
Preferences Programming Topics for Core
Foundation
Core Foundation > Data Management

2006-10-03

Apple Inc.
© 2003, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Finder and Numbers are trademarks of Apple
Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Preferences Programming Topics for Core Foundation 7

Organization of This Document 7

Preferences Best Practices 9

When To Use What API 9
High Level API 9
Low Level API 9

Synchronizing Preferences Across Process Boundaries 10
Preference File Locations and Debugging 10
Managed Preferences 10

Application IDs 11

Preference Domains 13

Domain Qualifiers 13

Using the High-Level Preferences API 15

Saving a Simple Preference 15
Reading a Simple Preference. 16
Updating a Simple Preference 16

Using the Low-Level Preferences API 19

Document Revision History 21

3
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

4
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Tables and Listings

Preference Domains 13

Table 1 Preference Domains in search order 13

Using the High-Level Preferences API 15

Listing 1 Writing a simple default 15
Listing 2 Reading a simple default 16
Listing 3 Updating a preference 16

Using the Low-Level Preferences API 19

Listing 1 Writing a value to another application’s preferences. 19

5
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Most applications need to store and retrieve preferences to allow for user customization of application
behavior and provide a way to keep track of configuration settings across multiple launches. Frameworks
and libraries can also use preferences to store configuration information. Core Foundation preferences provide
a simple and standard way to maintain preferences for both types of use.

Preferences allow you to store values that are associated with a key that can later be used to “look up” the
preference value when you need it. Key/value pairs are assigned a scope using a combination of username,
application ID, and host (computer) name. This mechanism allows you to create preferences which apply to
different classes of users. For example, using preferences you can save a preference value that applies to:

 ■ The current user of your application on the current host

 ■ All users of your application on a specific host connected to the local network

 ■ The current user of your application on any host connected to the local network

 ■ Any user of any application on any host connected to the local network

Preferences has a high-level API which makes it very simple to store and retrieve application preferences
using the default scope (current user, any host) which is appropriate for the majority of situations. There is
also a low-level API which allows you to specify the exact scope of a preference value when necessary.

Preferences uses the Core Foundation property list types to store and retrieve preference values. Readers
unfamiliar with property lists should consult the Core Foundation Topic Property List Programming Topics for
Core Foundation for more information.

Organization of This Document

This topic contains conceptual information you need to understand in order to use the preferences API, and
examples that demonstrate how to save and retrieve preference values. The concepts covered in this topic
are:

 ■ “Preferences Best Practices” (page 9)

 ■ “Application IDs” (page 11)

 ■ “Preference Domains” (page 13)

The tasks covered in this topic are:

 ■ “Using the High-Level Preferences API” (page 15)

 ■ “Using the Low-Level Preferences API” (page 19)

Organization of This Document 7
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Preferences Programming
Topics for Core Foundation

8 Organization of This Document
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Preferences Programming Topics for Core Foundation

CFPreferences is Apple’s standard API for storing and retrieving preference keys and values, allowing the
calling process to concentrate on native types and key-value pair meanings rather than the mechanisms of
writing to files and so on. While it provides a convenient API, it is also easy to use incorrectly. This document
gives an overview of when it is appropriate to use what API, and how to synchronize preferences across
process boundaries.

When To Use What API

The following general guiding principles apply to the CFPreferences API:

 ■ You should typically use CFPreferencesCopyAppValue to read preference keys.

 ■ You should use CFPreferencesSetAppValue to write preference keys for “current user/any host.”

 ■ If you need to write a by-host preference for the current user, use CFPreferencesSetValue. Make
sure this is absolutely necessary.

Note that, although they are treated separately in the documentation, high-level API and low-level API are
not exclusive. It may be appropriate to use high-level API in some parts of an application, and low-level API
in another. For example, you can set a preference key/value pair with CFPreferencesSetValue(key,
value, app, user, host) and then read it with CFPreferencesCopyAppValue(key, value, app)—
indeed you probably do want to read it with the latter function since it traverses the search path.

High Level API

As much as possible, you should use CFPreferencesCopyAppValue to retrieve preference keys. This function
traverses the search path looking for the matching key and returns the value from the most-specific domain.

Users of particular machines may also be subject to “management” through “Workgroup Manager” or the
“Capabilities” option of the Accounts preference pane in System Preferences. Either of these mechanisms
may force preference values on the user. These values are also picked up by the
CFPreferencesCopyAppValue API—you should use this function to ensure your application properly
responds to management of this kind.

Low Level API

If your application needs to distinguish between “the current host” and “any host” then you use the low level
API. If for some reason you need to search for a key-value pair in a specific domain, you should use
CFPreferencesCopyValue—you should not use this function as a general retrieval mechanism.

When To Use What API 9
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Preferences Best Practices

Synchronizing Preferences Across Process Boundaries

The Rule of Thumb on CFPreferences synchronization:

1. Only synchronize when absolutely necessary

2. If you have to communicate across process boundaries, use notifications with appropriate granularity,
keeping 1) in mind. Typically, this means setting a flag in client processes, and only if a changed key is
required should you trigger a synchronize.

Many processes in OS X write a preference key-value pair for use in another process. While it would be
convenient for preference key-value pairs to auto-update in other processes, guaranteeing auto-update in
all circumstances would incur a performance penalty and also make it difficult to ensure related preferences
are read and written consistently. Processes should always have the choice of when to elect to accept new
information into their space. For preference values, CFPreferencesSynchronize and
CFPreferencesAppSynchronize are the function calls that providing the information choke-point. You
should typically not, however, call these functions before every read of a preference key.

Preference File Locations and Debugging

Preferences files are stored in the system’s or user’s preferences directories. On Mac OS X versions 10.0 to
10.4 these are in /Library/Preferences and in /Library/Preferences in the user’s home directory
respectively. When debugging an application, it may sometimes be useful to inspect these files to determine
that preferences have been saved correctly, however you should never hardcode these paths into an
application. If you do need to access the directory programmatically you should use the
NSSearchPathForDirectoriesInDomains API, although there should typically be no reason to do so.

Note that preferences you set up in the registration domain (see Defaults Domains inUserDefaults Programming
Topics for Cocoa) are not stored in the preferences file. Put another way, the preferences file stores only values
that are different from those in the registration domain, so you should not expect to see “default defaults”
in the preferences file after you run your application.

Managed Preferences

Mac OS X 10.2 introduced the concept of “managed preferences.” The function
CFPreferencesAppValueIsForced determines whether or not a given key has been imposed on the user.
For managed keys, you should disable any user interface that allows the user to modify the value for the key.

10 Synchronizing Preferences Across Process Boundaries
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Preferences Best Practices

Preferences store preference data on disk in files named using an application ID that you provide. To ensure
that there are no naming conflicts, it’s a good idea to define and set a bundle identifier for your application
and use it as the application ID for preferences. Bundle identifiers take the same form as Java package
names—your company’s unique domain name followed by the application or library name— for example
com.apple.Finder or com.foo.ImageImport. Using this scheme minimizes the possibility of collision,
and leaves you responsible for managing the identifier namespace under your corporate domain. See Bundle
Programming Guide for more information on bundles and bundle IDs.

11
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Application IDs

12
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Application IDs

When creating a new preference or searching for an existing one, Core Foundation uses the notion of
“Preference Domains” to specify the scope and location of the preference. A preference domain consists of
three pieces of information, an application ID, a host name, and a user name. Table 1 (page 13) shows all of
the preference domains, listed in the order that they are searched when attempting to locate a preference
value.

Table 1 Preference Domains in search order

Current HostCurrent ApplicationCurrent User1

Any HostCurrent ApplicationCurrent User2

Current HostAny ApplicationCurrent User3

Any HostAny ApplicationCurrent User4

Current HostCurrent ApplicationAny User5

Any HostCurrent ApplicationAny User6

Current HostAny ApplicationAny User7

Any HostAny ApplicationAny User8

When using the high-level preferences functions CFPreferencesSetAppValue, and
CFPreferencesCopyAppValue, you need only specify the application ID. The first function,
CFPreferencesSetAppValue, places the preference value into the “Current User” and “Any Host” domain
for the application, meaning that the standard location for application preferences is domain number two
as listed in Table 1 (page 13). The other function, CFPreferencesCopyAppValue, searches through all the
domains in order until a value is found. See “Using the High-Level Preferences API” (page 15) for information
on using these functions.

Domain Qualifiers

If you need to specify an exact domain for your preference values you can use the low-level preferences
functions CFPreferencesSetValue, and CFPreferencesCopyValue. These functions allow you to specify
all three of the domain qualifiers when setting or searching for preferences. When using these functions you
cannot pass arbitrary host and user names; you must instead use the appropriate “Any” or “Current” constants
given in the list below. For the application domain qualifier, you can either pass the application ID or one of
the “Any” or “Current” application constants given in the list below. See “Using the Low-Level Preferences
API” (page 19) for information on using these functions.

Indicates a preference that applies to any application.kCFPreferencesAnyApplication

Domain Qualifiers 13
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Preference Domains

Indicates a preference that applies only to the current
application.

kCFPreferencesCurrentApplication

Indicates a preference that applies to any host.kCFPreferencesAnyHost

Indicates a preference that applies only to the current host.kCFPreferencesCurrentHost

Indicates a preference that applies to any user.kCFPreferencesAnyUser

Indicates a preference that applies only to the current user.kCFPreferencesCurrentUser

14 Domain Qualifiers
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Preference Domains

The functions CFPreferencesSetAppValue and CFPreferencesCopyAppValue are the most
straightforward way for an application to create and retrieve a preference that is specific to the current user
and application. The preference data is written to the default domain (Current User, Current Application, Any
Host) and so it will be available on all machines that this user can log into. These functions should never be
called with kCFPreferencesAnyApplication, only a true application ID or
kCFPreferencesCurrentApplication.

Saving a Simple Preference

Preferences are stored as key/value pairs. The key must be a CFString object, but the value can be any Core
Foundation property list value (see Property List Programming Topics for Core Foundation), including the
container types. For example, you might have a key called defaultWindowWidth which defines the width
in pixels of any new windows that your application creates. Its value would most likely be of type CFNumber.
You might also decide to combine window width and height into a single preference called
defaultWindowSize and make its value be a CFArray object containing two CFNumber objects.

The code in Listing 1 (page 15) demonstrates how to create a simple preference for the application
“MyTextEditor”. The example sets the default text color for the application to blue.

Listing 1 Writing a simple default

CFStringRef textColorKey = CFSTR("defaultTextColor");
CFStringRef colorBLUE = CFSTR("BLUE");

// Set up the preference.
CFPreferencesSetAppValue(textColorKey, colorBLUE,
 kCFPreferencesCurrentApplication);

// Write out the preference data.
CFPreferencesAppSynchronize(kCFPreferencesCurrentApplication);

Notice that CFPreferencesSetAppValue by itself is not sufficient to create the new preference. A call to
CFPreferencesAppSynchronize is required to actually save the value. If you are writing multiple
preferences, it is more efficient to sync only once after the last value has been set than to sync after each
individual value is set. For example, if you implement a preference panel you might only synchronize when
the user presses an “OK” button. In other cases you might not want to sync at all until the application
quits—although note that, of course, if the application crashes all unsaved preferences settings will be lost.

Saving a Simple Preference 15
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using the High-Level Preferences API

Reading a Simple Preference.

The simplest way to locate and retrieve a preference value is to use the CFPreferencesCopyAppValue
function. This call searches through the various preference domains in order until it finds the key you have
specified. If a preference has been set in a less-specific domain—”Any Application”, for example —its value
will be retrieved with this call if a more specific version cannot be found. Listing 2 (page 16) shows how to
retrieve the text color preference saved in Listing 1 (page 15).

Listing 2 Reading a simple default

CFStringRef textColorKey = CFSTR("defaultTextColor");
CFStringRef textColor;

// Read the preference.
textColor = (CFStringRef)CFPreferencesCopyAppValue(textColorKey,
 kCFPreferencesCurrentApplication);
// When finished with value, you must release it
// CFRelease(textColor);

Note that all values returned from preferences are immutable, even if you have just set the value using a
mutable object.

Updating a Simple Preference

An example of simple preference updating is a game that searches for a high score preference each time a
round is completed. If there is no high score preference, the application writes the current score as the high
score. If a high score preference exists, it is compared with the new score and updated if the new score is
higher. Listing 3 (page 16) demonstrates this process.

Listing 3 Updating a preference

CFStringRef highScoreKey = CFSTR("High Score");
CFNumberRef tempScore;
int highScore;

// Look for the preference.
tempScore = (CFNumberRef)CFPreferencesCopyAppValue(highScoreKey,
 kCFPreferencesCurrentApplication);

// If the preference exists, update it. If not, create it.
if (tempScore)
{
 // Numbers come out of preferences as CFNumber objects.
 if (!CFNumberGetValue(tempScore, kCFNumberIntType, &highScore)) {
 highScore = 0;
 }
 CFRelease(tempScore);

 printf("The old high score was %d.", highScore);
}
else
{

16 Reading a Simple Preference.
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using the High-Level Preferences API

 // No previous value.
 printf("There is no old high score.");
 highScore = 0;
}

highScore += 5;

// Create the CFNumber to pass to the preference API.
tempScore = CFNumberCreate(NULL, kCFNumberIntType, &highScore);

// Set the preference value, or update it if it already exists.
CFPreferencesSetAppValue(highScoreKey, tempScore,
 kCFPreferencesCurrentApplication);

// Release the CFNumber.
CFRelease(tempScore);

// Write out the preferences.
CFPreferencesAppSynchronize(kCFPreferencesCurrentApplication);

The technique shown in Listing 3 (page 16) generalizes to context of multiple preferences where an application
tries to locate a set of preferences for display to the user in a graphical preference panel. If no preferences
exist, default values are used. If existing preference values are found, they are used to initialize the preference
panel for display to the user. After the user makes changes and pushes the “OK” button, you can set the
changed preference values and write them to storage.

Updating a Simple Preference 17
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using the High-Level Preferences API

18 Updating a Simple Preference
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using the High-Level Preferences API

There are some cases where using the high-level API is not appropriate. If you are building some sort of
“helper tool” that runs on behalf of another application, or an application that stores preferences for other
applications, you will need to use the low-level preferences API to write to the other application’s preferences.
Listing 1 (page 19) shows you how to do this.

Listing 1 Writing a value to another application’s preferences.

CFStringRef appID = CFSTR("com.apple.anotherapp");
CFStringRef defaultTextColorKey = CFSTR("defaultTextColor");
CFStringRef colorBLUE = CFSTR("BLUE");

// Set up the preference.
CFPreferencesSetValue(defaultTextColorKey,
 colorBLUE,
 appID,
 kCFPreferencesCurrentUser,
 kCFPreferencesAnyHost);

// Write out the preference data.
CFPreferencesSynchronize(appID,
 kCFPreferencesCurrentUser,
 kCFPreferencesAnyHost);

Note that this example writes to another application’s preferences. There’s no way to get the bundle ID
directly from the other application, so it’s necessary to hardcode the application ID.

19
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using the Low-Level Preferences API

20
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using the Low-Level Preferences API

This table describes the changes to Preferences Programming Topics for Core Foundation.

NotesDate

Added a section about preferences file locations and access for debugging.2006-10-03

Corrected minor typographic errors. Changed name from "Preferences".2006-02-07

Made minor correction to code listings (added typecast to return value from
CFPreferencesCopyAppValue).

2005-11-09

Added Best Practices section. Added note about immutability of returned values.2004-08-31

Converted existing Core Foundation documentation into topic format. Added
revision history.

2003-01-17

21
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

22
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	Preferences Programming Topics for Core Foundation
	Contents
	Tables and Listings
	Introduction
	Preferences Best Practices
	When To Use What API
	High Level API
	Low Level API

	Synchronizing Preferences Across Process Boundaries
	Preference File Locations and Debugging
	Managed Preferences

	Application IDs
	Preference Domains
	Domain Qualifiers

	Using the High-Level Preferences API
	Saving a Simple Preference
	Reading a Simple Preference.
	Updating a Simple Preference

	Using the Low-Level Preferences API
	Revision History

