
NSOperation Class Reference
Cocoa > Process Management

2008-11-19

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSOperation Class Reference 5

Overview 5
Concurrent Versus Non-Concurrent Operations 5
Operation Dependencies 6
KVO-Compliant Properties 6
Threading Considerations 7
Subclassing Notes 7

Tasks 8
Initialization 8
Executing the Operation 8
Canceling Operations 8
Getting the Operation Status 9
Managing Dependencies 9
Prioritizing Operations in an Operation Queue 9

Instance Methods 9
addDependency: 9
cancel 10
dependencies 10
init 11
isCancelled 11
isConcurrent 12
isExecuting 12
isFinished 12
isReady 13
main 13
queuePriority 14
removeDependency: 14
setQueuePriority: 15
start 15

Constants 16
NSOperationQueuePriority 16
Operation Priorities 16

Document Revision History 19

Index 21

3
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

4
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.5 and later.

Companion guide Threading Programming Guide

Declared in NSOperation.h

Related sample code NSOperationSample

Overview

The NSOperation class manages the execution of a single encapsulated task. Operations are typically
scheduled by adding them to an operation queue object (an instance of the NSOperationQueue class),
although you can also execute them directly by explicitly invoking their start method.

Operation objects are single-shot objects, that is, they perform their task once. You cannot reuse the same
NSOperation object to perform a task (or a slight variant of the task) multiple times in succession. Attempting
to execute an operation that has already finished results in an exception.

When manually executing operations, you are responsible for making sure the object is ready to execute.
Starting an operation that is not in the ready state generally results in an exception being thrown. If you use
an operation queue to manage the execution, the NSOperationQueue object ensures that the operation is
executed only when it is ready.

Concurrent Versus Non-Concurrent Operations

Operation objects can be designed for either concurrent or non-concurrent operation. In the context of an
NSOperation object, the terms concurrent and non-concurrent do not necessarily refer to the side-by-side
execution of threads. Instead, a non-concurrent operation is one that executes using the environment that
is provided for it while a concurrent operation is responsible for setting up its own execution environment.
To understand how this might work in your code, look at the NSOperationQueue object as an example. For
a non-concurrent operation, an operation queue automatically creates a thread and calls the operation
object’s start method, the default implementation of which configures the thread environment and calls
the operation object’s main method to run your custom code. For a concurrent operation, the queue simply
calls the object’s start method on the current thread. The operation object is then responsible for setting
up the appropriate execution environment, which could include starting a new thread.

Overview 5
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

If you always design your operations to execute on a thread, then creating non-concurrent operations is the
simplest way to go. There are some situations though where you might want to create a concurrent operation
instead, including the following:

 ■ You want to create the thread yourself.

 ■ You want to launch a separate task instead of a thread.

 ■ Your operation’s main method initiates an asynchronous call and exits. (In such a situation, the callback
function or method would then pass control to the operation object to process the request. For example,
you could use this technique to set up a timer and then use the methods of the operation object to do
some work each time the timer fires.)

By default, operations are designated as non-concurrent. For information on how to create a concurrent
operation object, see the subclassing notes for this class.

Operation Dependencies

You can configure an operation to depend on the completion of other operations by adding those operations
as dependencies. An operation object that has dependencies does not execute until all of its dependent
operation objects finish executing. Once the last dependent operation finishes, the operation object moves
to the ready state.

If a dependent operation is unable to perform its task for some reason, it is the responsibility of your code
to make that determination. Operation objects that are non-concurrent (that is, their isConcurrentmethod
returns NO) automatically catch and suppress any exceptions thrown by the operation object’s mainmethod.
Thus, an operation that generates an exception may appear to finish normally even if it did not. If you need
to track errors in a dependent operation, you must build that capability into the main method of your
operation objects explicitly.

KVO-Compliant Properties

The NSOperation class is key-value coding (KVC) and key-value observing (KVO) compliant for several of its
properties. As needed, you can observe these properties to control other parts of your application. The
properties you can observe include the following:

 ■ isCancelled - read-only property

 ■ isConcurrent - read-only property

 ■ isExecuting - read-only property

 ■ isFinished - read-only property

 ■ isReady - read-only property

 ■ dependencies - read-only property

 ■ queuePriority - readable and writable property

Although you can attach observers to these properties, you should not use Cocoa bindings to bind them to
elements of your application’s user interface. Code associated with your user interface typically must execute
only in your application’s main thread. Because an operation may execute in any thread, any KVO notifications
associated with that operation may similarly occur in any thread.

6 Overview
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

If you override any of the preceding properties, your implementations must maintain KVC and KVO compliance.
If you define additional properties for your NSOperation objects, it is recommended that you make those
properties KVC and KVO compliant as well. For information on how to support key-value coding, see Key-Value
Coding Programming Guide. For information on how to support key-value observing, see Key-Value Observing
Programming Guide.

Threading Considerations

The methods of the NSOperation class implement automatic synchronization on the current instance. It is
therefore safe to use a single instance of the NSOperation object from multiple threads without creating
additional locks to synchronize access to the object.

When you subclass NSOperation, the methods in your implementation should also be safe to call from
multiple threads. For example, if the methods of your operation object access shared resources, they should
take the appropriate locks to synchronize access to those resources. For more information about writing
thread-safe code, see Threading Programming Guide.

Subclassing Notes

The NSOperation class does not do anything by default and must be subclassed to perform any desired
tasks. How you create your subclass depends on whether your operation is designed to execute concurrently
or non-concurrently with respect to the thread that started the operation.

Methods to Override

For non-concurrent operations, you typically implement only one method:

 ■ main

In your main method, you implement the code needed to perform the given operation. The NSOperation
class manages the changes in state for your operation automatically and reports the appropriate condition
of your operation from its methods.

If you are creating a concurrent operation, you need to override the following methods:

 ■ start

 ■ isConcurrent

 ■ isExecuting

 ■ isFinished

In your start method, you must prepare the operation for execution, which includes preparing the runtime
environment for your operation. (For example, if you wanted to create a thread yourself, you would do it
here.) Once your runtime environment is established, you can call any methods or functions you want to
subsequently start your operation. Your implementation of the start method should not invoke super.

Overview 7
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

When implementing a concurrent operation, your custom subclass is responsible for reporting some of the
state information associated with running the operation. In particular, you must override the isExecuting
and isFinished methods to report on the current execution state of your operation. These methods must
return accurate values for the state of your operation at all times, including when your operation has been
cancelled. Your overridden methods should be KVO compliant.

Responding to the Cancel Command

An operation is responsible for periodically calling its own isCancelled method and aborting execution if
it ever returns YES. Because it is bad form to kill a thread outright, the NSOperationQueue object sends a
cancel message to your operation object if it ever needs your object to stop executing. (Other entities can
similarly call the cancelmethod on an executing operation to ask it to stop.) The need to cancel an operation
can typically arise from a user request or in a situation where the application or system is shutting down.
When detected, your operation should clean up its environment and exit as soon as possible.

If an operation is cancelled, it should still update its internal state variables to reflect the change in execution
status. In particular, the object’s isFinished method should return YES and its isExecuting method
should return NO. It must do this even if the it was cancelled before it started executing.

Note: If you implement a custom operation object as a concurrent operation, the start method can still
be called even if the operation has already been cancelled. Your startup code should be prepared to handle
this situation and clean up appropriately.

Tasks

Initialization

– init (page 11)
Returns an initialized NSOperation object.

Executing the Operation

– start (page 15)
Begins the execution of the operation.

– main (page 13)
Performs the receiver’s non-concurrent task.

Canceling Operations

– cancel (page 10)
Advises the operation object that it should stop executing its task.

8 Tasks
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

Getting the Operation Status

– isCancelled (page 11)
Returns a Boolean value indicating whether the operation has been cancelled.

– isExecuting (page 12)
Returns a Boolean value indicating whether the operation is currently executing.

– isFinished (page 12)
Returns a Boolean value indicating whether the operation is done executing.

– isConcurrent (page 12)
Returns a Boolean value indicating whether the operation runs asynchronously.

– isReady (page 13)
Returns a Boolean value indicating whether the receiver’s operation can be performed now.

Managing Dependencies

– addDependency: (page 9)
Makes the receiver dependent on the completion of the specified operation.

– removeDependency: (page 14)
Removes the receiver’s dependence on the specified operation.

– dependencies (page 10)
Returns a new array object containing the operations on which the receiver is dependent.

Prioritizing Operations in an Operation Queue

– queuePriority (page 14)
Returns the priority of the operation in an operation queue.

– setQueuePriority: (page 15)
Sets the priority of the operation when used in an operation queue.

Instance Methods

addDependency:
Makes the receiver dependent on the completion of the specified operation.

- (void)addDependency:(NSOperation *)operation

Parameters
operation

The operation on which the receiver is dependent. The same dependency should not be added more
than once to the receiver, and the results of doing so are undefined.

Instance Methods 9
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

Discussion
The receiver is not considered ready to execute until all of its dependent operations finish executing. If the
receiver is already executing its task, adding dependencies is unlikely to have any practical effect. This method
may change the isReady and dependencies properties of the receiver.

It is a programmer error to create any circular dependencies among a set of operations. Doing so can cause
a deadlock among the operations and may freeze your program.

Availability
Available in Mac OS X v10.5 and later.

See Also
– removeDependency: (page 14)
– dependencies (page 10)

Declared In
NSOperation.h

cancel
Advises the operation object that it should stop executing its task.

- (void)cancel

Discussion
This method does not force your operation code to stop. The code for your operation must invoke the
isCancelled method periodically to determine whether the operation should be stopped. Once cancelled,
an operation cannot be restarted.

If the operation is already finished executing, this method has no effect. Canceling an operation that is
currently in an operation queue, but not yet executing, causes it to be removed from the queue (although
not necessarily right away).

Availability
Available in Mac OS X v10.5 and later.

See Also
– isCancelled (page 11)

Declared In
NSOperation.h

dependencies
Returns a new array object containing the operations on which the receiver is dependent.

- (NSArray *)dependencies

Return Value
A new array object containing the NSOperation objects.

Discussion
The receiver is not considered ready to execute until all of its dependent operations finish executing.

10 Instance Methods
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– addDependency: (page 9)
– removeDependency: (page 14)

Declared In
NSOperation.h

init
Returns an initialized NSOperation object.

- (id)init

Return Value
The initialized NSOperation object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

isCancelled
Returns a Boolean value indicating whether the operation has been cancelled.

- (BOOL)isCancelled

Return Value
YES if the operation was explicitly cancelled by an invocation of the receiver’s cancel method; otherwise,
NO. This method may return YES even if the operation is currently executing.

Discussion
Canceling an operation does not actively stop the receiver’s code from executing. An operation object is
responsible for calling this method periodically and stopping itself if the method returns YES.

Availability
Available in Mac OS X v10.5 and later.

See Also
– cancel (page 10)

Related Sample Code
NSOperationSample

Declared In
NSOperation.h

Instance Methods 11
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

isConcurrent
Returns a Boolean value indicating whether the operation runs asynchronously.

- (BOOL)isConcurrent

Return Value
YES if the operation is asynchronous; otherwise, NO if the operation runs synchronously on whatever thread
started it. This method returns NO by default.

Discussion
If you are implementing a concurrent operation, you must override this method and return YES from your
implementation. For more information about the differences between concurrent and non-concurrent
operations, see “Concurrent Versus Non-Concurrent Operations” (page 5).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

isExecuting
Returns a Boolean value indicating whether the operation is currently executing.

- (BOOL)isExecuting

Return Value
YES if the operation is executing; otherwise, NO if the operation has not been started or is already finished.

Discussion
If you are implementing a concurrent operation, you should override this method to return the execution
state of your operation. Concurrent operations are also responsible for generating the appropriate KVO
notifications whenever the execution state changes. For more information about manually generating KVO
notifications, see Key-Value Observing Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

isFinished
Returns a Boolean value indicating whether the operation is done executing.

- (BOOL)isFinished

Return Value
YES if the operation is no longer executing; otherwise, NO.

12 Instance Methods
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

Discussion
If you are implementing a concurrent operation, you should override this method to return the finished state
of your operation. Concurrent operations are also responsible for generating the appropriate KVO notifications
whenever the finished state changes. For more information about manually generating KVO notifications,
see Key-Value Observing Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

isReady
Returns a Boolean value indicating whether the receiver’s operation can be performed now.

- (BOOL)isReady

Return Value
YES if the operation can be performed now; otherwise, NO.

Discussion
Operations may not be ready due to dependencies on other operations or because of external conditions
that might prevent needed data from being ready. The NSOperation class manages dependencies on other
operations and reports the readiness of the receiver based on those dependencies.

Note: If the receiver is cancelled before it starts, operations that are dependent on the completion of the
receiver will never become ready.

If your operation object has additional dependencies, you must override this method and return a value that
accurately reflects the readiness of the receiver. Your custom implementation should invoke super and
incorporate its return value into this method’s return value. Your custom implementation must be KVO
compliant.

Availability
Available in Mac OS X v10.5 and later.

See Also
– dependencies (page 10)

Declared In
NSOperation.h

main
Performs the receiver’s non-concurrent task.

- (void)main

Instance Methods 13
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

Discussion
The default implementation of this method does nothing. For non-concurrent operations, you must override
this method in your NSOperation subclass to perform the desired task. In your implementation, do not
invoke super.

If you are implementing a concurrent operation, you should override the start method instead. In your
overridden start method, you can continue to call this method to do the actual work if separating the work
from your starting logic is practical.

Availability
Available in Mac OS X v10.5 and later.

See Also
– start (page 15)

Declared In
NSOperation.h

queuePriority
Returns the priority of the operation in an operation queue.

- (NSOperationQueuePriority)queuePriority

Return Value
The relative priority of the operation. The returned value always corresponds to one of the predefined
constants. (For a list of valid values, see “Operation Priorities” (page 16).) If no priority is explicitly set, this
method returns NSOperationQueuePriorityNormal.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setQueuePriority: (page 15)

Declared In
NSOperation.h

removeDependency:
Removes the receiver’s dependence on the specified operation.

- (void)removeDependency:(NSOperation *)operation

Parameters
operation

The dependent operation to be removed from the receiver.

Discussion
This method may change the isReady and dependencies properties of the receiver.

Availability
Available in Mac OS X v10.5 and later.

14 Instance Methods
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

See Also
– addDependency: (page 9)
– dependencies (page 10)

Declared In
NSOperation.h

setQueuePriority:
Sets the priority of the operation when used in an operation queue.

- (void)setQueuePriority:(NSOperationQueuePriority)priority

Parameters
priority

The relative priority of the operation. For a list of valid values, see “Operation Priorities” (page 16).

Discussion
You should use priority values only as needed to classify the relative priority of non-dependent operations.
Priority values should not be used to implement dependency management among different operation
objects. If you need to establish dependencies between operations, use the addDependency: method
instead.

If you attempt to specify a priority value that does not match one of the defined constants, this method
automatically adjusts the value you specify towards the NSOperationQueuePriorityNormal priority,
stopping at the first valid constant value. For example, if you specified the value -10, this method would
adjust that value to match the NSOperationQueuePriorityVeryLow constant. Similarly, if you specified
+10, this method would adjust the value to match the NSOperationQueuePriorityVeryHigh constant.

Availability
Available in Mac OS X v10.5 and later.

See Also
– queuePriority (page 14)
– addDependency: (page 9)

Related Sample Code
NSOperationSample

Declared In
NSOperation.h

start
Begins the execution of the operation.

- (void)start

Discussion
The default implementation of this method configures the execution environment for a non-concurrent
operation and invokes the receiver’s main method. As part of the default configuration, this method performs
several checks to ensure that the non-concurrent operation can actually run and generates appropriate KVO
notifications for each change in the operation’s state. If the receiver’s operation has already been performed,

Instance Methods 15
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

this method throws an NSInvalidArgumentException exception. If the operation has already been
cancelled, this method simply returns without calling main. If the operation is to be performed on a separate
thread, this method may return before the operation itself completes on the other thread.

Note: An operation may not be ready to execute if it is dependent on other operations that have not yet
finished.

If you are implementing a concurrent operation, you must override this method to initiate your operation;
however, your implementation must not call super. If you override this method, you must also override the
isExecuting and isFinishedmethods to report when your operation begins executing and finishes. Your
implementations for these methods must maintain KVO compliance for the associated properties by manually
sending the appropriate value change messages. For more information about manually generating KVO
notifications, see Key-Value Observing Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

See Also
– main (page 13)
– isReady (page 13)
– dependencies (page 10)

Declared In
NSOperation.h

Constants

NSOperationQueuePriority
Describes the priority of an operation relative to other operations in an operation queue.

typedef NSInteger NSOperationQueuePriority;

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOperation.h

Operation Priorities
These constants let you prioritize the order in which operations execute.

16 Constants
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

enum {
 NSOperationQueuePriorityVeryLow = -8,
 NSOperationQueuePriorityLow = -4,
 NSOperationQueuePriorityNormal = 0,
 NSOperationQueuePriorityHigh = 4,
 NSOperationQueuePriorityVeryHigh = 8
};

Constants
NSOperationQueuePriorityVeryLow

Operations receive very low priority for execution.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityLow
Operations receive low priority for execution.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityNormal
Operations receive the normal priority for execution.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityHigh
Operations receive high priority for execution.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

NSOperationQueuePriorityVeryHigh
Operations receive very high priority for execution.

Available in Mac OS X v10.5 and later.

Declared in NSOperation.h.

Discussion
You can use these constants to specify the relative ordering of operations that are waiting to be started in
an operation queue. You should always use these constants (and not the defined value) for determining
priority.

Declared In
NSOperation.h

Constants 17
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

18 Constants
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

NSOperation Class Reference

This table describes the changes to NSOperation Class Reference.

NotesDate

Updated the guidelines related to KVO compliance.2008-11-19

Clarified cancellation semantics for concurrent operations.2008-10-15

New document describing methods for managing encapsulated tasks.2007-04-30

19
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

20
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

addDependency: instance method 9

C

cancel instance method 10

D

dependencies instance method 10

I

init instance method 11
isCancelled instance method 11
isConcurrent instance method 12
isExecuting instance method 12
isFinished instance method 12
isReady instance method 13

M

main instance method 13

N

NSOperationQueuePriority data type 16
NSOperationQueuePriorityHigh constant 17
NSOperationQueuePriorityLow constant 17
NSOperationQueuePriorityNormal constant 17
NSOperationQueuePriorityVeryHigh constant 17
NSOperationQueuePriorityVeryLow constant 17

O

Operation Priorities 16

Q

queuePriority instance method 14

R

removeDependency: instance method 14

S

setQueuePriority: instance method 15
start instance method 15

21
2008-11-19 | © 2008 Apple Inc. All Rights Reserved.

Index

	NSOperation Class Reference
	Contents
	NSOperation Class Reference
	Overview
	Concurrent Versus Non-Concurrent Operations
	Operation Dependencies
	KVO-Compliant Properties
	Threading Considerations
	Subclassing Notes
	Methods to Override
	Responding to the Cancel Command

	Tasks
	Initialization
	Executing the Operation
	Canceling Operations
	Getting the Operation Status
	Managing Dependencies
	Prioritizing Operations in an Operation Queue

	Instance Methods
	addDependency:
	cancel
	dependencies
	init
	isCancelled
	isConcurrent
	isExecuting
	isFinished
	isReady
	main
	queuePriority
	removeDependency:
	setQueuePriority:
	start

	Constants
	NSOperationQueuePriority
	Operation Priorities

	Revision History
	Index
	A
	C
	D
	I
	M
	N
	O
	Q
	R
	S

