NSOperationQueue Class Reference

Cocoa > Process Management

¢

2008-11-19



.

[

Apple Inc.

© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

NSOperationQueue Class Reference 5

Overview 5
KVO-Compliant Properties 6
Threading Considerations 6

Tasks 6
Managing Operations in the Queue 6
Managing the Number of Running Operations 6
Suspending Operations 6

Instance Methods 7
addOperation: 7
cancelAllOperations 7
isSuspended 8
maxConcurrentOperationCount 8
operations 8
setMaxConcurrentOperationCount: 9
setSuspended: 9
waitUntilAllOperationsAreFinished 10

Constants 10
Concurrent Operation Constants 10

Document Revision History 11

Index 13

2008-11-19 | © 2008 Apple Inc. All Rights Reserved.



CONTENTS

2008-11-19 | © 2008 Apple Inc. All Rights Reserved.



NSOperationQueue Class Reference

Inherits from NSObject
Conforms to NSObject (NSObject)
Framework /System/Library/Frameworks/Foundation.framework
Availability Available in Mac OS X v10.5 and later.
Companion guide Threading Programming Guide
Declared in NSOperation.h
Related sample code NSOperationSample
Overview

The NSOperationQueue class manages a set of NSOperation objects in a priority queue and regulates
their execution. Operations remain in the queue until they are explicitly cancelled or finish executing. An
application may create multiple operation queues, with each queue running up to its designated maximum
number of operations.

A specific NSOperation object can be in only one operation queue at a time. Operations within a single
gueue coordinate their execution order using both priority levels and inter-operation object dependencies.
Operation objects in different queues can coordinate their execution order using dependencies, which are
not queue-specific.

Inter-operation dependencies provide an absolute execution order for operations. An operation object is
not considered ready to execute until all of its dependent operations have finished executing. For operations
that are ready to execute, the operation queue always executes the one with the highest priority relative to
the other ready operations. For details on how to set priority levels and dependencies, see NSOperation Class
Reference.

You should never manually start an operation while it is sitting in an operation queue. Once added, an
operation stays in its queue until it finishes executing or is cancelled.

If the isConcurrent method of an operation returns NO, the operation queue automatically creates a new
thread for that operation before running it. If the isConcurrent method returns YES, the operation object
must create its own thread or otherwise configure its own runtime environment as part of its execution
phase.

Overview 5
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.



Tasks

NSOperationQueue Class Reference

KVO-Compliant Properties

The NSOperationQueue class is key-value coding (KVC) and key-value observing (KVO) compliant. You can
observe these properties as desired to control other parts of your application. The properties you can observe
include the following:

m operations -read-only property

m maxConcurrentOperationCount - readable and writable property

For more information about key-value observing and how to attach observers to an object, see Key-Value
Observing Programming Guide.

Threading Considerations

It is safe to use a single NSOperationQueue object from multiple threads without creating additional locks
to synchronize access to that object.

Managing Operations in the Queue

- addOperation: (page7)
Adds the specified operation object to the receiver.

- operations (page 8)
Returns a new array containing the operations currently in the queue.

- cancelAll0perations (page 7)
Cancels all queued and executing operations.

- waitUntilAll0OperationsAreFinished (page 10)
Blocks the current thread until all of the receiver’s queued and executing operations finish executing.

Managing the Number of Running Operations

- maxConcurrentOperationCount (page 8)
Returns the maximum number of concurrent operations that the receiver can execute.

- setMaxConcurrentOperationCount: (page9)
Sets the maximum number of concurrent operations that the receiver can execute.

Suspending Operations

- setSuspended: (page 9)
Modifies the execution of pending operations

Tasks
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.



NSOperationQueue Class Reference

- isSuspended (page 8)
Returns a Boolean value indicating whether the receiver is scheduling queued operations for execution.

Instance Methods

addOperation:

Adds the specified operation object to the receiver.
- (void)addOperation: (NSOperation *)operation

Parameters
operation

The operation object to be added to the queue. In memory-managed applications, this object is
retained by the operation queue.

Discussion

An operation object can be in at most one operation queue at a time and cannot be added if it is currently
executing or finished. This method throws an NSInvalidArgumentException exception if any of these
conditions is true.

Once added, the specified operation remains in the queue until it is executed or cancelled.

Availability
Available in Mac OS X v10.5 and later.

See Also
- cancel (NSOperation)

- iskExecuting (NSOperation)

Declared In
NSOperation.h

cancelAllOperations

Cancels all queued and executing operations.
- (void)cancelAll10perations

Discussion

This method sends a cancel message to all operations currently in the queue or executing. Queued operations
are cancelled before they begin executing. If an operation is already executing, it is up to that operation to
recognize the cancellation and stop what it is doing.

Availability
Available in Mac OS X v10.5 and later.

See Also
cancel (NSOperation)

Instance Methods 7
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.



NSOperationQueue Class Reference

Declared In
NSOperation.h

isSuspended

Returns a Boolean value indicating whether the receiver is scheduling queued operations for execution.
- (BOOL)isSuspended

Return Value
NO if operations are being scheduled for execution; otherwise, YES.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setSuspended: (page9)

Declared In
NSOperation.h

maxConcurrentOperationCount

Returns the maximum number of concurrent operations that the receiver can execute.
- (NSInteger)maxConcurrentOperationCount

Return Value
The maximum number of concurrent operations set explicitly on the receiver using the
setMaxConcurrentOperationCount: method.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setMaxConcurrentOperationCount: (page 9)

Declared In
NSOperation.h

operations

Returns a new array containing the operations currently in the queue.
- (NSArray *)operations

Return Value
A new array object containing the NSOperation objects in the order in which they were added to the queue.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.



NSOperationQueue Class Reference

Declared In
NSOperation.h

setMaxConcurrentOperationCount:

Sets the maximum number of concurrent operations that the receiver can execute.
- (void)setMaxConcurrentOperationCount: (NSInteger)count

Parameters
count
The maximum number of concurrent operations. Specify the value
NSOperationQueueDefaultMaxConcurrentOperationCount if you want the receiver to choose
an appropriate value based on the number of available processors and other relevant factors.
Discussion
The specified value affects only the receiver and the operations in its queue. Other operation queue objects
can also execute their maximum number of operations in parallel.

Reducing the number of concurrent operations does not affect any operations that are currently executing.
If you specify the value NSOperationQueueDefaultMaxConcurrentOperationCount (whichis
recommended), the maximum number of operations can change dynamically based on system conditions.

Availability
Available in Mac OS X v10.5 and later.

See Also
- maxConcurrentOperationCount (page 8)

Declared In
NSOperation.h

setSuspended:

Modifies the execution of pending operations
- (void)setSuspended: (BOOL)suspend

Parameters

suspend
If YES, the queue stops scheduling queued operations for execution. If NO, the queue begins scheduling
operations again.

Discussion

This method suspends or restarts the execution of queued operations only. It does not have any impact on
the state of currently running operations. Running operations continue to run until their natural termination
or until they are explicitly cancelled.

Availability
Available in Mac OS X v10.5 and later.

See Also
- isSuspended (page 8)

Instance Methods 9
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.



NSOperationQueue Class Reference

Declared In
NSOperation.h

waitUntilAllOperationsAreFinished

Blocks the current thread until all of the receiver’s queued and executing operations finish executing.
- (void)waitUntiTAT10perationsAreFinished

Discussion

When called, this method blocks the current thread and waits for the receiver’s current and pending operations
to finish executing. While the thread is blocked, the receiver continues to launch already queued operations
and monitor those that are executing. During this time, the current thread cannot add operations to the
queue, but other threads may. Once all of the pending operations are finished, this method returns.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

Constants

Concurrent Operation Constants

Indicates the number of supported concurrent operations.

enum {
NSOperationQueueDefaultMaxConcurrentOperationCount = -1

b

Constants

NSOperationQueueDefaultMaxConcurrentOperationCount
The default maximum number of operations is determined dynamically by the NSOperationQueue
object based on current system conditions.

Available in Mac OS X v10.5 and later.
Declared in NSOperation.h.

Declared In
NSOperation.h

10 Constants
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.



REVISION HISTORY

Document Revision History

This table describes the changes to NSOperationQueue Class Reference.

Date Notes

2008-11-19 Updated the guidance related to KVO-compliant properties.

2008-10-15 Clarified ownership of operation objects when added to a queue.
2007-04-30 New document describing the methods for managing operation objects.

2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

n




12

REVISION HISTORY

Document Revision History

2008-11-19 | © 2008 Apple Inc. All Rights Reserved.



Index

A

addOperation: instance method 7

C

cancelAl10perations instance method 7
Concurrent Operation Constants 10

isSuspended instance method 8

M

maxConcurrentOperationCount instance method 8

N

NSOperationQueueDefaultMaxConcurrentOperationCount
constant 10

O

operations instance method 8

S

setMaxConcurrentOperationCount: instance method
9
setSuspended: instance method 9

2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

w

waitUntiTATT0perationsAreFinished instance
method 10

13



	NSOperationQueue Class Reference
	Contents
	NSOperationQueue Class Reference
	Overview
	KVO-Compliant Properties
	Threading Considerations

	Tasks
	Managing Operations in the Queue
	Managing the Number of Running Operations
	Suspending Operations

	Instance Methods
	addOperation:
	cancelAllOperations
	isSuspended
	maxConcurrentOperationCount
	operations
	setMaxConcurrentOperationCount:
	setSuspended:
	waitUntilAllOperationsAreFinished

	Constants
	Concurrent Operation Constants


	Revision History
	Index
	A
	C
	I
	M
	N
	O
	S
	W



