
Bundle Programming Guide
Core Foundation > Resource Management

2005-11-09

Apple Inc.
© 2003, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Objective-C, QuickTime, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Bundle Programming Guide 7

Organization of This Document 7

About Bundles 9

Advantages of Using Bundles 9
Types of Bundles 10
Programmatic Support for Bundles 10

Anatomy of a Modern Bundle 11

Adding Configuration Information 11
Adding Executable Code 12
Adding Non-Localized Resources 13
Adding Localized Resources 13
Adding Platform-Specific Resources 15
Adding Additional Support Files 16

Bundles and the Resource Manager 19

Searching for Bundle Resources 21

Packages and the Finder 23

Document Packages 25

Defining Your Document Directory Structure 25
Registering Your Document Type 25
Accessing Your Document Contents 25

Guidelines for Using Bundles 27

Creating Bundles 29

Locating and Opening Bundles 31

Opening the Main Bundle 31
Locating Bundles by Path 32
Locating Bundles in Known Directories 32
Locating Bundles by Identifier 33

3
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Searching for Related Bundles 34

Locating Resources Inside a Bundle 35

Loading and Unloading Executable Code 37

Loading Functions 37
Loading Objective-C Classes 38
Unloading Bundles 39

Getting Information From a Bundle 41

Getting Path Information 41
Getting Configuration Data 41

Working With Localized Strings 43

Document Revision History 45

4
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Listings

Anatomy of a Modern Bundle 11

Listing 1 A bundle with executable code 12
Listing 2 A bundle with global resources 13
Listing 3 A bundle with localized resources 14
Listing 4 A bundle with platform-specific resources 15
Listing 5 The bundle layout of a complex application 17

Locating and Opening Bundles 31

Listing 1 Locating the main bundle from Core Foundation 31
Listing 2 Locating the main bundle from Cocoa 31
Listing 3 Locating a Core Foundation bundle using its path 32
Listing 4 Locating a Cocoa bundle using its path 32
Listing 5 Obtaining bundle references for a set of plug-ins 33
Listing 6 Locating a bundle using its identifier 33

Locating Resources Inside a Bundle 35

Listing 1 Locating resources inside a bundle by name and type 35
Listing 2 Locating multiple resources by type 36

Loading and Unloading Executable Code 37

Listing 1 An example function for a loadable bundle 37
Listing 2 Finding a function in a loadable bundle 37
Listing 3 Loading the principal class of a bundle 38

Getting Information From a Bundle 41

Listing 1 Obtaining the bundle’s version 42
Listing 2 Retrieving information from a bundle’s information property list 42

Working With Localized Strings 43

Listing 1 Using the LocalizedString macros 43

5
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

A bundle is a directory in the file system that groups related resources together in one place. Applications,
frameworks, and plug-ins are all examples of bundles. Programs can also use document bundles instead of
flat files to save complex content.

Many bundles are also packages, that is, they are presented to the user as opaque files rather than as
directories. This opaqueness has advantages for both users and developers. For users, it simplifies the user’s
interaction with applications and other bundles and makes it harder to delete critical resources accidentally.
For developers, it simplifies the software distribution process.

Both Cocoa and Core Foundation provide API for accessing the contents of a bundle. For more information
on accessing bundles from Cocoa, see the NSBundle class documentation. For information on accessing
bundles from Core Foundation, see the CFBundle reference.

For information about framework bundles, see Framework Programming Guide.

Organization of This Document

This document includes the following articles:

 ■ “About Bundles” (page 9) provides background information about Mac OS X bundles and why you
should use them.

 ■ “Anatomy of a Modern Bundle” (page 11) gives you a tour of a modern bundle and provides examples
of how different parts of a bundle contribute to the overall directory hierarchy.

 ■ “Bundles and the Resource Manager” (page 19) explains the bundle support for Resource Manager-style
resources and includes an example of how to load these resources from your application.

 ■ “Searching for Bundle Resources” (page 21) explains the search algorithm used by NSBundle and
CFBundle to locate resources, which is helpful for developers who need to place those resources initially.

 ■ “Packages and the Finder” (page 23) describes the behavior of the Finder as it pertains to bundles and
packages.

 ■ “Document Packages” (page 25) provides guidelines for creating your custom document types using a
package instead of a file.

 ■ “Guidelines for Using Bundles” (page 27) provides guidelines for when and how to use bundles.

 ■ “Creating Bundles” (page 29) provides basic instructions on how to create a new bundle or convert an
older NeXT bundle to the modern bundle structure.

 ■ “Locating and Opening Bundles” (page 31) demonstrates how to find bundles on the system.

 ■ “Locating Resources Inside a Bundle” (page 35) explains the interfaces used to find resources inside a
bundle.

 ■ “Loading and Unloading Executable Code” (page 37) demonstrates how to call functions and access
classes defined in plug-ins and other loadable bundles.

Organization of This Document 7
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to Bundle Programming Guide

 ■ “Getting Information From a Bundle” (page 41) demonstrates how to retrieve information about the
bundle itself, including its configuration data and directory paths.

 ■ “Working With Localized Strings” (page 43) discusses the interfaces used to retrieve localized strings
from a bundle and shows you how to write code in a way that makes it easier to find localizable strings.

8 Organization of This Document
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to Bundle Programming Guide

The problem of managing code and related resources is not a new one and different operating systems have
taken different approaches. In the past, resources have been compiled into the executable file, compiled into
resource forks, and installed in known locations, among other techniques. The problem with many of these
techniques is that they tend to be more fragile and in some cases complicate the process of updating the
code and resources.

Bundles provide an elegant solution to the problem of grouping related code and resources together. A
bundle is a hierarchical directory structure containing executable code and resources geared for a specific
purpose. Applications, frameworks, and plug-ins can all be implemented as bundles in Mac OS X, and in fact,
bundles are the preferred delivery mechanism for all of these software types. Developers can also use bundles
for other purposes, including the implementation of custom document types.

Important: It is important to remember the distinction between what is a bundle and what is a package.
The term bundle indicates a directory with a specific hierarchical structure, whereas the term package indicates
a directory that is treated as an opaque entity by the Finder. Most bundles (including applications and
plug-ins) are also packages. Some bundles, such as frameworks, are not packages, however.

Advantages of Using Bundles

Bundles provide significant advantages over other application packaging schemes available on Mac OS X.

 ■ Bundles are directory hierarchies in the file system. A bundle contains real files that can be manipulated
by all file-based services and API.

 ■ The bundle directory structure makes it easy to support multiple localizations. You can easily add new
localized resources or remove unwanted ones.

 ■ Bundles can reside on volumes of many different formats, including multiple fork formats like HFS, HFS+,
and AFP, and single-fork formats like UFS, SMB, and NFS.

 ■ Users can install, relocate, and remove bundles simply by dragging them around in the Finder.

 ■ Bundles that are also packages, and are therefore treated as opaque files, are less susceptible to accidental
user modifications, such as removal, modification, or renaming of critical resources.

 ■ A bundle can include separate executables for different target platforms. For example, a bundled
application could include separate executables for Mac OS 9 and Mac OS X.

 ■ A bundle can support multiple chip architectures (PowerPC, Intel), library architectures (CFM/MachO),
and other special executables (for example, optimized libraries for AltiVec).

 ■ Most executable code can be bundled. Applications, frameworks (shared libraries), and plug-ins all
support the bundle model.

 ■ An application can run directly from a server. No special shared libraries, extensions, and resources need
to be installed on the local system.

Advantages of Using Bundles 9
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

About Bundles

Types of Bundles

The type of a bundle determines its internal directory structure and the location of key resources within that
structure. Mac OS X supports two basic bundle types: modern and versioned. The modern bundle type is
the one most commonly found on the system and is used to implement applications, plug-ins, and most
other executables. The versioned bundle type is used almost exclusively to implement frameworks and
umbrella frameworks.

For information about the structure of a modern bundle, see “Anatomy of a Modern Bundle” (page 11). For
information about the structure of versioned bundles, see “Anatomy of Framework Bundles” in Framework
Programming Guide.

Programmatic Support for Bundles

Programs that refer to bundles, or are themselves bundled, can take advantage of interfaces in Core Foundation
and Cocoa to access the contents of a bundle. Using these interfaces you can find bundle resources, get
information about the bundle’s configuration, and load executable code. Cocoa programs use an NSBundle
object to manage bundle information. Most other programs use the CFBundle object and C-based functions
that are part of Core Foundation.

Note: Unlike many other Core Foundation and Cocoa types, CFBundle and NSBundle are not toll-free
bridged data types and cannot be used interchangeably. However, you can extract the bundle path information
from either object and use it to create the other.

10 Types of Bundles
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

About Bundles

Modern bundles reflect a structure that is different from the bundle organization that came before Mac OS
X. This bundle type is used by applications and plug-ins and is the most common type of bundle.

Bundles have evolved significantly over the years but the overall goal has been the same. The bundle
organization makes it easier for the application to find its resources while making it harder for users to
interfere with those resources. Because the Finder treats most bundles as opaque entities, it is difficult for
casual users to move or delete the resources an application might need.

Everything an application requires should be stored inside its bundle directory. This includes the following
types of resources:

 ■ executable code

 ■ images

 ■ sounds

 ■ nib files and other archived user-interface definitions

 ■ string resources

 ■ Resource Manager–style resource files

 ■ localized versions of your resources

 ■ private libraries and frameworks

 ■ plug-ins and other loadable bundles

The basic structure of a modern bundle is very simple. At the top-level of the bundle is a directory named
Contents. This directory contains everything, including the resources, executable code, private frameworks,
private plug-ins, and support files needed by the application or plug-in. While the Contents directory might
seem superfluous, it identifies the bundle as a modern-style bundle and separates it from document and
legacy bundle types.

Inside the Contents directory, you can add numerous other directories and files to implement your bundle.
The following sections explain the types of files you can add. These sections are cumulative, that is, each
section builds on the contents of the previous section to show you how to build a more full-featured bundle
in stages.

Adding Configuration Information

For the Finder to recognize an executable bundle as such, you need to include an Info.plist file (also
known as an information property list file). This file contains XML property-list data that identifies the
configuration of your bundle. For a minimal bundle, this file would contain very little information, most likely
just the name and identifier of the bundle. For more complex bundles, the Info.plist file includes much
more information, such as the following:

Adding Configuration Information 11
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Modern Bundle

 ■ The bundle name

 ■ The bundle identifier code

 ■ The bundle version

 ■ The bundle signature (similar to creator types on Mac OS 9)

 ■ The location of the bundle executable and entry point

 ■ Information about how the bundle should be handled by Launch Services

 ■ Information about the document types recognized by the bundle

 ■ The services exported by the bundle

The exact information you put into your Info.plist file is dependent on your bundle’s needs and can be
localized as necessary. For more information on this file, see Runtime Configuration Guidelines.

Important: Bundle resources are located using a case-sensitive search. Therefore, the name of your information
property list file must start with a capital “I”.

Adding Executable Code

The most important thing to add to an executable bundle is your executable binary. This is the file compiled
from your source code and linked into a form that can be executed on the target computer. Binaries that
run natively on Mac OS X go in the Contents/MacOS directory inside your bundle. If you have a helper
application or other binary code that runs only the Classic compatibility environment, you can put it into a
MacOSClassic directory instead.

Listing 1 shows a bundle whose main executable runs natively in Mac OS X but that uses a helper tool that
runs only in the Classic compatibility environment.

Listing 1 A bundle with executable code

 - MyBundle/
 Contents/
 MacOSClassic/
 Helper Tool
 MacOS/
 MyApp
 Info.plist

Some bundles include an alias to the main executable at the same level as the Contents directory. This is
a legacy feature to make it easier for users on Mac OS 9 systems to find and launch the application. It is not
needed for applications that run only on Mac OS X.

12 Adding Executable Code
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Modern Bundle

Adding Non-Localized Resources

Resources in your bundle belong in a separate Resources directory just inside the Contents directory. This
is where you put image, sound, nib, strings, and icon files among others. The top-level Resources directory
contains resources that apply to all localized versions of your application. You can also put global resources
in a custom subdirectory. If you have language-specific resources, put them into language-specific
subdirectories, as described in “Adding Localized Resources” (page 13).

Note: You should always place resources in the Resources directory as opposed to embedding them in
the resource fork of your executable file. The use of resource forks is not recommended as it precludes the
use of your bundle on non-HFS file systems. Resource forks are also not supported by Mach-O executables.

Listing 2 shows a bundle that includes some resources in the native language of the program. The files in
the WaterSounds directory are considered global resources just like Hand.tiff, Horse.jpg, and
MyBundle.icns.

Listing 2 A bundle with global resources

 - MyBundle/
 MyApp /* alias to Contents/MacOSClassic/MyApp */
 Contents/
 MacOSClassic/
 Helper Tool
 MyApp
 MacOS/
 Helper Tool
 MyApp
 Info.plist
 Resources/
 Hand.tiff
 Horse.jpg
 MyBundle.icns
 WaterSounds/
 Water1.aiff
 Water2.aiff

One special resource that belongs in your top-level Resources directory is your application icon file. By
convention, this file takes the name of the bundle and an extension of .icns; the image format can be any
supported type, but if no extension is specified, the system assumes .icns.

Adding Localized Resources

Within the Resources directory, you can create one or more additional subdirectories to store
language-specific resources. The name of each directory is based on the language and region of the translation
followed by the .lproj extension. For all languages, you can use either the ISO 639 or ISO 3166 standards
for specifying language directories. The ISO 639 format is as follows:

language.lproj

The ISO 3166 format is as follows:

Adding Non-Localized Resources 13
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Modern Bundle

language_region.lproj

For both formats, the language and region designators are two-letter ISO codes. For each language, you
must include a language-specific resource directory and may include one or more region-specific directories
as well. For example, for the English language, you would put all of your English resources in an en.lproj
directory and could include a copy of some resources specific to the United States in a en_US.lproj directory.
For backwards compatibility, NSBundle and CFBundle also support human-readable names for several
common languages. For more information, see “Language Designations” in InternationalizationProgramming
Topics.

Each of your language-specific resource directories should contain a copy of the same resource files. The
names of the files must all be the same; only the content of the files differs based on the language. When
your application asks for a resource file, Mac OS X uses the current language preferences to return the file
from the appropriate directory.

Listing 3 shows a bundle that includes localized resources for multiple foreign languages. Notice that the
region-specific directories do not contain a full complement of resources. If a region-specific version of a
resource is not found, the bundle interfaces search in the language-specific directory (in this case en.lproj)
for the resource. The language-specific directory must contain a complete copy of the language-specific
resources.

Listing 3 A bundle with localized resources

 - MyBundle/
 MyApp /* alias to Contents/MacOSClassic/MyApp */
 Contents/
 MacOSClassic/
 Helper Tool
 MyApp
 MacOS/
 Helper Tool
 MyApp
 Info.plist
 Resources/
 Hand.tiff
 Horse.jpg
 MyBundle.icns
 WaterSounds/
 Water1.aiff
 Water2.aiff
 en_GB.lproj/
 MyApp.nib
 bird.tiff
 Localizable.strings
 en_US.lproj/
 MyApp.nib
 Localizable.strings
 en.lproj/
 MyApp.nib
 bird.tiff
 Bye.txt
 house.jpg
 InfoPlist.strings
 Localizable.strings
 CitySounds/
 city1.aiff
 city2.aiff

14 Adding Localized Resources
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Modern Bundle

 Japanese.lproj/
 MyApp.nib
 bird.tiff
 Bye.txt
 house.jpg
 InfoPlist.strings
 Localizable.strings
 CitySounds/
 city1.aiff
 city2.aiff

For more information about internationalization of your software and localization of its resources, see
Internationalization Programming Topics.

Adding Platform-Specific Resources

In addition to localized resources, you can also add resources that apply to a specific operating system
supported by the bundle. Platform-specific resources are created by adding specific identifiers to existing
resource names. Mac OS X defines the identifiers macosclassic for Mac OS 9 resources and macos for Mac
OS X resources.

Note: Support for platform-specific resources exists primarily to maintain compatibility with legacy
applications. New applications should have only Mac OS X resources and therefore should not need
platform-specific versions.

To construct a platform-specific resource name, insert a hyphen followed by the appropriate identifier
immediately before the filename extension of the resource. For example, if you have a resource named
Fish.jpg its Mac OS 9 name would be Fish-macosclassic.jpg and its Mac OS X name would be
Fish-macos.jpg. If your bundle requests the resource Fish.jpg, it would get back a path to
Fish-macosclassic.jpg on Mac OS 9 or Fish-macos.jpg on Mac OS X. If no platform-specific version
existed, your bundle would get back a path to Fish.jpg.

Important: If you include platform-specific versions of a resource, you must also include the platform-generic
version in the same directory.

Platform-specific resources can reside in the global Resources directory or in any of the language-specific
subdirectories in your bundle. Listing 4 shows a bundle that includes platform-specific variants of the
house.jpg file.

Listing 4 A bundle with platform-specific resources

- MyBundle/
 MyApp /* alias to Contents/MacOSClassic/MyApp */
 Contents/
 MacOSClassic/
 Helper Tool
 MyApp
 MacOS/
 Helper Tool
 MyApp

Adding Platform-Specific Resources 15
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Modern Bundle

 Info.plist
 Resources/
 Hand.tiff
 Horse.jpg
 MyBundle.icns
 WaterSounds/
 Water1.aiff
 Water2.aiff
 en_GB.lproj
 MyApp.nib
 bird.tiff
 Localizable.strings
 en_US.lproj/
 MyApp.nib
 Localizable.strings
 en.lproj
 MyApp.nib
 bird.tiff
 Bye.txt
 house.jpg
 house-macos.jpg
 house-macosclassic.jpg
 InfoPlist.strings
 Localizable.strings
 CitySounds/
 city1.aiff
 city2.aiff
 Japanese.lproj/
 MyApp.nib
 bird.tiff
 Bye.txt
 house.jpg
 house-macos.jpg
 house-macosclassic.jpg
 InfoPlist.strings
 Localizable.strings
 CitySounds/
 city1.aiff
 city2.aiff

Adding Additional Support Files

While executable and resource files are standard in most bundles, there are several other special directories
that are not needed by most bundles. These directories include the following:

 ■ A Frameworks directory contains any private libraries and frameworks used by the executable.

 ■ A PlugIns directory contains loadable bundles that extend the basic features of the executable.

 ■ A SharedSupport directory contains additional non-critical resources that do not impact the ability of
the application to run. For example, this directory might include things like document templates, clip
art, and tutorials.

16 Adding Additional Support Files
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Modern Bundle

All of these directories are inextricably bound to the application. This is particularly true for frameworks. The
dynamic shared libraries of embedded frameworks are revision-locked and cannot be superseded by any
other, even newer, versions that may be available to the operating system.

Listing 5 shows the bundle structure for a fully-localized application that supports these directories.

Listing 5 The bundle layout of a complex application

 - MyBundle/
 MyApp /* alias to Contents/MacOSClassic/MyApp */
 Contents/
 MacOSClassic/
 Helper Tool
 MyApp
 MacOS/
 Helper Tool
 MyApp
 Info.plist
 Resources/
 Hand.tiff
 Horse.jpg
 MyBundle.icns
 WaterSounds/
 Water1.aiff
 Water2.aiff
 en_GB.lproj
 MyApp.nib
 bird.tiff
 Localizable.strings
 en_US.lproj/
 MyApp.nib
 Localizable.strings
 en.lproj
 MyApp.nib
 bird.tiff
 Bye.txt
 house.jpg
 house-macos.jpg
 house-macosclassic.jpg
 InfoPlist.strings
 Localizable.strings
 CitySounds/
 city1.aiff
 city2.aiff
 Japanese.lproj/
 MyApp.nib
 bird.tiff
 Bye.txt
 house.jpg
 house-macos.jpg
 house-macosclassic.jpg
 InfoPlist.strings
 Localizable.strings
 CitySounds/
 city1.aiff
 city2.aiff
 Frameworks/
 PlugIns/

Adding Additional Support Files 17
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Modern Bundle

 SharedSupport/

For information on how to embed frameworks in your application bundle, see Framework ProgrammingGuide.

18 Adding Additional Support Files
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Modern Bundle

A bundle can contain any number of files with Resource Manager–style resources in their data forks. These
resource files—which, by convention, have an extension of .rsrc —are treated as bundle resources just as
any other kind of file under the Resources directory.

If your application requires specific resources at launch time, you can place those resources in one of two
places and have Bundle Services load them for you automatically. For nonlocalized resources, place a file in
your top-level Resources directory whose name is the same as the name of your executable but with a
.rsrc extension. For localized resources, place a Localized.rsrc file in each of your language-specific
directories.

For example, suppose your application is called MyApp and contains localizations for English, German, and
Japanese. If you had both localized and nonlocalized resources you needed to load at launch time, your
Resources directory would contain the following additional files:

MyApp.app/
 Contents/
 Resources/
 MyApp.rsrc
 English.lproj/
 Localized.rsrc
 German.lproj/
 Localized.rsrc
 Japanese.lproj/
 Localized.rsrc

The automatic loading of resources applies only to the listed files in your application bundle. If you load
resources from frameworks or other loadable bundles, you must load those resources manually using the
CFBundleOpenBundleResourceMap or CFBundleOpenBundleResourceFiles functions. These functions
open the resource files and return reference numbers that you can pass to Resource Manager functions.

The following example shows you how to load an arbitrary resource from your bundle. The first step is to
get a CFURL and then convert it to a FSRef. Once you have an FSRef, you can pass it to an appropriate
Resource Manager call.

CFBundleRef myBundle;
CFURLRef tempURL;
FSRef myResource;

myBundle = CFBundleGetMainBundle();
tempURL = CFBundleCopyResourceURL (myBundle, CFSTR("MyResource"),
 CFSTR("rsrc"), NULL);

if (CFURLGetFSRef (tempURL, &myResource))
{
 // Open the resource using Resource Manager calls
}

19
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Bundles and the Resource Manager

20
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Bundles and the Resource Manager

As long as you use the CFBundle and NSBundle programming interfaces, your bundle code need never
concern itself with how resources are retrieved from a bundle. Both CFBundle and NSBundle automatically
retrieve the appropriate language-specific resource based on the available user settings and bundle
information. However, you still have to put all those language-specific resources into your bundle, so knowing
how they are retrieved is important.

The bundle programming interfaces follow a specific search algorithm to locate resources within the bundle.
Global resources have the highest priority, followed by region- and language-specific resources. When
considering region- and language-specific resources, the algorithm takes into account both the settings for
the current user and development region information in the bundle’s Info.plist file. The bundle interfaces
use a case-sensitive search to locate the appropriate resource files. The following list shows the order in
which resources are searched:

1. Global resources

2. Region-specific resources (based on the user’s region preferences)

3. Language-specific resources (based on the user’s language preferences)

4. Development language of the bundle (as specified by the CFBundleDevelopmentRegionKey in the
bundle’s Info.plist file.)

If a resource is found, the bundle interfaces then check to see if there is a platform-specific version that should
be returned instead. If one is available, it is returned; otherwise, the original platform-generic resource is
returned.

Note: See “Adding Localized Resources” (page 13) for an example that shows where to put global and
language-specific resources reside within a bundle.

Because global resources take precedence over language-specific resources, there should never be both a
global and localized version of a given resource. If a global version of a resource exists, language-specific
versions of the same resource are never returned. The reason for this precedence is performance. If localized
resources were searched first, the bundle routines might search needlessly in several localized resource
directories before discovering the global resource.

Also notice that if your bundle includes any platform-specific resources, you must also include a complete
set of platform-generic resources as well. Again, the reason is performance. You would typically create a
generic resource that applies to most platforms and then offer customized versions only if it was relevant.
See “Adding Platform-Specific Resources” (page 15) for information and examples of how to create
platform-specific resources.

21
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Searching for Bundle Resources

22
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Searching for Bundle Resources

The Finder treats packaged directories differently than other directories. Instead of displaying the contents
of the packaged directory, the Finder treats it as if it were a single file. Hiding the directory's contents prevents
casual users from making changes that might damage the package contents. For example, rearranging or
deleting resources from an application package might prevent the application from running correctly.

Most bundles are also packages. In particular, applications and plug-ins are typically delivered as packages
and thus appear to the user as a single file. Some bundles, such as frameworks, are not delivered as packages.
In the case of frameworks, this is done so that the user can browse the contents of the framework; in particular,
it lets the user look at the framework header files.

Even though packages are treated as opaque files by default, it is still possible for users to view and modify
their contents. On the contextual menu for package directories is a Show Package Contents command.
Selecting this command displays a new Finder window set to the top level of the package directory. The user
can navigate the package's directory structure and make changes as if it were a regular directory hierarchy.

The Finder identifies packages by any of the following mechanisms:

 ■ The directory has a known extension: .app, .bundle, .framework, .plugin, .kext, and so on.

 ■ The directory has its bundle bit set.

 ■ The directory has a known structure type indicating it is a modern or versioned bundle.

Once identified, the Finder may also modify the name of a package in any of the following ways:

 ■ If the package is an application, the Finder hides the .app extension in most cases.

 ■ If the package supports localized display names and the user has not manually changed the package
name, the Finder displays the name that matches the user’s current language settings.

The Finder hides the .app extension most of the time. However, if an application name contains another
extension, the Finder shows the .app. extension to prevent confusion. For example, if you rename the Chess
application by adding a .mov extension to the end of its name, the Finder displays the resulting bundle name
as Chess.mov.app to prevent users from thinking Chess.mov is a QuickTime file.

23
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Packages and the Finder

24
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Packages and the Finder

If your document file formats are getting too complex to manage because of several different types of data,
you might consider adopting a package format for your documents. Document packages give the illusion
of a single document to users but provide you with more flexibility in how you store the document data
internally. Especially if you use several different types of standard data formats, such as JPEG, GIF, or XML,
document packages make accessing that data much easier.

Defining Your Document Directory Structure

Apple does not prescribe any specific structure for document packages. The contents and organization of
the package directory are left to you. You are encouraged, however, to create either a flat directory structure
or use the framework bundle structure, which involves placing your files in a top-level Resources subdirectory.
(For more information about the bundle structure of frameworks, see Framework Programming Guide.)

Registering Your Document Type

To register a document as a package, you must modify the document type information in your application’s
information property list (Info.plist) file. The CFBundleDocumentTypes key stores information about
the document types your application supports. For each document package type, include the
LSTypeIsPackage key with an appropriate value. The presence of this key tells the Finder and Launch
Services to treat directories with the given file extension as a package. See “Property List Key Reference” in
Runtime Configuration Guidelines for more information about Info.plist keys.

Document packages should always have an extension to identify them—even though that extension may
be hidden by the user. The extension allows the Finder to identify your document directory and treat it as a
package. You should never associate a document package with a MIME type or 4-byte OS type.

Accessing Your Document Contents

There are several ways to access the contents of a document package. Because a document package is a
directory, you can access the document's contents using any appropriate file-system routines. If you use a
bundle structure for your document, you can also use the NSBundle or CFBundle routines. Use of a bundle
structure is especially appropriate for documents that store multiple localizations.

If your document package uses a flat directory structure or contains a fixed set of content files, you might
find using file-system routines faster and easier than using NSBundle or CFBundle. If the contents of your
document can fluctuate, you should consider using a bundle structure and NSBundle or CFBundle to simplify
the dynamic discovery of files inside your document.

Defining Your Document Directory Structure 25
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Document Packages

If you are creating a Cocoa application, you must also remember to customize the way your NSDocument
subclass loads the contents of the document package. The traditional technique of using the
loadDataRepresentation:ofType: and dataRepresentationOfType: methods to read and write
data are intended for a single file document. To handle a document package, you must use the
readFromFile:ofType: and writeToFile:ofType:methods or use an NSFileWrapper object instead.
For information about reading and writing document data from your NSDocument subclass, see
Document-Based Applications Overview.

26 Accessing Your Document Contents
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Document Packages

Bundles are the preferred packaging mechanism for most types of software in Mac OS X. The bundle structure
lets you group executable code and the resources to support that code in one place and in an organized
way. The following guidelines offer some additional advice on how to use bundles:

 ■ Store all resources required by an application to run inside the application bundle. This includes all
images, strings files, localizable resources and plug-ins. See “Anatomy of a Modern Bundle” (page 11)
for more information.

 ■ If you plan to load C++ code from a bundle, you might want to mark the symbols you plan to load as
extern "C". Neither NSBundle or CFBundle know about C++ name mangling conventions, so marking
your symbols this way can make it much easier to identify them later.

 ■ You cannot use the NSBundle class to load CFM-based code. If you need to load CFM-based code, you
must use the functions of CFBundle or CFPlugin. You may load CFM-based plugins from a Mach-O
executable using this technique.

 ■ You cannot use CFBundle to load Objective-C or Java code. For Cocoa or Java code, you should always
use NSBundle.

 ■ Always include an information-property list in your bundle. Make sure you include the keys recommended
for your bundle type, as discussed in Runtime Configuration Guidelines.

27
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Guidelines for Using Bundles

28
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Guidelines for Using Bundles

Because bundles are simply file and directory hierarchies in the file system, it is possible to construct them
by hand by placing files manually using the organization specified in “Anatomy of a Modern Bundle” (page
11). It is far easier, however, to let Xcode take care of the bundle structure for you. When building a bundle
project type, Xcode performs the following default operations to create your bundle:

 ■ Copies the contents of the Resources group into your bundle’s Resources directory

 ■ Creates an information property list (Info.plist) file from information you provide in the Inspector
window of your target

 ■ Copies any compiled code into the platform-specific subdirectory of the Contents directory

Xcode currently supports the creation of modern and versioned bundles, either of which can be accessed
from your code using CFBundle or NSBundle. However, if you have bundles left over from development
on the NeXT operating system, you can convert those bundles to the modern structure using the command-line
utility/Developer/Makefiles/pb_makefiles/convertBundle.

If your application requires localization, you can create strings files using the genstrings development tool.
This tool parses your source files looking for occurrences of specific macro and function calls and uses them
to create annotated entries in a strings file. After translation, the strings files are then placed into the
appropriate .lproj directories. See InternationalizationProgrammingTopics for more information on preparing
and loading strings.

The final step is for you to localize, and if necessary, create platform-specific versions of your other application
resources and place them in the language-specific .lproj directories of your bundle.

29
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Creating Bundles

30
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Creating Bundles

Before you can access a bundle’s resources, you must first obtain an appropriate NSBundle or CFBundle
object. The following sections outline the different ways you create these objects from your code.

Opening the Main Bundle

The main bundle is the bundle that contains your running code. This is the most commonly used bundle for
any program and is what you use to load your strings, images, and other resource files. Because it is a meta
bundle, the main bundle is the easiest to retrieve. To get it, call either CFBundleGetMainBundle function
or use the mainBundle class method of NSBundle. Listing 1 shows an example of loading the main bundle
from a Carbon application.

Listing 1 Locating the main bundle from Core Foundation

CFBundleRef mainBundle;

// Get the main bundle for the app
mainBundle = CFBundleGetMainBundle();

Listing 2 shows this same code example written in Objective-C and using the NSBundle class.

Listing 2 Locating the main bundle from Cocoa

NSBundle* mainBundle;

// Get the main bundle for the app.
mainBundle = [NSBundle mainBundle];

When getting the main bundle it is still a good idea to make sure the value you get back represents a valid
bundle. In particular, you might get a NULL value for the main bundle in the following situations:

 ■ If a program is not bundled, attempting to get the main bundle might return a NULL value. The bundle
code may try to create a main bundle for you to represent your program’s contents but in some
exceptional cases, it cannot and returns NULL .

 ■ If the agent launching the program does not specify the full path to the program's executable in the
argv parameters, the main bundle value might be NULL. Bundles rely on either the path to the executable
being in argv[0] or the presence of the executable's path in the PATH environment variable. If neither
of these is present, the bundle routines might not be able to find the main bundle directory. Programs
launched by xinetd often experience this problem when xinetd changes the current directory to /.

Opening the Main Bundle 31
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Locating and Opening Bundles

Locating Bundles by Path

If you want to access a bundle other than your main bundle, one way to create an appropriate bundle object
is with a path to the bundle. The CFBundleCreate function in Core Foundation takes a CFURLRef specifying
the path to the bundle and returns a corresponding CFBundle data type. Similarly, you can use the
bundleWithPath: method of NSBundle to create a bundle object from an NSString.

Listing 3 shows an example of how to create a CFBundle from a string specifying the path. The main trick
is to convert the string to a CFURLRef object so that it can be passed to the CFBundleCreate function.

Listing 3 Locating a Core Foundation bundle using its path

CFURLRef bundleURL;
CFBundleRef myBundle;

// Make a CFURLRef from the CFString representation of the
// bundle’s path.
bundleURL = CFURLCreateWithFileSystemPath(
 kCFAllocatorDefault,
 CFSTR("/Local/Library/MyBundle.bundle"),
 kCFURLPOSIXPathStyle,
 true);

// Make a bundle instance using the URLRef.
myBundle = CFBundleCreate(kCFAllocatorDefault, bundleURL);

// Any CF objects returned from functions with "create" or
// "copy" in their names must be released by us!
CFRelease(bundleURL);
CFRelease(myBundle);

The preceding example can be rewritten for Cocoa using the code shown in Listing 4.

Listing 4 Locating a Cocoa bundle using its path

NSBundle* myBundle;

// Get the main bundle for the app.
myBundle = [NSBundle bundleWithPath:@"/Local/Library/MyBundle.bundle"];

Locating Bundles in Known Directories

Even if you do not know the exact path to a bundle, there are still situations where you can search for it by
name. One example is if your application contains several embedded plug-ins in a PlugIns directory. Because
this directory is inside of your application bundle, you can use the CFBundle functions for locating resources
to get the path to each plug-in.

To load a set of plug-ins, use theCFBundleCreateBundlesFromDirectory function to create newCFBundle
objects for all of the plug-ins in a given directory. Listing 5 is similar to the previous example, but this time
the code retrieves CFBundle objects for all of the plug-ins in the application’s PlugIns directory.

32 Locating Bundles by Path
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Locating and Opening Bundles

Listing 5 Obtaining bundle references for a set of plug-ins

CFBundleRef mainBundle = CFBundleGetMainBundle();
CFURLRef plugInsURL;
CFArrayRef bundleArray;

// Get the URL to the application’s PlugIns directory.
plugInsURL = CFBundleCopyBuiltInPlugInsURL(mainBundle);

// Get the bundle objects for the application’s plug-ins.
bundleArray = CFBundleCreateBundlesFromDirectory(kCFAllocatorDefault,
 plugInsURL, NULL);

// Release the CF objects
CFRelease(plugInsURL);
CFRelease(bundleArray);

Locating Bundles by Identifier

Bundle identifiers make it possible to locate already loaded bundles at runtime. This is a useful way for your
code to locate its own bundle at runtime. Storing a bundle identifier can be more efficient than storing a
reference to the bundle itself. When you need to access the bundle again, you can use the identifier to retrieve
the CFBundle object.

Each bundle you create should have a bundle identifier in its information property-list (Info.plist) file.
The CFBundleIdentifier key contains the bundle identifier string, which traditionally uses Java-style
package naming conventions. For example, a Finder plug-in from Apple might use the string
com.apple.Finder.MyGetInfoPlugin as its bundle identifier. Including the domain name of your company
in the string helps avoid collisions with bundle developers in other companies.

Listing 6 shows how to retrieve a bundle using its bundle identifier. Remember that a bundle identifier can
only be used to locate an existing CFBundle instance (including the main bundle and bundles for all statically
linked frameworks). If your bundle has been opened and its code is running, then you can locate it using its
bundle identifier.

Listing 6 Locating a bundle using its identifier

CFBundleRef requestedBundle;

 // Look for a bundle using its identifier
 requestedBundle = CFBundleGetBundleWithIdentifier(
 CFSTR("com.apple.Finder.MyGetInfoPlugIn"));

You can also locate bundles by their identifier in Cocoa. The NSBundle class defines the class method
bundleWithIdentifier: to find and return an existing bundle.

Locating Bundles by Identifier 33
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Locating and Opening Bundles

Searching for Related Bundles

If you are writing a Cocoa application, you can obtain a list of bundles related to the application by calling
the allBundles and allFrameworks class methods of NSBundle. These methods create an array of
NSBundle objects corresponding to the bundles or frameworks currently in use by your application. You
can use these methods as convenience functions rather than maintain a collection of loaded bundles yourself.

The bundleForClass: class method is another way get related bundle information in a Cocoa application.
This method returns the bundle in which a particular class is defined. Again, this method is mostly for
convenience so that you do not have to retain a pointer to an NSBundle object that you may use only
occasionally.

34 Searching for Related Bundles
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Locating and Opening Bundles

One of the main reasons to get a bundle object is so that you can load resources from your bundle. Both
CFBundle and NSBundle provide interfaces for finding specific resource types in your bundle. These interfaces
return a path to the resource that you can then use to load it.

Resource types are typically specified using filename extensions, not the file type information used in previous
versions of Mac OS; therefore, you must make sure your files are named properly. For Core Foundation
programs, the most commonly used functions for finding resources are CFBundleCopyResourceURL and
CFBundleCopyResourceURLsOfType. These functions let you retrieve resources using name, type, and
directory information. Similarly, Cocoa applications typically use the pathForResource:ofType: method
and pathForResourcesOfType:InDirectory: methods to retrieve resources.

Important: CFBundle and NSBundle consider case when searching for resource files in the bundle directory.
This case-sensitive search occurs even on file systems (such as HFS+) that are not case sensitive when it
comes to file names.

Even if you do not have a bundle object, you can still load resources from bundles whose paths you know.
Both Core Foundation and Cocoa provide API for searching bundles with only a path to the bundle. However,
it is important to remember that searching a bundle for multiple resources is always faster using a bundle
object. The bundle objects cache search information as they go, so subsequent searches are usually faster.

The Core Foundation and Cocoa API take into account localized versions of resources when determining
which paths to return. For information on how these interfaces determine which files to return, see “Searching
for Bundle Resources” (page 21).

Suppose you have placed an image called Seagull.jpg in your application’s main bundle. Listing 1 shows
you how to search for this image by name and type using the Core Foundation function
CFBundleCopyResourceURL. In this case, the code searches for the file named “Seagull” with the file type
(filename extension) of “jpg”. This example searches for the resource starting at the top level of the bundle’s
Resources directory.

Listing 1 Locating resources inside a bundle by name and type

 CFURLRef seagullURL;

 // Look for a resource in the main bundle by name and type.
 seagullURL = CFBundleCopyResourceURL(mainBundle,
 CFSTR("Seagull"),
 CFSTR("jpg"),
 NULL);

Suppose that instead of searching for one image file, you wanted to get the names of all image files in a
directory called BirdImages. You could load all of the JPEGs in the directory using the function
CFBundleCopyResourceURLsOfType, as shown in Listing 2.

35
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Locating Resources Inside a Bundle

Listing 2 Locating multiple resources by type

 CFArrayRef birdURLs;

 // Find all of the JPEG images in a given directory.
 birdURLs = CFBundleCopyResourceURLsOfType(mainBundle,
 CFSTR("jpg"),
 CFSTR("BirdImages"));

Note: You can search for resources that do not have a filename extension. To get the path to such a resource,
specify the complete name of the resource and specify NULL for the resource type.

36
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Locating Resources Inside a Bundle

Most applications use only the code from their own main executable file. However, if you are developing an
application that supports plug-ins or other types of loadable bundles, you need to know how to load the
code from these separate bundles dynamically. Both CFBundle and NSBundle provide facilities for loading
code from a bundle. Depending on your needs, you may use one or both of these objects in your coding.

The key to loading code from an external bundle is finding an appropriate entry point into the bundle’s
executable file. As with other plug-in schemes, this requires some coordination between the application
developer and plug-in developer. You can publish a custom API for bundle’s to implement or define a formal
plug-in interface. In either case, once you have an appropriate bundle or plug-in, you need a way to access
the functions or classes implemented by the external code.

Note: Another option for loading Mach-O code directly is to use the NSModule loading routines. However,
these routines typically require more work to use and are less preferable than CFBundle or NSBundle. For
more information, see Mac OS X ABI Mach-O File Format Reference in Mac OS X Documentation or see the
NSModule man pages.

Loading Functions

If you are working in C, C++, or even in Objective-C, you can publish your interface as a set of C-based symbols,
such as function pointers and global variables. Using the CFBundle interfaces, you can load references to
those symbols from a bundle’s executable file.

You can retrieve symbols using any of several CFBundle interfaces. To retrieve function pointers, call either
CFBundleGetFunctionPointerForName or CFBundleGetFunctionPointersForNames. To retrieve a
pointer to a global variable, call CFBundleGetDataPointerForName or
CFBundleGetDataPointersForNames. For example, suppose a loadable bundle defines the function shown
in Listing 1.

Listing 1 An example function for a loadable bundle

 // Add one to the incoming value and return it.
 long addOne(short number)
 {
 return ((long)number + 1);
 }

Given a CFBundle object for the loadable bundle, you would need to search for the desired function before
you could use it in your code. Listing 2 shows a code fragment that illustrates this process. In this example,
the myBundle variable is a CFBundle object pointing to the bundle.

Listing 2 Finding a function in a loadable bundle

// Function pointer.

Loading Functions 37
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Loading and Unloading Executable Code

AddOneFunctionPtr addOne = NULL;

// Value returned from the loaded function.
long result;

// Get a pointer to the function.
addOne = (void*)CFBundleGetFunctionPointerForName(
 myBundle, CFSTR("addOne"));

 // If the function was found, call it with a test value.
if (addOne)
{
 // This should add 1 to whatever was passed in
 result = addOne (23);
}

Loading Objective-C Classes

If you are writing a Cocoa application, you can load the code for an entire class using the methods of
NSBundle. The NSBundle methods for loading a class are aimed squarely for Objective-C developers and
cannot be used to load classes written in C++ or other object-oriented languages.

If a loadable bundle defines a principal class, you can load it using the principalClassmethod of NSBundle.
The principalClassmethod uses the NSPrincipalClass key of the bundle’s Info.plist file to identify
and load the desired class. Using the principal class alleviates the need to agree on specific naming conventions
for external classes, instead letting you focus on the behavior of those interfaces. For example, you might
use an instance of the principal class as a factory for creating other relevant objects.

If you want to load an arbitrary class from a loadable bundle, call the classNamed: method of NSBundle.
This method searches the bundle for a class matching the name you specify. If the class exists in the bundle,
the method returns the corresponding Class object, which you can then use to create instances of the class.

Listing 3 shows you a sample method for loading a bundle’s principal class.

Listing 3 Loading the principal class of a bundle

- (void)loadBundle:(NSString*)bundlePath
{
 Class exampleClass;
 id newInstance;
 NSBundle *bundleToLoad = [NSBundle bundleWithPath:bundlePath];
 if (exampleClass = [bundleToLoad principalClass])
 {
 newInstance = [[exampleClass alloc] init];
 // [newInstance doSomething];
 }
}

For more information about NSBundle methods, see the NSBundle class description in the Foundation
reference.

38 Loading Objective-C Classes
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Loading and Unloading Executable Code

Unloading Bundles

You cannot currently unload the contents of an NSBundle object. You can unload the contents of a CFBundle
object using CFBundleUnloadExecutable. If your bundle may be unloaded, you need to ensure that string
constants are handled correctly by setting an appropriate compiler flag.

When you compile a bundle with a minimum deployment target of Mac OS X 10.2 (or later), the compiler
automatically switches to generating “truly-constant” strings in response to CFSTR("..."). This can also
be achieved by compiling with the flag -fconstant-cfstrings. Constant strings have many benefits and
should be used when possible, however if you reference constant strings after the executable containing
them is unloaded, the references will be invalid and will cause a crash. This might happen even if the strings
have been retained, for example, as a result of being put in data structures, retained directly, and, in some
cases, even copied. Rather than trying to make sure all such references are cleaned up at unload time (and
some references might be created within the libraries, making them hard to track), it is best to compile
unloadable bundles with the flag -fno-constant-cfstrings.

Unloading Bundles 39
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Loading and Unloading Executable Code

40 Unloading Bundles
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Loading and Unloading Executable Code

Both CFBundle and NSBundle contain interfaces for retrieving information about the bundle itself. From
an appropriate bundle object, you can retrieve path information for the bundle as well as configuration data
from its information property list. Remember though that the bundle provides information as read-only data.
For information on how to modify the value of a property list from Core Foundation, see Property List
Programming Topics for Core Foundation.

Getting Path Information

With a valid bundle object, you can retrieve the path to the bundle as well as paths to many of its
subdirectories. Modern bundles can contain many specific subdirectories (see “Anatomy of a Modern
Bundle” (page 11)). Most of these directories contain plug-ins and other executable code or they contain
various types of resource files used by the application. Using the available interfaces to retrieve directory
paths insulates your code from having to know the exact structure of the bundle.

Core Foundation defines functions for retrieving several different internal bundle directories. To get the path
of the bundle itself, you can use the CFBundleCopyBundleURL function. Core Foundation always returns
bundle paths in a CFURLRef object. You can use this object to extract a CFStringRef that you can then
pass to other Core Foundation routines. For a complete list of path-based functions, see the CFBundle Reference.

NSBundle also contains similar methods for retrieving paths to a bundle’s internal directories. It also contains
a bundlePathmethod for getting the path to the bundle itself. However, NSBundle returns path information
in an NSString object, which you can pass directly to most other NSBundlemethods. For more information,
see the NSBundle class description.

Getting Configuration Data

One file that every bundle should contain is an information property list (Info.plist) file. This file is an
XML-based text file that contains specific types of key-value pairs. These key-value pairs specify information
about the bundle, such as its ID string, version number, development region, type, and other important
properties. (See Runtime Configuration Guidelines for the list of keys you can include in this file.) Bundles may
also include other types of configuration data, mostly organized in XML-based property lists.

Core Foundation offers functions for retrieving several specific pieces of data from a bundle’s information
property list file, including the bundle’s ID string, version, and development region. You can retrieve the
localized value for a key using the CFBundleGetValueForInfoDictionaryKey function. You can also
retrieve the entire dictionary of non-localized keys using CFBundleGetInfoDictionary. See CFBundle
Reference for a complete list of functions.

Getting Path Information 41
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Getting Information From a Bundle

NSBundle provides the objectForInfoDictionaryKey: and infoDictionary methods for retrieving
information property list data. The objectForInfoDictionaryKey: method returns the localized value
for a key and is the preferred method to call. The infoDictionary method returns an NSDictionary with
all of the keys from the property list; however, it does not return any localized values for these keys. For more
information, see the NSBundle class description.

Note: Because they take localized values into account, CFBundleGetValueForInfoDictionaryKey and
objectForInfoDictionaryKey: are the preferred interfaces for retrieving keys.

Listing 1 demonstrates how to retrieve the bundle’s version number from the information property list using
Core Foundation functions. Though the value in the information property list may be written as a string, for
example “2.1.0b7”, the value is returned as an unsigned long integer similar to the value in a vers resource
on Mac OS 9.

Listing 1 Obtaining the bundle’s version

 // This is the ‘vers’ resource style value for 1.0.0
 #define kMyBundleVersion1 0x01008000

 UInt32 bundleVersion;

 // Look for the bundle’s version number.
 bundleVersion = CFBundleGetVersionNumber(mainBundle);

 // Check the bundle version for compatibility with the app.
 if (bundleVersion < kMyBundleVersion1)
 return (kErrorFatalBundleTooOld);

Listing 2 shows you how to retrieve arbitrary values from the information property list using
CFBundleGetInfoDictionary. Because the resulting information property list is an instance of the standard
Core Foundation type CFDictionaryRef, you can use the dictionary lookup routines from CFDictionary.h
to find and retrieve your properties.

Listing 2 Retrieving information from a bundle’s information property list

 CFDictionaryRef bundleInfoDict;
 CFStringRef myPropertyString;

 // Get an instance of the non-localized keys.
 bundleInfoDict = CFBundleGetInfoDictionary(myBundle);

 // If we succeeded, look for our property.
 if (bundleInfoDict != NULL) {
 myPropertyString = CFDictionaryGetValue(bundleInfoDict,
 CFSTR("MyPropertyKey"));
 }

It is also possible to obtain an instance of a bundle’s information dictionary without a bundle object. To do
this you use either the Core Foundation function CFBundleCopyInfoDictionaryInDirectory or the
Cocoa NSDictionary class. This can be useful for searching the information property lists of a set of bundles
without first creating bundle objects.

42 Getting Configuration Data
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Getting Information From a Bundle

Bundles are able to retrieve localized strings to best suit the user’s preferences. Whereas they return a path
for other resources, bundles know how to lookup and return strings from within strings resource files.

Both CFBundle and NSBundle define a single interface for retrieving strings. For CFBundle, it is the
CFBundleCopyLocalizedString function. For NSBundle, it is the
localizedStringForKey:value:table:method. However, both Cocoa and Core Foundation also define
convenience macros for retrieving strings from known locations.

There are several advantages to using the convenience macros instead of the corresponding CFBundle and
NSBundle API. First, the macros are easier to use for certain common cases. Second, they are recognized by
genstrings command-line tool, which automatically creates strings files based on the contents of your
source code. (The CFBundle and NSBundle API are not recognized by genstrings.) Third, the macros let
you specify a comment string argument to aid the translator. Comments are ignored by the compiler, but
genstrings uses the information to annotate the generated strings files.

Core Foundation defines the following convenience macros:

 ■ CFCopyLocalizedString

 ■ CFCopyLocalizedStringFromTable

 ■ CFCopyLocalizedStringFromTableInBundle

 ■ CFCopyLocalizedStringWithDefaultValue

The Foundation framework in Cocoa defines the following convenience macros:

 ■ NSLocalizedString

 ■ NSLocalizedStringFromTable

 ■ NSLocalizedStringFromTableInBundle

 ■ NSLocalizedStringWithDefaultValue

Listing 1 demonstrates the proper usage of the Core Foundation convenience macros. The first argument of
each macro is both the text to translate and the key to use when looking up the string. This string appears
in the native language of the author of the program. Subsequent macros let you specify the specific strings
file to search and the specific bundle to search. The final macro also lets you specify a default translation for
the string if no other version is found. (Note, that the corresponding Cocoa macros use essentially the same
syntax but with different data types.)

Listing 1 Using the LocalizedString macros

 CFStringRef localString;

 localString = CFCopyLocalizedString(
 CFSTR("String text to translate"),
 CFSTR("Comment to help translators."));

43
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Working With Localized Strings

 localString = CFCopyLocalizedStringFromTable(
 CFSTR("String text to translate"),
 CFSTR("MyStrings"), // strings file to search
 CFSTR("Comment to help translators."));

 localString = CFCopyLocalizedStringFromTableInBundle(
 CFSTR("String text to translate"),
 CFSTR("MyStrings"), // strings file to search
 myBundle, // bundle to search
 CFSTR("Comment to help translators."));

 localString = CFCopyLocalizedStringWithDefaultValue(
 CFSTR("String text to translate"),
 CFSTR("MyStrings"), // strings file to search
 myBundle, // bundle to search
 CFSTR("Default translation if string not found"),
 CFSTR("Comment to help translators."));

When you run the genstrings tool on source code using the above macros, it creates one or more string
files for the referenced keys. (See the man page for genstrings for instructions on running this tool.) For
instance, suppose your code contains the following usage of the macro:

localString = CFCopyLocalizedStringFromTable(
 CFSTR("Yes"),
 CFSTR("MyStrings"),
 CFSTR("Label for an affirmative answer"));

After running genstrings, you would have a file called MyStrings.strings. with the following data in
it:

"Yes" = "Yes"; /* Label for an affirmative answer */

You would then copy this strings file into each of your localized resource directories and translate each entry
to the appropriate language. For example, translating the preceding listing from MyStrings.strings
placed into French would yield the following entry:

"Yes" = "Oui"; /* Label for an affirmative answer */

For additional information on working with strings files, see “Extracting Localizable Strings From Your Code”
and “Loading Localized Strings” in Internationalization Programming Topics.

44
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Working With Localized Strings

This table describes the changes to Bundle Programming Guide.

NotesDate

Updated information on how to create document bundles. Updated guidance
on how to build a bundle manually.

2005-11-09

Clarified the distinction between bundles and packages.

Updated the list of conditions under which a main bundle might be NULL. Fixed
typos.

2005-07-07

Changed title from Bundles.

Added a link to Framework Programming Guide.

Corrected typos.2005-03-03

Added notes about the correct capitalization of files and directories in a bundle.2004-08-31

Added section about unloadable bundles.

Merged content from Mac OS X Bundles into this document.2004-03-26

Update content to reflect both Cocoa and Core Foundation interfaces.

Added guidelines for using bundles.

Removed information about the anatomy of framework bundles. That
information is now covered in Framework Programming Guide.

Fixed minor bugs.

Updated links for Internationalizing Your Software.2003-10-22

Converted existing Core Foundation documentation into topic format. Added
revision history.

2003-01-17

45
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

46
2005-11-09 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	Bundle Programming Guide
	Contents
	Listings
	Introduction
	About Bundles
	Advantages of Using Bundles
	Types of Bundles
	Programmatic Support for Bundles

	Anatomy of a Modern Bundle
	Adding Configuration Information
	Adding Executable Code
	Adding Non-Localized Resources
	Adding Localized Resources
	Adding Platform-Specific Resources
	Adding Additional Support Files

	Bundles and the Resource Manager
	Searching for Bundle Resources
	Packages and the Finder
	Document Packages
	Defining Your Document Directory Structure
	Registering Your Document Type
	Accessing Your Document Contents

	Guidelines for Using Bundles
	Creating Bundles
	Locating and Opening Bundles
	Opening the Main Bundle
	Locating Bundles by Path
	Locating Bundles in Known Directories
	Locating Bundles by Identifier
	Searching for Related Bundles

	Locating Resources Inside a Bundle
	Loading and Unloading Executable Code
	Loading Functions
	Loading Objective-C Classes
	Unloading Bundles

	Getting Information From a Bundle
	Getting Path Information
	Getting Configuration Data

	Working With Localized Strings
	Revision History

