QCPlugln Class Reference

Cocoa > Graphics & Imaging

¢

2008-04-08



.

[

Apple Inc.

© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Macintosh, and Quartz are trademarks of Apple
Inc,, registered in the United States and other
countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

OpenGlL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

QCPlugin Class Reference 5

Overview 5

Tasks 5
Defining the Characteristics of a Custom Patch 5
Executing a Custom Patch 6
Performing Custom Tasks During Execution 6
Defining Patch and Property Port Attributes 6
Defining Internal Settings 6
Supporting Saving and Retrieving Internal Settings 6
Adding Ports Dynamically 6
Getting and Setting Port Values 7
Loading Bundle and Custom Patches Manually 7
Ordering Property Ports 7

Class Methods 7
attributes 7
attributesForPropertyPortWithKey: 8
executionMode 9
loadPluglnAtPath: 9
pluginKeys 10
registerPluginClass: 10
sortedPropertyPortKeys 11
timeMode 11

Instance Methods 12
addInputPortWithType:forKey:withAttributes: 12
addOutputPortWithType:forKey:withAttributes: 12
createViewController 13
didValueForlnputKeyChange: 14
disableExecution: 14
enableExecution: 15
execute:atTime:withArguments: 15
removelnputPortForKey: 16
removeQutputPortForKey: 16
serializedValueForKey: 17
setSerializedValue:forKey: 17
setValue:forOutputKey: 18
startExecution: 18
stopExecution: 19
valueForlnputKey: 19

Constants 20
Patch Attributes 20
Input and Output Port Attributes 20

2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



CONTENTS

Port Input and Output Types 21
Pixel Formats 23

Execution Arguments 23
Execution Modes 24

Time Modes 25

Document Revision History 27

Index 29

2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Quartzframework/Frameworks/QuartzComposerframework
Availability Available in Mac OS X v10.5 and later.

Declared in QCPlugin.h

QCPlugInViewController.h

Companion guides Quartz Composer Custom Patch Programming Guide
Quartz Composer Programming Guide

Overview

Tasks

The QCP1ugIn class provides the base class to subclass for writing custom Quartz Composer patches. You
implement a custom patch by subclassing QCP1ugIn, overriding the appropriate methods, packaging the
code as an NSBund1e object, and installing the bundle in the appropriate location. A bundle can contain
more than one subclass of QCP1ugIn, allowing you to provide a suite of custom patches in one bundle.
Quartz Composer Custom Patch Programming Guide provides detailed instructions on how to create and
package a custom patch. QCPlugin Class Reference supplements the information in the programming guide.

The methods related to the executing the custom patch (called when the Quartz Composer engine is rendering)
are passed an opaque object that conforms to the QCPTugInContext Protocol protocol. This object
represents the execution context of the QCP1ugIn object. You should not retain the execution context or
use it outside of the scope of the execution method that it is passed to.

Defining the Characteristics of a Custom Patch

+ executionMode (page 9)

Returns the execution mode of the custom patch.
+ timeMode (page 11)

Returns the time mode for the custom patch.

Overview 5
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

Executing a Custom Patch

- execute:atTime:withArguments: (page 15)
Performs the processing or rendering tasks appropriate for the custom patch.

Performing Custom Tasks During Execution

- startExecution: (page 18)
Allows you to perform custom setup tasks before the Quartz Composer engine starts rendering.

- enableExecution: (page 15)
Allows you to perform custom tasks when the execution of the QCP1ugIn object is resumed.

- disableExecution: (page 14)
Allows you to perform custom tasks when the execution of the QCP1ugIn object is paused.

- stopExecution: (page 19)
Allows you to perform custom tasks when the QCPTugIn object stops executing.

Defining Patch and Property Port Attributes

+ attributes (page 7)
Returns a dictionary that contains strings for the user interface that describe the custom patch.

+ attributesForPropertyPortWithKey: (page 8)
Returns a dictionary that contains strings for the user interface that describe the optional attributes
for ports created from properties.

Defining Internal Settings

- createViewController (page 13)
Creates and returns a view controller for the Settings pane of a custom patch.

+ plugInKeys (page 10)
Returns the keys for the internal settings of a custom patch.

Supporting Saving and Retrieving Internal Settings

- serializedValueForKey: (page 17)
Provides custom serialization for patch internal settings that do not comply to the NSCoding protocol.

- setSerializedValue:forKey: (page 17)
Provides custom deserialization for patch internal settings that were previously serialized using the
method serializedValueForKey: (page 17).

Adding Ports Dynamically

- addInputPortWithType:forKey:withAttributes: (page 12)
Adds an input port of the specified type and associates a key and attributes with the port.

Tasks
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

- removelnputPortForKey: (page 16)
Removes the input port for a given key.

- addOutputPortWithType:forKey:withAttributes: (page 12)
Adds an output port of the specified type and associates a key and attributes with the port.

- removeQutputPortForKey: (page 16)
Removes the output port for a given key.

Getting and Setting Port Values

- didValueForInputKeyChange: (page 14)
Returns whether the input port value changed since the last execution of the custom patch.

- valueForInputKey: (page 19)
Returns the current value for an input port.

- setValue:forQutputKey: (page 18)
Sets the value of an output port.

Loading Bundle and Custom Patches Manually

+ loadPlugInAtPath: (page9)
Loads a Quartz Composer plug-in bundle from the specified path.

+ registerPlugInClass: (page 10)
Registers a QCPTugIn subclass.

Ordering Property Ports

+ sortedPropertyPortKeys (page 11)
Returns and array of property port keys in the order you want them to appear in the user interface.

Class Methods

attributes

Returns a dictionary that contains strings for the user interface that describe the custom patch.
+ (NSDictionary*) attributes

Return Value

The dictionary can contain one or more of these keys along with the appropriate string:
QCPTugInAttributeNameKey (page 20), QCPTugInAttributeDescriptionKey (page 20), and
QQCPTugInAttributeCopyrightKey (page 20).

Class Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

Discussion

It's recommended that you implement this method to enhance the experience of those who use your custom
patch. The attribute name string that you provide is displayed in the Quartz Composer editor window when
the custom patch name is selected in the Patch Creator (see figure). The attribute description key is displayed
in the Information pane of the inspector for the custom patch.

88 E Patch Creator (Untitled)
Q~ Patch Name MY

Press [Enter] to insert patch in current editor workspace.

¥ Patch Browser

Category Patch Mame

Source R5S Downloader

Source Video Input

Source XML Downloader

Tool Ancheor Position

Tool Core Image Accumulator

Tool Date Formatter

Tool Demultiplexer

Tool FPS Display m
Tool Host Info

Tool Image Dimensions -

Tl [ELE T ST S LU

¥ Description

Anchor Position

This patch computes a 2D position in the Quartz
Composer referential relatively to an anchor
point.

P Settings

Availability
Available in Mac OS X v10.5 and later.

See Also
+ attributesForPropertyPortWithKey: (page 8)

Declared In
QCPlugIn.h

attributesForPropertyPortWithKey:

Returns a dictionary that contains strings for the user interface that describe the optional attributes for ports
created from properties.

+ (NSDictionary*) attributesForPropertyPortWithKey:(NSString*)key

Parameters
key

The name of the property.
Return Value

A dictionary that contains key-value pairs for the port’s attributes. The keys must be one or more of the
constants defined in “Input and Output Port Attributes” (page 20).

Class Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

Discussion

It's recommended that you implement this method to enhance the experience of those who use your custom
patch. The attributes appear in a help tag when the user hovers a pointer over the property port on your
custom patch. At a minimum, you should provide a user-readable name for the port. It might also be helpful
to provide default, minimum, and maximum values for the port.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ attributes (page 7)

Declared In
QCPTugIn.h

executionMode

Returns the execution mode of the custom patch.
+ (QCPTugInExecutionMode) executionMode

Return Value
The execution mode of the custom patch. See “Execution Modes” (page 24) for the constants you can
return.

Discussion
You must implement this method to define whether your custom patch is a provider, a processor, or a
consumer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPTugIn.h

loadPluginAtPath:

Loads a Quartz Composer plug-in bundle from the specified path.
+ (BOOL) ToadPlugInAtPath:(NSString*)path

Parameters
path
The location of the bundle.

Return Value
YES if successful.

Discussion

Call this method only if you need to load a plug-in bundle from a nonstandard location. Typically you don't
need to call this method because Quartz Composer automatically loads bundles that you install in one of
the following locations:

m /Library/Graphics/Quartz Composer Plug-Ins

Class Methods 9
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



10

QCPlugln Class Reference

m ~/Library/Graphics/Quartz Composer Plug-Ins

This method does nothing if the bundle is already loaded. (This method does not load in all environments.
Web Kit, for example, cannot load custom patches.)

The bundle can contain more than one QCP1ugIn subclass. After the bundle is loaded, each QCP1ugIn
subclass appears as a patch in the Quartz Composer patch library.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

pluginKeys

Returns the keys for the internal settings of a custom patch.
+ (NSArray*) plugInKeys

Return Value
An array of keys used for key-value coding (KVC) of the internal settings.

Discussion

You must override this method if your patch provides a Settings pane. This keys are used for automatic
serialization of the internal settings and are also used by the QCPTugInViewController instance for the
Settings pane. The implementation is straightforward; the keys are strings that represent the instance variables
used for the Settings pane. For example, the pTugInKeys method for these instance variables:

@property(ivar, byref) NSColor * systemColor;
@property(ivar, byref) NSConfiguration * systemConfiguration;

are:

+ (NSArray*) pluglnKeys
{
return [NSArray arrayWithObjects: @"systemColor",
@"systemConfiguration",
nill;
}

Availability
Available in Mac OS X v10.5 and later.

See Also
- createViewController (page 13)

Declared In
QCPTugIn.h

registerPluginClass:

Registers a QCPTugIn subclass.

Class Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

+ (void) registerPlugInClass:(Class)aClass

Parameters

aClass
The QCPTugIn subclass.

Discussion
You call this method only if the code for your custom patch is mixed with your application code, and you
plan only to use the custom patch from within your application.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

sortedPropertyPortKeys

Returns and array of property port keys in the order you want them to appear in the user interface.
+ (NSArray*) sortedPropertyPortKeys;

Return Value
The property port keys in the order you want them to appear in the user interface.

Discussion
Override this method to specify an optional ordering for property based ports in the user interface.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

timeMode

Returns the time mode for the custom patch.
+ (QCPTugInTimeMode) timeMode

Return Value
The time mode of the custom patch. See “Time Modes” (page 25) for the constants you can return.

Discussion
You must implement this method to define whether you custom patch depends on time, doesn’t depend
on time, or needs time to idle.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

Class Methods n
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

Instance Methods

addinputPortWithType:forKey:withAttributes:

Adds an input port of the specified type and associates a key and attributes with the port.

- (void) addInputPortWithType: (NSString*)type forKey:(NSString*)key
withAttributes: (NSDictionary*)attributes

Parameters

type
The port type. See “Port Input and Output Types” (page 21).

key
The key to associate with the port.

attributes
A dictionary of attributes for the port. See “Input and Output Port Attributes” (page 20).
Although the dictionary is optional, it's recommended that provide attributes to enhance the experience
of those who use your custom patch. The attributes appear in a help tag when the user hovers a
pointer over the property port on your custom patch. (See
attributesForPropertyPortWithKey: (page 8).) Pass nil if you do not want to provide
attributes.

Discussion

This method throws an exception if called from within the execute:atTime:withArguments: (page 15)
method or if there's already an input or output port with that key.

Availability
Available in Mac OS X v10.5 and later.

See Also
- removelnputPortForKey: (page 16)

Declared In
QCPTugIn.h

addOutputPortWithType:forKey:withAttributes:

Adds an output port of the specified type and associates a key and attributes with the port.

- (void) addOutputPortWithType: (NSString*)type forKey:(NSString*)key
withAttributes: (NSDictionary*)attributes

Parameters

type
The port type. See “Port Input and Output Types” (page 21).

key
The key to associate with the port.

12 Instance Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

attributes
A dictionary of attributes for the port. See “Input and Output Port Attributes” (page 20).
Although the dictionary is optional, it's recommended that provide attributes to enhance the experience
of those who use your custom patch. The attributes appear in a help tag when the user hovers a
pointer over the property port on your custom patch. (See
attributesForPropertyPortWithKey: (page 8).) Pass nil if you do not want to provide
attributes.

Discussion
This method throws an exception if called from within the execute:atTime:withArguments: (page 15)
method or if there is already an output port with that key.

Availability
Available in Mac OS X v10.5 and later.

See Also
- removeOutputPortForKey: (page 16)

Declared In
QCPlugIn.h

createViewController

Creates and returns a view controller for the Settings pane of a custom patch.
- (QCPTugInViewController*) createViewController

Return Value
A view controller for the custom patch. Quartz Composer releases the controller when it is no longer needed.
If necessary, you can return a subclass of QCPTugInViewController, but this it not typically done.

Discussion

This extension tothe QCPTugInViewController class provides user-interface support for the Settings pane
of the inspector for a custom patch. You must override this method if your custom patch provides a Settings
pane. The QCPTugInViewController object acts as a controller for Cocoa bindings between the custom
patch instance (the model) and the NSV iew that contains the controls. It loads the nib file from the bundle.

The implementation is straightforward. You allocate a QCPTugInViewControl1er object, initialize it, and
provide the name of the nib file that contains the user interface for the Settings pane.

Note that this method follows the Core Foundation “create” rule. See the ownership policy in Memory
Management Programming Guide for Core Foundation.

For example, if the nib file name that contains the settings paneis MySettingsPane.nib, the implementation
is:

- (QCPTugInViewController *) createViewController
{
return [[QCPTugInViewController alloc] initWithPlugln:self
viewNibName:@"MySettingsPane"];
}

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 13
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



14

QCPlugln Class Reference

See Also
+ plugInKeys (page 10)

Declared In
QCPlugInViewController.h

didValueForinputKeyChange:

Returns whether the input port value changed since the last execution of the custom patch.
- (BOOL) didValueForInputKeyChange: (NSString*)key

Parameters
key
The key for the input port whose value you want to check.
Return Value
YES if the value on the input port changed since the last time the execute:atTime:withArguments: (page

15) method was called; always returns NO if called outside of the execute:atTime:withArguments:
method.

Availability
Available in Mac OS X v10.5 and later.

See Also
- valueForInputKey: (page 19)

Declared In
QCPTugIn.h

disableExecution:

Allows you to perform custom tasks when the execution of the QCP1ugIn object is paused.
- (void) disableExecution:(id<QCPlugInContext>)context

Parameters
context
An opaque object, conforming to the QCPTugInContext Protocol protocol, that represents the

execution context of the QCP1ugIn object. Do not retain this object or use it outside of the scope of
this method.

Discussion
The Quartz Composer engine calls this method when results are no longer being pulled from the custom
patch. You can optionally override this execution method to perform custom tasks at that time.

Availability
Available in Mac OS X v10.5 and later.

See Also
- enableExecution: (page 15)

Declared In

QCPlugIn.h

Instance Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

enableExecution:

Allows you to perform custom tasks when the execution of the QCP1ugIn object is resumed.
- (void) enableExecution:(id<QCPTugInContext>)context

Parameters

context
An opaque object, conforming to the QCPTugInContext Protocol protocol, that represents the
execution context of the QCP1ugIn object. Do not retain this object or use it outside of the scope of
this method.

Discussion
The Quartz Composer engine calls this method when results start to be pulled from the custom patch. You
can optionally override this execution method to perform custom tasks at that time.

Availability
Available in Mac OS X v10.5 and later.

See Also
- disableExecution: (page 14)

Declared In
QCPlugIn.h

execute:atTime:withArguments:

Performs the processing or rendering tasks appropriate for the custom patch.

- (BOOL) execute:(id<QCPlugInContext>)context atTime:(NSTimelnterval)time
withArguments: (NSDictionary*)arguments

Parameters

context
An opaque object , conforming to the QCPTugInContext Protocol protocol, that represents the
execution context of the QCPTugIn object. Do not retain this object or use it outside of the scope of
this method.

time
The execution interval.

arguments
A dictionary of arguments that can be used during execution. See “Execution Arguments” (page
23).

Return Value

NO indicates the custom patch was not able to execute successfully. In this case, the Quartz Composer engine

stops rendering the current frame.

Discussion

The Quartz Composer engine calls this method each time your custom patch needs to execute. You must
implement this method. The method should perform whatever tasks are appropriate for the custom patch,
such as:

= reading values from the input ports

= computing output values

Instance Methods 15
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



16

QCPlugln Class Reference

m updating the values on the output ports

= rendering to the execution context

For example implementations of this method, see Quartz Composer Custom Patch Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

removelnputPortForKey:

Removes the input port for a given key.
- (void) removelnputPortForKey: (NSString*)key

Parameters
key
The key associated with the port that you want to remove.

Discussion
This method throws an exception if from within the execute:atTime:withArguments: (page 15) method,
if there is not an input port with that key, or if the port is created from a property.

Availability
Available in Mac OS X v10.5 and later.

See Also
- addInputPortWithType:forKey:withAttributes: (page 12)

Declared In
QCPTugIn.h

removeOutputPortForKey:

Removes the output port for a given key.
- (void) removeOutputPortForKey:(NSString*)key

Parameters
key

The key associated with the port that you want to remove.
Discussion

This method throws an exception if called from within the execute:atTime:withArguments: (page 15)
method, if there is not an output port with that key, or if the port is created from a property.

Availability
Available in Mac OS X v10.5 and later.

See Also
- addOutputPortWithType:forKey:withAttributes: (page 12)

Instance Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

Declared In
QCPTugIn.h

serializedValueForKey:

Provides custom serialization for patch internal settings that do not comply to the NSCoding protocol.
- (id) serializedValueForKey: (NSString*)key

Parameters
key
The key for the value to retrieve.
Return Value
Either ni1 or a value that’s compliant with property lists: NSString, NSNumber, NSDate, NSData, NSArray,
or NSDictionary.

Discussion
If your patch has internal settings that do not conform to the NSCod1ing protocol, you must implement this
method.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setSerializedValue:forKey: (page 17)

Declared In
QCPlugIn.h

setSerializedValue:forKey:

Provides custom deserialization for patch internal settings that were previously serialized using the method
serializedValueForKey: (page 17).

- (void) setSerializedValue:(id)serializedValue forKey:(NSString*)key

Parameters

serializedValue
The value to deserialize.

key

The key for the value to deserialize.
Discussion
If your patch has internal settings that do not conform to the NSCod1ing protocol, you must implement this
method. After you deserialize the value, you need to call [self set:value forKey:key] to setthe
corresponding internal setting of the custom patch instance to the deserialized value.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

Instance Methods 17
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



18

QCPlugln Class Reference

setValue:forOutputKey:

Sets the value of an output port.
- (BOOL) setValue:(id)value forOutputKey:(NSString*)key

Parameters
key
The key associated with the output port whose value you want to set.

Return Value
YES if successful; NO if called outside of the execute:atTime:withArguments: (page 15) method.

Discussion
You call this method from within your execute:atTime:withArguments: (page 15) method to set the
output values of your custom patch.

Availability
Available in Mac OS X v10.5 and later.

See Also
- valueForInputKey: (page 19)

- didValueForInputKeyChange: (page 14)

Declared In
QCPlugIn.h

startExecution:

Allows you to perform custom setup tasks before the Quartz Composer engine starts rendering.
- (BOOL) startExecution:(id<QCPlugInContext>)context

Parameters
context
An opaque object, conforming to the QCPTugInContext Protocol protocol, that represents the

execution context of the QCPTugIn object. Do not retain this object or use it outside of the scope of
this method.

Return Value
NO indicates a fatal error occurred and prevents the Quartz Composer engine from starting.

Discussion
The Quartz Composer engine calls this method when your custom patch starts to render. You can optionally
override this execution method to perform setup tasks.

Availability
Available in Mac OS X v10.5 and later.

See Also
- stopkExecution: (page 19)

Declared In
QCPTugIn.h

Instance Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

stopExecution:

Allows you to perform custom tasks when the QCP1ugIn object stops executing.
- (void) stopExecution: (id<QCPTugInContext>)context

Parameters
context
An opaque object, conforming to the QCPTugInContext Protocol protocol, that represents the

execution context of the QCP1ugIn object. Do not retain this object or use it outside of the scope of
this method.

Discussion
The Quartz Composer engine calls this method when it stops executing. You can optionally override this
execution method to perform cleanup tasks.

Availability
Available in Mac OS X v10.5 and later.

See Also
- startExecution: (page 18)

Declared In
QCPlugIn.h

valueForinputKey:

Returns the current value for an input port.
- (id) valueForInputKey:(NSString*)key

Parameters
key

The key for the input port you want to check.
Return Value

The value associated with the key or ni 1 if called outside of the execute:atTime:withArguments: (page
15) method.

Discussion
You call this method from within your execute:atTime:withArguments: (page 15) method to retrieve
the input values of your custom patch.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setValue:forOutputKey: (page 18)

- didValueForInputKeyChange: (page 14)

Declared In
QCPlugIn.h

Instance Methods 19
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

Constants

20

Patch Attributes

Attributes for custom patches.

extern NSString* const QCPlugInAttributeNameKey;
extern NSString* const QCPlugInAttributeDescriptionKey;
extern NSString* const QCPlugInAttributeCopyrightKey;

Constants
QCPlugInAttributeNameKey
The key for the custom patch name. The associated value is an NSString object.

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

QCPTugInAttributeDescriptionKey
The key for the custom patch description. The associated value is an NSString object.

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

QQCPTugInAttributeCopyrightKey
The key for the custom patch copyright information. The associated value is an NSString object.

Declared In
QCPTugIn.h

Input and Output Port Attributes

Attributes for input and output ports.

extern NSString* const QCPortAttributeTypeKey;

extern NSString* const QCPortAttributeNameKey;

extern NSString* const QCPortAttributeDefaultValueKey;
extern NSString* const QCPortAttributeMinimumValueKey;
extern NSString* const QCPortAttributeMaximumValueKey;
extern NSString* const QCPortAttributeDefaultValueKey;
extern NSString* const QCPortAttributeMenultemsKey;

Constants

QCPortAttributeTypeKey
The key for the port type. The associated value can be of any of the following constants:
QCPortTypeBoolean (page 22), QCPortTypelndex (page 22), QCPortTypeNumber (page 22),
QCPortTypeString (page 22), QCPortTypeColor (page 22), QCPortTypelmage (page 22), or
QCPortTypeStructure (page 22).

Available in Mac OS X v10.4 and later.
Declared in QCPTugIn.h.

QCPortAttributeNameKey
The key for the port name. The associated value is an NSString object.

Available in Mac OS X v10.4 and later.
Declared in QCPTugIn.h.

Constants
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

QCPortAttributeMinimumValueKey
The key for the port minimum value. The associated value is an NSNumber object that specifies the
minimum numerical value accepted by the port.

Available in Mac OS X v10.4 and later.
Declared in QCPTugIn.h.

QCPortAttributeMaximumValueKey
The key for the port maximum value. The associated value is an NSNumber object that specifies the
maximum numerical value accepted by the port.

Available in Mac OS X v10.4 and later.
Declared in QCPTugIn.h.

QCPortAttributeDefaultValueKey

The key for the port default value. You can use this key only for value ports (Boolean, Index, Number,
Color and String).

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

QCPortAttributeMenultemsKey
The key for the menu items. The associated value is an array of strings that are displayed in the user
interface as a pop-up menu when the user double-clicks a port, as shown for the Blending input port

Billooard | 3
O Enable

O Width

O Image

2 Mask Image

O X Position

QY Position

O Rotation

O Color

7 ¢ Replace
Over
Add
of the Billboard patch. You can use this key only for an index port.
Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

Declared In
QCPTugIn.h

Port Input and Output Types

Data types for input and output ports.

Constants 21
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



22

QCPlugln Class Reference

extern NSString* const QCPortTypeBoolean;
extern NSString* const QCPortTypelndex;
extern NSString* const QCPortTypeNumber;
extern NSString* const QCPortTypeString;
extern NSString* const QCPortTypeColor;
extern NSString* const QCPortTypelmage;
extern NSString* const QCPortTypeStructure;

Constants

QCPortTypeBoolean
The port type for a Boolean value. The associated value can be an NSNumber object or any object
that responds to the -intValue, -floatValue, or -doubleValue methods.

Available in Mac OS X v10.4 and later.
Declared in QCPTugIn.h.

QCPortTypelIndex
The port type for an index value. The associated value can be an NSNumber object or any object that
responds to the -intValue, -floatValue, or -doubleValue methods.

Available in Mac OS X v10.4 and later.
Declared in QCPTugIn.h.

QCPortTypeNumber
The port type for a number value. The associated value can be an NSNumber object or any object that
responds to the -intValue, -floatValue, or -doubleValue methods.

Available in Mac OS X v10.4 and later.
Declared in QCPTugIn.h.

QCPortTypeString
The port type for a string. The associated value can be an NSSt ring object or any object that responds
tothe -stringValue or -description methods.

Available in Mac OS X v10.4 and later.
Declared in QCPTugIn.h.

QCPortTypeColor
The port type for a color value. The associated value must be an NSCo1or object.

Available in Mac OS X v10.4 and later.
Declared in QCPTugIn.h.

QCPortTypelmage
The port type for an image. The associated value can be an NSTmage object ora CIImage object.

Available in Mac OS X v10.4 and later.
Declared in QCPTugIn.h.

QCPortTypeStructure
The port type for an array, dictionary, or other structure, such asan NSArray or NSDictionary object.

Available in Mac OS X v10.4 and later.
Declared in QCPTugIn.h.

Declared In
QCPTugIn.h

Constants
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

Pixel Formats

Supported image pixel formats.

extern NSString* const QCPlugInPixelFormatARGBS;
extern NSString* const QCPlugInPixelFormatBGRAS;
extern NSString* const QCPlugInPixelFormatRGBAT;

extern NSString* const QCPlugInPixelFormatI8;
extern NSString* const QCPlugInPixelFormatIf;

Constants

QCPTugInPixelFormatARGB8
An ARGBS8 format. The alpha component is stored in the most significant bits of each pixel. Each pixel
component is 8 bits. For best performance, use this format on PowerPC-based Macintosh computers,
as it represents of the order of the data in memory.

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

QCPlugInPixelFormatBGRAS
A BGRAS format. The alpha component is stored in the least significant bits of each pixel. Each pixel
component is 8 bits. For best performance, use this format on Intel-PC-based Macintosh computers,
as it represents of the order of the data in memory.

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

QCPTugInPixelFormatRGBAT
An RGBAf format. Pixel components are represented as floating-point values.

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

QCPlugInPixelFormatI8
An 18 format. Intensity information is represented as an 8-bit value.

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

QCPlugInPixelFormatIf
An If format. Intensity information is represented as a floating-point value.

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

Declared In
QCPlugIn.h

Execution Arguments

Arguments to the method execute:atTime:withArguments: (page 15).

Constants 23
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



24

QCPlugln Class Reference

extern NSString* const QCPluglInExecutionArgumentEventKey;
extern NSString* const QCPlugInExecutionArgumentMouselocationKey;

Constants
QCPTugInExecutionArgumentEventKey
The current NSEvent if available.

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

QCPTugInExecutionArgumentMouselLocationKey
The current location of the mouse (asan NSPoint object stored inan NSValue object) in normalized
coordinates relative to the OpenGL context viewport ([0,1]x[0,1] with the origin (0, 0) at the lower-left
corner).

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

Declared In
QCPlugIn.h

Execution Modes

Execution modes for custom patches.

typedef enum {
kQCPTugInExecutionModeProvider = 1,
kQCPlugInExecutionModeProcessor,
kQCPlugInExecutionModeConsumer

} QCPlugInExecutionMode;

Constants

kQCPlugInExecutionModeProvider
A provider execution mode. The custom patch executes on demand—that is, whenever data is
requested of it, but at most once per frame.

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

kQCPlugInExecutionModeProcessor
A processor execution mode. The custom patch executes whenever its inputs change or if the time
change (assuming it's time-dependent).

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

kQCPlugInExecutionModeConsumer
A consumer execution mode. The custom patch always executes assuming the value of its Enable
input port is true. (The Enable port is automatically added by the system.)

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

Declared In
QCPTugIn.h

Constants
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

Time Modes

Time modes for custom patches.

typedef enum {
kQCPlugInTimeModeNone = 0,
kQCPTugInTimeModeldle,
kQCPTugInTimeModeTimeBase
} QCPlugInTimeMode;

Constants

kQCPTugInTimeModeNone
No time dependency. The custom patch does not depend on time at all. (It does not use the time
parameter of the execute:atTime:withArguments: method.)

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

kQCPTugInTimeModeldle
Anidle time dependency. The custom patch does not depend on time but needs the system to execute
it periodically. For example if the custom patch connects to a piece of hardware, to ensure that it
pulls data from the hardware, you would set the custom patch time dependency to idle time mode.
This time mode is typically used with providers.]]

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

kQCPTugInTimeModeTimeBase
A time base dependency. The custom patch does depend on time explicitly and has a time base
defined by the system. (It uses the time parameter of the execute:atTime:withArguments:
method.)

Available in Mac OS X v10.5 and later.
Declared in QCPTugIn.h.

Declared In
QCPTugIn.h

Constants 25
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



QCPlugln Class Reference

26 Constants
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



REVISION HISTORY

Document Revision History

This table describes the changes to QCPlugin Class Reference.

Date Notes

2008-04-08 Added information about the memory management model used for the create
function.

2007-06-26 New document that describes the class used to write custom patches for Quartz
Composer.

27

2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



28

REVISION HISTORY

Document Revision History

2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



Index

A

K

addInputPortWithType:forKey:withAttributes:
instance method 12

addOutputPortWithType:forKey:withAttributes:
instance method 12

attributes class method 7

attributesForPropertyPortWithKey: class method
8

C

kQCPlugInExecutionModeConsumer constant 24
kQCPlugInExecutionModeProcessor constant 24
kQCPlugInExecutionModeProvider constant 24
kQCPlugInTimeModeldle constant 25
kQCPTugInTimeModeNone constant 25
kQCPTugInTimeModeTimeBase constant 25

L

createViewController instance method 13

D

lToadPlugInAtPath: class method 9

P

didValueForInputKeyChange: instance method 14
disableExecution: instance method 14

E

Patch Attributes 20

Pixel Formats 23

plugInKeys class method 10
Port Input and Output Types 21

Q

enableExecution: instance method 15

execute:atTime:withArguments: instance method
15

Execution Arguments 23

Execution Modes 24

executionMode class method 9

Input and Output Port Attributes 20

2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPTugInAttributeDescriptionKey constant 20
QCPlugInAttributeNameKey constant 20
QCPlugInExecutionArgumentEventKey constant 24
QCPlugInExecutionArgumentMouselocationKey
constant 24
QCPTugInPixelFormatARGB8 constant 23
QCPTlugInPixelFormatBGRA8 constant 23
QCPTugInPixelFormatI8 constant 23
QCPTlugInPixelFormatIf constant 23
QCPTlugInPixelFormatRGBAf constant 23
QCPortAttributeDefaultValueKey constant 21
QCPortAttributeMaximumValueKey constant 21
QCPortAttributeMenultemsKey constant 21
QCPortAttributeMinimumValueKey constant 21
QCPortAttributeNameKey constant 20

29



INDEX

QCPortAttributeTypeKey constant 20
QCPortTypeBoolean constant 22
QCPortTypeColor constant 22
QCPortTypelmage constant 22
QCPortTypelndex constant 22
QCPortTypeNumber constant 22
QCPortTypeString constant 22
QCPortTypeStructure constant 22
QQCPTugInAttributeCopyrightKey constant 20

R

registerPlugInClass: class method 10
removelnputPortForKey: instance method 16
removeQutputPortForKey: instance method 16

S

serializedValueForKey: instance method 17
setSerializedValue:forKey: instance method 17
setValue:forQutputKey: instance method 18
sortedPropertyPortKeys class method 11
startExecution: instance method 18
stopExecution: instance method 19

T

Time Modes 25
timeMode class method 11

\Y

valueForInputKey: instance method 19

30
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.



	QCPlugIn Class Reference
	Contents
	QCPlugIn Class Reference
	Overview
	Tasks
	Defining the Characteristics of a Custom Patch
	Executing a Custom Patch
	Performing Custom Tasks During Execution
	Defining Patch and Property Port Attributes
	Defining Internal Settings
	Supporting Saving and Retrieving Internal Settings
	Adding Ports Dynamically
	Getting and Setting Port Values
	Loading Bundle and Custom Patches Manually
	Ordering Property Ports

	Class Methods
	attributes
	attributesForPropertyPortWithKey:
	executionMode
	loadPlugInAtPath:
	plugInKeys
	registerPlugInClass:
	sortedPropertyPortKeys
	timeMode

	Instance Methods
	addInputPortWithType:forKey:withAttributes:
	addOutputPortWithType:forKey:withAttributes:
	createViewController
	didValueForInputKeyChange:
	disableExecution:
	enableExecution:
	execute:atTime:withArguments:
	removeInputPortForKey:
	removeOutputPortForKey:
	serializedValueForKey:
	setSerializedValue:forKey:
	setValue:forOutputKey:
	startExecution:
	stopExecution:
	valueForInputKey:

	Constants
	Patch Attributes
	Input and Output Port Attributes
	Port Input and Output Types
	Pixel Formats
	Execution Arguments
	Execution Modes
	Time Modes


	Revision History
	Index
	A
	C
	D
	E
	I
	K
	L
	P
	Q
	R
	S
	T
	V



