
Strings Programming Guide for Core
Foundation
Core Foundation > Data Management

2008-03-11

Apple Inc.
© 2003, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, and Objective-C are trademarks of
Apple Inc., registered in the United States and
other countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Strings Programming Guide for Core Foundation 7

Organization of This Document 7

About Strings 9

The Unicode Basis of CFString Objects 11

String Storage 13

Creating and Copying Strings 15

Creating CFString Objects From Constant Strings 15
Creating CFString Objects From String Buffers 16
Creating String Objects From Formatted Strings 17
Creating Mutable String Objects 18

Mutable Strings With Client-Owned Buffers 19

Accessing the Contents of String Objects 21

Getting the Contents as a C or a Pascal String 21
Getting the Contents as Unicode Strings 22
Character Processing 22

Comparing, Sorting, and Searching String Objects 25

Comparing and Searching Strings 25
Sorting Strings 26

Manipulating Mutable String Objects 29

Forms of Mutation 29
Appending 29
Inserting, deleting, replacing 29
Padding and trimming 29
Case operations 30

Code Examples 30

Converting Between String Encodings 33

The Basic Conversion Routines 34

3
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Encoding-Conversion Utilities 35
Encoding by characteristic 35
Available encodings 35
Mappings to encoding sets 35

Supported Encodings 35

Handling External Representations of Strings 37

Creating and Using Ranges 39

Character Sets 41

String Format Specifiers 43

Format Specifiers 43
Platform Dependencies 45

Document Revision History 47

4
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

The Unicode Basis of CFString Objects 11

Figure 1 Unicode versus other encodings of the same characters 11

String Storage 13

Figure 1 Storage of an immutable CFString derived from ASCII encoding 13
Figure 2 CFString objects and their backing stores 14

Creating and Copying Strings 15

Listing 1 Creating a CFString object from a Pascal string buffer 16
Listing 2 Creating a CFString object with a NoCopy function 17
Listing 3 Creating a CFString object from a formatted string 17
Listing 4 Creating a CFString from a variable argument list 18
Listing 5 Creating a mutable copy of a CFString object 19
Listing 6 Creating a mutable CFString object with independent backing store 19

Accessing the Contents of String Objects 21

Listing 1 Accessing CFString contents as a C string 21
Listing 2 Accessing CFString contents as Unicode characters 22
Listing 3 Getting a character at a time 23
Listing 4 Processing characters in an in-line buffer 23

Comparing, Sorting, and Searching String Objects 25

Listing 1 Comparing and searching CFString contents 25

Manipulating Mutable String Objects 29

Listing 1 Various operations on a mutable string 30

Converting Between String Encodings 33

Table 1 Encoding-conversion functions 33
Listing 1 Converting to a different encoding with CFStringGetBytes 34

Handling External Representations of Strings 37

Listing 1 Using the external-representation functions 37

5
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

String Format Specifiers 43

Table 1 Format specifiers supported by the NSString formatting methods and CFString
formatting functions 43

Table 2 Format specifiers for data types 45

6
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Core Foundation string objects give software developers a solid foundation for easy, robust, and consistent
internationalization. Moreover, by using string objects, your programs can easily share string data with any
other Mac OS 9, Mac OS X, or other Cocoa program. String objects offer a full suite of fast and efficient string
functionality, including utilities for converting among various encodings and buffer formats.

Organization of This Document

This document contains the following articles:

 ■ “About Strings” (page 9) describes issues related to managing and representing string

 ■ “The Unicode Basis of CFString Objects” (page 11) describes the conceptual basis for the representation
of strings in Core Foundation

 ■ “String Storage” (page 13) describes how string data is stored in Core Foundation

 ■ “Creating and Copying Strings” (page 15) describes how to create and copy string objects

 ■ “Accessing the Contents of String Objects” (page 21) describes how to access the contents of CFString
objects as a Pascal, C, or Unicode string, and how to iterate over the contents of a string one character
at a time

 ■ “Comparing, Sorting, and Searching String Objects” (page 25) describes how to search the contents of
a string and how to compare two strings

 ■ “Manipulating Mutable String Objects” (page 29) describes operations such as combining strings and
padding the contents of a string.

 ■ “Converting Between String Encodings” (page 33) describes how to convert between different string
encodings, and what encodings are supported by CFString

 ■ “Handling External Representations of Strings” (page 37) describes how to represent a string in a form
that can be written to disk and read back in on the same platform or on a different platform

 ■ “Creating and Using Ranges” (page 39) describes how to create and use CFRange structures

 ■ “Character Sets” (page 41) describes the basics of CFCharacterSet

 ■ String Format Specifiers (page 43) describes printf-style format specifiers supported by CFString

Not all functions are described. Some of the functions not discussed in detail are:

 ■ CFStringGetLength lets you obtain the number of Unicode characters represented by a CFString
object.

 ■ CFStringGetLineBounds tells you how many lines a string (or a range of the string) spans.

Organization of This Document 7
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Introduction to Strings Programming Guide
for Core Foundation

 ■ CFStringCreateByCombiningStrings creates a single string from an array (CFArray) of strings; the
counterpart of this function, CFStringCreateArrayBySeparatingStrings, creates a CFArray object
from a single string, using a delimiter character to separate the substrings.

 ■ CFStringGetIntValue and CFStringGetDoubleValue convert a CFString object representing a
number to the actual numeric value.

8 Organization of This Document
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Introduction to Strings Programming Guide for Core Foundation

One of the biggest challenges of developing software for a global market is that posed by text—or, in
programming terms, “strings,” which denotes the characters of a language in a form suitable for computerized
representation. Most of the difficulty with strings is historical; over the years (since computers have been
around), various encoding schemes have been devised to represent strings in one script or another. Some
encodings are intended for a language or family of languages (Shift-JIS, for example) while others are specific
to a particular computer system (Windows Latin 1, for example). The proliferation of encodings complicates
the burdens of cross-platform compatibility and internationalization.

Core Foundation string objects give software developers a solid foundation for easy, robust, and consistent
internationalization. Moreover, by using string objects, your programs can easily share string data with any
other Mac OS 9, Mac OS X, or other Cocoa program. String objects offers a full suite of fast and efficient string
functionality, including utilities for converting among various encodings and buffer formats.

String objects are implemented by the CFString opaque type. A CFString “object” represents a string as
an array of Unicode characters; its only other property aside from this array is an integer indicating the number
of characters. It is flexible enough to hold up to several megabytes worth of characters. Yet it is simple and
fundamental enough for use in all programming interfaces that communicate character data. In Core
Foundation, string operations take place with performance characteristics not much different from standard
C strings. CFString objects come in immutable and mutable variants.

The Unicode basis of CFString along with comprehensive encoding-conversion facilities make string objects
an essential vehicle for internationalizing programs, particularly Carbon programs. String objects also allows
you to convert strings among C, Pascal, byte buffer, and native Unicode buffer formats. Taken together, these
features make it possible for programs to pass each other string data despite differing programming languages,
libraries, frameworks, or platforms.

String objects also includes the CFCharacterSet opaque type. Programming interfaces can use
CFCharacterSet objects to specify characters to include or exclude in parsing, comparison, or search
operations.

CFString objects are fundamental in that they represent strings but they do not carry any display or
supplemental information, such as text styles, formatting attributes, or language tags. If you want this
functionality, with Mac OS X version 10.4 and later you can use an attributed string (see CFAttributedString
Reference). In addition, a CFString object cannot be used to hold random bytes because it attaches semantic
value to its contents (interpreting it as Unicode characters or even characters in other encodings). If you need
a Core Foundation object to hold non-character data, use an object based on the CFData opaque type (see
CFData Reference).

String objects provide functions that perform a variety of operations with CFString objects, such as

 ■ Converting between CFString objects and strings in other encodings and buffer formats

 ■ Comparing and searching strings

 ■ Manipulating mutable strings by appending string data to them, inserting and deleting characters, and
padding and trimming characters

 ■ Disclosing the contents of CFString objects in supported debuggers

9
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

About Strings

CFString and other Core Foundation objects do not provide more advanced string-handling utilities such
as drawing, text layout, font handling, and sophisticated search and comparison functionality. Higher software
layers provide these facilities. Nonetheless, these higher layers communicate string data using CFString
objects, or their “toll-free bridged” Cocoa equivalent, NSString.

10
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

About Strings

Conceptually, a CFString object represents an array of Unicode characters (UniChar) along with a count of
the number of characters. Unicode-based strings in Core Foundation provides a solid basis for internationalizing
the software you develop. Unicode makes it possible to develop and localize a single version of an application
for users who speak most of the world’s written languages, including Russian (Cyrillic), Arabic, Chinese, and
Japanese.

The Unicode standard is published by the Unicode Consortium (http://www.unicode.org), an international
standards organization. The standard defines a universal, uniform encoding scheme that is 16 bits per
character. A “character” in this scheme is the smallest useful element of text in a language; thus it can be a
character as understood in most European languages, an ideogram (Chinese Han), a syllable (Japanese
hiragana), or some other linguistic unit. Encoded characters also include mathematical, technical, and other
symbols as well as diacritics and computer control characters. Each Unicode character is termed a “code
point” and is assigned a name and a unique numeric value.

The Unicode standard provides the capacity for encoding all the characters used for written languages
throughout the world. With 16-bit encoding, Unicode makes over 65,000 code points possible. This capacity
is in marked contrast to standard 8-bit encodings, which permit only 256 characters and thus necessitate
elaborate ancillary schemes, such as shift or escape bits, to express characters other than those found in the
common Indo-European scripts.

Figure 1 Unicode versus other encodings of the same characters

0000000001100001
a

0000001110010001
a

01100001
a

01100001
a

Unicode Mac OS Roman

Unicode Symbol

In addition to its encoding scheme, the Unicode standard provides case mappings and sets aside 6000 code
points for private use. It also specifies mappings from the Unicode scheme to repertoires of international,
national, and industry character sets. Figure 1 (page 11) illustrates two of these mappings. String objects
make frequent use of the encoding mappings. The underlying representation (and in many cases the
underlying storage) of strings is Unicode-based. However, the encodings required by the programming
interfaces and output devices that actually display the strings in the user interface are commonly 8-bit. Thus
there is a need for efficient and accurate conversion between Unicode and other encodings. String objects
largely fulfills that need.

11
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

The Unicode Basis of CFString Objects

http://www.unicode.org

For more information on the Unicode standard, see the consortium’s website. The consortium also publishes
charts of Unicode code points and glyphs at www.unicode.org/charts/.

12
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

The Unicode Basis of CFString Objects

http://www.unicode.org/
http://www.unicode.org/charts/

Although conceptually CFString objects store strings as arrays of Unicode characters, in practice they often
store them more efficiently. The memory a CFString object requires to represent a string could often be less
than that required by a simple UniChar array.

For immutable strings, this efficiency is possible because some standard 8-bit encodings of a character
value—namely ASCII and related encodings such as ISO Latin-1—are subsets of the 16-bit Unicode
representation of the same value. With ASCII character values in the Unicode scheme, for example, the left
most eight bits are zeros; the right most eight bits are identical to those in the 8-bit encoding. String objects
only attempts this compressed type of storage if the encoding allows fast (O(1)) conversion to Unicode
characters.

Figure 1 Storage of an immutable CFString derived from ASCII encoding

0000000001000001
A

01000001
A

Conceptually Unicode
(16-bit encoding)

Stored as ASCII
(8-bit subset)

Mutable CFString objects perform a similar type of optimization. For example, a mutable string might have
8-bit backing store until a character above the ASCII range is inserted.

CFString objects perform other “tricks” to conserve memory, such as incrementing the reference count when
a CFString is copied. For larger strings, they might lazily load them from files or resources and store them
internally in B-tree structures.

There is some memory overhead associated with CFString objects. It typically ranges from 4 to 12 bytes,
depending on the mutability characteristic and the platform. But the memory-saving strategies employed
by string objects more than compensate for this overhead.

In addition to its internal storage mechanisms, some of the programming interfaces of string objects grant
you ownership of the string’s backing store or give you quick access to it. Some functions of string objects
fetch all stored characters into a local buffer or, for large strings, allow you to process characters efficiently
in an in-line buffer.

Most CFString creation functions copy the string in the user-supplied buffer to the backing store of the
created object. In some advance usage scenarios, you might find it useful to provide the backing store
yourself. The creation functions containing NoCopy make the user’s buffer the backing store and allow the
created CFString object to point to it. (See Figure 2 (page 14) for an illustration of this.) The NoCopy qualifier,
however, is just a “hint”; in some cases the CFString object might copy the buffer’s contents to its internal
storage.

13
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

String Storage

You can get further control over the backing store of a string with the
CFStringCreateMutableWithExternalCharactersNoCopy function. This function creates a reference
to a mutable CFString object but allows you to retain full ownership of the Unicode buffer holding the object’s
characters; the object itself points to the buffer as its backing store. When you change the contents of the
buffer you just need to notify the object. See “Mutable Strings With Client-Owned Buffers” (page 19) for
more on this subject.

Figure 2 CFString objects and their backing stores

External buffer
as backing store

Characters

External buffer

Characters

CFString

Characters

Internal storage
as backing store

Most CFString creation functions

CFString

"NoCopy" creation functions

Pointer

Copies

Points to

14
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

String Storage

String objects give you a variety of ways to create CFString objects—from constant strings, from buffers,
from formatted strings, and by using existing CFString objects. The following sections describe each of these
techniques.

Some functions that return references to CFString objects are described elsewhere. The
CFStringCreateWithBytes function is described in “Converting Between String Encodings” (page 33).
The section “Handling External Representations of Strings” (page 37) describes the
CFStringCreateFromExternalRepresentation function.

Creating CFString Objects From Constant Strings

The easiest way to create immutable CFString objects is to use the CFSTR macro. The argument of the macro
must be a constant compile-time string—text enclosed in quotation marks. CFSTR returns a reference to a
CFString object.

Here’s an example:

CFStringRef hello = CFSTR("Hello, world.");

Non-ASCII characters (that is, character codes greater than 127) are not supported. If you use them, the result
is undefined. Even if using them works for you in testing, it might not work if the user selects a different
language preference.

The returned CFString has the following semantics:

 ■ Because CFSTR is not a Create or Copy function, you are not responsible for releasing the string when
you no longer need it.

 ■ The string is not released by CFString. In other words, CFString guarantees its validity until the program
terminates.

 ■ The string can be retained and released in a balanced fashion, like any other CFString.

If there are two or more exact instances of a constant string in an executable, in some cases only one might
be stored. A common use of the CFSTR macro is in the creation of formatted strings (see “Creating String
Objects From Formatted Strings” (page 17) for more information).

Creating CFString Objects From Constant Strings 15
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Creating and Copying Strings

Creating CFString Objects From String Buffers

By far the most common technique for creating a CFString object is to call functions that take C or Pascal
character buffers (or string pointers) as “source” for the object. These functions are the counterparts of
functions that convert CFString objects to C or Pascal strings; see “Accessing the Contents of String
Objects” (page 21) for more on these functions.

These functions come in two varieties. One set of functions copies the buffer into the internal storage of the
created CFString object. Once you create the object you are free to dispose of the buffer. Listing 1 (page 16)
shows the creation of a CFString object from a Pascal string buffer with the
CFStringCreateWithPascalString function.

Listing 1 Creating a CFString object from a Pascal string buffer

const UInt8 somePascalBytes[] = {5, ‘H’, ‘e’, ‘l’, ‘l’, ‘o’};
CFStringRef str;
str = CFStringCreateWithPascalString(NULL, somePascalBytes,
 kCFStringEncodingMacRoman);

In this example, the NULL parameter specifies that the default CFAllocator object should be used to allocate
memory for the backing store; the last parameter specifies the encoding of the characters in the buffer.
Instead of initializing the somePascalBytes array as done in the example above, you can just insert the \p
control character before the string to designate it a Pascal string ("\pHello").

Related functions create CFString objects from C string buffers (CFStringCreateWithCString) and from
Unicode string buffers (CFStringCreateWithCharacters). The latter function takes an extra parameter
for character count but does not include the encoding parameter.

A parallel set of functions have corresponding names that end with NoCopy. These functions also create
CFString objects from a user-supplied string buffer but they do not always copy the buffer to the object’s
internal storage. They try to but are not guaranteed to take the provided pointer as-is, using the buffer as
the backing store without copying the data. Obviously you must ensure that you do not free the buffer while
the CFString exists. The character data should never be on the stack or be data with a lifetime you cannot
guarantee.

In practice, these NoCopy functions are useful in a limited number of circumstances:

 ■ You have compile-time constant data such as a C string (“Hello”) or a Pascal string (“\pYes”). The NoCopy
functions offer an efficient way to make CFString objects from this data and, if you specify
kCFAllocatorNull as the last parameter (see below), when the CFString ceases to exist the buffer is
not automatically deallocated. (Often you can use the CFSTR macro for the same purpose.)

 ■ You allocate some memory for some string data and you want to put a CFString object in it but otherwise
you don’t need the original memory. Of course, you can create a CFString object with one of the
non-NoCopy functions (which copies the data) and then free the buffer. But the NoCopy functions allow
you to transfer ownership of the memory to a CFString object, saving you the need to free it yourself.

The NoCopy functions include an extra parameter (contentsDeallocator) for passing a reference to a
CFAllocator object that is used for deallocating the buffer when it is no longer needed. If the default CFAllocator
object is sufficient for this purpose, you can pass NULL. If you do not want the CFString object to deallocate
the buffer, pass kCFAllocatorNull.

16 Creating CFString Objects From String Buffers
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Creating and Copying Strings

Listing 2 (page 17) shows the creation of a CFString object with the CFStringCreateWithCStringNoCopy
function:

Listing 2 Creating a CFString object with a NoCopy function

const char *bytes;
CFStringRef str;
bytes = CFAllocatorAllocate(CFAllocatorGetDefault(), 6, 0);
strcpy(bytes, "Hello");
str = CFStringCreateWithCStringNoCopy(NULL, bytes,
 kCFStringEncodingMacRoman, NULL);
/* do something with str here...*/
CFRelease(str); /* default allocator also frees bytes */

Important: The CFString objects created by the NoCopy function do not necessarily use the buffer you
supply. In some cases the object might free the buffer and use something else; for instance, it may decide
to use Unicode encoding internally. This behavior may change from release to release.

You can also create mutable CFString objects with source buffers that you control entirely; see “Mutable
Strings With Client-Owned Buffers” (page 19) for more on this matter.

Creating String Objects From Formatted Strings

String objects includes functions that create CFString objects from formatted strings—strings incorporating
printf-style specifiers for substituting variable values into the string, after converting them (if necessary)
to character data. String format specifiers are defined in String Format Specifiers (page 43). Formatted strings
are useful when it is necessary to display information that may have changeable elements. For example, you
might need to use these functions when you put up a dialog box to show the progress of an operation, such
as “Copying file x of y.”

The CFStringCreateWithFormat function creates a CFString object from a simple formatted string, as
shown in Listing 3 (page 17).

Listing 3 Creating a CFString object from a formatted string

CFStringRef PrintGross(CFStringRef employeeName, UInt8 hours, float wage) {
 return CFStringCreateWithFormat(NULL, NULL, CFSTR("Employee %@
 earned $%.2f this week."), employeeName, hours * wage);
}

The first parameter, as usual, specifies the allocator object to use (NULL means use the default CFAllocator
object). The second parameter is for locale-dependent format options, such as thousand and decimal
separators; it is currently not used. The remaining parameters are for the format string and the variable values.

As mentioned earlier, the format string has printf-style specifiers embedded in it (for example, "%d %s
%2.2f"). Core Foundation introduces a couple of extensions to this convention. One is the %@ specifier
(shown in Listing 3 (page 17)) which indicates any Core Foundation object. Another new specifier indicates
argument order. This specifier takes the form n$ where n is the order-number of the argument following the
string. This argument-order feature is useful when you want to localize whole sentences or even paragraphs
to other languages without worrying about the order of arguments, which might vary from one language
to another.

Creating String Objects From Formatted Strings 17
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Creating and Copying Strings

For example, the function above would result in a string such as “John Doe earned $1012.32 this week.” But
in another language the grammatically proper way of expressing the same sentence might be (roughly
translated) “$1012.32 was earned by John Doe this week.” You wouldn’t have to call
CFStringCreateWithFormat again with the arguments in a different order. Instead, you would have a
function call that looked like this:

return CFStringCreateWithFormat(NULL, NULL, CFSTR("$%2$.2f was earned by
 employee %1$@."), employeeName, hours * wage);

Of course, the string itself would not be hard-coded, but would be loaded from a file (for instance, an XML
property list or an OpenStep ASCII property list) that contains localized strings and their translations.

Another CFString function, CFStringCreateWithFormatAndArguments, takes a variable argument list
(vararg) as well as a format string. This function allows the formatting of varargs passed into your function.
Listing 4 (page 18) shows how it might be used:

Listing 4 Creating a CFString from a variable argument list

void show(CFStringRef formatString, ...) {
 CFStringRef resultString;
 CFDataRef data;
 va_list argList;

 va_start(argList, formatString);
 resultString = CFStringCreateWithFormatAndArguments(NULL, NULL,
 formatString, argList);
 va_end(argList);

 data = CFStringCreateExternalRepresentation(NULL, resultString,
 kCFStringEncodingMacRoman, '?');

 if (data != NULL) {
 printf ("%.*s\n\n", (int)CFDataGetLength(data),
 CFDataGetBytePtr(data));
 CFRelease(data);
 }

 CFRelease(resultString);
}

Creating Mutable String Objects

String objects includes only a handful of functions for creating mutable CFString objects. The reason for this
much smaller set is obvious. Because these are mutable objects, you can modify them after you create them
with the functions described in “Manipulating Mutable String Objects” (page 29).

There are two basic functions for creating mutable CFString objects. The CFStringCreateMutable function
creates an “empty” object; the CFStringCreateMutableCopy makes a mutable copy of an immutable
CFString object. Listing 5 (page 19) illustrates the latter function and shows a character being appended to
the created object:

18 Creating Mutable String Objects
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Creating and Copying Strings

Listing 5 Creating a mutable copy of a CFString object

const UniChar u[] = {'5', '+', '*', ‘d’, 'x', '4', 'Q', '?'};
CFMutableStringRef str;

str = CFStringCreateMutableCopy(alloc, 0, CFSTR("abc"));
CFStringAppendCharacters(str, &u[3], 1);
CFRelease(str);

The second parameter of both functions is a CFIndex value named maxLength. This value specifies the
maximum numbers of characters in the string and allows the created object to optimize its storage and catch
errors if too many characters are inserted. If 0 is specified for this parameter (as above), the string can grow
to any size.

Mutable Strings With Client-Owned Buffers

When you create most Core Foundation objects, the object takes the initializing data you provide and stores
that data internally. String objects allow some exceptions to this behavior, and for mutable CFString objects
that exception is the CFStringCreateMutableWithExternalCharactersNoCopy function. This function
creates a mutable CFString object whose backing store is some Unicode buffer that you create and own. You
can test and manipulate this buffer independently of the object.

Listing 6 (page 19) shows how to create such a cheap mutable CFString “wrapper” for your character buffer.

Listing 6 Creating a mutable CFString object with independent backing store

void stringWithExternalContentsExample(void) {
#define BufferSize 1000
 CFMutableStringRef mutStr;
 UniChar *myBuffer;

 myBuffer = malloc(BufferSize * sizeof(UniChar));

 mutStr = CFStringCreateMutableWithExternalCharactersNoCopy(NULL, myBuffer,
 0, BufferSize, kCFAllocatorNull);
 CFStringAppend(mutStr, CFSTR("Appended string... "));
 CFStringAppend(mutStr, CFSTR("More stuff... "));
 CFStringAppendPascalString(mutStr, "\pA ASCII string. ",
kCFStringEncodingMacRoman);
 CFStringAppendFormat(mutStr, NULL, CFSTR("%d %4.2f %@..."), 42, -3.14,
CFSTR("Hello"));

 CFRelease(mutStr);
 free(myBuffer);
}

The third and fourth parameters in the creation function specify the number of characters in the buffer and
the buffer capacity. The final parameter, externalCharsAllocator, specifies the CFAllocator object to use
for reallocating the buffer when editing takes place and for deallocating the buffer when the CFString object
is deallocated. In the above example, kCFAllocatorNull is specified, which tells the object that the client
assumes responsibility for these actions. If you specified an allocator object to use, such as NULL for the
default allocator, there is usually no need to worry about reallocation or deallocation of the buffer.

Creating Mutable String Objects 19
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Creating and Copying Strings

The example illustrates how you can modify the contents of the buffer with CFString functions. You can also
modify the contents of the buffer directly, but if you do so, you must notify the mutable CFString “wrapper”
object with the CFStringSetExternalCharactersNoCopy function. You can also substitute an entirely
different buffer with this function because it makes the mutable CFString object point directly at the specified
UniChar array as its backing store. (However, the CFString object must have been created with the
CFStringCreateMutableWithExternalCharactersNoCopy function.) The
CFStringSetExternalCharactersNoCopy function does not free the previous buffer.

Using these functions comes at a cost because some CFString optimizations are invalidated. For example,
mutable CFString objects can no longer use a gap for editing, and they cannot optimize storage by using
8-bit characters.

20 Creating Mutable String Objects
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Creating and Copying Strings

The two essential properties of CFString objects are an array of Unicode characters and a count of those
characters. Several CFString functions not only obtain those properties, particularly the characters, but perform
conversions to almost any desired format.

The CFStringGetBytes function, which copies the contents of a CFString object into a client-supplied byte
buffer, is described in “The Basic Conversion Routines” (page 34). It is described there instead of in this section
because it has features that make it particularly suitable for encoding conversions.

Getting the Contents as a C or a Pascal String

Many Mac OS libraries have programming interfaces that require C strings or Pascal strings for some of their
parameters. Four functions of CFString extract the contents of CFStrings into these string buffer formats.

For performance reasons, a common strategy for accessing the contents of CFStrings as either a C string or
as a Pascal string is to first try to get a pointer of the appropriate type to these strings and, if that fails, to
copy the contents into a local buffer. Listing 1 (page 21) illustrates this strategy for C strings using the
CFStringGetCStringPtr and CFStringGetCString functions.

Listing 1 Accessing CFString contents as a C string

CFStringRef str;
CFRange rangeToProcess;
const char *bytes;

str = CFStringCreateWithCString(NULL, "Hello World!",
 kCFStringEncodingMacRoman);

bytes = CFStringGetCStringPtr(str, kCFStringEncodingMacRoman);

if (bytes == NULL) {
 char localBuffer[10];
 Boolean success;
 success = CFStringGetCString(str, localBuffer, 10,
 kCFStringEncodingMacRoman);
}

The complementary functions for Pascal strings are CFStringGetPascalStringPtr and
CFStringGetPascalString. All four of these functions allow you to specify the encoding that the Unicode
characters should be converted to.

The functions that end with “Ptr” either return the desired pointer quickly, in constant time, or they return
NULL. If the latter is the case, you should use either of the functions CFStringGetPascalString or
CFStringGetCString.

Getting the Contents as a C or a Pascal String 21
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Accessing the Contents of String Objects

The buffer for the CFStringGetPascalString or CFStringGetCString functions can either be on the
stack or a piece of allocated memory. These functions might still fail to get the characters, but that only
happens in two circumstances: the conversion from the UniChar contents of CFString to the specified
encoding fails or the buffer is too small. If you need a copy of the character buffer or if the code in question
is not that performance-sensitive, you could simply call the CFStringGetPascalString function or the
CFStringGetCString function without even attempting to get the pointer first.

Getting the Contents as Unicode Strings

String objects offer a pair of functions similar to those for C and Pascal strings for accessing the contents of
a CFString as a 16-bit Unicode buffer: CFStringGetCharactersPtr and CFStringGetCharacters. The
typical usage of these functions is also identical: you first optionally try to get a pointer to the characters and,
if that fails, you try to copy the characters to a buffer you provide. These functions are different, however, in
that they require a parameter specifying the length of the string.

Listing 2 (page 22) illustrates the common strategy for using these functions.

Listing 2 Accessing CFString contents as Unicode characters

CFStringRef str;
const UniChar *chars;

str = CFStringCreateWithCString(NULL, "Hello World",
 kCFStringEncodingMacRoman);
chars = CFStringGetCharactersPtr(str);
if (chars == NULL) {
 CFIndex length = CFStringGetLength(str);
 UniChar *buffer = malloc(length * sizeof(UniChar));
 CFStringGetCharacters(str, CFRangeMake(0, length), buffer);
 // Process the characters...
 free(buffer);
}

This example shows an allocated buffer (malloc) rather than a stack buffer. You can use one or the other.
Because you need to know the size of the buffer for the CFStringGetCharacters function, allocating
memory is easier to do but is less efficient. If you allocate memory for the characters you must, of course,
free the buffer when you no longer need it.

Character Processing

Sometimes you might want to receive the contents of a CFString not as an entire block of characters but one
Unicode character at a time. Perhaps you might be looking for a particular character or sequence of characters,
such as special control characters indicating the start and end of a “record.” String objects give you three
ways to process Unicode characters.

The first way is to use the CFStringGetCharacters function described in “Getting the Contents as Unicode
Strings” (page 22) to copy the characters to a local buffer and then cycle through the characters in the buffer.
But this technique can be expensive memory-wise, especially if a large number of characters is involved.

22 Getting the Contents as Unicode Strings
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Accessing the Contents of String Objects

The second way to access characters one at a time is to use the CFStringGetCharacterAtIndex function,
as Listing 3 (page 23) illustrates.

Listing 3 Getting a character at a time

CFIndex length, i;
UniChar uchar;
CFStringRef str;

str = CFStringCreateWithCString(NULL, "Hello World",
 kCFStringEncodingMacRoman);
length = CFStringGetLength(str);
for (i=0; i < length; i++) {
 uchar = CFStringGetCharacterAtIndex(str, i);
 // Process character....
}

Although this function does not require a large chunk of memory to hold a block of characters, using it in a
loop can be inefficient. For such cases, use the CFStringGetCharacters function instead.

The third technique for character processing, exemplified in Listing 4 (page 23), combines the convenience
of one-at-a-time character access with the efficiency of bulk access. The in-line functions
CFStringInitInlineBuffer and CFStringGetCharacterFromInlineBuffer give fast access to the
contents of a string when you are doing sequential character processing. To use this programming interface,
call the CFStringInitInlineBuffer function with a CFStringInlineBuffer structure (on the stack,
typically) and a range of the CFString’s characters. Then call CFStringGetCharacterFromInlineBuffer
as many times as you want using an index into that range relative to the start of the range. Because these
are in-line functions they access the CFString object only periodically to fill the in-line buffer.

Listing 4 Processing characters in an in-line buffer

CFStringRef str;
CFStringInlineBuffer inlineBuffer;CFIndex length;CFIndex cnt;

str = CFStringCreateWithCString(NULL, "Hello World",
 kCFStringEncodingMacRoman);
length = CFStringGetLength(str)
CFStringInitInlineBuffer(str, &inlineBuffer, CFRangeMake(0, length));

for (cnt = 0; cnt < length; cnt++) {
 UniChar ch = CFStringGetCharacterFromInlineBuffer(&inlineBuffer, cnt);
 // Process character...
}

Character Processing 23
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Accessing the Contents of String Objects

24 Character Processing
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Accessing the Contents of String Objects

Core Foundation string objects include a number of functions for searching the contents of strings and for
comparing two strings. Because these operations are semantically related, it is not surprising that the main
functions for each operation—CFStringFindWithOptions and CFStringCompareWithOptions—have
some things in common. Their first four parameters are almost identical: two references to CFString objects
(the strings to be compared or the substring to find in the main string), a range of characters to include in
the operation, and a bitmask for specifying options. If you are sorting strings to present to the user, you
should perform a localized comparison with the user’s local using
CFStringCompareWithOptionsAndLocale.

Comparing and Searching Strings

Although CFStringFindWithOptions and CFStringCompareWithOptions have features in common,
they have important differences too. The CFStringCompareWithOptions function returns a result of type
CFComparisonResult; this enum constant indicates whether the comparison found the strings equal or
whether the first specified string was greater than or less than the second string. The
CFStringFindWithOptions function, on the other hand, returns a Boolean result that indicates the success
of the operation. The more useful result, returned indirectly by this function, is a range (a structure of type
CFRange) pointed to by its final parameter; this range contains the location of the found string in the main
string.

Listing 1 (page 25) illustrates the use of both CFStringCompareWithOptions and
CFStringFindWithOptions (it also makes use of the show function given in Listing 3 (page 17) of “Creating
and Copying Strings” (page 15)).

In this example, both the find and compare functions specify the kCFCompareCaseInsensitive flag as an
option for the operation, causing it to ignore differences in case. Other option flags are available, including
kCFCompareBackwards (start the operation from the end of the string), kCFCompareNumerically (compare
similar strings containing numeric substrings numerically), and kCFCompareLocalized (use the user’s
default locale for the operation).

Listing 1 Comparing and searching CFString contents

void compareAndSearchStringsExample() {
 CFStringRef str1 = CFSTR("ABCDEFG");
 CFStringRef str2 = CFSTR("abcdefg");
 CFStringRef str3 = CFSTR("Kindergarten is the time to start teaching the
ABCDEFG's");
 CFRange foundRange;
 CFComparisonResult result;

 result = CFStringCompareWithOptions(str1, str2,
CFRangeMake(0,CFStringGetLength(str1)), kCFCompareCaseInsensitive);
 if (result == kCFCompareEqualTo) {
 show(CFSTR("%@ is the same as %@"), str1, str2);

Comparing and Searching Strings 25
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Comparing, Sorting, and Searching String
Objects

 } else {
 show(CFSTR("%@ is not the same as %@"), str1, str2);
 }
 if (CFStringFindWithOptions(str3, str1,
CFRangeMake(0,CFStringGetLength(str3)), kCFCompareCaseInsensitive, &foundRange)
 == true) {
 show(CFSTR("The string \"%@\" was found at index %d in string \"%@\"."),
 str1, foundRange.location, str3);
 } else {
 show(CFSTR("The string \"%@\" was not found in string \"%@\"."), str1,
 str3);
 }
}

This code generates the following output:

ABCDEFG is the same as abcdefg
The string "ABCDEFG" was found at index 47 in string "Kindergarten is the time
 to start teaching the ABCDEFG's".

By default, the basis for comparison of CFString objects is a character-by-character literal comparison. In
some circumstances this may not give you results you expect, since some characters can be represented in
several different ways (for example, “ö” can be represented as two distinct characters (“o” and “umlaut”) or
by a single character (“o-umlaut”). If you want to allow loose equivalence, use a search or compare function
with the kCFCompareNonliteral flag as an option. Note that if you do specify a non-literal comparison,
the length of the range returned from a find function might not be the same as the length of the search
string.

In addition to the main compare and find functions, string objects provide some convenience functions.
CFStringFind and CFStringCompare are similar to the “main” functions described above but they do not
require the specification of a range (the entire string is assumed). Note that you can use CFStringCompare
elsewhere in Core Foundation when a function pointer conforming to the CFComparatorFunction type is
required.

Other search and comparison functions of string objects are CFStringHasPrefix, CFStringHasSuffix,
and CFStringCreateArrayWithFindResults. The last of these functions is useful when you expect
multiple hits with a search operation; it returns an array of CFRange structures, each of which specifies the
location of a matching substring in the main string.

Sorting Strings

If you sort strings and present the results to the user, you should make sure that you perform a localized
comparison using the user’s locale. You may also want to arrange strings as they would appear in Finder—for
example, these strings { "String 12", "String 1", "string 22", "string 02" } should be sorted as { "String 1", "string
02", "String 12", "string 22" }.

To achieve this, you can use CFStringCompareWithOptionsAndLocale with the options
kCFCompareCaseInsensitive, kCFCompareNonliteral, kCFCompareLocalized,
kCFCompareNumerically, kCFCompareWidthInsensitive, and kCFCompareForcedOrdering. First,
implement a function to perform the appropriate comparison:

CFComparisonResult CompareStringsLikeFinderWithLocale (
 const void *string1, const void *string2, void *locale)

26 Sorting Strings
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Comparing, Sorting, and Searching String Objects

{
 static CFOptionFlags compareOptions = kCFCompareCaseInsensitive |
 kCFCompareNonliteral |
 kCFCompareLocalized |
 kCFCompareNumerically |
 kCFCompareWidthInsensitive |
 kCFCompareForcedOrdering;

 CFRange string1Range = CFRangeMake(0, CFStringGetLength(string1));

 return CFStringCompareWithOptionsAndLocale
 (string1, string2, string1Range, compareOptions,
(CFLocaleRef)locale);
}

Then perform the comparison using that function:

// ignore memory management for the sake of clarity and brevity
CFMutableArrayRef theArray = CFArrayCreateMutable(kCFAllocatorDefault, 4, NULL);
CFArrayAppendValue(theArray, CFSTR("String 12"));
CFArrayAppendValue(theArray, CFSTR("String 1"));
CFArrayAppendValue(theArray, CFSTR("string 22"));
CFArrayAppendValue(theArray, CFSTR("string 02"));

CFRange arrayRange = CFRangeMake(0, CFArrayGetCount(theArray));
CFLocaleRef locale = CFLocaleCopyCurrent();

CFArraySortValues (theArray, arrayRange,
 CompareStringsLikeFinderWithLocale, (void *)locale);

// theArray now contains { "String 1", "string 02", "String 12", "string 22" }

Sorting Strings 27
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Comparing, Sorting, and Searching String Objects

28 Sorting Strings
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Comparing, Sorting, and Searching String Objects

You can choose from a variety of string object functions to add to and modify the contents of mutable
CFString objects. These functions, as one might expect, do not work on immutable CFString objects. If
you want to change the contents of a CFString object, you must either start with a content-less mutable
CFString object or make a mutable copy of an immutable CFString object. See “Creating Mutable String
Objects” (page 18) for information on creating objects of this kind.

Forms of Mutation

The functions that manipulate mutable CFString objects fall into several categories, described in the
following sections.

Appending

You can append strings in a variety of formats to a mutable CFString object: other CFString objects
(CFStringAppend), C and Pascal strings (CFStringAppendCString and CFStringAppendPascalString),
Unicode characters (CFStringAppendCharacters), and formatted strings (CFStringAppendFormat and
CFStringAppendFormatAndArguments).

Inserting, deleting, replacing

The functions CFStringInsert, CFStringDelete, and CFStringReplace perform the corresponding
operations. These functions require you to specify a zero-based index into, or range of, the string to be
modified.

Padding and trimming

The CFStringPad function extends or truncates a mutable CFString to a given length; if it extends the
string, it pads with a specified character or characters. The CFStringTrim function trims a specific character
from both sides of the string. For example, the call:

CFStringTrim(CFStringCreateMutableCopy(NULL, NULL, CFSTR("xxxabcx")), CFSTR("x"));

would result in the string “abc”. A related function, CFStringTrimWhitespace, does the same thing with
whitespace characters, which include such characters as tabs and carriage returns.

Forms of Mutation 29
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Manipulating Mutable String Objects

Case operations

Three functions modify the case of a mutable string, making it all uppercase (CFStringUppercase), all
lowercase (CFStringLowercase), or just the first character of each word in a string uppercase
(CFStringCapitalize).

Code Examples

Listing 1 (page 30) exemplifies several of the functions that manipulate mutable CFString objects:

Listing 1 Various operations on a mutable string

void mutableStringOperations() {

 CFMutableStringRef mstr;
 CFRange range;
 StringPtr pbuf;
 CFIndex length;

 mstr = CFStringCreateMutable(NULL, 0);
 CFStringAppend(mstr, CFSTR("Now is the time for all good men to come to the
 aid of their "));
 CFStringAppend(mstr, CFSTR("party."));
 CFShow(CFSTR("Mutable String 1 - Appended CFStrings"));
 CFShow(mstr);

 range = CFStringFind(mstr, CFSTR("good"), 0);
 if (range.length > 0) {
 CFStringReplace(mstr, range, CFSTR("bad"));
 CFShow(CFSTR("Mutable String 2 - Replaced substring"));
 CFShow(mstr);
 }

 CFStringAppendPascalString(mstr, "\p Now is the time for a party.",
 kCFStringEncodingMacRoman);
 CFStringDelete(mstr, CFRangeMake(10, 20));
 CFShow(CFSTR("Mutable String 3 - Pascal string added, characters in middle
 deleted:"));
 CFShow(mstr);

 CFStringUppercase(mstr, NULL);
 CFShow(CFSTR("Mutable String 4 - Convert to uppercase:"));
 CFShow(mstr);
}

When compiled and run, this code generates the following output:

Mutable String 1 - Appended CFStrings
Now is the time for all good men to come to the aid of their party.
Mutable String 2 - Replaced substring
Now is the time for all bad men to come to the aid of their party.
Mutable String 3 - Pascal string added, characters in middle deleted:
Now is then to come to the aid of their party. Now is the time for a party.
Mutable String 4 - Convert to uppercase:

30 Code Examples
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Manipulating Mutable String Objects

NOW IS THEN TO COME TO THE AID OF THEIR PARTY. NOW IS THE TIME FOR A PARTY.

Code Examples 31
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Manipulating Mutable String Objects

32 Code Examples
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Manipulating Mutable String Objects

String objects give you a number of tools for converting between string encodings. Some routines do the
actual conversions while others show which encodings are available and help you chose the best encoding
for the current situation.

If you want to convert between any two non-Unicode encodings, you can use a CFString object as an
intermediary. Say you have a string encoded as Windows Latin 1 and you want to encode it as Mac OS Roman.
Just convert the string to Unicode first (the CFString object), then convert the string’s contents to the
desired encoding.

Many of the creation and content-accessing functions described in earlier sections of this document include
an encoding parameter typed CFStringEncoding. These functions are listed in Table 1 (page 33). To specify
the encoding of the source or destination string (depending on whether you’re creating a CFString object
or accessing its contents), specify the enum value for the desired encoding in this parameter when you call
one of these functions. Use the CFStringIsEncodingAvailable function to test for the availability of an
“external” encoding on your system before you call a conversion function.

Table 1 Encoding-conversion functions

Converts to CFString (Unicode)

CFStringCreateWithPascalString

CFStringCreateWithCString

CFStringCreateWithPascalStringNoCopy

CFStringCreateWithCStringNoCopy

CFStringCreateWithBytes

CFStringCreateFromExternalRepresentation

Converts from CFString (Unicode)

CFStringGetPascalString

CFStringGetCString

CFStringGetPascalStringPtr

CFStringGetCStringPtr

CFStringGetBytes

CFStringCreateExternalRepresentation

33
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Converting Between String Encodings

A word of caution: not all conversions are guaranteed to be successful. This is particularly true if you are
trying to convert a CFString object with characters that map to a variety of character sets. For example,
let’s say you have a Unicode string that includes ASCII characters and accented Latin characters. You could
convert this string to Mac OS Roman but not to Mac OS Japanese. In these cases, you can specify “lossy”
conversion using the CFStringGetBytes function; this kind of conversion substitutes a “loss” character for
each character that cannot be converted. The CFStringGetBytes function is described in the next section

The Basic Conversion Routines

Among the string object functions that convert the encodings of characters in CFString objects are the
two low-level conversion functions, CFStringGetBytes and CFStringCreateWithBytes. As their names
suggest, these functions operate on byte buffers of a known size. In addition to performing encoding
conversions, they also handle any special characters in a string (such as a BOM) that makes the string suitable
for external representation.

However, the CFStringGetBytes function is particularly useful for encoding conversions because it allows
the specification of a loss byte. If you specify a character for the loss byte, the function substitutes that
character when it cannot convert the Unicode value to the proper character. If you specify 0 for the loss byte,
this “lossy conversion” is not allowed and the function returns (indirectly) an partial set of characters when
it encounters the first character it cannot convert. All other content-accessing functions of CFString disallow
lossy conversion.

Listing 1 (page 34) illustrates how CFStringGetBytes might be used to convert a string from the system
encoding to Windows Latin 1. Note one other feature of the function: it allows you to convert a string into
a fixed-size buffer one segment at a time.

Listing 1 Converting to a different encoding with CFStringGetBytes

CFStringRef str;
CFRange rangeToProcess;

str = CFStringCreateWithCString(NULL, "Hello World",
 kCFStringEncodingMacRoman);

rangeToProcess = CFRangeMake(0, CFStringGetLength(str));
while (rangeToProcess.length > 0) {
 UInt8 localBuffer[100];
 CFIndex usedBufferLength;
 CFIndex numChars = CFStringGetBytes(str, rangeToProcess,
kCFStringEncodingWindowsLatin1, ‘?’, FALSE, (UInt8 *)localBuffer, 100,
&usedBufferLength);
 if (numChars == 0) break; // Failed to convert anything...
 processCharacters(localBuffer, usedBufferLength);
 rangeToProcess.location += numChars;
 rangeToProcess.length -= numChars;
}

If the size of the string to convert is relatively small, you can take a different approach with the
CFStringGetBytes function. With the buffer parameter set to NULL you can call the function to find out
two things. If the function result is greater than 0 conversion is possible. And, if conversion is possible, the
last parameter (usedBufLen) will contain the number of bytes required for the conversion. With this

34 The Basic Conversion Routines
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Converting Between String Encodings

information you can allocate a buffer of the needed size and convert the string at one shot into the desired
encoding. However, if the string is large this technique has its drawbacks; asking for the length could be
expensive and the allocation could require a lot of memory.

Encoding-Conversion Utilities

Besides the functions that convert between encodings, string objects offer a number of functions that can
help you to find out which encodings are available and, of these, which are the best to use in your code.

Encoding by characteristic

The CFStringGetSmallestEncoding function determines the smallest encoding that can be used on a
particular system (smallest in terms of bytes needed to represent one character). The
CFStringGetFastestEncoding function gets the encoding on the current system with the fastest conversion
time from Unicode. The CFStringGetSystemEncoding function obtains the encoding used by strings
generated by the operating system.

Available encodings

Use the CFStringIsEncodingAvailable and CFStringGetListOfAvailableEncodings functions to
obtain information about encodings available on your system.

Mappings to encoding sets

You can use the CFStringConvertEncodingToWindowsCodepage and
CFStringConvertWindowsCodepageToEncoding functions to convert between Windows codepage
numbers and CFStringEncoding values. Similar sets of functions exist for Cocoa NSString encoding constants
and IANA “charset” identifiers used by MIME encodings.

Supported Encodings

Core Foundation string objects supports conversions between Unicode encodings of CFString objects and
a wide range of international, national, and industry encodings. Supported encodings come in two sets, an
“internal” set defined in CFString.h by the CFStringBuiltInEncodingsenum, and an “external” set
defined in CFStringEncodingExt.h by the CFStringEncodingsenum. The encodings in the internal set
are guaranteed to be available on all platforms for conversions to and from CFString objects. The built-in
encodings (as designated by the constant names in CFStringBuiltInEncodings) include:

kCFStringEncodingMacRoman

kCFStringEncodingWindowsLatin1

kCFStringEncodingISOLatin1

kCFStringEncodingNextStepLatin

Encoding-Conversion Utilities 35
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Converting Between String Encodings

kCFStringEncodingASCII

kCFStringEncodingUnicode

kCFStringEncodingUTF8

kCFStringEncodingNonLossyASCII

and on Mac OS X v10.4 and later:

kCFStringEncodingUTF16

kCFStringEncodingUTF16BE

kCFStringEncodingUTF32

Conversions using the encodings in the external set are possible only if the underlying system supports the
encodings.

The encodings of string objects parallel those used by the Mac OS 9 Text Encoding Converter. The
CFStringEncoding type defines encoding values that are equal to those defined by Mac OS 9 for the
equivalent TextEncoding data type. For example, Core Foundation’s kCFStringEncodingMacRoman is
the same integer value as kTextEncodingMacRoman.

String objects also provides special conversion facilities for Cocoa encodings for NSString objects, for
Windows code pages, and for IANA registry character set names.

36 Supported Encodings
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Converting Between String Encodings

An external representation of a CFString object in Core Foundation is the string data in a form that can be
written to disk and read back in on the same platform or on a different platform. The format of an externally
represented CFString object is a CFData object. If the encoding of the characters is Unicode, the data usually
includes a special character called a BOM (for “byte order mark”) that designates the endianness of the data.
When the external representation of a string is read, Core Foundation evaluates the BOM and does any
necessary byte swapping. If the encoding is Unicode and there is no BOM, the data is assumed to be big-endian.
When you use string objects to write out an external representation of Unicode characters, the BOM is inserted,
except for representations created with encoding constants kCFStringEncodingUTF16BE,
kCFStringEncodingUTF16LE, kCFStringEncodingUTF32BE, and kCFStringEncodingUTF32LE. These encodings
do not require a BOM because the byte order is explicitly indicated by the letters "BE" (big-endian) and "LE"
(little-endian).

When you want the character data represented by a CFString object to persist, either as a file on disk or as
data sent over a network, you should first convert the CFString object to a CFData object using the function
CFStringCreateExternalRepresentation. The CFData object is called an “external representation” of
the CFString object; if the encoding is Unicode, the function automatically inserts a BOM (byte order marker)
in the data to specify endianness. You can convert an external-representation CFData object back to a CFString
object with the CFStringCreateFromExternalRepresentation function.

Listing 1 (page 37) shows how the external-representation functions might be used. The last parameter of
the CFStringCreateExternalRepresentation function specifies a loss byte, the value to be assigned
to characters that cannot be converted to the specified encoding. If the loss byte is 0 (as in the example
below) and conversion errors occur, the result of the function is NULL. This feature is similar to that provided
by the CFStringGetBytes function; however the CFStringCreateExternalRepresentation function
is more convenient since it gives you a CFData object.

Listing 1 Using the external-representation functions

CFDataRef appendTimeToLog(CFDataRef log) {
 CFMutableStringRef mstr;
 CFStringRef str;
 CFDataRef newLog;
 CFGregorianDate date =
 CFAbsoluteTimeGetGregorianDate(CFAbsoluteTimeGetCurrent(),
 CFTimeZoneCopySystem());

 str = CFStringCreateFromExternalRepresentation(NULL, log,
 kCFStringEncodingUTF8);
 CFShow(str);
 mstr = CFStringCreateMutableCopy(NULL, 0, str);
 CFStringAppendFormat(mstr, NULL,
 CFSTR("Received at %d/%d/%d %.2d:%.2d:%2.0f\n"),
 date.month, date.day, date.year, date.hour, date.minute,
 date.second);
 CFShow(mstr);
 newLog = CFStringCreateExternalRepresentation(NULL, mstr,
 kCFStringEncodingUTF8, '?');
 CFRelease(str);

37
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Handling External Representations of Strings

 CFRelease(mstr);
 CFShow(newLog);
 return newLog;
}

This code generates output similar to the following snippet:

Master Log

Master Log

Received at 7/20/1999 19:23:16

<CFData 0x103c0 [0x69bce158]>{length = 43, capacity = 43, bytes =
0x4d6173746572204c6f670a0a52656365 ... 393a32333a31360a}

As the example shows, the CFString object in its external representation is immutable, regardless of its
mutability status before being stored as a CFData object. If you want to modify the CFString object returned
from CFStringCreateFromExternalRepresentation, you need to make a mutable copy of it.

Instead of using the CFStringCreateFromExternalRepresentation function to create a CFString object
and then access the characters in the object, you can use CFData functions to get at the characters directly.
Listing 4 (page 18) shows how this is done using the CFData functions CFDataGetLength and
CFDataGetBytePtr.

38
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Handling External Representations of Strings

Many Core Foundation take ranges—a structure of type CFRange—as parameters. A range is a measure of
a linear segment; it has a beginning location and a length. To create and initialize this structure you can use
the convenience function CFRangeMake.

The following code fragment gets the number of subsequent elements in an array that match the first element:

CFRange aRange = CFRangeMake(1, CFArrayGetCount(array) - 1);
// Since start is 1, length of remainder of range is count-1
const void *aValue = CFArrayGetValueAtIndex(array, 0);
CFIndex numVals = CFArrayGetCountOfValue(array, aRange, aValue);

39
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Creating and Using Ranges

40
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Creating and Using Ranges

In Core Foundation, a character set, as represented by a CFCharacterSet object, represents a set of Unicode
characters. Functions can use character sets to group characters together for searching and parsing operations,
so that they can find or exclude any of a particular set of characters during a search. Aside from testing for
membership in a character set, a character-set object simply holds a set of character values to limit operations
on strings.

You use character sets in search, parsing, and comparison operations involving strings. Programmatic interfaces
that require references to CFCharacterSet objects are currently under development in both Core Foundation
and Carbon.

To obtain a CFCharacterSet object that can be passed into a function, you can either use one of the predefined
character sets or create your own. To use one of the predefined sets—including such things as whitespace,
alphanumeric characters, and decimal digits—call CFCharacterSetGetPredefined with one of the
CFCharacterSetPredefinedSet constants. Several CFCharacterSet functions create character sets from
strings and bitmapped data and others allow you to create mutable character sets. You can use a predefined
character set as a starting point for building a custom set by making a mutable copy of it and changing that.

Because character sets often participate in performance-critical code, you should be aware of the aspects of
their use that can affect the performance of your application. Mutable character sets are generally much
more expensive than immutable character sets. They consume more memory and are costly to invert (an
operation often performed in scanning a string). Because of this, you should follow these guidelines:

 ■ Create as few mutable character sets as possible.

 ■ Cache character sets (in a global dictionary, perhaps) instead of continually recreating them.

 ■ When creating a custom set that doesn't need to change after creation, make an immutable copy of the
final character set for actual use, and dispose of the working mutable character set.

41
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Character Sets

42
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Character Sets

This article summarizes the format specifiers supported by string formatting methods and functions.

Format Specifiers

The format specifiers supported by the NSString formatting methods and CFString formatting functions
follow the IEEE printf specification; the specifiers are summarized in Table 1 (page 43). Note that you can
also use the “n$” positional specifiers such as %1$@ %2$s. For more details, see the IEEE printf specification.
You can also use these format specifiers with the NSLog function.

Table 1 Format specifiers supported by the NSString formatting methods and CFString formatting
functions

DescriptionSpecifier

Objective-C object, printed as the string returned by descriptionWithLocale: if available,
or description otherwise. Also works with CFTypeRef objects, returning the result of the
CFCopyDescription function.

%@

'%' character%%

Signed 32-bit integer (int)%d, %D, %i

Unsigned 32-bit integer (unsigned int)%u, %U

Signed 16-bit integer (short)%hi

Unsigned 16-bit integer (unsigned short)%hu

Signed 64-bit integer (long long)%qi

Unsigned 64-bit integer (unsigned long long)%qu

Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the digits 0–9 and
lowercase a–f

%x

Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the digits 0–9 and
uppercase A–F

%X

Unsigned 64-bit integer (unsigned long long), printed in hexadecimal using the digits 0–9
and lowercase a–f

%qx

Unsigned 64-bit integer (unsigned long long), printed in hexadecimal using the digits 0–9
and uppercase A–F

%qX

Format Specifiers 43
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

String Format Specifiers

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

DescriptionSpecifier

Unsigned 32-bit integer (unsigned int), printed in octal%o, %O

64-bit floating-point number (double)%f

64-bit floating-point number (double), printed in scientific notation using a lowercase e to
introduce the exponent

%e

64-bit floating-point number (double), printed in scientific notation using an uppercase E to
introduce the exponent

%E

64-bit floating-point number (double), printed in the style of %e if the exponent is less than
–4 or greater than or equal to the precision, in the style of %f otherwise

%g

64-bit floating-point number (double), printed in the style of %E if the exponent is less than
–4 or greater than or equal to the precision, in the style of %f otherwise

%G

8-bit unsigned character (unsigned char), printed by NSLog() as an ASCII character, or, if
not an ASCII character, in the octal format \\ddd or the Unicode hexadecimal format \\udddd,
where d is a digit

%c

16-bit Unicode character (unichar), printed by NSLog() as an ASCII character, or, if not an
ASCII character, in the octal format \\ddd or the Unicode hexadecimal format \\udddd, where
d is a digit

%C

Null-terminated array of 8-bit unsigned characters. %s interprets its input in the system encoding
rather than, for example, UTF-8.

%s

Null-terminated array of 16-bit Unicode characters%S

Void pointer (void *), printed in hexadecimal with the digits 0–9 and lowercase a–f, with a
leading 0x

%p

Length modifier specifying that a following a, A, e, E, f, F, g, or G conversion specifier applies
to a long double argument

%L

64-bit floating-point number (double), printed in scientific notation with a leading 0x and
one hexadecimal digit before the decimal point using a lowercase p to introduce the exponent

%a

64-bit floating-point number (double), printed in scientific notation with a leading 0X and
one hexadecimal digit before the decimal point using a uppercase P to introduce the exponent

%A

64-bit floating-point number (double), printed in decimal notation%F

Length modifier specifying that a following d, i, o, u, x, or X conversion specifier applies to a
size_t or the corresponding signed integer type argument

%z

Length modifier specifying that a following d, i, o, u, x, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument

%t

Length modifier specifying that a following d, i, o, u, x, or X conversion specifier applies to a
intmax_t or uintmax_t argument

%j

44 Format Specifiers
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

String Format Specifiers

Platform Dependencies

Mac OS X uses several data types—NSInteger,NSUInteger,CGFloat, andCFIndex—to provide a consistent
means of representing values in 32- and 64-bit environments. In a 32-bit environment, NSInteger and
NSUInteger are defined as int and unsigned int, respectively. In 64-bit environments, NSInteger and
NSUInteger are defined as long and unsigned long, respectively. To avoid the need to use different
printf-style type specifiers depending on the platform, you can use the specifiers shown in Table 2. Note that
in some cases you may have to cast the value.

Table 2 Format specifiers for data types

ConsiderationsFormat specifierType

Cast the value to long%ld or %lxNSInteger

Cast the value to unsigned long%lu or %lxNSUInteger

%f works for floats and doubles when formatting; but see
below warning when scanning

%f or %gCGFloat

The same as NSInteger%ld or %lxCFIndex

%p adds 0x to the beginning of the output. If you don't want
that, use %lx and cast to long.

%ppointer

long long is 64-bit on both 32- and 64-bit platforms%lld or %llxlong long

unsigned long long is 64-bit on both 32- and 64-bit
platforms

%llu or %llxunsigned long long

The following example illustrates the use of %ld to format an NSInteger and the use of a cast.

NSInteger i = 42;
printf("%ld\n", (long)i);

In addition to the considerations mentioned in Table 2, there is one extra case with scanning: you must
distinguish the types for float and double. You should use %f for float, %lf for double. If you need to use
scanf (or a variant thereof) with CGFloat, switch to double instead, and copy the double to CGFloat.

CGFloat imageWidth;
double tmp;
sscanf (str, "%lf", &tmp);
imageWidth = tmp;

It is important to remember that %lf does not represent CGFloat correctly on either 32- or 64-bit platforms.
This is unlike %ld, which works for long in all cases.

Platform Dependencies 45
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

String Format Specifiers

46 Platform Dependencies
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

String Format Specifiers

This table describes the changes to Strings Programming Guide for Core Foundation.

NotesDate

Added information to "Handling External Representations of Strings" about
string encodings that do not include a BOM.

2008-03-11

Added section to "Comparing, Sorting, and Searching String Objects" to illustrate
how to sort strings like Finder.

2007-07-10

Included the "String Format Specifiers" article.2006-05-23

Changed title from "Strings." Updated "About Strings" to include a reference to
CFAttributedString.

2006-01-10

Corrected description of character-by-character literal comparisons in "Comparing
and Searching String Objects."

2005-08-11

Corrected use of CFRangeMake in “Accessing the Contents of String Objects.”2003-10-22

Corrected the description of the CFStringCapitalize function.2003-08-07

Converted existing Core Foundation documentation into topic format. Added
revision history.

2003-01-17

47
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History

48
2008-03-11 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Strings Programming Guide for Core Foundation
	Contents
	Figures, Tables, and Listings
	Introduction
	About Strings
	The Unicode Basis of CFString Objects
	String Storage
	Creating and Copying Strings
	Creating CFString Objects From Constant Strings
	Creating CFString Objects From String Buffers
	Creating String Objects From Formatted Strings
	Creating Mutable String Objects
	Mutable Strings With Client-Owned Buffers

	Accessing the Contents of String Objects
	Getting the Contents as a C or a Pascal String
	Getting the Contents as Unicode Strings
	Character Processing

	Comparing, Sorting, and Searching String Objects
	Comparing and Searching Strings
	Sorting Strings

	Manipulating Mutable String Objects
	Forms of Mutation
	Appending
	Inserting, deleting, replacing
	Padding and trimming
	Case operations

	Code Examples

	Converting Between String Encodings
	The Basic Conversion Routines
	Encoding-Conversion Utilities
	Encoding by characteristic
	Available encodings
	Mappings to encoding sets

	Supported Encodings

	Handling External Representations of Strings
	Creating and Using Ranges
	Character Sets
	String Format Specifiers
	Format Specifiers
	Platform Dependencies

	Revision History

