
Property List Programming Topics for Core
Foundation
Core Foundation > Data Management

2006-02-07

Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, and
Macintosh are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder and Numbers are trademarks of Apple
Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Property List Programming Topics for Core Foundation 7

Organization of This Document 7

Property List Structure and Contents 9

Creating Property Lists 11

Saving and Restoring Property Lists 13

Using Numbers in Property Lists 17

Property List XML Tags 19

Document Revision History 21

3
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

4
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Tables and Listings

Creating Property Lists 11

Listing 1 Creating a simple property list from an array 11
Listing 2 XML created by the sample program 11

Saving and Restoring Property Lists 13

Listing 1 Saving and restoring property list data 13
Listing 2 XML file contents created by the sample program 15

Using Numbers in Property Lists 17

Listing 1 Creating a CFNumber object from an integer 17
Listing 2 Comparing two CFNumber objects 18

Property List XML Tags 19

Table 1 Core Foundation Types with XML Equivalents 19

5
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Many applications require a mechanism for storing information that will be needed at a later time. For
situations where you need to store small amounts of persistent data, less than a few hundred kilobytes, Core
Foundation provides property lists. Property lists—frequently referred to as “plists”—offer a uniform and
architecture-independent means of organizing, storing, and accessing data for Mac OS X applications.

Organization of This Document

Property lists organize data into named values and lists of values using several Core Foundation types:
CFString, CFNumber, CFBoolean, CFDate, CFData, CFArray, and CFDictionary. These types give you the means
to produce data that is meaningfully structured, transportable, storable, and accessible, but still as efficient
as possible. The property list programming interface allows you to convert hierarchically structured
combinations of these basic types to and from standard XML. The XML data can be saved to disk and later
used to reconstruct the original Core Foundation objects. Note that property lists should be used for data
that consists primarily of strings and numbers because they are very inefficient when used with large blocks
of binary data.

Property lists are used frequently in Mac OS X. For example, the Mac OS X Finder—through bundles—uses
property lists to store file and directory attributes. Core Foundation bundles and URL objects use property
lists as well. User and application preferences also use property lists, however, you should not use the
CFPropertyList API to read and modify preferences. Core Foundation provides a programming interface
specifically for this purpose—see Preferences for more information.

This document describes the property list structure, and use of XML tags and specifics about numbers, and
contains examples on creating, saving, and restoring property lists.

 ■ "Property List Structure and Contents" (page 9)

 ■ "Creating Property Lists" (page 11)

 ■ "Saving and Restoring Property Lists" (page 13)

 ■ "Using Numbers in Property Lists" (page 17)

 ■ "Property List XML Tags" (page 19)

Organization of This Document 7
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Property List Programming
Topics for Core Foundation

8 Organization of This Document
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Property List Programming Topics for Core Foundation

Property lists are constructed from the basic Core Foundation types CFString, CFNumber, CFBoolean, CFDate,
and CFData. To build a complex data structure out of these basic types, you put them inside a CFDictionary
or CFArray. To simplify programming with property lists, any of the property list types can also be referred
to using a reference of type CFPropertyListRef.

It is important to understand that CFPropertyList provides an abstraction for all the property list types—you
can think of CFPropertyList in object-oriented terms as being the superclass of CFString, CFNumber,
CFDictionary, and so on. When a Core Foundation function returns a CFPropertyListRef, it means that
the value may be any of the property list types. For example, CFPreferencesCopyAppValue returns a
CFPropertyListRef. This means that the value returned can be a CFString object, a CFNumber object, a
CFDictionary object, and so on again. You can use CFGetTypeID to determine what type of object a property
list value is.

In a CFDictionary object, data is structured as key-value pairs, where each key is a string and the key’s value
can be a CFString, a CFNumber, a CFBoolean, a CFDate, a CFData, a CFArray, or another CFDictionary object.
If you use a CFDictionary object as a property list, all its keys must be CFString objects.

In a CFArray object, data is structured as an ordered collection of objects that can be accessed by index. In
a property list, a CFArray object can contain any of the basic property list types, as well as CFDictionary objects
and other CFArray objects.

Note that although CFDictionary and CFArray objects can contain data types other than the property list
types, if they do, you can’t use the Core Foundation property list programming interface to work with them.

9
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Property List Structure and Contents

10
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Property List Structure and Contents

The examples in this section demonstrate how to create and work with property lists. The error checking
code has been removed for clarity. In practice, it is vital that you check for errors because passing bad
parameters into Core Foundation routines can cause your application to crash.

Listing 1 (page 11) shows you how to create a very simple property list—an array of CFString objects.

Listing 1 Creating a simple property list from an array

#include <CoreFoundation/CoreFoundation.h>
#define kNumFamilyMembers 5

void main () {
 CFStringRef names[kNumFamilyMembers];
 CFArrayRef array;
 CFDataRef xmlData;

 // Define the family members.
 names[0] = CFSTR("Marge");
 names[1] = CFSTR("Homer");
 names[2] = CFSTR("Bart");
 names[3] = CFSTR("Lisa");
 names[4] = CFSTR("Maggie");

 // Create a property list using the string array of names.
 array = CFArrayCreate(kCFAllocatorDefault,
 (const void **)names,
 kNumFamilyMembers,
 &kCFTypeArrayCallBacks);

 // Convert the plist into XML data.
 xmlData = CFPropertyListCreateXMLData(kCFAllocatorDefault, array);

 // Clean up CF types.
 CFRelease(array);
 CFRelease(xmlData);
}

Listing 2 (page 11) shows how the contents of xmlData, created in Listing 1 (page 11), would look if printed
to the screen.

Listing 2 XML created by the sample program

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <string>Marge</string>
 <string>Homer</string>

11
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Creating Property Lists

 <string>Bart</string>
 <string>Lisa</string>
 <string>Maggie</string>
</array>
</plist>

12
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Creating Property Lists

CFPropertyList properly takes care of endian issues—a property list (whether represented by a stream, XML,
or a CFData object) created on a PowerPC-based Macintosh is correctly interpreted on an Intel-based Macintosh,
and vice versa.

Listing 1 (page 13) shows you how to create a more complex property list, convert it to XML, write it to disk,
and then re-create the original data structure using the saved XML. For more information about using
CFDictionary objects see Collections.

Listing 1 Saving and restoring property list data

#include <CoreFoundation/CoreFoundation.h>

#define kNumKids 2
#define kNumBytesInPic 10

CFDictionaryRef CreateMyDictionary(void);
CFPropertyListRef CreateMyPropertyListFromFile(CFURLRef fileURL);
void WriteMyPropertyListToFile(CFPropertyListRef propertyList,
 CFURLRef fileURL);

int main () {
 CFPropertyListRef propertyList;
 CFURLRef fileURL;

 // Construct a complex dictionary object;
 propertyList = CreateMyDictionary();

 // Create a URL that specifies the file we will create to
 // hold the XML data.
 fileURL = CFURLCreateWithFileSystemPath(kCFAllocatorDefault,
 CFSTR("test.txt"), // file path name
 kCFURLPOSIXPathStyle, // interpret as POSIX path
 false); // is it a directory?

 // Write the property list to the file.
 WriteMyPropertyListToFile(propertyList, fileURL);
 CFRelease(propertyList);

 // Recreate the property list from the file.
 propertyList = CreateMyPropertyListFromFile(fileURL);

 // Release any objects to which we have references.
 CFRelease(propertyList);
 CFRelease(fileURL);
 return 0;
}

CFDictionaryRef CreateMyDictionary(void) {
 CFMutableDictionaryRef dict;

13
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Saving and Restoring Property Lists

 CFNumberRef num;
 CFArrayRef array;
 CFDataRef data;

 int yearOfBirth;
 CFStringRef kidsNames[kNumKids];

 // Fake data to stand in for a picture of John Doe.
 const unsigned char pic[kNumBytesInPic] = {0x3c, 0x42, 0x81,
 0xa5, 0x81, 0xa5, 0x99, 0x81, 0x42, 0x3c};

 // Define some data.
 kidsNames[0] = CFSTR("John");
 kidsNames[1] = CFSTR("Kyra");

 yearOfBirth = 1965;

 // Create a dictionary that will hold the data.
 dict = CFDictionaryCreateMutable(kCFAllocatorDefault,
 0,
 &kCFTypeDictionaryKeyCallBacks,
 &kCFTypeDictionaryValueCallBacks);

 // Put the various items into the dictionary.
 // Because the values are retained as they are placed into the
 // dictionary, we can release any allocated objects here.

 CFDictionarySetValue(dict, CFSTR("Name"), CFSTR("John Doe"));

 CFDictionarySetValue(dict,
 CFSTR("City of Birth"),
 CFSTR("Springfield"));

 num = CFNumberCreate(kCFAllocatorDefault,
 kCFNumberIntType,
 &yearOfBirth);
 CFDictionarySetValue(dict, CFSTR("Year Of Birth"), num);
 CFRelease(num);

 array = CFArrayCreate(kCFAllocatorDefault,
 (const void **)kidsNames,
 kNumKids,
 &kCFTypeArrayCallBacks);
 CFDictionarySetValue(dict, CFSTR("Kids Names"), array);
 CFRelease(array);

 array = CFArrayCreate(kCFAllocatorDefault,
 NULL,
 0,
 &kCFTypeArrayCallBacks);
 CFDictionarySetValue(dict, CFSTR("Pets Names"), array);
 CFRelease(array);

 data = CFDataCreate(kCFAllocatorDefault, pic, kNumBytesInPic);
 CFDictionarySetValue(dict, CFSTR("Picture"), data);
 CFRelease(data);

 return dict;

14
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Saving and Restoring Property Lists

}

void WriteMyPropertyListToFile(CFPropertyListRef propertyList,
 CFURLRef fileURL) {
 CFDataRef xmlData;
 Boolean status;
 SInt32 errorCode;

 // Convert the property list into XML data.
 xmlData = CFPropertyListCreateXMLData(kCFAllocatorDefault, propertyList);

 // Write the XML data to the file.
 status = CFURLWriteDataAndPropertiesToResource (
 fileURL, // URL to use
 xmlData, // data to write
 NULL,
 &errorCode);

 CFRelease(xmlData);
}

CFPropertyListRef CreateMyPropertyListFromFile(CFURLRef fileURL) {
 CFPropertyListRef propertyList;
 CFStringRef errorString;
 CFDataRef resourceData;
 Boolean status;
 SInt32 errorCode;

 // Read the XML file.
 status = CFURLCreateDataAndPropertiesFromResource(
 kCFAllocatorDefault,
 fileURL,
 &resourceData, // place to put file data
 NULL,
 NULL,
 &errorCode);

 // Reconstitute the dictionary using the XML data.
 propertyList = CFPropertyListCreateFromXMLData(kCFAllocatorDefault,
 resourceData,
 kCFPropertyListImmutable,
 &errorString);

 CFRelease(resourceData);
 return propertyList;
}

Listing 2 (page 15) shows how the contents of xmlData, created in Listing 1 (page 13), would look if printed
to the screen.

Listing 2 XML file contents created by the sample program

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Year Of Birth</key>

15
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Saving and Restoring Property Lists

 <integer>1965</integer>
 <key>Pets Names</key>
 <array/>
 <key>Picture</key>
 <data>
 PEKBpYGlmYFCPA==
 </data>
 <key>City of Birth</key>
 <string>Springfield</string>
 <key>Name</key>
 <string>John Doe</string>
 <key>Kids Names</key>
 <array>
 <string>John</string>
 <string>Kyra</string>
 </array>
</dict>
</plist>

16
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Saving and Restoring Property Lists

You cannot use C numeric data values directly in Core Foundation property lists. Core Foundation provides
the function CFNumberCreate to convert C numerical values into CFNumber objects, the form that is required
to use numbers in property lists.

A CFNumber object serves simply as a wrapper for C numeric values. Core Foundation includes functions to
create a CFNumber, obtain its value, and compare two CFNumber objects. Note that CFNumber objects are
immutable with respect to value, but type information may not be maintained. You can get information
about a CFNumber object’s type, but this is the type the CFNumber object used to store your value and may
not be the same type as the original C data.

When comparing CFNumber objects, conversion and comparison follow human expectations and not C
promotion and comparison rules. Negative zero compares less than positive zero. Positive infinity compares
greater than everything except itself, to which it compares equal. Negative infinity compares less than
everything except itself, to which it compares equal. Unlike standard practice, if both numbers are NaNs,
then they compare equal; if only one of the numbers is a NaN, then the NaN compares greater than the other
number if it is negative, and smaller than the other number if it is positive.

Listing 1 (page 17) shows how to create a CFNumber object from a 16-bit integer and then get information
about the CFNumber object.

Listing 1 Creating a CFNumber object from an integer

Int16 sint16val = 276;
CFNumberRef aCFNumber;
CFNumberType type;
Int32 size;
Boolean status;

// Make a CFNumber from a 16-bit integer.
aCFNumber = CFNumberCreate(kCFAllocatorDefault,
 kCFNumberSInt16Type,
 &sint16val);

// Find out what type is being used by this CFNumber.
type = CFNumberGetType(aCFNumber);

// Now find out the size in bytes.
size = CFNumberGetByteSize(aCFNumber);

// Get the value back from the CFNumber.
status = CFNumberGetValue(aCFNumber,
 kCFNumberSInt16Type,
 &sint16val);

Listing 2 (page 18) creates another CFNumber object and compares it with the one created in Listing 1 (page
17).

17
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using Numbers in Property Lists

Listing 2 Comparing two CFNumber objects

CFNumberRef anotherCFNumber;
CFComparisonResult result;

// Make a new CFNumber.
sint16val = 382;
anotherCFNumber = CFNumberCreate(kCFAllocatorDefault,
 kCFNumberSInt16Type,
 &sint16val);

// Compare two CFNumber objects.
result = CFNumberCompare(aCFNumber, anotherCFNumber, NULL);

switch (result) {
 case kCFCompareLessThan:
 printf("aCFNumber is less than anotherCFNumber.\n");
 break;
 case kCFCompareEqualTo:
 printf("aCFNumber is equal to anotherCFNumber.\n");
 break;
 case kCFCompareGreaterThan:
 printf("aCFNumber is greater than anotherCFNumber.\n");
 break;
}

18
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using Numbers in Property Lists

When property lists convert a collection of Core Foundation objects into an XML property list, it wraps the
property list using the document type tag <plist>. The other tags used for the Core Foundation data types
are listed in Table 1 (page 19).

Table 1 Core Foundation Types with XML Equivalents

XML tagCF type

<string>CFString

<real> or <integer>CFNumber

<date>CFDate

<true/> or <false/>CFBoolean

<data>CFData

<array>CFArray

<dict>CFDictionary

When encoding the contents of a CFDictionary object, each member is encoded by placing the dictionary
key in a <key> tag and immediately following it with the corresponding value in the appropriate tag from
Table 1. See "Saving and Restoring Property Lists" (page 13) for an example XML data generated from a
property list.

The XML data format is documented here strictly for help in understanding property lists and as a debugging
aid. These tags may change in future releases so you shouldn’t rely on them directly. You should not edit the
XML data by hand unless you are very familiar with XML syntax and the format of property lists. If you want
to modify the contents of a property list saved on disk as XML data, use the Property List Editor application.

19
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Property List XML Tags

20
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Property List XML Tags

This table describes the changes to Property List Programming Topics for Core Foundation.

NotesDate

Consolidated articles about using numbers. Changed title from "Property Lists
Programming Topics."

2006-02-07

Corrected XML tag descriptions.2003-08-07

Converted existing Core Foundation documentation into topic format. Added
revision history.

2003-01-17

21
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

22
2006-02-07 | © 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	Property List Programming Topics for Core Foundation
	Contents
	Tables and Listings
	Introduction
	Property List Structure and Contents
	Creating Property Lists
	Saving and Restoring Property Lists
	Using Numbers in Property Lists
	Property List XML Tags
	Revision History

