
NSCondition Class Reference
Cocoa > Process Management

2008-09-09

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSCondition Class Reference 5

Overview 5
Tasks 6

Waiting for the Lock 6
Signaling Waiting Threads 6
Accessor Methods 6

Instance Methods 7
broadcast 7
name 7
setName: 7
signal 8
wait 8
waitUntilDate: 9

Document Revision History 11

Index 13

3
2008-09-09 | © 2008 Apple Inc. All Rights Reserved.

4
2008-09-09 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.5 and later.

Companion guide Threading Programming Guide

Declared in NSLock.h

Overview

The NSCondition class implements a condition variable whose semantics follow those used for POSIX-style
conditions. A condition object acts as both a lock and a checkpoint in a given thread. The lock protects your
code while it tests the condition and performs the task triggered by the condition. The checkpoint behavior
requires that the condition be true before the thread proceeds with its task. While the condition is not true,
the thread blocks. It remains blocked until another thread signals the condition object.

The semantics for using an NSCondition object are as follows:

1. Lock the condition object.

2. Test a boolean predicate. (This predicate is a boolean flag or other variable in your code that indicates
whether it is safe to perform the task protected by the condition.)

3. If the boolean predicate is false, call the condition object’s wait or waitUntilDate: method to block
the thread. Upon returning from these methods, go to step 2 to retest your boolean predicate. (Continue
waiting and retesting the predicate until it is true.)

4. If the boolean predicate is true, perform the task.

5. Optionally update any predicates (or signal any conditions) affected by your task.

6. When your task is done, unlock the condition object.

The pseudocode for performing the preceding steps would therefore look something like the following:

lock the condition
while (!(boolean_predicate)) {
 wait on condition

Overview 5
2008-09-09 | © 2008 Apple Inc. All Rights Reserved.

NSCondition Class Reference

}
do protected work
(optionally, signal or broadcast the condition again or change a predicate value)
unlock the condition

Whenever you use a condition object, the first step is to lock the condition. Locking the condition ensures
that your predicate and task code are protected from interference by other threads using the same condition.
Once you have completed your task, you can set other predicates or signal other conditions based on the
needs of your code. You should always set predicates and signal conditions while holding the condition
object’s lock.

When a thread waits on a condition, the condition object unlocks its lock and blocks the thread. When the
condition is signaled, the system wakes up the thread. The condition object then reacquires its lock before
returning from the wait or waitUntilDate: method. Thus, from the point of view of the thread, it is as if
it always held the lock.

A boolean predicate is an important part of the semantics of using conditions because of the way signaling
works. Signaling a condition does not guarantee that the condition itself is true. There are timing issues
involved in signaling that may cause false signals to appear. Using a predicate ensures that these spurious
signals do not cause you to perform work before it is safe to do so. The predicate itself is simply a flag or
other variable in your code that you test in order to acquire a Boolean result.

For more information on how to use conditions, see Using POSIX Thread Locks in Threading Programming
Guide.

Tasks

Waiting for the Lock

– wait (page 8)
Blocks the current thread until the condition is signaled.

– waitUntilDate: (page 9)
Blocks the current thread until the condition is signaled or the specified time limit is reached.

Signaling Waiting Threads

– signal (page 8)
Signals the condition, waking up one thread waiting on it.

– broadcast (page 7)
Signals the condition, waking up all threads waiting on it.

Accessor Methods

– setName: (page 7)
Assigns a name to the receiver.

6 Tasks
2008-09-09 | © 2008 Apple Inc. All Rights Reserved.

NSCondition Class Reference

– name (page 7)
Returns the name associated with the receiver.

Instance Methods

broadcast
Signals the condition, waking up all threads waiting on it.

- (void)broadcast

Discussion
If no threads are waiting on the condition, this method does nothing.

To avoid race conditions, you should invoke this method only while the receiver is locked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLock.h

name
Returns the name associated with the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setName: (page 7)

Declared In
NSLock.h

setName:
Assigns a name to the receiver.

- (void)setName:(NSString *)newName

Parameters
newName

The new name for the receiver. This method makes a copy of the specified string.

Instance Methods 7
2008-09-09 | © 2008 Apple Inc. All Rights Reserved.

NSCondition Class Reference

Discussion
You can use a name string to identify a condition object within your code. Cocoa also uses this name as part
of any error descriptions involving the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– name (page 7)

Declared In
NSLock.h

signal
Signals the condition, waking up one thread waiting on it.

- (void)signal

Discussion
You use this method to wake up one thread that is waiting on the condition. You may call this method
multiple times to wake up multiple threads. If no threads are waiting on the condition, this method does
nothing.

To avoid race conditions, you should invoke this method only while the receiver is locked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLock.h

wait
Blocks the current thread until the condition is signaled.

- (void)wait

Discussion
You must lock the receiver prior to calling this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– lock (NSLocking)

Declared In
NSLock.h

8 Instance Methods
2008-09-09 | © 2008 Apple Inc. All Rights Reserved.

NSCondition Class Reference

waitUntilDate:
Blocks the current thread until the condition is signaled or the specified time limit is reached.

- (BOOL)waitUntilDate:(NSDate *)limit

Parameters
limit

The time at which to wake up the thread if the condition has not been signaled.

Return Value
YES if the condition was signaled; otherwise, NO if the time limit was reached.

Discussion
You must lock the receiver prior to calling this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– lock (NSLocking)

Declared In
NSLock.h

Instance Methods 9
2008-09-09 | © 2008 Apple Inc. All Rights Reserved.

NSCondition Class Reference

10 Instance Methods
2008-09-09 | © 2008 Apple Inc. All Rights Reserved.

NSCondition Class Reference

This table describes the changes to NSCondition Class Reference.

NotesDate

Corrected availability information.2008-09-09

New document describing methods for implementing a POSIX-style
condition-based lock.

2007-04-30

11
2008-09-09 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

12
2008-09-09 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

B

broadcast instance method 7

N

name instance method 7

S

setName: instance method 7
signal instance method 8

W

wait instance method 8
waitUntilDate: instance method 9

13
2008-09-09 | © 2008 Apple Inc. All Rights Reserved.

Index

	NSCondition Class Reference
	Contents
	NSCondition Class Reference
	Overview
	Tasks
	Waiting for the Lock
	Signaling Waiting Threads
	Accessor Methods

	Instance Methods
	broadcast
	name
	setName:
	signal
	wait
	waitUntilDate:

	Revision History
	Index
	B
	N
	S
	W

