
Run Loops
(Legacy)

Core Foundation > Events & Other Input

2008-10-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, and Mac
are trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Run Loops 7

Organization of This Document 7

About Run Loops 9

Sources 9
Timers 10
Observers 10

Input Modes 11

Running the Run Loop 13

Using Run Loops With Cocoa and Carbon 15

Document Revision History 17

3
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

4
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Listings

Running the Run Loop 13

Listing 1 Running a run loop with a timer 13

5
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

6
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Important: The information in this document is superseded by the information in Threading Programming
Guide. For information about how to configure a run loop for your custom threads, see that document instead.

The run loop is the center of any event-driven application or tool. After it is fully initialized, an application
normally enters its main run loop, waiting for events. Everything the application does from that point on is
the result of a callout from the run loop in response to events being detected and dispatched. This document
describes how run loops work and how you can use it in your applications.

Organization of This Document

This topic is under construction.

The following concepts are covered in this topic.

 ■ “About Run Loops” (page 9)

 ■ “Input Modes” (page 11)

The following tasks are covered in this topic.

 ■ “Running the Run Loop” (page 13)

 ■ “Using Run Loops With Cocoa and Carbon” (page 15)

Organization of This Document 7
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Run Loops

8 Organization of This Document
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Run Loops

Core Foundation provides the basis for every application’s event loop with the CFRunLoop opaque type. A
CFRunLoop object monitors objects that represent various sources of input to a task. The run loop dispatches
control when an input source becomes ready for processing. Examples of input sources might include user
input devices, network connections, periodic or time-delayed events, and asynchronous callbacks. Input
sources are registered with a run loop, and when a run loop is “run”, callback functions associated with each
input source are called when some activity occurs.

While being run, a run loop goes through a cycle of activities. Input sources are checked, timers which need
firing are fired, and then the run loop blocks, waiting for something to happen (or in the case of timers,
waiting for it to be time for something to happen). When something does happen, the run loop wakes up,
processes the activity (usually by calling a callback function for an input source), checks other sources, fires
timers, and goes back to sleep. And so on.

Run loops are strongly tied to the threads in your application. Every thread has exactly one run loop. No more
and no less. Each thread’s run loop monitors its own independent list of objects. (See “Input Modes” (page
11) for details on how a run loop can monitor subsets of its objects.) In a Carbon or Cocoa application, for
instance, the main thread’s run loop normally monitors all the events generated by the user. Additional
threads may use their run loops to listen for (and then process) network activity, to receive messages from
other threads or processes, or to perform periodic activities. By placing these input sources in different run
loops on separate threads, the events can be processed without blocking any other thread’s run loop, such
as the main thread’s run loop, which processes user events.

Three types of objects can be placed into and monitored by a run loop: sources, timers, and observers. Each
is described in the following sections.

Sources

Run loop sources, represented by the CFRunLoopSource opaque type, are abstractions of input sources that
can be put into a run loop. Input sources typically generate asynchronous events, such as messages arriving
on a network port or actions performed by the user.

An input source type normally defines an API for creating and operating on objects of the type, as if it were
a separate entity from the run loop, then provides a function to create a CFRunLoopSource for an object.
The run loop source can then be registered with the run loop and act as an intermediary between the run
loop and the actual input source type object. Examples of input sources include CFMachPort, CFMessagePort,
and CFSocket.

Sources 9
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

About Run Loops

Timers

Run loop timers, represented by the CFRunLoopTimer opaque type, are specialized run loop sources that
fire at preset times in the future. Timers can fire either only once or repeatedly at fixed time intervals. Repeating
timers can also have their next firing time manually adjusted.

Observers

Run loop observers, represented by the CFRunLoopObserver opaque type, provide a general means to receive
callbacks at different points within a running run loop. In contrast to sources, which fire when an asynchronous
event occurs, and timers, which fire when a particular time passes, observers fire at special locations within
the execution of the run loop, such as before sources are processed or before the run loop goes to sleep,
waiting for an event to occur. In essence, observers are specialized run loop sources that represent events
inside the run loop itself.

Observers can be either one-time events or repeated every time through the run loop’s loop.

10 Timers
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

About Run Loops

Each run loop can have different modes, each identified with an arbitrary string name, in which it can run.
Each mode has its own set of sources, timers, and observers associated with it. A run loop is run—in a named
mode—to have it monitor the objects that have been registered in that mode. Examples of modes include
the default mode, which a process would normally spend most of its time in, and a modal panel mode, which
might be run when a modal panel is up, to restrict the set of input sources that are allowed to “fire.” Modes
do not provide the granularity of, for example, what type of user input events are interesting, however. That
sort of finer-grained granularity is given by higher-level frameworks, such as Cocoa and Carbon, with “get
next event matching mask” or similar functionality.

To receive callbacks when a run loop source, timer, or observer needs processing, you must first place the
object into a run loop mode, using the appropriate CFRunLoopAdd... function. You can later remove an
object from a run loop mode, using the appropriate CFRunLoopRemove... function or by invalidating the
object, to stop receiving its callback.

Core Foundation defines a default mode to hold objects that should be monitored while the application (or
thread) is sitting idle. For example, Carbon and Cocoa applications place run loop sources for user events
into this mode of their main thread’s run loop. You access this default mode using the
kCFRunLoopDefaultMode constant for the mode name. Additional modes are created automatically when
an object is added to an unrecognized mode.

Each run loop has its own independent set of modes. Multiple run loops can have modes with the same
name, but they do not share the objects placed into them. In fact, every run loop has a default mode named
with the kCFRunLoopDefaultMode constant, but each can, and usually will, have different sets of objects
in them.

Core Foundation also defines a special pseudo-mode to hold objects that should be shared by a set of
“common” modes. Common modes are a set of run loop modes for which you can define a set of sources,
timers, and observers that are shared by these modes. Instead of registering a source, for example, to each
specific run loop mode, you can register it once to the run loop’s common pseudo-mode and the source will
be automatically registered in each run loop mode in the common mode set. The default mode,
kCFRunLoopDefaultMode, is always a member of the set of common modes. Additional modes are added
to the set of common modes by calling the CFRunLoopAddCommonMode function.

Objects are added and removed from a run loop’s common pseudo-mode the same as a regular mode; you
merely use the kCFRunLoopCommonModes constant for the mode name. To monitor these objects, however,
you do not then run the run loop in the common pseudo-mode. You instead run the run loop in one of
modes that is a member of the set of common modes. The kCFRunLoopCommonModes constant is never
passed to the CFRunLoopRunInMode function.

Each run loop has its own independent list of modes that are in the set of common modes. Adding a mode
to one run loop’s set of common modes does not add it to every run loop’s set, even when other run loops
have a mode with the same name.

11
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Input Modes

12
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Input Modes

There is exactly one run loop per thread. You neither create nor destroy a thread’s run loop. Core Foundation
automatically creates it for you as needed. You obtain the current thread’s run loop with the
CFRunLoopGetCurrent function. Call CFRunLoopRun to run the current thread’s run loop in the default
mode until the run loop is stopped with CFRunLoopStop. You can also call CFRunLoopRunInMode to run
the current thread’s run loop in a specified mode for a set period of time, until the run loop is stopped, or
until after the next run loop source is processed.

Listing 1 (page 13) contains a function, RunMyTimer, that uses the run loop with a timer to call a particular
function every 5 seconds for 20 seconds. The function creates the run loop timer, myTimer, with the
CFRunLoopTimerCreate function, initializing the timer’s callback function to MyTimerFunction, its initial
firing time to 1 second in the future, and its periodicity to 5 seconds. Before the timer can fire, the function
has to place the timer into a run loop mode, in this case a new mode named "MyCustomMode," and then
run the run loop in that mode by calling CFRunLoopRunInMode. The run loop will run for 20 seconds before
control returns to the caller. During this time, the timer will fire and MyTimerFunctionwill be called 4 times.
After the run loop exits, the function invalidates the timer to render it inoperable and to remove it from all
run loop modes. Finally, because the function still holds a reference to the timer from the create function,
the function releases the timer object.

Listing 1 Running a run loop with a timer

void MyTimerFunction(CFRunLoopTimerRef timer, void *info);

void RunMyTimer ()
{
 CFStringRef myCustomMode = CFSTR("MyCustomMode");
 CFRunLoopTimerRef myTimer;

 myTimer = CFRunLoopTimerCreate(NULL, CFAbsoluteTimeGetCurrent()+1.0,
 5.0, 0, 0, MyTimerFunction, NULL);
 CFRunLoopAddTimer(CFRunLoopGetCurrent(), myTimer, myCustomMode);
 CFRunLoopRunInMode(myCustomMode, 20.0, false);
 CFRunLoopTimerInvalidate(myTimer);
 CFRelease(myTimer);
}

A run loop can only run if the requested mode has at least one source or timer to monitor. If a run loop mode
is empty, the CFRunLoopRun and CFRunLoopRunInMode functions return immediately without doing
anything.

Run loops can be run recursively. You can call CFRunLoopRun or CFRunLoopRunInMode from within any
run loop callout and create nested run loop activations on the current thread’s call stack. You are not restricted
in which modes you can run from within a callout. You can create another run loop activation running in
any available run loop mode, including any modes already running higher in the call stack.

13
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Running the Run Loop

14
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Running the Run Loop

Cocoa and Carbon each build upon CFRunLoop to implement their own higher-level event loop. Cocoa
exposes its event loop through the NSApplication and NSRunLoop classes; Carbon exposes its event loop
through the Carbon Event Manager.

When writing a Cocoa or Carbon application, you can add your sources, timers, and observers to their run
loops and modes. Your objects will then get monitored as part of the regular application event loop. Use the
NSRunLoop instance method getCFRunLoop to obtain the CFRunLoop corresponding to a Cocoa run loop.
In Carbon applications, use the GetCFRunLoopFromEventLoop function.

Cocoa and Carbon automatically set up and run the run loop in the main thread of the application. If you
spawn additional threads, you are responsible for managing and running their run loops.

Cocoa defines several of its own run loop modes for use with NSRunLoop objects. Cocoa defines
NSDefaultRunLoopMode as its default run loop mode, but this is equivalent to Core Foundation’s
kCFRunLoopDefaultMode and can be used interchangeably. Cocoa also defines the modes
NSModalPanelRunLoopMode and NSEventTrackingRunLoopMode in which it runs the main thread’s run
loop when a modal panel is up or during event-tracking operations, such as drag-and-drop operations,
respectively. Both of these modes are members of the main thread’s set of common modes.

15
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Using Run Loops With Cocoa and Carbon

16
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Using Run Loops With Cocoa and Carbon

This table describes the changes to Run Loops.

NotesDate

This document is now replaced by the Threading Programming Guide.2008-10-15

Converted existing Core Foundation documentation into topic format. Added
revision history.

2003-01-17

17
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

18
Legacy Document | 2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Run Loops
	Contents
	Listings
	Introduction
	About Run Loops
	Sources
	Timers
	Observers

	Input Modes
	Running the Run Loop
	Using Run Loops With Cocoa and Carbon
	Revision History

