
Objective-C 2.0 Runtime Reference
Cocoa > Objective-C Language

2008-11-19

Apple Inc.
© 2002, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Cocoa, eMac, Mac, Mac
OS, and Objective-C are trademarks of Apple
Inc., registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Objective-C 2.0 Runtime Reference 9

Overview 9
Who Should Read This Document 9

Functions by Task 10
Working with Classes 10
Adding Classes 11
Instantiating Classes 11
Working with Instances 11
Obtaining Class Definitions 12
Working with Instance Variables 12
Sending Messages 13
Forwarding Messages 13
Working with Methods 14
Working with Selectors 14
Working with Protocols 14
Working with Properties 15

Functions 15
class_addIvar 15
class_addMethod 16
class_addProtocol 16
class_conformsToProtocol 17
class_copyIvarList 17
class_copyMethodList 18
class_copyPropertyList 18
class_copyProtocolList 18
class_createInstance 19
class_getClassMethod 19
class_getClassVariable 20
class_getInstanceMethod 20
class_getInstanceSize 21
class_getInstanceVariable 21
class_getIvarLayout 21
class_getMethodImplementation 21
class_getMethodImplementation_stret 22
class_getName 22
class_getProperty 23
class_getSuperclass 23
class_getVersion 23
class_getWeakIvarLayout 24
class_isMetaClass 24
class_replaceMethod 24

3
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

class_respondsToSelector 25
class_setIvarLayout 25
class_setSuperclass 25
class_setVersion 26
class_setWeakIvarLayout 26
ivar_getName 27
ivar_getOffset 27
ivar_getTypeEncoding 27
marg_free 27
marg_getRef 28
marg_getValue 28
marg_malloc 28
marg_setValue 29
method_copyArgumentType 29
method_copyReturnType 29
method_exchangeImplementations 30
method_getArgumentType 30
method_getImplementation 30
method_getName 31
method_getNumberOfArguments 31
method_getReturnType 31
method_getTypeEncoding 32
method_setImplementation 32
objc_allocateClassPair 32
objc_copyProtocolList 33
objc_duplicateClass 33
objc_getClass 33
objc_getClassList 34
objc_getFutureClass 35
objc_getMetaClass 35
objc_getProtocol 35
objc_getRequiredClass 35
objc_lookUpClass 36
objc_msgSend 36
objc_msgSendSuper 37
objc_msgSendSuper_stret 37
objc_msgSend_fpret 38
objc_msgSend_stret 38
objc_registerClassPair 39
objc_setFutureClass 39
object_copy 39
object_dispose 40
object_getClass 40
object_getClassName 40
object_getIndexedIvars 40
object_getInstanceVariable 41

4
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

CONTENTS

object_getIvar 41
object_setClass 42
object_setInstanceVariable 42
object_setIvar 43
property_getAttributes 43
property_getName 43
protocol_conformsToProtocol 44
protocol_copyMethodDescriptionList 44
protocol_copyPropertyList 45
protocol_copyProtocolList 45
protocol_getMethodDescription 46
protocol_getName 46
protocol_getProperty 46
protocol_isEqual 47
sel_getName 47
sel_getUid 47
sel_isEqual 48
sel_registerName 48

Data Types 49
Class-Definition Data Structures 49
Instance Data Types 52
Boolean Value 53

Constants 54
Boolean Values 54
Null Values 54

Appendix A Mac OS X Version 10.5 Delta 57

Runtime Functions 57
Basic types 57
Instances 57
Class Inspection 58
Class Manipulation 59
Methods 59
Instance Variables 60
Selectors 60
Runtime 60
Messaging 61
Protocols 61
Exceptions 61
Synchronization 62
NXHashTable and NXMapTable 62

Structures 62

5
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Document Revision History 65

Index 67

6
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Tables and Listings

Objective-C 2.0 Runtime Reference 9

Listing 1 Using objc_getClassList 34

Appendix A Mac OS X Version 10.5 Delta 57

Table A-1 Substitutions for objc_class 62
Table A-2 Substitutions for objc_method 63
Table A-3 Substitutions for objc_ivar 63

7
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

8
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

TABLES AND LISTINGS

Declared in MacTypes.h
NSObjCRuntime.h
wintypes.h

Companion guides Objective-C 2.0 Runtime Programming Guide
The Objective-C 2.0 Programming Language

Overview

This document describes the Mac OS X Objective-C 2.0 runtime library support functions and data structures.
The functions are implemented in the shared library found at /usr/lib/libobjc.A.dylib. This shared
library provides support for the dynamic properties of the Objective-C language, and as such is linked to by
all Objective-C applications.

This reference is useful primarily for developing bridge layers between Objective-C and other languages, or
for low-level debugging. You typically do not need to use the Objective-C runtime library directly when
programming in Objective-C.

The Mac OS X implementation of the Objective-C runtime library is unique to the Mac OS X platform. For
other platforms, the GNU Compiler Collection provides a different implementation with a similar API. This
document covers only the Mac OS X implementation.

The low-level Objective-C runtime API is significantly updated in Mac OS X version 10.5. Many functions and
all existing data structures are replaced with new functions. The old functions and structures are deprecated
in 32-bit and absent in 64-bit mode. The API constrains several values to 32-bit ints even in 64-bit mode—class
count, protocol count, methods per class, ivars per class, arguments per method, sizeof(all arguments) per
method, and class version number. In addition, the new Objective-C ABI (not described here) further constrains
sizeof(anInstance) to 32 bits, and three other values to 24 bits—methods per class, ivars per class, and
sizeof(a single ivar). Finally, the obsolete NXHashTable and NXMapTable are limited to 4 billion items.

“Deprecated” below means “deprecated in Mac OS X version 10.5 for 32-bit code, and disallowed for 64-bit
code.”

Who Should Read This Document

The document is intended for readers who might be interested in learning about the Objective-C runtime.

Because this isn’t a document about C, it assumes some prior acquaintance with that language. However, it
doesn’t have to be an extensive acquaintance.

Overview 9
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Functions by Task

Working with Classes

class_getName (page 22)
Returns the name of a class.

class_getSuperclass (page 23)
Returns the superclass of a class.

class_setSuperclass (page 25)
Sets the superclass of a given class.

class_isMetaClass (page 24)
Returns a Boolean value that indicates whether a class object is a metaclass.

class_getInstanceSize (page 21)
Returns the size of instances of a class.

class_getInstanceVariable (page 21)
Returns the Ivar for a specified instance variable of a given class.

class_getClassVariable (page 20)
Returns the Ivar for a specified class variable of a given class.

class_addIvar (page 15)
Adds a new instance variable to a class.

class_copyIvarList (page 17)
Describes the instance variables declared by a class.

class_getIvarLayout (page 21)
Returns a description of the Ivar layout for a given class.

class_setIvarLayout (page 25)
Sets the Ivar layout for a given class.

class_getWeakIvarLayout (page 24)
Returns a description of the layout of weak Ivars for a given class.

class_setWeakIvarLayout (page 26)
Sets the layout for weak Ivars for a given class.

class_getProperty (page 23)
Returns a property with a given name of a given class.

class_copyPropertyList (page 18)
Describes the properties declared by a class.

class_addMethod (page 16)
Adds a new method to a class with a given name and implementation.

class_getInstanceMethod (page 20)
Returns a specified instance method for a given class.

class_getClassMethod (page 19)
Returns a pointer to the data structure describing a given class method for a given class.

class_copyMethodList (page 18)
Describes the instance methods implemented by a class.

10 Functions by Task
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

class_replaceMethod (page 24)
Replaces the implementation of a method for a given class.

class_getMethodImplementation (page 21)
Returns the function pointer that would be called if a particular message were sent to an instance of
a class.

class_getMethodImplementation_stret (page 22)
Returns the function pointer that would be called if a particular message were sent to an instance of
a class.

class_respondsToSelector (page 25)
Returns a Boolean value that indicates whether instances of a class respond to a particular selector.

class_addProtocol (page 16)
Adds a protocol to a class.

class_conformsToProtocol (page 17)
Returns a Boolean value that indicates whether a class conforms to a given protocol.

class_copyProtocolList (page 18)
Describes the protocols adopted by a class.

class_getVersion (page 23)
Returns the version number of a class definition.

class_setVersion (page 26)
Sets the version number of a class definition.

objc_getFutureClass (page 35)
Used by CoreFoundation's toll-free bridging.

objc_setFutureClass (page 39)
Used by CoreFoundation's toll-free bridging.

Adding Classes

objc_allocateClassPair (page 32)
Creates a new class and metaclass.

objc_registerClassPair (page 39)
Registers a class that was allocated using objc_allocateClassPair.

objc_duplicateClass (page 33)
Used by Foundation's Key-Value Observing.

Instantiating Classes

class_createInstance (page 19)
Creates an instance of a class, allocating memory for the class in the default malloc memory zone.

Working with Instances

object_copy (page 39)
Returns a copy of a given object.

Functions by Task 11
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

object_dispose (page 40)
Frees the memory occupied by a given object.

object_setInstanceVariable (page 42)
Changes the value of an instance variable of a class instance.

object_getInstanceVariable (page 41)
Obtains the value of an instance variable of a class instance.

object_getIndexedIvars (page 40)
Returns a pointer to any extra bytes allocated with a instance given object.

object_getIvar (page 41)
Reads the value of an instance variable in an object.

object_setIvar (page 43)
Sets the value of an instance variable in an object.

object_getClassName (page 40)
Returns the class name of a given object.

object_getClass (page 40)
Returns the class of an object.

object_setClass (page 42)
Sets the class of an object.

Obtaining Class Definitions

objc_getClassList (page 34)
Obtains the list of registered class definitions.

objc_lookUpClass (page 36)
Returns the class definition of a specified class.

objc_getClass (page 33)
Returns the class definition of a specified class.

objc_getRequiredClass (page 35)
Returns the class definition of a specified class.

objc_getMetaClass (page 35)
Returns the metaclass definition of a specified class.

Working with Instance Variables

ivar_getName (page 27)
Returns the name of an instance variable.

ivar_getTypeEncoding (page 27)
Returns the type string of an instance variable.

ivar_getOffset (page 27)
Returns the offset of an instance variable.

12 Functions by Task
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Sending Messages
When it encounters a method invocation, the compiler might generate a call to any of several functions to
perform the actual message dispatch, depending on the receiver, the return value, and the arguments. You
can use these functions to dynamically invoke methods from your own plain C code, or to use argument
forms not permitted by NSObject’s perform... methods. These functions are declared in
/usr/include/objc/objc-runtime.h.

 ■ objc_msgSend (page 36) sends a message with a simple return value to an instance of a class.

 ■ objc_msgSend_stret (page 38) sends a message with a data-structure return value to an instance of
a class.

 ■ objc_msgSendSuper (page 37) sends a message with a simple return value to the superclass of an
instance of a class.

 ■ objc_msgSendSuper_stret (page 37) sends a message with a data-structure return value to the
superclass of an instance of a class.

objc_msgSend (page 36)
Sends a message with a simple return value to an instance of a class.

objc_msgSend_fpret (page 38)
Sends a message with a floating-point return value to an instance of a class.

objc_msgSend_stret (page 38)
Sends a message with a data-structure return value to an instance of a class.

objc_msgSendSuper (page 37)
Sends a message with a simple return value to the superclass of an instance of a class.

objc_msgSendSuper_stret (page 37)
Sends a message with a data-structure return value to the superclass of an instance of a class.

Forwarding Messages
This section describes the functions used by NSObject and NSInvocation to forward method invocations.
The arguments to the method are given as a list of arguments, and as such the nature of the calling convention
varies for each CPU architecture.

marg_malloc (page 28)
Macro that allocates an argument list.

marg_free (page 27)
Macro that releases an argument list.

marg_getRef (page 28)
Macro that returns a pointer to an argument in an argument list.

marg_getValue (page 28)
Macro that returns the value of an argument in an argument list.

marg_setValue (page 29)
Macro that sets the value of an argument in an argument list.

Functions by Task 13
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Working with Methods

method_getName (page 31)
Returns the name of a method.

method_getImplementation (page 30)
Returns the implementation of a method.

method_getTypeEncoding (page 32)
Returns a string describing a method's parameter and return types.

method_copyReturnType (page 29)
Returns a string describing a method's return type.

method_copyArgumentType (page 29)
Returns a string describing a single parameter type of a method.

method_getReturnType (page 31)
Returns by reference a string describing a method's return type.

method_getNumberOfArguments (page 31)
Returns the number of arguments accepted by a method.

method_getArgumentType (page 30)
Returns by reference a string describing a single parameter type of a method.

method_setImplementation (page 32)
Sets the implementation of a method.

method_exchangeImplementations (page 30)
Exchanges the implementations of two methods.

Working with Selectors

sel_getName (page 47)
Returns the name of the method specified by a given selector.

sel_registerName (page 48)
Registers a method with the Objective-C runtime system, maps the method name to a selector, and
returns the selector value.

sel_getUid (page 47)
Registers a method name with the Objective-C runtime system.

sel_isEqual (page 48)
Returns a Boolean value that indicates whether two selectors are equal.

Working with Protocols

objc_getProtocol (page 35)
Returns a specified protocol.

objc_copyProtocolList (page 33)
Returns an array of all the protocols known to the runtime.

protocol_getName (page 46)
Returns a the name of a protocol.

14 Functions by Task
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

protocol_isEqual (page 47)
Returns a Boolean value that indicates whether two protocols are equal.

protocol_copyMethodDescriptionList (page 44)
Returns an array of method descriptions of methods meeting a given specification for a given protocol.

protocol_getMethodDescription (page 46)
Returns a method description structure for a specified method of a given protocol.

protocol_copyPropertyList (page 45)
Returns an array of the properties declared by a protocol.

protocol_getProperty (page 46)
Returns the specified property of a given protocol.

protocol_copyProtocolList (page 45)
Returns an array of the protocols adopted by a protocol.

protocol_conformsToProtocol (page 44)
Returns a Boolean value that indicates whether one protocol conforms to another protocol.

Working with Properties

property_getName (page 43)
Returns the name of a property.

property_getAttributes (page 43)
Returns the attribute string of an property.

Functions

class_addIvar
Adds a new instance variable to a class.

BOOL class_addIvar(Class cls, const char *name, size_t size, uint8_t alignment,
const char *types)

Return Value
YES if the instance variable was added successfully, otherwise NO (for example, the class already contains an
instance variable with that name).

Discussion
This function may only be called after objc_allocateClassPair (page 32) and before
objc_registerClassPair (page 39). Adding an instance variable to an existing class is not supported.

The class must not be a metaclass. Adding an instance variable to a metaclass is not supported.

The instance variable's minimum alignment in bytes is 1<<align. The minimum alignment of an instance
variable depends on the ivar's type and the machine architecture. For variables of any pointer type, pass
log2(sizeof(pointer_type)).

Declared In
runtime.h

Functions 15
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

class_addMethod
Adds a new method to a class with a given name and implementation.

BOOL class_addMethod(Class cls, SEL name, IMP imp, const char *types)

Parameters
cls

The class to which to add a method.

name
A selector that specifies the name of the method being added.

imp
A function which is the implementation of the new method. The function must take at least two
arguments—self and _cmd.

types
An array of characters that describe the types of the arguments to the method. For possible values,
see The Objective-C 2.0 Programming Language > The Runtime System > “Type Encodings”. Since the
function must take at least two arguments—self and _cmd, the second and third characters must
be “@:” (the first character is the return type).

Return Value
YES if the method was added successfully, otherwise NO (for example, the class already contains a method
implementation with that name).

Discussion
class_addMethod will add an override of a superclass's implementation, but will not replace an existing
implementation in this class. To change an existing implementation, use method_setImplementation (page
32).

An Objective-C method is simply a C function that take at least two arguments—self and _cmd. For example,
given the following function:

void myMethodIMP(id self, SEL _cmd)
{
 // implementation
}

you can dynamically add it to a class as a method (called resolveThisMethodDynamically) like this:

class_addMethod([self class], @selector(resolveThisMethodDynamically), (IMP)
myMethodIMP, "v@:");

Declared In
runtime.h

class_addProtocol
Adds a protocol to a class.

BOOL class_addProtocol(Class cls, Protocol *protocol)

Parameters
cls

The class to modify.

16 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

outCount
The protocol to add to cls.

Return Value
YES if the method was added successfully, otherwise NO (for example, the class already conforms to that
protocol).

Declared In
runtime.h

class_conformsToProtocol
Returns a Boolean value that indicates whether a class conforms to a given protocol.

BOOL class_conformsToProtocol(Class cls, Protocol *protocol)

Parameters
cls

The class you want to inspect.

protocol
A protocol.

Return Value
YES if cls conforms to protocol, otherwise NO.

Discussion
You should usually use NSObject‘s conformsToProtocol: method instead of this function.

Declared In
runtime.h

class_copyIvarList
Describes the instance variables declared by a class.

Ivar * class_copyIvarList(Class cls, unsigned int *outCount)

Parameters
cls

The class to inspect.

outCount
On return, contains the length of the returned array. If outCount is NULL, the length is not returned.

Return Value
An array of pointers of type Ivar describing the instance variables declared by the class. Any instance variables
declared by superclasses are not included. The array contains *outCount pointers followed by a NULL
terminator. You must free the array with free().

If the class declares no instance variables, or cls is Nil, NULL is returned and *outCount is 0.

Declared In
runtime.h

Functions 17
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

class_copyMethodList
Describes the instance methods implemented by a class.

Method * class_copyMethodList(Class cls, unsigned int *outCount)

Parameters
cls

The class you want to inspect.

outCount
On return, contains the length of the returned array. If outCount is NULL, the length is not returned.

Return Value
An array of pointers of type Method describing the instance methods implemented by the class—any instance
methods implemented by superclasses are not included. The array contains *outCount pointers followed
by a NULL terminator. You must free the array with free().

If cls implements no instance methods, or cls is Nil, returns NULL and *outCount is 0.

Discussion
To get the class methods of a class, use class_copyMethodList(object_getClass(cls), &count).

To get the implementations of methods that may be implemented by superclasses, use
class_getInstanceMethod (page 20) or class_getClassMethod (page 19).

Declared In
runtime.h

class_copyPropertyList
Describes the properties declared by a class.

objc_property_t * class_copyPropertyList(Class cls, unsigned int *outCount)

Parameters
cls

The class you want to inspect.

outCount
On return, contains the length of the returned array. If outCount is NULL, the length is not returned.

Return Value
An array of pointers of type objc_property_t describing the properties declared by the class. Any properties
declared by superclasses are not included. The array contains *outCount pointers followed by a NULL
terminator. You must free the array with free().

If cls declares no properties, or cls is Nil, returns NULL and *outCount is 0.

Declared In
runtime.h

class_copyProtocolList
Describes the protocols adopted by a class.

18 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Protocol ** class_copyProtocolList(Class cls, unsigned int *outCount)

Parameters
cls

The class you want to inspect.

outCount
On return, contains the length of the returned array. If outCount is NULL, the length is not returned.

Return Value
An array of pointers of type Protocol* describing the protocols adopted by the class. Any protocols adopted
by superclasses or other protocols are not included. The array contains *outCount pointers followed by a
NULL terminator. You must free the array with free().

If cls adopts no protocols, or cls is Nil, returns NULL and *outCount is 0.

Declared In
runtime.h

class_createInstance
Creates an instance of a class, allocating memory for the class in the default malloc memory zone.

id class_createInstance(Class cls, size_t extraBytes)

Parameters
cls

The class that you wish to allocate an instance of.

extraBytes
An integer indicating the number of extra bytes to allocate. The additional bytes can be used to store
additional instance variables beyond those defined in the class definition.

Return Value
An instance of the class cls.

Declared In
runtime.h

class_getClassMethod
Returns a pointer to the data structure describing a given class method for a given class.

Method class_getClassMethod(Class aClass, SEL aSelector)

Parameters
aClass

A pointer to a class definition. Pass the class that contains the method you want to retrieve.

aSelector
A pointer of type SEL (page 50). Pass the selector of the method you want to retrieve.

Return Value
A pointer to the Method (page 49) data structure that corresponds to the implementation of the selector
specified by aSelector for the class specified by aClass, or NULL if the specified class or its superclasses
do not contain an instance method with the specified selector.

Functions 19
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Discussion
Note that this function searches superclasses for implementations, whereas class_copyMethodList (page
18) does not.

Declared In
runtime.h

class_getClassVariable
Returns the Ivar for a specified class variable of a given class.

Ivar class_getClassVariable(Class cls, const char* name)

Parameters
cls

The class definition whose class variable you wish to obtain.

name
The name of the class variable definition to obtain.

Return Value
A pointer to an Ivar (page 49) data structure containing information about the class variable specified by
name.

Declared In
runtime.h

class_getInstanceMethod
Returns a specified instance method for a given class.

Method class_getInstanceMethod(Class aClass, SEL aSelector)

Parameters
aClass

The class you want to inspect.

aSelector
The selector of the method you want to retrieve.

Return Value
The method that corresponds to the implementation of the selector specified by aSelector for the class
specified by aClass, or NULL if the specified class or its superclasses do not contain an instance method
with the specified selector.

Discussion
Note that this function searches superclasses for implementations, whereas class_copyMethodList (page
18) does not.

Declared In
runtime.h

20 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

class_getInstanceSize
Returns the size of instances of a class.

size_t class_getInstanceSize(Class cls)

Parameters
cls

A class object.

Return Value
The size in bytes of instances of the class cls, or 0 if cls is Nil.

Declared In
runtime.h

class_getInstanceVariable
Returns the Ivar for a specified instance variable of a given class.

Ivar class_getInstanceVariable(Class cls, const char* name)

Parameters
cls

The class whose instance variable you wish to obtain.

name
The name of the instance variable definition to obtain.

Return Value
A pointer to an Ivar (page 49) data structure containing information about the instance variable specified
by name.

Declared In
runtime.h

class_getIvarLayout
Returns a description of the Ivar layout for a given class.

const char *class_getIvarLayout(Class cls)

Parameters
cls

The class to inspect.

Return Value
A description of the Ivar layout for cls.

Declared In
runtime.h

class_getMethodImplementation
Returns the function pointer that would be called if a particular message were sent to an instance of a class.

Functions 21
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

IMP class_getMethodImplementation(Class cls, SEL name)

Parameters
cls

The class you want to inspect.

name
A selector.

Return Value
The function pointer that would be called if [object name] were called with an instance of the class, or
NULL if cls is Nil.

Discussion
class_getMethodImplementation may be faster than
method_getImplementation(class_getInstanceMethod(cls, name)).

The function pointer returned may be a function internal to the runtime instead of an actual method
implementation. For example, if instances of the class do not respond to the selector, the function pointer
returned will be part of the runtime's message forwarding machinery.

Declared In
runtime.h

class_getMethodImplementation_stret
Returns the function pointer that would be called if a particular message were sent to an instance of a class.

IMP class_getMethodImplementation_stret(Class cls, SEL name)

Parameters
cls

The class you want to inspect.

name
A selector.

Return Value
The function pointer that would be called if [object name] were called with an instance of the class, or
NULL if cls is Nil.

Declared In
runtime.h

class_getName
Returns the name of a class.

const char * class_getName(Class cls)

Parameters
cls

A class object.

Return Value
The name of the class, or the empty string if cls is Nil.

22 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Declared In
runtime.h

class_getProperty
Returns a property with a given name of a given class.

objc_property_t class_getProperty(Class cls, const char *name)

Return Value
A pointer of type objc_property_t describing the property, or NULL if the class does not declare a property
with that name, or NULL if cls is Nil.

Declared In
runtime.h

class_getSuperclass
Returns the superclass of a class.

Class class_getSuperclass(Class cls)

Parameters
cls

A class object.

Return Value
The superclass of the class, or Nil if cls is a root class, or Nil if cls is Nil.

Discussion
You should usually use NSObject‘s superclass method instead of this function.

Declared In
runtime.h

class_getVersion
Returns the version number of a class definition.

int class_getVersion(Class theClass)

Parameters
theClass

A pointer to an Class (page 49) data structure. Pass the class definition for which you wish to obtain
the version.

Return Value
An integer indicating the version number of the class definition.

Discussion
You can use the version number of the class definition to provide versioning of the interface that your class
represents to other classes. This is especially useful for object serialization (that is, archiving of the object in
a flattened form), where it is important to recognize changes to the layout of the instance variables in different
class-definition versions.

Functions 23
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Classes derived from the Foundation framework NSObject class can obtain the class-definition version
number using the getVersion class method, which is implemented using the class_getVersion function.

Declared In
runtime.h

class_getWeakIvarLayout
Returns a description of the layout of weak Ivars for a given class.

const char *class_getWeakIvarLayout(Class cls)

Parameters
cls

The class to inspect.

Return Value
A description of the layout of the weak Ivars for cls.

Declared In
runtime.h

class_isMetaClass
Returns a Boolean value that indicates whether a class object is a metaclass.

BOOL class_isMetaClass(Class cls)

Parameters
cls

A class object.

Return Value
YES if cls is a metaclass, NO if cls is a non-meta class, NO if cls is Nil.

Declared In
runtime.h

class_replaceMethod
Replaces the implementation of a method for a given class.

IMP class_replaceMethod(Class cls, SEL name, IMP imp, const char *types)

Parameters
cls

The class you want to modify.

name
A selector that identifies the method whose implementation you want to replace.

imp
The new implementation for the method identified by name for the class identified by cls.

24 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

types
An array of characters that describe the types of the arguments to the method. For possible values,
see The Objective-C 2.0 Programming Language > The Runtime System > “Type Encodings”. Since the
function must take at least two arguments—self and _cmd, the second and third characters must
be “@:” (the first character is the return type).

Return Value
The previous implementation of the method identified by name for the class identified by cls.

Declared In
runtime.h

class_respondsToSelector
Returns a Boolean value that indicates whether instances of a class respond to a particular selector.

BOOL class_respondsToSelector(Class cls, SEL sel)

Parameters
cls

The class you want to inspect.

sel
A selector.

Return Value
YES if instances of the class respond to the selector, otherwise NO.

Discussion
You should usually use NSObject's respondsToSelector: or instancesRespondToSelector:methods
instead of this function.

Declared In
runtime.h

class_setIvarLayout
Sets the Ivar layout for a given class.

void class_setIvarLayout(Class cls, const char *layout)

Parameters
cls

The class to modify.

layout
The layout of the Ivars for cls.

Declared In
runtime.h

class_setSuperclass
Sets the superclass of a given class.

Functions 25
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Class class_setSuperclass(Class cls, Class newSuper)

Parameters
cls

The class whose superclass you want to set.

newSuper
The new superclass for cls.

Return Value
The old superclass for cls.

Special Considerations

You should not use this function.

Declared In
runtime.h

class_setVersion
Sets the version number of a class definition.

void class_setVersion(Class theClass, int version)

Parameters
theClass

A pointer to an Class (page 49) data structure. Pass the class definition for which you wish to set
the version.

version
An integer. Pass the new version number of the class definition.

Discussion
You can use the version number of the class definition to provide versioning of the interface that your class
represents to other classes. This is especially useful for object serialization (that is, archiving of the object in
a flattened form), where it is important to recognize changes to the layout of the instance variables in different
class-definition versions.

Classes derived from the Foundation framework NSObject class can set the class-definition version number
using the setVersion: class method, which is implemented using the class_setVersion function.

Declared In
runtime.h

class_setWeakIvarLayout
Sets the layout for weak Ivars for a given class.

void class_setWeakIvarLayout(Class cls, const char *layout)

Parameters
cls

The class to modify.

26 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

layout
The layout of the weak Ivars for cls.

Declared In
runtime.h

ivar_getName
Returns the name of an instance variable.

const char * ivar_getName(Ivar ivar)

Return Value
A C string containing the instance variable's name.

Declared In
runtime.h

ivar_getOffset
Returns the offset of an instance variable.

ptrdiff_t ivar_getOffset(Ivar ivar)

Discussion
For instance variables of type id or other object types, call object_getIvar (page 41) and
object_setIvar (page 43) instead of using this offset to access the instance variable data directly.

Declared In
runtime.h

ivar_getTypeEncoding
Returns the type string of an instance variable.

const char * ivar_getTypeEncoding(Ivar ivar)

Return Value
A C string containing the instance variable's type encoding.

Declared In
runtime.h

marg_free
Macro that releases an argument list.

marg_free(margs)

Parameters
margs

A pointer of type marg_list (page 50). Pass the argument list to release.

Functions 27
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

marg_getRef
Macro that returns a pointer to an argument in an argument list.

marg_getRef(margs, offset, type)

Parameters
margs

A pointer of type marg_list (page 50).

offset
A long integer value. Pass the byte offset to the argument in the list whose pointer you wish to obtain.

type
A type name. Pass the type of the argument located at offset.

Return Value
A pointer to the argument specified by the offset parameter.

Discussion
You can use this macro to manipulate any sort of int or pointer parameter. If you want to handle floats and
structs, you should use NSInvocation instead.

marg_getValue
Macro that returns the value of an argument in an argument list.

marg_getValue(margs, offset, type)

Parameters
margs

A pointer of type marg_list (page 50).

offset
A long integer value. Pass the byte offset to the argument in the list whose value you wish to obtain.

type
A type name. Pass the type of the argument located at offset.

Return Value
The value of the argument specified by the offset parameter.

Discussion
You can use this macro to manipulate any sort of int or pointer parameter. If you want to handle floats and
structs, you should use NSInvocation instead.

marg_malloc
Macro that allocates an argument list.

marg_malloc(margs, method)

Parameters
margs

A pointer of type marg_list (page 50). Pass the variable that contains the argument list pointer.

28 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

method
A pointer to an Method (page 49) data structure. Pass the method for which the argument list is
allocated.

Discussion
You can use this macro to manipulate any sort of int or pointer parameter. If you want to handle floats and
structs, you should use NSInvocation instead.

marg_setValue
Macro that sets the value of an argument in an argument list.

marg_setValue(margs, offset, type, value)

Parameters
margs

A pointer of type marg_list (page 50).

offset
A long integer value. Pass the byte offset to the argument in the list whose pointer you wish to obtain.

type
A type name. Pass the type of the argument located at offset.

value
A value. Pass the new value for the argument.

Discussion
You can use this macro to manipulate any sort of int or pointer parameter. If you want to handle floats and
structs, you should use NSInvocation instead.

method_copyArgumentType
Returns a string describing a single parameter type of a method.

char * method_copyArgumentType(Method method, unsigned int index)

Parameters
method

The method to inspect.

index
The index of the parameter to inspect.

Return Value
A C string describing the type of the parameter at index index, or NULL if method has no parameter index
index. You must free the string with free().

Declared In
runtime.h

method_copyReturnType
Returns a string describing a method's return type.

Functions 29
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

char * method_copyReturnType(Method method)

Parameters
method

The method to inspect.

Return Value
A C string describing the return type. You must free the string with free().

Declared In
runtime.h

method_exchangeImplementations
Exchanges the implementations of two methods.

void method_exchangeImplementations(Method m1, Method m2)

Discussion
This is an atomic version of the following:

IMP imp1 = method_getImplementation(m1);
IMP imp2 = method_getImplementation(m2);
method_setImplementation(m1, imp2);
method_setImplementation(m2, imp1);

Declared In
runtime.h

method_getArgumentType
Returns by reference a string describing a single parameter type of a method.

void method_getArgumentType(Method method, unsigned int index, char *dst, size_t
dst_len)

Discussion
The parameter type string is copied to dst. dst is filled as if strncpy(dst, parameter_type, dst_len)
were called. If the method contains no parameter with that index, dst is filled as if strncpy(dst, "",
dst_len) were called.

Declared In
runtime.h

method_getImplementation
Returns the implementation of a method.

IMP method_getImplementation(Method method)

Parameters
method

The method to inspect.

30 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Return Value
A function pointer of type IMP.

Declared In
runtime.h

method_getName
Returns the name of a method.

SEL method_getName(Method method)

Parameters
method

The method to inspect.

Return Value
A pointer of type SEL.

Discussion
To get the method name as a C string, call sel_getName(method_getName(method)).

Declared In
runtime.h

method_getNumberOfArguments
Returns the number of arguments accepted by a method.

unsigned method_getNumberOfArguments(Method method)

Parameters
method

A pointer to a Method (page 49) data structure. Pass the method in question.

Return Value
An integer containing the number of arguments accepted by the given method.

method_getReturnType
Returns by reference a string describing a method's return type.

void method_getReturnType(Method method, char *dst, size_t dst_len)

Discussion
The method's return type string is copied to dst. dst is filled as if strncpy(dst, parameter_type,
dst_len) were called.

Declared In
runtime.h

Functions 31
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

method_getTypeEncoding
Returns a string describing a method's parameter and return types.

const char * method_getTypeEncoding(Method method)

Parameters
method

The method to inspect.

Return Value
A C string. The string may be NULL.

Declared In
runtime.h

method_setImplementation
Sets the implementation of a method.

IMP method_setImplementation(Method method, IMP imp)

Return Value
The previous implementation of the method.

Declared In
runtime.h

objc_allocateClassPair
Creates a new class and metaclass.

objc_allocateClassPair(Class superclass, const char *name, size_t extraBytes)

Parameters
superclass

The class to use as the new class's superclass, or Nil to create a new root class.

name
The string to use as the new class's name. The string will be copied.

extraBytes
The number of bytes to allocate for indexed ivars at the end of the class and metaclass objects. This
should usually be 0.

Return Value
The new class, or Nil if the class could not be created (for example, the desired name is already in use).

Discussion
You can get a pointer to the new metaclass by calling object_getClass(newClass).

To create a new class, start by calling objc_allocateClassPair. Then set the class's attributes with
functions like class_addMethod (page 16) and class_addIvar (page 15). When you are done building
the class, call objc_registerClassPair (page 39). The new class is now ready for use.

32 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Instance methods and instance variables should be added to the class itself. Class methods should be added
to the metaclass.

Declared In
runtime.h

objc_copyProtocolList
Returns an array of all the protocols known to the runtime.

Protocol **objc_copyProtocolList(unsigned int *outCount)

Parameters
outCount

Upon return, contains the number of protocols in the returned array.

Return Value
A C array of all the protocols known to the runtime. The array contains *outCount pointers followed by a
NULL terminator. You must free the list with free().

Discussion
This function acquires the runtime lock.

Declared In
runtime.h

objc_duplicateClass
Used by Foundation's Key-Value Observing.

objc_duplicateClass

Special Considerations

Do not call this function yourself.

Declared In
runtime.h

objc_getClass
Returns the class definition of a specified class.

id objc_getClass(const char *name)

Parameters
name

The name of the class to look up.

Return Value
The Class object for the named class, or nil if the class is not registered with the Objective-C runtime.

Functions 33
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Discussion
objc_getClass is different from objc_lookUpClass (page 36) in that if the class is not registered,
objc_getClass calls the class handler callback and then checks a second time to see whether the class is
registered. objc_lookUpClass (page 36) does not call the class handler callback.

Special Considerations

Earlier implementations of this function (prior to Mac OS X v10.0) terminate the program if the class does
not exist.

objc_getClassList
Obtains the list of registered class definitions.

int objc_getClassList(Class *buffer, int bufferLen)

Parameters
buffer

An array of Class values. On output, each Class value points to one class definition, up to either
bufferLen or the total number of registered classes, whichever is less. You can pass NULL to obtain
the total number of registered class definitions without actually retrieving any class definitions.

bufferLen
An integer value. Pass the number of pointers for which you have allocated space in buffer. On
return, this function fills in only this number of elements. If this number is less than the number of
registered classes, this function returns an arbitrary subset of the registered classes.

Return Value
An integer value indicating the total number of registered classes.

Discussion
The Objective-C runtime library automatically registers all the classes defined in your source code. You can
create class definitions at runtime and register them with the objc_addClass function.

Listing 1 demonstrates how to use this function to retrieve all the class definitions that have been registered
with the Objective-C runtime in the current process.

Listing 1 Using objc_getClassList

int numClasses;
Class * classes = NULL;

classes = NULL;
numClasses = objc_getClassList(NULL, 0);

if (numClasses > 0)
{
 classes = malloc(sizeof(Class) * numClasses);
 numClasses = objc_getClassList(classes, numClasses);
 free(classes);
}

Special Considerations

You cannot assume that class objects you get from this function are classes that inherit from NSObject, so
you cannot safely call any methods on such classes without detecting that the method is implemented first.

34 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

objc_getFutureClass
Used by CoreFoundation's toll-free bridging.

Class objc_getFutureClass(const char *name)

Special Considerations

Do not call this function yourself.

Declared In
runtime.h

objc_getMetaClass
Returns the metaclass definition of a specified class.

id objc_getMetaClass(const char *name)

Parameters
name

The name of the class to look up.

Return Value
The Class object for the metaclass of the named class, or nil if the class is not registered with the Objective-C
runtime.

Discussion
If the definition for the named class is not registered, this function calls the class handler callback and then
checks a second time to see if the class is registered. However, every class definition must have a valid
metaclass definition, and so the metaclass definition is always returned, whether it’s valid or not.

objc_getProtocol
Returns a specified protocol.

Protocol *objc_getProtocol(const char *name)

Parameters
name

The name of a protocol.

Return Value
The protocol named name, or NULL if no protocol named name could be found.

Discussion
This function acquires the runtime lock.

Declared In
runtime.h

objc_getRequiredClass
Returns the class definition of a specified class.

Functions 35
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

id objc_getRequiredClass(const char *name)

Parameters
name

The name of the class to look up.

Return Value
The Class object for the named class.

Discussion
This function is the same as objc_getClass (page 33), but kills the process if the class is not found.

This function is used by ZeroLink, where failing to find a class would be a compile-time link error without
ZeroLink.

Declared In
runtime.h

objc_lookUpClass
Returns the class definition of a specified class.

id objc_lookUpClass(const char *name)

Parameters
name

The name of the class to look up.

Return Value
The Class object for the named class, or nil if the class is not registered with the Objective-C runtime.

Discussion
objc_getClass (page 33) is different from this function in that if the class is not registered,
objc_getClass (page 33) calls the class handler callback and then checks a second time to see whether
the class is registered. This function does not call the class handler callback.

objc_msgSend
Sends a message with a simple return value to an instance of a class.

id objc_msgSend(id theReceiver, SEL theSelector, ...)

Parameters
theReceiver

A pointer that points to the instance of the class that is to receive the message.

theSelector
The selector of the method that handles the message.

...
A variable argument list containing the arguments to the method.

Return Value
The return value of the method.

36 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Discussion
When it encounters a method call, the compiler generates a call to one of the functions objc_msgSend,
objc_msgSend_stret,objc_msgSendSuper, orobjc_msgSendSuper_stret. Messages sent to an object’s
superclass (using the super keyword) are sent using objc_msgSendSuper; other messages are sent using
objc_msgSend. Methods that have data structures as return values are sent using
objc_msgSendSuper_stret and objc_msgSend_stret.

objc_msgSendSuper
Sends a message with a simple return value to the superclass of an instance of a class.

id objc_msgSendSuper(struct objc_super *super, SEL op, ...)

Parameters
super

A pointer to an objc_super (page 53) data structure. Pass values identifying the context the message
was sent to, including the instance of the class that is to receive the message and the superclass at
which to start searching for the method implementation.

op
A pointer of type SEL (page 50). Pass the selector of the method that will handle the message.

...
A variable argument list containing the arguments to the method.

Return Value
The return value of the method identified by op.

Discussion
When it encounters a method call, the compiler generates a call to one of the functions objc_msgSend,
objc_msgSend_stret,objc_msgSendSuper, orobjc_msgSendSuper_stret. Messages sent to an object’s
superclass (using the super keyword) are sent using objc_msgSendSuper; other messages are sent using
objc_msgSend. Methods that have data structures as return values are sent using
objc_msgSendSuper_stret and objc_msgSend_stret.

objc_msgSendSuper_stret
Sends a message with a data-structure return value to the superclass of an instance of a class.

void objc_msgSendSuper_stret(struct objc_super *super, SEL op, ...)

Parameters
super

A pointer to an objc_super (page 53) data structure. Pass values identifying the context the message
was sent to, including the instance of the class that is to receive the message and the superclass at
which to start searching for the method implementation.

op
A pointer of type SEL (page 50). Pass the selector of the method.

...
A variable argument list containing the arguments to the method.

Functions 37
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Discussion
When it encounters a method call, the compiler generates a call to one of the functions objc_msgSend,
objc_msgSend_stret,objc_msgSendSuper, orobjc_msgSendSuper_stret. Messages sent to an object’s
superclass (using the super keyword) are sent using objc_msgSendSuper; other messages are sent using
objc_msgSend. Methods that have data structures as return values are sent using
objc_msgSendSuper_stret and objc_msgSend_stret.

objc_msgSend_fpret
Sends a message with a floating-point return value to an instance of a class.

double objc_msgSend_fpret(id self, SEL op, ...)

Parameters
self

A pointer that points to the instance of the class that is to receive the message.

op
The selector of the method that handles the message.

...
A variable argument list containing the arguments to the method.

Discussion
On the i386 platform, the ABI for functions returning a floating-point value is incompatible with that for
functions returning an integral type. On the i386 platform, therefore, you must use objc_msgSend_fpret
for functions that for functions returning non-integral type. For float or long double return types, cast
the function to an appropriate function pointer type first.

This function is not used on the PPC or PPC64 platforms.

Declared In
objc-runtime.h

objc_msgSend_stret
Sends a message with a data-structure return value to an instance of a class.

void objc_msgSend_stret(void * stretAddr, id theReceiver, SEL theSelector, ...)

Parameters
stretAddr

On input, a pointer that points to a block of memory large enough to contain the return value of the
method. On output, contains the return value of the method.

theReceiver
A pointer to the instance of the class that is to receive the message.

theSelector
A pointer of type SEL (page 50). Pass the selector of the method that handles the message.

...
A variable argument list containing the arguments to the method.

38 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Discussion
When it encounters a method call, the compiler generates a call to one of the functions objc_msgSend,
objc_msgSend_stret,objc_msgSendSuper, orobjc_msgSendSuper_stret. Messages sent to an object’s
superclass (using the super keyword) are sent using objc_msgSendSuper; other messages are sent using
objc_msgSend. Methods that have data structures as return values are sent using
objc_msgSendSuper_stret and objc_msgSend_stret.

objc_registerClassPair
Registers a class that was allocated using objc_allocateClassPair.

void objc_registerClassPair(Class cls)

Parameters
cls

The class you want to register.

Declared In
runtime.h

objc_setFutureClass
Used by CoreFoundation's toll-free bridging.

void objc_setFutureClass(Class cls, const char *name)

Special Considerations

Do not call this function yourself.

Declared In
runtime.h

object_copy
Returns a copy of a given object.

id object_copy(id obj, size_t size)

Parameters
obj

An Objective-C object.

size
The size of the object obj.

Return Value
A copy of obj.

Declared In
runtime.h

Functions 39
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

object_dispose
Frees the memory occupied by a given object.

id object_dispose(id obj)

Parameters
obj

An Objective-C object.

Return Value
nil.

Declared In
runtime.h

object_getClass
Returns the class of an object.

Class object_getClass(id object)

Parameters
object

The object you want to inspect.

Return Value
The class object of which object is an instance, or Nil if object is nil.

Declared In
runtime.h

object_getClassName
Returns the class name of a given object.

const char *object_getClassName(id obj)

Parameters
obj

An Objective-C object.

Return Value
The name of the class of which obj is an instance.

Declared In
runtime.h

object_getIndexedIvars
Returns a pointer to any extra bytes allocated with a instance given object.

40 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

OBJC_EXPORT void *object_getIndexedIvars(id obj)

Parameters
obj

An Objective-C object.

Return Value
A pointer to any extra bytes allocated with obj. If obj was not allocated with any extra bytes, then
dereferencing the returned pointer is undefined.

Discussion
This function returns a pointer to any extra bytes allocated with the instance (as specified by
class_createInstance (page 19) with extraBytes>0). This memory follows the object's ordinary ivars,
but may not be adjacent to the last ivar.

The returned pointer is guaranteed to be pointer-size aligned, even if the area following the object's last ivar
is less aligned than that. Alignment greater than pointer-size is never guaranteed, even if the area following
the object's last ivar is more aligned than that.

In a garbage-collected environment, the memory is scanned conservatively.

Declared In
runtime.h

object_getInstanceVariable
Obtains the value of an instance variable of a class instance.

Ivar object_getInstanceVariable(id obj, const char *name, void **outValue)

Parameters
obj

A pointer to an instance of a class. Pass the object containing the instance variable whose value you
wish to obtain.

name
A C string. Pass the name of the instance variable whose value you wish to obtain.

outValue
On return, contains a pointer to the value of the instance variable.

Return Value
A pointer to the Ivar (page 49) data structure that defines the type and name of the instance variable
specified by name.

Declared In
runtime.h

object_getIvar
Reads the value of an instance variable in an object.

Functions 41
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

id object_getIvar(id object, Ivar ivar)

Parameters
object

The object containing the instance variable whose value you want to read.

ivar
The Ivar describing the instance variable whose value you want to read.

Return Value
The value of the instance variable specified by ivar, or nil if object is nil.

Discussion
object_getIvar is faster than object_getInstanceVariable (page 41) if the Ivar for the instance
variable is already known.

Declared In
runtime.h

object_setClass
Sets the class of an object.

Class object_setClass(id object, Class cls)

Parameters
object

The object to modify.

sel
A class object.

Return Value
The previous value of object‘s class, or Nil if object is nil.

Declared In
runtime.h

object_setInstanceVariable
Changes the value of an instance variable of a class instance.

Ivar object_setInstanceVariable(id obj, const char *name, void *value)

Parameters
obj

A pointer to an instance of a class. Pass the object containing the instance variable whose value you
wish to modify.

name
A C string. Pass the name of the instance variable whose value you wish to modify.

value
The new value for the instance variable.

42 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Return Value
A pointer to the Ivar (page 49) data structure that defines the type and name of the instance variable
specified by name.

Declared In
runtime.h

object_setIvar
Sets the value of an instance variable in an object.

void object_setIvar(id object, Ivar ivar, id value)

Parameters
object

The object containing the instance variable whose value you want to set.

ivar
The Ivar describing the instance variable whose value you want to set.

value
The new value for the instance variable.

Discussion
object_setIvar is faster than object_setInstanceVariable (page 42) if the Ivar for the instance
variable is already known.

Declared In
runtime.h

property_getAttributes
Returns the attribute string of an property.

const char *property_getAttributes(objc_property_t property)

Return Value
A C string containing the property's attributes.

Discussion
The format of the attribute string is described in Declared Properties in Objective-C 2.0 Runtime Programming
Guide.

Declared In
runtime.h

property_getName
Returns the name of a property.

const char *property_getName(objc_property_t property)

Return Value
A C string containing the property's name.

Functions 43
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Declared In
runtime.h

protocol_conformsToProtocol
Returns a Boolean value that indicates whether one protocol conforms to another protocol.

BOOL protocol_conformsToProtocol(Protocol *proto, Protocol *other)

Parameters
proto

A protocol.

other
A protocol.

Return Value
YES if proto conforms to other, otherwise NO.

Discussion
One protocol can incorporate other protocols using the same syntax that classes use to adopt a protocol:

@protocol ProtocolName < protocol list >

All the protocols listed between angle brackets are considered part of the ProtocolName protocol.

Declared In
runtime.h

protocol_copyMethodDescriptionList
Returns an array of method descriptions of methods meeting a given specification for a given protocol.

struct objc_method_description *protocol_copyMethodDescriptionList(Protocol *p,
BOOL isRequiredMethod, BOOL isInstanceMethod, unsigned int *outCount)

Parameters
p

A protocol.

isRequiredMethod
A Boolean value that indicates whether returned methods should be required methods (pass YES to
specify required methods).

isInstanceMethod
A Boolean value that indicates whether returned methods should be instance methods (pass YES to
specify required methods).

outCount
Upon return, contains the number of method description structures in the returned array.

Return Value
A C array of objc_method_description structures containing the names and types of p’s methods specified
by isRequiredMethod and isInstanceMethod. The array contains *outCount pointers followed by a
NULL terminator. You must free the list with free().

44 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

If the protocol declares no methods that meet the specification, NULL is returned and *outCount is 0.

Discussion
Methods in other protocols adopted by this protocol are not included.

Declared In
runtime.h

protocol_copyPropertyList
Returns an array of the properties declared by a protocol.

objc_property_t * protocol_copyPropertyList(Protocol *protocol, unsigned int
*outCount)

Parameters
proto

A protocol.

outCount
Upon return, contains the number of elements in the returned array.

Return Value
A C array of pointers of type objc_property_t describing the properties declared by proto. Any properties
declared by other protocols adopted by this protocol are not included. The array contains *outCount pointers
followed by a NULL terminator. You must free the array with free().

If the protocol declares no properties, NULL is returned and *outCount is 0.

Declared In
runtime.h

protocol_copyProtocolList
Returns an array of the protocols adopted by a protocol.

Protocol **protocol_copyProtocolList(Protocol *proto, unsigned int *outCount)

Parameters
proto

A protocol.

outCount
Upon return, contains the number of elements in the returned array.

Return Value
A C array of protocols adopted by proto. The array contains *outCount pointers followed by a NULL
terminator. You must free the array with free().

If the protocol declares no properties, NULL is returned and *outCount is 0.

Declared In
runtime.h

Functions 45
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

protocol_getMethodDescription
Returns a method description structure for a specified method of a given protocol.

struct objc_method_description protocol_getMethodDescription(Protocol *p, SEL aSel,
 BOOL isRequiredMethod, BOOL isInstanceMethod)

Parameters
p

A protocol.

aSel
A selector

isRequiredMethod
A Boolean value that indicates whether aSel is a required method.

isInstanceMethod
A Boolean value that indicates whether aSel is an instance method.

Return Value
Anobjc_method_description structure that describes the method specified byaSel,isRequiredMethod,
and isInstanceMethod for the protocol p, or NULL if p does not contain a method with that specification.

Discussion
Methods in other protocols adopted by this protocol are not included.

Declared In
runtime.h

protocol_getName
Returns a the name of a protocol.

const char *protocol_getName(Protocol *p)

Parameters
p

A protocol.

Return Value
The name of the protocol p as a C string.

Declared In
runtime.h

protocol_getProperty
Returns the specified property of a given protocol.

objc_property_t protocol_getProperty(Protocol *proto, const char *name, BOOL
isRequiredProperty, BOOL isInstanceProperty)

Parameters
proto

A protocol.

46 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

name
The name of a property.

isRequiredProperty
A Boolean value that indicates whether name is a required property.

isInstanceProperty
A Boolean value that indicates whether name is a required property.

Return Value
The property specified by name, isRequiredProperty, and isInstanceProperty for proto, or NULL if
none of proto’s properties meets the specification.

Declared In
runtime.h

protocol_isEqual
Returns a Boolean value that indicates whether two protocols are equal.

BOOL protocol_isEqual(Protocol *proto, Protocol *other)

Parameters
proto

A protocol.

other
A protocol.

Return Value
YES if proto is the same as other, otherwise NO.

Declared In
runtime.h

sel_getName
Returns the name of the method specified by a given selector.

const char* sel_getName(SEL aSelector)

Parameters
aSelector

A pointer of type SEL (page 50). Pass the selector whose name you wish to determine.

Return Value
A C string indicating the name of the selector.

Declared In
runtime.h

sel_getUid
Registers a method name with the Objective-C runtime system.

Functions 47
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

SEL sel_getUid(const char *str)

Parameters
str

A pointer to a C string. Pass the name of the method you wish to register.

Return Value
A pointer of type SEL (page 50) specifying the selector for the named method.

Discussion
The implementation of this method is identical to the implementation of sel_registerName (page 48).

Version Notes
Prior to Mac OS X version 10.0, this method tried to find the selector mapped to the given name and returned
NULL if the selector was not found. This was changed for safety, because it was observed that many of the
callers of this function did not check the return value for NULL.

Declared In
runtime.h

sel_isEqual
Returns a Boolean value that indicates whether two selectors are equal.

BOOL sel_isEqual(SEL lhs, SEL rhs)

Parameters
lhs

The selector to compare with rhs.

rhs
The selector to compare with lhs.

Return Value
YES if rhs and rhs are equal, otherwise NO.

Discussion
sel_isEqual is equivalent to ==.

Declared In
runtime.h

sel_registerName
Registers a method with the Objective-C runtime system, maps the method name to a selector, and returns
the selector value.

SEL sel_registerName(const char *str)

Parameters
str

A pointer to a C string. Pass the name of the method you wish to register.

Return Value
A pointer of type SEL (page 50) specifying the selector for the named method.

48 Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Discussion
You must register a method name with the Objective-C runtime system to obtain the method’s selector
before you can add the method to a class definition. If the method name has already been registered, this
function simply returns the selector.

Declared In
runtime.h

Data Types

Class-Definition Data Structures

Class
An opaque type that represents an Objective-C class.

typedef struct objc_class *Class;

Declared In
objc.h

Method
An opaque type that represents a method in a class definition.

typedef struct objc_method *Method;

Declared In
runtime.h

Ivar
An opaque type that represents an instance variable.

typedef struct objc_ivar *Ivar;

Declared In
runtime.h

Category
An opaque type that represents a category.

typedef struct objc_category *Category;

Declared In
runtime.h

Data Types 49
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

objc_property_t
An opaque type that represents an Objective-C declared property.

typedef struct objc_property *objc_property_t;

Declared In
runtime.h

IMP
A pointer to the start of a method implementation.

id (*IMP)(id, SEL, ...)

Discussion
This data type is a pointer to the start of the function that implements the method. This function uses standard
C calling conventions as implemented for the current CPU architecture. The first argument is a pointer to
self (that is, the memory for the particular instance of this class, or, for a class method, a pointer to the
metaclass). The second argument is the method selector. The method arguments follow.

marg_list
A reference to an argument list.

typedef void* marg_list;

Discussion
This data type is a reference to a list of method arguments. Use it with the functions described in “Working
with Instances” (page 11).

SEL
Defines an opaque type that represents a method selector.

typedef struct objc_selector *SEL;

Discussion
Method selectors are used to represent the name of a method at runtime. A method selector is a C string
that has been registered (or “mapped“) with the Objective-C runtime. Selectors generated by the compiler
are automatically mapped by the runtime when the class is loaded.

You can add new selectors at runtime and retrieve existing selectors using the function
sel_registerName (page 48).

When using selectors, you must use the value returned from sel_registerName (page 48) or the Objective-C
compiler directive @selector(). You cannot simply cast a C string to SEL.

Declared In
objc.h

50 Data Types
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

objc_method_list
Contains an array of method definitions.

struct objc_method_list
{
 struct objc_method_list *obsolete;
 int method_count;
 struct objc_method method_list[1];
}

Fields
obsolete

Reserved for future use.

method_count
An integer specifying the number of methods in the method list array.

method_list
An array of Method (page 49) data structures.

objc_cache
Performance optimization for method calls. Contains pointers to recently used methods.

struct objc_cache
{
 unsigned int mask;
 unsigned int occupied;
 Method buckets[1];
};

Fields
mask

An integer specifying the total number of allocated cache buckets (minus one). During method lookup,
the Objective-C runtime uses this field to determine the index at which to begin a linear search of
the buckets array. A pointer to a method’s selector is masked against this field using a logical AND
operation (index = (mask & selector)). This serves as a simple hashing algorithm.

occupied
An integer specifying the total number of occupied cache buckets.

buckets
An array of pointers to Method (page 49) data structures. This array may contain no more than mask
+ 1 items. Note that pointers may be NULL, indicating that the cache bucket is unoccupied, and
occupied buckets may not be contiguous. This array may grow over time.

Discussion
To limit the need to perform linear searches of method lists for the definitions of frequently accessed
methods—an operation that can considerably slow down method lookup—the Objective-C runtime functions
store pointers to the definitions of the most recently called method of the class in an objc_cache data
structure.

objc_protocol_list
Represents a list of formal protocols.

Data Types 51
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

struct objc_protocol_list
{
 struct objc_protocol_list *next;
 int count;
 Protocol *list[1];
};

Fields
next

A pointer to another objc_protocol_list data structure.

count
The number of protocols in this list.

list
An array of pointers to Class (page 49) data structures that represent protocols.

Discussion
A formal protocol is a class definition that declares a set of methods, which a class must implement. Such a
class definition contains no instance variables. A class definition may promise to implement any number of
formal protocols.

Instance Data Types

These are the data types that represent objects, classes, and superclasses.

 ■ id (page 52) pointer to an instance of a class.

 ■ objc_object (page 52) represents an instance of a class.

 ■ objc_super (page 53) specifies the superclass of an instance.

id
A pointer to an instance of a class.

typedef struct objc_object {
 Class isa;
} *id;

Declared In
objc.h

objc_object
Represents an instance of a class.

52 Data Types
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

struct objc_object
{
 struct objc_class *isa;
 /* …variable length data containing instance variable values… */
};

Fields
isa

A pointer to the class definition of which this object is an instance.

Discussion
When you create an instance of a particular class, the allocated memory contains an objc_object data
structure, which is directly followed by the data for the instance variables of the class.

The alloc and allocWithZone: methods of the Foundation framework class NSObject use the function
class_createInstance (page 19) to create objc_object data structures.

objc_super
Specifies the superclass of an instance.

struct objc_super
{
 id receiver;
 Class class;
};

Fields
receiver

A pointer of type id (page 52). Specifies an instance of a class.

class
A pointer to an Class (page 49) data structure. Specifies the particular superclass of the instance to
message.

Discussion
The compiler generates an objc_super data structure when it encounters the super keyword as the receiver
of a message. It specifies the class definition of the particular superclass that should be messaged.

Boolean Value

BOOL
Type to represent a Boolean value.

typedef signed char BOOL;

Discussion
BOOL is explicitly signed so @encode(BOOL) is c rather than C even if -funsigned-char is used.

For values, see “Boolean Values” (page 54).

Data Types 53
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

Special Considerations

Since the type of BOOL is actually char, it does not behave in the same way as a C _Bool value or a C++
bool value. For example, the conditional in the following code will be false on i386 (and true on PPC):

- (BOOL)value {
 return 256;
}
// then
if ([self value]) doStuff();

By contrast, the conditional in the following code will be true on all platforms (even where sizeof(bool)
== 1):

- (bool)value {
 return 256;
}
// then
if ([self value]) doStuff();

Availability
Available in Mac OS X v10.1 and later.

Declared In
wintypes.h

Constants

Boolean Values
These macros define convenient constants to represent Boolean values.

#define YES (BOOL)1
#define NO (BOOL)0

Constants
YES

Defines YES as 1.

Available in Mac OS X v10.0 and later.

Declared in NSObjCRuntime.h.

NO
Defines NO as 0.

Available in Mac OS X v10.0 and later.

Declared in NSObjCRuntime.h.

Declared In
objc.h

Null Values
These macros define null values for classes and instances.

54 Constants
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

#define nil __DARWIN_NULL
#define Nil __DARWIN_NULL

Constants
nil

Defines the id of a null instance.

Available in Mac OS X v10.0 and later.

Declared in MacTypes.h.

Nil
Defines the id of a null class.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in NSObjCRuntime.h.

Declared In
objc.h

Constants 55
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

56 Constants
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Objective-C 2.0 Runtime Reference

The low-level Objective-C runtime API is significantly updated in Mac OS X version 10.5. Many functions and
all existing data structures are replaced with new functions. This document describes the differences between
the 10.5 version and previous versions.

Runtime Functions

Basic types

arith_t: Changed from int to intptr_t.

uarith_t: Changed from unsigned to uintptr_t.

Instances

The following functions are unchanged:

object_dispose (page 40)
object_getClassName (page 40)
object_getIndexedIvars (page 40)
object_setInstanceVariable (page 42)
object_getInstanceVariable (page 41)

The following function is modified:

object_copy (page 39) (The nBytes parameter is changed from unsigned to size_t.)

The following functions are added:

object_getClass (page 40)
object_setClass (page 42)
object_getIvar (page 41)
object_setIvar (page 43)

The following functions are deprecated:

object_copyFromZone: deprecated in favor of object_copy (page 39)
object_realloc
object_reallocFromZone: no substitute
_alloc: no substitute

Runtime Functions 57
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Mac OS X Version 10.5 Delta

_copy: no substitute
_realloc: no substitute
_dealloc: no substitute
_zoneAlloc: no substitute
_zoneRealloc: no substitute
_zoneCopy: no substitute
_error: no substitute

Class Inspection

The following functions are unchanged:

objc_getClassList (page 34)
objc_lookUpClass (page 36)
objc_getClass (page 33)
objc_getMetaClass (page 35)
class_getVersion (page 23)
class_getInstanceVariable (page 21)
class_getInstanceMethod (page 20)
class_getClassMethod (page 19)

The following function is modified:

class_createInstance: idxIvars parameter Changed from unsigned to size_t

The following functions are added:

class_getName (page 22)
class_getSuperclass (page 23)
class_isMetaClass (page 24)
class_copyMethodList (page 18)
class_getMethodImplementation (page 21)
class_getMethodImplementation_stret (page 22)
class_respondsToSelector (page 25)
class_conformsToProtocol (page 17)
class_copyProtocolList (page 18)
class_copyIvarList (page 17)

The following functions are deprecated:

objc_getClasses: deprecated in favor of objc_getClassList (page 34)
class_createInstanceFromZone: deprecated in favor of class_createInstance (page 19)
class_nextMethodList: deprecated in favor of new class_copyMethodList (page 18)
class_lookupMethod: deprecated in favor of class_getMethodImplementation (page 21)
class_respondsToMethod: deprecated in favor of class_respondsToSelector (page 25)

The following function is used only by ZeroLink:

58 Runtime Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Mac OS X Version 10.5 Delta

objc_getRequiredClass

Class Manipulation

The following function is unchanged:

class_setVersion (page 26)

The following functions are added:

objc_allocateClassPair (page 32)
objc_registerClassPair (page 39)
objc_duplicateClass (page 33)
class_addMethod (page 16)
class_addIvar (page 15)
class_addProtocol (page 16)

The following functions are deprecated:

objc_addClass: deprecated in favor of objc_allocateClassPair (page 32) and
objc_registerClassPair (page 39)
class_addMethods: deprecated in favor of new class_addMethod (page 16)
class_removeMethods: deprecated with no substitute
class_poseAs: deprecated in favor of categories and method_setImplementation (page 32)

Methods

The following function is unchanged:

method_getNumberOfArguments (page 31)

The following functions are added:

method_getName (page 31)
method_getImplementation (page 30)
method_getTypeEncoding (page 32)
method_copyReturnType (page 29)
method_copyArgumentType (page 29)
method_setImplementation (page 32)

The following functions are deprecated:

method_getArgumentInfo

method_getSizeOfArguments

Runtime Functions 59
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Mac OS X Version 10.5 Delta

Instance Variables

The following functions are added:

ivar_getName (page 27)
ivar_getTypeEncoding (page 27)
ivar_getOffset (page 27)

Selectors

The following functions are unchanged:

sel_getName (page 47)
sel_registerName (page 48)
sel_getUid (page 47)

The following function is added:

sel_isEqual (page 48)

The following function is deprecated:

sel_isMapped: deprecated with no substitute

Runtime

The following functions are deprecated favor of dyld:

objc_loadModules

objc_loadModule

objc_unloadModules

The following functions are deprecated:

objc_setClassHandler: deprecated with no substitute
objc_setMultithreaded: deprecated with no substitute

The following previously undocumented functions are deprecated with no substitute:

objc_getOrigClass
_objc_create_zone
_objc_error
_objc_flush_caches
_objc_resolve_categories_for_class
_objc_setClassLoader
_objc_setNilReceiver
_objc_getNilReceiver
_objcInit

60 Runtime Functions
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Mac OS X Version 10.5 Delta

The following undocumented functions are unchanged:

_objc_getFreedObjectClass
instrumentObjcMessageSends
_objc_debug_class_hash
_class_printDuplicateCacheEntries
_class_printMethodCaches
_class_printMethodCacheStatistics

Messaging

The following functions are unchanged:

objc_msgSend (page 36)
objc_msgSend_stret (page 38)
objc_msgSendSuper (page 37)
objc_msgSendSuper_stret (page 37)
objc_msgSendSuper_stret (page 37)

The following functions are removed:

Given an argument list, send a message with a simple return value.objc_msgSendv

Given an argument list, send a message with a data-structure return
value.

objc_msgSendv_stret

Given an argument list, send a message with a floating point return
value.

objc_msgSendv_fpret

Protocols

The following functions are added:

objc_getProtocol (page 35)
objc_copyProtocolList (page 33)

Exceptions

The following functions are unchanged:

objc_exception_throw
objc_exception_try_enter
objc_exception_try_exit
objc_exception_extract
objc_exception_match
objc_exception_get_functions

Runtime Functions 61
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Mac OS X Version 10.5 Delta

objc_exception_set_functions

Synchronization

The following functions are unchanged:

objc_sync_enter
objc_sync_exit
objc_sync_wait
objc_sync_notify
objc_sync_notifyAll

These functions are only used by the compiler.

NXHashTable and NXMapTable

NXHashTable and NXMapTable are unchanged. They are limited to 4 billion entries.

Structures

The objc_super struct is unchanged:

struct objc_super {
 id receiver;
 Class super_class;
};

All other structures deprecated in favor of opaque types and functional API. Substitutes are shown in the
following tables.

Table A-1 Substitutions for objc_class

SubstitutionVariable

object_getClass(), object_setClass()struct objc_class *isa;

class_getSuperclass()struct objc_class *super_class;

class_getName()const char *name;

class_getVersion(), class_setVersion()long version;

class_isMetaClass()long info;

no substitutelong instance_size;

class_copyIvarList(), class_addIvar()struct objc_ivar_list *ivars;

62 Structures
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Mac OS X Version 10.5 Delta

SubstitutionVariable

class_copyMethodList(), class_addMethod()struct objc_method_list **methodLists;

no substitutestruct objc_cache *cache;

class_copyProtocolList(), class_addProtocol()struct objc_protocol_list *protocols;

Table A-2 Substitutions for objc_method

SubstitutionVariable

method_getName()SEL method_name;

method_getTypeEncoding()char *method_types;

method_getImplementation(), method_setImplementation()IMP method_imp;

Table A-3 Substitutions for objc_ivar

SubstitutionVariable

ivar_getName()char *ivar_name;

ivar_getTypeEncoding()char *ivar_type;

ivar_getOffset()int ivar_offset;

There are no substitutes for the following structs:

objc_object {...};
objc_category {...};
objc_method_list {...};
objc_ivar_list {...};
objc_protocol_list {...};
objc_cache {...};
objc_module {...};
objc_symtab {...};

Structures 63
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Mac OS X Version 10.5 Delta

64 Structures
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Mac OS X Version 10.5 Delta

This table describes the changes to Objective-C 2.0 Runtime Reference.

NotesDate

Added links to the new Objective-C 2.0 Runtime Programming Guide.2008-11-19

TBD2008-10-15

Enhanced description of object_getIndexedIvars.2007-12-11

Updated for Mac OS X v10.5. Corrected the code example for the
objc_getClassList function.

2007-10-31

Included new features in Objective-C 2.0.2007-05-25

Minor correction to CreateClassDefinition function and definitions of marg_
macros.

2005-10-04

Corrected errors and documented macros.2005-08-11

Corrected declaration of class_getClassMethod (page 19).

Renamed the “Class Handler Callback” section to ClassHandlerCallback and
added example function declaration to the description.

Corrected result description of method_getArgumentInfo.

Documented YES and NO macros in “Macros”.

New document that describes the data structures and programming interface
used in the Objective-C runtime system.

2004-08-31

This document replaces information about the printing system that was
published previously in The Objective-C 2.0 Programming Language.

65
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

66
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

B

BOOL data type 53
Boolean Values 54

C

Category data type 49
Class structure 49
class_addIvar function 15
class_addMethod function 16
class_addProtocol function 16
class_conformsToProtocol function 17
class_copyIvarList function 17
class_copyMethodList function 18
class_copyPropertyList function 18
class_copyProtocolList function 18
class_createInstance function 19
class_getClassMethod function 19
class_getClassVariable function 20
class_getInstanceMethod function 20
class_getInstanceSize function 21
class_getInstanceVariable function 21
class_getIvarLayout function 21
class_getMethodImplementation function 21
class_getMethodImplementation_stret function

22
class_getName function 22
class_getProperty function 23
class_getSuperclass function 23
class_getVersion function 23
class_getWeakIvarLayout function 24
class_isMetaClass function 24
class_replaceMethod function 24
class_respondsToSelector function 25
class_setIvarLayout function 25
class_setSuperclass function 25
class_setVersion function 26
class_setWeakIvarLayout function 26

D

development environment 9, 57

I

id data type 52
IMP data type 50
Ivar data type 49
ivar_getName function 27
ivar_getOffset function 27
ivar_getTypeEncoding function 27

M

marg_free function 27
marg_getRef function 28
marg_getValue function 28
marg_list data type 50
marg_malloc macro 28
marg_setValue function 29
Method data type 49
method_copyArgumentType function 29
method_copyReturnType function 29
method_exchangeImplementations function 30
method_getArgumentType function 30
method_getImplementation function 30
method_getName function 31
method_getNumberOfArguments function 31
method_getReturnType function 31
method_getTypeEncoding function 32
method_setImplementation function 32

N

Nil constant 55
nil constant 55

67
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

Index

NO constant 54
Null Values 54

O

objc_allocateClassPair function 32
objc_cache structure 51
objc_copyProtocolList function 33
objc_duplicateClass function 33
objc_getClass function 33
objc_getClassList function 34
objc_getFutureClass function 35
objc_getMetaClass function 35
objc_getProtocol function 35
objc_getRequiredClass function 35
objc_lookUpClass function 36
objc_method_list structure 51
objc_msgSend function 36
objc_msgSendSuper function 37
objc_msgSendSuper_stret function 37
objc_msgSend_fpret function 38
objc_msgSend_stret function 38
objc_object structure 52
objc_property_t data type 50
objc_protocol_list structure 51
objc_registerClassPair function 39
objc_setFutureClass function 39
objc_super structure 53
object_copy function 39
object_dispose function 40
object_getClass function 40
object_getClassName function 40
object_getIndexedIvars function 40
object_getInstanceVariable function 41
object_getIvar function 41
object_setClass function 42
object_setInstanceVariable function 42
object_setIvar function 43

P

property_getAttributes function 43
property_getName function 43
protocol_conformsToProtocol function 44
protocol_copyMethodDescriptionList function 44
protocol_copyPropertyList function 45
protocol_copyProtocolList function 45
protocol_getMethodDescription function 46
protocol_getName function 46
protocol_getProperty function 46

protocol_isEqual function 47

S

SEL data type 50
@selector() directive 50
sel_getName function 47
sel_getUid function 47
sel_isEqual function 48
sel_registerName function 48

Y

YES constant 54

68
2008-11-19 | © 2002, 2008 Apple Inc. All Rights Reserved.

INDEX

	Objective-C 2.0 Runtime Reference
	Contents
	Tables and Listings
	Objective-C 2.0 Runtime Reference
	Overview
	Who Should Read This Document

	Functions by Task
	Working with Classes
	Adding Classes
	Instantiating Classes
	Working with Instances
	Obtaining Class Definitions
	Working with Instance Variables
	Sending Messages
	Forwarding Messages
	Working with Methods
	Working with Selectors
	Working with Protocols
	Working with Properties

	Functions
	class_addIvar
	class_addMethod
	class_addProtocol
	class_conformsToProtocol
	class_copyIvarList
	class_copyMethodList
	class_copyPropertyList
	class_copyProtocolList
	class_createInstance
	class_getClassMethod
	class_getClassVariable
	class_getInstanceMethod
	class_getInstanceSize
	class_getInstanceVariable
	class_getIvarLayout
	class_getMethodImplementation
	class_getMethodImplementation_stret
	class_getName
	class_getProperty
	class_getSuperclass
	class_getVersion
	class_getWeakIvarLayout
	class_isMetaClass
	class_replaceMethod
	class_respondsToSelector
	class_setIvarLayout
	class_setSuperclass
	class_setVersion
	class_setWeakIvarLayout
	ivar_getName
	ivar_getOffset
	ivar_getTypeEncoding
	marg_free
	marg_getRef
	marg_getValue
	marg_malloc
	marg_setValue
	method_copyArgumentType
	method_copyReturnType
	method_exchangeImplementations
	method_getArgumentType
	method_getImplementation
	method_getName
	method_getNumberOfArguments
	method_getReturnType
	method_getTypeEncoding
	method_setImplementation
	objc_allocateClassPair
	objc_copyProtocolList
	objc_duplicateClass
	objc_getClass
	objc_getClassList
	objc_getFutureClass
	objc_getMetaClass
	objc_getProtocol
	objc_getRequiredClass
	objc_lookUpClass
	objc_msgSend
	objc_msgSendSuper
	objc_msgSendSuper_stret
	objc_msgSend_fpret
	objc_msgSend_stret
	objc_registerClassPair
	objc_setFutureClass
	object_copy
	object_dispose
	object_getClass
	object_getClassName
	object_getIndexedIvars
	object_getInstanceVariable
	object_getIvar
	object_setClass
	object_setInstanceVariable
	object_setIvar
	property_getAttributes
	property_getName
	protocol_conformsToProtocol
	protocol_copyMethodDescriptionList
	protocol_copyPropertyList
	protocol_copyProtocolList
	protocol_getMethodDescription
	protocol_getName
	protocol_getProperty
	protocol_isEqual
	sel_getName
	sel_getUid
	sel_isEqual
	sel_registerName

	Data Types
	Class-Definition Data Structures
	Class
	Method
	Ivar
	Category
	objc_property_t
	IMP
	marg_list
	SEL
	objc_method_list
	objc_cache
	objc_protocol_list

	Instance Data Types
	id
	objc_object
	objc_super

	Boolean Value
	BOOL

	Constants
	Boolean Values
	Null Values

	Appendix A: Mac OS X Version 10.5 Delta
	Runtime Functions
	Basic types
	Instances
	Class Inspection
	Class Manipulation
	Methods
	Instance Variables
	Selectors
	Runtime
	Messaging
	Protocols
	Exceptions
	Synchronization
	NXHashTable and NXMapTable

	Structures

	Revision History
	Index
	B
	C
	D
	I
	M
	N
	O
	P
	S
	Y

