShort (page 2255) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

2244 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

See Also
NSSwapHostShortToBig (page 2250)
NSSwapLittleShortToHost (page 2253)

Declared In
NSByteOrder.h

NSSwapDouble
A utility for swapping the bytes of a number.

NSSwappedDouble NSSwapDouble (
 NSSwappedDouble x
);

Discussion
Swaps the bytes of x and returns the resulting value. Bytes are swapped from each low-order position to the
corresponding high-order position and vice versa. For example, if the bytes of x are numbered from 1 to 8,
this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes 4 and 5.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapLongLong (page 2254)
NSSwapFloat (page 2245)

Declared In
NSByteOrder.h

NSSwapFloat
A utility for swapping the bytes of a number.

NSSwappedFloat NSSwapFloat (
 NSSwappedFloat x
);

Discussion
Swaps the bytes of x and returns the resulting value. Bytes are swapped from each low-order position to the
corresponding high-order position and vice versa. For example, if the bytes of x are numbered from 1 to 4,
this function swaps bytes 1 and 4, and bytes 2 and 3.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapLong (page 2254)
NSSwapDouble (page 2245)

Declared In
NSByteOrder.h

Functions 2245
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSSwapHostDoubleToBig
A utility for swapping the bytes of a number.

NSSwappedDouble NSSwapHostDoubleToBig (
 double x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapDouble (page 2245) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapBigDoubleToHost (page 2242)
NSSwapHostDoubleToLittle (page 2246)

Declared In
NSByteOrder.h

NSSwapHostDoubleToLittle
A utility for swapping the bytes of a number.

NSSwappedDouble NSSwapHostDoubleToLittle (
 double x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapDouble (page 2245) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapLittleDoubleToHost (page 2251)
NSSwapHostDoubleToBig (page 2246)

Declared In
NSByteOrder.h

NSSwapHostFloatToBig
A utility for swapping the bytes of a number.

2246 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSSwappedFloat NSSwapHostFloatToBig (
 float x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapFloat (page 2245) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapBigFloatToHost (page 2243)
NSSwapHostFloatToLittle (page 2247)

Declared In
NSByteOrder.h

NSSwapHostFloatToLittle
A utility for swapping the bytes of a number.

NSSwappedFloat NSSwapHostFloatToLittle (
 float x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapFloat (page 2245) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapLittleFloatToHost (page 2252)
NSSwapHostFloatToBig (page 2246)

Declared In
NSByteOrder.h

NSSwapHostIntToBig
A utility for swapping the bytes of a number.

unsigned int NSSwapHostIntToBig (
 unsigned int x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapInt (page 2251) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

Functions 2247
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

See Also
NSSwapBigIntToHost (page 2243)
NSSwapHostIntToLittle (page 2248)

Related Sample Code
QTMetadataEditor

Declared In
NSByteOrder.h

NSSwapHostIntToLittle
A utility for swapping the bytes of a number.

unsigned int NSSwapHostIntToLittle (
 unsigned int x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapInt (page 2251) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapLittleIntToHost (page 2252)
NSSwapHostIntToBig (page 2247)

Declared In
NSByteOrder.h

NSSwapHostLongLongToBig
A utility for swapping the bytes of a number.

unsigned long long NSSwapHostLongLongToBig (
 unsigned long long x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapLongLong (page 2254) to perform the
swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapBigLongLongToHost (page 2243)
NSSwapHostLongLongToLittle (page 2249)

2248 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSByteOrder.h

NSSwapHostLongLongToLittle
A utility for swapping the bytes of a number.

unsigned long long NSSwapHostLongLongToLittle (
 unsigned long long x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapLongLong (page 2254) to perform the
swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapLittleLongLongToHost (page 2252)
NSSwapHostLongLongToBig (page 2248)

Declared In
NSByteOrder.h

NSSwapHostLongToBig
A utility for swapping the bytes of a number.

unsigned long NSSwapHostLongToBig (
 unsigned long x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapLong (page 2254) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapBigLongToHost (page 2244)
NSSwapHostLongToLittle (page 2249)

Declared In
NSByteOrder.h

NSSwapHostLongToLittle
A utility for swapping the bytes of a number.

Functions 2249
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

unsigned long NSSwapHostLongToLittle (
 unsigned long x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapLong (page 2254) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapLittleLongToHost (page 2253)
NSSwapHostLongToBig (page 2249)

Declared In
NSByteOrder.h

NSSwapHostShortToBig
A utility for swapping the bytes of a number.

unsigned short NSSwapHostShortToBig (
 unsigned short x
);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapShort (page 2255) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapBigShortToHost (page 2244)
NSSwapHostShortToLittle (page 2250)

Declared In
NSByteOrder.h

NSSwapHostShortToLittle
A utility for swapping the bytes of a number.

unsigned short NSSwapHostShortToLittle (
 unsigned short x
);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapShort (page 2255) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

2250 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

See Also
NSSwapLittleShortToHost (page 2253)
NSSwapHostShortToBig (page 2250)

Related Sample Code
AudioBurn

Declared In
NSByteOrder.h

NSSwapInt
A utility for swapping the bytes of a number.

unsigned int NSSwapInt (
 unsigned int inv
);

Discussion
Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order position to
the corresponding high-order position and vice versa. For example, if the bytes of inv are numbered from
1 to 4, this function swaps bytes 1 and 4, and bytes 2 and 3.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapShort (page 2255)
NSSwapLong (page 2254)
NSSwapLongLong (page 2254)

Declared In
NSByteOrder.h

NSSwapLittleDoubleToHost
A utility for swapping the bytes of a number.

double NSSwapLittleDoubleToHost (
 NSSwappedDouble x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes of x, this function calls NSSwapDouble (page 2245) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostDoubleToLittle (page 2246)
NSSwapBigDoubleToHost (page 2242)
NSConvertSwappedDoubleToHost (page 2173)

Functions 2251
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSByteOrder.h

NSSwapLittleFloatToHost
A utility for swapping the bytes of a number.

float NSSwapLittleFloatToHost (
 NSSwappedFloat x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes of x, this function calls NSSwapFloat (page 2245) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostFloatToLittle (page 2247)
NSSwapBigFloatToHost (page 2243)
NSConvertSwappedFloatToHost (page 2173)

Declared In
NSByteOrder.h

NSSwapLittleIntToHost
A utility for swapping the bytes of a number.

unsigned int NSSwapLittleIntToHost (
 unsigned int x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes, this function calls NSSwapInt (page 2251) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostIntToLittle (page 2248)
NSSwapBigIntToHost (page 2243)

Declared In
NSByteOrder.h

NSSwapLittleLongLongToHost
A utility for swapping the bytes of a number.

2252 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

unsigned long long NSSwapLittleLongLongToHost (
 unsigned long long x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes, this function calls NSSwapLongLong (page 2254) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostLongLongToLittle (page 2249)
NSSwapBigLongLongToHost (page 2243)

Declared In
NSByteOrder.h

NSSwapLittleLongToHost
A utility for swapping the bytes of a number.

unsigned long NSSwapLittleLongToHost (
 unsigned long x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes of x, this function calls NSSwapLong (page 2254) to perform the swap.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostLongToLittle (page 2249)
NSSwapBigLongToHost (page 2244)
NSSwapLong (page 2254)

Declared In
NSByteOrder.h

NSSwapLittleShortToHost
A utility for swapping the bytes of a number.

unsigned short NSSwapLittleShortToHost (
 unsigned short x
);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting value.
If it is necessary to swap the bytes of x, this function calls NSSwapShort (page 2255) to perform the swap.

Functions 2253
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapHostShortToLittle (page 2250)
NSSwapBigShortToHost (page 2244)

Declared In
NSByteOrder.h

NSSwapLong
A utility for swapping the bytes of a number.

unsigned long NSSwapLong (
 unsigned long inv
);

Discussion
Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order position to
the corresponding high-order position and vice versa. For example, if the bytes of inv are numbered from
1 to 4, this function swaps bytes 1 and 4, and bytes 2 and 3.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapLongLong (page 2254)
NSSwapInt (page 2251)
NSSwapFloat (page 2245)

Declared In
NSByteOrder.h

NSSwapLongLong
A utility for swapping the bytes of a number.

unsigned long long NSSwapLongLong (
 unsigned long long inv
);

Discussion
Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order position to
the corresponding high-order position and vice versa. For example, if the bytes of inv are numbered from
1 to 8, this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes 4 and 5.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapLong (page 2254)
NSSwapDouble (page 2245)

2254 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSByteOrder.h

NSSwapShort
A utility for swapping the bytes of a number.

unsigned short NSSwapShort (
 unsigned short inv
);

Discussion
Swaps the low-order and high-order bytes of inv and returns the resulting value.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSwapInt (page 2251)
NSSwapLong (page 2254)

Declared In
NSByteOrder.h

NSTemporaryDirectory
Returns the path of the temporary directory for the current user.

NSString * NSTemporaryDirectory (void);

Return Value
A string containing the path of the temporary directory for the current user. If no such directory is currently
available, returns nil.

Discussion
For more information on file system utilities, see Low-Level File Management Programming Topics.

The temporary directory is determined by confstr(3) passing the _CS_DARWIN_USER_TEMP_DIR flag. The
erase rules are whatever match that directory.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSearchPathForDirectoriesInDomains (page 2234)
NSHomeDirectory (page 2199)

Related Sample Code
Core Data HTML Store
QTRecorder
SpotlightFortunes

Functions 2255
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSPathUtilities.h

NSUnionRange
Returns the union of the specified ranges.

NSRange NSUnionRange (
 NSRange range1,
 NSRange range2
);

Return Value
A range covering all indices in and between range1 and range2. If one range is completely contained in
the other, the returned range is equal to the larger range.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSIntersectionRange (page 2203)

Declared In
NSRange.h

NSUnionRect
Calculates the union of two rectangles.

NSRect NSUnionRect (
 NSRect aRect,
 NSRect bRect
);

Discussion
Returns the smallest rectangle that completely encloses both aRect and bRect. If one of the rectangles has
0 (or negative) width or height, a copy of the other rectangle is returned; but if both have 0 (or negative)
width or height, the returned rectangle has its origin at (0.0, 0.0) and has 0 width and height.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSIntersectionRect (page 2203)

Related Sample Code
CarbonCocoaCoreImageTab
PDFKitLinker2
Reducer
Sketch-112
Worm

2256 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

Declared In
NSGeometry.h

NSUserName
Returns the logon name of the current user.

NSString * NSUserName (void);

Return Value
The logon name of the current user.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSFullUserName (page 2194)
NSHomeDirectory (page 2199)
NSHomeDirectoryForUser (page 2200)

Declared In
NSPathUtilities.h

NSWidth
Returns the width of the specified rectangle.

CGFloat NSWidth (
 NSRect aRect
);

Return Value
The width of aRect.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSMaxX (page 2219)
NSMaxY (page 2220)
NSMidX (page 2220)
NSMidY (page 2221)
NSMinX (page 2221)
NSMinY (page 2222)
NSHeight (page 2198)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
Clock Control
CocoaVideoFrameToGWorld
iSpend

Functions 2257
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

TrackBall

Declared In
NSGeometry.h

NSZoneCalloc
Allocates memory in a zone.

void * NSZoneCalloc (
 NSZone *zone,
 NSUInteger numElems,
 NSUInteger byteSize
);

Discussion
Allocates enough memory from zone for numElems elements, each with a size numBytes bytes, and returns
a pointer to the allocated memory. The memory is initialized with zeros. This function returns NULL if it was
unable to allocate the requested memory.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDefaultMallocZone (page 2188)
NSRecycleZone (page 2232)
NSZoneFree (page 2258)
NSZoneMalloc (page 2259)
NSZoneRealloc (page 2260)

Declared In
NSZone.h

NSZoneFree
Deallocates a block of memory in the specified zone.

void NSZoneFree (
 NSZone *zone,
 void *ptr
);

Discussion
Returns memory to the zone from which it was allocated. The standard C function free does the same, but
spends time finding which zone the memory belongs to.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSRecycleZone (page 2232)
NSZoneMalloc (page 2259)
NSZoneCalloc (page 2258)

2258 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSZoneRealloc (page 2260)

Related Sample Code
AudioBurn

Declared In
NSZone.h

NSZoneFromPointer
Gets the zone for a given block of memory.

NSZone * NSZoneFromPointer (
 void *ptr
);

Return Value
The zone for the block of memory indicated by pointer, or NULL if the block was not allocated from a zone.

Discussion
pointer must be one that was returned by a prior call to an allocation function.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSZoneCalloc (page 2258)
NSZoneMalloc (page 2259)
NSZoneRealloc (page 2260)

Declared In
NSZone.h

NSZoneMalloc
Allocates memory in a zone.

void * NSZoneMalloc (
 NSZone *zone,
 NSUInteger size
);

Discussion
Allocates size bytes in zone and returns a pointer to the allocated memory. This function returns NULL if it
was unable to allocate the requested memory.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDefaultMallocZone (page 2188)
NSRecycleZone (page 2232)
NSZoneFree (page 2258)

Functions 2259
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSZoneCalloc (page 2258)
NSZoneRealloc (page 2260)

Related Sample Code
AudioBurn

Declared In
NSZone.h

NSZoneName
Returns the name of the specified zone.

NSString * NSZoneName (
 NSZone *zone
);

Return Value
A string containing the name associated with zone. If zone is nil, the default zone is used. If no name is
associated with zone, the returned string is empty.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSetZoneName (page 2236)

Declared In
NSZone.h

NSZoneRealloc
Allocates memory in a zone.

void * NSZoneRealloc (
 NSZone *zone,
 void *ptr,
 NSUInteger size
);

Discussion
Changes the size of the block of memory pointed to by ptr to size bytes. It may allocate new memory to
replace the old, in which case it moves the contents of the old memory block to the new block, up to a
maximum of size bytes. ptr may be NULL. This function returns NULL if it was unable to allocate the
requested memory.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDefaultMallocZone (page 2188)
NSRecycleZone (page 2232)
NSZoneFree (page 2258)

2260 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NSZoneCalloc (page 2258)
NSZoneMalloc (page 2259)

Declared In
NSZone.h

NS_DURING
Marks the start of the exception-handling domain.

NS_DURING

Discussion
The NS_DURING macro marks the start of the exception-handling domain for a section of code. (The
NS_HANDLER (page 2262)macro marks the end of the domain.) Within the exception-handling domain you
can raise an exception, giving the local exception handler (or lower exception handlers) a chance to handle
it.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedAudioBurn
StickiesExample

Declared In
NSException.h

NS_ENDHANDLER
Marks the end of the local event handler.

NS_ENDHANDLER

Discussion
The NS_ENDHANDLER marks the end of a section of code that is a local exception handler. (The
NS_HANDLER (page 2262)macros marks the beginning of this section.) If an exception is raised in the exception
handling domain marked off by the NS_DURING (page 2261) and NS_HANDLER (page 2262), the local exception
handler (if specified) is given a chance to handle the exception.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedAudioBurn
StickiesExample

Declared In
NSException.h

Functions 2261
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NS_HANDLER
Marks the end of the exception-handling domain and the start of the local exception handler.

NS_HANDLER

Discussion
The NS_HANDLER macro marks end of a section of code that is an exception-handling domain while at the
same time marking the beginning of a section of code that is a local exception handler for that domain. (The
NS_DURING (page 2261) macro marks the beginning of the exception-handling domain; the
NS_ENDHANDLER (page 2261) marks the end of the local exception handler.) If an exception is raised in the
exception-handling domain, the local exception handler is first given the chance to handle the exception
before lower-level handlers are given a chance.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedAudioBurn
StickiesExample

Declared In
NSException.h

NS_VALUERETURN
Permits program control to exit from an exception-handling domain with a value of a specified type.

NS_VALUERETURN(val, type)

Parameters
val

A value to preserve beyond the exception-handling domain.

type
The type of the value specified in val.

Discussion
TheNS_VALUERETURNmacro returns program control to the caller out of the exception-handling domain—that
is, a section of code between theNS_DURING (page 2261) andNS_HANDLER (page 2262) macros that might raise
an exception. The specified value (of the specified type) is returned to the caller. The standard return
statement does not work as expected in the exception-handling domain.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSException.h

NS_VOIDRETURN
Permits program control to exit from an exception-handling domain.

2262 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

NS_VOIDRETURN

Discussion
The NS_VOIDRETURNmacro returns program control to the caller out of the exception-handling domain—that
is, a section of code between theNS_DURING (page 2261) andNS_HANDLER (page 2262) macros that might raise
an exception. The standard return statement does not work as expected in the exception-handling domain.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSException.h

Functions 2263
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

2264 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 188

Foundation Functions Reference

2265
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART IV

Data Types

2266
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART IV

Data Types

Framework: Foundation/Foundation.h

Overview

This document describes the data types and constants found in the Foundation framework.

Data Types

NSAppleEventManagerSuspensionID
Identifies an Apple event whose handling has been suspended. Can be used to resume handling of the Apple
event.

typedef const struct __NSAppleEventManagerSuspension
*NSAppleEventManagerSuspensionID;

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAppleEventManager.h

NSByteOrder
These constants specify an endian format.

enum _NSByteOrder {
 NS_UnknownByteOrder = CFByteOrderUnknown,
 NS_LittleEndian = CFByteOrderLittleEndian,
 NS_BigEndian = CFByteOrderBigEndian
};

Constants
NS_UnknownByteOrder

The byte order is unknown.

Available in Mac OS X v10.0 and later.

Declared in NSByteOrder.h.

Overview 2267
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

NS_LittleEndian
The byte order is little endian.

Available in Mac OS X v10.0 and later.

Declared in NSByteOrder.h.

NS_BigEndian
The byte order is big endian.

Available in Mac OS X v10.0 and later.

Declared in NSByteOrder.h.

Discussion
These constants are returned by NSHostByteOrder (page 2200).

Declared In
NSByteOrder.h

NSComparisonResult
These constants are used to indicate how items in a request are ordered.

typedef enum _NSComparisonResult {
 NSOrderedAscending = -1,
 NSOrderedSame,
 NSOrderedDescending
} NSComparisonResult;

Constants
NSOrderedAscending

The left operand is smaller than the right operand.

Available in Mac OS X v10.0 and later.

Declared in NSObjCRuntime.h.

NSOrderedSame
The two operands are equal.

Available in Mac OS X v10.0 and later.

Declared in NSObjCRuntime.h.

NSOrderedDescending
The left operand is greater than the right operand.

Available in Mac OS X v10.0 and later.

Declared in NSObjCRuntime.h.

Discussion
These constants are used to indicate how items in a request are ordered, from the first one given in a method
invocation or function call to the last (that is, left to right in code).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSObjCRuntime.h

2268 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

NSDecimal
Used to describe a decimal number.

typedef struct {
 signed int _exponent:8;
 unsigned int _length:4;
 unsigned int _isNegative:1;
 unsigned int _isCompact:1;
 unsigned int _reserved:18;
 unsigned short _mantissa[NSDecimalMaxSize];
} NSDecimal;

Discussion
The fields of NSDecimal are private.

Used by the functions described in "Decimals" (page 2148).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDecimal.h

NSHashEnumerator
Allows successive elements of a hash table to be returned each time this structure is passed to
NSNextHashEnumeratorItem (page 2223).

typedef struct {
 unsigned _pi;
 unsigned _si void *_bs;
} NSHashEnumerator;

Discussion
The fields of NSHashEnumerator are private.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSHashTable.h

NSHashTable
The opaque data type used by the functions described in "Hash Tables" (page 2149).

typedef struct _NSHashTable NSHashTable;

Discussion
For Mac OS X v10.5 and later, see also NSHashTable.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Data Types 2269
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

Declared In
NSHashTable.h

NSHashTableCallBacks
Defines a structure that contains the function pointers used to configure behavior of NSHashTable with
respect to elements within a hash table.

typedef struct {
 unsigned (*hash)(NSHashTable *table, const void *);
 BOOL (*isEqual)(NSHashTable *table, const void *, const void *);
 void (*retain)(NSHashTable *table, const void *);
 void (*release)(NSHashTable *table, void *);
 NSString *(*describe)(NSHashTable *table, const void *);
} NSHashTableCallBacks;

Fields
hash

Points to the function that must produce hash code for elements of the hash table. If NULL, the pointer
value is used as the hash code. Second parameter is the element for which hash code should be
produced.

isEqual
Points to the function that compares second and third parameters. If NULL, then == is used for
comparison.

retain
Points to the function that increments a reference count for the given element. If NULL, then nothing
is done for reference counting.

release
Points to the function that decrements a reference count for the given element, and if the reference
count becomes 0, frees the given element. If NULL, then nothing is done for reference counting or
releasing.

describe
Points to the function that produces an autoreleased NSString * describing the given element. If NULL,
then the hash table produces a generic string description.

Discussion
All functions must know the types of things in the hash table to be able to operate on them. Sets of predefined
call backs are described in "NSHashTable Callbacks" (page 2299).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSHashTable.h

NSHashTableOptions
Specifies a bitfield used to configure the behavior of elements in an instance of NSHashTable.

2270 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

typedef NSUInteger NSHashTableOptions

Declared In
NSHashTable.h

NSInteger
Used to describe an integer.

#if __LP64__
typedef long NSInteger;
#else
typedef int NSInteger;
endif

Discussion
When building 32-bit applications, NSInteger is a 32-bit integer. A 64-bit application treats NSInteger as a
64-bit integer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
IKPictureTaker.h

NSMapEnumerator
Allows successive elements of a map table to be returned each time this structure is passed to
NSNextMapEnumeratorPair (page 2223).

typedef struct {
 unsigned _pi;
 unsigned _si;
 void *_bs;
} NSMapEnumerator;

Discussion
The fields of NSMapEnumerator are private.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMapTable.h

NSMapTable
The opaque data type used by the functions described in "Map Tables" (page 2150).

typedef struct _NSMapTable NSMapTable;

Discussion
For Mac OS X v10.5 and later, see also NSMapTable.

Data Types 2271
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
NSMapTable.h

NSMapTableKeyCallBacks
The function pointers used to configure behavior of NSMapTable with respect to key elements within a map
table.

typedef struct {
 unsigned (*hash)(NSMapTable *table, const void *);
 BOOL (*isEqual)(NSMapTable *table, const void *, const void *);
 void (*retain)(NSMapTable *table, const void *);
 void (*release)(NSMapTable *table, void *);
 NSString *(*describe)(NSMapTable *table, const void *);
 const void *notAKeyMarker;
} NSMapTableKeyCallBacks;

Fields
hash

Points to the function which must produce hash code for key elements of the map table. If NULL, the
pointer value is used as the hash code. Second parameter is the element for which hash code should
be produced.

isEqual
Points to the function which compares second and third parameters. If NULL, then == is used for
comparison.

retain
Points to the function which increments a reference count for the given element. If NULL, then nothing
is done for reference counting.

release
Points to the function which decrements a reference count for the given element, and if the reference
count becomes zero, frees the given element. If NULL, then nothing is done for reference counting
or releasing.

describe
Points to the function which produces an autoreleased NSString * describing the given element. If
NULL, then the map table produces a generic string description.

notAKeyMarker
No key put in map table can be this value. An exception is raised if attempt is made to use this value
as a key

Discussion
All functions must know the types of things in the map table to be able to operate on them. Sets of predefined
call backs are described in "NSMapTable Key Call Backs" (page 2300).

Two predefined values to use for notAKeyMarker are NSNotAnIntMapKey and NSNotAPointerMapKey.

Availability
Available in Mac OS X v10.0 and later.

2272 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

Declared In
NSMapTable.h

NSMapTableOptions
Specifies a bitfield used to configure the behavior of elements in an instance of NSMapTable.

typedef NSUInteger NSMapTableOptions

Declared In
NSMapTable.h

NSMapTableValueCallBacks
The function pointers used to configure behavior of NSMapTable with respect to value elements within a
map table.

typedef struct {
 void (*retain)(NSMapTable *table, const void *);
 void (*release)(NSMapTable *table, void *);
 NSString *(*describe)(NSMapTable *table, const void *);
} NSMapTableValueCallBacks;

Fields
retain

Points to the function that increments a reference count for the given element. If NULL, then nothing
is done for reference counting.

release
Points to the function that decrements a reference count for the given element, and if the reference
count becomes zero, frees the given element. If NULL, then nothing is done for reference counting
or releasing.

describe
Points to the function that produces an autoreleased NSString * describing the given element. If NULL,
then the map table produces a generic string description.

Discussion
All functions must know the types of things in the map table to be able to operate on them. Sets of predefined
call backs are described in "NSMapTable Value Callbacks" (page 2302).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMapTable.h

NSObjCValue
This structure is defined for use by NSInvocation—you should not use it directly.

Data Types 2273
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

typedef struct {
 enum _NSObjCValueType type;
 union {
 char charValue;
 short shortValue;
 long longValue;
 long long longlongValue;
 float floatValue;
 double doubleValue;
 bool boolValue;
 SEL selectorValue;
 id objectValue;
 void *pointerValue;
 void *structLocation;
 char *cStringLocation;
 } value;
} NSObjCValue;

Discussion
The fields of NSObjCValue are private.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSInvocation.h

NSPoint
Represents a point in a Cartesian coordinate system.

typedef struct _NSPoint {
 CGFloat x;
 CGFloat y;
} NSPoint;

Fields
x

The x coordinate.

y
The y coordinate.

Special Considerations

Prior to Mac OS X v10.5 the coordinates were represented by float values rather than CGFloat values.

When building for 64 bit systems, or building 32 bit like 64 bit, NSPoint is typedef’d to CGPoint.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

2274 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

NSPointArray
Type indicating a parameter is array of NSPoint structures.

typedef NSPoint *NSPointArray;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

NSPointPointer
Type indicating a parameter is a pointer to an NSPoint structure.

typedef NSPoint *NSPointPointer;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

NSRange
A structure used to describe a portion of a series—such as characters in a string or objects in an NSArray
object.

typedef struct _NSRange {
 NSUInteger location;
 NSUInteger length;
} NSRange;

Fields
location

The start index (0 is the first, as in C arrays).

length
The number of items in the range (can be 0).

Discussion
Foundation functions that operate on ranges include the following:

NSEqualRanges (page 2191)
NSIntersectionRange (page 2203)
NSLocationInRange (page 2211)
NSMakeRange (page 2214)
NSMaxRange (page 2219)
NSRangeFromString (page 2229)
NSStringFromRange (page 2240)
NSUnionRange (page 2256)

Data Types 2275
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRange.h

NSRangePointer
Type indicating a parameter is a pointer to an NSRange structure.

typedef NSRange *NSRangePointer;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRange.h

NSRect
Represents a rectangle.

typedef struct _NSRect {
 NSPoint origin;
 NSSize size;
} NSRect;

Fields
origin

The origin of the rectangle (its starting x coordinate and y coordinate).

size
The width and height of the rectangle, as measured from the origin.

Special Considerations

When building for 64 bit systems, or building 32 bit like 64 bit, NSRect is typedef’d to CGRect.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

NSRectArray
Type indicating a parameter is array of NSRect structures.

typedef NSRect *NSRectArray;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

2276 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

NSRectEdge
Identifiers used by NSDivideRect (page 2188) to specify the edge of the input rectangle from which the
division is measured.

typedef enum _NSRectEdge {
 NSMinXEdge = 0,
 NSMinYEdge = 1,
 NSMaxXEdge = 2,
 NSMaxYEdge = 3
} NSRectEdge;

Constants
NSMinXEdge

Specifies the left edge of the input rectangle.

The input rectangle is divided vertically, and the leftmost rectangle with the width of amount is placed
in slice.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in NSGeometry.h.

NSMinYEdge
Specifies the bottom edge of the input rectangle.

The input rectangle is divided horizontally, and the bottom rectangle with the height of amount is
placed in slice.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in NSGeometry.h.

NSMaxXEdge
Specifies the right edge of the input rectangle.

The input rectangle is divided vertically, and the rightmost rectangle with the width of amount is
placed in slice.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in NSGeometry.h.

NSMaxYEdge
Specifies the top edge of the input rectangle.

The input rectangle is divided horizontally, and the top rectangle with the height of amount is placed
in slice.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in NSGeometry.h.

Discussion
The parameters amount and slice are defined by NSDivideRect (page 2188).

Availability
Available in Mac OS X v10.0 and later.

Data Types 2277
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

Declared In
NSGeometry.h

NSRectPointer
Type indicating a parameter is a pointer to an NSRect structure.

typedef NSRect *NSRectPointer;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

NSSearchPathDirectory
These constants specify the location of a variety of directories.

typedef enum {
 NSApplicationDirectory = 1,
 NSDemoApplicationDirectory,
 NSDeveloperApplicationDirectory,
 NSAdminApplicationDirectory,
 NSLibraryDirectory,
 NSDeveloperDirectory,
 NSUserDirectory,
 NSDocumentationDirectory,
 NSDocumentDirectory,
 NSCoreServiceDirectory,
 NSDesktopDirectory = 12,
 NSCachesDirectory = 13,
 NSApplicationSupportDirectory = 14,
 NSDownloadsDirectory = 15,
 NSAllApplicationsDirectory = 100,
 NSAllLibrariesDirectory = 101
} NSSearchPathDirectory;

Constants
NSApplicationDirectory

Supported applications (/Applications).

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

NSDemoApplicationDirectory
Unsupported applications and demonstration versions.

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

NSDeveloperApplicationDirectory
Developer applications (/Developer/Applications).

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

2278 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

NSAdminApplicationDirectory
System and network administration applications.

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

NSLibraryDirectory
Various user-visible documentation, support, and configuration files (/Library).

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

NSDeveloperDirectory
Developer resources (/Developer).

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

NSUserDirectory
User home directories (/Users).

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

NSDocumentationDirectory
Documentation.

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

NSDocumentDirectory
Document directory.

Available in Mac OS X v10.2 and later.

Declared in NSPathUtilities.h.

NSCoreServiceDirectory
Location of core services (System/Library/CoreServices).

Available in Mac OS X v10.4 and later.

Declared in NSPathUtilities.h.

NSDesktopDirectory
Location of user’s desktop directory.

Available in Mac OS X v10.4 and later.

Declared in NSPathUtilities.h.

NSCachesDirectory
Location of discardable cache files (Library/Caches).

Available in Mac OS X v10.4 and later.

Declared in NSPathUtilities.h.

NSApplicationSupportDirectory
Location of application support files (Library/Application Support).

Available in Mac OS X v10.4 and later.

Declared in NSPathUtilities.h.

Data Types 2279
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

NSDownloadsDirectory
Location of the user’s downloads directory.

The NSDownloadsDirectory flag will only produce a path only when the NSUserDomainMask is
provided.

Available in Mac OS X v10.5 and later.

Declared in NSPathUtilities.h.

NSAllApplicationsDirectory
All directories where applications can occur.

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

NSAllLibrariesDirectory
All directories where resources can occur.

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPathUtilities.h

NSSearchPathDomainMask
Search path domain constants specifying base locations for the NSSearchPathDirectory (page 2278) type.

typedef enum {
 NSUserDomainMask = 1,
 NSLocalDomainMask = 2,
 NSNetworkDomainMask = 4,
 NSSystemDomainMask = 8,
 NSAllDomainsMask = 0x0ffff,
} NSSearchPathDomainMask;

Constants
NSUserDomainMask

The user’s home directory—the place to install user’s personal items (~).

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

NSLocalDomainMask
Local to the current machine—the place to install items available to everyone on this machine.

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

NSNetworkDomainMask
Publicly available location in the local area network—the place to install items available on the network
(/Network).

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

2280 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

NSSystemDomainMask
Provided by Apple — can’t be modified (/System) .

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

NSAllDomainsMask
All domains.

Includes all of the above and future items.

Available in Mac OS X v10.0 and later.

Declared in NSPathUtilities.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPathUtilities.h

NSSize
Represents a two-dimensional size.

typedef struct _NSSize {
 CGFloat width;
 CGFloat height;
} NSSize;

Fields
width

The width.

height
The height.

Discussion
Normally, the values of width and height are non-negative. The functions that create an NSSize structure
do not prevent you from setting a negative value for these attributes. If the value of width or height is
negative, however, the behavior of some methods may be undefined.

Special Considerations

Prior to Mac OS X v10.5 the width and height were represented by float values rather than CGFloat values.

When building for 64 bit systems, or building 32 bit like 64 bit, NSSize is typedef’d to CGSize.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

NSSizeArray
Type indicating a parameter is array of NSSize structures.

Data Types 2281
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

typedef NSSize *NSSizeArray;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

NSSizePointer
Type indicating parameter is a pointer to an NSSize structure.

typedef NSSize *NSSizePointer;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGeometry.h

NSStringEncoding
Type representing string-encoding values.

typedef NSUInteger NSStringEncoding;

Discussion
See String Encodings (page 1619) for a list of values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSString.h

NSSwappedDouble
Opaque structure containing endian-independent double value.

typedef struct {
 unsigned long long v;
} NSSwappedDouble;

Discussion
The fields of an NSSwappedDouble are private.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSByteOrder.h

2282 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

NSSwappedFloat
Opaque type containing an endian-independent float value.

typedef struct {
 unsigned long v;
} NSSwappedFloat;

Discussion
The fields of an NSSwappedFloat are private.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSByteOrder.h

NSTimeInterval
Used to specify a time interval, in seconds.

typedef double NSTimeInterval;

Discussion
NSTimeInterval is always specified in seconds; it yields sub-millisecond precision over a range of 10,000
years.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDate.h

NSUncaughtExceptionHandler
Used for the function handling exceptions outside of an exception-handling domain.

typedef volatile void NSUncaughtExceptionHandler(NSException *exception);

Discussion
You can set exception handlers using NSSetUncaughtExceptionHandler (page 2235).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSException.h

NSUInteger
Used to describe an unsigned integer.

Data Types 2283
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

#if __LP64__
typedef long NSUInteger;
#else
typedef int NSUInteger;
endif

Discussion
When building 32-bit applications, NSUInteger is a 32-bit unsigned integer. A 64-bit application treats
NSUInteger as a 64-bit unsigned integer

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTKitDefines.h

NSZone
Used to identify and manage memory zones.

typedef struct _NSZone NSZone;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSZone.h

2284 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 189

Foundation Data Types Reference

2285
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART V

Constants

2286
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART V

Constants

Framework: Foundation/Foundation.h

Overview

This document defines constants in the Foundation framework that are not associated with a particular class.

Constants

Enumerations

NSNotFound
Defines a value that indicates that an item requested couldn’t be found or doesn’t exist.

enum {
 NSNotFound = 0x7fffffff
};

Constants
NSNotFound

A value that indicates that an item requested couldn’t be found or doesn’t exist.

Available in Mac OS X v10.0 and later.

Declared in NSObjCRuntime.h.

Discussion
NSNotFound is typically used by various methods and functions that search for items in serial data and return
indices, such as characters in a string object or ids in an NSArray object.

Declared In
NSObjCRuntime.h

Memory Allocation
These constants are used as components in a bitfield to specify the behavior of
NSAllocateCollectable (page 2158) and NSReallocateCollectable (page 2229).

Overview 2287
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

enum {
 NSScannedOption = (1<<0),
 NSCollectorDisabledOption = (2<<0),
};

Constants
NSScannedOption

Specifies allocation of scanned memory.

Available in Mac OS X v10.4 and later.

Declared in NSZone.h.

NSCollectorDisabledOption
Specifies that the block is retained, and therefore ineligible for collection.

Available in Mac OS X v10.5 and later.

Declared in NSZone.h.

Declared In
NSGarbageCollector.h

NSError Codes
NSError codes in the Cocoa error domain.

enum {
 NSFileNoSuchFileError = 4,
 NSFileLockingError = 255,
 NSFileReadUnknownError = 256,
 NSFileReadNoPermissionError = 257,
 NSFileReadInvalidFileNameError = 258,
 NSFileReadCorruptFileError = 259,
 NSFileReadNoSuchFileError = 260,
 NSFileReadInapplicableStringEncodingError = 261,
 NSFileReadUnsupportedSchemeError = 262,
 NSFileWriteUnknownError = 512,
 NSFileWriteNoPermissionError = 513,
 NSFileWriteInvalidFileNameError = 514,
 NSFileWriteInapplicableStringEncodingError = 517,
 NSFileWriteUnsupportedSchemeError = 518,
 NSFileWriteOutOfSpaceError = 640,
 NSKeyValueValidationError = 1024,
 NSFormattingError = 2048,
 NSUserCancelledError = 3072,

 NSFileErrorMinimum = 0,
 NSFileErrorMaximum = 1023,
 NSValidationErrorMinimum = 1024,
 NSValidationErrorMaximum = 2047,
 NSFormattingErrorMinimum = 2048,
 NSFormattingErrorMaximum = 2559,

2288 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

 NSExecutableErrorMinimum = 3584,
 NSExecutableNotLoadableError = 3584,
 NSExecutableArchitectureMismatchError = 3585,
 NSExecutableRuntimeMismatchError = 3586,
 NSExecutableLoadError = 3587,
 NSExecutableLinkError = 3588,
 NSExecutableErrorMaximum = 3839
}

Constants
NSFileNoSuchFileError

File-system operation attempted on non-existent file

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileLockingError
Failure to get a lock on file

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileReadUnknownError
Read error, reason unknown

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileReadNoPermissionError
Read error because of a permission problem

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileReadInvalidFileNameError
Read error because of an invalid file name

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileReadCorruptFileError
Read error because of a corrupted file, bad format, or similar reason

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileReadNoSuchFileError
Read error because no such file was found

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileReadInapplicableStringEncodingError
Read error because the string encoding was not applicable.

Access the bad encoding from the userInfo dictionary using the NSStringEncodingErrorKey
key.

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

Constants 2289
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSFileReadUnsupportedSchemeError
Read error because the specified URL scheme is unsupported

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileWriteUnknownError
Write error, reason unknown

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileWriteNoPermissionError
Write error because of a permission problem

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileWriteInvalidFileNameError
Write error because of an invalid file name

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileWriteInapplicableStringEncodingError
Write error because the string encoding was not applicable.

Access the bad encoding from the userInfo dictionary using the NSStringEncodingErrorKey
key.

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileWriteUnsupportedSchemeError
Write error because the specified URL scheme is unsupported

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileWriteOutOfSpaceError
Write error because of a lack of disk space

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSKeyValueValidationError
Key-value coding validation error

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFormattingError
Formatting error (related to display of data)

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSUserCancelledError
The user cancelled the operation (for example, by pressing Command-period).

This code is for errors that do not require a dialog displayed and might be candidates for special-casing.

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

2290 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSFileErrorMinimum
Marks the start of the range of error codes reserved for file errors

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFileErrorMaximum
Marks the end of the range of error codes reserved for file errors

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSValidationErrorMinimum
Marks the start of the range of error codes reserved for validation errors.

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSValidationErrorMaximum
Marks the start and end of the range of error codes reserved for validation errors.

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFormattingErrorMinimum
Marks the start of the range of error codes reserved for formatting errors.

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSFormattingErrorMaximum
Marks end of the range of error codes reserved for formatting errors.

Available in Mac OS X v10.4 and later.

Declared in FoundationErrors.h.

NSExecutableErrorMinimum
Marks beginning of the range of error codes reserved for errors related to executable files.

Available in Mac OS X v10.5 and later.

Declared in FoundationErrors.h.

NSExecutableNotLoadableError
Executable is of a type that is not loadable in the current process.

Available in Mac OS X v10.5 and later.

Declared in FoundationErrors.h.

NSExecutableArchitectureMismatchError
Executable does not provide an architecture compatible with the current process.

Available in Mac OS X v10.5 and later.

Declared in FoundationErrors.h.

NSExecutableRuntimeMismatchError
Executable has Objective C runtime information incompatible with the current process.

Available in Mac OS X v10.5 and later.

Declared in FoundationErrors.h.

Constants 2291
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSExecutableLoadError
Executable cannot be loaded for some other reason, such as a problem with a library it depends on.

Available in Mac OS X v10.5 and later.

Declared in FoundationErrors.h.

NSExecutableLinkError
Executable fails due to linking issues.

Available in Mac OS X v10.5 and later.

Declared in FoundationErrors.h.

NSExecutableErrorMaximum
Marks end of the range of error codes reserved for errors related to executable files.

Available in Mac OS X v10.5 and later.

Declared in FoundationErrors.h.

Discussion
The constants in this enumeration are NSError code numbers in the Cocoa error domain
(NSCocoaErrorDomain). Other frameworks, most notably the Application Kit, provide their own
NSCocoaErrorDomain error codes.

The enumeration constants beginning with NSFile indicate file-system errors or errors related to file I/O
operations. Use the key NSFilePathErrorKey or the NSURLErrorKey (whichever is appropriate) to access
the file-system path or URL in the userInfo dictionary of the NSError object.

Declared In
FoundationErrors.h

URL Loading System Error Codes
These values are returned as the error code property of an NSError object with the domain
“NSURLErrorDomain”.

2292 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

typedef enum
{
 NSURLErrorUnknown = -1,
 NSURLErrorCancelled = -999,
 NSURLErrorBadURL = -1000,
 NSURLErrorTimedOut = -1001,
 NSURLErrorUnsupportedURL = -1002,
 NSURLErrorCannotFindHost = -1003,
 NSURLErrorCannotConnectToHost = -1004,
 NSURLErrorDataLengthExceedsMaximum = -1103,
 NSURLErrorNetworkConnectionLost = -1005,
 NSURLErrorDNSLookupFailed = -1006,
 NSURLErrorHTTPTooManyRedirects = -1007,
 NSURLErrorResourceUnavailable = -1008,
 NSURLErrorNotConnectedToInternet = -1009,
 NSURLErrorRedirectToNonExistentLocation = -1010,
 NSURLErrorBadServerResponse = -1011,
 NSURLErrorUserCancelledAuthentication = -1012,
 NSURLErrorUserAuthenticationRequired = -1013,
 NSURLErrorZeroByteResource = -1014,
 NSURLErrorFileDoesNotExist = -1100,
 NSURLErrorFileIsDirectory = -1101,
 NSURLErrorNoPermissionsToReadFile = -1102,
 NSURLErrorSecureConnectionFailed = -1200,
 NSURLErrorServerCertificateHasBadDate = -1201,
 NSURLErrorServerCertificateUntrusted = -1202,
 NSURLErrorServerCertificateHasUnknownRoot = -1203,
 NSURLErrorServerCertificateNotYetValid = -1204,
 NSURLErrorClientCertificateRejected = -1205,
 NSURLErrorCannotLoadFromNetwork = -2000,
 NSURLErrorCannotCreateFile = -3000,
 NSURLErrorCannotOpenFile = -3001,
 NSURLErrorCannotCloseFile = -3002,
 NSURLErrorCannotWriteToFile = -3003,
 NSURLErrorCannotRemoveFile = -3004,
 NSURLErrorCannotMoveFile = -3005,
 NSURLErrorDownloadDecodingFailedMidStream = -3006,
 NSURLErrorDownloadDecodingFailedToComplete = -3007
}

Constants
NSURLErrorUnknown

Returned when the URL Loading system encounters an error that it cannot interpret.

This can occur when an error originates from a lower level framework or library. Whenever this error
code is received, it is a bug, and should be reported to Apple.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorCancelled
Returned when an asynchronous load is canceled.

A Web Kit framework delegate will receive this error when it performs a cancel operation on a loading
resource. Note that an NSURLConnection or NSURLDownload delegate will not receive this error if
the download is canceled.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

Constants 2293
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSURLErrorBadURL
Returned when a URL is sufficiently malformed that a URL request cannot be initiated

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorTimedOut
Returned when an asynchronous operation times out.

NSURLConnection will send this error to its delegate when the timeoutInterval in NSURLRequest
expires before a load can complete.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorUnsupportedURL
Returned when a properly formed URL cannot be handled by the framework.

The most likely cause is that there is no available protocol handler for the URL.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorCannotFindHost
Returned when the host name for a URL cannot be resolved.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorCannotConnectToHost
Returned when an attempt to connect to a host has failed.

This can occur when a host name resolves, but the host is down or may not be accepting connections
on a certain port.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorDataLengthExceedsMaximum
Returned when the length of the resource data exceeds the maximum allowed.

Available in Mac OS X v10.5 and later.

Declared in NSURLError.h.

NSURLErrorNetworkConnectionLost
Returned when a client or server connection is severed in the middle of an in-progress load.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorDNSLookupFailed
See NSURLErrorCannotFindHost

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorHTTPTooManyRedirects
Returned when a redirect loop is detected or when the threshold for number of allowable redirects
has been exceeded (currently 16).

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

2294 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSURLErrorResourceUnavailable
Returned when a requested resource cannot be retrieved.

Examples are “file not found”, and data decoding problems that prevent data from being processed
correctly.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorNotConnectedToInternet
Returned when a network resource was requested, but an internet connection is not established and
cannot be established automatically, either through a lack of connectivity, or by the user's choice not
to make a network connection automatically.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorRedirectToNonExistentLocation
Returned when a redirect is specified by way of server response code, but the server does not
accompany this code with a redirect URL.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorBadServerResponse
Returned when the URL Loading system receives bad data from the server.

This is equivalent to the “500 Server Error” message sent by HTTP servers.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorUserCancelledAuthentication
Returned when an asynchronous request for authentication is cancelled by the user.

This is typically incurred by clicking a “Cancel” button in a username/password dialog, rather than
the user making an attempt to authenticate.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorUserAuthenticationRequired
Returned when authentication is required to access a resource.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorZeroByteResource
Returned when a server reports that a URL has a non-zero content length, but terminates the network
connection “gracefully” without sending any data.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorFileDoesNotExist
Returned when a file does not exist.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

Constants 2295
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSURLErrorFileIsDirectory
Returned when a request for an FTP file results in the server responding that the file is not a plain file,
but a directory.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorNoPermissionsToReadFile
Returned when a resource cannot be read due to insufficient permissions.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorSecureConnectionFailed
Returned when an attempt to establish a secure connection fails for reasons which cannot be expressed
more specifically.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorServerCertificateHasBadDate
Returned when a server certificate has a date which indicates it has expired, or is not yet valid.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorServerCertificateUntrusted
Returned when a server certificate is signed by a root server which is not trusted.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorServerCertificateHasUnknownRoot
Returned when a server certificate is not signed by any root server.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorServerCertificateNotYetValid
Returned when a server certificate is not yet valid.

Available in Mac OS X v10.4 and later.

Declared in NSURLError.h.

NSURLErrorClientCertificateRejected
Returned when a server certificate is rejected.

Available in Mac OS X v10.4 and later.

Declared in NSURLError.h.

NSURLErrorCannotLoadFromNetwork
Returned when a specific request to load an item only from the cache cannot be satisfied.

This error is sent at the point when the library would go to the network accept for the fact that is has
been blocked from doing so by the “load only from cache” directive.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

2296 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSURLErrorCannotCreateFile
Returned when NSURLDownload object was unable to create the downloaded file on disk due to a
I/O failure.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorCannotOpenFile
Returned when NSURLDownload was unable to open the downloaded file on disk.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorCannotCloseFile
Returned when NSURLDownload was unable to close the downloaded file on disk.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorCannotWriteToFile
Returned when NSURLDownload was unable to write to the downloaded file on disk.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorCannotRemoveFile
Returned when NSURLDownload was unable to remove a downloaded file from disk.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorCannotMoveFile
Returned when NSURLDownload was unable to move a downloaded file on disk.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorDownloadDecodingFailedMidStream
Returned when NSURLDownload failed to decode an encoded file during the download.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

NSURLErrorDownloadDecodingFailedToComplete
Returned when NSURLDownload failed to decode an encoded file after downloading.

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLError.h

Constants 2297
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

Global Variables

Cocoa Error Domain
This constant defines the Cocoa error domain.

NSString *const NSCocoaErrorDomain;

Constants
NSCocoaErrorDomain

Application Kit and Foundation Kit errors.

Available in Mac OS X v10.4 and later.

Declared in NSError.h.

Declared In
FoundationErrors.h

NSJavaSetup Information
Keys into a dictionary providing information about the way to set up the Java virtual machine.

extern NSString *NSJavaClasses;
extern NSString *NSJavaRoot;
extern NSString *NSJavaPath;
extern NSString *NSJavaUserPath;
extern NSString *NSJavaLibraryPath;
extern NSString *NSJavaOwnVirtualMachine;
extern NSString *NSJavaPathSeparator;

Constants
NSJavaClasses

The classes that the virtual machine should load so that their associated frameworks will be loaded.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSJavaSetup.h.

NSJavaRoot
The root of the location where the application’s classes are.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSJavaSetup.h.

NSJavaPath
A class path whose components will be prepended by NSJavaRoot if they are not absolute locations.
This entry is an array.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSJavaSetup.h.

2298 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSJavaUserPath
Another segment of the class path so that the application developer can customize where classes
will be looked for.

This path goes after the application path so that one cannot replace the classes used by the application.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSJavaSetup.h.

NSJavaLibraryPath
The path where the runtime should look for dynamic libraries needed by Java wrappers.

This path is an NSArray object.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSJavaSetup.h.

NSJavaOwnVirtualMachine
An NSString object. If this string exists in the dictionary, NSJavaSetup attempts to create a new
Java virtual machine rather than reusing the existing one. Set the value of this string to "YES".

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSJavaSetup.h.

NSJavaPathSeparator
This path is not a dictionary key—it is a value indicating the separator placed between components
of a pathname passed to NSJavaSetup.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSJavaSetup.h.

Declared In
NSJavaSetup.h

NSHashTable Callbacks
Predefined sets of callbacks for NSHashTable.

extern const NSHashTableCallBacks NSIntegerHashCallBacks;
extern const NSHashTableCallBacks NSIntHashCallBacks;
extern const NSHashTableCallBacks NSNonOwnedPointerHashCallBacks;
extern const NSHashTableCallBacks NSNonRetainedObjectHashCallBacks;
extern const NSHashTableCallBacks NSObjectHashCallBacks;
extern const NSHashTableCallBacks NSOwnedObjectIdentityHashCallBacks;
extern const NSHashTableCallBacks NSOwnedPointerHashCallBacks;
extern const NSHashTableCallBacks NSPointerToStructHashCallBacks;

Constants
NSIntegerHashCallBacks

For sets of NSInteger-sized quantities or smaller (for example, int, long, or unichar).

Available in Mac OS X v10.5 and later.

Declared in NSHashTable.h.

Constants 2299
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSIntHashCallBacks

For sets of pointer-sized quantities or smaller (for example, int, long, or unichar). (Deprecated.
Use NSIntegerHashCallBacks instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSHashTable.h.

NSNonOwnedPointerHashCallBacks
For sets of pointers, hashed by address.

Available in Mac OS X v10.0 and later.

Declared in NSHashTable.h.

NSNonRetainedObjectHashCallBacks
For sets of objects, but without retaining/releasing.

Available in Mac OS X v10.0 and later.

Declared in NSHashTable.h.

NSObjectHashCallBacks
For sets of objects (similar to NSSet).

Available in Mac OS X v10.0 and later.

Declared in NSHashTable.h.

NSOwnedObjectIdentityHashCallBacks
For sets of objects, with transfer of ownership upon insertion, using pointer equality.

Available in Mac OS X v10.0 and later.

Declared in NSHashTable.h.

NSOwnedPointerHashCallBacks
For sets of pointers, with transfer of ownership upon insertion.

Available in Mac OS X v10.0 and later.

Declared in NSHashTable.h.

NSPointerToStructHashCallBacks
For sets of pointers to structs, when the first field of the struct is int-sized.

Available in Mac OS X v10.0 and later.

Declared in NSHashTable.h.

Discussion
On Mac OS X v10.5 and later, see also the NSHashTable class.

Note that you can make your own callback by picking fields among the above callbacks.

Declared In
NSHashTable.h

NSMapTable Key Call Backs
Predefined sets of callbacks for NSMapTable keys.

2300 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

extern const NSMapTableKeyCallBacks NSIntegerMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSIntMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonOwnedPointerMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonOwnedPointerOrNullMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonRetainedObjectMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSObjectMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSOwnedPointerMapKeyCallBacks;

Constants
NSIntegerMapKeyCallBacks

For keys that are pointer-sized quantities or smaller (for example, int, long, or unichar).

Available in Mac OS X v10.5 and later.

Declared in NSMapTable.h.

NSIntMapKeyCallBacks

For keys that are pointer-sized quantities or smaller (for example, int, long, or unichar). (Deprecated.
Use NSIntegerMapKeyCallBacks instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSMapTable.h.

NSNonOwnedPointerMapKeyCallBacks
For keys that are pointers not freed.

Available in Mac OS X v10.0 and later.

Declared in NSMapTable.h.

NSNonOwnedPointerOrNullMapKeyCallBacks
For keys that are pointers not freed, or NULL.

Available in Mac OS X v10.0 and later.

Declared in NSMapTable.h.

NSNonRetainedObjectMapKeyCallBacks
For sets of objects, but without retaining/releasing.

Available in Mac OS X v10.0 and later.

Declared in NSMapTable.h.

NSObjectMapKeyCallBacks
For keys that are objects.

Available in Mac OS X v10.0 and later.

Declared in NSMapTable.h.

NSOwnedPointerMapKeyCallBacks
For keys that are pointers, with transfer of ownership upon insertion.

Available in Mac OS X v10.0 and later.

Declared in NSMapTable.h.

Discussion
On Mac OS X v10.5 and later, see also the NSMapTable class.

Note that you can make your own callback by picking fields among the above callbacks.

Declared In
NSMapTable.h

Constants 2301
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSMapTable Value Callbacks
These are predefined sets of callbacks for NSMapTable values.

extern const NSMapTableValueCallBacks NSIntegerMapValueCallBacks;
extern const NSMapTableValueCallBacks NSIntMapValueCallBacks;
extern const NSMapTableValueCallBacks NSNonOwnedPointerMapValueCallBacks;
extern const NSMapTableValueCallBacks NSObjectMapValueCallBacks;
extern const NSMapTableValueCallBacks NSNonRetainedObjectMapValueCallBacks;
extern const NSMapTableValueCallBacks NSOwnedPointerMapValueCallBacks;

Constants
NSIntegerMapValueCallBacks

For values that are pointer-sized quantities, (for example, int, long, or unichar).

Available in Mac OS X v10.5 and later.

Declared in NSMapTable.h.

NSIntMapValueCallBacks

For values that are pointer-sized quantities, (for example, int, long, or unichar). (Deprecated. Use
NSIntegerMapValueCallBacks instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSMapTable.h.

NSNonOwnedPointerMapValueCallBacks
For values that are not owned pointers.

Available in Mac OS X v10.0 and later.

Declared in NSMapTable.h.

NSOwnedPointerMapValueCallBacks
For values that are owned pointers.

Available in Mac OS X v10.0 and later.

Declared in NSMapTable.h.

NSNonRetainedObjectMapValueCallBacks
For sets of objects, but without retaining/releasing.

Available in Mac OS X v10.0 and later.

Declared in NSMapTable.h.

NSObjectMapValueCallBacks
For values that are objects.

Available in Mac OS X v10.0 and later.

Declared in NSMapTable.h.

Discussion
On Mac OS X v10.5 and later, see also the NSMapTable class.

Note that you can make your own callback by picking fields among the above callbacks.

Declared In
NSMapTable.h

2302 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSURL Domain
This error domain is defined for NSURL.

extern NSString * const NSURLErrorDomain;

Constants
NSURLErrorDomain

URL loading system errors

Available in Mac OS X v10.2 and later.

Declared in NSURLError.h.

Declared In
NSURLError.h

Zero Constants
These constants are defined as conveniences and can be used to compare with return values from functions.

extern const NSPoint NSZeroPoint;
extern const NSSize NSZeroSize;
extern const NSRect NSZeroRect;

Constants
NSZeroPoint

An NSPoint structure with both x and y coordinates set to 0.

Available in Mac OS X v10.0 and later.

Declared in NSGeometry.h.

NSZeroSize
An NSSize structure set to 0 in both dimensions.

Available in Mac OS X v10.0 and later.

Declared in NSGeometry.h.

NSZeroRect
An NSRect structure set to 0 in width and height.

Available in Mac OS X v10.0 and later.

Declared in NSGeometry.h.

Declared In
NSGeometry.h

Numeric Constants

NSDecimal Constants
Constants used by NSDecimal.

Constants 2303
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

#define NSDecimalMaxSize (8)
#define NSDecimalNoScale SHRT_MAX

Constants
NSDecimalMaxSize

The maximum size of NSDecimal (page 2269).

Gives a precision of at least 38 decimal digits, 128 binary positions.

Available in Mac OS X v10.0 and later.

Declared in NSDecimal.h.

NSDecimalNoScale
Specifies that the number of digits allowed after the decimal separator in a decimal number should
not be limited.

Available in Mac OS X v10.0 and later.

Declared in NSDecimal.h.

Declared In
NSDecimal.h

NSMapTable Constants
Constants used by NSMapTable.

#define NSNotAnIntMapKey ((const void *)0x80000000)
#define NSNotAnIntegerMapKey ((const void *)NSIntegerMin)
#define NSNotAPointerMapKey ((const void *)0xffffffff)

Constants
NSNotAnIntMapKey

Predefined notAKeyMarker for use with NSMapTableKeyCallBacks (page 2272). (Deprecated. Use
NSNotAnIntegerMapKey instead.)

Available in Mac OS X v10.0 and later.

Declared in NSMapTable.h.

NSNotAnIntegerMapKey
Predefined notAKeyMarker for use with NSMapTableKeyCallBacks (page 2272).

Available in Mac OS X v10.5 and later.

Declared in NSMapTable.h.

NSNotAPointerMapKey
Predefined notAKeyMarker for use with NSMapTableKeyCallBacks (page 2272).

Available in Mac OS X v10.0 and later.

Declared in NSMapTable.h.

Discussion
On Mac OS X v10.5 and later, see also the NSMapTable class.

Declared In
NSMapTable.h

2304 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSInteger and NSUInteger Maximum and Minimum Values
Constants representing the maximum and minimum values of NSInteger and NSUInteger.

#define NSIntegerMax LONG_MAX
#define NSIntegerMin LONG_MIN
#define NSUIntegerMax ULONG_MAX

Constants
NSIntegerMax

The maximum value for an NSInteger.

Available in Mac OS X v10.5 and later.

Declared in QTKitDefines.h.

NSIntegerMin
The minimum value for an NSInteger.

Available in Mac OS X v10.5 and later.

Declared in QTKitDefines.h.

NSUIntegerMax
The maximum value for an NSUInteger.

Available in Mac OS X v10.5 and later.

Declared in QTKitDefines.h.

Declared In
NSObjCRuntime.h

Notifications

Java Setup Notification Names
Notifications sent by the Java bridge to registered observers when a virtual machine is created and initialized.

extern NSString *NSJavaWillSetupVirtualMachineNotification;
extern NSString *NSJavaDidSetupVirtualMachineNotification;
extern NSString *NSJavaWillCreateVirtualMachineNotification;
extern NSString *NSJavaDidCreateVirtualMachineNotification;

Constants
NSJavaWillSetupVirtualMachineNotification

Notification sent before the Java virtual machine is set up.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSJavaSetup.h.

NSJavaDidSetupVirtualMachineNotification
Notification sent after the Java virtual machine is set up.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSJavaSetup.h.

Constants 2305
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSJavaWillCreateVirtualMachineNotification
Notification sent before the Java virtual machine is created.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSJavaSetup.h.

NSJavaDidCreateVirtualMachineNotification
Notification sent after the Java virtual machine is created.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5.

Declared in NSJavaSetup.h.

Declared In
NSJavaSetup.h

Exceptions

General Exception Names
Exceptions defined by NSException.

extern NSString *NSGenericException;
extern NSString *NSRangeException;
extern NSString *NSInvalidArgumentException;
extern NSString *NSInternalInconsistencyException;
extern NSString *NSMallocException;
extern NSString *NSObjectInaccessibleException;
extern NSString *NSObjectNotAvailableException;
extern NSString *NSDestinationInvalidException;
extern NSString *NSPortTimeoutException;
extern NSString *NSInvalidSendPortException;
extern NSString *NSInvalidReceivePortException;
extern NSString *NSPortSendException;
extern NSString *NSPortReceiveException;
extern NSString *NSOldStyleException;

Constants
NSGenericException

A generic name for an exception.

You should typically use a more specific exception name.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

NSRangeException
Name of an exception that occurs when attempting to access outside the bounds of some data, such
as beyond the end of a string.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

2306 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSInvalidArgumentException
Name of an exception that occurs when you pass an invalid argument to a method, such as a nil
pointer where a non-nil object is required.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

NSInternalInconsistencyException
Name of an exception that occurs when an internal assertion fails and implies an unexpected condition
within the called code.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

NSMallocException
Obsolete; not currently used.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

NSObjectInaccessibleException
Name of an exception that occurs when a remote object is accessed from a thread that should not
access it.

See NSConnection’s enableMultipleThreads (page 336).

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

NSObjectNotAvailableException
Name of an exception that occurs when the remote side of the NSConnection refused to send the
message to the object because the object has never been vended.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

NSDestinationInvalidException
Name of an exception that occurs when an internal assertion fails and implies an unexpected condition
within the distributed objects.

This is a distributed objects–specific exception.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

NSPortTimeoutException
Name of an exception that occurs when a timeout set on a port expires during a send or receive
operation.

This is a distributed objects–specific exception.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

NSInvalidSendPortException
Name of an exception that occurs when the send port of an NSConnection has become invalid.

This is a distributed objects–specific exception.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

Constants 2307
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSInvalidReceivePortException
Name of an exception that occurs when the receive port of an NSConnection has become invalid.

This is a distributed objects–specific exception.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

NSPortSendException
Generic error occurred on send.

This is an NSPort-specific exception.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

NSPortReceiveException
Generic error occurred on receive.

This is an NSPort-specific exception.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

NSOldStyleException
No longer used.

Available in Mac OS X v10.0 and later.

Declared in NSException.h.

Declared In
NSException.h

Version Numbers

Foundation Version Number
Version of the Foundation framework in the current environment.

double NSFoundationVersionNumber;

Constants
NSFoundationVersionNumber

The version of the Foundation framework in the current environment.

Available in Mac OS X v10.1 and later.

Declared in NSObjCRuntime.h.

Declared In
NSObjCRuntime.h

Foundation Framework Version Numbers
Constants to define Foundation Framework version numbers.

2308 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

#define NSFoundationVersionNumber10_0 397.40
#define NSFoundationVersionNumber10_1 425.00
#define NSFoundationVersionNumber10_1_1 425.00
#define NSFoundationVersionNumber10_1_2 425.00
#define NSFoundationVersionNumber10_1_3 425.00
#define NSFoundationVersionNumber10_1_4 425.00
#define NSFoundationVersionNumber10_2 462.00
#define NSFoundationVersionNumber10_2_1 462.00
#define NSFoundationVersionNumber10_2_2 462.00
#define NSFoundationVersionNumber10_2_3 462.00
#define NSFoundationVersionNumber10_2_4 462.00
#define NSFoundationVersionNumber10_2_5 462.00
#define NSFoundationVersionNumber10_2_6 462.00
#define NSFoundationVersionNumber10_2_7 462.70
#define NSFoundationVersionNumber10_2_8 462.70
#define NSFoundationVersionNumber10_3 500.00
#define NSFoundationVersionNumber10_3_1 500.00
#define NSFoundationVersionNumber10_3_2 500.30
#define NSFoundationVersionNumber10_3_3 500.54
#define NSFoundationVersionNumber10_3_4 500.56
#define NSFoundationVersionNumber10_3_5 500.56
#define NSFoundationVersionNumber10_3_6 500.56
#define NSFoundationVersionNumber10_3_7 500.56
#define NSFoundationVersionNumber10_3_8 500.56
#define NSFoundationVersionNumber10_3_9 500.58
#define NSFoundationVersionNumber10_4 567.00
#define NSFoundationVersionNumber10_4_1 567.00
#define NSFoundationVersionNumber10_4_2 567.12
#define NSFoundationVersionNumber10_4_3 567.21
#define NSFoundationVersionNumber10_4_4_Intel 567.23
#define NSFoundationVersionNumber10_4_4_PowerPC 567.21
#define NSFoundationVersionNumber10_4_5 567.25
#define NSFoundationVersionNumber10_4_6 567.26
#define NSFoundationVersionNumber10_4_7 567.27
#define NSFoundationVersionNumber10_4_8 567.28
#define NSFoundationVersionNumber10_4_9 567.29
#define NSFoundationVersionNumber10_4_10 567.29
#define NSFoundationVersionNumber10_4_11 567.36

Constants
NSFoundationVersionNumber10_0

Foundation version released in Mac OS X version 10.0.

Available in Mac OS X v10.1 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_1
Foundation version released in Mac OS X version 10.1.

Available in Mac OS X v10.2 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_1_1
Foundation version released in Mac OS X version 10.1.1.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

Constants 2309
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSFoundationVersionNumber10_1_2
Foundation version released in Mac OS X version 10.1.2.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_1_3
Foundation version released in Mac OS X version 10.1.3.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_1_4
Foundation version released in Mac OS X version 10.1.4.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2
Foundation version released in Mac OS X version 10.2.

Available in Mac OS X v10.3 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_1
Foundation version released in Mac OS X version 10.2.1.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_2
Foundation version released in Mac OS X version 10.2.2.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_3
Foundation version released in Mac OS X version 10.2.3.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_4
Foundation version released in Mac OS X version 10.2.4.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_5
Foundation version released in Mac OS X version 10.2.5.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_6
Foundation version released in Mac OS X version 10.2.6.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

2310 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSFoundationVersionNumber10_2_7
Foundation version released in Mac OS X version 10.2.7.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_2_8
Foundation version released in Mac OS X version 10.2.8.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3
Foundation version released in Mac OS X version 10.3.

Available in Mac OS X v10.4 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_1
Foundation version released in Mac OS X version 10.3.1.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_2
Foundation version released in Mac OS X version 10.3.2.

Available in Mac OS X v10.4 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_3
Foundation version released in Mac OS X version 10.3.3.

Available in Mac OS X v10.4 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_4
Foundation version released in Mac OS X version 10.3.4.

Available in Mac OS X v10.4 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_5
Foundation version released in Mac OS X version 10.3.5.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_6
Foundation version released in Mac OS X version 10.3.6.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_7
Foundation version released in Mac OS X version 10.3.7.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

Constants 2311
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSFoundationVersionNumber10_3_8
Foundation version released in Mac OS X version 10.3.8.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_3_9
Foundation version released in Mac OS X version 10.3.9.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4
Foundation version released in Mac OS X version 10.4.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_1
Foundation version released in Mac OS X version 10.4.1.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_2
Foundation version released in Mac OS X version 10.4.2.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_3
Foundation version released in Mac OS X version 10.4.3.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_4_Intel
Foundation version released in Mac OS X version 10.4.4 for Intel.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_4_PowerPC
Foundation version released in Mac OS X version 10.4.4 for PowerPC.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_5
Foundation version released in Mac OS X version 10.4.5.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_6
Foundation version released in Mac OS X version 10.4.6.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

2312 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

NSFoundationVersionNumber10_4_7
Foundation version released in Mac OS X version 10.4.7.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_8
Foundation version released in Mac OS X version 10.4.8.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_9
Foundation version released in Mac OS X version 10.4.9.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_10
Foundation version released in Mac OS X version 10.4.10.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

NSFoundationVersionNumber10_4_11
Foundation version released in Mac OS X version 10.4.11.

Available in Mac OS X v10.5 and later.

Declared in NSObjCRuntime.h.

Declared In
NSObjCRuntime.h

Constants 2313
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

2314 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 190

Foundation Constants Reference

This table describes the changes to Foundation Framework Reference.

NotesDate

Updated for iPhone OS.2008-06-27

Updated for Mac OS X v10.5. Updated framework illustrations.2007-10-31

Updated for Mac OS X v10.5.2007-04-16

First publication of this content as a collection of separate documents.2006-05-23

2315
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

2316
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

abbreviation instance method 1671
abbreviationDictionary class method 1666
abbreviationForDate: instance method 1671
abortParsing instance method 2000
absoluteString instance method 1721
absoluteURL instance method 1721
acceptConnectionInBackgroundAndNotify instance

method 609
acceptConnectionInBackgroundAndNotifyForModes:

instance method 610
acceptInputForMode:beforeDate: instance method

1332
accessInstanceVariablesDirectly<NSObject> class

method 2059
acquireFunction instance property 1240
activeProcessorCount instance method 1287
addAttribute: instance method 1948
addAttribute:value:range: instance method 931
addAttributes:range: instance method 932
addCharactersInRange: instance method 940
addCharactersInString: instance method 941
addChild: instance method 1904, 1925, 1949
addClient: instance method 1797
addConnection:toRunLoop:forMode: instance

method 1250
addDependency: instance method 1201
addEntriesFromDictionary: instance method 958
addIndex: instance method 964
addIndexes: instance method 964
addIndexesInRange: instance method 965
addNamespace: instance method 1949
addObject: class method 159
addObject: instance method 160, 358, 696, 911, 971
addObjectsFromArray: instance method 911, 972
addObserver:forKeyPath:options:context:

<NSObject> instance method 2079
addObserver:forKeyPath:options:context:

instance method 116, 1449

addObserver:selector:name:object: instance
method 548, 1041

addObserver:selector:name:object:
suspensionBehavior: instance method 549

addObserver:toObjectsAtIndexes:forKeyPath:options:
context: instance method 116

addOperation: instance method 1213
addPointer: instance method 1232
addPort:forMode: instance method 1333
addRequestMode: instance method 335
address instance method 709, 1466
addresses instance method 710, 1001
addRunLoop: instance method 335
addSuiteNamed: instance method 1845
addTimeInterval: instance method 399
addTimer:forMode: instance method 1333
addValue:forHTTPHeaderField: instance method

986
aeDesc instance method 68
aeteResource: instance method 1430
allBundles class method 167
allConnections class method 329
allCredentials instance method 1774
allFrameworks class method 167
allHeaderFields instance method 734
allHTTPHeaderFields instance method 1828
allKeys instance method 504
allKeysForObject: instance method 504
allObjects instance method 558, 696, 1233, 1449
alloc class method 1152, 1309
allocWithZone: class method 1152, 1249, 1309
allowsFloats instance method 1088
allowsKeyedCoding instance method 273
allowsNaturalLanguage instance method 429
allowsReverseTransformation class method 1884
allValues instance method 505
alphanumericCharacterSet class method 244
alwaysShowsDecimalSeparator instance method 1089
AMSymbol instance method 430
andPredicateWithSubpredicates: class method 308
anyObject instance method 696, 1450
appendAttributedString: instance method 932

2317
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Index

appendBytes:length: instance method 948
appendData: instance method 948
appendFormat: instance method 979
appendString: instance method 980
appendTransform: instance method 49
appleEvent instance method 1383
appleEventClassCode instance method 1399
appleEventCode instance method 1364, 1399
appleEventCodeForArgumentWithName: instance

method 1400
appleEventCodeForKey: instance method 1364
appleEventCodeForReturnType instance method 1400
appleEventCodeForSuite: instance method 1430
appleEventForSuspensionID: instance method 85
appleEventWithEventClass:eventID:targetDescriptor:

returnID:transactionID: class method 63
archivedDataWithRootObject: class method 98, 787
archiver:didEncodeObject: <NSObject> delegate

method 797
archiver:willEncodeObject: <NSObject> delegate

method 797
archiver:willReplaceObject:withObject:

<NSObject> delegate method 798
archiverData instance method 100
archiverDidFinish: <NSObject> delegate method

798
archiveRootObject:toFile: class method 99, 788
archiverWillFinish: <NSObject> delegate method

798
Archiving Exception Names 103
argumentNames instance method 1401
arguments instance method 595, 1288, 1383, 1626
argumentsRetained instance method 771
array class method 111
Array operators 2073
arrayByAddingObject: instance method 117
arrayByAddingObjectsFromArray: instance method

117
arrayForKey: instance method 1846
arrayWithArray: class method 112
arrayWithCapacity: class method 910
arrayWithContentsOfFile: class method 113
arrayWithContentsOfURL: class method 113
arrayWithObject: class method 114
arrayWithObjects: class method 114
arrayWithObjects:count: class method 115
ascending instance method 1481
attemptRecoveryFromError:optionIndex:

<NSObject> instance method 2049
attemptRecoveryFromError:optionIndex:delegate:

didRecoverSelector:contextInfo:<NSObject>
instance method 2050

attribute instance method 892, 894

attribute:atIndex:effectiveRange: instance
method 149

attribute:atIndex:longestEffectiveRange:inRange:
instance method 150

attributeDeclarationForName:elementName:
instance method 1926

attributeDescriptorForKeyword: instance method
69

attributedStringForNil instance method 1089
attributedStringForNotANumber instance method

1090
attributedStringForObjectValue:

withDefaultAttributes: instance method 676
attributedStringForZero instance method 1090
attributedSubstringFromRange: instance method

151
attributeForLocalName:URI: instance method 1950
attributeForName: instance method 1950
attributeKeys instance method 260, 1168
attributes instance method 870, 1951
attributesAtIndex:effectiveRange: instance

method 152
attributesAtIndex:longestEffectiveRange:inRange:

instance method 152
attributesOfFileSystemForPath:error: instance

method 630
attributesOfItemAtPath:error: instance method

631
attributeWithName:stringValue: class method

1968
attributeWithName:URI:stringValue: class method

1968
authenticateComponents:withData: <NSObject>

delegate method 348
authenticationDataForComponents: <NSObject>

delegate method 349
authenticationMethod instance method 1808
automaticallyNotifiesObserversForKey:

<NSObject> class method 2076
autorelease instance method 160
autorelease protocol instance method 2099
autoupdatingCurrentCalendar class method 201
autoupdatingCurrentLocale class method 819
availableData instance method 610
availableLocaleIdentifiers class method 819
availableResourceData instance method 1798
availableStringEncodings class method 1526
awakeAfterUsingCoder: instance method 1169

2318
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

B

backgroundLoadDidFailWithReason: instance
method 1798

baseSpecifier instance method 1326
baseURL instance method 1722
beginEditing instance method 933
beginLoadInBackground instance method 1798
beginUndoGrouping instance method 1692
bitmapRepresentation instance method 253
booleanValue instance method 69
boolForKey: instance method 1847
boolValue instance method 1064, 1538
breakLock instance method 541
broadcast instance method 315
builtInPlugInsPath instance method 173
bundleForClass: class method 167
bundleForSuite: instance method 1431
bundleIdentifier instance method 173
bundlePath instance method 174
bundleWithIdentifier: class method 168
bundleWithPath: class method 169
bytes instance method 376

C

cachedHandleForURL: class method 1795
cachedResponse instance method 1821
cachedResponseForRequest: instance method 1746
cachePolicy instance method 1828
calendar instance method 430
Calendar Units 213
calendarDate class method 221
calendarFormat instance method 224
calendarIdentifier instance method 202
callStackReturnAddresses class method 1640
callStackReturnAddresses instance method 576
canBeConvertedToEncoding: instance method 1539
cancel instance method 1202, 1645, 1758, 1782
cancelAllOperations instance method 1213
cancelAuthenticationChallenge:protocol instance

method 2126
cancelLoadInBackground instance method 1799
cancelPerformSelector:target:argument: instance

method 1334
cancelPerformSelectorsWithTarget: instance

method 1334
cancelPreviousPerformRequestsWithTarget: class

method 1153
cancelPreviousPerformRequestsWithTarget:selector:

object: class method 1154
canHandleRequest: class method 1756

canInitWithRequest: class method 1817
canInitWithURL: class method 1796
canonicalLocaleIdentifierFromString: class

method 820
canonicalRequestForRequest: class method 1817
canonicalXMLStringPreservingComments: instance

method 1975
canRedo instance method 1693
canResumeDownloadDecodedWithEncodingMIMEType:

class method 1782
canUndo instance method 1693
capitalizedLetterCharacterSet class method 244
capitalizedString instance method 1539
caseInsensitiveCompare: instance method 1540
caseSensitive instance method 1346
changeCurrentDirectoryPath: instance method 631
changeFileAttributes:atPath: instance method

632
characterAtIndex: instance method 1540
characterEncoding instance method 1904
characterIsMember: instance method 253
characterSetWithBitmapRepresentation: class

method 245
characterSetWithCharactersInString: class

method 245
characterSetWithContentsOfFile: class method

246
characterSetWithRange: class method 246
charactersToBeSkipped instance method 1347
charValue instance method 1064
childAtIndex: instance method 1976
childCount instance method 1977
children instance method 1977
childSpecifier instance method 1414
class class method 1155, 1310
class protocol instance method 2100
classCode instance method 1169
classDescription instance method 1170
classDescriptionForClass: class method 258, 1363
classDescriptionForKey: instance method 1365
classDescriptionsInSuite: instance method 1431
classDescriptionWithAppleEventCode: instance

method 1431
classFallbacksForKeyedArchiver class method

1155
classForArchiver instance method 1170
classForClassName: class method 803
classForClassName: instance method 806
classForCoder instance method 1171
classForKeyedArchiver instance method 1171
classForKeyedUnarchiver class method 1156
classForPortCoder instance method 1171
className instance method 1172, 1365

2319
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

classNamed: instance method 174
classNameDecodedForArchiveClassName: class

method 1682
classNameDecodedForArchiveClassName: instance

method 1685
classNameEncodedForTrueClassName: instance

method 100
classNameForClass: class method 788
classNameForClass: instance method 789
client instance method 1822
close instance method 1500
closeFile instance method 611
Cocoa Error Domain 2298
code instance method 563
coerceToDescriptorType: instance method 69
coerceValue:forKey: <NSObject> instance method

2118
coerceValue:toClass: instance method 1376
collectExhaustively instance method 685
collectIfNeeded instance method 685
collection instance method 595
columnNumber instance method 2000
commandClassName instance method 1401
commandDescription instance method 1383
commandDescriptionsInSuite: instance method 1432
commandDescriptionWithAppleEventClass:

andAppleEventCode: instance method 1432
commandName instance method 1401
comment instance method 716
commentURL instance method 717
commentWithStringValue: class method 1969
commonISOCurrencyCodes class method 820
commonPrefixWithString:options: instance method

1541
compact instance method 1233
compare: instance method 400, 471, 740, 1064, 1542
compare:options: instance method 1542
compare:options:range: instance method 1543
compare:options:range:locale: instance method

1544
compareObject:toObject: instance method 1481
comparisonPredicateModifier instance method 299
compileAndReturnError: instance method 93
completePathIntoString:caseSensitive:

matchesIntoArray:filterTypes: instance
method 1545

components instance method 1264
components:fromDate: instance method 203
components:fromDate:toDate:options: instance

method 204
componentsFromLocaleIdentifier: class method

821
componentsJoinedByString: instance method 118

componentsSeparatedByCharactersInSet: instance
method 1546

componentsSeparatedByString: instance method
1547

componentsToDisplayForPath: instance method 633
Compound Predicate Types 310
compoundPredicateType instance method 309
Concurrent Operation Constants 1216
condition instance method 320
configureAsServer instance method 1335
conformsToProtocol: class method 1156
conformsToProtocol: protocol instance method 2100
Connection Exception Names 352
connection instance method 536, 1259
connection:didCancelAuthenticationChallenge:

<NSObject> delegate method 1761
connection:didFailWithError:<NSObject> delegate

method 1761
connection:didReceiveAuthenticationChallenge:

<NSObject> delegate method 1761
connection:didReceiveData: <NSObject> delegate

method 1762
connection:didReceiveResponse: <NSObject>

delegate method 1763
connection:handleRequest: <NSObject> delegate

method 350
connection:shouldMakeNewConnection:<NSObject>

delegate method 350
connection:willCacheResponse: <NSObject>

delegate method 1764
connection:willSendRequest:redirectResponse:

<NSObject> delegate method 1764
connectionDidFinishLoading:<NSObject> delegate

method 1765
connectionForProxy instance method 532
connectionWithReceivePort:sendPort: class

method 329
connectionWithRegisteredName:host: class method

330
connectionWithRegisteredName:host:usingNameServer:

class method 331
connectionWithRequest:delegate: class method

1756
constantValue instance method 596
containerClassDescription instance method 1415
containerIsObjectBeingTested instance method

1415
containerIsRangeContainerObject instance method

1416
containerSpecifier instance method 1416
containsIndex: instance method 749
containsIndexes: instance method 749
containsIndexesInRange: instance method 750

2320
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

containsObject: instance method 119, 697, 1450
containsValueForKey: instance method 274, 806
Content Relevance 888
contentsAtPath: instance method 633
contentsEqualAtPath:andPath: instance method

634
contentsOfDirectoryAtPath:error: instance

method 634
continueWithoutCredentialForAuthentication-

Challenge: protocol instance method 2126
controlCharacterSet class method 247
conversation instance method 536
cookieAcceptPolicy instance method 726
cookies instance method 727
cookiesForURL: instance method 727
cookiesWithResponseHeaderFields:forURL: class

method 715
cookieWithProperties: class method 715
copy instance method 1172
copyItemAtPath:toPath:error: instance method

635
copyPath:toPath:handler: instance method 636
copyScriptingValue:forKey:withProperties:

instance method 1173
copyWithZone: class method 1157
copyWithZone: protocol instance method 2042
count instance method 119, 505, 697, 750, 855, 892,

1233, 1451
countByEnumeratingWithState:objects:count:

protocol instance method 2053
countForObject: instance method 359
countOfIndexesInRange: instance method 751
createClassDescription instance method 364
createCommandInstance instance method 1402
createCommandInstanceWithZone: instance method

1402
createConversationForConnection: <NSObject>

delegate method 351
createDirectoryAtPath:attributes: instance

method 637
createDirectoryAtPath:withIntermediateDirectories:

attributes:error: instance method 638
createFileAtPath:contents:attributes: instance

method 639
createSymbolicLinkAtPath:pathContent: instance

method 640
createSymbolicLinkAtPath:withDestinationPath:

error: instance method 640
credentialsForProtectionSpace: instance method

1775
credentialWithUser:password:persistence: class

method 1768
cString instance method 1547

cStringLength instance method 1548
cStringUsingEncoding: instance method 1549
currencyCode instance method 1091
currencyDecimalSeparator instance method 1091
currencyGroupingSeparator instance method 1091
currencySymbol instance method 1092
currentAppleEvent instance method 86
currentCalendar class method 202
currentCommand class method 1382
currentConversation class method 331
currentDirectoryPath instance method 641, 1626
currentDiskUsage instance method 1746
currentHandler class method 144
currentHost class method 707
currentLocale class method 821
currentMemoryUsage instance method 1747
currentMode instance method 1335
currentReplyAppleEvent instance method 86
currentRunLoop class method 1331
currentThread class method 1640
customSelector instance method 300

D

data class method 370
data instance method 70, 194, 1672
dataForKey: instance method 1847
dataFromPropertyList:format:errorDescription:

class method 1296
dataFromTXTRecordDictionary: class method 1000
dataUsingEncoding: instance method 1549
dataUsingEncoding:allowLossyConversion:

instance method 1550
dataWithBytes:length: class method 370
dataWithBytesNoCopy:length: class method 371
dataWithBytesNoCopy:length:freeWhenDone: class

method 371
dataWithCapacity: class method 947
dataWithContentsOfFile: class method 372
dataWithContentsOfFile:options:error: class

method 373
dataWithContentsOfMappedFile: class method 373
dataWithContentsOfURL: class method 374
dataWithContentsOfURL:options:error: class

method 375
dataWithData: class method 375
dataWithLength: class method 947
date class method 393
dateByAddingComponents:toDate:options: instance

method 205
dateByAddingYears:months:days:hours:minutes:

seconds: instance method 225

2321
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

dateFormat instance method 430
dateFromComponents: instance method 206
dateFromString: instance method 431
dateStyle instance method 431
dateWithCalendarFormat:timeZone: instance

method 400
dateWithNaturalLanguageString: class method 394
dateWithNaturalLanguageString:locale: class

method 394
dateWithString: class method 395
dateWithString:calendarFormat: class method 222
dateWithString:calendarFormat:locale: class

method 222
dateWithTimeIntervalSince1970: class method 396
dateWithTimeIntervalSinceNow: class method 396
dateWithTimeIntervalSinceReferenceDate: class

method 397
dateWithYear:month:day:hour:minute:second:

timeZone: class method 223
day instance method 413
daylightSavingTimeOffset instance method 1672
daylightSavingTimeOffsetForDate: instance

method 1673
dayOfCommonEra instance method 226
dayOfMonth instance method 226
dayOfWeek instance method 227
dayOfYear instance method 227
dealloc instance method 1174, 1310
decimalDigitCharacterSet class method 247
decimalNumberByAdding: instance method 472
decimalNumberByAdding:withBehavior: instance

method 472
decimalNumberByDividingBy: instance method 473
decimalNumberByDividingBy:withBehavior:

instance method 473
decimalNumberByMultiplyingBy: instance method

473
decimalNumberByMultiplyingBy:withBehavior:

instance method 474
decimalNumberByMultiplyingByPowerOf10: instance

method 474
decimalNumberByMultiplyingByPowerOf10:

withBehavior: instance method 475
decimalNumberByRaisingToPower: instance method

475
decimalNumberByRaisingToPower:withBehavior:

instance method 475
decimalNumberByRoundingAccordingToBehavior:

instance method 476
decimalNumberBySubtracting: instance method 476
decimalNumberBySubtracting:withBehavior:

instance method 477

decimalNumberHandlerWithRoundingMode:scale:
raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:
raiseOnDivideByZero: class method 484

decimalNumberWithDecimal: class method 466
decimalNumberWithMantissa:exponent:isNegative:

class method 466
decimalNumberWithString: class method 467
decimalNumberWithString:locale: class method

468
decimalSeparator instance method 1092
decimalValue instance method 477, 1065
decodeArrayOfObjCType:count:at: instance method

274
decodeBoolForKey: instance method 274, 807
decodeBytesForKey:returnedLength: instance

method 275, 807
decodeBytesWithReturnedLength: instance method

275
decodeClassName:asClassName: class method 1683
decodeClassName:asClassName: instance method

1685
decodeDataObject instance method 276
decodeDoubleForKey: instance method 276, 808
decodeFloatForKey: instance method 276, 808
decodeInt32ForKey: instance method 277, 809
decodeInt64ForKey: instance method 277, 809
decodeIntegerForKey: instance method 278
decodeIntForKey: instance method 278, 809
decodeNXObject instance method 278
decodeObject instance method 279
decodeObjectForKey: instance method 279, 810
decodePoint instance method 280
decodePointForKey: instance method 280
decodePortObject instance method 1259
decodePropertyList instance method 280
decodeRect instance method 280
decodeRectForKey: instance method 281
decodeSize instance method 281
decodeSizeForKey: instance method 281
decodeValueOfObjCType:at: instance method 282
decodeValuesOfObjCTypes: instance method 282
decomposableCharacterSet class method 248
decomposedStringWithCanonicalMapping instance

method 1551
decomposedStringWithCompatibilityMapping

instance method 1551
defaultBehavior class method 468
defaultCenter class method 547, 1040
defaultCollector class method 685
defaultConnection class method 331
defaultCredentialForProtectionSpace: instance

method 1775
defaultCStringEncoding class method 1527

2322
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

defaultDate instance method 432
defaultDecimalNumberHandler class method 485
defaultFormatterBehavior class method 428, 1087
defaultManager class method 630
defaultNameServerPortNumber instance method 1475
defaultQueue class method 1046
defaultSubcontainerAttributeKey instance method

1366
defaultTimeZone class method 1666
delegate instance method 336, 641, 790, 810, 875, 1002,

1021, 1251, 1490, 1500, 2001
deleteCharactersInRange: instance method 933,

980
deleteCookie: instance method 728
deletesFileUponFailure instance method 1783
dependencies instance method 1202
dequeueNotificationsMatching:coalesceMask:

instance method 1046
description class method 1157
description instance method 120, 228, 376, 401, 505,

1311, 1451, 1551, 1673, 1977
description protocol instance method 2100
descriptionFunction instance property 1241
descriptionInStringsFileFormat instance method

506
descriptionWithCalendarFormat: instance method

228
descriptionWithCalendarFormat:locale: instance

method 229
descriptionWithCalendarFormat:timeZone:locale:

instance method 401
descriptionWithLocale: instance method 120, 230,

402, 477, 506, 1065, 1451
descriptionWithLocale:indent: instance method

121, 507
descriptor instance method 1416
descriptorAtIndex: instance method 70
descriptorForKeyword: instance method 70
descriptorType instance method 71
descriptorWithBoolean: class method 64
descriptorWithDescriptorType:bytes:length:

class method 64
descriptorWithDescriptorType:data: class method

65
descriptorWithEnumCode: class method 65
descriptorWithInt32: class method 66
descriptorWithString: class method 66
descriptorWithTypeCode: class method 67
deserializeObjectAt:ofObjCType:fromData:atCursor:

protocol instance method 2096
deserializePropertyListFromData:atCursor:

mutableContainers: class method 490

deserializePropertyListFromData:mutableContainers:
class method 490

deserializePropertyListLazilyFromData:atCursor:
length:mutableContainers: class method 491

destinationOfSymbolicLinkAtPath:error: instance
method 642

detach instance method 1978
detachNewThreadSelector:toTarget:withObject:

class method 1640
developmentLocalization instance method 175
dictionary class method 498
dictionaryForKey: instance method 1848
dictionaryFromTXTRecordData: class method 1000
dictionaryRepresentation instance method 855,

1849
dictionaryWithCapacity: class method 957
dictionaryWithContentsOfFile: class method 499
dictionaryWithContentsOfURL: class method 500
dictionaryWithDictionary: class method 500
dictionaryWithObject:forKey: class method 500
dictionaryWithObjectsAndKeys: class method 503
dictionaryWithObjects:forKeys: class method 501
dictionaryWithObjects:forKeys:count: class

method 502
dictionaryWithValuesForKeys:<NSObject> instance

method 2060
didChange:valuesAtIndexes:forKey: <NSObject>

instance method 2079
didChangeValueForKey:<NSObject> instance method

2080
didChangeValueForKey:withSetMutation:usingObjects:

<NSObject> instance method 2080
didLoadBytes:loadComplete: instance method 1799
directoryAttributes instance method 526
directoryContentsAtPath: instance method 642
directParameter instance method 1384
disable instance method 686
disableCollectorForPointer: instance method 686
disableUndoRegistration instance method 1694
disableUpdates instance method 876
diskCapacity instance method 1747
dispatch instance method 1259
dispatchRawAppleEvent:withRawReply:handlerRefCon:

instance method 87
displayNameAtPath: instance method 643
displayNameForKey:value: instance method 825
distantFuture class method 397
distantPast class method 398
document class method 1969
Document Content Types 1921
documentContentKind instance method 1905
documentWithRootElement: class method 1969
doesContain: <NSObject> instance method 2036

2323
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

doesNotRecognizeSelector: instance method 1175
domain instance method 564, 717, 1002
doubleValue instance method 478, 1066, 1552
download:decideDestinationWithSuggestedFilename:

<NSObject> delegate method 1786
download:didCancelAuthenticationChallenge:

<NSObject> delegate method 1786
download:didCreateDestination: <NSObject>

delegate method 1787
download:didFailWithError: <NSObject> delegate

method 1787
download:didReceiveAuthenticationChallenge:

<NSObject> delegate method 1788
download:didReceiveDataOfLength: <NSObject>

delegate method 1789
download:didReceiveResponse:<NSObject> delegate

method 1789
download:shouldDecodeSourceDataOfMIMEType:

<NSObject> delegate method 1790
download:willResumeWithResponse:fromByte:

<NSObject> delegate method 1790
download:willSendRequest:redirectResponse:

<NSObject> delegate method 1791
downloadDidBegin:<NSObject> delegate method 1791
downloadDidFinish: <NSObject> delegate method

1792
drain instance method 160
DTD instance method 1905
DTD Node Kind Constants 1941
DTDKind instance method 1936
DTDNodeWithXMLString: class method 1970

E

earlierDate: instance method 403
editingStringForObjectValue: instance method

677
elementDeclarationForName: instance method 1926
elementsForLocalName:URI: instance method 1951
elementsForName: instance method 1952
elementWithName: class method 1970
elementWithName:children:attributes: class

method 1971
elementWithName:stringValue: class method 1971
elementWithName:URI: class method 1972
enable instance method 687
enableCollectorForPointer: instance method 687
enableMultipleThreads instance method 336
enableUndoRegistration instance method 1694
enableUpdates instance method 876
encodeArrayOfObjCType:count:at: instance method

283

encodeBool:forKey: instance method 283, 790
encodeBycopyObject: instance method 284
encodeByrefObject: instance method 284
encodeBytes:length: instance method 284
encodeBytes:length:forKey: instance method 285,

791
encodeClassName:intoClassName: instance method

100
encodeConditionalObject: instance method 101,

285
encodeConditionalObject:forKey: instance method

286, 791
encodeDataObject: instance method 286
encodeDouble:forKey: instance method 287, 792
encodeFloat:forKey: instance method 287, 792
encodeInt32:forKey: instance method 287, 792
encodeInt64:forKey: instance method 288, 793
encodeInt:forKey: instance method 288, 793
encodeInteger:forKey: instance method 289
encodeNXObject: instance method 289
encodeObject: instance method 289
encodeObject:forKey: instance method 290, 794
encodePoint: instance method 291
encodePoint:forKey: instance method 291
encodePortObject: instance method 1260
encodePropertyList: instance method 291
encodeRect: instance method 291
encodeRect:forKey: instance method 292
encodeRootObject: instance method 101, 292
encodeSize: instance method 293
encodeSize:forKey: instance method 293
encodeValueOfObjCType:at: instance method 293
encodeValuesOfObjCTypes: instance method 294
encodeWithCoder: protocol instance method 2034
Encoding Conversion Options 1617
endEditing instance method 934
endLoadInBackground instance method 1800
endSpecifier instance method 1318
endSubelementIdentifier instance method 1892
endSubelementIndex instance method 1893
endUndoGrouping instance method 1694
enqueueNotification:postingStyle: instance

method 1047
enqueueNotification:postingStyle:coalesceMask:

forModes: instance method 1047
entityDeclarationForName: instance method 1927
enumCodeValue instance method 71
enumeratorAtPath: instance method 644
environment instance method 1288, 1626
era instance method 413
eraSymbols instance method 432
Error Dictionary Keys 96
Error Domains 570

2324
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

error instance method 1738
errorWithDomain:code:userInfo: class method 563
evaluate instance method 1274
evaluatedArguments instance method 1384
evaluatedReceivers instance method 1385
evaluateWithObject: instance method 1283
evaluateWithObject:substitutionVariables:

instance method 1283
evaluationErrorNumber instance method 1417
evaluationErrorSpecifier instance method 1417
eventClass instance method 71
eventID instance method 72
Exception Names 621
exceptionDuringOperation:error:leftOperand:

rightOperand: protocol instance method 2044
exceptionWithName:reason:userInfo: class method

574
exchangeObjectAtIndex:withObjectAtIndex:

instance method 912
executableArchitectures instance method 175
executablePath instance method 175
executeAndReturnError: instance method 93
executeAppleEvent:error: instance method 94
executeCommand instance method 1385
exit class method 1641
expectedContentLength instance method 1836
expectedResourceDataSize instance method 1800
expiresDate instance method 717
exponentSymbol instance method 1092
expressionForAggregate: class method 586
expressionForConstantValue: class method 587
expressionForEvaluatedObject class method 587
expressionForFunction:arguments: class method

588
expressionForFunction:selectorName:arguments:

class method 591
expressionForIntersectSet:with: class method

592
expressionForKeyPath: class method 592
expressionForMinusSet:with: class method 593
expressionForSubquery:usingIteratorVariable:

predicate: class method 593
expressionForUnionSet:with: class method 594
expressionForVariable: class method 595
expressionType instance method 596
expressionValueWithObject:context: instance

method 596

F

failureReason instance method 1800
failureResponse instance method 1738

fastestEncoding instance method 1552
File Attribute Keys 668
File Type Attribute Keys 671
File-System Attribute Keys 672
fileAttributes instance method 526
fileAttributesAtPath:traverseLink: instance

method 645
fileCreationDate instance method 508
fileDescriptor instance method 611
fileExistsAtPath: instance method 646
fileExistsAtPath:isDirectory: instance method

647
fileExtensionHidden instance method 508
fileGroupOwnerAccountID instance method 508
fileGroupOwnerAccountName instance method 509
fileHandleForReading instance method 1226
fileHandleForReadingAtPath: class method 606
fileHandleForUpdatingAtPath: class method 606
fileHandleForWriting instance method 1227
fileHandleForWritingAtPath: class method 607
fileHandleWithNullDevice class method 607
fileHandleWithStandardError class method 608
fileHandleWithStandardInput class method 608
fileHandleWithStandardOutput class method 609
fileHFSCreatorCode instance method 509
fileHFSTypeCode instance method 510
fileIsAppendOnly instance method 510
fileIsImmutable instance method 510
fileManager:shouldCopyItemAtPath:toPath:

<NSObject> delegate method 661
fileManager:shouldLinkItemAtPath:toPath:

<NSObject> delegate method 662
fileManager:shouldMoveItemAtPath:toPath:

<NSObject> delegate method 662
fileManager:shouldProceedAfterError:

<NSObject> delegate method 663
fileManager:shouldProceedAfterError:

copyingItemAtPath:toPath: <NSObject>
delegate method 664

fileManager:shouldProceedAfterError:
linkingItemAtPath:toPath: <NSObject>
delegate method 665

fileManager:shouldProceedAfterError:
movingItemAtPath:toPath:<NSObject> delegate
method 665

fileManager:shouldProceedAfterError:
removingItemAtPath: <NSObject> delegate
method 666

fileManager:shouldRemoveItemAtPath:<NSObject>
delegate method 666

fileManager:willProcessPath:<NSObject> delegate
method 667

fileModificationDate instance method 511

2325
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

fileOwnerAccountID instance method 511
fileOwnerAccountName instance method 512
filePosixPermissions instance method 512
fileSize instance method 512
fileSystemAttributesAtPath: instance method 648
fileSystemFileNumber instance method 513
fileSystemNumber instance method 513
fileSystemRepresentation instance method 1553
fileSystemRepresentationWithPath: instance

method 649
fileType instance method 514
fileURLWithPath: class method 1718
fileURLWithPath:isDirectory: class method 1719
filteredArrayUsingPredicate: instance method

121
filteredSetUsingPredicate: instance method 1452
filterUsingPredicate: instance method 912, 972
finalize instance method 1176, 1311
finishDecoding instance method 811
finishEncoding instance method 794
fire instance method 1658
fireDate instance method 1659
firstIndex instance method 751
firstObjectCommonWithArray: instance method 122
firstWeekday instance method 207
floatForKey: instance method 1849
floatValue instance method 1067, 1553
flushCachedData instance method 1801
flushHostCache class method 707
format instance method 1093
formatterBehavior instance method 432, 1093
formatWidth instance method 1094
formIntersectionWithCharacterSet: instance

method 941
formUnionWithCharacterSet: instance method 942
forwardInvocation: instance method 1177, 1311, 1695
Foundation Framework Version Numbers 2308
Foundation Version Number 2308
fragment instance method 1722
frameLength instance method 899
function instance method 597

G

General Exception Names 2306
generatesCalendarDates instance method 433
generatesDecimalNumbers instance method 1094
getArgument:atIndex: instance method 772
getArgumentTypeAtIndex: instance method 899
getBuffer:length: instance method 765
getBytes: instance method 377
getBytes:length: instance method 377

getBytes:maxLength:usedLength:encoding:options:
range:remainingRange: instance method 1554

getBytes:range: instance method 378
getCFRunLoop instance method 1336
getCharacters: instance method 1555
getCharacters:range: instance method 1555
getCString: instance method 1556
getCString:maxLength: instance method 1557
getCString:maxLength:encoding: instance method

1557
getCString:maxLength:range:remainingRange:

instance method 1558
getFileSystemRepresentation:maxLength: instance

method 1559
getIndexes: instance method 740
getIndexes:maxCount:inIndexRange: instance

method 751
getInputStream:outputStream: instance method

1002
getLineStart:end:contentsEnd:forRange: instance

method 1560
getObjects: instance method 122
getObjects:andKeys: instance method 514
getObjects:range: instance method 123
getObjectValue:forString:errorDescription:

instance method 677
getObjectValue:forString:range:error: instance

method 433, 1094
getParagraphStart:end:contentsEnd:forRange:

instance method 1561
getReturnValue: instance method 773
getStreamsToHost:port:inputStream:outputStream:

class method 1499
getValue: instance method 1877
globallyUniqueString instance method 1288
Grammatical-Analysis Details 1496
gregorianStartDate instance method 434
groupedResults instance method 876
groupingAttributes instance method 877
groupingLevel instance method 1696
groupingSeparator instance method 1095
groupingSize instance method 1095
groupsByEvent instance method 1696

H

handleFailureInFunction:file:lineNumber:
description: instance method 144

handleFailureInMethod:object:file:lineNumber:
description: instance method 145

handleMachMessage: <NSObject> delegate method
849

2326
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

handlePortMessage: <NSObject> delegate method
1255

handleQueryWithUnboundKey: <NSObject> instance
method 2061

handleTakeValue:forUnboundKey: <NSObject>
instance method 2061

hasBytesAvailable instance method 766
hash instance method 1561
hash protocol instance method 2101
Hash Table Options 703
hashFunction instance property 1241
hashTableWithOptions: class method 695
hashTableWithWeakObjects class method 695
hasMemberInPlane: instance method 254
hasOrderedToManyRelationshipForKey: instance

method 1366
hasPassword instance method 1769
hasPrefix: instance method 1562
hasPropertyForKey: instance method 1366
hasReadablePropertyForKey: instance method 1367
hasSpaceAvailable instance method 1220
hasSuffix: instance method 1562
hasThousandSeparators instance method 1096
hasWritablePropertyForKey: instance method 1367
host instance method 1722, 1808
hostName instance method 1003, 1289
hostWithAddress: class method 707
hostWithName: class method 708
hour instance method 414
hourOfDay instance method 231
HTTP Cookie Property Keys 721
HTTPBody instance method 1828
HTTPBodyStream instance method 1829
HTTPMethod instance method 1829
HTTPShouldHandleCookies instance method 1830

I

illegalCharacterSet class method 248
implementationClassName instance method 1367
increaseLengthBy: instance method 949
independentConversationQueueing instance method

336
index instance method 760, 1978
indexAtPosition: instance method 741
indexGreaterThanIndex: instance method 752
indexGreaterThanOrEqualToIndex: instance method

753
indexLessThanIndex: instance method 753
indexLessThanOrEqualToIndex: instance method

754
indexOfObject: instance method 123

indexOfObject:inRange: instance method 123
indexOfObjectIdenticalTo: instance method 124
indexOfObjectIdenticalTo:inRange: instance

method 125
indexOfResult: instance method 877
indexPathByAddingIndex: instance method 741
indexPathByRemovingLastIndex instance method

741
indexPathWithIndex: class method 739
indexPathWithIndexes:length: class method 739
indexSet class method 747
indexSetWithIndex: class method 748
indexSetWithIndexesInRange: class method 748
indicesOfObjectsByEvaluatingObjectSpecifier:

<NSObject> instance method 2123
indicesOfObjectsByEvaluatingWithContainer:count:

instance method 1418
infoDictionary instance method 176
init instance method 404, 434, 754, 878, 1021, 1178,

1203, 1227, 1466, 1563, 1627, 1645, 1850
initAndTestWithTests: instance method 838
initFileURLWithPath: instance method 1722
initFileURLWithPath:isDirectory: instance

method 1723
initForReadingWithData: instance method 811, 1686
initForWritingWithMutableData: instance method

102, 794
initialize class method 1158
initListDescriptor instance method 72
initNotTestWithTest: instance method 838
initOrTestWithTests: instance method 839
initRecordDescriptor instance method 73
initRemoteWithProtocolFamily:socketType:protocol:

address: instance method 1467
initRemoteWithTCPPort:host: instance method 1467
initToBuffer:capacity: instance method 1220
initToFileAtPath:append: instance method 1221
initToMemory instance method 1222
initWithAEDescNoCopy: instance method 73
initWithArray: instance method 125, 359, 1452
initWithArray:copyItems: instance method 126
initWithAttributedString: instance method 153
initWithAuthenticationChallenge:sender:

instance method 1739
initWithBool: instance method 1067
initWithBytes:length: instance method 378
initWithBytes:length:encoding: instance method

1563
initWithBytes:objCType: instance method 1878
initWithBytesNoCopy:length: instance method 379
initWithBytesNoCopy:length:encoding:freeWhenDone:

instance method 1564

2327
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

initWithBytesNoCopy:length:freeWhenDone:
instance method 379

initWithCalendarIdentifier: instance method 207
initWithCapacity: instance method 360, 913, 949,

958, 973, 981
initWithCharacters:length: instance method 1565
initWithCharactersNoCopy:length:freeWhenDone:

instance method 1565
initWithChar: instance method 1068
initWithCoder: protocol instance method 2034
initWithCommandDescription: instance method 1386
initWithCondition: instance method 321
initWithContainerClassDescription:

containerSpecifier:key: instance method 1418
initWithContainerClassDescription:

containerSpecifier:key:index: instance
method 760

initWithContainerClassDescription:
containerSpecifier:key:name: instance method
994

initWithContainerClassDescription:
containerSpecifier:key:relativePosition:
baseSpecifier: instance method 1326

initWithContainerClassDescription:
containerSpecifier:key:startSpecifier:
endSpecifier: instance method 1318

initWithContainerClassDescription:
containerSpecifier:key:test: instance method
1893

initWithContainerClassDescription:
containerSpecifier:key:uniqueID: instance
method 1712

initWithContainerSpecifier:key: instance method
1418

initWithContentsOfFile: instance method 126, 380,
515, 1566

initWithContentsOfFile:encoding:error: instance
method 1566

initWithContentsOfFile:options:error: instance
method 381

initWithContentsOfFile:usedEncoding:error:
instance method 1567

initWithContentsOfMappedFile: instance method
381

initWithContentsOfURL: instance method 127, 382,
515, 1568, 2001

initWithContentsOfURL:encoding:error: instance
method 1568

initWithContentsOfURL:error: instance method 94
initWithContentsOfURL:options:error: instance

method 382, 1905, 1927
initWithContentsOfURL:usedEncoding:error:

instance method 1569

initWithCString: instance method 1569
initWithCString:encoding: instance method 1570
initWithCString:length: instance method 1570
initWithCStringNoCopy:length:freeWhenDone:

instance method 1571
initWithData: instance method 383, 766, 2002
initWithData:encoding: instance method 1572
initWithData:options:error: instance method

1906, 1928
initWithDateFormat:allowNaturalLanguage:

instance method 435
initWithDecimal: instance method 478
initWithDescriptorType:bytes:length: instance

method 74
initWithDescriptorType:data: instance method 74
initWithDictionary: instance method 516
initWithDictionary:copyItems: instance method

516
initWithDomain:code:userInfo: instance method

565
initWithDomain:type:name: instance method 1003
initWithDomain:type:name:port: instance method

1004
initWithDouble: instance method 1068
initWithEventClass:eventID:targetDescriptor:

returnID:transactionID: instance method 74
initWithExpressionType: instance method 597
initWithFileAtPath: instance method 767
initWithFileDescriptor: instance method 612
initWithFileDescriptor:closeOnDealloc: instance

method 612
initWithFireDate:interval:target:selector:

userInfo:repeats: instance method 1659
initWithFloat: instance method 1068
initWithFormat: instance method 1572
initWithFormat:arguments: instance method 1573
initWithFormat:locale: instance method 1574
initWithFormat:locale:arguments: instance

method 1574
initWithHost:port:protocol:realm:

authenticationMethod: instance method 1809
initWithIndex: instance method 742, 755
initWithIndexes:length: instance method 742
initWithIndexesInRange: instance method 755
initWithIndexSet: instance method 756
initWithInt: instance method 1069
initWithInteger: instance method 1069
initWithInvocation: instance method 782
initWithKey:ascending: instance method 1482
initWithKey:ascending:selector: instance method

1482
initWithKeyOptions:valueOptions:capacity:

instance method 856

2328
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

initWithKeyPointerFunctions:valuePointerFunctions:
capacity: instance method 856

initWithKind: instance method 1979
initWithKind:options: instance method 1979
initWithLeftExpression:rightExpression:

customSelector: instance method 300
initWithLeftExpression:rightExpression:modifier:

type:options: instance method 301
initWithLength: instance method 950
initWithLocal:connection: instance method 532
initWithLocaleIdentifier: instance method 826
initWithLong: instance method 1069
initWithLongLong: instance method 1070
initWithMachPort: instance method 847
initWithMachPort:options: instance method 848
initWithMantissa:exponent:isNegative: instance

method 478
initWithMemoryCapacity:diskCapacity:diskPath:

instance method 1747
initWithName: instance method 1673, 1952
initWithName:data: instance method 1674
initWithName:reason:userInfo: instance method

577
initWithName:stringValue: instance method 1953
initWithName:URI: instance method 1953
initWithNotificationCenter: instance method 1048
initWithObjectsAndKeys: instance method 518
initWithObjects: instance method 127, 1453
initWithObjects:count: instance method 128, 1454
initWithObjects:forKeys: instance method 517
initWithObjects:forKeys:count: instance method

517
initWithObjectSpecifier:comparisonOperator:

testObject: instance method 1486
initWithOptions: instance method 1233, 1243
initWithOptions:capacity: instance method 697
initWithPath: instance method 176, 541
initWithPointerFunctions: instance method 1234
initWithPointerFunctions:capacity: instance

method 698
initWithPosition:objectSpecifier: instance

method 1274
initWithProperties: instance method 718
initWithProtectionSpace:proposedCredential:

previousFailureCount:failureResponse:error:sender:
instance method 1739

initWithProtocolFamily:socketType:protocol:
address: instance method 1468

initWithProtocolFamily:socketType:protocol:socket:
instance method 1469

initWithProxyHost:port:type:realm:
authenticationMethod: instance method 1809

initWithReceivePort:sendPort: instance method
337

initWithReceivePort:sendPort:components:
instance method 1260

initWithRequest:cachedResponse:client: instance
method 1822

initWithRequest:delegate: instance method 1758,
1783

initWithRequest:delegate:startImmediately:
instance method 1759

initWithResponse:data: instance method 194
initWithResponse:data:userInfo:storagePolicy:

instance method 195
initWithResumeData:delegate:path: instance

method 1783
initWithRootElement: instance method 1907
initWithRoundingMode:scale:raiseOnExactness:

raiseOnOverflow:raiseOnUnderflow:
raiseOnDivideByZero: instance method 485

initWithScheme:host:path: instance method 1724
initWithSendPort:receivePort:components:

instance method 1265
initWithSet: instance method 360, 1454
initWithSet:copyItems: instance method 1455
initWithShort: instance method 1070
initWithSource: instance method 95
initWithString: instance method 153, 231, 404, 479,

1347, 1575, 1724
initWithString:attributes: instance method 154
initWithString:calendarFormat: instance method

231
initWithString:calendarFormat:locale: instance

method 232
initWithString:locale: instance method 480
initWithString:relativeToURL: instance method

1725
initWithSuiteName:className:dictionary:

instance method 1368
initWithSuiteName:commandName:dictionary:

instance method 1402
initWithTarget:connection: instance method 533
initWithTarget:protocol: instance method 1304
initWithTarget:selector:object: instance method

782, 1646
initWithTCPPort: instance method 1469
initWithTimeInterval:sinceDate: instance method

405
initWithTimeIntervalSinceNow: instance method

405
initWithTimeIntervalSinceReferenceDate:

instance method 406
initWithTransform: instance method 50
initWithType:subpredicates: instance method 310

2329
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

initWithUnsignedChar: instance method 1070
initWithUnsignedInt: instance method 1071
initWithUnsignedInteger: instance method 1071
initWithUnsignedLong: instance method 1072
initWithUnsignedLongLong: instance method 1072
initWithUnsignedShort: instance method 1072
initWithURL: instance method 1830
initWithURL:cached: instance method 1801
initWithURL:cachePolicy:timeoutInterval:

instance method 1830
initWithURL:MIMEType:expectedContentLength:

textEncodingName: instance method 1837
initWithUser: instance method 1850
initWithUser:password:persistence: instance

method 1769
initWithUTF8String: instance method 1576
initWithXMLString: instance method 1937
initWithXMLString:error: instance method 1954
initWithXMLString:options:error: instance

method 1907
initWithYear:month:day:hour:minute:second:

timeZone: instance method 233
Input and Output Options 1919, 1994
inputStreamWithData: class method 764
inputStreamWithFileAtPath: class method 765
insertAttributedString:atIndex: instance method

934
insertChild:atIndex: instance method 1908, 1929,

1954
insertChildren:atIndex: instance method 1908,

1929, 1955
insertDescriptor:atIndex: instance method 75
insertionContainer instance method 1275
insertionIndex instance method 1275
insertionKey instance method 1275
insertionReplaces instance method 1276
insertObject:atIndex: instance method 913
insertObjects:atIndexes: instance method 914
insertPointer:atIndex: instance method 1234
insertString:atIndex: instance method 981
insertValue:atIndex:inPropertyWithKey:

<NSObject> instance method 2118
insertValue:inPropertyWithKey: <NSObject>

instance method 2119
instanceMethodForSelector: class method 1159
instanceMethodSignatureForSelector: class

method 1160
instancesRespondToSelector: class method 1161
int32Value instance method 76
integerForKey: instance method 1851
integerValue instance method 1073, 1576
internationalCurrencySymbol instance method 1096
interrupt instance method 1627

intersectHashTable: instance method 698
intersectSet: instance method 973
intersectsHashTable: instance method 698
intersectsIndexesInRange: instance method 756
intersectsSet: instance method 1455
intValue instance method 1073, 1577
invalidate instance method 338, 1251, 1660
invalidateClassDescriptionCache class method

259
inverseForRelationshipKey: instance method 260,

1180
invert instance method 50, 942
invertedSet instance method 254
invocation instance method 536, 783
invocationWithMethodSignature: class method 771
invoke instance method 773
invokeWithTarget: instance method 774
isAbsolutePath instance method 1578
isAtEnd instance method 1348, 1686
isBycopy instance method 1261
isByref instance method 1261
isCancelled instance method 1203, 1647
isCaseInsensitiveLike: <NSObject> instance

method 2036
isCollecting instance method 688
isCompiled instance method 95
isConcurrent instance method 1204
isDaylightSavingTime instance method 1674
isDaylightSavingTimeForDate: instance method

1675
isDeletableFileAtPath: instance method 649
isEnabled instance method 688
isEqual: instance method 1725
isEqual: protocol instance method 2101
isEqualFunction instance property 1241
isEqualToArray: instance method 129
isEqualToAttributedString: instance method 154
isEqualTo: <NSObject> instance method 2037
isEqualToData: instance method 383
isEqualToDate: instance method 406
isEqualToDictionary: instance method 519
isEqualToHashTable: instance method 699
isEqualToHost: instance method 710
isEqualToIndexSet: instance method 756
isEqualToNumber: instance method 1073
isEqualToSet: instance method 1456
isEqualToString: instance method 1578
isEqualToTimeZone: instance method 1675
isEqualToValue: instance method 1878
isExecutableFileAtPath: instance method 650
isExecuting instance method 1204, 1647
isExternal instance method 1937
isFileURL instance method 1726

2330
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

isFinished instance method 1204, 1647
isGathering instance method 878
isGreaterThan: <NSObject> instance method 2037
isGreaterThanOrEqualTo: <NSObject> instance

method 2038
isHostCacheEnabled class method 709
isKindOfClass: protocol instance method 2102
isLenient instance method 436, 1097
isLessThan: <NSObject> instance method 2039
isLessThanOrEqualTo:<NSObject> instance method

2039
isLike: <NSObject> instance method 2040
isLoaded instance method 177
isLocationRequiredToCreateForKey: instance

method 1368
isMainThread class method 1642
isMainThread instance method 1648
isMemberOfClass: protocol instance method 2103
isMultiThreaded class method 1642
isNotEqualTo: <NSObject> instance method 2040
ISOCountryCodes class method 822
ISOCurrencyCodes class method 822
ISOLanguageCodes class method 823
isOneway instance method 900
isOptionalArgumentWithName: instance method 1403
isPartialStringValidationEnabled instance

method 1097
isPartialStringValid:newEditingString:

errorDescription: instance method 679
isPartialStringValid:proposedSelectedRange:

originalString:originalSelectedRange:
errorDescription: instance method 679

isProxy instance method 1810
isProxy protocol instance method 2104
isReadableFileAtPath: instance method 650
isReadOnlyKey: instance method 1369
isReady instance method 1205
isRedoing instance method 1696
isRunning instance method 1628
isSecure instance method 718
isSessionOnly instance method 719
isStandalone instance method 1909
isStarted instance method 878
isStopped instance method 879
isSubclassOfClass: class method 1161
isSubsetOfHashTable: instance method 699
isSubsetOfSet: instance method 1456
isSupersetOfSet: instance method 254
isSuspended instance method 1214
isTrue instance method 1438
isUndoing instance method 1697
isUndoRegistrationEnabled instance method 1697
isValid instance method 338, 1252, 1661

isWellFormed instance method 1386
isWordInUserDictionaries:caseSensitive:

instance method 1490
isWritableFileAtPath: instance method 651

J

Java Setup Notification Names 2305

K

key instance method 1419, 1483
Key Value Coding Exception Names 2072
keyClassDescription instance method 1419
Keyed Archiving Exception Names 799
Keyed Unarchiving Exception Names 815
keyEnumerator instance method 519, 857
keyPath instance method 598
keyPathsForValuesAffectingValueForKey:protocol

class method 2077
keyPointerFunctions instance method 858
Keys for Notification UserInfo Dictionary 620
Keys used by the change dictionary 2087
keySpecifier instance method 264, 488, 906, 1464
keysSortedByValueUsingSelector: instance method

520
keyWithAppleEventCode: instance method 1369
keywordForDescriptorAtIndex: instance method 76
kind instance method 1980
knownTimeZoneNames class method 1667

L

Language-Dependent Date/Time Information 1863
Language-Dependent Numeric Information 1868
lastIndex instance method 757
lastObject instance method 129
lastPathComponent instance method 1579
laterDate: instance method 407
launch instance method 1628
launchedTaskWithLaunchPath:arguments: class

method 1625
launchPath instance method 1628
leftExpression instance method 301, 598
length instance method 155, 383, 743, 1580
lengthOfBytesUsingEncoding: instance method 1580
letterCharacterSet class method 249
level instance method 1980
levelsOfUndo instance method 1698

2331
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

limitDateForMode: instance method 1336
lineNumber instance method 2002
lineRangeForRange: instance method 1581
linkItemAtPath:toPath:error: instance method

651
linkPath:toPath:handler: instance method 652
listDescriptor class method 67
load class method 1161
load instance method 177
loadAndReturnError: instance method 178
loadInBackground instance method 1801
loadInForeground instance method 1802
loadResourceDataNotifyingClient:usingCache:

instance method 1726
loadSuitesFromBundle: instance method 1432
loadSuiteWithDictionary:fromBundle: instance

method 1433
locale instance method 207, 436, 1097, 1348
localeIdentifier instance method 826
localeIdentifierFromComponents: class method

823
localizations instance method 179
localizedCaseInsensitiveCompare: instance

method 1582
localizedCompare: instance method 1582
localizedDescription instance method 565
localizedFailureReason instance method 566
localizedInfoDictionary instance method 179
localizedName:locale: instance method 1675
localizedNameOfStringEncoding: class method

1527
localizedRecoveryOptions instance method 567
localizedRecoverySuggestion instance method 567
localizedScannerWithString: class method 1345
localizedStringForKey:value:table: instance

method 180
localizedStringForStatusCode: class method 734
localizedStringWithFormat: class method 1528
localizesFormat instance method 1098
localName instance method 1981
localNameForName: class method 1972
localObjects instance method 339
localTimeZone class method 1667
lock protocol instance method 2091
lockBeforeDate: instance method 321, 834, 1322
lockDate instance method 542
lockWhenCondition: instance method 321
lockWhenCondition:beforeDate: instance method

322
lockWithPath: class method 540
longCharacterIsMember: instance method 255
longEraSymbols instance method 437
longLongValue instance method 1074, 1583

longValue instance method 1074
lossyCString instance method 1583
lowercaseLetterCharacterSet class method 249
lowercaseString instance method 1584

M

Mach Port Rights 850
Mach-O Architecture 191
machPort instance method 848
main instance method 1205, 1648
mainBundle class method 169
mainDocumentURL instance method 1831
mainRunLoop class method 1332
mainThread class method 1642
makeNewConnection:sender: <NSObject> delegate

method 351
makeObjectsPerformSelector: instance method 129,

1457
makeObjectsPerformSelector:withObject: instance

method 130, 1457
mapTableWithKeyOptions:valueOptions: class

method 853
mapTableWithStrongToStrongObjects class method

854
mapTableWithStrongToWeakObjects class method

854
mapTableWithWeakToStrongObjects class method

854
mapTableWithWeakToWeakObjects class method 855
matchesAppleEventCode: instance method 1370
maxConcurrentOperationCount instance method 1214
maximum instance method 1098
maximumDecimalNumber class method 469
maximumFractionDigits instance method 1099
maximumIntegerDigits instance method 1099
maximumLengthOfBytesUsingEncoding: instance

method 1584
maximumRangeOfUnit: instance method 208
maximumSignificantDigits instance method 1099
member: instance method 700, 1458
Memory Allocation 2287
Memory and Personality Options 1244
memoryCapacity instance method 1748
Metadata Query Search Scopes 888
metadataQuery:replacementObjectForResultObject:

<NSObject> delegate method 887
metadataQuery:replacementValueForAttribute:value:

<NSObject> delegate method 887
methodForSelector: instance method 1181
methodReturnLength instance method 900
methodReturnType instance method 901

2332
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

methodSignature instance method 774
methodSignatureForSelector: instance method

1181, 1312
MIMEType instance method 1837, 1909
minimum instance method 1100
minimumDaysInFirstWeek instance method 208
minimumDecimalNumber class method 469
minimumFractionDigits instance method 1100
minimumIntegerDigits instance method 1101
minimumRangeOfUnit: instance method 209
minimumSignificantDigits instance method 1101
minusHashTable: instance method 700
minusSet: instance method 974
minusSign instance method 1101
minute instance method 414
minuteOfHour instance method 234
month instance method 415
monthOfYear instance method 234
monthSymbols instance method 437
moveItemAtPath:toPath:error: instance method

654
movePath:toPath:handler: instance method 654
msgid instance method 1265
multipleThreadsEnabled instance method 339
multiplier instance method 1102
mutableArrayValueForKey: <NSObject> instance

method 2061
mutableArrayValueForKeyPath:<NSObject> instance

method 2062
mutableBytes instance method 950
mutableCopy instance method 1182
mutableCopyWithZone: class method 1162
mutableCopyWithZone:protocol instance method 2094
mutableSetValueForKey: <NSObject> instance

method 2062
mutableSetValueForKeyPath: <NSObject> instance

method 2063
mutableString instance method 935

N

name instance method 315, 322, 577, 711, 719, 835, 994,
1005, 1034, 1322, 1648, 1676, 1981

Named Value Transformers 1888
names instance method 711
namespaceForPrefix: instance method 1956
namespaces instance method 1956
namespaceWithName:stringValue: class method

1973
negativeFormat instance method 1102
negativeInfinitySymbol instance method 1102
negativePrefix instance method 1103

negativeSuffix instance method 1103
netServiceBrowser:didFindDomain:moreComing:

<NSObject> delegate method 1026
netServiceBrowser:didFindService:moreComing:

<NSObject> delegate method 1026
netServiceBrowser:didNotSearch: <NSObject>

delegate method 1027
netServiceBrowser:didRemoveDomain:moreComing:

<NSObject> delegate method 1027
netServiceBrowser:didRemoveService:moreComing:

<NSObject> delegate method 1028
netServiceBrowserDidStopSearch: <NSObject>

delegate method 1028
netServiceBrowserWillSearch:<NSObject> delegate

method 1029
netService:didNotPublish: <NSObject> delegate

method 1012
netService:didNotResolve: <NSObject> delegate

method 1012
netService:didUpdateTXTRecordData:<NSObject>

delegate method 1013
netServiceDidPublish:<NSObject> delegate method

1013
netServiceDidResolveAddress:<NSObject> delegate

method 1014
netServiceDidStop: <NSObject> delegate method

1014
netServiceWillPublish: <NSObject> delegate

method 1014
netServiceWillResolve: <NSObject> delegate

method 1015
new class method 1163
newlineCharacterSet class method 250
newScriptingObjectOfClass:forValueForKey:

withContentsValue:properties: instance
method 1183

nextDaylightSavingTimeTransition instance
method 1676

nextDaylightSavingTimeTransitionAfterDate:
instance method 1677

nextNode instance method 1982
nextObject instance method 558
nextSibling instance method 1982
nilSymbol instance method 1104
Node Kind Constants 1992
nodesForXPath:error: instance method 1982
nonBaseCharacterSet class method 250
nonretainedObjectValue instance method 1879
normalizeAdjacentTextNodesPreservingCDATA:

instance method 1957
notANumber class method 470
notANumberSymbol instance method 1104
notationDeclarationForName: instance method 1930

2333
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

notationName instance method 1938
Notification Center Type 554
Notification Posting Behavior 554
notificationBatchingInterval instance method

879
notificationCenterForType: class method 548
notificationWithName:object: class method 1033
notificationWithName:object:userInfo: class

method 1033
notPredicateWithSubpredicate: class method 308
NSAdminApplicationDirectory constant 2279
NSAffineTransformStruct data type 57
NSAggregateExpressionType constant 601
NSAllApplicationsDirectory constant 2280
NSAllDomainsMask constant 2281
NSAllHashTableObjects function 2157
NSAllLibrariesDirectory constant 2280
NSAllMapTableKeys function 2157
NSAllMapTableValues function 2158
NSAllocateCollectable function 2158
NSAllocateMemoryPages function 2158
NSAllocateObject function 2159
NSAllPredicateModifier constant 303
NSAMPMDesignation constant 1864
NSAnchoredSearch constant 1616
NSAndPredicateType constant 311
NSAnyPredicateModifier constant 303
NSAppleEvent Timeouts 90
NSAppleEventManagerSuspensionID data type 2267
NSAppleEventManagerWillProcessFirstEvent-

Notification notification 90
NSAppleEventTimeOutDefault constant 90
NSAppleEventTimeOutNone constant 90
NSAppleScriptErrorAppName constant 96
NSAppleScriptErrorBriefMessage constant 96
NSAppleScriptErrorMessage constant 96
NSAppleScriptErrorNumber constant 96
NSAppleScriptErrorRange constant 96
NSApplicationDirectory constant 2278
NSApplicationSupportDirectory constant 2279
NSArgumentDomain constant 1863
NSArgumentEvaluationScriptError constant 1394
NSArgumentsWrongScriptError constant 1394
NSASCIIStringEncoding constant 1619
NSAssert macro 2159
NSAssert1 macro 2160
NSAssert2 macro 2161
NSAssert3 macro 2162
NSAssert4 macro 2163
NSAssert5 macro 2165
NSAtomicWrite constant 387
NSAverageKeyValueOperator constant 2073
NSBackwardsSearch constant 1616

NSBeginsWithComparison constant 1487
NSBeginsWithPredicateOperatorType constant 305
NSBetweenPredicateOperatorType constant 306
NSBuddhistCalendar constant 830
NSBundleDidLoadNotification notification 192
NSBundleExecutableArchitectureI386 constant

191
NSBundleExecutableArchitecturePPC constant 191
NSBundleExecutableArchitecturePPC64 constant

191
NSBundleExecutableArchitectureX86_64 constant

191
NSByteOrder data type 2267
NSCachesDirectory constant 2279
NSCalculationDivideByZero constant 2047
NSCalculationError data type 2047
NSCalculationLossOfPrecision constant 2047
NSCalculationNoError constant 2047
NSCalculationOverflow constant 2047
NSCalculationUnderflow constant 2047
NSCalendarUnit data type 213
NSCannotCreateScriptCommandError constant 1395
NSCaseInsensitivePredicateOption constant 304
NSCaseInsensitiveSearch constant 1616
NSCAssert macro 2166
NSCAssert1 macro 2166
NSCAssert2 macro 2167
NSCAssert3 macro 2168
NSCAssert4 macro 2169
NSCAssert5 macro 2169
NSCharacterConversionException constant 1618
NSChineseCalendar constant 830
NSClassDescriptionNeededForClassNotification

notification 262
NSClassFromString function 2170
NSCocoaErrorDomain constant 2298
NSCollectorDisabledOption constant 2288
NSCompareHashTables function 2171
NSCompareMapTables function 2171
NSComparisonPredicate Options 303
NSComparisonPredicateModifier 303
NSComparisonResult data type 2268
NSConnection run loop mode 352
NSConnectionDidDieNotification notification 352
NSConnectionDidInitializeNotification

notification 353
NSConnectionReplyMode constant 352
NSConstantValueExpressionType constant 600
NSContainerSpecifierError constant 1424
NSContainsComparison constant 1488
NSContainsPredicateOperatorType constant 306
NSContainsRect function 2172
NSConvertHostDoubleToSwapped function 2172

2334
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSConvertHostFloatToSwapped function 2172
NSConvertSwappedDoubleToHost function 2173
NSConvertSwappedFloatToHost function 2173
NSCopyHashTableWithZone function 2174
NSCopyMapTableWithZone function 2174
NSCopyMemoryPages function 2175
NSCopyObject function 2175
NSCoreServiceDirectory constant 2279
NSCountHashTable function 2176
NSCountKeyValueOperator constant 2073
NSCountMapTable function 2176
NSCParameterAssert macro 2177
NSCreateHashTable function 2177
NSCreateHashTableWithZone function 2178
NSCreateMapTable function 2178
NSCreateMapTableWithZone function 2179
NSCreateZone function 2180
NSCurrencySymbol constant 1869
NSCurrentLocaleDidChangeNotification

notification 831
NSCustomSelectorPredicateOperatorType constant

305
NSDateComponents undefined component identifier 422
NSDateComponents wrapping behavior 215
NSDateFormatString constant 1864
NSDateFormatterBehavior data type 461
NSDateFormatterBehavior10_0 constant 461
NSDateFormatterBehavior10_4 constant 461
NSDateFormatterBehaviorDefault constant 461
NSDateFormatterFullStyle constant 461
NSDateFormatterLongStyle constant 461
NSDateFormatterMediumStyle constant 460
NSDateFormatterNoStyle constant 460
NSDateFormatterShortStyle constant 460
NSDateFormatterStyle data type 460
NSDateTimeOrdering constant 1865
NSDayCalendarUnit constant 214
NSDeallocateMemoryPages function 2180
NSDeallocateObject function 2181
NSDecimal Constants 2303
NSDecimal data type 2269
NSDecimalAdd function 2181
NSDecimalCompact function 2182
NSDecimalCompare function 2182
NSDecimalCopy function 2183
NSDecimalDigits constant (Deprecated in Mac OS X

v10.5) 1869
NSDecimalDivide function 2183
NSDecimalIsNotANumber function 2183
NSDecimalMaxSize constant 2304
NSDecimalMultiply function 2184
NSDecimalMultiplyByPowerOf10 function 2184
NSDecimalNormalize function 2185

NSDecimalNoScale constant 2304
NSDecimalNumber Exception Names 480
NSDecimalNumberDivideByZeroException constant

481
NSDecimalNumberExactnessException constant 481
NSDecimalNumberOverflowException constant 481
NSDecimalNumberUnderflowException constant 481
NSDecimalPower function 2185
NSDecimalRound function 2186
NSDecimalSeparator constant 1869
NSDecimalString function 2186
NSDecimalSubtract function 2187
NSDecrementExtraRefCountWasZero function 2187
NSDefaultMallocZone function 2188
NSDefaultRunLoopMode constant 1340
NSDemoApplicationDirectory constant 2278
NSDesktopDirectory constant 2279
NSDestinationInvalidException constant 2307
NSDeveloperApplicationDirectory constant 2278
NSDeveloperDirectory constant 2279
NSDiacriticInsensitivePredicateOption constant

304
NSDiacriticInsensitiveSearch constant 1617
NSDidBecomeSingleThreadedNotification

notification 1651
NSDirectPredicateModifier constant 303
NSDistinctUnionOfArraysKeyValueOperator

constant 2073
NSDistinctUnionOfObjectsKeyValueOperator

constant 2073
NSDistinctUnionOfSetsKeyValueOperator constant

2073
NSDivideRect function 2188
NSDocumentationDirectory constant 2279
NSDocumentDirectory constant 2279
NSDownloadsDirectory constant 2280
NSEarlierTimeDesignations constant 1865
NSEndHashTableEnumeration function 2189
NSEndMapTableEnumeration function 2190
NSEndsWithComparison constant 1487
NSEndsWithPredicateOperatorType constant 305
NSEnumerateHashTable function 2190
NSEnumerateMapTable function 2190
NSEqualPoints function 2191
NSEqualRanges function 2191
NSEqualRects function 2192
NSEqualSizes function 2192
NSEqualToComparison constant 1487
NSEqualToPredicateOperatorType constant 305
NSEraCalendarUnit constant 214
NSError Codes 2288
NSErrorFailingURLStringKey constant 569
NSEvaluatedObjectExpressionType constant 600

2335
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSEverySubelement constant 1897
NSExecutableArchitectureMismatchError constant

2291
NSExecutableErrorMaximum constant 2292
NSExecutableErrorMinimum constant 2291
NSExecutableLinkError constant 2292
NSExecutableLoadError constant 2292
NSExecutableNotLoadableError constant 2291
NSExecutableRuntimeMismatchError constant 2291
NSExpressionType data type 600
NSExtraRefCount function 2193
NSFailedAuthenticationException constant 352
NSFastEnumerationState data type 2054
NSFileAppendOnly constant 668
NSFileBusy constant 668
NSFileCreationDate constant 669
NSFileDeviceIdentifier constant 669
NSFileErrorMaximum constant 2291
NSFileErrorMinimum constant 2291
NSFileExtensionHidden constant 669
NSFileGroupOwnerAccountID constant 669
NSFileGroupOwnerAccountName constant 669
NSFileHandleConnectionAcceptedNotification

notification 621
NSFileHandleDataAvailableNotification

notification 622
NSFileHandleNotificationDataItem constant 620
NSFileHandleNotificationFileHandleItem

constant 620
NSFileHandleNotificationMonitorModes constant

621
NSFileHandleOperationException constant 621
NSFileHandleReadCompletionNotification

notification 622
NSFileHandleReadToEndOfFileCompletionNotification

notification 623
NSFileHFSCreatorCode constant 669
NSFileHFSTypeCode constant 669
NSFileImmutable constant 670
NSFileLockingError constant 2289
NSFileModificationDate constant 670
NSFileNoSuchFileError constant 2289
NSFileOwnerAccountID constant 670
NSFileOwnerAccountName constant 669
NSFilePathErrorKey constant 569
NSFilePosixPermissions constant 670
NSFileReadCorruptFileError constant 2289
NSFileReadInapplicableStringEncodingError

constant 2289
NSFileReadInvalidFileNameError constant 2289
NSFileReadNoPermissionError constant 2289
NSFileReadNoSuchFileError constant 2289
NSFileReadUnknownError constant 2289

NSFileReadUnsupportedSchemeError constant 2290
NSFileReferenceCount constant 670
NSFileSize constant 670
NSFileSystemFileNumber constant 670
NSFileSystemFreeNodes constant 673
NSFileSystemFreeSize constant 672
NSFileSystemNodes constant 672
NSFileSystemNumber constant 673
NSFileSystemSize constant 672
NSFileType constant 671
NSFileTypeBlockSpecial constant 672
NSFileTypeCharacterSpecial constant 671
NSFileTypeDirectory constant 671
NSFileTypeForHFSTypeCode function 2193
NSFileTypeRegular constant 671
NSFileTypeSocket constant 671
NSFileTypeSymbolicLink constant 671
NSFileTypeUnknown constant 672
NSFileWriteInapplicableStringEncodingError

constant 2290
NSFileWriteInvalidFileNameError constant 2290
NSFileWriteNoPermissionError constant 2290
NSFileWriteOutOfSpaceError constant 2290
NSFileWriteUnknownError constant 2290
NSFileWriteUnsupportedSchemeError constant 2290
NSForcedOrderingSearch constant 1617
NSFormattingError constant 2290
NSFormattingErrorMaximum constant 2291
NSFormattingErrorMinimum constant 2291
NSFoundationVersionNumber constant 2308
NSFoundationVersionNumber10_0 constant 2309
NSFoundationVersionNumber10_1 constant 2309
NSFoundationVersionNumber10_1_1 constant 2309
NSFoundationVersionNumber10_1_2 constant 2310
NSFoundationVersionNumber10_1_3 constant 2310
NSFoundationVersionNumber10_1_4 constant 2310
NSFoundationVersionNumber10_2 constant 2310
NSFoundationVersionNumber10_2_1 constant 2310
NSFoundationVersionNumber10_2_2 constant 2310
NSFoundationVersionNumber10_2_3 constant 2310
NSFoundationVersionNumber10_2_4 constant 2310
NSFoundationVersionNumber10_2_5 constant 2310
NSFoundationVersionNumber10_2_6 constant 2310
NSFoundationVersionNumber10_2_7 constant 2311
NSFoundationVersionNumber10_2_8 constant 2311
NSFoundationVersionNumber10_3 constant 2311
NSFoundationVersionNumber10_3_1 constant 2311
NSFoundationVersionNumber10_3_2 constant 2311
NSFoundationVersionNumber10_3_3 constant 2311
NSFoundationVersionNumber10_3_4 constant 2311
NSFoundationVersionNumber10_3_5 constant 2311
NSFoundationVersionNumber10_3_6 constant 2311
NSFoundationVersionNumber10_3_7 constant 2311

2336
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSFoundationVersionNumber10_3_8 constant 2312
NSFoundationVersionNumber10_3_9 constant 2312
NSFoundationVersionNumber10_4 constant 2312
NSFoundationVersionNumber10_4_1 constant 2312
NSFoundationVersionNumber10_4_10 constant 2313
NSFoundationVersionNumber10_4_11 constant 2313
NSFoundationVersionNumber10_4_2 constant 2312
NSFoundationVersionNumber10_4_3 constant 2312
NSFoundationVersionNumber10_4_4_Intel constant

2312
NSFoundationVersionNumber10_4_4_PowerPC

constant 2312
NSFoundationVersionNumber10_4_5 constant 2312
NSFoundationVersionNumber10_4_6 constant 2312
NSFoundationVersionNumber10_4_7 constant 2313
NSFoundationVersionNumber10_4_8 constant 2313
NSFoundationVersionNumber10_4_9 constant 2313
NSFoundationVersionWithFileManagerResourceFork-

Support constant 673
NSFreeHashTable function 2193
NSFreeMapTable function 2194
NSFTPPropertyActiveTransferModeKey constant

1734
NSFTPPropertyFileOffsetKey constant (Deprecated

in Mac OS X v10.4) 1734
NSFTPPropertyFTPProxy constant 1734
NSFTPPropertyUserLoginKey constant 1733
NSFTPPropertyUserPasswordKey constant 1733
NSFullUserName function 2194
NSFunctionExpressionType constant 600
NSGenericException constant 2306
NSGetSizeAndAlignment function 2195
NSGetUncaughtExceptionHandler function 2195
NSGlobalDomain constant 1863
NSGrammarCorrections constant 1496
NSGrammarRange constant 1496
NSGrammarUserDescription constant 1496
NSGreaterThanComparison constant 1487
NSGreaterThanOrEqualToComparison constant 1487
NSGreaterThanOrEqualToPredicateOperatorType

constant 305
NSGreaterThanPredicateOperatorType constant

305
NSGregorianCalendar constant 830
NSHashEnumerator data type 2269
NSHashGet function 2195
NSHashInsert function 2196
NSHashInsertIfAbsent function 2196
NSHashInsertKnownAbsent function 2197
NSHashRemove function 2197
NSHashTable Callbacks 2299
NSHashTable data type 2269
NSHashTableCallBacks data type 2270

NSHashTableCopyIn constant 703
NSHashTableObjectPointerPersonality constant

703
NSHashTableOptions data type 702, 2270
NSHashTableStrongMemory constant 703
NSHashTableZeroingWeakMemory constant 703
NSHebrewCalendar constant 830
NSHeight function 2198
NSHFSTypeCodeFromFileType function 2198
NSHFSTypeOfFile function 2199
NSHomeDirectory function 2199
NSHomeDirectoryForUser function 2200
NSHostByteOrder function 2200
NSHourCalendarUnit constant 214
NSHourNameDesignations constant 1865
NSHPUXOperatingSystem constant 1292
NSHTTPCookieAcceptPolicy data type 729
NSHTTPCookieAcceptPolicyAlways constant 730
NSHTTPCookieAcceptPolicyNever constant 730
NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain

constant 730
NSHTTPCookieComment constant 721
NSHTTPCookieCommentURL constant 722
NSHTTPCookieDiscard constant 722
NSHTTPCookieDomain constant 722
NSHTTPCookieExpires constant 722
NSHTTPCookieManagerAcceptPolicyChangedNotification

notification 730
NSHTTPCookieManagerCookiesChangedNotification

notification 730
NSHTTPCookieMaximumAge constant 722
NSHTTPCookieName constant 722
NSHTTPCookieOriginURL constant 722
NSHTTPCookiePath constant 723
NSHTTPCookiePort constant 723
NSHTTPCookieSecure constant 723
NSHTTPCookieValue constant 723
NSHTTPCookieVersion constant 723
NSHTTPPropertyErrorPageDataKey constant

(Deprecated in Mac OS X v10.4) 1735
NSHTTPPropertyHTTPProxy constant 1735
NSHTTPPropertyRedirectionHeadersKey constant

(Deprecated in Mac OS X v10.4) 1735
NSHTTPPropertyServerHTTPVersionKey constant

(Deprecated in Mac OS X v10.4) 1735
NSHTTPPropertyStatusCodeKey constant (Deprecated

in Mac OS X v10.4) 1734
NSHTTPPropertyStatusReasonKey constant 1735
NSInconsistentArchiveException constant 103
NSIncrementExtraRefCount function 2201
NSIndexSubelement constant 1897
NSInPredicateOperatorType constant 305
NSInsertionPosition data type 1277

2337
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSInsetRect function 2201
NSInteger and NSUInteger Maximum and Minimum Values

2305
NSInteger data type 2271
NSIntegerHashCallBacks constant 2299
NSIntegerMapKeyCallBacks constant 2301
NSIntegerMapValueCallBacks constant 2302
NSIntegerMax constant 2305
NSIntegerMin constant 2305
NSIntegralRect function 2202
NSInternalInconsistencyException constant 2307
NSInternalScriptError constant 1395
NSInternalSpecifierError constant 1424
NSInternationalCurrencyString constant

(Deprecated in Mac OS X v10.5) 1869
NSIntersectionRange function 2203
NSIntersectionRect function 2203
NSIntersectSetExpressionType constant 601
NSIntersectsRect function 2204
NSIntHashCallBacks constant (Deprecated in Mac OS

X v10.5) 2300
NSIntMapKeyCallBacks constant (Deprecated in Mac

OS X v10.5) 2301
NSIntMapValueCallBacks constant (Deprecated in Mac

OS X v10.5) 2302
NSInvalidArchiveOperationException constant

799
NSInvalidArgumentException constant 2307
NSInvalidIndexSpecifierError constant 1424
NSInvalidReceivePortException constant 2308
NSInvalidSendPortException constant 2307
NSInvalidUnarchiveOperationException constant

815
NSInvocationOperationCancelledException

constant 784
NSInvocationOperationVoidResultException

constant 784
NSIsEmptyRect function 2204
NSIslamicCalendar constant 830
NSIslamicCivilCalendar constant 830
NSIsNilTransformerName constant 1888
NSIsNotNilTransformerName constant 1889
NSISO2022JPStringEncoding constant 1619
NSISOLatin1StringEncoding constant 1620
NSISOLatin2StringEncoding constant 1620
NSJapaneseCalendar constant 830
NSJapaneseEUCStringEncoding constant 1620
NSJavaBundleCleanup function (Deprecated in Mac OS

X v10.5) 2205
NSJavaBundleSetup function (Deprecated in Mac OS X

v10.5) 2205
NSJavaClasses constant (Deprecated in Mac OS X v10.5)

2298

NSJavaClassesForBundle function (Deprecated in Mac
OS X v10.5) 2205

NSJavaClassesFromPath function (Deprecated in Mac
OS X v10.5) 2206

NSJavaDidCreateVirtualMachineNotification
constant (Deprecated in Mac OS X v10.5) 2306

NSJavaDidSetupVirtualMachineNotification
constant (Deprecated in Mac OS X v10.5) 2305

NSJavaLibraryPath constant 2299
NSJavaNeedsToLoadClasses function (Deprecated in

Mac OS X v10.5) 2206
NSJavaNeedsVirtualMachine function (Deprecated in

Mac OS X v10.5) 2207
NSJavaObjectNamedInPath function (Deprecated in

Mac OS X v10.5) 2207
NSJavaOwnVirtualMachine constant (Deprecated in

Mac OS X v10.5) 2299
NSJavaPath constant (Deprecated in Mac OS X v10.5)

2298
NSJavaPathSeparator constant (Deprecated in Mac OS

X v10.5) 2299
NSJavaProvidesClasses function (Deprecated in Mac

OS X v10.5) 2207
NSJavaRoot constant (Deprecated in Mac OS X v10.5)

2298
NSJavaSetup function (Deprecated in Mac OS X v10.5)

2208
NSJavaSetup Information 2298
NSJavaSetupVirtualMachine function (Deprecated in

Mac OS X v10.5) 2208
NSJavaUserPath constant 2299
NSJavaWillCreateVirtualMachineNotification

constant (Deprecated in Mac OS X v10.5) 2306
NSJavaWillSetupVirtualMachineNotification

constant (Deprecated in Mac OS X v10.5) 2305
NSKeyedUnarchiveFromDataTransformerName

constant 1889
NSKeyPathExpressionType constant 600
NSKeySpecifierEvaluationScriptError constant

1394
NSKeyValueChange 2085
NSKeyValueChangeIndexesKey constant 2088
NSKeyValueChangeInsertion constant 2085
NSKeyValueChangeKindKey constant 2087
NSKeyValueChangeNewKey constant 2088
NSKeyValueChangeOldKey constant 2088
NSKeyValueChangeRemoval constant 2086
NSKeyValueChangeReplacement constant 2086
NSKeyValueChangeSetting constant 2085
NSKeyValueIntersectSetMutation constant 2089
NSKeyValueMinusSetMutation constant 2089
NSKeyValueObservingOptionInitial constant 2086
NSKeyValueObservingOptionNew constant 2086

2338
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSKeyValueObservingOptionOld constant 2086
NSKeyValueObservingOptionPrior constant 2087
NSKeyValueObservingOptions 2086
NSKeyValueSetMutationKind 2088
NSKeyValueSetSetMutation constant 2089
NSKeyValueUnionSetMutation constant 2089
NSKeyValueValidationError constant 2290
NSLaterTimeDesignations constant 1865
NSLessThanComparison constant 1487
NSLessThanOrEqualToComparison constant 1487
NSLessThanOrEqualToPredicateOperatorType

constant 304
NSLessThanPredicateOperatorType constant 304
NSLibraryDirectory constant 2279
NSLikePredicateOperatorType constant 305
NSLiteralSearch constant 1616
NSLocalDomainMask constant 2280
NSLocale Calendar Keys 830
NSLocale Component Keys 827
NSLocaleCalendar constant 829
NSLocaleCollationIdentifier constant 829
NSLocaleCountryCode constant 828
NSLocaleCurrencyCode constant 829
NSLocaleCurrencySymbol constant 829
NSLocaleDecimalSeparator constant 829
NSLocaleExemplarCharacterSet constant 828
NSLocaleGroupingSeparator constant 829
NSLocaleIdentifier constant 828
NSLocaleLanguageCode constant 828
NSLocaleMeasurementSystem constant 829
NSLocaleScriptCode constant 828
NSLocaleUsesMetricSystem constant 829
NSLocaleVariantCode constant 828
NSLocalizedDescriptionKey constant 569
NSLocalizedFailureReasonErrorKey constant 570
NSLocalizedRecoveryOptionsErrorKey constant

570
NSLocalizedRecoverySuggestionErrorKey constant

570
NSLocalizedString macro 2209
NSLocalizedStringFromTable macro 2209
NSLocalizedStringFromTableInBundlemacro 2210
NSLocalizedStringWithDefaultValue macro 2210
NSLocalNotificationCenterType constant 554
NSLocationInRange function 2211
NSLog function 2211
NSLogPageSize function 2212
NSLogv function 2212
NSMachErrorDomain constant 571
NSMACHOperatingSystem constant 1292
NSMachPortDeallocateNone constant 850
NSMachPortDeallocateReceiveRight constant 850
NSMachPortDeallocateSendRight constant 850

NSMacOSRomanStringEncoding constant 1620
NSMakeCollectable function 2213
NSMakePoint function 2214
NSMakeRange function 2214
NSMakeRect function 2214
NSMakeSize function 2215
NSMallocException constant 2307
NSMapEnumerator data type 2271
NSMapGet function 2215
NSMapInsert function 2216
NSMapInsertIfAbsent function 2216
NSMapInsertKnownAbsent function 2217
NSMapMember function 2218
NSMappedRead constant 387
NSMapRemove function 2218
NSMapTable Constants 2304
NSMapTable data type 2271
NSMapTable Key Call Backs 2300
NSMapTable Value Callbacks 2302
NSMapTableCopyIn constant 861
NSMapTableKeyCallBacks data type 2272
NSMapTableObjectPointerPersonality constant

861
NSMapTableOptions data type 2273
NSMapTableStrongMemory constant 860
NSMapTableValueCallBacks data type 2273
NSMapTableZeroingWeakMemory constant 861
NSMatchesPredicateOperatorType constant 305
NSMaximumKeyValueOperator constant 2074
NSMaximumStringLength 1615
NSMaximumStringLength constant 1615
NSMaxRange function 2219
NSMaxX function 2219
NSMaxXEdge constant 2277
NSMaxY function 2220
NSMaxYEdge constant 2277
NSMetadataQueryDidFinishGatheringNotification

notification 889
NSMetadataQueryDidStartGatheringNotification

notification 889
NSMetadataQueryDidUpdateNotification

notification 889
NSMetadataQueryGatheringProgressNotification

notification 889
NSMetadataQueryLocalComputerScope constant 888
NSMetadataQueryNetworkScope constant 888
NSMetadataQueryResultContentRelevanceAttribute

constant 888
NSMetadataQueryUserHomeScope constant 888
NSMiddleSubelement constant 1897
NSMidX function 2220
NSMidY function 2221
NSMinimumKeyValueOperator constant 2074

2339
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSMinusSetExpressionType constant 601
NSMinuteCalendarUnit constant 214
NSMinX function 2221
NSMinXEdge constant 2277
NSMinY function 2222
NSMinYEdge constant 2277
NSMonthCalendarUnit constant 214
NSMonthNameArray constant (Deprecated in Mac OS X

v10.5) 1866
NSMouseInRect function 2222
NSNegateBooleanTransformerName constant 1888
NSNegativeCurrencyFormatString constant 1870
NSNetServiceNoAutoRename constant 1017
NSNetServiceOptions data type 1017
NSNetServices Errors 1015
NSNetServicesActivityInProgress constant 1016
NSNetServicesBadArgumentError constant 1016
NSNetServicesCancelledError constant 1016
NSNetServicesCollisionError constant 1016
NSNetServicesError 1016
NSNetServicesErrorCode constant 1015
NSNetServicesErrorDomain constant 1015
NSNetServicesInvalidError constant 1016
NSNetServicesNotFoundError constant 1016
NSNetServicesTimeoutError constant 1017
NSNetServicesUnknownError constant 1016
NSNetworkDomainMask constant 2280
NSNextDayDesignations constant 1866
NSNextHashEnumeratorItem function 2223
NSNextMapEnumeratorPair function 2223
NSNextNextDayDesignations constant 1866
NSNEXTSTEPStringEncoding constant 1620
NSNonLossyASCIIStringEncoding constant 1620
NSNonOwnedPointerHashCallBacks constant 2300
NSNonOwnedPointerMapKeyCallBacks constant 2301
NSNonOwnedPointerMapValueCallBacks constant

2302
NSNonOwnedPointerOrNullMapKeyCallBacks

constant 2301
NSNonRetainedObjectHashCallBacks constant 2300
NSNonRetainedObjectMapKeyCallBacks constant

2301
NSNonRetainedObjectMapValueCallBacks constant

2302
NSNoScriptError constant 1394
NSNoSpecifierError constant 1424
NSNoSubelement constant 1897
NSNotAnIntegerMapKey constant 2304
NSNotAnIntMapKey constant 2304
NSNotAPointerMapKey constant 2304
NSNotEqualToPredicateOperatorType constant 305
NSNotFound 2287
NSNotFound constant 2287

NSNotificationCoalescing data type 1048
NSNotificationCoalescingOnName constant 1049
NSNotificationCoalescingOnSender constant 1049
NSNotificationDeliverImmediately constant 554
NSNotificationNoCoalescing constant 1049
NSNotificationPostToAllSessions constant 555
NSNotificationSuspensionBehavior data type 555
NSNotificationSuspensionBehaviorCoalesce

constant 555
NSNotificationSuspensionBehaviorDeliverImmediately

constant 555
NSNotificationSuspensionBehaviorDrop constant

555
NSNotificationSuspensionBehaviorHold constant

555
NSNoTopLevelContainersSpecifierError constant

1424
NSNotPredicateType constant 311
NSNumberFormatterBehavior 1142
NSNumberFormatterBehavior10_0 constant 1142
NSNumberFormatterBehavior10_4 constant 1142
NSNumberFormatterBehaviorDefault constant 1142
NSNumberFormatterCurrencyStyle constant 1141
NSNumberFormatterDecimalStyle constant 1141
NSNumberFormatterNoStyle constant 1141
NSNumberFormatterPadAfterPrefix constant 1143
NSNumberFormatterPadAfterSuffix constant 1143
NSNumberFormatterPadBeforePrefix constant 1143
NSNumberFormatterPadBeforeSuffix constant 1143
NSNumberFormatterPadPosition 1143
NSNumberFormatterPercentStyle constant 1142
NSNumberFormatterRoundCeiling constant 1144
NSNumberFormatterRoundDown constant 1144
NSNumberFormatterRoundFloor constant 1144
NSNumberFormatterRoundHalfDown constant 1144
NSNumberFormatterRoundHalfEven constant 1144
NSNumberFormatterRoundHalfUp constant 1144
NSNumberFormatterRoundingMode 1143
NSNumberFormatterRoundUp constant 1144
NSNumberFormatterScientificStyle constant 1142
NSNumberFormatterSpellOutStyle constant 1142
NSNumberFormatterStyle 1141
NSNumericSearch constant 1616
NSObjCArrayType constant 780
NSObjCBitfield constant 780
NSObjCBoolType constant 779
NSObjCCharType constant 779
NSObjCDoubleType constant 779
NSObjCFloatType constant 779
NSObjCLonglongType constant 779
NSObjCLongType constant 779
NSObjCNoType constant 778
NSObjCObjectType constant 779

2340
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSObjCPointerType constant 780
NSObjCSelectorType constant 779
NSObjCShortType constant 779
NSObjCStringType constant 780
NSObjCStructType constant 780
NSObjCUnionType constant 780
NSObjCValue data type 2273
NSObjCVoidType constant 778
NSObjectHashCallBacks constant 2300
NSObjectInaccessibleException constant 2307
NSObjectMapKeyCallBacks constant 2301
NSObjectMapValueCallBacks constant 2302
NSObjectNotAvailableException constant 2307
NSOffsetRect function 2224
NSOldStyleException constant 2308
NSOpenStepRootDirectory function 2225
NSOpenStepUnicodeReservedBase 255
NSOpenStepUnicodeReservedBase constant 256
NSOperationNotSupportedForKeyException

constant 2121
NSOperationNotSupportedForKeyScriptError

constant 1395
NSOperationNotSupportedForKeySpecifierError

constant 1424
NSOperationQueueDefaultMaxConcurrentOperationCount

constant 1216
NSOperationQueuePriority data type 1208
NSOperationQueuePriorityHigh constant 1209
NSOperationQueuePriorityLow constant 1209
NSOperationQueuePriorityNormal constant 1209
NSOperationQueuePriorityVeryHigh constant 1209
NSOperationQueuePriorityVeryLow constant 1209
NSOrderedAscending constant 2268
NSOrderedDescending constant 2268
NSOrderedSame constant 2268
NSOrPredicateType constant 311
NSOSF1OperatingSystem constant 1292
NSOSStatusErrorDomain constant 571
NSOwnedObjectIdentityHashCallBacks constant

2300
NSOwnedPointerHashCallBacks constant 2300
NSOwnedPointerMapKeyCallBacks constant 2301
NSOwnedPointerMapValueCallBacks constant 2302
NSPageSize function 2225
NSParameterAssert macro 2225
NSParseErrorException constant 1618
NSPoint data type 2274
NSPointArray data type 2275
NSPointerFunctionsCopyIn constant 1246
NSPointerFunctionsCStringPersonality constant

1245
NSPointerFunctionsIntegerPersonality constant

1246

NSPointerFunctionsMachVirtualMemory constant
1245

NSPointerFunctionsMallocMemory constant 1245
NSPointerFunctionsObjectPersonality constant

1245
NSPointerFunctionsObjectPointerPersonality

constant 1245
NSPointerFunctionsOpaqueMemory constant 1245
NSPointerFunctionsOpaquePersonality constant

1245
NSPointerFunctionsOptions data type 1244
NSPointerFunctionsStrongMemory constant 1244
NSPointerFunctionsStructPersonality constant

1245
NSPointerFunctionsZeroingWeakMemory constant

1244
NSPointerToStructHashCallBacks constant 2300
NSPointFromCGPoint function 2226
NSPointFromString function 2227
NSPointInRect function 2227
NSPointPointer data type 2275
NSPointToCGPoint function 2228
NSPortDidBecomeInvalidNotification notification

1256
NSPortReceiveException constant 2308
NSPortSendException constant 2308
NSPortTimeoutException constant 2307
NSPositionAfter constant 1277
NSPositionBefore constant 1277
NSPositionBeginning constant 1278
NSPositionEnd constant 1278
NSPositionReplace constant 1278
NSPositiveCurrencyFormatString constant 1870
NSPOSIXErrorDomain constant 570
NSPostASAP constant 1049
NSPostingStyle data type 1049
NSPostNow constant 1050
NSPostWhenIdle constant 1049
NSPredicateOperatorType 304
NSPriorDayDesignations constant 1866
NSProcessInfo—Operating Systems 1292
NSPropertyListBinaryFormat_v1_0 constant 1299
NSPropertyListFormat data type 1299
NSPropertyListImmutable constant 1298
NSPropertyListMutabilityOptions data type 1298
NSPropertyListMutableContainers constant 1298
NSPropertyListMutableContainersAndLeaves

constant 1298
NSPropertyListOpenStepFormat constant 1299
NSPropertyListXMLFormat_v1_0 constant 1299
NSProprietaryStringEncoding constant 1622
NSProtocolFromString function 2228
NSRandomSubelement constant 1897

2341
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSRange data type 2275
NSRangeException constant 2306
NSRangeFromString function 2229
NSRangePointer data type 2276
NSReallocateCollectable function 2229
NSRealMemoryAvailable function 2230
NSReceiverEvaluationScriptError constant 1394
NSReceiversCantHandleCommandScriptError

constant 1394
NSRecoveryAttempterErrorKey constant 570
NSRect data type 2276
NSRectArray data type 2276
NSRectEdge data type 2277
NSRectFromCGRect function 2230
NSRectFromString function 2231
NSRectPointer data type 2278
NSRectToCGRect function 2231
NSRecycleZone function 2232
NSRegistrationDomain constant 1863
NSRelativeAfter constant 1328
NSRelativeBefore constant 1328
NSRelativePosition data type 1327
NSRequiredArgumentsMissingScriptError constant

1394
NSResetHashTable function 2232
NSResetMapTable function 2232
NSRoundBankers constant 2046
NSRoundDown constant 2046
NSRoundDownToMultipleOfPageSize function 2233
NSRoundingMode data type 2045
NSRoundPlain constant 2046
NSRoundUp constant 2046
NSRoundUpToMultipleOfPageSize function 2233
NSRunLoopCommonModes constant 1340
NSSaveOptions data type 266
NSSaveOptionsAsk constant 267
NSSaveOptionsNo constant 266
NSSaveOptionsYes constant 266
NSScannedOption constant 2288
NSScriptCommand—General Command Execution Errors

1393
NSScriptKeyValueCoding Exception Names 2121
NSScriptObjectSpecifier—Specifier Evaluation Errors 1424
NSSearchPathDirectory data type 2278
NSSearchPathDomainMask data type 2280
NSSearchPathForDirectoriesInDomains function

2234
NSSecondCalendarUnit constant 215
NSSelectorFromString function 2234
NSSetUncaughtExceptionHandler function 2235
NSSetZoneName function 2236
NSShiftJISStringEncoding constant 1620
NSShortDateFormatString constant 1866

NSShortMonthNameArray constant (Deprecated in Mac
OS X v10.5) 1867

NSShortTimeDateFormatString constant 1867
NSShortWeekDayNameArray constant 1867
NSShouldRetainWithZone function 2236
NSSize data type 2281
NSSizeArray data type 2281
NSSizeFromCGSize function 2237
NSSizeFromString function 2237
NSSizePointer data type 2282
NSSizeToCGSize function 2237
NSSolarisOperatingSystem constant 1293
NSStream Error Domains 1508
NSStream Property Keys 1507
NSStreamDataWrittenToMemoryStreamKey constant

1508
NSStreamEvent data type 1506
NSStreamEventEndEncountered constant 1507
NSStreamEventErrorOccurred constant 1507
NSStreamEventHasBytesAvailable constant 1507
NSStreamEventHasSpaceAvailable constant 1507
NSStreamEventNone constant 1507
NSStreamEventOpenCompleted constant 1507
NSStreamFileCurrentOffsetKey constant 1508
NSStreamSocketSecurityLevelKey constant 1508
NSStreamSocketSecurityLevelNegotiatedSSL

constant 1509
NSStreamSocketSecurityLevelNone constant 1509
NSStreamSocketSecurityLevelSSLv2 constant 1509
NSStreamSocketSecurityLevelSSLv3 constant 1509
NSStreamSocketSecurityLevelTLSv1 constant 1509
NSStreamSocketSSLErrorDomain constant 1509
NSStreamSOCKSErrorDomain constant 1509
NSStreamSOCKSProxyConfigurationKey constant

1508
NSStreamSOCKSProxyHostKey constant 1510
NSStreamSOCKSProxyPasswordKey constant 1510
NSStreamSOCKSProxyPortKey constant 1510
NSStreamSOCKSProxyUserKey constant 1510
NSStreamSOCKSProxyVersion4 constant 1510
NSStreamSOCKSProxyVersion5 constant 1511
NSStreamSOCKSProxyVersionKey constant 1510
NSStreamStatus data type 1505
NSStreamStatusAtEnd constant 1506
NSStreamStatusClosed constant 1506
NSStreamStatusError constant 1506
NSStreamStatusNotOpen constant 1505
NSStreamStatusOpen constant 1506
NSStreamStatusOpening constant 1505
NSStreamStatusReading constant 1506
NSStreamStatusWriting constant 1506
NSString Handling Exception Names 1618
NSStringCompareOptions data type 1615

2342
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSStringEncoding data type 1619, 2282
NSStringEncodingConversionAllowLossy constant

1618
NSStringEncodingConversionExternalRepresentation

constant 1618
NSStringEncodingConversionOptions data type

1617
NSStringEncodingErrorKey constant 569
NSStringFromClass function 2238
NSStringFromHashTable function 2239
NSStringFromMapTable function 2239
NSStringFromPoint function 2239
NSStringFromProtocol function 2240
NSStringFromRange function 2240
NSStringFromRect function 2241
NSStringFromSelector function 2241
NSStringFromSize function 2242
NSSubqueryExpressionType constant 601
NSSumKeyValueOperator constant 2074
NSSunOSOperatingSystem constant 1293
NSSwapBigDoubleToHost function 2242
NSSwapBigFloatToHost function 2243
NSSwapBigIntToHost function 2243
NSSwapBigLongLongToHost function 2243
NSSwapBigLongToHost function 2244
NSSwapBigShortToHost function 2244
NSSwapDouble function 2245
NSSwapFloat function 2245
NSSwapHostDoubleToBig function 2246
NSSwapHostDoubleToLittle function 2246
NSSwapHostFloatToBig function 2246
NSSwapHostFloatToLittle function 2247
NSSwapHostIntToBig function 2247
NSSwapHostIntToLittle function 2248
NSSwapHostLongLongToBig function 2248
NSSwapHostLongLongToLittle function 2249
NSSwapHostLongToBig function 2249
NSSwapHostLongToLittle function 2249
NSSwapHostShortToBig function 2250
NSSwapHostShortToLittle function 2250
NSSwapInt function 2251
NSSwapLittleDoubleToHost function 2251
NSSwapLittleFloatToHost function 2252
NSSwapLittleIntToHost function 2252
NSSwapLittleLongLongToHost function 2252
NSSwapLittleLongToHost function 2253
NSSwapLittleShortToHost function 2253
NSSwapLong function 2254
NSSwapLongLong function 2254
NSSwappedDouble data type 2282
NSSwappedFloat data type 2283
NSSwapShort function 2255
NSSymbolStringEncoding constant 1620

NSSystemDomainMask constant 2281
NSSystemTimeZoneDidChangeNotification

notification 1679
NSTargetObjectUserInfoKey constant 2072
NSTaskDidTerminateNotification notification 1636
NSTemporaryDirectory function 2255
NSTestComparisonOperation data type 1486
NSThisDayDesignations constant 1867
NSThousandsSeparator constant 1870
NSThreadWillExitNotification notification 1651
NSTimeDateFormatString constant 1868
NSTimeFormatString constant 1868
NSTimeInterval data type 2283
NSTimeIntervalSince1970 409
NSTimeIntervalSince1970 constant 409
NSTimeZoneNameStyle data type 1678
NSTimeZoneNameStyleDaylightSaving constant 1679
NSTimeZoneNameStyleShortDaylightSaving

constant 1679
NSTimeZoneNameStyleShortStandard constant 1678
NSTimeZoneNameStyleStandard constant 1678
NSUInteger data type 2283
NSUIntegerMax constant 2305
NSUnarchiveFromDataTransformerName constant

1889
NSUncachedRead constant 387
NSUncaughtExceptionHandler data type 2283
NSUndefinedDateComponent constant 422
NSUndefinedKeyException constant 2072
NSUndefinedKeyException userInfo Keys 2072
NSUnderlyingErrorKey constant 569
NSUndoCloseGroupingRunLoopOrdering 1707
NSUndoCloseGroupingRunLoopOrdering constant

1707
NSUndoManagerCheckpointNotificationnotification

1707
NSUndoManagerDidOpenUndoGroupNotification

notification 1707
NSUndoManagerDidRedoChangeNotification

notification 1708
NSUndoManagerDidUndoChangeNotification

notification 1708
NSUndoManagerWillCloseUndoGroupNotification

notification 1708
NSUndoManagerWillRedoChangeNotification

notification 1708
NSUndoManagerWillUndoChangeNotification

notification 1708
NSUnicodeStringEncoding constant 1620
NSUnionOfArraysKeyValueOperator constant 2074
NSUnionOfObjectsKeyValueOperator constant 2074
NSUnionOfSetsKeyValueOperator constant 2074
NSUnionRange function 2256

2343
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSUnionRect function 2256
NSUnionSetExpressionType constant 601
NSUnknownKeyScriptError constant 1395
NSUnknownKeySpecifierError constant 1424
NSUnknownUserInfoKey constant 2073
NSURL Domain 2303
NSURL Schemes 1733
NSURLAuthenticationMethodDefault constant 1813
NSURLAuthenticationMethodHTMLForm constant 1813
NSURLAuthenticationMethodHTTPBasic constant

1813
NSURLAuthenticationMethodHTTPDigest constant

1813
NSURLCacheStorageAllowed constant 197
NSURLCacheStorageAllowedInMemoryOnly constant

197
NSURLCacheStorageNotAllowed constant 197
NSURLCacheStoragePolicy data type 197
NSURLCredentialPersistence data type 1771
NSURLCredentialPersistenceForSession constant

1771
NSURLCredentialPersistenceNone constant 1771
NSURLCredentialPersistencePermanent constant

1771
NSURLCredentialStorageChangedNotification

notification 1777
NSURLErrorBadServerResponse constant 2295
NSURLErrorBadURL constant 2294
NSURLErrorCancelled constant 2293
NSURLErrorCannotCloseFile constant 2297
NSURLErrorCannotConnectToHost constant 2294
NSURLErrorCannotCreateFile constant 2297
NSURLErrorCannotFindHost constant 2294
NSURLErrorCannotLoadFromNetwork constant 2296
NSURLErrorCannotMoveFile constant 2297
NSURLErrorCannotOpenFile constant 2297
NSURLErrorCannotRemoveFile constant 2297
NSURLErrorCannotWriteToFile constant 2297
NSURLErrorClientCertificateRejected constant

2296
NSURLErrorDataLengthExceedsMaximum constant

2294
NSURLErrorDNSLookupFailed constant 2294
NSURLErrorDomain constant 2303
NSURLErrorDownloadDecodingFailedMidStream

constant 2297
NSURLErrorDownloadDecodingFailedToComplete

constant 2297
NSURLErrorFileDoesNotExist constant 2295
NSURLErrorFileIsDirectory constant 2296
NSURLErrorHTTPTooManyRedirects constant 2294
NSURLErrorKey constant 570
NSURLErrorNetworkConnectionLost constant 2294

NSURLErrorNoPermissionsToReadFile constant 2296
NSURLErrorNotConnectedToInternet constant 2295
NSURLErrorRedirectToNonExistentLocation

constant 2295
NSURLErrorResourceUnavailable constant 2295
NSURLErrorSecureConnectionFailed constant 2296
NSURLErrorServerCertificateHasBadDate constant

2296
NSURLErrorServerCertificateHasUnknownRoot

constant 2296
NSURLErrorServerCertificateNotYetValid

constant 2296
NSURLErrorServerCertificateUntrusted constant

2296
NSURLErrorTimedOut constant 2294
NSURLErrorUnknown constant 2293
NSURLErrorUnsupportedURL constant 2294
NSURLErrorUserAuthenticationRequired constant

2295
NSURLErrorUserCancelledAuthentication constant

2295
NSURLErrorZeroByteResource constant 2295
NSURLFileScheme constant 1733
NSURLHandle FTP Property Keys 1733
NSURLHandle HTTP Property Keys 1734
NSURLHandleLoadFailed constant 1806
NSURLHandleLoadInProgress constant 1805
NSURLHandleLoadSucceeded constant 1805
NSURLHandleNotLoaded constant 1805
NSURLHandleStatus data type 1805
NSURLProtectionSpace Authentication Methods 1813
NSURLProtectionSpace Proxy Types 1812
NSURLProtectionSpaceFTPProxy constant 1813
NSURLProtectionSpaceHTTPProxy constant 1812
NSURLProtectionSpaceHTTPSProxy constant 1812
NSURLProtectionSpaceSOCKSProxy constant 1813
NSURLRequestCachePolicy data type 1833
NSURLRequestReloadIgnoringCacheData constant

1833
NSURLRequestReloadIgnoringLocalAndRemoteCacheData

constant 1833
NSURLRequestReloadIgnoringLocalCacheData

constant 1833
NSURLRequestReloadRevalidatingCacheData

constant 1834
NSURLRequestReturnCacheDataDontLoad constant

1834
NSURLRequestReturnCacheDataElseLoad constant

1833
NSURLRequestUseProtocolCachePolicy constant

1833
NSURLResponseUnknownLength constant 1839
NSUserCancelledError constant 2290

2344
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSUserDefaults Domains 1862
NSUserDefaultsDidChangeNotificationnotification

1870
NSUserDirectory constant 2279
NSUserDomainMask constant 2280
NSUserName function 2257
NSUTF16BigEndianStringEncoding constant 1621
NSUTF16LittleEndianStringEncoding constant 1621
NSUTF32BigEndianStringEncoding constant 1621
NSUTF32LittleEndianStringEncoding constant 1621
NSUTF32StringEncoding constant 1621
NSUTF8StringEncoding constant 1620
NSValidationErrorMaximum constant 2291
NSValidationErrorMinimum constant 2291
NSVariableExpressionType constant 600
NSWeekCalendarUnit constant 215
NSWeekdayCalendarUnit constant 215
NSWeekDayNameArray constant 1868
NSWeekdayOrdinalCalendarUnit constant 215
NSWhoseSubelementIdentifier data type 1896
NSWidth function 2257
NSWidthInsensitiveSearch constant 1617
NSWillBecomeMultiThreadedNotification

notification 1651
NSWindows95OperatingSystem constant 1293
NSWindowsCP1250StringEncoding constant 1621
NSWindowsCP1251StringEncoding constant 1621
NSWindowsCP1252StringEncoding constant 1621
NSWindowsCP1253StringEncoding constant 1621
NSWindowsCP1254StringEncoding constant 1621
NSWindowsNTOperatingSystem constant 1293
NSWrapCalendarComponents constant 215
NSXMLAttributeCDATAKind constant 1942
NSXMLAttributeDeclarationKind constant 1993
NSXMLAttributeEntitiesKind constant 1942
NSXMLAttributeEntityKind constant 1942
NSXMLAttributeEnumerationKind constant 1942
NSXMLAttributeIDKind constant 1942
NSXMLAttributeIDRefKind constant 1942
NSXMLAttributeIDRefsKind constant 1942
NSXMLAttributeKind constant 1993
NSXMLAttributeNMTokenKind constant 1942
NSXMLAttributeNMTokensKind constant 1942
NSXMLAttributeNotationKind constant 1942
NSXMLCommentKind constant 1993
NSXMLDocumentContentKind data type 1921
NSXMLDocumentHTMLKind constant 1921
NSXMLDocumentIncludeContentTypeDeclaration

constant 1920
NSXMLDocumentKind constant 1992
NSXMLDocumentTextKind constant 1921
NSXMLDocumentTidyHTML constant 1920
NSXMLDocumentTidyXML constant 1920

NSXMLDocumentValidate constant 1920
NSXMLDocumentXHTMLKind constant 1921
NSXMLDocumentXInclude constant 1920
NSXMLDocumentXMLKind constant 1921
NSXMLDTDKind constant 1993
NSXMLDTDNodeKind data type 1940
NSXMLElementDeclarationAnyKind constant 1943
NSXMLElementDeclarationElementKind constant

1943
NSXMLElementDeclarationEmptyKind constant 1943
NSXMLElementDeclarationKind constant 1993
NSXMLElementDeclarationMixedKind constant 1943
NSXMLElementDeclarationUndefinedKind constant

1943
NSXMLElementKind constant 1992
NSXMLEntityDeclarationKind constant 1993
NSXMLEntityGeneralKind constant 1941
NSXMLEntityParameterKind constant 1941
NSXMLEntityParsedKind constant 1941
NSXMLEntityPredefined constant 1941
NSXMLEntityUnparsedKind constant 1941
NSXMLInvalidKind constant 1992
NSXMLNamespaceKind constant 1993
NSXMLNodeCompactEmptyElement constant 1995
NSXMLNodeExpandEmptyElement constant 1995
NSXMLNodeIsCDATA constant 1994
NSXMLNodeKind data type 1992
NSXMLNodeOptionsNone constant 1994
NSXMLNodePreserveAll constant 1996
NSXMLNodePreserveAttributeOrder constant 1995
NSXMLNodePreserveCDATA constant 1996
NSXMLNodePreserveCharacterReferences constant

1995
NSXMLNodePreserveDTD constant 1996
NSXMLNodePreserveEmptyElements constant 1996
NSXMLNodePreserveEntities constant 1995
NSXMLNodePreserveNamespaceOrder constant 1995
NSXMLNodePreservePrefixes constant 1995
NSXMLNodePreserveQuotes constant 1996
NSXMLNodePreserveWhitespace constant 1996
NSXMLNodePrettyPrint constant 1995
NSXMLNodeUseDoubleQuotes constant 1995
NSXMLNodeUseSingleQuotes constant 1995
NSXMLNotationDeclarationKind constant 1993
NSXMLParserAttributeHasNoValueError constant

2024
NSXMLParserAttributeListNotFinishedError

constant 2025
NSXMLParserAttributeListNotStartedError

constant 2025
NSXMLParserAttributeNotFinishedError constant

2024

2345
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSXMLParserAttributeNotStartedError constant
2024

NSXMLParserAttributeRedefinedError constant
2024

NSXMLParserCDATANotFinishedError constant 2026
NSXMLParserCharacterRefAtEOFError constant 2021
NSXMLParserCharacterRefInDTDError constant 2021
NSXMLParserCharacterRefInEpilogError constant

2021
NSXMLParserCharacterRefInPrologError constant

2021
NSXMLParserCommentContainsDoubleHyphenError

constant 2028
NSXMLParserCommentNotFinishedError constant

2025
NSXMLParserConditionalSectionNotFinishedError

constant 2026
NSXMLParserConditionalSectionNotStartedError

constant 2026
NSXMLParserDelegateAbortedParseError constant

2029
NSXMLParserDOCTYPEDeclNotFinishedError

constant 2026
NSXMLParserDocumentStartError constant 2020
NSXMLParserElementContentDeclNotFinishedError

constant 2026
NSXMLParserElementContentDeclNotStartedError

constant 2025
NSXMLParserEmptyDocumentError constant 2021
NSXMLParserEncodingNotSupportedError constant

2023
NSXMLParserEntityBoundaryError constant 2029
NSXMLParserEntityIsExternalError constant 2023
NSXMLParserEntityIsParameterError constant 2023
NSXMLParserEntityNotFinishedError constant 2024
NSXMLParserEntityNotStartedError constant 2024
NSXMLParserEntityRefAtEOFError constant 2022
NSXMLParserEntityReferenceMissingSemiError

constant 2022
NSXMLParserEntityReferenceWithoutNameError

constant 2022
NSXMLParserEntityRefInDTDError constant 2022
NSXMLParserEntityRefInEpilogError constant 2022
NSXMLParserEntityRefInPrologError constant 2022
NSXMLParserEntityRefLoopError constant 2029
NSXMLParserEntityValueRequiredError constant

2028
NSXMLParserEqualExpectedError constant 2028
NSXMLParserError data type 2017
NSXMLParserErrorDomain 2017
NSXMLParserErrorDomain constant 2017
NSXMLParserExternalStandaloneEntityError

constant 2028

NSXMLParserExternalSubsetNotFinishedError
constant 2026

NSXMLParserExtraContentError constant 2029
NSXMLParserGTRequiredError constant 2027
NSXMLParserInternalError constant 2020
NSXMLParserInvalidCharacterError constant 2021
NSXMLParserInvalidCharacterInEntityError

constant 2029
NSXMLParserInvalidCharacterRefError constant

2021
NSXMLParserInvalidConditionalSectionError

constant 2028
NSXMLParserInvalidDecimalCharacterRefError

constant 2021
NSXMLParserInvalidEncodingError constant 2028
NSXMLParserInvalidEncodingNameError constant

2028
NSXMLParserInvalidHexCharacterRefError

constant 2021
NSXMLParserInvalidURIError constant 2029
NSXMLParserLessThanSymbolInAttributeError

constant 2024
NSXMLParserLiteralNotFinishedError constant

2024
NSXMLParserLiteralNotStartedError constant 2024
NSXMLParserLTRequiredError constant 2027
NSXMLParserLTSlashRequiredError constant 2027
NSXMLParserMisplacedCDATAEndStringError

constant 2026
NSXMLParserMisplacedXMLDeclarationError

constant 2026
NSXMLParserMixedContentDeclNotFinishedError

constant 2025
NSXMLParserMixedContentDeclNotStartedError

constant 2025
NSXMLParserNAMERequiredError constant 2027
NSXMLParserNamespaceDeclarationError constant

2024
NSXMLParserNMTOKENRequiredError constant 2027
NSXMLParserNoDTDError constant 2029
NSXMLParserNotationNotFinishedError constant

2025
NSXMLParserNotationNotStartedError constant

2025
NSXMLParserNotWellBalancedError constant 2029
NSXMLParserOutOfMemoryError constant 2020
NSXMLParserParsedEntityRefAtEOFError constant

2022
NSXMLParserParsedEntityRefInEpilogError

constant 2022
NSXMLParserParsedEntityRefInInternalError

constant 2029

2346
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

NSXMLParserParsedEntityRefInInternalSubsetError
constant 2022

NSXMLParserParsedEntityRefInPrologError
constant 2022

NSXMLParserParsedEntityRefMissingSemiError
constant 2023

NSXMLParserParsedEntityRefNoNameError constant
2023

NSXMLParserPCDATARequiredError constant 2027
NSXMLParserPrematureDocumentEndError constant

2021
NSXMLParserProcessingInstructionNotFinishedError

constant 2025
NSXMLParserProcessingInstructionNotStartedError

constant 2025
NSXMLParserPublicIdentifierRequiredError

constant 2027
NSXMLParserSeparatorRequiredError constant 2027
NSXMLParserSpaceRequiredError constant 2027
NSXMLParserStandaloneValueError constant 2028
NSXMLParserStringNotClosedError constant 2023
NSXMLParserStringNotStartedError constant 2023
NSXMLParserTagNameMismatchError constant 2028
NSXMLParserUndeclaredEntityError constant 2023
NSXMLParserUnfinishedTagError constant 2028
NSXMLParserUnknownEncodingError constant 2023
NSXMLParserUnparsedEntityError constant 2023
NSXMLParserURIFragmentError constant 2029
NSXMLParserURIRequiredError constant 2027
NSXMLParserXMLDeclNotFinishedError constant

2026
NSXMLParserXMLDeclNotStartedError constant 2026
NSXMLProcessingInstructionKind constant 1993
NSXMLTextKind constant 1993
NSYearCalendarUnit constant 214
NSYearMonthWeekDesignations constant 1868
NSZeroPoint constant 2303
NSZeroRect constant 2303
NSZeroSize constant 2303
NSZone data type 2284
NSZoneCalloc function 2258
NSZoneFree function 2258
NSZoneFromPointer function 2259
NSZoneMalloc function 2259
NSZoneName function 2260
NSZoneRealloc function 2260
NS_BigEndian constant 2268
NS_DURING macro 2261
NS_ENDHANDLER macro 2261
NS_HANDLER macro 2262
NS_LittleEndian constant 2268
NS_UnknownByteOrder constant 2267
NS_VALUERETURN macro 2262

NS_VOIDRETURN macro 2262
null class method 1052
nullDescriptor class method 67
numberFromString: instance method 1104
numberOfArguments instance method 901
numberOfItems instance method 77
numberStyle instance method 1105
numberWithBool: class method 1057
numberWithChar: class method 1057
numberWithDouble: class method 1057
numberWithFloat: class method 1058
numberWithInt: class method 1058
numberWithInteger: class method 1059
numberWithLong: class method 1059
numberWithLongLong: class method 1060
numberWithShort: class method 1060
numberWithUnsignedChar: class method 1061
numberWithUnsignedInt: class method 1061
numberWithUnsignedInteger: class method 1062
numberWithUnsignedLong: class method 1062
numberWithUnsignedLongLong: class method 1063
numberWithUnsignedShort: class method 1063

O

objCType instance method 480, 1075, 1879
object instance method 1034
objectAtIndex: instance method 131
objectBeingTested instance method 1406
objectByApplyingXSLTAtURL:arguments:error:

instance method 1910
objectByApplyingXSLT:arguments:error: instance

method 1910
objectByApplyingXSLTString:arguments:error:

instance method 1911
objectEnumerator instance method 131, 361, 520, 700,

858, 1458
objectForInfoDictionaryKey: instance method 181
objectForKey: instance method 521, 827, 858, 1851
objectIsForcedForKey: instance method 1852
objectIsForcedForKey:inDomain: instance method

1853
objectsAtIndexes: instance method 132
objectsByEvaluatingSpecifier instance method

1420
objectsByEvaluatingWithContainers: instance

method 1420
objectsForKeys:notFoundMarker: instance method

522
objectsForXQuery:constants:error: instance

method 1983
objectsForXQuery:error: instance method 1984

2347
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

objectSpecifier <NSObject> instance method 2124
objectSpecifier instance method 1276
objectSpecifierWithDescriptor: class method

1414
objectValue instance method 1984
objectZone instance method 294, 1687
observationInfo <NSObject> instance method 2081
observeValueForKeyPath:ofObject:change:context:

<NSObject> instance method 2081
offsetInFile instance method 613
one class method 470
open instance method 1501
operand instance method 598
operatingSystem instance method 1289
operatingSystemName instance method 1289
operatingSystemVersionString instance method

1290
Operation Priorities 1208
operations instance method 1214
Options for NSData Reading Methods 387
Options for NSData Writing Methods 387
options instance method 301
ordinalityOfUnit:inUnit:forDate: instance

method 209
orPredicateWithSubpredicates: class method 309
outputFormat instance method 795
outputStreamToBuffer:capacity: class method

1218
outputStreamToFileAtPath:append: class method

1219
outputStreamToMemory class method 1220

P

paddingCharacter instance method 1105
paddingPosition instance method 1105
paragraphRangeForRange: instance method 1585
paramDescriptorForKeyword: instance method 77
Parameter Type Constants 778
parameterString instance method 1727
parent instance method 1985
parse instance method 2002
Parser Error Constants 2018
parser:didEndElement:namespaceURI:qualifiedName:

<NSObject> delegate method 2007
parser:didEndMappingPrefix:<NSObject> delegate

method 2008
parser:didStartElement:namespaceURI:qualifiedName:

attributes: <NSObject> delegate method 2008
parser:didStartMappingPrefix:toURI:<NSObject>

delegate method 2009

parser:foundAttributeDeclarationWithName:
forElement:type:defaultValue: <NSObject>
delegate method 2009

parser:foundCDATA: <NSObject> delegate method
2010

parser:foundCharacters: <NSObject> delegate
method 2010

parser:foundComment:<NSObject> delegate method
2011

parser:foundElementDeclarationWithName:model:
<NSObject> delegate method 2011

parser:foundExternalEntityDeclarationWithName:
publicID:systemID:<NSObject> delegate method
2011

parser:foundIgnorableWhitespace: <NSObject>
delegate method 2012

parser:foundInternalEntityDeclarationWithName:
value: <NSObject> delegate method 2013

parser:foundNotationDeclarationWithName:publicID:
systemID: <NSObject> delegate method 2013

parser:foundProcessingInstructionWithTarget:data:
<NSObject> delegate method 2014

parser:foundUnparsedEntityDeclarationWithName:
publicID:systemID:notationName:<NSObject>
delegate method 2014

parser:parseErrorOccurred: <NSObject> delegate
method 2015

parser:resolveExternalEntityName:systemID:
<NSObject> delegate method 2015

parser:validationErrorOccurred: <NSObject>
delegate method 2016

parserDidEndDocument:<NSObject> delegate method
2016

parserDidStartDocument: <NSObject> delegate
method 2017

parserError instance method 2003
password instance method 1727, 1770
path instance method 719, 1727
pathComponents instance method 1585
pathContentOfSymbolicLinkAtPath: instance

method 656
pathExtension instance method 1586
pathForAuxiliaryExecutable: instance method 182
pathForResource:ofType: instance method 182
pathForResource:ofType:inDirectory: class

method 170
pathForResource:ofType:inDirectory: instance

method 183
pathForResource:ofType:inDirectory:

forLocalization: instance method 184
pathsForResourcesOfType:inDirectory: class

method 171

2348
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

pathsForResourcesOfType:inDirectory: instance
method 185

pathsForResourcesOfType:inDirectory:
forLocalization: instance method 186

pathsMatchingExtensions: instance method 133
pathWithComponents: class method 1529
percentSymbol instance method 1106
performDefaultImplementation instance method

1387
performSelector: protocol instance method 2104
performSelector:onThread:withObject:waitUntilDone:

instance method 1183
performSelector:onThread:withObject:waitUntilDone:

modes: instance method 1184
performSelector:target:argument:order:modes:

instance method 1336
performSelector:withObject: protocol instance

method 2105
performSelector:withObject:afterDelay: instance

method 1186
performSelector:withObject:afterDelay:inModes:

instance method 1187
performSelector:withObject:withObject:protocol

instance method 2105
performSelectorInBackground:withObject:

instance method 1188
performSelectorOnMainThread:withObject:

waitUntilDone: instance method 1188
performSelectorOnMainThread:withObject:

waitUntilDone:modes: instance method 1189
perMillSymbol instance method 1106
persistence instance method 1770
persistentDomainForName: instance method 1853
persistentDomainNames instance method 1854
Personality Options 860
physicalMemory instance method 1290
pipe class method 1226
plusSign instance method 1106
PMSymbol instance method 437
pointerArrayWithOptions: class method 1230
pointerArrayWithPointerFunctions: class method

1231
pointerArrayWithStrongObjects class method 1231
pointerArrayWithWeakObjects class method 1232
pointerAtIndex: instance method 1235
pointerFunctions instance method 701, 1235
pointerFunctionsWithOptions: class method 1243
pointerValue instance method 1879
pointValue instance method 1880
port class method 1250
port instance method 1005, 1728, 1810
portCoderWithReceivePort:sendPort:components:

class method 1258

portForName: instance method 842, 866, 1270, 1475
portForName:host: instance method 843, 866, 1271,

1475
portForName:host:nameServerPortNumber: instance

method 1476
portList instance method 720
portWithMachPort: class method 846
portWithMachPort:options: class method 847
poseAsClass: class method 1164
position instance method 1276
positiveFormat instance method 1107
positiveInfinitySymbol instance method 1107
positivePrefix instance method 1107
positiveSuffix instance method 1108
postNotification: instance method 1041
postNotificationName:object: instance method

550, 1042
postNotificationName:object:userInfo: instance

method 550, 1043
postNotificationName:object:userInfo:

deliverImmediately: instance method 551
postNotificationName:object:userInfo:options:

instance method 552
precomposedStringWithCanonicalMapping instance

method 1587
precomposedStringWithCompatibilityMapping

instance method 1588
predefinedEntityDeclarationForName: class

method 1925
predefinedNamespaceForPrefix: class method 1973
predicate instance method 599, 879
predicateFormat instance method 1284
predicateOperatorType instance method 302
predicateWithFormat: class method 1281
predicateWithFormat:argumentArray: class method

1281
predicateWithFormat:arguments: class method

1282
predicateWithLeftExpression:rightExpression:

customSelector: class method 298
predicateWithLeftExpression:rightExpression:

modifier:type:options: class method 299
predicateWithSubstitutionVariables: instance

method 1284
predicateWithValue: class method 1282
preferredLanguages class method 824
preferredLocalizations instance method 186
preferredLocalizationsFromArray: class method

172
preferredLocalizationsFromArray:forPreferences:

class method 172
prefix instance method 1985
prefixForName: class method 1974

2349
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

preflightAndReturnError: instance method 187
prepareWithInvocationTarget: instance method

1698
prependTransform: instance method 51
previousFailureCount instance method 1739
previousNode instance method 1986
previousSibling instance method 1986
principalClass instance method 187
privateFrameworksPath instance method 188
processIdentifier instance method 1290, 1629
processInfo class method 1287
processingInstructionWithName:stringValue:

class method 1974
processName instance method 1291
processorCount instance method 1291
properties instance method 720
propertyForKey: instance method 1501, 1728, 1802
propertyForKey:inRequest: class method 1818
propertyForKeyIfAvailable: instance method 1803
propertyList instance method 1588
propertyList:isValidForFormat: class method

1297
propertyListFromData:mutabilityOption:format:

errorDescription: class method 1297
propertyListFromStringsFileFormat instance

method 1588
proposedCredential instance method 1740
protectionSpace instance method 1740
protocol instance method 1305, 1470, 1811
protocolCheckerWithTarget:protocol: class

method 1304
protocolFamily instance method 1470
protocolSpecificInformation instance method 1006
proxyType instance method 1811
proxyWithLocal:connection: class method 531
proxyWithTarget:connection: class method 531
publicID instance method 1930, 1938, 2003
publish instance method 1006
publishWithOptions: instance method 1006
punctuationCharacterSet class method 250

Q

quarterSymbols instance method 438
query instance method 1728
queuePriority instance method 1206

R

raise instance method 578

raise:format: class method 575
raise:format:arguments: class method 576
rangeContainerObject instance method 1407
rangeOfCharacterFromSet: instance method 1589
rangeOfCharacterFromSet:options: instance

method 1590
rangeOfCharacterFromSet:options:range: instance

method 1590
rangeOfComposedCharacterSequenceAtIndex:

instance method 1591
rangeOfComposedCharacterSequencesForRange:

instance method 1592
rangeOfString: instance method 1592
rangeOfString:options: instance method 1593
rangeOfString:options:range: instance method

1594
rangeOfString:options:range:locale: instance

method 1595
rangeOfUnit:inUnit:forDate: instance method 210
rangeOfUnit:startDate:interval:forDate:

instance method 210
rangeValue instance method 1880
read:maxLength: instance method 767
readDataOfLength: instance method 613
readDataToEndOfFile instance method 614
readInBackgroundAndNotify instance method 614
readInBackgroundAndNotifyForModes: instance

method 615
readToEndOfFileInBackgroundAndNotify instance

method 616
readToEndOfFileInBackgroundAndNotifyForModes:

instance method 616
realm instance method 1811
reason instance method 578
receivePort instance method 340, 1266
receiversSpecifier instance method 1387
receivesCredentialSecurely instance method 1812
recordDescriptor class method 68
recoveryAttempter instance method 567
rectValue instance method 1880
redo instance method 1699
redoActionName instance method 1699
redoMenuItemTitle instance method 1699
redoMenuTitleForUndoActionName: instance method

1700
registerClass: class method 1819
registerClassDescription: instance method 1433
registerClassDescription:forClass: class method

259
registerCoercer:selector:toConvertFromClass:

toClass: instance method 1377
registerCommandDescription: instance method 1434
registerDefaults: instance method 1854

2350
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

registerLanguage:byVendor: instance method 1491
registerName: instance method 340
registerName:withNameServer: instance method

341
registerPort:name: instance method 843, 1271, 1477
registerPort:name:nameServerPortNumber:

instance method 1477
registerUndoWithTarget:selector:object:

instance method 1700
registerURLHandleClass: class method 1796
relativePath instance method 1729
relativePosition instance method 1326
relativeString instance method 1729
release instance method 161
release protocol instance method 2106
relinquishFunction instance property 1241
remoteObjects instance method 342
removeAllActions instance method 1701
removeAllActionsWithTarget: instance method 1701
removeAllCachedResponses instance method 1748
removeAllIndexes instance method 965
removeAllObjects instance method 701, 859, 916, 959,

974
removeAttribute:range: instance method 935
removeAttributeForName: instance method 1957
removeCachedResponseForRequest: instance method

1749
removeCharactersInRange: instance method 942
removeCharactersInString: instance method 943
removeChildAtIndex: instance method 1912, 1930,

1958
removeClient: instance method 1803
removeConnection:fromRunLoop:forMode: instance

method 1252
removeCredential:forProtectionSpace: instance

method 1776
removeDependency: instance method 1206
removeDescriptorAtIndex: instance method 77
removeDescriptorWithKeyword: instance method 78
removeEventHandlerForEventClass:andEventID:

instance method 87
removeFileAtPath:handler: instance method 656
removeFromRunLoop:forMode: instance method 848,

1007, 1022, 1252, 1502
removeIndex: instance method 966
removeIndexes: instance method 966
removeIndexesInRange: instance method 966
removeItemAtPath:error: instance method 657
removeLastObject instance method 916
removeNamespaceForPrefix: instance method 1958
removeObjectAtIndex: instance method 918
removeObject: instance method 361, 701, 916, 975
removeObject:inRange: instance method 917

removeObjectForKey: instance method 859, 959, 1855
removeObjectIdenticalTo: instance method 919
removeObjectIdenticalTo:inRange: instance

method 919
removeObjectsAtIndexes: instance method 920
removeObjectsForKeys: instance method 960
removeObjectsFromIndices:numIndices: instance

method 921
removeObjectsInArray: instance method 921
removeObjectsInRange: instance method 922
removeObserver: instance method 1043
removeObserver:forKeyPath: <NSObject> instance

method 2082
removeObserver:forKeyPath: instance method 133,

1459
removeObserver:fromObjectsAtIndexes:forKeyPath:

instance method 134
removeObserver:name:object: instance method 552,

1044
removeParamDescriptorWithKeyword: instance

method 78
removePersistentDomainForName: instance method

1855
removePointerAtIndex: instance method 1236
removePort:forMode: instance method 1337
removePortForName: instance method 1272, 1478
removePropertyForKey:inRequest: class method

1819
removeRequestMode: instance method 342
removeRunLoop: instance method 342
removeSuiteNamed: instance method 1855
removeValueAtIndex:fromPropertyWithKey:

<NSObject> instance method 2119
removeVolatileDomainForName: instance method

1856
replaceBytesInRange:withBytes: instance method

951
replaceBytesInRange:withBytes:length: instance

method 951
replaceCharactersInRange:withAttributedString:

instance method 936
replaceCharactersInRange:withString: instance

method 936, 982
replaceChildAtIndex:withNode: instance method

1912, 1931, 1959
replacementClassForClass: class method 1903
replacementObjectForArchiver: instance method

1190
replacementObjectForCoder: instance method 1191
replacementObjectForKeyedArchiver: instance

method 1191
replacementObjectForPortCoder: instance method

1192

2351
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

replaceObjectAtIndex:withObject: instance
method 922

replaceObject:withObject: instance method 102,
1687

replaceObjectsAtIndexes:withObjects: instance
method 923

replaceObjectsInRange:withObjectsFromArray:
instance method 924

replaceObjectsInRange:withObjectsFromArray:range:
instance method 924

replaceOccurrencesOfString:withString:options:
range: instance method 982

replacePointerAtIndex:withPointer: instance
method 1236

replaceValueAtIndex:inPropertyWithKey:withValue:
<NSObject> instance method 2119

replyAppleEventForSuspensionID: instance method
87

replyTimeout instance method 343
replyWithException: instance method 537
request instance method 1784, 1822
requestHeaderFieldsWithCookies: class method

716
requestIsCacheEquivalent:toRequest: class

method 1820
requestModes instance method 343
requestTimeout instance method 344
requestWithURL: class method 1827
requestWithURL:cachePolicy:timeoutInterval:

class method 1827
reservedSpaceLength instance method 1253
resetBytesInRange: instance method 952
resetStandardUserDefaults class method 1844
resetSystemTimeZone class method 1668
resolve instance method 1007
resolveClassMethod: class method 1165
resolvedKeyDictionary instance method 364
resolveInstanceMethod: class method 1165
resolveNamespaceForName: instance method 1959
resolvePrefixForNamespaceURI: instance method

1960
resolveWithTimeout: instance method 1008
Resource Fork Support 673
resourceData instance method 1803
resourceDataUsingCache: instance method 1729
resourcePath instance method 189
resourceSpecifier instance method 1730
respondsToSelector: class method 1310
respondsToSelector: protocol instance method 2107
response instance method 195
Response Length Unknown Error 1839
Result Exceptions 783
result instance method 783

resultAtIndex: instance method 880, 894
resultCount instance method 880, 894
results instance method 880, 895
resume instance method 1629
resumeData instance method 1784
resumeExecutionWithResult: instance method 1387
resumeWithSuspensionID: instance method 88
retain instance method 161
retain protocol instance method 2108
retainArguments instance method 775
retainCount protocol instance method 2109
returnID instance method 79
returnType instance method 1403
reversedSortDescriptor instance method 1483
reverseObjectEnumerator instance method 134
reverseTransformedValue: instance method 1887
rightExpression instance method 302, 599
rootDocument instance method 1986
rootElement instance method 1913
rootObject instance method 344
rootProxy instance method 344
rootProxyForConnectionWithRegisteredName:host:

class method 332
rootProxyForConnectionWithRegisteredName:host:

usingNameServer: class method 333
rotateByDegrees: instance method 51
rotateByRadians: instance method 52
roundingBehavior instance method 1108
roundingIncrement instance method 1108
roundingMode instance method 1109
roundingMode protocol instance method 2044
run instance method 1338, 1491
Run Loop Modes 1340
runInNewThread instance method 345
runLoopModes instance method 1702
runMode:beforeDate: instance method 1339
runUntilDate: instance method 1339

S

saveOptions instance method 266, 1313
scale protocol instance method 2045
scaleBy: instance method 53
scaleXBy:yBy: instance method 53
scanCharactersFromSet:intoString: instance

method 1349
scanDecimal: instance method 1349
scanDouble: instance method 1350
scanFloat: instance method 1350
scanHexDouble: instance method 1351
scanHexFloat: instance method 1352
scanHexInt: instance method 1352

2352
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

scanHexLongLong: instance method 1352
scanInt: instance method 1353
scanInteger: instance method 1353
scanLocation instance method 1354
scanLongLong: instance method 1354
scannerWithString: class method 1346
scanString:intoString: instance method 1355
scanUpToCharactersFromSet:intoString: instance

method 1355
scanUpToString:intoString: instance method 1356
scheduledTimerWithTimeInterval:invocation:repeats:

class method 1655
scheduledTimerWithTimeInterval:target:selector:

userInfo:repeats: class method 1656
scheduleInRunLoop:forMode: instance method 849,

1008, 1022, 1253, 1502, 1759
scheme instance method 1730
scriptErrorExpectedTypeDescriptor instance

method 1388
scriptErrorNumber instance method 1388
scriptErrorOffendingObjectDescriptor instance

method 1389
scriptErrorString instance method 1389
scriptingBeginsWith:<NSObject> instance method

2114
scriptingContains: <NSObject> instance method

2114
scriptingEndsWith: <NSObject> instance method

2115
scriptingIsEqualTo: <NSObject> instance method

2115
scriptingIsGreaterThan: <NSObject> instance

method 2115
scriptingIsGreaterThanOrEqualTo: <NSObject>

instance method 2115
scriptingIsLessThan:<NSObject> instance method

2116
scriptingIsLessThanOrEqualTo: <NSObject>

instance method 2116
scriptingProperties instance method 1193
scriptingValueForSpecifier: instance method 1193
Search and Comparison Options 1616
searchForAllDomains instance method 1023
searchForBrowsableDomains instance method 1023
searchForRegistrationDomains instance method

1023
searchForServicesOfType:inDomain: instance

method 1024
searchScopes instance method 881
second instance method 415
secondaryGroupingSize instance method 1109
secondOfMinute instance method 235
secondsFromGMT instance method 1677

secondsFromGMTForDate: instance method 1677
Secure-Socket Layer (SSL) Security Level 1509
seekToEndOfFile instance method 617
seekToFileOffset: instance method 617
selector instance method 775, 1484
selectorForCommand: instance method 1370
self protocol instance method 2109
sendBeforeDate: instance method 1266
sendBeforeDate:components:from:reserved:

instance method 1254
sendBeforeDate:msgid:components:from:reserved:

instance method 1254
sender instance method 1740
sendPort instance method 345, 1267
sendSynchronousRequest:returningResponse:error:

class method 1757
serializeObjectAt:ofObjCType:intoData:protocol

instance method 2096
serializePropertyList: class method 1440
serializePropertyList:intoData: class method

1440
serviceConnectionWithName:rootObject: class

method 333
serviceConnectionWithName:rootObject:

usingNameServer: class method 334
servicePortWithName: instance method 843
set class method 1445
setActionName: instance method 1702
setAllHTTPHeaderFields: instance method 987
setAllowsFloats: instance method 1110
setAlwaysShowsDecimalSeparator: instance method

1110
setAMSymbol: instance method 438
setArgument:atIndex: instance method 775
setArguments: instance method 1390, 1629
setArray: instance method 925
setAttributeDescriptor:forKeyword: instance

method 79
setAttributedString: instance method 937
setAttributedStringForNil: instance method 1110
setAttributedStringForNotANumber: instance

method 1111
setAttributedStringForZero: instance method 1111
setAttributesAsDictionary: instance method 1961
setAttributes: instance method 1960
setAttributes:ofItemAtPath:error: instance

method 658
setAttributes:range: instance method 937
setBaseSpecifier: instance method 1327
setBool:forKey: instance method 1856
setByAddingObject: instance method 1459
setByAddingObjectsFromArray: instance method

1460

2353
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

setByAddingObjectsFromSet: instance method 1461
setCachePolicy: instance method 987
setCalendar: instance method 439
setCalendarFormat: instance method 235
setCaseSensitive: instance method 1357
setCharacterEncoding: instance method 1913
setCharactersToBeSkipped: instance method 1357
setChildren: instance method 1914, 1931, 1961
setChildSpecifier: instance method 1421
setClass:forClassName: class method 804
setClass:forClassName: instance method 812
setClassName:forClass: class method 789
setClassName:forClass: instance method 795
setContainerClassDescription: instance method

1421
setContainerIsObjectBeingTested: instance

method 1422
setContainerIsRangeContainerObject: instance

method 1422
setContainerSpecifier: instance method 1422
setCookieAcceptPolicy: instance method 728
setCookie: instance method 728
setCookies:forURL:mainDocumentURL: instance

method 729
setCount: instance method 1236
setCredential:forProtectionSpace: instance

method 1776
setCurrencyCode: instance method 1112
setCurrencyDecimalSeparator: instance method

1112
setCurrencyGroupingSeparator: instance method

1112
setCurrencySymbol: instance method 1113
setCurrentAppleEventAndReplyEventWithSuspensionID:

instance method 88
setCurrentDirectoryPath: instance method 1630
setData: instance method 952
setDateFormat: instance method 439
setDateStyle: instance method 439
setDay: instance method 415
setDecimalSeparator: instance method 1113
setDefaultBehavior: class method 470
setDefaultCredential:forProtectionSpace:

instance method 1777
setDefaultDate: instance method 440
setDefaultFormatterBehavior: class method 429,

1088
setDefaultNameServerPortNumber: instance method

1478
setDefaultTimeZone: class method 1668
setDelegate: instance method 346, 659, 796, 812, 881,

1009, 1025, 1255, 1492, 1503, 2003
setDeletesFileUponFailure: instance method 1785

setDescriptor:forKeyword: instance method 79
setDestination:allowOverwrite: instance method

1785
setDictionary: instance method 961
setDirectParameter: instance method 1390
setDiskCapacity: instance method 1749
setDocumentContentKind: instance method 1914
setDTD: instance method 1915
setDTDKind: instance method 1938
setEndSpecifier: instance method 1319
setEndSubelementIdentifier: instance method 1894
setEndSubelementIndex: instance method 1894
setEnvironment: instance method 1630
setEra: instance method 416
setEraSymbols: instance method 440
setEvaluationErrorNumber: instance method 1423
setEventHandler:andSelector:forEventClass:

andEventID: instance method 89
setExponentSymbol: instance method 1114
setFireDate: instance method 1661
setFirstWeekday: instance method 211
setFloat:forKey: instance method 1857
setFormat: instance method 1114
setFormatterBehavior: instance method 441, 1115
setFormatWidth: instance method 1115
setGeneratesCalendarDates: instance method 441
setGeneratesDecimalNumbers: instance method 1116
setGregorianStartDate: instance method 441
setGroupingAttributes: instance method 882
setGroupingSeparator: instance method 1116
setGroupingSize: instance method 1117
setGroupsByEvent: instance method 1703
setHasThousandSeparators: instance method 1117
setHostCacheEnabled: class method 709
setHour: instance method 416
setHTTPBody: instance method 987
setHTTPBodyStream: instance method 988
setHTTPMethod: instance method 988
setHTTPShouldHandleCookies: instance method 989
setIndependentConversationQueueing: instance

method 346
setIndex: instance method 761
setInsertionClassDescription: instance method

1277
setInteger:forKey: instance method 1857
setInternationalCurrencySymbol: instance method

1118
setKey: instance method 1423
setKeys:triggerChangeNotificationsForDependentKey:

<NSObject> class method 2078
setLaunchPath: instance method 1631
setLength: instance method 953
setLenient: instance method 442, 1118

2354
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

setLevelsOfUndo: instance method 1703
setLocale: instance method 211, 442, 1118, 1358
setLocalizesFormat: instance method 1119
setLongEraSymbols: instance method 443
setMainDocumentURL: instance method 989
setMaxConcurrentOperationCount: instance method

1215
setMaximum: instance method 1119
setMaximumFractionDigits: instance method 1120
setMaximumIntegerDigits: instance method 1120
setMaximumSignificantDigits: instance method

1121
setMemoryCapacity: instance method 1750
setMIMEType: instance method 1915
setMinimum: instance method 1121
setMinimumDaysInFirstWeek: instance method 212
setMinimumFractionDigits: instance method 1122
setMinimumIntegerDigits: instance method 1122
setMinimumSignificantDigits: instance method

1123
setMinusSign: instance method 1123
setMinute: instance method 417
setMonth: instance method 417
setMonthSymbols: instance method 443
setMsgid: instance method 1267
setMultiplier: instance method 1123
setName: instance method 315, 323, 835, 995, 1323,

1649, 1987
setNamespaces: instance method 1962
setNegativeFormat: instance method 1124
setNegativeInfinitySymbol: instance method 1124
setNegativePrefix: instance method 1125
setNegativeSuffix: instance method 1125
setNilSymbol: instance method 1125
setNilValueForKey: <NSObject> instance method

2064
setNotANumberSymbol: instance method 1126
setNotationName: instance method 1939
setNotificationBatchingInterval: instance

method 882
setNumberStyle: instance method 1126
setObjectBeingTested: instance method 1407
setObject:forKey: instance method 859, 961, 1858
setObjectValue: instance method 1987
setObjectZone: instance method 295, 1688
setObservationInfo: <NSObject> instance method

2083
setOutputFormat: instance method 796
setPaddingCharacter: instance method 1127
setPaddingPosition: instance method 1127
setParamDescriptor:forKeyword: instance method

80

setPartialStringValidationEnabled: instance
method 1127

setPercentSymbol: instance method 1128
setPerMillSymbol: instance method 1128
setPersistentDomain:forName: instance method

1858
setPlusSign: instance method 1128
setPMSymbol: instance method 443
setPositiveFormat: instance method 1129
setPositiveInfinitySymbol: instance method 1129
setPositivePrefix: instance method 1129
setPositiveSuffix: instance method 1130
setPredicate: instance method 883
setProcessName: instance method 1291
setProperty:forKey: instance method 1503, 1731
setProperty:forKey:inRequest: class method 1820
setProtocolForProxy: instance method 533
setProtocolSpecificInformation: instance method

1009
setPublicID: instance method 1932, 1939
setQuarterSymbols: instance method 444
setQueuePriority: instance method 1207
setRangeContainerObject: instance method 1408
setReceiversSpecifier: instance method 264, 488,

906, 1390, 1464
setRelativePosition: instance method 1327
setReplyTimeout: instance method 347
setRepresentation instance method 702
setRequestTimeout: instance method 347
setResourceData: instance method 1731
setReturnValue: instance method 776
setRootElement: instance method 1915
setRootObject: instance method 347
setRoundingBehavior: instance method 1130
setRoundingIncrement: instance method 1131
setRoundingMode: instance method 1131
setRunLoopModes: instance method 1704
setScanLocation: instance method 1358
setScriptErrorExpectedTypeDescriptor: instance

method 1391
setScriptErrorNumber: instance method 1391
setScriptErrorOffendingObjectDescriptor:

instance method 1392
setScriptErrorString: instance method 1392
setScriptingProperties: instance method 1194
setSearchScopes: instance method 883
setSecondaryGroupingSize: instance method 1131
setSecond: instance method 418
setSelector: instance method 777
setSet: instance method 975
setSharedScriptSuiteRegistry: class method 1429
setSharedURLCache: class method 1744
setShortMonthSymbols: instance method 444

2355
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

setShortQuarterSymbols: instance method 445
setShortStandaloneMonthSymbols: instance method

445
setShortStandaloneQuarterSymbols: instance

method 446
setShortStandaloneWeekdaySymbols: instance

method 446
setShortWeekdaySymbols: instance method 447
setShouldProcessNamespaces: instance method 2004
setShouldReportNamespacePrefixes: instance

method 2004
setShouldResolveExternalEntities: instance

method 2005
setSortDescriptors: instance method 883
setStackSize: instance method 1649
setStandalone: instance method 1916
setStandaloneMonthSymbols: instance method 447
setStandaloneQuarterSymbols: instance method

447
setStandaloneWeekdaySymbols: instance method

448
setStandardError: instance method 1631
setStandardInput: instance method 1632
setStandardOutput: instance method 1632
setStartSpecifier: instance method 1319
setStartSubelementIdentifier: instance method

1894
setStartSubelementIndex: instance method 1895
setString: instance method 983
setStringValue: instance method 1988
setStringValue:resolvingEntities: instance

method 1988
setSuspended: instance method 553, 1215
setSystemID: instance method 1932, 1940
setTarget: instance method 777
setTest: instance method 1895
setTextAttributesForNegativeInfinity: instance

method 1132
setTextAttributesForNegativeValues: instance

method 1132
setTextAttributesForNil: instance method 1133
setTextAttributesForNotANumber: instance method

1133
setTextAttributesForPositiveInfinity: instance

method 1134
setTextAttributesForPositiveValues: instance

method 1134
setTextAttributesForZero: instance method 1134
setThousandSeparator: instance method 1135
setThreadPriority: class method 1643
setTimeoutInterval: instance method 989
setTimeStyle: instance method 448
setTimeZone: instance method 212, 236, 449

setTopLevelObject: instance method 1408
setTransformStruct: instance method 54
setTwoDigitStartDate: instance method 449
setTXTRecordData: instance method 1010
setUniqueID: instance method 1713
setURI: instance method 1916, 1989
setURL: instance method 990
setUsesGroupingSeparator: instance method 1135
setUsesSignificantDigits: instance method 1136
setValue:forHTTPHeaderField: instance method

990
setValue:forKey:<NSObject> instance method 2064
setValue:forKey: instance method 135, 962, 1461
setValue:forKeyPath:<NSObject> instance method

2065
setValue:forUndefinedKey: <NSObject> instance

method 2065
setValueListAttributes: instance method 884
setValuesForKeysWithDictionary: <NSObject>

instance method 2066
setValueTransformer:forName: class method 1885
setVersion: class method 1166
setVersion: instance method 1917
setVeryShortMonthSymbols: instance method 450
setVeryShortStandaloneMonthSymbols: instance

method 450
setVeryShortStandaloneWeekdaySymbols: instance

method 450
setVeryShortWeekdaySymbols: instance method 451
setVolatileDomain:forName: instance method 1859
setWeek: instance method 418
setWeekday: instance method 419
setWeekdayOrdinal: instance method 419
setWeekdaySymbols: instance method 451
setWithArray: class method 1445
setWithCapacity: class method 971
setWithObject: class method 1446
setWithObjects: class method 1447
setWithObjects:count: class method 1447
setWithSet: class method 1448
setYear: instance method 420
setZeroSymbol: instance method 1136
sharedAppleEventManager class method 85
sharedCoercionHandler class method 1376
sharedCredentialStorage class method 1774
sharedFrameworksPath instance method 189
sharedHTTPCookieStorage class method 726
sharedInstance class method 842, 866, 1474
sharedScriptExecutionContext class method 1406
sharedScriptSuiteRegistry class method 1429
sharedSupportPath instance method 190
sharedURLCache class method 1745

2356
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

shiftIndexesStartingAtIndex:by: instance method
967

shortMonthSymbols instance method 452
shortQuarterSymbols instance method 452
shortStandaloneMonthSymbols instance method 453
shortStandaloneQuarterSymbols instance method

453
shortStandaloneWeekdaySymbols instance method

454
shortValue instance method 1075
shortWeekdaySymbols instance method 454
shouldProcessNamespaces instance method 2005
shouldReportNamespacePrefixes instance method

2006
shouldResolveExternalEntities instance method

2006
signal instance method 316
signatureWithObjCTypes: class method 898
sizeFunction instance property 1242
sizeValue instance method 1881
skipDescendents instance method 527
sleepForTimeInterval: class method 1643
sleepUntilDate: class method 1644
smallestEncoding instance method 1595
socket instance method 1470
socketType instance method 1470
SOCKS Proxy Configuration Values 1510
sortDescriptors instance method 884
sortedArrayHint instance method 135
sortedArrayUsingDescriptors: instance method

135
sortedArrayUsingFunction:context: instance

method 136
sortedArrayUsingFunction:context:hint: instance

method 137
sortedArrayUsingSelector: instance method 138
sortUsingDescriptors: instance method 925
sortUsingFunction:context: instance method 926
sortUsingSelector: instance method 926
source instance method 95
spellServer:checkGrammarInString:language:details:

<NSObject> delegate method 1492
spellServer:didForgetWord:inLanguage:

<NSObject> delegate method 1493
spellServer:didLearnWord:inLanguage:

<NSObject> delegate method 1493
spellServer:findMisspelledWordInString:language:

wordCount:countOnly: <NSObject> delegate
method 1494

spellServer:suggestCompletionsForPartialWordRange:
inString:language:<NSObject> delegate method
1494

spellServer:suggestGuessesForWord:inLanguage:
<NSObject> delegate method 1495

stackSize instance method 1650
standaloneMonthSymbols instance method 455
standaloneQuarterSymbols instance method 455
standaloneWeekdaySymbols instance method 455
standardError instance method 1633
standardInput instance method 1633
standardizedURL instance method 1731
standardOutput instance method 1633
standardUserDefaults class method 1845
start instance method 1207, 1650, 1760
startLoading instance method 1823
startMonitoring instance method 1010
startQuery instance method 885
startSpecifier instance method 1319
startSubelementIdentifier instance method 1895
startSubelementIndex instance method 1896
statistics instance method 348
status instance method 1804
statusCode instance method 735
stop instance method 1011, 1025
stopLoading instance method 1823
stopMonitoring instance method 1011
stopQuery instance method 885
storagePolicy instance method 196
storeCachedResponse:forRequest: instance method

1750
storedValueForKey: <NSObject> instance method

2066
Stream Event Constants 1507
Stream Status Constants 1505
stream:handleEvent: <NSObject> delegate method

1504
streamError instance method 1504
streamStatus instance method 1504
string class method 1529
String Encodings 1619
string instance method 155, 1359
stringArrayForKey: instance method 1859
stringByAbbreviatingWithTildeInPath instance

method 1596
stringByAddingPercentEscapesUsingEncoding:

instance method 1596
stringByAppendingFormat: instance method 1597
stringByAppendingPathComponent: instance method

1598
stringByAppendingPathExtension: instance method

1598
stringByAppendingString: instance method 1599
stringByDeletingLastPathComponent instance

method 1600

2357
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

stringByDeletingPathExtension instance method
1601

stringByExpandingTildeInPath instance method
1602

stringByFoldingWithOptions:locale: instance
method 1603

stringByPaddingToLength:withString:
startingAtIndex: instance method 1603

stringByReplacingCharactersInRange:withString:
instance method 1604

stringByReplacingOccurrencesOfString:withString:
instance method 1605

stringByReplacingOccurrencesOfString:withString:
options:range: instance method 1605

stringByReplacingPercentEscapesUsingEncoding:
instance method 1606

stringByResolvingSymlinksInPath instance method
1606

stringByStandardizingPath instance method 1607
stringByTrimmingCharactersInSet: instance

method 1608
stringForKey: instance method 1860
stringForObjectValue: instance method 680
stringFromDate: instance method 456
stringFromNumber: instance method 1136
stringsByAppendingPaths: instance method 1609
stringValue instance method 80, 1075, 1989
stringWithCapacity: class method 978
stringWithCharacters:length: class method 1530
stringWithContentsOfFile: class method 1530
stringWithContentsOfFile:encoding:error: class

method 1531
stringWithContentsOfFile:usedEncoding:error:

class method 1532
stringWithContentsOfURL: class method 1532
stringWithContentsOfURL:encoding:error: class

method 1533
stringWithContentsOfURL:usedEncoding:error:

class method 1534
stringWithCString: class method 1534
stringWithCString:encoding: class method 1535
stringWithCString:length: class method 1535
stringWithFileSystemRepresentation:length:

instance method 659
stringWithFormat: class method 1536
stringWithString: class method 1537
stringWithUTF8String: class method 1537
subarrayWithRange: instance method 138
subdataWithRange: instance method 384
subgroups instance method 895
subpathsAtPath: instance method 659
subpathsOfDirectoryAtPath:error: instance

method 660

subpredicates instance method 310
substringFromIndex: instance method 1609
substringToIndex: instance method 1610
substringWithRange: instance method 1611
suggestedFilename instance method 1838
suiteForAppleEventCode: instance method 1434
suiteName instance method 1371, 1404
suiteNames instance method 1434
superclass class method 1167
superclass protocol instance method 2110
superclassDescription instance method 1371
supportsCommand: instance method 1372
suspend instance method 1634
suspendCurrentAppleEvent instance method 89
suspended instance method 553
suspendExecution instance method 1393
symbolCharacterSet class method 251
synchronize instance method 1861
synchronizeFile instance method 618
systemDefaultPortNameServer class method 1270
systemID instance method 1933, 1940, 2007
systemLocale class method 824
systemTimeZone class method 1668
systemVersion instance method 295, 1688

T

takeStoredValue:forKey: <NSObject> instance
method 2067

takeValue:forKey:<NSObject> instance method 2068
takeValue:forKeyPath:<NSObject> instance method

2068
takeValuesFromDictionary: <NSObject> instance

method 2068
target instance method 777, 1305
terminate instance method 1634
terminationStatus instance method 1635
test instance method 1896
textAttributesForNegativeInfinity instance

method 1137
textAttributesForNegativeValues instance method

1137
textAttributesForNil instance method 1138
textAttributesForNotANumber instance method 1138
textAttributesForPositiveInfinity instance

method 1138
textAttributesForPositiveValues instance method

1139
textAttributesForZero instance method 1139
textEncodingName instance method 1838
textWithStringValue: class method 1975
thousandSeparator instance method 1139

2358
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

threadDictionary instance method 1650
threadPriority class method 1644
Time Zone Name Styles 1678
timeInterval instance method 1661
timeIntervalSince1970 instance method 407
timeIntervalSinceDate: instance method 408
timeIntervalSinceNow instance method 408
timeIntervalSinceReferenceDate class method 398
timeIntervalSinceReferenceDate instance method

408
timeoutInterval instance method 1831
timerWithTimeInterval:invocation:repeats:

class method 1657
timerWithTimeInterval:target:selector:userInfo:

repeats: class method 1657
timeStyle instance method 456
timeZone instance method 213, 236, 457
timeZoneForSecondsFromGMT: class method 1669
timeZoneWithAbbreviation: class method 1669
timeZoneWithName: class method 1670
timeZoneWithName:data: class method 1670
toManyRelationshipKeys instance method 261, 1194
toOneRelationshipKeys instance method 261, 1195
topLevelObject instance method 1408
transactionID instance method 81
transform class method 49
transformedValueClass class method 1885
transformedValue: instance method 1887
transformPoint: instance method 54
transformSize: instance method 55
transformStruct instance method 55
translateXBy:yBy: instance method 56
truncateFileAtOffset: instance method 618
tryLock instance method 323, 542, 835, 1323
tryLockWhenCondition: instance method 324
twoDigitStartDate instance method 457
TXTRecordData instance method 1011
type instance method 1012
typeCodeValue instance method 81
typeForArgumentWithName: instance method 1404
typeForKey: instance method 1372

U

unableToSetNilForKey:<NSObject> instance method
2068

unarchiveObjectWithData: class method 804, 1684
unarchiveObjectWithFile: class method 805, 1684
unarchiver:cannotDecodeObjectOfClassName:

originalClasses: <NSObject> delegate method
812

unarchiver:didDecodeObject:<NSObject> delegate
method 813

unarchiver:willReplaceObject:withObject:
<NSObject> delegate method 814

unarchiverDidFinish:<NSObject> delegate method
814

unarchiverWillFinish:<NSObject> delegate method
814

undo instance method 1704
undoActionName instance method 1705
undoMenuItemTitle instance method 1705
undoMenuTitleForUndoActionName: instance method

1706
undoNestedGroup instance method 1706
unichar data type 1615
unionHashTable: instance method 702
unionSet: instance method 975
uniqueID instance method 1713
unload instance method 190
unlock instance method 543
unlock protocol instance method 2092
unlockWithCondition: instance method 324
unregisterClass: class method 1821
unscheduleFromRunLoop:forMode: instance method

1760
unsignedCharValue instance method 1076
unsignedIntegerValue instance method 1076
unsignedIntValue instance method 1076
unsignedLongLongValue instance method 1077
unsignedLongValue instance method 1077
unsignedShortValue instance method 1077
Unused Constant 621
uppercaseLetterCharacterSet class method 251
uppercaseString instance method 1611
URI instance method 1917, 1990
URL instance method 1832, 1839
URL Loading System Error Codes 2292
URL:resourceDataDidBecomeAvailable:<NSObject>

instance method 2129
URL:resourceDidFailLoadingWithReason:

<NSObject> instance method 2130
URLHandleClassForURL: class method 1797
URLHandle:resourceDataDidBecomeAvailable:

protocol instance method 2134
URLHandle:resourceDidFailLoadingWithReason:

protocol instance method 2134
URLHandleResourceDidBeginLoading: protocol

instance method 2134
URLHandleResourceDidCancelLoading: protocol

instance method 2135
URLHandleResourceDidFinishLoading: protocol

instance method 2135
URLHandleUsingCache: instance method 1732

2359
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

URLProtocol:cachedResponseIsValid: protocol
instance method 2138

URLProtocol:didCancelAuthenticationChallenge:
protocol instance method 2138

URLProtocol:didFailWithError: protocol instance
method 2139

URLProtocol:didLoadData:protocol instance method
2139

URLProtocol:didReceiveAuthenticationChallenge:
protocol instance method 2139

URLProtocol:didReceiveResponse:cacheStoragePolicy:
protocol instance method 2140

URLProtocol:wasRedirectedToRequest:
redirectResponse: protocol instance method
2140

URLProtocolDidFinishLoading: protocol instance
method 2141

URLResourceDidCancelLoading:<NSObject> instance
method 2130

URLResourceDidFinishLoading:<NSObject> instance
method 2131

URLWithString: class method 1720
URLWithString:relativeToURL: class method 1720
useCredential:forAuthenticationChallenge:

protocol instance method 2126
User info dictionary keys 569
user instance method 1732, 1770
userInfo instance method 196, 568, 579, 1035, 1661
usesGroupingSeparator instance method 1140
usesSignificantDigits instance method 1140
usesStrongWriteBarrier instance property 1242
useStoredAccessor <NSObject> class method 2060
usesWeakReadAndWriteBarriers instance property

1242
UTF8String instance method 1612

V

validateAndReturnError: instance method 1917
validateValue:forKey:error:<NSObject> instance

method 2069
validateValue:forKeyPath:error: <NSObject>

instance method 2069
value instance method 720, 892, 895
valueAtIndex:inPropertyWithKey: <NSObject>

instance method 2120
value:withObjCType: class method 1873
valueForAttribute: instance method 870
valueForHTTPHeaderField: instance method 1832
valueForKey: <NSObject> instance method 2070
valueForKey: instance method 139, 522, 1461
valueForKeyPath: <NSObject> instance method 2071

valueForUndefinedKey:<NSObject> instance method
2071

valueListAttributes instance method 885
valueLists instance method 886
valueOfAttribute:forResultAtIndex: instance

method 886
valuePointerFunctions instance method 860
valuesForAttributes: instance method 870
valuesForKeys: <NSObject> instance method 2072
valueTransformerForName: class method 1886
valueTransformerNames class method 1886
valueWithBytes:objCType: class method 1873
valueWithName:inPropertyWithKey: <NSObject>

instance method 2120
valueWithNonretainedObject: class method 1874
valueWithPoint: class method 1875
valueWithPointer: class method 1875
valueWithRange: class method 1876
valueWithRect: class method 1876
valueWithSize: class method 1877
valueWithUniqueID:inPropertyWithKey:

<NSObject> instance method 2120
variable instance method 599
version class method 1167
version instance method 721, 1918
versionForClassName: instance method 295
veryShortMonthSymbols instance method 458
veryShortStandaloneMonthSymbols instance method

458
veryShortStandaloneWeekdaySymbols instance

method 458
veryShortWeekdaySymbols instance method 459
volatileDomainForName: instance method 1861
volatileDomainNames instance method 1862

W

wait instance method 316
waitForDataInBackgroundAndNotify instance

method 618
waitForDataInBackgroundAndNotifyForModes:

instance method 619
waitUntilAllOperationsAreFinished instance

method 1216
waitUntilDate: instance method 317
waitUntilExit instance method 1635
week instance method 420
weekday instance method 421
weekdayOrdinal instance method 421
weekdaySymbols instance method 459
whitespaceAndNewlineCharacterSet class method

252

2360
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

whitespaceCharacterSet class method 252
willChange:valuesAtIndexes:forKey:<NSObject>

instance method 2083
willChangeValueForKey: <NSObject> instance

method 2084
willChangeValueForKey:withSetMutation:

usingObjects:<NSObject> instance method 2084
write:maxLength: instance method 1222
writeData: instance method 619, 1804
writeProperty:forKey: instance method 1804
writeToFile:atomically: instance method 139, 384,

523, 1612
writeToFile:atomically:encoding:error: instance

method 1613
writeToFile:options:error: instance method 385
writeToURL:atomically: instance method 140, 385,

524, 1614
writeToURL:atomically:encoding:error: instance

method 1614
writeToURL:options:error: instance method 386

X

XMLData instance method 1918
XMLDataWithOptions: instance method 1919
XMLString instance method 1990
XMLStringWithOptions: instance method 1991
XPath instance method 1991

Y

year instance method 422
yearOfCommonEra instance method 237
years:months:days:hours:minutes:seconds:sinceDate:

instance method 237

Z

zero class method 471
Zero Constants 2303
zeroSymbol instance method 1141
zone instance method 688
zone protocol instance method 2110

2361
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

INDEX

	Foundation Framework Reference
	Contents
	Figures and Tables
	Introduction
	Part I: Classes
	NSAffineTransform Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSAffineTransform Object
	Accumulating Transformations
	Transforming Data and Objects
	Accessing the Transformation Structure

	Class Methods
	transform

	Instance Methods
	appendTransform:
	initWithTransform:
	invert
	prependTransform:
	rotateByDegrees:
	rotateByRadians:
	scaleBy:
	scaleXBy:yBy:
	setTransformStruct:
	transformPoint:
	transformSize:
	transformStruct
	translateXBy:yBy:

	Constants
	NSAffineTransformStruct

	NSAppleEventDescriptor Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating and Initializing Descriptors
	Getting Information About a Descriptor
	Working With List Descriptors
	Working With Record Descriptors
	Working With Apple Event Descriptors

	Class Methods
	appleEventWithEventClass:eventID:targetDescriptor:returnID:transactionID:
	descriptorWithBoolean:
	descriptorWithDescriptorType:bytes:length:
	descriptorWithDescriptorType:data:
	descriptorWithEnumCode:
	descriptorWithInt32:
	descriptorWithString:
	descriptorWithTypeCode:
	listDescriptor
	nullDescriptor
	recordDescriptor

	Instance Methods
	aeDesc
	attributeDescriptorForKeyword:
	booleanValue
	coerceToDescriptorType:
	data
	descriptorAtIndex:
	descriptorForKeyword:
	descriptorType
	enumCodeValue
	eventClass
	eventID
	initListDescriptor
	initRecordDescriptor
	initWithAEDescNoCopy:
	initWithDescriptorType:bytes:length:
	initWithDescriptorType:data:
	initWithEventClass:eventID:targetDescriptor:returnID:transactionID:
	insertDescriptor:atIndex:
	int32Value
	keywordForDescriptorAtIndex:
	numberOfItems
	paramDescriptorForKeyword:
	removeDescriptorAtIndex:
	removeDescriptorWithKeyword:
	removeParamDescriptorWithKeyword:
	returnID
	setAttributeDescriptor:forKeyword:
	setDescriptor:forKeyword:
	setParamDescriptor:forKeyword:
	stringValue
	transactionID
	typeCodeValue

	NSAppleEventManager Class Reference
	Overview
	Tasks
	Getting an Event Manager
	Working with Event Handlers
	Working with Events
	Suspending and Resuming Apple Events

	Class Methods
	sharedAppleEventManager

	Instance Methods
	appleEventForSuspensionID:
	currentAppleEvent
	currentReplyAppleEvent
	dispatchRawAppleEvent:withRawReply:handlerRefCon:
	removeEventHandlerForEventClass:andEventID:
	replyAppleEventForSuspensionID:
	resumeWithSuspensionID:
	setCurrentAppleEventAndReplyEventWithSuspensionID:
	setEventHandler:andSelector:forEventClass:andEventID:
	suspendCurrentAppleEvent

	Constants
	NSAppleEvent Timeouts

	Notifications
	NSAppleEventManagerWillProcessFirstEventNotification

	NSAppleScript Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing a Script
	Getting Information About a Script
	Compiling and Executing a Script

	Instance Methods
	compileAndReturnError:
	executeAndReturnError:
	executeAppleEvent:error:
	initWithContentsOfURL:error:
	initWithSource:
	isCompiled
	source

	Constants
	Error Dictionary Keys

	NSArchiver Class Reference
	Overview
	Tasks
	Initializing an NSArchiver
	Archiving Data
	Getting the Archived Data
	Substituting Classes or Objects

	Class Methods
	archivedDataWithRootObject:
	archiveRootObject:toFile:

	Instance Methods
	archiverData
	classNameEncodedForTrueClassName:
	encodeClassName:intoClassName:
	encodeConditionalObject:
	encodeRootObject:
	initForWritingWithMutableData:
	replaceObject:withObject:

	Constants
	Archiving Exception Names

	NSArray Class Reference
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations
	Alternatives to Subclassing

	Adopted Protocols
	Tasks
	Creating an Array
	Initializing an Array
	Querying an Array
	Sending Messages to Elements
	Comparing Arrays
	Deriving New Arrays
	Sorting
	Working with String Elements
	Creating a Description
	Collecting Paths
	Key-Value Observing
	Key-Value Coding

	Class Methods
	array
	arrayWithArray:
	arrayWithContentsOfFile:
	arrayWithContentsOfURL:
	arrayWithObject:
	arrayWithObjects:
	arrayWithObjects:count:

	Instance Methods
	addObserver:forKeyPath:options:context:
	addObserver:toObjectsAtIndexes:forKeyPath:options:context:
	arrayByAddingObject:
	arrayByAddingObjectsFromArray:
	componentsJoinedByString:
	containsObject:
	count
	description
	descriptionWithLocale:
	descriptionWithLocale:indent:
	filteredArrayUsingPredicate:
	firstObjectCommonWithArray:
	getObjects:
	getObjects:range:
	indexOfObject:
	indexOfObject:inRange:
	indexOfObjectIdenticalTo:
	indexOfObjectIdenticalTo:inRange:
	initWithArray:
	initWithArray:copyItems:
	initWithContentsOfFile:
	initWithContentsOfURL:
	initWithObjects:
	initWithObjects:count:
	isEqualToArray:
	lastObject
	makeObjectsPerformSelector:
	makeObjectsPerformSelector:withObject:
	objectAtIndex:
	objectEnumerator
	objectsAtIndexes:
	pathsMatchingExtensions:
	removeObserver:forKeyPath:
	removeObserver:fromObjectsAtIndexes:forKeyPath:
	reverseObjectEnumerator
	setValue:forKey:
	sortedArrayHint
	sortedArrayUsingDescriptors:
	sortedArrayUsingFunction:context:
	sortedArrayUsingFunction:context:hint:
	sortedArrayUsingSelector:
	subarrayWithRange:
	valueForKey:
	writeToFile:atomically:
	writeToURL:atomically:

	NSAssertionHandler Class Reference
	Overview
	Tasks
	Handling Assertion Failures

	Class Methods
	currentHandler

	Instance Methods
	handleFailureInFunction:file:lineNumber:description:
	handleFailureInMethod:object:file:lineNumber:description:

	NSAttributedString Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSAttributedString Object
	Retrieving Character Information
	Retrieving Attribute Information
	Comparing Attributed Strings
	Extracting a Substring

	Instance Methods
	attribute:atIndex:effectiveRange:
	attribute:atIndex:longestEffectiveRange:inRange:
	attributedSubstringFromRange:
	attributesAtIndex:effectiveRange:
	attributesAtIndex:longestEffectiveRange:inRange:
	initWithAttributedString:
	initWithString:
	initWithString:attributes:
	isEqualToAttributedString:
	length
	string

	Constants

	NSAutoreleasePool Class Reference
	Overview
	Threads
	Garbage Collection

	Tasks
	Managing a Pool
	Adding an Object to a Pool

	Class Methods
	addObject:

	Instance Methods
	addObject:
	autorelease
	drain
	release
	retain

	NSBundle Class Reference
	Overview
	Tasks
	Initializing an NSBundle
	Getting an NSBundle
	Getting a Bundled Class
	Finding a Resource
	Getting the Bundle Directory
	Getting Bundle Information
	Managing Localized Resources
	Loading a Bundle’s Code
	Managing Localizations

	Class Methods
	allBundles
	allFrameworks
	bundleForClass:
	bundleWithIdentifier:
	bundleWithPath:
	mainBundle
	pathForResource:ofType:inDirectory:
	pathsForResourcesOfType:inDirectory:
	preferredLocalizationsFromArray:
	preferredLocalizationsFromArray:forPreferences:

	Instance Methods
	builtInPlugInsPath
	bundleIdentifier
	bundlePath
	classNamed:
	developmentLocalization
	executableArchitectures
	executablePath
	infoDictionary
	initWithPath:
	isLoaded
	load
	loadAndReturnError:
	localizations
	localizedInfoDictionary
	localizedStringForKey:value:table:
	objectForInfoDictionaryKey:
	pathForAuxiliaryExecutable:
	pathForResource:ofType:
	pathForResource:ofType:inDirectory:
	pathForResource:ofType:inDirectory:forLocalization:
	pathsForResourcesOfType:inDirectory:
	pathsForResourcesOfType:inDirectory:forLocalization:
	preferredLocalizations
	preflightAndReturnError:
	principalClass
	privateFrameworksPath
	resourcePath
	sharedFrameworksPath
	sharedSupportPath
	unload

	Constants
	Mach-O Architecture

	Notifications
	NSBundleDidLoadNotification

	NSCachedURLResponse Class Reference
	Overview
	Tasks
	Creating a Cached URL Response
	Getting Cached URL Response Properties

	Instance Methods
	data
	initWithResponse:data:
	initWithResponse:data:userInfo:storagePolicy:
	response
	storagePolicy
	userInfo

	Constants
	NSURLCacheStoragePolicy

	NSCalendar Class Reference
	Overview
	Tasks
	System Locale Information
	Initializing a Calendar
	Getting Information About a Calendar
	Calendrical Calculations

	Class Methods
	autoupdatingCurrentCalendar
	currentCalendar

	Instance Methods
	calendarIdentifier
	components:fromDate:
	components:fromDate:toDate:options:
	dateByAddingComponents:toDate:options:
	dateFromComponents:
	firstWeekday
	initWithCalendarIdentifier:
	locale
	maximumRangeOfUnit:
	minimumDaysInFirstWeek
	minimumRangeOfUnit:
	ordinalityOfUnit:inUnit:forDate:
	rangeOfUnit:inUnit:forDate:
	rangeOfUnit:startDate:interval:forDate:
	setFirstWeekday:
	setLocale:
	setMinimumDaysInFirstWeek:
	setTimeZone:
	timeZone

	Constants
	NSCalendarUnit
	Calendar Units
	NSDateComponents wrapping behavior

	NSCalendarDate Class Reference
	Overview
	The Calendar Format
	Locales and String Representations of Calendar Dates
	Subclassing Notes

	Tasks
	Creating an NSCalendarDate Instance
	Initializing an NSCalendarDate Instance
	Retrieving Date Elements
	Adjusting a Date
	Computing Date Intervals
	Representing Dates as Strings
	Getting and Setting Calendar Formats
	Managing the Time Zone

	Class Methods
	calendarDate
	dateWithString:calendarFormat:
	dateWithString:calendarFormat:locale:
	dateWithYear:month:day:hour:minute:second:timeZone:

	Instance Methods
	calendarFormat
	dateByAddingYears:months:days:hours:minutes:seconds:
	dayOfCommonEra
	dayOfMonth
	dayOfWeek
	dayOfYear
	description
	descriptionWithCalendarFormat:
	descriptionWithCalendarFormat:locale:
	descriptionWithLocale:
	hourOfDay
	initWithString:
	initWithString:calendarFormat:
	initWithString:calendarFormat:locale:
	initWithYear:month:day:hour:minute:second:timeZone:
	minuteOfHour
	monthOfYear
	secondOfMinute
	setCalendarFormat:
	setTimeZone:
	timeZone
	yearOfCommonEra
	years:months:days:hours:minutes:seconds:sinceDate:

	NSCharacterSet Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Standard Character Set
	Creating a Custom Character Set
	Creating and Managing Character Sets as Bitmap Representations
	Testing Set Membership

	Class Methods
	alphanumericCharacterSet
	capitalizedLetterCharacterSet
	characterSetWithBitmapRepresentation:
	characterSetWithCharactersInString:
	characterSetWithContentsOfFile:
	characterSetWithRange:
	controlCharacterSet
	decimalDigitCharacterSet
	decomposableCharacterSet
	illegalCharacterSet
	letterCharacterSet
	lowercaseLetterCharacterSet
	newlineCharacterSet
	nonBaseCharacterSet
	punctuationCharacterSet
	symbolCharacterSet
	uppercaseLetterCharacterSet
	whitespaceAndNewlineCharacterSet
	whitespaceCharacterSet

	Instance Methods
	bitmapRepresentation
	characterIsMember:
	hasMemberInPlane:
	invertedSet
	isSupersetOfSet:
	longCharacterIsMember:

	Constants
	NSOpenStepUnicodeReservedBase

	NSClassDescription Class Reference
	Overview
	Tasks
	Working with Class Descriptions
	Attribute Keys
	Relationship Keys

	Class Methods
	classDescriptionForClass:
	invalidateClassDescriptionCache
	registerClassDescription:forClass:

	Instance Methods
	attributeKeys
	inverseForRelationshipKey:
	toManyRelationshipKeys
	toOneRelationshipKeys

	Notifications
	NSClassDescriptionNeededForClassNotification

	NSCloneCommand Class Reference
	Overview
	Tasks
	Working with Specifiers

	Instance Methods
	keySpecifier
	setReceiversSpecifier:

	NSCloseCommand Class Reference
	Overview
	Tasks
	Accessing Save Options

	Instance Methods
	saveOptions

	Constants
	NSSaveOptions

	NSCoder Class Reference
	Overview
	Tasks
	Testing Coder
	Encoding Data
	Decoding Data
	Managing Zones
	Getting Version Information

	Instance Methods
	allowsKeyedCoding
	containsValueForKey:
	decodeArrayOfObjCType:count:at:
	decodeBoolForKey:
	decodeBytesForKey:returnedLength:
	decodeBytesWithReturnedLength:
	decodeDataObject
	decodeDoubleForKey:
	decodeFloatForKey:
	decodeInt32ForKey:
	decodeInt64ForKey:
	decodeIntegerForKey:
	decodeIntForKey:
	decodeNXObject
	decodeObject
	decodeObjectForKey:
	decodePoint
	decodePointForKey:
	decodePropertyList
	decodeRect
	decodeRectForKey:
	decodeSize
	decodeSizeForKey:
	decodeValueOfObjCType:at:
	decodeValuesOfObjCTypes:
	encodeArrayOfObjCType:count:at:
	encodeBool:forKey:
	encodeBycopyObject:
	encodeByrefObject:
	encodeBytes:length:
	encodeBytes:length:forKey:
	encodeConditionalObject:
	encodeConditionalObject:forKey:
	encodeDataObject:
	encodeDouble:forKey:
	encodeFloat:forKey:
	encodeInt32:forKey:
	encodeInt64:forKey:
	encodeInt:forKey:
	encodeInteger:forKey:
	encodeNXObject:
	encodeObject:
	encodeObject:forKey:
	encodePoint:
	encodePoint:forKey:
	encodePropertyList:
	encodeRect:
	encodeRect:forKey:
	encodeRootObject:
	encodeSize:
	encodeSize:forKey:
	encodeValueOfObjCType:at:
	encodeValuesOfObjCTypes:
	objectZone
	setObjectZone:
	systemVersion
	versionForClassName:

	NSComparisonPredicate Class Reference
	Overview
	Tasks
	Constructors
	Getting Information About a Comparison Predicate

	Class Methods
	predicateWithLeftExpression:rightExpression:customSelector:
	predicateWithLeftExpression:rightExpression:modifier:type:options:

	Instance Methods
	comparisonPredicateModifier
	customSelector
	initWithLeftExpression:rightExpression:customSelector:
	initWithLeftExpression:rightExpression:modifier:type:options:
	leftExpression
	options
	predicateOperatorType
	rightExpression

	Constants
	NSComparisonPredicateModifier
	NSComparisonPredicate Options
	NSPredicateOperatorType

	NSCompoundPredicate Class Reference
	Overview
	Tasks
	Constructors
	Getting Information About a Compound Predicate

	Class Methods
	andPredicateWithSubpredicates:
	notPredicateWithSubpredicate:
	orPredicateWithSubpredicates:

	Instance Methods
	compoundPredicateType
	initWithType:subpredicates:
	subpredicates

	Constants
	Compound Predicate Types

	NSCondition Class Reference
	Overview
	Tasks
	Waiting for the Lock
	Signaling Waiting Threads
	Accessor Methods

	Instance Methods
	broadcast
	name
	setName:
	signal
	wait
	waitUntilDate:

	NSConditionLock Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing an NSConditionLock Object
	Returning the Condition
	Acquiring and Releasing a Lock
	Accessor Methods

	Instance Methods
	condition
	initWithCondition:
	lockBeforeDate:
	lockWhenCondition:
	lockWhenCondition:beforeDate:
	name
	setName:
	tryLock
	tryLockWhenCondition:
	unlockWithCondition:

	NSConnection Class Reference
	Overview
	Tasks
	Getting the Default Instance
	Creating Instances
	Running the Connection in a New Thread
	Vending a Service
	Getting a Remote Object
	Getting a Conversation
	Getting All NSConnection Objects
	Configuring Instances
	Getting Ports
	Getting Statistics
	Setting the Delegate
	Authenticating
	Responding to a Connection

	Class Methods
	allConnections
	connectionWithReceivePort:sendPort:
	connectionWithRegisteredName:host:
	connectionWithRegisteredName:host:usingNameServer:
	currentConversation
	defaultConnection
	rootProxyForConnectionWithRegisteredName:host:
	rootProxyForConnectionWithRegisteredName:host:usingNameServer:
	serviceConnectionWithName:rootObject:
	serviceConnectionWithName:rootObject:usingNameServer:

	Instance Methods
	addRequestMode:
	addRunLoop:
	delegate
	enableMultipleThreads
	independentConversationQueueing
	initWithReceivePort:sendPort:
	invalidate
	isValid
	localObjects
	multipleThreadsEnabled
	receivePort
	registerName:
	registerName:withNameServer:
	remoteObjects
	removeRequestMode:
	removeRunLoop:
	replyTimeout
	requestModes
	requestTimeout
	rootObject
	rootProxy
	runInNewThread
	sendPort
	setDelegate:
	setIndependentConversationQueueing:
	setReplyTimeout:
	setRequestTimeout:
	setRootObject:
	statistics

	Delegate Methods
	authenticateComponents:withData:
	authenticationDataForComponents:
	connection:handleRequest:
	connection:shouldMakeNewConnection:
	createConversationForConnection:
	makeNewConnection:sender:

	Constants
	NSConnection run loop mode
	Connection Exception Names

	Notifications
	NSConnectionDidDieNotification
	NSConnectionDidInitializeNotification

	NSCountCommand Class Reference
	Overview

	NSCountedSet Class Reference
	Overview
	Tasks
	Initializing a Counted Set
	Adding and Removing Entries
	Examining a Counted Set

	Instance Methods
	addObject:
	countForObject:
	initWithArray:
	initWithCapacity:
	initWithSet:
	objectEnumerator
	removeObject:

	NSCreateCommand Class Reference
	Overview
	Tasks
	Getting Information About a Create Command

	Instance Methods
	createClassDescription
	resolvedKeyDictionary

	NSData Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Data Objects
	Accessing Data
	Testing Data
	Storing Data

	Class Methods
	data
	dataWithBytes:length:
	dataWithBytesNoCopy:length:
	dataWithBytesNoCopy:length:freeWhenDone:
	dataWithContentsOfFile:
	dataWithContentsOfFile:options:error:
	dataWithContentsOfMappedFile:
	dataWithContentsOfURL:
	dataWithContentsOfURL:options:error:
	dataWithData:

	Instance Methods
	bytes
	description
	getBytes:
	getBytes:length:
	getBytes:range:
	initWithBytes:length:
	initWithBytesNoCopy:length:
	initWithBytesNoCopy:length:freeWhenDone:
	initWithContentsOfFile:
	initWithContentsOfFile:options:error:
	initWithContentsOfMappedFile:
	initWithContentsOfURL:
	initWithContentsOfURL:options:error:
	initWithData:
	isEqualToData:
	length
	subdataWithRange:
	writeToFile:atomically:
	writeToFile:options:error:
	writeToURL:atomically:
	writeToURL:options:error:

	Constants
	Options for NSData Reading Methods
	Options for NSData Writing Methods

	NSDate Class Reference
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations

	Adopted Protocols
	Tasks
	Creating and Initializing Date Objects
	Getting Temporal Boundaries
	Comparing Dates
	Getting Time Intervals
	Adding a Time Interval
	Representing Dates as Strings
	Converting to an NSCalendarDate Object

	Class Methods
	date
	dateWithNaturalLanguageString:
	dateWithNaturalLanguageString:locale:
	dateWithString:
	dateWithTimeIntervalSince1970:
	dateWithTimeIntervalSinceNow:
	dateWithTimeIntervalSinceReferenceDate:
	distantFuture
	distantPast
	timeIntervalSinceReferenceDate

	Instance Methods
	addTimeInterval:
	compare:
	dateWithCalendarFormat:timeZone:
	description
	descriptionWithCalendarFormat:timeZone:locale:
	descriptionWithLocale:
	earlierDate:
	init
	initWithString:
	initWithTimeInterval:sinceDate:
	initWithTimeIntervalSinceNow:
	initWithTimeIntervalSinceReferenceDate:
	isEqualToDate:
	laterDate:
	timeIntervalSince1970
	timeIntervalSinceDate:
	timeIntervalSinceNow
	timeIntervalSinceReferenceDate

	Constants
	NSTimeIntervalSince1970

	NSDateComponents Class Reference
	Overview
	Tasks
	Getting Information About an NSDateComponents Object
	Setting Information for an NSDateComponents Object

	Instance Methods
	day
	era
	hour
	minute
	month
	second
	setDay:
	setEra:
	setHour:
	setMinute:
	setMonth:
	setSecond:
	setWeek:
	setWeekday:
	setWeekdayOrdinal:
	setYear:
	week
	weekday
	weekdayOrdinal
	year

	Constants
	NSDateComponents undefined component identifier

	NSDateFormatter Class Reference
	Overview
	Tasks
	Initializing a Date Formatter
	Managing Behavior
	Converting Objects
	Managing Formats and Styles
	Managing Attributes
	Managing AM and PM Symbols
	Managing Weekday Symbols
	Managing Month Symbols
	Managing Quarter Symbols
	Managing Era Symbols

	Class Methods
	defaultFormatterBehavior
	setDefaultFormatterBehavior:

	Instance Methods
	allowsNaturalLanguage
	AMSymbol
	calendar
	dateFormat
	dateFromString:
	dateStyle
	defaultDate
	eraSymbols
	formatterBehavior
	generatesCalendarDates
	getObjectValue:forString:range:error:
	gregorianStartDate
	init
	initWithDateFormat:allowNaturalLanguage:
	isLenient
	locale
	longEraSymbols
	monthSymbols
	PMSymbol
	quarterSymbols
	setAMSymbol:
	setCalendar:
	setDateFormat:
	setDateStyle:
	setDefaultDate:
	setEraSymbols:
	setFormatterBehavior:
	setGeneratesCalendarDates:
	setGregorianStartDate:
	setLenient:
	setLocale:
	setLongEraSymbols:
	setMonthSymbols:
	setPMSymbol:
	setQuarterSymbols:
	setShortMonthSymbols:
	setShortQuarterSymbols:
	setShortStandaloneMonthSymbols:
	setShortStandaloneQuarterSymbols:
	setShortStandaloneWeekdaySymbols:
	setShortWeekdaySymbols:
	setStandaloneMonthSymbols:
	setStandaloneQuarterSymbols:
	setStandaloneWeekdaySymbols:
	setTimeStyle:
	setTimeZone:
	setTwoDigitStartDate:
	setVeryShortMonthSymbols:
	setVeryShortStandaloneMonthSymbols:
	setVeryShortStandaloneWeekdaySymbols:
	setVeryShortWeekdaySymbols:
	setWeekdaySymbols:
	shortMonthSymbols
	shortQuarterSymbols
	shortStandaloneMonthSymbols
	shortStandaloneQuarterSymbols
	shortStandaloneWeekdaySymbols
	shortWeekdaySymbols
	standaloneMonthSymbols
	standaloneQuarterSymbols
	standaloneWeekdaySymbols
	stringFromDate:
	timeStyle
	timeZone
	twoDigitStartDate
	veryShortMonthSymbols
	veryShortStandaloneMonthSymbols
	veryShortStandaloneWeekdaySymbols
	veryShortWeekdaySymbols
	weekdaySymbols

	Constants
	NSDateFormatterStyle
	NSDateFormatterBehavior

	NSDecimalNumber Class Reference
	Overview
	Tasks
	Creating a Decimal Number
	Initializing a Decimal Number
	Performing Arithmetic
	Rounding Off
	Accessing the Value
	Managing Behavior
	Comparing Decimal Numbers
	Getting Maximum and Minimum Possible Values

	Class Methods
	decimalNumberWithDecimal:
	decimalNumberWithMantissa:exponent:isNegative:
	decimalNumberWithString:
	decimalNumberWithString:locale:
	defaultBehavior
	maximumDecimalNumber
	minimumDecimalNumber
	notANumber
	one
	setDefaultBehavior:
	zero

	Instance Methods
	compare:
	decimalNumberByAdding:
	decimalNumberByAdding:withBehavior:
	decimalNumberByDividingBy:
	decimalNumberByDividingBy:withBehavior:
	decimalNumberByMultiplyingBy:
	decimalNumberByMultiplyingBy:withBehavior:
	decimalNumberByMultiplyingByPowerOf10:
	decimalNumberByMultiplyingByPowerOf10:withBehavior:
	decimalNumberByRaisingToPower:
	decimalNumberByRaisingToPower:withBehavior:
	decimalNumberByRoundingAccordingToBehavior:
	decimalNumberBySubtracting:
	decimalNumberBySubtracting:withBehavior:
	decimalValue
	descriptionWithLocale:
	doubleValue
	initWithDecimal:
	initWithMantissa:exponent:isNegative:
	initWithString:
	initWithString:locale:
	objCType

	Constants
	NSDecimalNumber Exception Names

	NSDecimalNumberHandler Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Decimal Number Handler
	Initializing a Decimal Number Handler

	Class Methods
	decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow: raiseOnUnderflow:raiseOnDivideByZero:
	defaultDecimalNumberHandler

	Instance Methods
	initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow: raiseOnDivideByZero:

	NSDeleteCommand Class Reference
	Overview
	Tasks
	Working with Specifiers

	Instance Methods
	keySpecifier
	setReceiversSpecifier:

	NSDeserializer Class Reference
	Overview
	Tasks
	Deserializing a Property List

	Class Methods
	deserializePropertyListFromData:atCursor:mutableContainers:
	deserializePropertyListFromData:mutableContainers:
	deserializePropertyListLazilyFromData:atCursor:length:mutableContainers:

	NSDictionary Class Reference
	Overview
	Enumeration
	Primitive Methods
	Descriptions and Persistence
	Toll-Free Bridging

	Adopted Protocols
	Tasks
	Creating a Dictionary
	Initializing an NSDictionary Instance
	Counting Entries
	Comparing Dictionaries
	Accessing Keys and Values
	Storing Dictionaries
	Accessing File Attributes
	Creating a Description

	Class Methods
	dictionary
	dictionaryWithContentsOfFile:
	dictionaryWithContentsOfURL:
	dictionaryWithDictionary:
	dictionaryWithObject:forKey:
	dictionaryWithObjects:forKeys:
	dictionaryWithObjects:forKeys:count:
	dictionaryWithObjectsAndKeys:

	Instance Methods
	allKeys
	allKeysForObject:
	allValues
	count
	description
	descriptionInStringsFileFormat
	descriptionWithLocale:
	descriptionWithLocale:indent:
	fileCreationDate
	fileExtensionHidden
	fileGroupOwnerAccountID
	fileGroupOwnerAccountName
	fileHFSCreatorCode
	fileHFSTypeCode
	fileIsAppendOnly
	fileIsImmutable
	fileModificationDate
	fileOwnerAccountID
	fileOwnerAccountName
	filePosixPermissions
	fileSize
	fileSystemFileNumber
	fileSystemNumber
	fileType
	getObjects:andKeys:
	initWithContentsOfFile:
	initWithContentsOfURL:
	initWithDictionary:
	initWithDictionary:copyItems:
	initWithObjects:forKeys:
	initWithObjects:forKeys:count:
	initWithObjectsAndKeys:
	isEqualToDictionary:
	keyEnumerator
	keysSortedByValueUsingSelector:
	objectEnumerator
	objectForKey:
	objectsForKeys:notFoundMarker:
	valueForKey:
	writeToFile:atomically:
	writeToURL:atomically:

	NSDirectoryEnumerator Class Reference
	Overview
	Tasks
	Getting File and Directory Attributes
	Skipping Subdirectories

	Instance Methods
	directoryAttributes
	fileAttributes
	skipDescendents

	NSDistantObject Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Local Proxy
	Creating a Remote Proxy
	Getting a Proxy’s NSConnection
	Setting a Proxy’s Protocol

	Class Methods
	proxyWithLocal:connection:
	proxyWithTarget:connection:

	Instance Methods
	connectionForProxy
	initWithLocal:connection:
	initWithTarget:connection:
	setProtocolForProxy:

	NSDistantObjectRequest Class Reference
	Overview
	Tasks
	Getting Information About a Request
	Raising a Remote Exception

	Instance Methods
	connection
	conversation
	invocation
	replyWithException:

	NSDistributedLock Class Reference
	Overview
	Tasks
	Creating an NSDistributedLock
	Acquiring a Lock
	Relinquishing a Lock
	Getting Lock Information

	Class Methods
	lockWithPath:

	Instance Methods
	breakLock
	initWithPath:
	lockDate
	tryLock
	unlock

	NSDistributedNotificationCenter Class Reference
	Class at a Glance
	Overview
	Tasks
	Getting Distributed Notification Centers
	Managing Observers
	Posting Notifications
	Suspending and Resuming Notification Delivery

	Class Methods
	defaultCenter
	notificationCenterForType:

	Instance Methods
	addObserver:selector:name:object:
	addObserver:selector:name:object:suspensionBehavior:
	postNotificationName:object:
	postNotificationName:object:userInfo:
	postNotificationName:object:userInfo:deliverImmediately:
	postNotificationName:object:userInfo:options:
	removeObserver:name:object:
	setSuspended:
	suspended

	Constants
	Notification Center Type
	Notification Posting Behavior
	NSNotificationSuspensionBehavior

	NSEnumerator Class Reference
	Overview
	Tasks
	Getting the Enumerated Objects

	Instance Methods
	allObjects
	nextObject

	NSError Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Error Objects
	Getting Error Properties
	Getting a Localized Error Description
	Getting the Error Recovery Attempter

	Class Methods
	errorWithDomain:code:userInfo:

	Instance Methods
	code
	domain
	initWithDomain:code:userInfo:
	localizedDescription
	localizedFailureReason
	localizedRecoveryOptions
	localizedRecoverySuggestion
	recoveryAttempter
	userInfo

	Constants
	User info dictionary keys
	Error Domains

	NSException Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating and Raising an NSException Object
	Querying an NSException Object
	Getting Exception Stack Frames

	Class Methods
	exceptionWithName:reason:userInfo:
	raise:format:
	raise:format:arguments:

	Instance Methods
	callStackReturnAddresses
	initWithName:reason:userInfo:
	name
	raise
	reason
	userInfo

	Constants

	NSExistsCommand Class Reference
	Overview

	NSExpression Class Reference
	Overview
	Expression Types
	Aggregate Expressions
	Subquery Expressions
	Set Expressions
	Function Expressions

	Tasks
	Initializing an Expression
	Creating an Expression for a Value
	Creating a Collection Expression
	Creating a Subquery
	Creating an Expression for a Function
	Getting Information About an Expression
	Evaluating an Expression

	Class Methods
	expressionForAggregate:
	expressionForConstantValue:
	expressionForEvaluatedObject
	expressionForFunction:arguments:
	expressionForFunction:selectorName:arguments:
	expressionForIntersectSet:with:
	expressionForKeyPath:
	expressionForMinusSet:with:
	expressionForSubquery:usingIteratorVariable:predicate:
	expressionForUnionSet:with:
	expressionForVariable:

	Instance Methods
	arguments
	collection
	constantValue
	expressionType
	expressionValueWithObject:context:
	function
	initWithExpressionType:
	keyPath
	leftExpression
	operand
	predicate
	rightExpression
	variable

	Constants
	NSExpressionType

	NSFileHandle Class Reference
	Overview
	Tasks
	Getting a File Handle
	Creating a File Handle
	Getting a File Descriptor
	Reading from a File Handle
	Writing to a File Handle
	Communicating Asynchronously
	Seeking Within a File
	Operating on a File

	Class Methods
	fileHandleForReadingAtPath:
	fileHandleForUpdatingAtPath:
	fileHandleForWritingAtPath:
	fileHandleWithNullDevice
	fileHandleWithStandardError
	fileHandleWithStandardInput
	fileHandleWithStandardOutput

	Instance Methods
	acceptConnectionInBackgroundAndNotify
	acceptConnectionInBackgroundAndNotifyForModes:
	availableData
	closeFile
	fileDescriptor
	initWithFileDescriptor:
	initWithFileDescriptor:closeOnDealloc:
	offsetInFile
	readDataOfLength:
	readDataToEndOfFile
	readInBackgroundAndNotify
	readInBackgroundAndNotifyForModes:
	readToEndOfFileInBackgroundAndNotify
	readToEndOfFileInBackgroundAndNotifyForModes:
	seekToEndOfFile
	seekToFileOffset:
	synchronizeFile
	truncateFileAtOffset:
	waitForDataInBackgroundAndNotify
	waitForDataInBackgroundAndNotifyForModes:
	writeData:

	Constants
	Keys for Notification UserInfo Dictionary
	Exception Names
	Unused Constant

	Notifications
	NSFileHandleConnectionAcceptedNotification
	NSFileHandleDataAvailableNotification
	NSFileHandleReadCompletionNotification
	NSFileHandleReadToEndOfFileCompletionNotification

	NSFileManager Class Reference
	Overview
	Tasks
	Getting the Default Manager
	Moving an Item
	Copying an Item
	Removing an Item
	Creating an Item
	Linking an Item
	Symbolic-Link Operations
	Handling File Operations
	Getting and Comparing File Contents
	Discovering Directory Contents
	Determining Access to Files
	Getting and Setting Attributes
	Getting Representations of File Paths
	Managing the Delegate
	Managing the Current Directory

	Class Methods
	defaultManager

	Instance Methods
	attributesOfFileSystemForPath:error:
	attributesOfItemAtPath:error:
	changeCurrentDirectoryPath:
	changeFileAttributes:atPath:
	componentsToDisplayForPath:
	contentsAtPath:
	contentsEqualAtPath:andPath:
	contentsOfDirectoryAtPath:error:
	copyItemAtPath:toPath:error:
	copyPath:toPath:handler:
	createDirectoryAtPath:attributes:
	createDirectoryAtPath:withIntermediateDirectories:attributes:error:
	createFileAtPath:contents:attributes:
	createSymbolicLinkAtPath:pathContent:
	createSymbolicLinkAtPath:withDestinationPath:error:
	currentDirectoryPath
	delegate
	destinationOfSymbolicLinkAtPath:error:
	directoryContentsAtPath:
	displayNameAtPath:
	enumeratorAtPath:
	fileAttributesAtPath:traverseLink:
	fileExistsAtPath:
	fileExistsAtPath:isDirectory:
	fileSystemAttributesAtPath:
	fileSystemRepresentationWithPath:
	isDeletableFileAtPath:
	isExecutableFileAtPath:
	isReadableFileAtPath:
	isWritableFileAtPath:
	linkItemAtPath:toPath:error:
	linkPath:toPath:handler:
	moveItemAtPath:toPath:error:
	movePath:toPath:handler:
	pathContentOfSymbolicLinkAtPath:
	removeFileAtPath:handler:
	removeItemAtPath:error:
	setAttributes:ofItemAtPath:error:
	setDelegate:
	stringWithFileSystemRepresentation:length:
	subpathsAtPath:
	subpathsOfDirectoryAtPath:error:

	Delegate Methods
	fileManager:shouldCopyItemAtPath:toPath:
	fileManager:shouldLinkItemAtPath:toPath:
	fileManager:shouldMoveItemAtPath:toPath:
	fileManager:shouldProceedAfterError:
	fileManager:shouldProceedAfterError:copyingItemAtPath:toPath:
	fileManager:shouldProceedAfterError:linkingItemAtPath:toPath:
	fileManager:shouldProceedAfterError:movingItemAtPath:toPath:
	fileManager:shouldProceedAfterError:removingItemAtPath:
	fileManager:shouldRemoveItemAtPath:
	fileManager:willProcessPath:

	Constants
	File Attribute Keys
	File Type Attribute Keys
	File-System Attribute Keys
	Resource Fork Support

	NSFormatter Class Reference
	Overview
	Subclassing Notes

	Tasks
	Textual Representation of Cell Content
	Object Equivalent to Textual Representation
	Dynamic Cell Editing

	Instance Methods
	attributedStringForObjectValue:withDefaultAttributes:
	editingStringForObjectValue:
	getObjectValue:forString:errorDescription:
	isPartialStringValid:newEditingString:errorDescription:
	isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange: errorDescription:
	stringForObjectValue:

	NSGarbageCollector Class Reference
	Overview
	Tasks
	Shared Instance
	Collection State
	Triggering Collection
	Manipulating External References
	Accessing an Unscanned Memory Zone

	Class Methods
	defaultCollector

	Instance Methods
	collectExhaustively
	collectIfNeeded
	disable
	disableCollectorForPointer:
	enable
	enableCollectorForPointer:
	isCollecting
	isEnabled
	zone

	NSGetCommand Class Reference
	Overview

	NSHashTable Class Reference
	Overview
	Tasks
	Initialization
	Convenience Constructors
	Accessing Content
	Manipulating Membership
	Comparing Hash Tables
	Set Functions
	Accessing Pointer Functions

	Class Methods
	hashTableWithOptions:
	hashTableWithWeakObjects

	Instance Methods
	addObject:
	allObjects
	anyObject
	containsObject:
	count
	initWithOptions:capacity:
	initWithPointerFunctions:capacity:
	intersectHashTable:
	intersectsHashTable:
	isEqualToHashTable:
	isSubsetOfHashTable:
	member:
	minusHashTable:
	objectEnumerator
	pointerFunctions
	removeAllObjects
	removeObject:
	setRepresentation
	unionHashTable:

	Constants
	NSHashTableOptions
	Hash Table Options

	NSHost Class Reference
	Overview
	Tasks
	Creating Hosts
	Getting Host Information
	Comparing Hosts
	Managing the Host Cache

	Class Methods
	currentHost
	flushHostCache
	hostWithAddress:
	hostWithName:
	isHostCacheEnabled
	setHostCacheEnabled:

	Instance Methods
	address
	addresses
	isEqualToHost:
	name
	names

	NSHTTPCookie Class Reference
	Overview
	Adopted Protocols
	Tasks
	Create Cookie Instances
	Convert Cookies to Request Headers
	Getting Cookie Properties

	Class Methods
	cookiesWithResponseHeaderFields:forURL:
	cookieWithProperties:
	requestHeaderFieldsWithCookies:

	Instance Methods
	comment
	commentURL
	domain
	expiresDate
	initWithProperties:
	isSecure
	isSessionOnly
	name
	path
	portList
	properties
	value
	version

	Constants
	HTTP Cookie Property Keys

	NSHTTPCookieStorage Class Reference
	Overview
	Tasks
	Getting the Shared Cookie Storage Object
	Getting and Setting the Cookie Accept Policy
	Adding and Removing Cookies

	Class Methods
	sharedHTTPCookieStorage

	Instance Methods
	cookieAcceptPolicy
	cookies
	cookiesForURL:
	deleteCookie:
	setCookie:
	setCookieAcceptPolicy:
	setCookies:forURL:mainDocumentURL:

	Constants
	NSHTTPCookieAcceptPolicy

	Notifications
	NSHTTPCookieManagerCookiesChangedNotification
	NSHTTPCookieManagerAcceptPolicyChangedNotification

	NSHTTPURLResponse Class Reference
	Overview
	Adopted Protocols
	Tasks
	Getting HTTP Response Headers
	Getting Response Status Code

	Class Methods
	localizedStringForStatusCode:

	Instance Methods
	allHeaderFields
	statusCode

	NSIndexPath Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Index Paths
	Querying Index Paths
	Comparing Index Paths

	Class Methods
	indexPathWithIndex:
	indexPathWithIndexes:length:

	Instance Methods
	compare:
	getIndexes:
	indexAtPosition:
	indexPathByAddingIndex:
	indexPathByRemovingLastIndex
	initWithIndex:
	initWithIndexes:length:
	length

	NSIndexSet Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Index Sets
	Querying Index Sets
	Comparing Index Sets
	Getting Indexes

	Class Methods
	indexSet
	indexSetWithIndex:
	indexSetWithIndexesInRange:

	Instance Methods
	containsIndex:
	containsIndexes:
	containsIndexesInRange:
	count
	countOfIndexesInRange:
	firstIndex
	getIndexes:maxCount:inIndexRange:
	indexGreaterThanIndex:
	indexGreaterThanOrEqualToIndex:
	indexLessThanIndex:
	indexLessThanOrEqualToIndex:
	init
	initWithIndex:
	initWithIndexesInRange:
	initWithIndexSet:
	intersectsIndexesInRange:
	isEqualToIndexSet:
	lastIndex

	NSIndexSpecifier Class Reference
	Overview
	Tasks
	Creating Index Specifiers
	Accessing the Index

	Instance Methods
	index
	initWithContainerClassDescription:containerSpecifier:key:index:
	setIndex:

	NSInputStream Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Creating Streams
	Using Streams

	Class Methods
	inputStreamWithData:
	inputStreamWithFileAtPath:

	Instance Methods
	getBuffer:length:
	hasBytesAvailable
	initWithData:
	initWithFileAtPath:
	read:maxLength:

	NSInvocation Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating NSInvocation Objects
	Configuring an Invocation Object
	Dispatching an Invocation
	Getting the Method Signature

	Class Methods
	invocationWithMethodSignature:

	Instance Methods
	argumentsRetained
	getArgument:atIndex:
	getReturnValue:
	invoke
	invokeWithTarget:
	methodSignature
	retainArguments
	selector
	setArgument:atIndex:
	setReturnValue:
	setSelector:
	setTarget:
	target

	Constants
	Parameter Type Constants

	NSInvocationOperation Class Reference
	Overview
	Tasks
	Initialization
	Getting Attributes

	Instance Methods
	initWithInvocation:
	initWithTarget:selector:object:
	invocation
	result

	Constants
	Result Exceptions

	NSKeyedArchiver Class Reference
	Overview
	Tasks
	Initializing an NSKeyedArchiver Object
	Archiving Data
	Encoding Data and Objects
	Managing Delegates
	Managing Classes and Class Names

	Class Methods
	archivedDataWithRootObject:
	archiveRootObject:toFile:
	classNameForClass:
	setClassName:forClass:

	Instance Methods
	classNameForClass:
	delegate
	encodeBool:forKey:
	encodeBytes:length:forKey:
	encodeConditionalObject:forKey:
	encodeDouble:forKey:
	encodeFloat:forKey:
	encodeInt32:forKey:
	encodeInt64:forKey:
	encodeInt:forKey:
	encodeObject:forKey:
	finishEncoding
	initForWritingWithMutableData:
	outputFormat
	setClassName:forClass:
	setDelegate:
	setOutputFormat:

	Delegate Methods
	archiver:didEncodeObject:
	archiver:willEncodeObject:
	archiver:willReplaceObject:withObject:
	archiverDidFinish:
	archiverWillFinish:

	Constants
	Keyed Archiving Exception Names

	NSKeyedUnarchiver Class Reference
	Overview
	Tasks
	Initializing a Keyed Unarchiver
	Unarchiving Data
	Decoding Data
	Managing the Delegate
	Managing Class Names
	Decoding Objects
	Finishing Decoding

	Class Methods
	classForClassName:
	setClass:forClassName:
	unarchiveObjectWithData:
	unarchiveObjectWithFile:

	Instance Methods
	classForClassName:
	containsValueForKey:
	decodeBoolForKey:
	decodeBytesForKey:returnedLength:
	decodeDoubleForKey:
	decodeFloatForKey:
	decodeInt32ForKey:
	decodeInt64ForKey:
	decodeIntForKey:
	decodeObjectForKey:
	delegate
	finishDecoding
	initForReadingWithData:
	setClass:forClassName:
	setDelegate:

	Delegate Methods
	unarchiver:cannotDecodeObjectOfClassName:originalClasses:
	unarchiver:didDecodeObject:
	unarchiver:willReplaceObject:withObject:
	unarchiverDidFinish:
	unarchiverWillFinish:

	Constants
	Keyed Unarchiving Exception Names

	NSLocale Class Reference
	Overview
	Tasks
	Getting and Initializing Locales
	Getting Information About a Locale
	Getting System Locale Information
	Converting Between Identifiers
	Getting Preferred Languages

	Class Methods
	autoupdatingCurrentLocale
	availableLocaleIdentifiers
	canonicalLocaleIdentifierFromString:
	commonISOCurrencyCodes
	componentsFromLocaleIdentifier:
	currentLocale
	ISOCountryCodes
	ISOCurrencyCodes
	ISOLanguageCodes
	localeIdentifierFromComponents:
	preferredLanguages
	systemLocale

	Instance Methods
	displayNameForKey:value:
	initWithLocaleIdentifier:
	localeIdentifier
	objectForKey:

	Constants
	NSLocale Component Keys
	NSLocale Calendar Keys

	Notifications
	NSCurrentLocaleDidChangeNotification

	NSLock Class Reference
	Overview
	Adopted Protocols
	Tasks
	Acquiring a Lock
	Naming the Lock

	Instance Methods
	lockBeforeDate:
	name
	setName:
	tryLock

	NSLogicalTest Class Reference
	Overview
	Tasks
	Initializing a Logical Test

	Instance Methods
	initAndTestWithTests:
	initNotTestWithTest:
	initOrTestWithTests:

	NSMachBootstrapServer Class Reference
	Overview
	Tasks
	Getting the Server Object
	Looking Up Ports
	Registering Ports

	Class Methods
	sharedInstance

	Instance Methods
	portForName:
	portForName:host:
	registerPort:name:
	servicePortWithName:

	NSMachPort Class Reference
	Overview
	Tasks
	Creating and Initializing
	Getting the Mach Port
	Scheduling the Port on a Run Loop
	Handling Mach Messages

	Class Methods
	portWithMachPort:
	portWithMachPort:options:

	Instance Methods
	initWithMachPort:
	initWithMachPort:options:
	machPort
	removeFromRunLoop:forMode:
	scheduleInRunLoop:forMode:

	Delegate Methods
	handleMachMessage:

	Constants
	Mach Port Rights

	NSMapTable Class Reference
	Overview
	Tasks
	Creating and Initializing a Map Table
	Accessing Content
	Manipulating Content
	Creating a Dictionary Representation
	Accessing Pointer Functions

	Class Methods
	mapTableWithKeyOptions:valueOptions:
	mapTableWithStrongToStrongObjects
	mapTableWithStrongToWeakObjects
	mapTableWithWeakToStrongObjects
	mapTableWithWeakToWeakObjects

	Instance Methods
	count
	dictionaryRepresentation
	initWithKeyOptions:valueOptions:capacity:
	initWithKeyPointerFunctions:valuePointerFunctions:capacity:
	keyEnumerator
	keyPointerFunctions
	objectEnumerator
	objectForKey:
	removeAllObjects
	removeObjectForKey:
	setObject:forKey:
	valuePointerFunctions

	Constants
	Personality Options

	NSMessagePort Class Reference
	Overview

	NSMessagePortNameServer Class Reference
	Overview
	Tasks
	Getting the Server Object
	Getting Ports By Name

	Class Methods
	sharedInstance

	Instance Methods
	portForName:
	portForName:host:

	NSMetadataItem Class Reference
	Overview
	Adopted Protocols
	Tasks
	Getting Item Attributes

	Instance Methods
	attributes
	valueForAttribute:
	valuesForAttributes:

	NSMetadataQuery Class Reference
	Overview
	Tasks
	Creating Metadata Queries
	Configuring Queries
	Running Queries
	Getting Query Results

	Instance Methods
	delegate
	disableUpdates
	enableUpdates
	groupedResults
	groupingAttributes
	indexOfResult:
	init
	isGathering
	isStarted
	isStopped
	notificationBatchingInterval
	predicate
	resultAtIndex:
	resultCount
	results
	searchScopes
	setDelegate:
	setGroupingAttributes:
	setNotificationBatchingInterval:
	setPredicate:
	setSearchScopes:
	setSortDescriptors:
	setValueListAttributes:
	sortDescriptors
	startQuery
	stopQuery
	valueListAttributes
	valueLists
	valueOfAttribute:forResultAtIndex:

	Delegate Methods
	metadataQuery:replacementObjectForResultObject:
	metadataQuery:replacementValueForAttribute:value:

	Constants
	Metadata Query Search Scopes
	Content Relevance

	Notifications
	NSMetadataQueryDidFinishGatheringNotification
	NSMetadataQueryDidStartGatheringNotification
	NSMetadataQueryDidUpdateNotification
	NSMetadataQueryGatheringProgressNotification

	NSMetadataQueryAttributeValueTuple Class Reference
	Overview
	Tasks
	Getting Query Attribute/Value Information

	Instance Methods
	attribute
	count
	value

	NSMetadataQueryResultGroup Class Reference
	Overview
	Tasks
	Getting Query Results

	Instance Methods
	attribute
	resultAtIndex:
	resultCount
	results
	subgroups
	value

	NSMethodSignature Class Reference
	Overview
	Tasks
	Creating a Method Signature Object
	Getting Information on Argument Types
	Getting Information on Return Types
	Determining Synchronous Status

	Class Methods
	signatureWithObjCTypes:

	Instance Methods
	frameLength
	getArgumentTypeAtIndex:
	isOneway
	methodReturnLength
	methodReturnType
	numberOfArguments

	NSMiddleSpecifier Class Reference
	Overview

	NSMoveCommand Class Reference
	Overview
	Tasks
	Working with Specifiers

	Instance Methods
	keySpecifier
	setReceiversSpecifier:

	NSMutableArray Class Reference
	Overview
	Tasks
	Creating and Initializing a Mutable Array
	Adding Objects
	Removing Objects
	Replacing Objects
	Filtering Content
	Rearranging Content

	Class Methods
	arrayWithCapacity:

	Instance Methods
	addObject:
	addObjectsFromArray:
	exchangeObjectAtIndex:withObjectAtIndex:
	filterUsingPredicate:
	initWithCapacity:
	insertObject:atIndex:
	insertObjects:atIndexes:
	removeAllObjects
	removeLastObject
	removeObject:
	removeObject:inRange:
	removeObjectAtIndex:
	removeObjectIdenticalTo:
	removeObjectIdenticalTo:inRange:
	removeObjectsAtIndexes:
	removeObjectsFromIndices:numIndices:
	removeObjectsInArray:
	removeObjectsInRange:
	replaceObjectAtIndex:withObject:
	replaceObjectsAtIndexes:withObjects:
	replaceObjectsInRange:withObjectsFromArray:
	replaceObjectsInRange:withObjectsFromArray:range:
	setArray:
	sortUsingDescriptors:
	sortUsingFunction:context:
	sortUsingSelector:

	NSMutableAttributedString Class Reference
	Overview
	Tasks
	Retrieving Character Information
	Changing Characters
	Changing Attributes
	Changing Characters and Attributes
	Grouping Changes

	Instance Methods
	addAttribute:value:range:
	addAttributes:range:
	appendAttributedString:
	beginEditing
	deleteCharactersInRange:
	endEditing
	insertAttributedString:atIndex:
	mutableString
	removeAttribute:range:
	replaceCharactersInRange:withAttributedString:
	replaceCharactersInRange:withString:
	setAttributedString:
	setAttributes:range:

	Constants

	NSMutableCharacterSet Class Reference
	Overview
	Tasks
	Adding and Removing Characters
	Combining Character Sets
	Inverting a Character Set

	Instance Methods
	addCharactersInRange:
	addCharactersInString:
	formIntersectionWithCharacterSet:
	formUnionWithCharacterSet:
	invert
	removeCharactersInRange:
	removeCharactersInString:

	NSMutableData Class Reference
	Overview
	Tasks
	Creating and Initializing an NSMutableData Object
	Adjusting Capacity
	Accessing Data
	Adding Data
	Modifying Data

	Class Methods
	dataWithCapacity:
	dataWithLength:

	Instance Methods
	appendBytes:length:
	appendData:
	increaseLengthBy:
	initWithCapacity:
	initWithLength:
	mutableBytes
	replaceBytesInRange:withBytes:
	replaceBytesInRange:withBytes:length:
	resetBytesInRange:
	setData:
	setLength:

	NSMutableDictionary Class Reference
	Class at a Glance
	Overview
	Tasks
	Creating and Initializing a Mutable Dictionary
	Adding Entries to a Mutable Dictionary
	Removing Entries From a Mutable Dictionary

	Class Methods
	dictionaryWithCapacity:

	Instance Methods
	addEntriesFromDictionary:
	initWithCapacity:
	removeAllObjects
	removeObjectForKey:
	removeObjectsForKeys:
	setDictionary:
	setObject:forKey:
	setValue:forKey:

	NSMutableIndexSet Class Reference
	Overview
	Tasks
	Adding Indexes
	Removing Indexes
	Shifting Index Groups

	Instance Methods
	addIndex:
	addIndexes:
	addIndexesInRange:
	removeAllIndexes
	removeIndex:
	removeIndexes:
	removeIndexesInRange:
	shiftIndexesStartingAtIndex:by:

	NSMutableSet Class Reference
	Overview
	Tasks
	Creating a Mutable Set
	Adding and Removing Entries
	Combining and Recombining Sets

	Class Methods
	setWithCapacity:

	Instance Methods
	addObject:
	addObjectsFromArray:
	filterUsingPredicate:
	initWithCapacity:
	intersectSet:
	minusSet:
	removeAllObjects
	removeObject:
	setSet:
	unionSet:

	NSMutableString Class Reference
	Overview
	Tasks
	Creating and Initializing a Mutable String
	Modifying a String

	Class Methods
	stringWithCapacity:

	Instance Methods
	appendFormat:
	appendString:
	deleteCharactersInRange:
	initWithCapacity:
	insertString:atIndex:
	replaceCharactersInRange:withString:
	replaceOccurrencesOfString:withString:options:range:
	setString:

	NSMutableURLRequest Class Reference
	Overview
	Tasks
	Setting Request Properties
	Setting HTTP Specific Properties

	Instance Methods
	addValue:forHTTPHeaderField:
	setAllHTTPHeaderFields:
	setCachePolicy:
	setHTTPBody:
	setHTTPBodyStream:
	setHTTPMethod:
	setHTTPShouldHandleCookies:
	setMainDocumentURL:
	setTimeoutInterval:
	setURL:
	setValue:forHTTPHeaderField:

	NSNameSpecifier Class Reference
	Overview
	Tasks
	Initializing a Name Specifier
	Accessing a Name Specifier

	Instance Methods
	initWithContainerClassDescription:containerSpecifier:key:name:
	name
	setName:

	NSNetService Class Reference
	Overview
	Tasks
	Creating Network Services
	Configuring Network Services
	Managing Run Loops
	Using Network Services

	Class Methods
	dataFromTXTRecordDictionary:
	dictionaryFromTXTRecordData:

	Instance Methods
	addresses
	delegate
	domain
	getInputStream:outputStream:
	hostName
	initWithDomain:type:name:
	initWithDomain:type:name:port:
	name
	port
	protocolSpecificInformation
	publish
	publishWithOptions:
	removeFromRunLoop:forMode:
	resolve
	resolveWithTimeout:
	scheduleInRunLoop:forMode:
	setDelegate:
	setProtocolSpecificInformation:
	setTXTRecordData:
	startMonitoring
	stop
	stopMonitoring
	TXTRecordData
	type

	Delegate Methods
	netService:didNotPublish:
	netService:didNotResolve:
	netService:didUpdateTXTRecordData:
	netServiceDidPublish:
	netServiceDidResolveAddress:
	netServiceDidStop:
	netServiceWillPublish:
	netServiceWillResolve:

	Constants
	NSNetServices Errors
	NSNetServicesError
	NSNetServiceOptions

	NSNetServiceBrowser Class Reference
	Overview
	Tasks
	Creating Network Service Browsers
	Configuring Network Service Browsers
	Using Network Service Browsers
	Managing Run Loops

	Instance Methods
	delegate
	init
	removeFromRunLoop:forMode:
	scheduleInRunLoop:forMode:
	searchForAllDomains
	searchForBrowsableDomains
	searchForRegistrationDomains
	searchForServicesOfType:inDomain:
	setDelegate:
	stop

	Delegate Methods
	netServiceBrowser:didFindDomain:moreComing:
	netServiceBrowser:didFindService:moreComing:
	netServiceBrowser:didNotSearch:
	netServiceBrowser:didRemoveDomain:moreComing:
	netServiceBrowser:didRemoveService:moreComing:
	netServiceBrowserDidStopSearch:
	netServiceBrowserWillSearch:

	NSNotification Class Reference
	Overview
	NSCopying Protocol
	Creating Subclasses

	Adopted Protocols
	Tasks
	Creating Notifications
	Getting Notification Information

	Class Methods
	notificationWithName:object:
	notificationWithName:object:userInfo:

	Instance Methods
	name
	object
	userInfo

	NSNotificationCenter Class Reference
	Class at a Glance
	Overview
	Tasks
	Getting the Notification Center
	Managing Notification Observers
	Posting Notifications

	Class Methods
	defaultCenter

	Instance Methods
	addObserver:selector:name:object:
	postNotification:
	postNotificationName:object:
	postNotificationName:object:userInfo:
	removeObserver:
	removeObserver:name:object:

	NSNotificationQueue Class Reference
	Overview
	Tasks
	Creating Notification Queues
	Getting the Default Queue
	Managing Notifications

	Class Methods
	defaultQueue

	Instance Methods
	dequeueNotificationsMatching:coalesceMask:
	enqueueNotification:postingStyle:
	enqueueNotification:postingStyle:coalesceMask:forModes:
	initWithNotificationCenter:

	Constants
	NSNotificationCoalescing
	NSPostingStyle

	NSNull Class Reference
	Overview
	Adopted Protocols
	Tasks
	Obtaining an Instance

	Class Methods
	null

	NSNumber Class Reference
	Overview
	Creating a Subclass of NSNumber

	Tasks
	Creating an NSNumber Object
	Initializing an NSNumber Object
	Accessing Numeric Values
	Retrieving String Representations
	Comparing NSNumber Objects
	Accessing Type Information

	Class Methods
	numberWithBool:
	numberWithChar:
	numberWithDouble:
	numberWithFloat:
	numberWithInt:
	numberWithInteger:
	numberWithLong:
	numberWithLongLong:
	numberWithShort:
	numberWithUnsignedChar:
	numberWithUnsignedInt:
	numberWithUnsignedInteger:
	numberWithUnsignedLong:
	numberWithUnsignedLongLong:
	numberWithUnsignedShort:

	Instance Methods
	boolValue
	charValue
	compare:
	decimalValue
	descriptionWithLocale:
	doubleValue
	floatValue
	initWithBool:
	initWithChar:
	initWithDouble:
	initWithFloat:
	initWithInt:
	initWithInteger:
	initWithLong:
	initWithLongLong:
	initWithShort:
	initWithUnsignedChar:
	initWithUnsignedInt:
	initWithUnsignedInteger:
	initWithUnsignedLong:
	initWithUnsignedLongLong:
	initWithUnsignedShort:
	integerValue
	intValue
	isEqualToNumber:
	longLongValue
	longValue
	objCType
	shortValue
	stringValue
	unsignedCharValue
	unsignedIntegerValue
	unsignedIntValue
	unsignedLongLongValue
	unsignedLongValue
	unsignedShortValue

	NSNumberFormatter Class Reference
	Overview
	Tasks
	Configuring Formatter Behavior and Style
	Converting Between Numbers and Strings
	Managing Localization of Numbers
	Configuring Rounding Behavior
	Configuring Numeric Formats
	Configuring Numeric Symbols
	Configuring the Format of Currency
	Configuring Numeric Prefixes and Suffixes
	Configuring the Display of Numeric Values
	Configuring Separators and Grouping Size
	Managing the Padding of Numbers
	Managing Input Attributes
	Configuring Significant Digits
	Managing Leniency Behavior
	Managing the Validation of Partial Numeric Strings

	Class Methods
	defaultFormatterBehavior
	setDefaultFormatterBehavior:

	Instance Methods
	allowsFloats
	alwaysShowsDecimalSeparator
	attributedStringForNil
	attributedStringForNotANumber
	attributedStringForZero
	currencyCode
	currencyDecimalSeparator
	currencyGroupingSeparator
	currencySymbol
	decimalSeparator
	exponentSymbol
	format
	formatterBehavior
	formatWidth
	generatesDecimalNumbers
	getObjectValue:forString:range:error:
	groupingSeparator
	groupingSize
	hasThousandSeparators
	internationalCurrencySymbol
	isLenient
	isPartialStringValidationEnabled
	locale
	localizesFormat
	maximum
	maximumFractionDigits
	maximumIntegerDigits
	maximumSignificantDigits
	minimum
	minimumFractionDigits
	minimumIntegerDigits
	minimumSignificantDigits
	minusSign
	multiplier
	negativeFormat
	negativeInfinitySymbol
	negativePrefix
	negativeSuffix
	nilSymbol
	notANumberSymbol
	numberFromString:
	numberStyle
	paddingCharacter
	paddingPosition
	percentSymbol
	perMillSymbol
	plusSign
	positiveFormat
	positiveInfinitySymbol
	positivePrefix
	positiveSuffix
	roundingBehavior
	roundingIncrement
	roundingMode
	secondaryGroupingSize
	setAllowsFloats:
	setAlwaysShowsDecimalSeparator:
	setAttributedStringForNil:
	setAttributedStringForNotANumber:
	setAttributedStringForZero:
	setCurrencyCode:
	setCurrencyDecimalSeparator:
	setCurrencyGroupingSeparator:
	setCurrencySymbol:
	setDecimalSeparator:
	setExponentSymbol:
	setFormat:
	setFormatterBehavior:
	setFormatWidth:
	setGeneratesDecimalNumbers:
	setGroupingSeparator:
	setGroupingSize:
	setHasThousandSeparators:
	setInternationalCurrencySymbol:
	setLenient:
	setLocale:
	setLocalizesFormat:
	setMaximum:
	setMaximumFractionDigits:
	setMaximumIntegerDigits:
	setMaximumSignificantDigits:
	setMinimum:
	setMinimumFractionDigits:
	setMinimumIntegerDigits:
	setMinimumSignificantDigits:
	setMinusSign:
	setMultiplier:
	setNegativeFormat:
	setNegativeInfinitySymbol:
	setNegativePrefix:
	setNegativeSuffix:
	setNilSymbol:
	setNotANumberSymbol:
	setNumberStyle:
	setPaddingCharacter:
	setPaddingPosition:
	setPartialStringValidationEnabled:
	setPercentSymbol:
	setPerMillSymbol:
	setPlusSign:
	setPositiveFormat:
	setPositiveInfinitySymbol:
	setPositivePrefix:
	setPositiveSuffix:
	setRoundingBehavior:
	setRoundingIncrement:
	setRoundingMode:
	setSecondaryGroupingSize:
	setTextAttributesForNegativeInfinity:
	setTextAttributesForNegativeValues:
	setTextAttributesForNil:
	setTextAttributesForNotANumber:
	setTextAttributesForPositiveInfinity:
	setTextAttributesForPositiveValues:
	setTextAttributesForZero:
	setThousandSeparator:
	setUsesGroupingSeparator:
	setUsesSignificantDigits:
	setZeroSymbol:
	stringFromNumber:
	textAttributesForNegativeInfinity
	textAttributesForNegativeValues
	textAttributesForNil
	textAttributesForNotANumber
	textAttributesForPositiveInfinity
	textAttributesForPositiveValues
	textAttributesForZero
	thousandSeparator
	usesGroupingSeparator
	usesSignificantDigits
	zeroSymbol

	Constants
	NSNumberFormatterStyle
	NSNumberFormatterBehavior
	NSNumberFormatterPadPosition
	NSNumberFormatterRoundingMode

	NSObject Class Reference
	Overview
	Selectors

	Adopted Protocols
	Tasks
	Initializing a Class
	Creating, Copying, and Deallocating Objects
	Identifying Classes
	Testing Class Functionality
	Testing Protocol Conformance
	Obtaining Information About Methods
	Describing Objects
	Posing
	Sending Messages
	Forwarding Messages
	Dynamically Resolving Methods
	Error Handling
	Archiving
	Working with Class Descriptions
	Scripting

	Class Methods
	alloc
	allocWithZone:
	cancelPreviousPerformRequestsWithTarget:
	cancelPreviousPerformRequestsWithTarget:selector:object:
	class
	classFallbacksForKeyedArchiver
	classForKeyedUnarchiver
	conformsToProtocol:
	copyWithZone:
	description
	initialize
	instanceMethodForSelector:
	instanceMethodSignatureForSelector:
	instancesRespondToSelector:
	isSubclassOfClass:
	load
	mutableCopyWithZone:
	new
	poseAsClass:
	resolveClassMethod:
	resolveInstanceMethod:
	setVersion:
	superclass
	version

	Instance Methods
	attributeKeys
	awakeAfterUsingCoder:
	classCode
	classDescription
	classForArchiver
	classForCoder
	classForKeyedArchiver
	classForPortCoder
	className
	copy
	copyScriptingValue:forKey:withProperties:
	dealloc
	doesNotRecognizeSelector:
	finalize
	forwardInvocation:
	init
	inverseForRelationshipKey:
	methodForSelector:
	methodSignatureForSelector:
	mutableCopy
	newScriptingObjectOfClass:forValueForKey:withContentsValue:properties:
	performSelector:onThread:withObject:waitUntilDone:
	performSelector:onThread:withObject:waitUntilDone:modes:
	performSelector:withObject:afterDelay:
	performSelector:withObject:afterDelay:inModes:
	performSelectorInBackground:withObject:
	performSelectorOnMainThread:withObject:waitUntilDone:
	performSelectorOnMainThread:withObject:waitUntilDone:modes:
	replacementObjectForArchiver:
	replacementObjectForCoder:
	replacementObjectForKeyedArchiver:
	replacementObjectForPortCoder:
	scriptingProperties
	scriptingValueForSpecifier:
	setScriptingProperties:
	toManyRelationshipKeys
	toOneRelationshipKeys

	NSOperation Class Reference
	Overview
	Concurrent Versus Non-Concurrent Operations
	Operation Dependencies
	KVO-Compliant Properties
	Threading Considerations
	Subclassing Notes
	Methods to Override
	Responding to the Cancel Command

	Tasks
	Initialization
	Executing the Operation
	Canceling Operations
	Getting the Operation Status
	Managing Dependencies
	Prioritizing Operations in an Operation Queue

	Instance Methods
	addDependency:
	cancel
	dependencies
	init
	isCancelled
	isConcurrent
	isExecuting
	isFinished
	isReady
	main
	queuePriority
	removeDependency:
	setQueuePriority:
	start

	Constants
	NSOperationQueuePriority
	Operation Priorities

	NSOperationQueue Class Reference
	Overview
	KVO-Compliant Properties
	Threading Considerations

	Tasks
	Managing Operations in the Queue
	Managing the Number of Running Operations
	Suspending Operations

	Instance Methods
	addOperation:
	cancelAllOperations
	isSuspended
	maxConcurrentOperationCount
	operations
	setMaxConcurrentOperationCount:
	setSuspended:
	waitUntilAllOperationsAreFinished

	Constants
	Concurrent Operation Constants

	NSOutputStream Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Creating Streams
	Using Streams

	Class Methods
	outputStreamToBuffer:capacity:
	outputStreamToFileAtPath:append:
	outputStreamToMemory

	Instance Methods
	hasSpaceAvailable
	initToBuffer:capacity:
	initToFileAtPath:append:
	initToMemory
	write:maxLength:

	NSPipe Class Reference
	Overview
	Tasks
	Creating an NSPipe Object
	Getting the File Handles for a Pipe

	Class Methods
	pipe

	Instance Methods
	fileHandleForReading
	fileHandleForWriting
	init

	NSPointerArray Class Reference
	Overview
	Tasks
	Creating and Initializing a New Pointer Array
	Managing the Collection
	Getting the Pointer Functions

	Class Methods
	pointerArrayWithOptions:
	pointerArrayWithPointerFunctions:
	pointerArrayWithStrongObjects
	pointerArrayWithWeakObjects

	Instance Methods
	addPointer:
	allObjects
	compact
	count
	initWithOptions:
	initWithPointerFunctions:
	insertPointer:atIndex:
	pointerAtIndex:
	pointerFunctions
	removePointerAtIndex:
	replacePointerAtIndex:withPointer:
	setCount:

	NSPointerFunctions Class Reference
	Overview
	Tasks
	Creating and Initializing an NSPointerFunctions Object
	Personality Functions
	Memory Configuration

	Properties
	acquireFunction
	descriptionFunction
	hashFunction
	isEqualFunction
	relinquishFunction
	sizeFunction
	usesStrongWriteBarrier
	usesWeakReadAndWriteBarriers

	Class Methods
	pointerFunctionsWithOptions:

	Instance Methods
	initWithOptions:

	Constants
	NSPointerFunctionsOptions
	Memory and Personality Options

	NSPort Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Instances
	Validation
	Setting the Delegate
	Creating Connections
	Setting Information
	Port Monitoring
	Handling Port Messages

	Class Methods
	allocWithZone:
	port

	Instance Methods
	addConnection:toRunLoop:forMode:
	delegate
	invalidate
	isValid
	removeConnection:fromRunLoop:forMode:
	removeFromRunLoop:forMode:
	reservedSpaceLength
	scheduleInRunLoop:forMode:
	sendBeforeDate:components:from:reserved:
	sendBeforeDate:msgid:components:from:reserved:
	setDelegate:

	Delegate Methods
	handlePortMessage:

	Notifications
	NSPortDidBecomeInvalidNotification

	NSPortCoder Class Reference
	Overview
	Tasks
	Creating an NSPortCoder Object
	Getting the Connection
	Encoding NSPort Objects
	Checking for Encoding
	Dispatching

	Class Methods
	portCoderWithReceivePort:sendPort:components:

	Instance Methods
	connection
	decodePortObject
	dispatch
	encodePortObject:
	initWithReceivePort:sendPort:components:
	isBycopy
	isByref

	NSPortMessage Class Reference
	Overview
	Tasks
	Creating Instances
	Sending the Message
	Getting the Components
	Getting the Ports
	Accessing the Message ID

	Instance Methods
	components
	initWithSendPort:receivePort:components:
	msgid
	receivePort
	sendBeforeDate:
	sendPort
	setMsgid:

	NSPortNameServer Class Reference
	Overview
	Tasks
	Getting the Server Object
	Looking Up Ports
	Registering Ports

	Class Methods
	systemDefaultPortNameServer

	Instance Methods
	portForName:
	portForName:host:
	registerPort:name:
	removePortForName:

	NSPositionalSpecifier Class Reference
	Overview
	Tasks
	Initializing a Positional Specifier
	Accessing Information About a Positional Specifier
	Evaluating a Positional Specifier

	Instance Methods
	evaluate
	initWithPosition:objectSpecifier:
	insertionContainer
	insertionIndex
	insertionKey
	insertionReplaces
	objectSpecifier
	position
	setInsertionClassDescription:

	Constants
	NSInsertionPosition

	NSPredicate Class Reference
	Overview
	Tasks
	Constructors
	Evaluating a Predicate
	Getting Format Information

	Class Methods
	predicateWithFormat:
	predicateWithFormat:argumentArray:
	predicateWithFormat:arguments:
	predicateWithValue:

	Instance Methods
	evaluateWithObject:
	evaluateWithObject:substitutionVariables:
	predicateFormat
	predicateWithSubstitutionVariables:

	NSProcessInfo Class Reference
	Overview
	Tasks
	Getting the Process Information Agent
	Accessing Process Information
	Getting Host Information
	Getting Computer Information

	Class Methods
	processInfo

	Instance Methods
	activeProcessorCount
	arguments
	environment
	globallyUniqueString
	hostName
	operatingSystem
	operatingSystemName
	operatingSystemVersionString
	physicalMemory
	processIdentifier
	processName
	processorCount
	setProcessName:

	Constants
	NSProcessInfo—Operating Systems

	NSPropertyListSerialization Class Reference
	Overview
	Tasks
	Serializing a Property List
	Deserializing a Property List
	Validating a Property List

	Class Methods
	dataFromPropertyList:format:errorDescription:
	propertyList:isValidForFormat:
	propertyListFromData:mutabilityOption:format:errorDescription:

	Constants
	NSPropertyListMutabilityOptions
	NSPropertyListFormat

	NSPropertySpecifier Class Reference
	Overview

	NSProtocolChecker Class Reference
	Overview
	Tasks
	Creating a Checker
	Getting Information

	Class Methods
	protocolCheckerWithTarget:protocol:

	Instance Methods
	initWithTarget:protocol:
	protocol
	target

	NSProxy Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Instances
	Deallocating Instances
	Finalizing an Object
	Handling Unimplemented Methods
	Introspecting a Proxy Class
	Describing a Proxy Class or Object

	Class Methods
	alloc
	allocWithZone:
	class
	respondsToSelector:

	Instance Methods
	dealloc
	description
	finalize
	forwardInvocation:
	methodSignatureForSelector:

	NSQuitCommand Class Reference
	Overview
	Tasks
	Accessing Options

	Instance Methods
	saveOptions

	NSRandomSpecifier Class Reference
	Overview

	NSRangeSpecifier Class Reference
	Overview
	Tasks
	Initializing a Range Specifier
	Accessing a Range Specifier

	Instance Methods
	endSpecifier
	initWithContainerClassDescription:containerSpecifier:key:startSpecifier: endSpecifier:
	setEndSpecifier:
	setStartSpecifier:
	startSpecifier

	NSRecursiveLock Class Reference
	Overview
	Adopted Protocols
	Tasks
	Acquiring a Lock
	Naming the Lock

	Instance Methods
	lockBeforeDate:
	name
	setName:
	tryLock

	NSRelativeSpecifier Class Reference
	Overview
	Tasks
	Initializing a Relative Specifier
	Accessing a Relative Specifier

	Instance Methods
	baseSpecifier
	initWithContainerClassDescription:containerSpecifier:key:relativePosition: baseSpecifier:
	relativePosition
	setBaseSpecifier:
	setRelativePosition:

	Constants
	NSRelativePosition

	NSRunLoop Class Reference
	Overview
	Tasks
	Accessing Run Loops and Modes
	Managing Timers
	Managing Ports
	Configuring as Server Process
	Running a Loop
	Scheduling and Canceling Messages

	Class Methods
	currentRunLoop
	mainRunLoop

	Instance Methods
	acceptInputForMode:beforeDate:
	addPort:forMode:
	addTimer:forMode:
	cancelPerformSelector:target:argument:
	cancelPerformSelectorsWithTarget:
	configureAsServer
	currentMode
	getCFRunLoop
	limitDateForMode:
	performSelector:target:argument:order:modes:
	removePort:forMode:
	run
	runMode:beforeDate:
	runUntilDate:

	Constants
	Run Loop Modes

	NSScanner Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an Scanner
	Getting a Scanner’s String
	Configuring a Scanner
	Scanning a String

	Class Methods
	localizedScannerWithString:
	scannerWithString:

	Instance Methods
	caseSensitive
	charactersToBeSkipped
	initWithString:
	isAtEnd
	locale
	scanCharactersFromSet:intoString:
	scanDecimal:
	scanDouble:
	scanFloat:
	scanHexDouble:
	scanHexFloat:
	scanHexInt:
	scanHexLongLong:
	scanInt:
	scanInteger:
	scanLocation
	scanLongLong:
	scanString:intoString:
	scanUpToCharactersFromSet:intoString:
	scanUpToString:intoString:
	setCaseSensitive:
	setCharactersToBeSkipped:
	setLocale:
	setScanLocation:
	string

	NSScriptClassDescription Class Reference
	Overview
	Tasks
	Initializing a Script Class Description
	Getting a Script Class Description
	Getting Basic Information About the Script Class
	Getting and Comparing Apple Event Codes
	Getting Attribute and Relationship Information
	Getting Command Information

	Class Methods
	classDescriptionForClass:

	Instance Methods
	appleEventCode
	appleEventCodeForKey:
	classDescriptionForKey:
	className
	defaultSubcontainerAttributeKey
	hasOrderedToManyRelationshipForKey:
	hasPropertyForKey:
	hasReadablePropertyForKey:
	hasWritablePropertyForKey:
	implementationClassName
	initWithSuiteName:className:dictionary:
	isLocationRequiredToCreateForKey:
	isReadOnlyKey:
	keyWithAppleEventCode:
	matchesAppleEventCode:
	selectorForCommand:
	suiteName
	superclassDescription
	supportsCommand:
	typeForKey:

	NSScriptCoercionHandler Class Reference
	Overview
	Tasks
	Accessing the Application’s Handler
	Working with Handlers

	Class Methods
	sharedCoercionHandler

	Instance Methods
	coerceValue:toClass:
	registerCoercer:selector:toConvertFromClass:toClass:

	NSScriptCommand Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing a Script Command
	Getting the Current Command
	Getting the Apple Event
	Executing the Command
	Accessing Receivers
	Accessing Arguments
	Accessing the Direct Parameter
	Getting Command Information
	Handling Script Execution Errors
	Suspending and Resuming Commands

	Class Methods
	currentCommand

	Instance Methods
	appleEvent
	arguments
	commandDescription
	directParameter
	evaluatedArguments
	evaluatedReceivers
	executeCommand
	initWithCommandDescription:
	isWellFormed
	performDefaultImplementation
	receiversSpecifier
	resumeExecutionWithResult:
	scriptErrorExpectedTypeDescriptor
	scriptErrorNumber
	scriptErrorOffendingObjectDescriptor
	scriptErrorString
	setArguments:
	setDirectParameter:
	setReceiversSpecifier:
	setScriptErrorExpectedTypeDescriptor:
	setScriptErrorNumber:
	setScriptErrorOffendingObjectDescriptor:
	setScriptErrorString:
	suspendExecution

	Constants
	NSScriptCommand—General Command Execution Errors

	NSScriptCommandDescription Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing a Script Command Description
	Getting Basic Information About the Command
	Getting Command Argument Information
	Getting Command Return-Type Information
	Creating Commands

	Instance Methods
	appleEventClassCode
	appleEventCode
	appleEventCodeForArgumentWithName:
	appleEventCodeForReturnType
	argumentNames
	commandClassName
	commandName
	createCommandInstance
	createCommandInstanceWithZone:
	initWithSuiteName:commandName:dictionary:
	isOptionalArgumentWithName:
	returnType
	suiteName
	typeForArgumentWithName:

	NSScriptExecutionContext Class Reference
	Overview
	Tasks
	Getting the Current Context
	Getting and Setting the Container Object

	Class Methods
	sharedScriptExecutionContext

	Instance Methods
	objectBeingTested
	rangeContainerObject
	setObjectBeingTested:
	setRangeContainerObject:
	setTopLevelObject:
	topLevelObject

	NSScriptObjectSpecifier Class Reference
	Overview
	Adopted Protocols
	Tasks
	Obtaining an Object Specifier for a Descriptor
	Initializing an Object Specifier
	Evaluating an Object Specifier
	Getting, Testing, and Setting Containers
	Getting and Setting Child References
	Getting and Setting Object Keys
	Getting Evaluation Errors
	Getting a Descriptor for the Object Specifier

	Class Methods
	objectSpecifierWithDescriptor:

	Instance Methods
	childSpecifier
	containerClassDescription
	containerIsObjectBeingTested
	containerIsRangeContainerObject
	containerSpecifier
	descriptor
	evaluationErrorNumber
	evaluationErrorSpecifier
	indicesOfObjectsByEvaluatingWithContainer:count:
	initWithContainerClassDescription:containerSpecifier:key:
	initWithContainerSpecifier:key:
	key
	keyClassDescription
	objectsByEvaluatingSpecifier
	objectsByEvaluatingWithContainers:
	setChildSpecifier:
	setContainerClassDescription:
	setContainerIsObjectBeingTested:
	setContainerIsRangeContainerObject:
	setContainerSpecifier:
	setEvaluationErrorNumber:
	setKey:

	Constants
	NSScriptObjectSpecifier—Specifier Evaluation Errors

	NSScriptSuiteRegistry Class Reference
	Overview
	Tasks
	Getting and Setting the Shared Instance
	Getting Suite Information
	Getting and Registering Class Descriptions
	Getting and Registering Command Descriptions
	Getting Other Suite Information
	Loading Suites

	Class Methods
	setSharedScriptSuiteRegistry:
	sharedScriptSuiteRegistry

	Instance Methods
	aeteResource:
	appleEventCodeForSuite:
	bundleForSuite:
	classDescriptionsInSuite:
	classDescriptionWithAppleEventCode:
	commandDescriptionsInSuite:
	commandDescriptionWithAppleEventClass:andAppleEventCode:
	loadSuitesFromBundle:
	loadSuiteWithDictionary:fromBundle:
	registerClassDescription:
	registerCommandDescription:
	suiteForAppleEventCode:
	suiteNames

	NSScriptWhoseTest Class Reference
	Overview
	Adopted Protocols
	Tasks
	Evaluating a Test

	Instance Methods
	isTrue

	NSSerializer Class Reference
	Overview
	Tasks
	Serializing a Property List

	Class Methods
	serializePropertyList:
	serializePropertyList:intoData:

	NSSet Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Set
	Initializing a Set
	Counting Entries
	Accessing Set Members
	Comparing Sets
	Key-Value Observing
	Describing a Set

	Class Methods
	set
	setWithArray:
	setWithObject:
	setWithObjects:
	setWithObjects:count:
	setWithSet:

	Instance Methods
	addObserver:forKeyPath:options:context:
	allObjects
	anyObject
	containsObject:
	count
	description
	descriptionWithLocale:
	filteredSetUsingPredicate:
	initWithArray:
	initWithObjects:
	initWithObjects:count:
	initWithSet:
	initWithSet:copyItems:
	intersectsSet:
	isEqualToSet:
	isSubsetOfSet:
	makeObjectsPerformSelector:
	makeObjectsPerformSelector:withObject:
	member:
	objectEnumerator
	removeObserver:forKeyPath:
	setByAddingObject:
	setByAddingObjectsFromArray:
	setByAddingObjectsFromSet:
	setValue:forKey:
	valueForKey:

	NSSetCommand Class Reference
	Overview
	Tasks
	Working with Specifiers

	Instance Methods
	keySpecifier
	setReceiversSpecifier:

	NSSocketPort Class Reference
	Overview
	Tasks
	Creating Instances
	Getting Information

	Instance Methods
	address
	init
	initRemoteWithProtocolFamily:socketType:protocol:address:
	initRemoteWithTCPPort:host:
	initWithProtocolFamily:socketType:protocol:address:
	initWithProtocolFamily:socketType:protocol:socket:
	initWithTCPPort:
	protocol
	protocolFamily
	socket
	socketType

	NSSocketPortNameServer Class Reference
	Overview
	Tasks
	Getting the Server Object
	Looking Up Ports
	Registering and Removing Ports
	Configuring the Default Port Number

	Class Methods
	sharedInstance

	Instance Methods
	defaultNameServerPortNumber
	portForName:
	portForName:host:
	portForName:host:nameServerPortNumber:
	registerPort:name:
	registerPort:name:nameServerPortNumber:
	removePortForName:
	setDefaultNameServerPortNumber:

	NSSortDescriptor Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing a Sort Descriptor
	Getting Information About a Sort Descriptor
	Using Sort Descriptors

	Instance Methods
	ascending
	compareObject:toObject:
	initWithKey:ascending:
	initWithKey:ascending:selector:
	key
	reversedSortDescriptor
	selector

	NSSpecifierTest Class Reference
	Overview
	Tasks
	Initializing a Specifier Test

	Instance Methods
	initWithObjectSpecifier:comparisonOperator:testObject:

	Constants
	NSTestComparisonOperation

	NSSpellServer Class Reference
	Overview
	Tasks
	Configuring Spelling Servers
	Providing Spelling Services
	Managing the Spell-Checking Process

	Instance Methods
	delegate
	isWordInUserDictionaries:caseSensitive:
	registerLanguage:byVendor:
	run
	setDelegate:

	Delegate Methods
	spellServer:checkGrammarInString:language:details:
	spellServer:didForgetWord:inLanguage:
	spellServer:didLearnWord:inLanguage:
	spellServer:findMisspelledWordInString:language:wordCount:countOnly:
	spellServer:suggestCompletionsForPartialWordRange:inString:language:
	spellServer:suggestGuessesForWord:inLanguage:

	Constants
	Grammatical-Analysis Details

	NSStream Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Creating Streams
	Configuring Streams
	Using Streams
	Managing Run Loops
	Getting Stream Information

	Class Methods
	getStreamsToHost:port:inputStream:outputStream:

	Instance Methods
	close
	delegate
	open
	propertyForKey:
	removeFromRunLoop:forMode:
	scheduleInRunLoop:forMode:
	setDelegate:
	setProperty:forKey:
	streamError
	streamStatus

	Delegate Methods
	stream:handleEvent:

	Constants
	NSStreamStatus
	Stream Status Constants
	NSStreamEvent
	Stream Event Constants
	NSStream Property Keys
	NSStream Error Domains
	Secure-Socket Layer (SSL) Security Level
	SOCKS Proxy Configuration Values

	NSString Class Reference
	Overview
	String Objects
	Understanding characters
	Interpreting UTF-16-encoded data
	Distributed objects

	Subclassing Notes
	Methods to Override
	Alternatives to Subclassing

	Adopted Protocols
	Tasks
	Creating and Initializing Strings
	Creating and Initializing a String from a File
	Creating and Initializing a String from an URL
	Writing to a File or URL
	Getting a String’s Length
	Getting Characters and Bytes
	Getting C Strings
	Combining Strings
	Dividing Strings
	Finding Characters and Substrings
	Replacing Substrings
	Determining Line and Paragraph Ranges
	Determining Composed Character Sequences
	Converting String Contents Into a Property List
	Identifying and Comparing Strings
	Folding Strings
	Getting a Shared Prefix
	Changing Case
	Getting Strings with Mapping
	Getting Numeric Values
	Working with Encodings
	Working with Paths
	Working with URLs

	Class Methods
	availableStringEncodings
	defaultCStringEncoding
	localizedNameOfStringEncoding:
	localizedStringWithFormat:
	pathWithComponents:
	string
	stringWithCharacters:length:
	stringWithContentsOfFile:
	stringWithContentsOfFile:encoding:error:
	stringWithContentsOfFile:usedEncoding:error:
	stringWithContentsOfURL:
	stringWithContentsOfURL:encoding:error:
	stringWithContentsOfURL:usedEncoding:error:
	stringWithCString:
	stringWithCString:encoding:
	stringWithCString:length:
	stringWithFormat:
	stringWithString:
	stringWithUTF8String:

	Instance Methods
	boolValue
	canBeConvertedToEncoding:
	capitalizedString
	caseInsensitiveCompare:
	characterAtIndex:
	commonPrefixWithString:options:
	compare:
	compare:options:
	compare:options:range:
	compare:options:range:locale:
	completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:
	componentsSeparatedByCharactersInSet:
	componentsSeparatedByString:
	cString
	cStringLength
	cStringUsingEncoding:
	dataUsingEncoding:
	dataUsingEncoding:allowLossyConversion:
	decomposedStringWithCanonicalMapping
	decomposedStringWithCompatibilityMapping
	description
	doubleValue
	fastestEncoding
	fileSystemRepresentation
	floatValue
	getBytes:maxLength:usedLength:encoding:options:range:remainingRange:
	getCharacters:
	getCharacters:range:
	getCString:
	getCString:maxLength:
	getCString:maxLength:encoding:
	getCString:maxLength:range:remainingRange:
	getFileSystemRepresentation:maxLength:
	getLineStart:end:contentsEnd:forRange:
	getParagraphStart:end:contentsEnd:forRange:
	hash
	hasPrefix:
	hasSuffix:
	init
	initWithBytes:length:encoding:
	initWithBytesNoCopy:length:encoding:freeWhenDone:
	initWithCharacters:length:
	initWithCharactersNoCopy:length:freeWhenDone:
	initWithContentsOfFile:
	initWithContentsOfFile:encoding:error:
	initWithContentsOfFile:usedEncoding:error:
	initWithContentsOfURL:
	initWithContentsOfURL:encoding:error:
	initWithContentsOfURL:usedEncoding:error:
	initWithCString:
	initWithCString:encoding:
	initWithCString:length:
	initWithCStringNoCopy:length:freeWhenDone:
	initWithData:encoding:
	initWithFormat:
	initWithFormat:arguments:
	initWithFormat:locale:
	initWithFormat:locale:arguments:
	initWithString:
	initWithUTF8String:
	integerValue
	intValue
	isAbsolutePath
	isEqualToString:
	lastPathComponent
	length
	lengthOfBytesUsingEncoding:
	lineRangeForRange:
	localizedCaseInsensitiveCompare:
	localizedCompare:
	longLongValue
	lossyCString
	lowercaseString
	maximumLengthOfBytesUsingEncoding:
	paragraphRangeForRange:
	pathComponents
	pathExtension
	precomposedStringWithCanonicalMapping
	precomposedStringWithCompatibilityMapping
	propertyList
	propertyListFromStringsFileFormat
	rangeOfCharacterFromSet:
	rangeOfCharacterFromSet:options:
	rangeOfCharacterFromSet:options:range:
	rangeOfComposedCharacterSequenceAtIndex:
	rangeOfComposedCharacterSequencesForRange:
	rangeOfString:
	rangeOfString:options:
	rangeOfString:options:range:
	rangeOfString:options:range:locale:
	smallestEncoding
	stringByAbbreviatingWithTildeInPath
	stringByAddingPercentEscapesUsingEncoding:
	stringByAppendingFormat:
	stringByAppendingPathComponent:
	stringByAppendingPathExtension:
	stringByAppendingString:
	stringByDeletingLastPathComponent
	stringByDeletingPathExtension
	stringByExpandingTildeInPath
	stringByFoldingWithOptions:locale:
	stringByPaddingToLength:withString:startingAtIndex:
	stringByReplacingCharactersInRange:withString:
	stringByReplacingOccurrencesOfString:withString:
	stringByReplacingOccurrencesOfString:withString:options:range:
	stringByReplacingPercentEscapesUsingEncoding:
	stringByResolvingSymlinksInPath
	stringByStandardizingPath
	stringByTrimmingCharactersInSet:
	stringsByAppendingPaths:
	substringFromIndex:
	substringToIndex:
	substringWithRange:
	uppercaseString
	UTF8String
	writeToFile:atomically:
	writeToFile:atomically:encoding:error:
	writeToURL:atomically:
	writeToURL:atomically:encoding:error:

	Constants
	unichar
	NSMaximumStringLength
	NSStringCompareOptions
	Search and Comparison Options
	NSStringEncodingConversionOptions
	Encoding Conversion Options
	NSString Handling Exception Names
	NSStringEncoding
	String Encodings

	NSTask Class Reference
	Overview
	Tasks
	Creating and Initializing an NSTask Object
	Returning Task Information
	Running and Stopping a Task
	Querying the Task State
	Configuring an NSTask Object

	Class Methods
	launchedTaskWithLaunchPath:arguments:

	Instance Methods
	arguments
	currentDirectoryPath
	environment
	init
	interrupt
	isRunning
	launch
	launchPath
	processIdentifier
	resume
	setArguments:
	setCurrentDirectoryPath:
	setEnvironment:
	setLaunchPath:
	setStandardError:
	setStandardInput:
	setStandardOutput:
	standardError
	standardInput
	standardOutput
	suspend
	terminate
	terminationStatus
	waitUntilExit

	Notifications
	NSTaskDidTerminateNotification

	NSThread Class Reference
	Overview
	Subclassing Notes

	Tasks
	Initializing an NSThread Object
	Starting a Thread
	Stopping a Thread
	Determining the Thread’s Execution State
	Working with the Main Thread
	Querying the Environment
	Working with Thread Properties
	Working with Thread Priorities

	Class Methods
	callStackReturnAddresses
	currentThread
	detachNewThreadSelector:toTarget:withObject:
	exit
	isMainThread
	isMultiThreaded
	mainThread
	setThreadPriority:
	sleepForTimeInterval:
	sleepUntilDate:
	threadPriority

	Instance Methods
	cancel
	init
	initWithTarget:selector:object:
	isCancelled
	isExecuting
	isFinished
	isMainThread
	main
	name
	setName:
	setStackSize:
	stackSize
	start
	threadDictionary

	Notifications
	NSDidBecomeSingleThreadedNotification
	NSThreadWillExitNotification
	NSWillBecomeMultiThreadedNotification

	NSTimer Class Reference
	Overview
	Tasks
	Creating a Timer
	Firing a Timer
	Stopping a Timer
	Information About a Timer

	Class Methods
	scheduledTimerWithTimeInterval:invocation:repeats:
	scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:
	timerWithTimeInterval:invocation:repeats:
	timerWithTimeInterval:target:selector:userInfo:repeats:

	Instance Methods
	fire
	fireDate
	initWithFireDate:interval:target:selector:userInfo:repeats:
	invalidate
	isValid
	setFireDate:
	timeInterval
	userInfo

	NSTimeZone Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating and Initializing Time Zone Objects
	Working with System Time Zones
	Getting Time Zone Information
	Getting Information About a Specific Time Zone
	Comparing Time Zones
	Describing a Time Zone
	Getting Information About Daylight Saving

	Class Methods
	abbreviationDictionary
	defaultTimeZone
	knownTimeZoneNames
	localTimeZone
	resetSystemTimeZone
	setDefaultTimeZone:
	systemTimeZone
	timeZoneForSecondsFromGMT:
	timeZoneWithAbbreviation:
	timeZoneWithName:
	timeZoneWithName:data:

	Instance Methods
	abbreviation
	abbreviationForDate:
	data
	daylightSavingTimeOffset
	daylightSavingTimeOffsetForDate:
	description
	initWithName:
	initWithName:data:
	isDaylightSavingTime
	isDaylightSavingTimeForDate:
	isEqualToTimeZone:
	localizedName:locale:
	name
	nextDaylightSavingTimeTransition
	nextDaylightSavingTimeTransitionAfterDate:
	secondsFromGMT
	secondsFromGMTForDate:

	Constants
	NSTimeZoneNameStyle
	Time Zone Name Styles

	Notifications
	NSSystemTimeZoneDidChangeNotification

	NSUnarchiver Class Reference
	Overview
	Tasks
	Initializing an NSUnarchiver
	Decoding Objects
	Managing an NSUnarchiver
	Substituting Classes or Objects

	Class Methods
	classNameDecodedForArchiveClassName:
	decodeClassName:asClassName:
	unarchiveObjectWithData:
	unarchiveObjectWithFile:

	Instance Methods
	classNameDecodedForArchiveClassName:
	decodeClassName:asClassName:
	initForReadingWithData:
	isAtEnd
	objectZone
	replaceObject:withObject:
	setObjectZone:
	systemVersion

	NSUndoManager Class Reference
	Overview
	Tasks
	Registering Undo Operations
	Checking Undo Ability
	Performing Undo and Redo
	Limiting the Undo Stack
	Creating Undo Groups
	Disabling Undo
	Checking Whether Undo or Redo Is Being Performed
	Clearing Undo Operations
	Managing the Action Name
	Getting and Localizing the Menu Item Title
	Working with Run Loops

	Instance Methods
	beginUndoGrouping
	canRedo
	canUndo
	disableUndoRegistration
	enableUndoRegistration
	endUndoGrouping
	forwardInvocation:
	groupingLevel
	groupsByEvent
	isRedoing
	isUndoing
	isUndoRegistrationEnabled
	levelsOfUndo
	prepareWithInvocationTarget:
	redo
	redoActionName
	redoMenuItemTitle
	redoMenuTitleForUndoActionName:
	registerUndoWithTarget:selector:object:
	removeAllActions
	removeAllActionsWithTarget:
	runLoopModes
	setActionName:
	setGroupsByEvent:
	setLevelsOfUndo:
	setRunLoopModes:
	undo
	undoActionName
	undoMenuItemTitle
	undoMenuTitleForUndoActionName:
	undoNestedGroup

	Constants
	NSUndoCloseGroupingRunLoopOrdering

	Notifications
	NSUndoManagerCheckpointNotification
	NSUndoManagerDidOpenUndoGroupNotification
	NSUndoManagerDidRedoChangeNotification
	NSUndoManagerDidUndoChangeNotification
	NSUndoManagerWillCloseUndoGroupNotification
	NSUndoManagerWillRedoChangeNotification
	NSUndoManagerWillUndoChangeNotification

	NSUniqueIDSpecifier Class Reference
	Overview
	Tasks
	Initializing a Unique ID Specifier
	Accessing Unique ID Information

	Instance Methods
	initWithContainerClassDescription:containerSpecifier:key:uniqueID:
	setUniqueID:
	uniqueID

	NSURL Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSURL
	Identifying and Comparing Objects
	Querying an NSURL
	Loading the Resource of an NSURL Object
	Accessing the Parts of the URL

	Class Methods
	fileURLWithPath:
	fileURLWithPath:isDirectory:
	URLWithString:
	URLWithString:relativeToURL:

	Instance Methods
	absoluteString
	absoluteURL
	baseURL
	fragment
	host
	initFileURLWithPath:
	initFileURLWithPath:isDirectory:
	initWithScheme:host:path:
	initWithString:
	initWithString:relativeToURL:
	isEqual:
	isFileURL
	loadResourceDataNotifyingClient:usingCache:
	parameterString
	password
	path
	port
	propertyForKey:
	query
	relativePath
	relativeString
	resourceDataUsingCache:
	resourceSpecifier
	scheme
	setProperty:forKey:
	setResourceData:
	standardizedURL
	URLHandleUsingCache:
	user

	Constants
	NSURL Schemes
	NSURLHandle FTP Property Keys
	NSURLHandle HTTP Property Keys

	NSURLAuthenticationChallenge Class Reference
	Overview
	Tasks
	Creating an Authentication Challenge Instance
	Getting Authentication Challenge Properties

	Instance Methods
	error
	failureResponse
	initWithAuthenticationChallenge:sender:
	initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse: error:sender:
	previousFailureCount
	proposedCredential
	protectionSpace
	sender

	NSURLCache Class Reference
	Overview
	Tasks
	Getting and Setting Shared Cache
	Creating a New Cache Object
	Getting and Storing Cached Objects
	Removing Cached Objects
	Getting and Setting On-disk Cache Properties
	Getting and Setting In-memory Cache Properties

	Class Methods
	setSharedURLCache:
	sharedURLCache

	Instance Methods
	cachedResponseForRequest:
	currentDiskUsage
	currentMemoryUsage
	diskCapacity
	initWithMemoryCapacity:diskCapacity:diskPath:
	memoryCapacity
	removeAllCachedResponses
	removeCachedResponseForRequest:
	setDiskCapacity:
	setMemoryCapacity:
	storeCachedResponse:forRequest:

	NSURLConnection Class Reference
	Overview
	Tasks
	Preflighting a Request
	Loading Data Synchronously
	Loading Data Asynchronously
	Stopping a Connection
	Runloop Scheduling
	Connection Authentication
	Connection Data and Responses
	Connection Completion

	Class Methods
	canHandleRequest:
	connectionWithRequest:delegate:
	sendSynchronousRequest:returningResponse:error:

	Instance Methods
	cancel
	initWithRequest:delegate:
	initWithRequest:delegate:startImmediately:
	scheduleInRunLoop:forMode:
	start
	unscheduleFromRunLoop:forMode:

	Delegate Methods
	connection:didCancelAuthenticationChallenge:
	connection:didFailWithError:
	connection:didReceiveAuthenticationChallenge:
	connection:didReceiveData:
	connection:didReceiveResponse:
	connection:willCacheResponse:
	connection:willSendRequest:redirectResponse:
	connectionDidFinishLoading:

	NSURLCredential Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Credential
	Getting Credential Properties

	Class Methods
	credentialWithUser:password:persistence:

	Instance Methods
	hasPassword
	initWithUser:password:persistence:
	password
	persistence
	user

	Constants
	NSURLCredentialPersistence

	NSURLCredentialStorage Class Reference
	Overview
	Tasks
	Getting the Credential Storage
	Getting and Setting Default Credentials
	Adding and Removing Credentials
	Retrieving Credentials

	Class Methods
	sharedCredentialStorage

	Instance Methods
	allCredentials
	credentialsForProtectionSpace:
	defaultCredentialForProtectionSpace:
	removeCredential:forProtectionSpace:
	setCredential:forProtectionSpace:
	setDefaultCredential:forProtectionSpace:

	Notifications
	NSURLCredentialStorageChangedNotification

	NSURLDownload Class Reference
	Overview
	Tasks
	Creating a Download Instance
	Resuming Partial Downloads
	Canceling a Download
	Getting Download Properties
	Setting the Destination Path
	Download progress

	Class Methods
	canResumeDownloadDecodedWithEncodingMIMEType:

	Instance Methods
	cancel
	deletesFileUponFailure
	initWithRequest:delegate:
	initWithResumeData:delegate:path:
	request
	resumeData
	setDeletesFileUponFailure:
	setDestination:allowOverwrite:

	Delegate Methods
	download:decideDestinationWithSuggestedFilename:
	download:didCancelAuthenticationChallenge:
	download:didCreateDestination:
	download:didFailWithError:
	download:didReceiveAuthenticationChallenge:
	download:didReceiveDataOfLength:
	download:didReceiveResponse:
	download:shouldDecodeSourceDataOfMIMEType:
	download:willResumeWithResponse:fromByte:
	download:willSendRequest:redirectResponse:
	downloadDidBegin:
	downloadDidFinish:

	NSURLHandle Class Reference
	Overview
	Tasks
	Constructing NSURLHandles
	Managing Subclasses
	Managing Clients
	Setting and Getting Resource Properties
	Loading Resource Data
	Writing Resource Data

	Class Methods
	cachedHandleForURL:
	canInitWithURL:
	registerURLHandleClass:
	URLHandleClassForURL:

	Instance Methods
	addClient:
	availableResourceData
	backgroundLoadDidFailWithReason:
	beginLoadInBackground
	cancelLoadInBackground
	didLoadBytes:loadComplete:
	endLoadInBackground
	expectedResourceDataSize
	failureReason
	flushCachedData
	initWithURL:cached:
	loadInBackground
	loadInForeground
	propertyForKey:
	propertyForKeyIfAvailable:
	removeClient:
	resourceData
	status
	writeData:
	writeProperty:forKey:

	Constants
	NSURLHandleStatus

	NSURLProtectionSpace Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Protection Space
	Getting Protection Space Properties

	Instance Methods
	authenticationMethod
	host
	initWithHost:port:protocol:realm:authenticationMethod:
	initWithProxyHost:port:type:realm:authenticationMethod:
	isProxy
	port
	protocol
	proxyType
	realm
	receivesCredentialSecurely

	Constants
	NSURLProtectionSpace Proxy Types
	NSURLProtectionSpace Authentication Methods

	NSURLProtocol Class Reference
	Overview
	Tasks
	Creating Protocol Objects
	Registering and Unregistering Protocol Classes
	Getting and Setting Request Properties
	Determining If a Subclass Can Handle a Request
	Providing a Canonical Version of a Request
	Determining If Requests Are Cache Equivalent
	Starting and Stopping Downloads
	Getting Protocol Attributes

	Class Methods
	canInitWithRequest:
	canonicalRequestForRequest:
	propertyForKey:inRequest:
	registerClass:
	removePropertyForKey:inRequest:
	requestIsCacheEquivalent:toRequest:
	setProperty:forKey:inRequest:
	unregisterClass:

	Instance Methods
	cachedResponse
	client
	initWithRequest:cachedResponse:client:
	request
	startLoading
	stopLoading

	NSURLRequest Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Requests
	Getting Request Properties
	Getting HTTP Request Properties

	Class Methods
	requestWithURL:
	requestWithURL:cachePolicy:timeoutInterval:

	Instance Methods
	allHTTPHeaderFields
	cachePolicy
	HTTPBody
	HTTPBodyStream
	HTTPMethod
	HTTPShouldHandleCookies
	initWithURL:
	initWithURL:cachePolicy:timeoutInterval:
	mainDocumentURL
	timeoutInterval
	URL
	valueForHTTPHeaderField:

	Constants
	NSURLRequestCachePolicy

	NSURLResponse Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Response
	Getting the Response Properties

	Instance Methods
	expectedContentLength
	initWithURL:MIMEType:expectedContentLength:textEncodingName:
	MIMEType
	suggestedFilename
	textEncodingName
	URL

	Constants
	Response Length Unknown Error

	NSUserDefaults Class Reference
	Overview
	Tasks
	Getting the Shared NSUserDefaults Instance
	Initializing an NSUserDefaults Object
	Getting a Default Value
	Setting and Removing Defaults
	Registering Defaults
	Maintaining Persistent Domains
	Accessing Managed Environment Keys
	Managing the Search List
	Maintaining Volatile Domains
	Maintaining Suites

	Class Methods
	resetStandardUserDefaults
	standardUserDefaults

	Instance Methods
	addSuiteNamed:
	arrayForKey:
	boolForKey:
	dataForKey:
	dictionaryForKey:
	dictionaryRepresentation
	floatForKey:
	init
	initWithUser:
	integerForKey:
	objectForKey:
	objectIsForcedForKey:
	objectIsForcedForKey:inDomain:
	persistentDomainForName:
	persistentDomainNames
	registerDefaults:
	removeObjectForKey:
	removePersistentDomainForName:
	removeSuiteNamed:
	removeVolatileDomainForName:
	setBool:forKey:
	setFloat:forKey:
	setInteger:forKey:
	setObject:forKey:
	setPersistentDomain:forName:
	setVolatileDomain:forName:
	stringArrayForKey:
	stringForKey:
	synchronize
	volatileDomainForName:
	volatileDomainNames

	Constants
	NSUserDefaults Domains
	Language-Dependent Date/Time Information
	Language-Dependent Numeric Information

	Notifications
	NSUserDefaultsDidChangeNotification

	NSValue Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSValue
	Accessing Data
	Comparing Objects

	Class Methods
	value:withObjCType:
	valueWithBytes:objCType:
	valueWithNonretainedObject:
	valueWithPoint:
	valueWithPointer:
	valueWithRange:
	valueWithRect:
	valueWithSize:

	Instance Methods
	getValue:
	initWithBytes:objCType:
	isEqualToValue:
	nonretainedObjectValue
	objCType
	pointerValue
	pointValue
	rangeValue
	rectValue
	sizeValue

	NSValueTransformer Class Reference
	Overview
	Example

	Tasks
	Using Name-based Registry
	Getting Information About a Transformer
	Using Transformers

	Class Methods
	allowsReverseTransformation
	setValueTransformer:forName:
	transformedValueClass
	valueTransformerForName:
	valueTransformerNames

	Instance Methods
	reverseTransformedValue:
	transformedValue:

	Constants
	Named Value Transformers

	NSWhoseSpecifier Class Reference
	Overview
	Tasks
	Initializing a Whose Specifier
	Accessing Information About a Whose Specifier

	Instance Methods
	endSubelementIdentifier
	endSubelementIndex
	initWithContainerClassDescription:containerSpecifier:key:test:
	setEndSubelementIdentifier:
	setEndSubelementIndex:
	setStartSubelementIdentifier:
	setStartSubelementIndex:
	setTest:
	startSubelementIdentifier
	startSubelementIndex
	test

	Constants
	NSWhoseSubelementIdentifier

	NSXMLDocument Class Reference
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations

	Tasks
	Initializing NSXMLDocument Objects
	Managing Document Attributes
	Managing the Root Element
	Adding and Removing Child Nodes
	Transforming a Document Using XSLT
	Writing a Document as XML Data
	Validating a Document

	Class Methods
	replacementClassForClass:

	Instance Methods
	addChild:
	characterEncoding
	documentContentKind
	DTD
	initWithContentsOfURL:options:error:
	initWithData:options:error:
	initWithRootElement:
	initWithXMLString:options:error:
	insertChild:atIndex:
	insertChildren:atIndex:
	isStandalone
	MIMEType
	objectByApplyingXSLT:arguments:error:
	objectByApplyingXSLTAtURL:arguments:error:
	objectByApplyingXSLTString:arguments:error:
	removeChildAtIndex:
	replaceChildAtIndex:withNode:
	rootElement
	setCharacterEncoding:
	setChildren:
	setDocumentContentKind:
	setDTD:
	setMIMEType:
	setRootElement:
	setStandalone:
	setURI:
	setVersion:
	URI
	validateAndReturnError:
	version
	XMLData
	XMLDataWithOptions:

	Constants
	Input and Output Options
	NSXMLDocumentContentKind
	Document Content Types

	NSXMLDTD Class Reference
	Overview
	Tasks
	Initializing an NSXMLDTD Object
	Managing DTD Identifiers
	Manipulating Child Nodes
	Getting DTD Nodes by Name

	Class Methods
	predefinedEntityDeclarationForName:

	Instance Methods
	addChild:
	attributeDeclarationForName:elementName:
	elementDeclarationForName:
	entityDeclarationForName:
	initWithContentsOfURL:options:error:
	initWithData:options:error:
	insertChild:atIndex:
	insertChildren:atIndex:
	notationDeclarationForName:
	publicID
	removeChildAtIndex:
	replaceChildAtIndex:withNode:
	setChildren:
	setPublicID:
	setSystemID:
	systemID

	NSXMLDTDNode Class Reference
	Overview
	Tasks
	Initializing an NSXMLDTDNode Object
	Managing the DTD Node Kind
	Managing DTD Identifiers

	Instance Methods
	DTDKind
	initWithXMLString:
	isExternal
	notationName
	publicID
	setDTDKind:
	setNotationName:
	setPublicID:
	setSystemID:
	systemID

	Constants
	NSXMLDTDNodeKind
	DTD Node Kind Constants

	NSXMLElement Class Reference
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations

	Tasks
	Initializing NSXMLElement Objects
	Obtaining Child Elements
	Manipulating Child Elements
	Handling Attributes
	Handling Namespaces

	Instance Methods
	addAttribute:
	addChild:
	addNamespace:
	attributeForLocalName:URI:
	attributeForName:
	attributes
	elementsForLocalName:URI:
	elementsForName:
	initWithName:
	initWithName:stringValue:
	initWithName:URI:
	initWithXMLString:error:
	insertChild:atIndex:
	insertChildren:atIndex:
	namespaceForPrefix:
	namespaces
	normalizeAdjacentTextNodesPreservingCDATA:
	removeAttributeForName:
	removeChildAtIndex:
	removeNamespaceForPrefix:
	replaceChildAtIndex:withNode:
	resolveNamespaceForName:
	resolvePrefixForNamespaceURI:
	setAttributes:
	setAttributesAsDictionary:
	setChildren:
	setNamespaces:

	NSXMLNode Class Reference
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations

	Adopted Protocols
	Tasks
	Creating and Initializing Node Objects
	Managing XML Node Objects
	Navigating the Tree of Nodes
	Emitting Node Content
	Executing Queries
	Managing Namespaces

	Class Methods
	attributeWithName:stringValue:
	attributeWithName:URI:stringValue:
	commentWithStringValue:
	document
	documentWithRootElement:
	DTDNodeWithXMLString:
	elementWithName:
	elementWithName:children:attributes:
	elementWithName:stringValue:
	elementWithName:URI:
	localNameForName:
	namespaceWithName:stringValue:
	predefinedNamespaceForPrefix:
	prefixForName:
	processingInstructionWithName:stringValue:
	textWithStringValue:

	Instance Methods
	canonicalXMLStringPreservingComments:
	childAtIndex:
	childCount
	children
	description
	detach
	index
	initWithKind:
	initWithKind:options:
	kind
	level
	localName
	name
	nextNode
	nextSibling
	nodesForXPath:error:
	objectsForXQuery:constants:error:
	objectsForXQuery:error:
	objectValue
	parent
	prefix
	previousNode
	previousSibling
	rootDocument
	setName:
	setObjectValue:
	setStringValue:
	setStringValue:resolvingEntities:
	setURI:
	stringValue
	URI
	XMLString
	XMLStringWithOptions:
	XPath

	Constants
	NSXMLNodeKind
	Node Kind Constants
	Input and Output Options

	NSXMLParser Class Reference
	Overview
	Tasks
	Initializing a Parser Object
	Managing Delegates
	Managing Parser Behavior
	Parsing
	Handling XML
	Handling the DTD
	Obtaining Parser State

	Instance Methods
	abortParsing
	columnNumber
	delegate
	initWithContentsOfURL:
	initWithData:
	lineNumber
	parse
	parserError
	publicID
	setDelegate:
	setShouldProcessNamespaces:
	setShouldReportNamespacePrefixes:
	setShouldResolveExternalEntities:
	shouldProcessNamespaces
	shouldReportNamespacePrefixes
	shouldResolveExternalEntities
	systemID

	Delegate Methods
	parser:didEndElement:namespaceURI:qualifiedName:
	parser:didEndMappingPrefix:
	parser:didStartElement:namespaceURI:qualifiedName:attributes:
	parser:didStartMappingPrefix:toURI:
	parser:foundAttributeDeclarationWithName:forElement:type:defaultValue:
	parser:foundCDATA:
	parser:foundCharacters:
	parser:foundComment:
	parser:foundElementDeclarationWithName:model:
	parser:foundExternalEntityDeclarationWithName:publicID:systemID:
	parser:foundIgnorableWhitespace:
	parser:foundInternalEntityDeclarationWithName:value:
	parser:foundNotationDeclarationWithName:publicID:systemID:
	parser:foundProcessingInstructionWithTarget:data:
	parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName:
	parser:parseErrorOccurred:
	parser:resolveExternalEntityName:systemID:
	parser:validationErrorOccurred:
	parserDidEndDocument:
	parserDidStartDocument:

	Constants
	NSXMLParserErrorDomain
	NSXMLParserError
	Parser Error Constants

	Part II: Protocols
	NSCoding Protocol Reference
	Overview
	Tasks
	Initializing with a Coder
	Encoding with a Coder

	Instance Methods
	encodeWithCoder:
	initWithCoder:

	NSComparisonMethods Protocol Reference
	Overview
	Tasks
	Performing Comparisons

	Instance Methods
	doesContain:
	isCaseInsensitiveLike:
	isEqualTo:
	isGreaterThan:
	isGreaterThanOrEqualTo:
	isLessThan:
	isLessThanOrEqualTo:
	isLike:
	isNotEqualTo:

	NSCopying Protocol Reference
	Overview
	Tasks
	Copying

	Instance Methods
	copyWithZone:

	NSDecimalNumberBehaviors Protocol Reference
	Overview
	Tasks
	Rounding
	Handling Errors

	Instance Methods
	exceptionDuringOperation:error:leftOperand:rightOperand:
	roundingMode
	scale

	Constants
	NSRoundingMode
	NSCalculationError

	NSErrorRecoveryAttempting Protocol Reference
	Overview
	Tasks
	Attempting Recovery From Errors

	Instance Methods
	attemptRecoveryFromError:optionIndex:
	attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo:

	NSFastEnumeration Protocol Reference
	Overview
	Tasks
	Enumeration

	Instance Methods
	countByEnumeratingWithState:objects:count:

	Constants
	NSFastEnumerationState

	NSKeyValueCoding Protocol Reference
	Overview
	Tasks
	Getting Values
	Setting Values
	Changing Default Behavior
	Validation
	Deprecated Methods

	Class Methods
	accessInstanceVariablesDirectly
	useStoredAccessor

	Instance Methods
	dictionaryWithValuesForKeys:
	handleQueryWithUnboundKey:
	handleTakeValue:forUnboundKey:
	mutableArrayValueForKey:
	mutableArrayValueForKeyPath:
	mutableSetValueForKey:
	mutableSetValueForKeyPath:
	setNilValueForKey:
	setValue:forKey:
	setValue:forKeyPath:
	setValue:forUndefinedKey:
	setValuesForKeysWithDictionary:
	storedValueForKey:
	takeStoredValue:forKey:
	takeValue:forKey:
	takeValue:forKeyPath:
	takeValuesFromDictionary:
	unableToSetNilForKey:
	validateValue:forKey:error:
	validateValue:forKeyPath:error:
	valueForKey:
	valueForKeyPath:
	valueForUndefinedKey:
	valuesForKeys:

	Constants
	Key Value Coding Exception Names
	NSUndefinedKeyException userInfo Keys
	Array operators

	NSKeyValueObserving Protocol Reference
	Overview
	Tasks
	Change Notification
	Registering for Observation
	Notifying Observers of Changes
	Observing Customization

	Class Methods
	automaticallyNotifiesObserversForKey:
	keyPathsForValuesAffectingValueForKey:
	setKeys:triggerChangeNotificationsForDependentKey:

	Instance Methods
	addObserver:forKeyPath:options:context:
	didChange:valuesAtIndexes:forKey:
	didChangeValueForKey:
	didChangeValueForKey:withSetMutation:usingObjects:
	observationInfo
	observeValueForKeyPath:ofObject:change:context:
	removeObserver:forKeyPath:
	setObservationInfo:
	willChange:valuesAtIndexes:forKey:
	willChangeValueForKey:
	willChangeValueForKey:withSetMutation:usingObjects:

	Constants
	NSKeyValueChange
	NSKeyValueObservingOptions
	Keys used by the change dictionary
	NSKeyValueSetMutationKind

	NSLocking Protocol Reference
	Overview
	Tasks
	Working with Locks

	Instance Methods
	lock
	unlock

	NSMutableCopying Protocol Reference
	Overview
	Tasks
	Copying

	Instance Methods
	mutableCopyWithZone:

	NSObjCTypeSerializationCallBack Protocol Reference
	Overview
	Tasks
	Serializing
	Deserializing

	Instance Methods
	deserializeObjectAt:ofObjCType:fromData:atCursor:
	serializeObjectAt:ofObjCType:intoData:

	NSObject Protocol Reference
	Overview
	Tasks
	Identifying Classes
	Identifying and Comparing Objects
	Managing Reference Counts
	Testing Object Inheritance, Behavior, and Conformance
	Describing Objects
	Sending Messages
	Determining Allocation Zones
	Identifying Proxies

	Instance Methods
	autorelease
	class
	conformsToProtocol:
	description
	hash
	isEqual:
	isKindOfClass:
	isMemberOfClass:
	isProxy
	performSelector:
	performSelector:withObject:
	performSelector:withObject:withObject:
	release
	respondsToSelector:
	retain
	retainCount
	self
	superclass
	zone

	NSScriptingComparisonMethods Protocol Reference
	Overview
	Tasks
	Performing Comparisons

	Instance Methods
	scriptingBeginsWith:
	scriptingContains:
	scriptingEndsWith:
	scriptingIsEqualTo:
	scriptingIsGreaterThan:
	scriptingIsGreaterThanOrEqualTo:
	scriptingIsLessThan:
	scriptingIsLessThanOrEqualTo:

	NSScriptKeyValueCoding Protocol Reference
	Overview
	Tasks
	Indexed Access
	Access by Name, Key, or ID
	Coercion

	Instance Methods
	coerceValue:forKey:
	insertValue:atIndex:inPropertyWithKey:
	insertValue:inPropertyWithKey:
	removeValueAtIndex:fromPropertyWithKey:
	replaceValueAtIndex:inPropertyWithKey:withValue:
	valueAtIndex:inPropertyWithKey:
	valueWithName:inPropertyWithKey:
	valueWithUniqueID:inPropertyWithKey:

	Constants
	NSScriptKeyValueCoding Exception Names

	NSScriptObjectSpecifiers Protocol Reference
	Overview
	Tasks
	Working with Object Specifiers

	Instance Methods
	indicesOfObjectsByEvaluatingObjectSpecifier:
	objectSpecifier

	NSURLAuthenticationChallengeSender Protocol Reference
	Overview
	Tasks
	Protocol Methods

	Instance Methods
	cancelAuthenticationChallenge:
	continueWithoutCredentialForAuthenticationChallenge:
	useCredential:forAuthenticationChallenge:

	NSURLClient Protocol Reference (Not Recommended)
	Overview
	Tasks
	Working with URL Clients

	Instance Methods
	URL:resourceDataDidBecomeAvailable:
	URL:resourceDidFailLoadingWithReason:
	URLResourceDidCancelLoading:
	URLResourceDidFinishLoading:

	NSURLHandleClient Protocol Reference
	Overview
	Tasks
	Notification Methods

	Instance Methods
	URLHandle:resourceDataDidBecomeAvailable:
	URLHandle:resourceDidFailLoadingWithReason:
	URLHandleResourceDidBeginLoading:
	URLHandleResourceDidCancelLoading:
	URLHandleResourceDidFinishLoading:

	NSURLProtocolClient Protocol Reference
	Overview
	Tasks
	Protocol Methods

	Instance Methods
	URLProtocol:cachedResponseIsValid:
	URLProtocol:didCancelAuthenticationChallenge:
	URLProtocol:didFailWithError:
	URLProtocol:didLoadData:
	URLProtocol:didReceiveAuthenticationChallenge:
	URLProtocol:didReceiveResponse:cacheStoragePolicy:
	URLProtocol:wasRedirectedToRequest:redirectResponse:
	URLProtocolDidFinishLoading:

	Part III: Functions
	Foundation Functions Reference
	Overview
	Functions by Task
	Assertions
	Bundles
	Byte Ordering
	Decimals
	Exception Handling
	Java Setup
	Hash Tables
	HFS File Types
	Managing Map Tables
	Managing Object Allocation and Deallocation
	Interacting with the Objective-C Runtime
	Logging Output
	Managing File Paths
	Managing Points
	Managing Ranges
	Managing Rectangles
	Managing Sizes
	Uncaught Exception Handlers
	Managing Memory
	Managing Zones

	Functions
	NSAllHashTableObjects
	NSAllMapTableKeys
	NSAllMapTableValues
	NSAllocateCollectable
	NSAllocateMemoryPages
	NSAllocateObject
	NSAssert
	NSAssert1
	NSAssert2
	NSAssert3
	NSAssert4
	NSAssert5
	NSCAssert
	NSCAssert1
	NSCAssert2
	NSCAssert3
	NSCAssert4
	NSCAssert5
	NSClassFromString
	NSCompareHashTables
	NSCompareMapTables
	NSContainsRect
	NSConvertHostDoubleToSwapped
	NSConvertHostFloatToSwapped
	NSConvertSwappedDoubleToHost
	NSConvertSwappedFloatToHost
	NSCopyHashTableWithZone
	NSCopyMapTableWithZone
	NSCopyMemoryPages
	NSCopyObject
	NSCountHashTable
	NSCountMapTable
	NSCParameterAssert
	NSCreateHashTable
	NSCreateHashTableWithZone
	NSCreateMapTable
	NSCreateMapTableWithZone
	NSCreateZone
	NSDeallocateMemoryPages
	NSDeallocateObject
	NSDecimalAdd
	NSDecimalCompact
	NSDecimalCompare
	NSDecimalCopy
	NSDecimalDivide
	NSDecimalIsNotANumber
	NSDecimalMultiply
	NSDecimalMultiplyByPowerOf10
	NSDecimalNormalize
	NSDecimalPower
	NSDecimalRound
	NSDecimalString
	NSDecimalSubtract
	NSDecrementExtraRefCountWasZero
	NSDefaultMallocZone
	NSDivideRect
	NSEndHashTableEnumeration
	NSEndMapTableEnumeration
	NSEnumerateHashTable
	NSEnumerateMapTable
	NSEqualPoints
	NSEqualRanges
	NSEqualRects
	NSEqualSizes
	NSExtraRefCount
	NSFileTypeForHFSTypeCode
	NSFreeHashTable
	NSFreeMapTable
	NSFullUserName
	NSGetSizeAndAlignment
	NSGetUncaughtExceptionHandler
	NSHashGet
	NSHashInsert
	NSHashInsertIfAbsent
	NSHashInsertKnownAbsent
	NSHashRemove
	NSHeight
	NSHFSTypeCodeFromFileType
	NSHFSTypeOfFile
	NSHomeDirectory
	NSHomeDirectoryForUser
	NSHostByteOrder
	NSIncrementExtraRefCount
	NSInsetRect
	NSIntegralRect
	NSIntersectionRange
	NSIntersectionRect
	NSIntersectsRect
	NSIsEmptyRect
	NSJavaBundleCleanup
	NSJavaBundleSetup
	NSJavaClassesForBundle
	NSJavaClassesFromPath
	NSJavaNeedsToLoadClasses
	NSJavaNeedsVirtualMachine
	NSJavaObjectNamedInPath
	NSJavaProvidesClasses
	NSJavaSetup
	NSJavaSetupVirtualMachine
	NSLocalizedString
	NSLocalizedStringFromTable
	NSLocalizedStringFromTableInBundle
	NSLocalizedStringWithDefaultValue
	NSLocationInRange
	NSLog
	NSLogPageSize
	NSLogv
	NSMakeCollectable
	NSMakePoint
	NSMakeRange
	NSMakeRect
	NSMakeSize
	NSMapGet
	NSMapInsert
	NSMapInsertIfAbsent
	NSMapInsertKnownAbsent
	NSMapMember
	NSMapRemove
	NSMaxRange
	NSMaxX
	NSMaxY
	NSMidX
	NSMidY
	NSMinX
	NSMinY
	NSMouseInRect
	NSNextHashEnumeratorItem
	NSNextMapEnumeratorPair
	NSOffsetRect
	NSOpenStepRootDirectory
	NSPageSize
	NSParameterAssert
	NSPointFromCGPoint
	NSPointFromString
	NSPointInRect
	NSPointToCGPoint
	NSProtocolFromString
	NSRangeFromString
	NSReallocateCollectable
	NSRealMemoryAvailable
	NSRectFromCGRect
	NSRectFromString
	NSRectToCGRect
	NSRecycleZone
	NSResetHashTable
	NSResetMapTable
	NSRoundDownToMultipleOfPageSize
	NSRoundUpToMultipleOfPageSize
	NSSearchPathForDirectoriesInDomains
	NSSelectorFromString
	NSSetUncaughtExceptionHandler
	NSSetZoneName
	NSShouldRetainWithZone
	NSSizeFromCGSize
	NSSizeFromString
	NSSizeToCGSize
	NSStringFromClass
	NSStringFromHashTable
	NSStringFromMapTable
	NSStringFromPoint
	NSStringFromProtocol
	NSStringFromRange
	NSStringFromRect
	NSStringFromSelector
	NSStringFromSize
	NSSwapBigDoubleToHost
	NSSwapBigFloatToHost
	NSSwapBigIntToHost
	NSSwapBigLongLongToHost
	NSSwapBigLongToHost
	NSSwapBigShortToHost
	NSSwapDouble
	NSSwapFloat
	NSSwapHostDoubleToBig
	NSSwapHostDoubleToLittle
	NSSwapHostFloatToBig
	NSSwapHostFloatToLittle
	NSSwapHostIntToBig
	NSSwapHostIntToLittle
	NSSwapHostLongLongToBig
	NSSwapHostLongLongToLittle
	NSSwapHostLongToBig
	NSSwapHostLongToLittle
	NSSwapHostShortToBig
	NSSwapHostShortToLittle
	NSSwapInt
	NSSwapLittleDoubleToHost
	NSSwapLittleFloatToHost
	NSSwapLittleIntToHost
	NSSwapLittleLongLongToHost
	NSSwapLittleLongToHost
	NSSwapLittleShortToHost
	NSSwapLong
	NSSwapLongLong
	NSSwapShort
	NSTemporaryDirectory
	NSUnionRange
	NSUnionRect
	NSUserName
	NSWidth
	NSZoneCalloc
	NSZoneFree
	NSZoneFromPointer
	NSZoneMalloc
	NSZoneName
	NSZoneRealloc
	NS_DURING
	NS_ENDHANDLER
	NS_HANDLER
	NS_VALUERETURN
	NS_VOIDRETURN

	Part IV: Data Types
	Foundation Data Types Reference
	Overview
	Data Types
	NSAppleEventManagerSuspensionID
	NSByteOrder
	NSComparisonResult
	NSDecimal
	NSHashEnumerator
	NSHashTable
	NSHashTableCallBacks
	NSHashTableOptions
	NSInteger
	NSMapEnumerator
	NSMapTable
	NSMapTableKeyCallBacks
	NSMapTableOptions
	NSMapTableValueCallBacks
	NSObjCValue
	NSPoint
	NSPointArray
	NSPointPointer
	NSRange
	NSRangePointer
	NSRect
	NSRectArray
	NSRectEdge
	NSRectPointer
	NSSearchPathDirectory
	NSSearchPathDomainMask
	NSSize
	NSSizeArray
	NSSizePointer
	NSStringEncoding
	NSSwappedDouble
	NSSwappedFloat
	NSTimeInterval
	NSUncaughtExceptionHandler
	NSUInteger
	NSZone

	Part V: Constants
	Foundation Constants Reference
	Overview
	Constants
	Enumerations
	NSNotFound
	Memory Allocation
	NSError Codes
	URL Loading System Error Codes

	Global Variables
	Cocoa Error Domain
	NSJavaSetup Information
	NSHashTable Callbacks
	NSMapTable Key Call Backs
	NSMapTable Value Callbacks
	NSURL Domain
	Zero Constants

	Numeric Constants
	NSDecimal Constants
	NSMapTable Constants
	NSInteger and NSUInteger Maximum and Minimum Values

	Notifications
	Java Setup Notification Names

	Exceptions
	General Exception Names

	Version Numbers
	Foundation Version Number
	Foundation Framework Version Numbers

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

