
XML Programming Topics for Core
Foundation
Core Foundation > Data Management

2008-10-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Cocoa are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to XML Programming Topics for Core Foundation 7

Organization of This Document 7

About XML 9

XML Syntax 9
XML Parsers 10

Core Foundation XML Parser 11

CFXMLNode Objects 11
Tree-Based Parser API 12
Event-Driven Parser API 13

Parser Callbacks 13
Parser Option Flags 14

Parsing XML Documents 15

Using the Tree-Based Parser Interface 15
Using the Event-Driven Parser Interface 17

Document Revision History 23

3
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

4
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

About XML 9

Listing 1 A simple XML document 9

Core Foundation XML Parser 11

Table 1 XML parser additional information structures 11
Table 2 Parser option Flags 14
Listing 1 The CFXMLElementInfo structure 12

Parsing XML Documents 15

Figure 1 The structure of a CFXMLTree 16
Listing 1 A Core Foundation property list in XML format 15
Listing 2 Using the tree-based parser API 15
Listing 3 Obtaining information from a CFXMLTree 16
Listing 4 Implementing the CFXMLParserCreateXMLStructureCallBack function 17
Listing 5 Implementing the CFXMLParserAddChildCallBack function 18
Listing 6 Implementing the endStructure callback 19
Listing 7 Implementing the CFXMLParserResolveExternalEntityCallBack function 19
Listing 8 Implementing the handleError CFXMLParserHandleErrorCallBack function 19
Listing 9 Creating and invoking the XML parser 20
Listing 10 Parser output 20

5
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

6
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Core Foundation provides support for parsing XML documents into structured objects you can use in your
programs. XML is a platform-independent and extensible markup language.

This document describes the Core Foundation objects that you use to parse XML documents.

Note: The Core Foundation XML API is not the preferred API to use when developing applications. Instead
use the Cocoa NSXML API to get the most modern XML features. See Tree-Based XML Programming Guide for
Cocoa for details.

Organization of This Document

Core Foundation provides an XML parser you can use to read and extract data from XML documents. Core
Foundation provides two APIs with which to access the parser. A tree-based API converts XML data into the
Core Foundation collection CFXMLTree, and an event-driven and callback-based API allows you to perform
any action you wish on each XML structure as it is encountered by the parser. This topic provides a brief
introduction to XML and goes on to describe both of the XML parser interfaces in detail.

You need to understand the following concepts to use the XML objects:

 ■ “About XML” (page 9)

 ■ “Core Foundation XML Parser” (page 11)

The following task demonstrates how to parse a simple XML document using each of the Core Foundation
XML parser interfaces:

 ■ “Parsing XML Documents” (page 15)

Organization of This Document 7
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Introduction to XML Programming Topics for
Core Foundation

8 Organization of This Document
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Introduction to XML Programming Topics for Core Foundation

Extensible Markup Language, or XML, is a scripting language for representing structured data in a text file.
The structured data you want to represent using XML can be virtually anything—address books, configuration
parameters, spreadsheets, Web pages, financial transactions, technical drawings, and so on. XML defines a
set of rules for designing text formats for such data. By storing data in a structured text format, XML allows
you to look at data without the program that produced it. XML files are easy for computers to generate and
read, they are unambiguous, and they avoid common pitfalls of text data formats, such as lack of extensibility,
lack of support for internationalization and localization, and platform dependency.

XML is a complex subject whose thorough treatment is beyond the scope of this topic. Developers new to
XML concepts can find the XML 1.0 specification and supporting material at the website maintained by the
World Wide Web Consortium at http://www.w3c.org/XML. The Organization for the Advancement of
Structured Information Standards hosts two excellent sites on XML at http://www.xml.org/ and
http://www.oasis-open.org/cover/. There is also a great deal of information about XML and its various
uses at the following corporate sites: http://www.ibm.com/developer/xml/,
http://msdn.microsoft.com/xml/default.asp, and http://java.sun.com/xml/.

XML Syntax

Like HTML, XML is based on the Standard Generalized Markup Language, or SGML. This common heritage
renders XML familiar in look and feel to those accustomed to HTML. Unlike HTML, though, XML syntax requires
the use of matching start and end tags, such as <string> and </string>, to demarcate logical sections of
a document or data sets. A unit of information enclosed by tags is called an element. As a shortcut, if an
element has no content between its start and end tags, the tags can be merged into a single tag that ends
with "/>", such as <true/>. This simple syntax is easy to process by a computer, with the added benefit of
remaining understandable to humans.

The best way to illustrate the basic features of XML is with a simple example. The document shown in Listing
1 contains the XML representation of a customer object that might have been exported from a customer
database.

Listing 1 A simple XML document

<?xml version="1.0" encoding="UTF-8"?>
<customer>
 <name>Jane Doe</name>
 <address region="USA">
 <street>6236 Nicolet Rd</street>
 <city>Richmond</city>
 <state>VA</state>
 <postal>23225</postal>
 </address>
 <birthday>
 <month>10</month>
 <day>11</day>

XML Syntax 9
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

About XML

 <year>1949</year>
 </birthday>
</customer>

This example document contains the basic XML structural features. First there is the required prolog—also
called the XML declaration—containing XML version and character encoding information. (In the absence
of an encoding attribute, Core Foundation assumes UTF-8.) The remainder of the document is simply the
listing of elements that constitute the customer information.

XML Parsers

In computing terms, a parser is a program that takes input in the form of sequential instructions, tags, or
some other defined sequence of tokens, and breaks them up into easily manageable parts. An XML parser
is designed to read and, in a sense, interpret XML documents. As it executes, the parser recognizes and
responds to each XML structure it encounters by taking some specified action based on the structure type.
Many XML parsers, called tree-based parsers, convert an XML document into a tree structure that reflects
the structural hierarchy of the XML data. This tree is then made available to your application, which is free
to interpret and modify the data as appropriate. Other parsers are event-driven, and report to their client
each XML construct they encounter.

In addition to being event-driven or tree-based, XML parsers can be validating or nonvalidating. Validating
parsers check a document’s contents against a set of specific rules stating what elements are allowed in a
document and in what order they must appear. These rules appear in an XML document either as an optional
XML structure called a document type definition, or DTD, or as an XML Schema. Nonvalidating parsers are
smaller and faster, but they don’t check documents against the DTD; they only check if the document is
structurally well-formed.

10 XML Parsers
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

About XML

Core Foundation provides a parser that your applications can use to read data in XML format. Core Foundation’s
XML parser has two programming interfaces, one tree-based and the other event-driven. The tree-based
interface parses an XML document and returns the data to you in the form of a CFXMLTreeRef object. There
is also a configurable, callback-based API that allows event-driven parsing of an XML document. Event-driven
parsing allows you to customize the parser’s behavior so your application can respond only to the specific
XML constructs that interest you. Event-driven parsing is also useful for large documents because the parser
doesn’t have to build the entire tree in memory. However, tree-based parsing allows you to add or modify
nodes in the tree structure, and thus modify the original XML document.

CFXMLNode Objects

Both of the XML parser interfaces rely on a single data structure to return XML data to your application: the
CFXMLNodeRef opaque object. This Core Foundation type describes an individual XML construct, such as a
element, a comment, an attribute, or a string of character data.

Each CFXMLNode object contains three main pieces of information—the node’s type, the data string, and a
pointer to a data structure with additional information. You extract this data using simple accessor functions.
The node’s type is encoded as an enumeration constant describing the type of XML structure. The data string
is always a CFString object; the meaning of the string depends on the node's type ID. The format of the
additional data also depends on the node’s type; there is a specific structure for each type that requires
additional data.

As it processes an XML document, the parser converts each XML construct it encounters into a CFXMLNode
object that represents that construct. For example, when parsing the document shown in Listing 1 (page
9), the parser would respond to the tag <birthday> by creating a new CFXMLNode whose node type
would be set to the identifier kCFXMLNodeTypeElement. The CFXMLNode data string would contain the
CFString object “birthday”, and the additional data pointer would point to a CFXMLElementInfo structure
containing information about the element’s attributes.

In order to handle some of the more complex XML entities, Core Foundation defines several additional data
structures. The structures that contain additional information are described briefly in Table 1.

Table 1 XML parser additional information structures

Content DescriptionStructure

A list of element attributes.CFXMLElementInfo

The processing instruction.CFXMLProcessingInstructionInfo

The source URL for the document along with character encoding
information.

CFXMLDocumentInfo

CFXMLNode Objects 11
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Core Foundation XML Parser

Content DescriptionStructure

The system and public IDs for the DTD.CFXMLDocumentTypeInfo

The system and public IDs for the notation.CFXMLNotationInfo

The string that describes the element’s permissible content.CFXMLElementTypeDeclarationInfo

The name of the attribute being declared, the string describing
the attribute’s type, and the attribute’s default value.

CFXMLAttributeDeclarationInfo

A list of CFXMLAttributeDeclarationInfo structures.CFXMLAttributeList-
DeclarationInfo

The type of the entity, the text to be substituted for the entity
when referenced, the location of the entity (for external entities),
and the name of the entity’s notation if the entity is not parsed.

CFXMLEntityInfo

The type of the entity reference.CFXMLEntityReferenceInfo

To briefly illustrate how these structures are used by the parser, consider once again the XML document
shown in Listing 1 (page 9). The fourth line of the document contains the tag <address region="USA">.
The string region="USA" defines an element attribute called region whose string value is USA. Element
attributes are a way to associate additional data with a given element.

The XML parser returns a tag’s attributes to your application as a CFXMLElementInfo structure. This structure
is shown in Listing 1.

Listing 1 The CFXMLElementInfo structure

typedef struct {
 CFDictionaryRef attributes;
 CFArrayRef attributeOrder;
 Boolean isEmpty;
} CFXMLElementInfo;

When parsing this tag, the parser creates a CFXMLNode object whose type code is kCFXMLNodeTypeElement,
and whose data string is "address". The additional information pointer is set to point to a
CFXMLElementInfo structure describing the element and its attributes. The attributes field contains a
CFDictionary object holding the attribute data in the key/value format. The attributeOrder field contains
a CFArray object holding the attributes dictionary keys in the order they were encountered. The Boolean
value of the isEmpty field indicates whether the element is empty. See Collections Programming Topics for
Core Foundation for more information about CFDictionary and CFArray.

Tree-Based Parser API

The tree-based parser API provides a very simple method for reading XML data. One call to the function
CFXMLTreeCreateFromData reads an entire XML document—specified by a pointer to XML data in memory,
or by a URL string—and returns the XML data to you in the form of a CFXMLTree object. A CFXMLTree object
is simply a CFTree object that contains a pointer to a CFXMLNode object in each node’s context. See Collections
Programming Topics for Core Foundation for more information about CFTreeRef and its API.

12 Tree-Based Parser API
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Core Foundation XML Parser

Once the CFXMLTree object has been created, you can use the CFTree API to examine the tree and extract
information from a given node. Core Foundation also provides convenience functions that make it even
easier to access the content of a CFXMLTree object. For example, CFXMLTreeGetNode takes a reference to
one of the tree’s nodes and returns a pointer to that node.

The section “Using the Tree-Based Parser Interface” (page 15) shows you how to parse, examine, and modify
an XML document using the tree-based parser API.

Event-Driven Parser API

The tree-based XML parser API is sufficient for many needs. However, there are some cases where using the
event-driven interface of CFXML is appropriate:

 ■ You want fine-tuned control of the parsing process.

 ■ You need access to data within a very large XML document and converting the entire document into a
CFXMLTree object requires too much memory.

 ■ A CFXMLTree object is inappropriate for your application’s needs, and you want to build a custom data
structure from the contents of an XML document.

 ■ You wish to provide additional error checking as parsing progresses.

 ■ You wish to control when and how external entities are loaded.

For these and other situations you can use the callback-based event-driven API. This API is somewhat more
complex to use, but provides much more flexibility than the tree-based API.

Conceptually, the event-driven API is simple. You first define a set of callback functions that are invoked as
the parsing process proceeds. As the parser encounters each XML structure, your functions are called, giving
you an opportunity to handle the data however you wish.

Parser Callbacks

In order to use the event-driven parser, you must implement three of the five callbacks described in this
section—CFXMLParserCreateXMLStructureCallBack, CFXMLParserAddChildCallBack, and
CFXMLParserEndXMLStructureCallBack. The other callbacks are optional.

The CFXMLParserCreateXMLStructureCallBack function is called when the parser encounters a new
XML structure. It passes a pointer to a CFXMLNode. If the function returns NULL, the parser skips the structure.

The CFXMLParserAddChildCallBack function is called when the parser encounters a child structure. It
notifies you of the parent–child relationship and passes the data you returned from
CFXMLParserCreateXMLStructureCallBack for both the parent and child.

The CFXMLParserEndXMLStructureCallBack function is called when the parser exits an XML structure
reported by CFXMLParserCreateXMLStructureCallBack. It passes the data you returned from
CFXMLParserCreateXMLStructureCallBack.

The CFXMLParserResolveExternalEntityCallBack function is called when the parser encounters an
XML external entity reference. It passes the publicID and systemID data for the entity. It is up to you to
load the data if you wish and return it as a CFData. Not currently supported.

Event-Driven Parser API 13
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Core Foundation XML Parser

The CFXMLParserHandleErrorCallBack is called when the parser encounters an error condition. It passes
an error code indicating the nature of the error. From within your error handler, you can use the function
CFXMLParserCopyErrorDescription to get a CFString describing the error condition. You can also use
the functions CFXMLParserGetLineNumber and CFXMLParserGetLocation to learn the exact location
of the error within the XML document.

At any point during the parsing you can use the function CFXMLParserGetStatusCode to find out what
the parser is doing. You can also call CFXMLParserAbort to signal an error.

Parser Option Flags

There are various options you can use to configure the parser’s behavior. An option flag of 0, or
kCFXMLParserNoOptions, leaves the XML as “intact” as possible. In other words, this option causes the
parser to report all structures and performs no entity replacements. To make the parser do the most work,
returning only the pure element tree, set the option flag to kCFXMLParserAllOptions.

Table 2 Parser option Flags

StatusDescriptionFlag

Not supportedValidate the document against its DTD schema,
reporting any errors.

kCFXMLParserValidate-
Document

SupportedSilently skip over metadata constructs (the DTD and
comments).

kCFXMLParserSkipMetaData

Not supportedReplace declared entities like <.kCFXMLParserReplace-
PhysicalEntities

SupportedSkip over all whitespace that does not abut
non-whitespace character data. For example, given
<foo> <bar> blah </bar></foo>, the whitespace
between foo’s open tag and bar’s open tag would be
suppressed, but the whitespace around blah would be
preserved.

kCFXMLParserSkip-
Whitespace

Not SupportedWhere the DTD specifies implied attribute-value pairs
for a particular element, add those pairs to any
occurrences of the element in the element tree.

kCFXMLParserAdd-
ImpliedAttributes

SupportedAll of the supported options.kCFXMLParserAllOptions

SupportedNo options.kCFXMLParserNoOptions

The section “Using the Event-Driven Parser Interface” (page 17) shows you how to parse an XML document
using the event-driven parser API.

14 Event-Driven Parser API
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Core Foundation XML Parser

The document shown in Listing 1 contains the XML representation of a very simple Core Foundation property
list created using CFPropertyList. Note that a property list was chosen purely for the purposes of illustrating
XML parser usage in a Core Foundation context. CFPropertyList has convenience functions for converting
property lists to and from XML format, so in most cases your application would not need to parse an XML
property list using the XML parser directly (see Property List Programming Topics for Core Foundation for more
information).

Listing 1 A Core Foundation property list in XML format

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist SYSTEM "file://localhost/System/Library/DTDs/PropertyList.dtd">
<plist version="0.9">
<dict>
 <key>Jane Doe</key>
 <integer>1999</integer>
 <key>John Doe</key>
 <integer>2000</integer>
</dict>
</plist>

In this example XML document, the data consists of two names and associated birth years. The <plist> tag
declares that the enclosed data is a property list that corresponds to the Core Foundation data type
CFPropertyList. The <dict> tag declares that its enclosed data corresponds to a CFDictionary. Finally,
the name and birth year data are listed in the key/value pair format required for a CFDictionary object.

Using the Tree-Based Parser Interface

Listing 2 shows how you would use the high level XML API to convert the sample XML data in Listing 1 (page
15) into a CFXMLTree object. This example assumes that sourceURL is a valid CFURL object and refers to
the XML document.

Listing 2 Using the tree-based parser API

CFXMLTreeRef cfXMLTree;
CFDataRef xmlData;

// Load the XML data using its URL.
CFURLCreateDataAndPropertiesFromResource(kCFAllocatorDefault,
 sourceURL, &xmlData, NULL, NULL, NULL)

// Parse the XML and get the CFXMLTree.
cfXMLTree = CFXMLTreeCreateFromData(kCFAllocatorDefault,
 xmlData,
 sourceURL,
 kCFXMLParserSkipWhitespace,

Using the Tree-Based Parser Interface 15
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Parsing XML Documents

 kCFXMLNodeCurrentVersion);

Figure 1 illustrates the structure of the CFXMLTree object produced by the code in Listing 2 (page 15). As
you would expect, it exactly reflects the structure of the original XML document. The diagram displays the
data type code and data string from each CFXMLNode object.

Figure 1 The structure of a CFXMLTree

Document
example.xml

Element
dict

Element
key

Element
plist

Element
key

Element
integer

Element
integer

Text
Jane Doe

Text
1999

Text
John Doe

Text
2000

Processing
Instruction

xml

DTD

The example in Listing 3 shows how to use some of the XML convenience functions to examine the top level
of a CFXMLTree object and print out each node’s data string contents.

Listing 3 Obtaining information from a CFXMLTree

CFXMLTreeRef xmlTreeNode;
CFXMLNodeRef xmlNode;
int childCount;
int index;

// Get a count of the top level node’s children.
childCount = CFTreeGetChildCount(cfXMLTree);

// Print the data string for each top-level node.
for (index = 0; index < childCount; index++) {
 xmlTreeNode = CFTreeGetChildAtIndex(cfXMLTree, index);
 xmlNode = CFXMLTreeGetNode(xmlTreeNode);
 CFShow(CFXMLNodeGetString(xmlNode));
}

16 Using the Tree-Based Parser Interface
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Parsing XML Documents

Using the Event-Driven Parser Interface

The event-driven parser API gives you complete flexibility to do whatever you wish with the data in an XML
document. To use the event-driven parser API, you define a set of callback functions that the parser invokes
as it encounters specific structures in the XML document. The code in this section shows how to use the
event-driven parser to print the data in an XML document. A sample implementation for each callback
function is shown, and then the code to create and run the parser.

The code in Listing 4 implements the first—and by far the longest—callback function,
CFXMLParserCreateXMLStructureCallBack. This example implementation prints the contents of each
new XML structure’s additional information data as it is encountered.

Listing 4 Implementing the CFXMLParserCreateXMLStructureCallBack function

void *createStructure(CFXMLParserRef parser,
 CFXMLNodeRef node, void *info) {

 CFStringRef myTypeStr;
 CFStringRef myDataStr;
 CFXMLDocumentInfo *docInfoPtr;

 // Use the dataTypeID to determine what to print.
 switch (CFXMLNodeGetTypeCode(node)) {
 case kCFXMLNodeTypeDocument:
 myTypeStr = CFSTR("Data Type ID: kCFXMLNodeTypeDocument\n");
 docInfoPtr = CFXMLNodeGetInfoPtr(node);
 myDataStr = CFStringCreateWithFormat(NULL,
 NULL,
 CFSTR("Document URL: %@\n"),
 CFURLGetString(docInfoPtr->sourceURL));
 break;
 case kCFXMLNodeTypeElement:
 myTypeStr = CFSTR("Data Type ID: kCFXMLNodeTypeElement\n");
 myDataStr = CFStringCreateWithFormat(NULL, NULL,
 CFSTR("Element: %@\n"), CFXMLNodeGetString(node));
 break;
 case kCFXMLNodeTypeProcessingInstruction:
 myTypeStr = CFSTR("Data Type ID:
 kCFXMLNodeTypeProcessingInstruction\n");
 myDataStr = CFStringCreateWithFormat(NULL, NULL,
 CFSTR("PI: %@\n"), CFXMLNodeGetString(node));
 break;
 case kCFXMLNodeTypeComment:
 myTypeStr = CFSTR("Data Type ID: kCFXMLNodeTypeComment\n");
 myDataStr = CFStringCreateWithFormat(NULL, NULL,
 CFSTR("Comment: %@\n"), CFXMLNodeGetString(node));
 break;
 case kCFXMLNodeTypeText:
 myTypeStr = CFSTR("Data Type ID: kCFXMLNodeTypeText\n");
 myDataStr = CFStringCreateWithFormat(NULL, NULL,
 CFSTR("Text:%@\n"), CFXMLNodeGetString(node));
 break;

Using the Event-Driven Parser Interface 17
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Parsing XML Documents

 case kCFXMLNodeTypeCDATASection:
 myTypeStr = CFSTR("Data Type ID: k
 CFXMLDataTypeCDATASection\n");
 myDataStr = CFStringCreateWithFormat(NULL, NULL,
 CFSTR("CDATA: %@\n"), CFXMLNodeGetString(node));
 break;
 case kCFXMLNodeTypeEntityReference:
 myTypeStr = CFSTR("Data Type ID:
 kCFXMLNodeTypeEntityReference\n");
 myDataStr = CFStringCreateWithFormat(NULL, NULL,
 CFSTR("Entity reference: %@\n"),
 CFXMLNodeGetString(node));
 break;
 case kCFXMLNodeTypeDocumentType:
 myTypeStr = CFSTR("Data Type ID: kCFXMLNodeTypeDocumentType\n");
 myDataStr = CFStringCreateWithFormat(NULL, NULL,
 CFSTR("DTD: %@\n"), CFXMLNodeGetString(node));
 break;
 case kCFXMLNodeTypeWhitespace:
 myTypeStr = CFSTR("Data Type ID: kCFXMLNodeTypeWhitespace\n");
 myDataStr = CFStringCreateWithFormat(NULL, NULL,
 CFSTR("Whitespace: %@\n"), CFXMLNodeGetString(node));
 break;
 default:
 myTypeStr = CFSTR("Data Type ID: UNKNOWN\n");
 myDataStr = CFSTR("Unknown type.\n");
 }

 // Print the contents.
 printf("---Create Structure Called--- \n");
 CFShow(myTypeStr);
 CFShow(myDataStr);

 // Return the data string for use by the addChild and
 // endStructure callbacks.
 return myDataStr;
}

Notice that the CFXMLParserCreateXMLStructureCallBack function returns the data string created
using the dataString field of the newly encountered structure. This return value can actually be anything,
but is kept by the parser and passed back to you by both the CFXMLParserAddChildCallBack and
CFXMLParserEndXMLStructureCallBack functions described below. Note that if your
CFXMLParserCreateXMLStructureCallBack function returns NULL, CFXMLParserAddChildCallBack
and CFXMLParserEndXMLStructureCallBack will not be called. The only exception is
CFNodeTypeDocument; CFXMLParserEndXMLStructureCallBack will be called for it even if you return
NULL from CFXMLParserCreateXMLStructureCallBack.

The parser invokes the CFXMLParserAddChildCallBack when it encounters a child of the most recently
parsed structure. In this example, the CFXMLParserAddChildCallBack callback shown in Listing 5 simply
prints out both of the strings to make clear the parent–child relationships of the XML structures being parsed.

Listing 5 Implementing the CFXMLParserAddChildCallBack function

void addChild(CFXMLParserRef parser, void *parent, void *child, void *info) {
 printf("---Add Child Called--- \n");
 printf("Parent being added to: "); CFShow((CFStringRef)parent);
 printf("Child being added: "); CFShow((CFStringRef)child);

18 Using the Event-Driven Parser Interface
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Parsing XML Documents

}

The parser calls the CFXMLParserEndXMLStructureCallBack function, implemented in Listing 6, when
it moves beyond a given structure. The xmlType parameter is a pointer to whatever data the
CFXMLParserCreateXMLStructureCallBack function returned when the structure’s open tag was first
encountered. In this example implementation, the callback prints out a string indicating which structure has
ended.

Listing 6 Implementing the endStructure callback

void endStructure(CFXMLParserRef parser, void *xmlType, void *info) {
 // Leave evidence that we were called.
 printf("---End Structure Called for \n"); CFShow((CFStringRef)xmlType);

 // Now that the structure and all of its children have been parsed,
 // we can release the string.
 CFRelease(xmlType);
}

The parser calls the CFXMLParserResolveExternalEntityCallBack function when it encounters an
external entity reference. The example XML data in this section contains no entity references so this callback
is not invoked. Listing 7 shows a minimal implementation.

Listing 7 Implementing the CFXMLParserResolveExternalEntityCallBack function

CFDataRef resolveEntity(CFXMLParserRef parser, CFStringRef publicID,
 CFURLRef systemID, void *info) {
 printf("---resolveEntity Called---\n");
 return NULL;
}

The parser calls the CFXMLParserHandleErrorCallBack callback when it encounters an error condition.
As shown in Listing 8, you can use the XML API to get both the error string and error location information
from the parser. If you return false from this callback, the parser aborts. If you return true and the error is
nonfatal, the parser continues processing.

Listing 8 Implementing the handleError CFXMLParserHandleErrorCallBack function

Boolean handleError(CFXMLParserRef parser, SInt32 error, void *info) {
 char buf[512], *s;

 // Get the error description string from the Parser.
 CFStringRef description = CFXMLParserCopyErrorDescription(parser);
 s = (char *)CFStringGetCStringPtr(description,
 CFStringGetSystemEncoding());

 // If the string pointer is unavailable, do some extra work.
 if (!s) {
 CFStringGetCString(description, buf, 512,
 CFStringGetSystemEncoding());
 }

 CFRelease(description);

 // Report the exact location of the error.
 fprintf(stderr, "Parse error (%d) %s on line %d, character %d\n",
 (int)error,

Using the Event-Driven Parser Interface 19
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Parsing XML Documents

 s,
 (int)CFXMLParserGetLineNumber(parser),
 (int)CFXMLParserGetLocation(parser));

 return false;
}

Listing 9 demonstrates how to create and invoke the parser.

Listing 9 Creating and invoking the XML parser

// First, set up the parser callbacks.
CFXMLParserCallBacks callbacks = {0, createStructure, addChild, endStructure,
resolveEntity, handleError};

// Create the parser with the option to skip whitespace.
parser = CFXMLParserCreate(kCFAllocatorDefault, xmlData, urlOut,
kCFXMLParserSkipWhitespace, kCFXMLNodeCurrentVersion, &callbacks, NULL);

// Invoke the parser.
if (!CFXMLParserParse(parser)) {
 printf("parse failed\n");
}

As you can see, once the callbacks have been implemented, the code to create and call the parser is quite
simple. “Parser output” shows the output generated by the code in “Creating and invoking the
XML parser” (page 20).

Listing 10 Parser output

---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeDocument, Document: file://localhost/myPlist.xml
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeProcessingInstruction, PI: xml
---Add Child Called---
 Parent being added to: Document: file://localhost/myPlist.xml
 Child being added: PI: xml
---End Structure Called for PI: xml
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeDocumentType, DTD
---Add Child Called---
 Parent being added to: Document: file://localhost/myPlist.xml
 Child being added: DTD
---End Structure Called for DTD
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeElement, Element: plist
---Add Child Called---
 Parent being added to: Document: file://localhost/myPlist.xml
 Child being added: Element: plist
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeElement, Element: dict
---Add Child Called---
 Parent being added to: Element: plist
 Child being added: Element: dict
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeElement, Element: key
---Add Child Called---
 Parent being added to: Element: dict

20 Using the Event-Driven Parser Interface
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Parsing XML Documents

 Child being added: Element: key
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeText, Text: Jane Doe
---Add Child Called---
 Parent being added to: Element: key
 Child being added: Text: Jane Doe
---End Structure Called for Text: Jane Doe
---End Structure Called for Element: key
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeElement, Element: integer
---Add Child Called---
 Parent being added to: Element: dict
 Child being added: Element: integer
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeText, Text: 1999
---Add Child Called---
 Parent being added to: Element: integer
 Child being added: Text: 1999
---End Structure Called for Text: 1999
---End Structure Called for Element: integer
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeElement, Element: key
---Add Child Called---
 Parent being added to: Element: dict
 Child being added: Element: key
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeText, Text: John Doe
---Add Child Called---
 Parent being added to: Element: key
 Child being added: Text: John Doe
---End Structure Called Text: John Doe
---End Structure Called for Element: key
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeElement, Element: integer
---Add Child Called---
 Parent being added to: Element: dict
 Child being added: Element: integer
---Create Structure Called---
 Data Type ID: kCFXMLNodeTypeText, Text: 2000
---Add Child Called---
 Parent being added to: Element: integer
 Child being added: Text: 2000
---End Structure Called for Text: 2000
---End Structure Called for Element: integer
---End Structure Called for Element: dict
---End Structure Called for Element: plist

Using the Event-Driven Parser Interface 21
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Parsing XML Documents

22 Using the Event-Driven Parser Interface
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Parsing XML Documents

This table describes the changes to XML Programming Topics for Core Foundation.

NotesDate

Made various small corrections.2008-10-15

Updated terminology, reorganized, and edited. Changed title from "XML".2006-10-03

Removed erroneous call to CFRelease() in implementation of
createStructure.

2003-09-10

Converted existing Core Foundation documentation into topic format. Added
revision history.

2003-01-17

23
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

24
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

	XML Programming Topics for Core Foundation
	Contents
	Figures, Tables, and Listings
	Introduction
	About XML
	XML Syntax
	XML Parsers

	Core Foundation XML Parser
	CFXMLNode Objects
	Tree-Based Parser API
	Event-Driven Parser API
	Parser Callbacks
	Parser Option Flags

	Parsing XML Documents
	Using the Tree-Based Parser Interface
	Using the Event-Driven Parser Interface

	Revision History

