
NSAtomicStore Class Reference
Cocoa > Data Management

2008-10-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSAtomicStore Class Reference 5

Overview 5
Subclassing Notes 5

Tasks 6
Initializing a Store 6
Loading a Store 6
Updating Cache Nodes 6
Saving a Store 7
Utility Methods 7
Managing Metadata 7

Instance Methods 7
addCacheNodes: 7
cacheNodeForObjectID: 8
cacheNodes 8
initWithPersistentStoreCoordinator:configurationName:URL:options: 8
load: 9
metadata 10
newCacheNodeForManagedObject: 11
newReferenceObjectForManagedObject: 11
objectIDForEntity:referenceObject: 12
referenceObjectForObjectID: 12
save: 13
setMetadata: 13
updateCacheNode:fromManagedObject: 14
willRemoveCacheNodes: 14

Document Revision History 17

Index 19

3
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

4
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSPersistentStore : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in Mac OS X v10.5 and later.

Declared in NSAtomicStore.h

Companion guides Atomic Store Programming Topics
Core Data Programming Guide

Related sample code Core Data HTML Store
CustomAtomicStoreSubclass

Overview

NSAtomicStore is an abstract superclass that you can subclass to create a Core Data atomic store. It provides
default implementations of some utility methods. A custom atomic store allows you to define a custom file
format that integrates with a Core Data application.

The atomic stores are all intended to handle data sets that can be expressed in memory. The atomic store
API favors simplicity over performance.

Subclassing Notes

Methods to Override

In a subclass of NSAtomicStore, you must override the following methods to provide behavior appropriate
for your store:

Loads the cache nodes for the receiver.load: (page 9)

Returns a new reference object for a given managed
object.

newReferenceObjectForManagedObject:
 (page 11)

Saves the cache nodes.save: (page 13)

Overview 5
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

Updates the given cache node using the values in a given
managed object.

updateCacheNode:fromManagedObject:
 (page 14)

Note that these are in addition to the methods you must override for a subclass of NSPersistentStore:

Returns the type string of the receiver.type

Returns the unique identifier for the receiver.identifier

Sets the unique identifier for the receiver.setIdentifier:

Returns the metadata for the receiver.metadata

Returns the metadata from the persistent store
at the given URL.

metadataForPersistentStoreWithURL:error:

Sets the metadata for the store at a given URL.setMetadata:forPersistentStoreWithURL:error:

Tasks

Initializing a Store

– initWithPersistentStoreCoordinator:configurationName:URL:options: (page 8)
Returns an atomic store, initialized with the given arguments.

Loading a Store

– load: (page 9)
Loads the cache nodes for the receiver.

– objectIDForEntity:referenceObject: (page 12)
Returns a managed object ID from the reference data for a specified entity.

– addCacheNodes: (page 7)
Registers a set of cache nodes with the receiver.

Updating Cache Nodes

– newCacheNodeForManagedObject: (page 11)
Returns a new cache node for a given managed object.

– newReferenceObjectForManagedObject: (page 11)
Returns a new reference object for a given managed object.

– updateCacheNode:fromManagedObject: (page 14)
Updates the given cache node using the values in a given managed object.

– willRemoveCacheNodes: (page 14)
Method invoked before the store removes the given collection of cache nodes.

6 Tasks
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

Saving a Store

– save: (page 13)
Saves the cache nodes.

Utility Methods

– cacheNodes (page 8)
Returns the set of cache nodes registered with the receiver.

– cacheNodeForObjectID: (page 8)
Returns the cache node for a given managed object ID.

– referenceObjectForObjectID: (page 12)
Returns the reference object for a given managed object ID.

Managing Metadata

– metadata (page 10)
Returns the metadata for the receiver.

– setMetadata: (page 13)
Sets the metadata for the receiver.

Instance Methods

addCacheNodes:
Registers a set of cache nodes with the receiver.

- (void)addCacheNodes:(NSSet *)cacheNodes

Parameters
cacheNodes

A set of cache nodes.

Discussion
You should invoke this method in a subclass during the call to load: (page 9) to register the loaded
information with the store.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAtomicStore.h

Instance Methods 7
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

cacheNodeForObjectID:
Returns the cache node for a given managed object ID.

- (NSAtomicStoreCacheNode *)cacheNodeForObjectID:(NSManagedObjectID *)objectID

Parameters
objectID

A managed object ID.

Return Value
The cache node for objectID.

Discussion
This method is normally used by cache nodes to locate related cache nodes (by relationships).

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CustomAtomicStoreSubclass

Declared In
NSAtomicStore.h

cacheNodes
Returns the set of cache nodes registered with the receiver.

- (NSSet *)cacheNodes

Return Value
The set of cache nodes registered with the receiver.

Discussion
You should modify this collection using addCacheNodes: (page 7): and willRemoveCacheNodes: (page
14).

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CustomAtomicStoreSubclass

Declared In
NSAtomicStore.h

initWithPersistentStoreCoordinator:configurationName:URL:options:
Returns an atomic store, initialized with the given arguments.

8 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

- (id)initWithPersistentStoreCoordinator:(NSPersistentStoreCoordinator *)coordinator
configurationName:(NSString *)configurationName
URL:(NSURL *)url
options:(NSDictionary *)options

Parameters
coordinator

A persistent store coordinator.

configurationName
The name of the managed object model configuration to use.

url
The URL of the store to load. This value must not be nil.

options
A dictionary containing configuration options.

Return Value
An atomic store, initialized with the given arguments, or nil if the store could not be initialized.

Discussion
You typically do not invoke this method yourself; it is invoked by the persistent store coordinator during
addPersistentStoreWithType:configuration:URL:options:error:, both when a new store is
created and when an existing store is opened.

In your implementation, you should check whether a file already exists at url; if it does not, then you should
either create a file here or ensure that your load: (page 9) method does not fail if the file does not exist.

Any subclass of NSAtomicStoremust be able to handle being initialized with a URL pointing to a zero-length
file. This serves as an indicator that a new store is to be constructed at the specified location and allows you
to securely create reservation files in known locations which can then be passed to Core Data to construct
stores. You may choose to create zero-length reservation files during
initWithPersistentStoreCoordinator:configurationName:URL:options: or load: (page 9).
If you do so, you must remove the reservation file if the store is removed from the coordinator before it is
saved.

You should ensure that you load metadata during initialization and set it using setMetadata: (page 13).

Special Considerations

You must invoke super’s implementation to ensure that the store is correctly initialized.

Availability
Available in Mac OS X v10.5 and later.

See Also
– load: (page 9)
– setMetadata: (page 13)

Declared In
NSAtomicStore.h

load:
Loads the cache nodes for the receiver.

Instance Methods 9
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

- (BOOL)load:(NSError **)error

Parameters
error

If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if the cache nodes were loaded correctly, otherwise NO.

Discussion
You override this method to to load the data from the URL specified in
initWithPersistentStoreCoordinator:configurationName:URL:options: (page 8) and create
cache nodes for the represented objects. You must respect the configuration specified for the store, as well
as the options.

Any subclass of NSAtomicStoremust be able to handle being initialized with a URL pointing to a zero-length
file. This serves as an indicator that a new store is to be constructed at the specified location and allows you
to securely create reservation files in known locations which can then be passed to Core Data to construct
stores. You may choose to create zero-length reservation files during
initWithPersistentStoreCoordinator:configurationName:URL:options: (page 8) or load:.
If you do so, you must remove the reservation file if the store is removed from the coordinator before it is
saved.

Special Considerations

You must override this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– addCacheNodes: (page 7)

Declared In
NSAtomicStore.h

metadata
Returns the metadata for the receiver.

- (NSDictionary *)metadata

Return Value
The metadata for the receiver.

Discussion
NSAtomicStore provides a default dictionary of metadata. This dictionary contains the store type and
identifier (NSStoreTypeKey and NSStoreUUIDKey) as well as store versioning information. Subclasses must
ensure that the metadata is saved along with the store data.

See Also
– metadata (NSPersistentStore)

10 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

newCacheNodeForManagedObject:
Returns a new cache node for a given managed object.

- (NSAtomicStoreCacheNode *)newCacheNodeForManagedObject:(NSManagedObject
*)managedObject

Parameters
managedObject

A managed object.

Return Value
A new cache node for managedObject.

Following normal rules for Cocoa memory management (see Memory Management Rules), the returned
object has a retain count of 1.

Discussion
This method is invoked by the framework after a save operation on a managed object content, once for each
newly-inserted NSManagedObject instance.

NSAtomicStore provides a default implementation that returns a suitable cache node. You can override
this method to take the information from the managed object and return a cache node with a retain count
of 1 (the node will be registered by the framework).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAtomicStore.h

newReferenceObjectForManagedObject:
Returns a new reference object for a given managed object.

- (id)newReferenceObjectForManagedObject:(NSManagedObject *)managedObject

Parameters
managedObject

A managed object. At the time this method is called, it has a temporary ID.

Return Value
A new reference object for managedObject.

Following normal rules for Cocoa memory management (see Memory Management Rules), the returned
object has a retain count of 1.

Discussion
This method is invoked by the framework after a save operation on a managed object context, once for each
newly-inserted managed object. The value returned is used to create a permanent ID for the object and must
be unique for an instance within its entity's inheritance hierarchy (in this store), and must have a retain count
of 1.

Special Considerations

You must override this method.

Instance Methods 11
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

This method must return a stable (unchanging) value for a given object, otherwise Save As and migration
will not work correctly. This means that you can use arbitrary numbers, UUIDs, or other random values only
if they are persisted with the raw data. If you cannot save the originally-assigned reference object with the
data, then the method must derive the reference object from the managed object’s values. For more details,
see Atomic Store Programming Topics.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAtomicStore.h

objectIDForEntity:referenceObject:
Returns a managed object ID from the reference data for a specified entity.

- (NSManagedObjectID *)objectIDForEntity:(NSEntityDescription *)entity
referenceObject:(id)data

Parameters
entity

An entity description object.

data
Reference data for which the managed object ID is required.

Return Value
The managed object ID from the reference data for a specified entity

Discussion
You use this method to create managed object IDs which are then used to create cache nodes for information
being loaded into the store.

Special Considerations

You should not override this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– addCacheNodes: (page 7)

Related Sample Code
CustomAtomicStoreSubclass

Declared In
NSAtomicStore.h

referenceObjectForObjectID:
Returns the reference object for a given managed object ID.

- (id)referenceObjectForObjectID:(NSManagedObjectID *)objectID

12 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

Parameters
objectID

A managed object ID.

Return Value
The reference object for objectID.

Discussion
Subclasses should invoke this method to extract the reference data from the object ID for each cache node
if the data is to be made persistent.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAtomicStore.h

save:
Saves the cache nodes.

- (BOOL)save:(NSError **)error

Parameters
error

If an error occurs, upon return contains an NSError object that describes the problem.

Discussion
You override this method to make persistent the necessary information from the cache nodes to the URL
specified for the receiver.

Special Considerations

You must override this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– newReferenceObjectForManagedObject: (page 11)
– updateCacheNode:fromManagedObject: (page 14)
– willRemoveCacheNodes: (page 14)

Declared In
NSAtomicStore.h

setMetadata:
Sets the metadata for the receiver.

- (void)setMetadata:(NSDictionary *)storeMetadata

Instance Methods 13
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

Parameters
storeMetadata

The metadata for the receiver.

See Also
– metadata (page 10)

updateCacheNode:fromManagedObject:
Updates the given cache node using the values in a given managed object.

- (void)updateCacheNode:(NSAtomicStoreCacheNode *)node
fromManagedObject:(NSManagedObject *)managedObject

Parameters
node

The cache node to update.

managedObject
The managed object with which to update node.

Discussion
This method is invoked by the framework after a save operation on a managed object context, once for each
updated NSManagedObject instance.

You override this method in a subclass to take the information from managedObject and update node.

Special Considerations

You must override this method.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAtomicStore.h

willRemoveCacheNodes:
Method invoked before the store removes the given collection of cache nodes.

- (void)willRemoveCacheNodes:(NSSet *)cacheNodes

Parameters
cacheNodes

The set of cache nodes to remove.

Discussion
This method is invoked by the store before the call to save: (page 13) with the collection of cache nodes
marked as deleted by a managed object context. You can override this method to track the nodes which will
not be made persistent in the save: (page 13) method.

You should not invoke this method directly in a subclass.

14 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– save: (page 13)

Declared In
NSAtomicStore.h

Instance Methods 15
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

16 Instance Methods
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

NSAtomicStore Class Reference

This table describes the changes to NSAtomicStore Class Reference.

NotesDate

Corrected discussion of save: method.2008-10-15

New document that describes the Core Data class used to represent an atomic
persistent store.

2007-10-31

17
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

18
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

addCacheNodes: instance method 7

C

cacheNodeForObjectID: instance method 8
cacheNodes instance method 8

I

initWithPersistentStoreCoordinator:
configurationName:URL:options: instance
method 8

L

load: instance method 9

M

metadata instance method 10

N

newCacheNodeForManagedObject: instance method
11

newReferenceObjectForManagedObject: instance
method 11

O

objectIDForEntity:referenceObject: instance
method 12

R

referenceObjectForObjectID: instance method 12

S

save: instance method 13
setMetadata: instance method 13

U

updateCacheNode:fromManagedObject: instance
method 14

W

willRemoveCacheNodes: instance method 14

19
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Index

	NSAtomicStore Class Reference
	Contents
	NSAtomicStore Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Initializing a Store
	Loading a Store
	Updating Cache Nodes
	Saving a Store
	Utility Methods
	Managing Metadata

	Instance Methods
	addCacheNodes:
	cacheNodeForObjectID:
	cacheNodes
	initWithPersistentStoreCoordinator:configurationName:URL:options:
	load:
	metadata
	newCacheNodeForManagedObject:
	newReferenceObjectForManagedObject:
	objectIDForEntity:referenceObject:
	referenceObjectForObjectID:
	save:
	setMetadata:
	updateCacheNode:fromManagedObject:
	willRemoveCacheNodes:

	Revision History
	Index
	A
	C
	I
	L
	M
	N
	O
	R
	S
	U
	W

