
CFAllocator Reference
Core Foundation

2006-12-08

Apple Inc.
© 2003, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple and the Apple logo are trademarks of
Apple Inc., registered in the United States and
other countries.

iPhone is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

CFAllocator Reference 5

Overview 5
Functions by Task 5

Creating an Allocator 5
Managing Memory with an Allocator 5
Getting and Setting the Default Allocator 6
Getting an Allocator's Context 6
Getting the CFAllocator Type ID 6

Functions 6
CFAllocatorAllocate 6
CFAllocatorCreate 7
CFAllocatorDeallocate 7
CFAllocatorGetContext 8
CFAllocatorGetDefault 9
CFAllocatorGetPreferredSizeForSize 9
CFAllocatorGetTypeID 10
CFAllocatorReallocate 10
CFAllocatorSetDefault 11

Callbacks 12
CFAllocatorAllocateCallBack 12
CFAllocatorCopyDescriptionCallBack 13
CFAllocatorDeallocateCallBack 14
CFAllocatorPreferredSizeCallBack 14
CFAllocatorReallocateCallBack 15
CFAllocatorReleaseCallBack 16
CFAllocatorRetainCallBack 16

Data Types 17
CFAllocatorContext 17
CFAllocatorRef 19

Constants 19
Predefined Allocators 19

Document Revision History 21

Index 23

3
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

4
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Companion guide Memory Management Programming Guide for Core Foundation

Declared in CFBase.h

Overview

CFAllocator is an opaque type that allocates and deallocates memory for you. You never have to allocate,
reallocate, or deallocate memory directly for Core Foundation objects—and rarely should you. You pass
CFAllocator objects into functions that create objects; these functions have “Create” embedded in their
names, for example, CFStringCreateWithPascalString. The creation functions use the allocators to
allocate memory for the objects they create.

Functions by Task

Creating an Allocator

CFAllocatorCreate (page 7)
Creates an allocator object.

Managing Memory with an Allocator

CFAllocatorAllocate (page 6)
Allocates memory using the specified allocator.

CFAllocatorDeallocate (page 7)
Deallocates a block of memory with a given allocator.

CFAllocatorGetPreferredSizeForSize (page 9)
Obtains the number of bytes likely to be allocated upon a specific request.

CFAllocatorReallocate (page 10)
Reallocates memory using the specified allocator.

Overview 5
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

Getting and Setting the Default Allocator

CFAllocatorGetDefault (page 9)
Gets the default allocator object for the current thread.

CFAllocatorSetDefault (page 11)
Sets the given allocator as the default for the current thread.

Getting an Allocator's Context

CFAllocatorGetContext (page 8)
Obtains the context of the specified allocator or of the default allocator.

Getting the CFAllocator Type ID

CFAllocatorGetTypeID (page 10)
Returns the type identifier for the CFAllocator opaque type.

Functions

CFAllocatorAllocate
Allocates memory using the specified allocator.

void * CFAllocatorAllocate (
 CFAllocatorRef allocator,
 CFIndex size,
 CFOptionFlags hint
);

Parameters
allocator

The allocator to use to allocate the memory. Pass NULL or kCFAllocatorDefault to use the current
default allocator.

size
The size of the memory to allocate.

hint
A bitfield containing flags that suggest how memory is to be allocated. 0 indicates no hints. No hints
are currently defined, so only 0 should be passed for this value.

Return Value
A pointer to the newly allocated memory.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

6 Functions
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

Related Sample Code
Carbon Porting Tutorial
MoreIsBetter
MoreSCF
QISA

Declared In
CFBase.h

CFAllocatorCreate
Creates an allocator object.

CFAllocatorRef CFAllocatorCreate (
 CFAllocatorRef allocator,
 CFAllocatorContext *context
);

Parameters
allocator

The existing allocator to use to allocate memory for the new allocator. Pass the
kCFAllocatorUseContext (page 20) constant for this parameter to allocate memory using the
appropriate function callback specified in the context parameter. Pass NULL or
kCFAllocatorDefault (page 19) to allocate memory for the new allocator using the default allocator.

context
A structure of type CFAllocatorContext (page 17). The fields of this structure hold (among other
things) function pointers to callbacks used for allocating, reallocating, and deallocating memory.

Return Value
The new allocator object, or NULL if there was a problem allocating memory. Ownership follows the Create
Rule.

Discussion
You use this function to create custom allocators which you can then pass into various Core Foundation
object-creation functions. You must implement a function callback that allocates memory and assign it to
the allocate field of this structure. You typically also implement deallocate, reallocate, and preferred-size
callbacks.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorDeallocate
Deallocates a block of memory with a given allocator.

Functions 7
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

void CFAllocatorDeallocate (
 CFAllocatorRef allocator,
 void *ptr
);

Parameters
allocator

The allocator that was used to allocate the block of memory pointed to by ptr.

ptr
An untyped pointer to a block of memory to deallocate using allocator.

Discussion
If the allocator does not specify a deallocate callback function, the memory is not deallocated.

Special Considerations

You must use the same allocator to deallocate memory as was used to allocate it.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
MoreIsBetter
MoreSCF
QISA

Declared In
CFBase.h

CFAllocatorGetContext
Obtains the context of the specified allocator or of the default allocator.

void CFAllocatorGetContext (
 CFAllocatorRef allocator,
 CFAllocatorContext *context
);

Parameters
allocator

The allocator to examine. Pass NULL to obtain the context of the default allocator.

context
On return, contains the context of allocator.

Discussion
An allocator's context, a structure of type CFAllocatorContext, holds pointers to various function callbacks
(particularly those that allocate, reallocate, and deallocate memory for an object). The context also contains
a version number and the info field for program-defined data. To obtain the value of the info field you
usually first have to get an allocator's context.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

8 Functions
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

Declared In
CFBase.h

CFAllocatorGetDefault
Gets the default allocator object for the current thread.

CFAllocatorRef CFAllocatorGetDefault (
 void
);

Return Value
A reference to the default allocator for the current thread. If none has been explicitly set, returns the generic
system allocator, kCFAllocatorSystemDefault (page 19). Ownership follows the Get Rule.

Discussion
See the discussion for CFAllocatorSetDefault (page 11) for more detail on the default allocator and for
advice on how and when to set a custom allocator as the default.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BasicDataBrowser

Declared In
CFBase.h

CFAllocatorGetPreferredSizeForSize
Obtains the number of bytes likely to be allocated upon a specific request.

CFIndex CFAllocatorGetPreferredSizeForSize (
 CFAllocatorRef allocator,
 CFIndex size,
 CFOptionFlags hint
);

Parameters
allocator

The allocator to use, or NULL for the default allocator.

size
The number of bytes to allocate. If the value is 0 or less, the result is the same value.

hint
A bitfield of type CFOptionsFlags. Pass flags to the allocator that suggest how memory is to be
allocated. 0 indicates no hints. No hints are currently defined, only 0 should be passed for this argument.

Return Value
The number of bytes likely to be allocated upon a specific request.

Functions 9
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

Discussion
The return value depends on the allocator's internal allocation strategy, and will be equal to or larger than
size. Calling this function may help you better match your memory allocation or reallocation strategy to
that of the allocator.

Note that the return value depends on the internal implementation of the allocator and the results may
change from release to release or from platform to platform.

If no function callback is assigned to the preferredSize field of the allocator's context (see the
CFAllocatorContext structure), then the value of size is returned.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorGetTypeID
Returns the type identifier for the CFAllocator opaque type.

CFTypeID CFAllocatorGetTypeID (
 void
);

Return Value
The type identifier for the CFAllocator opaque type.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorReallocate
Reallocates memory using the specified allocator.

void * CFAllocatorReallocate (
 CFAllocatorRef allocator,
 void *ptr,
 CFIndex newsize,
 CFOptionFlags hint
);

Parameters
allocator

The allocator to use for reallocating memory. Pass NULL to request the default allocator.

10 Functions
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

ptr
An untyped pointer to a block of memory to reallocate to a new size. If ptr is NULL and newsize is
greater than 0, memory is allocated (using the allocate function callback of the allocator's context).
If ptr is NULL and newsize is 0, the result is NULL.

newsize
The number of bytes to allocate. If you pass 0 and the ptr parameter is non-NULL, the block of memory
that ptr points to is typically deallocated. If you pass 0 for this parameter and the ptr parameter is
NULL, nothing happens and the result returned is NULL.

hint
A bitfield of type CFOptionsFlags. Pass flags to the allocator that suggest how memory is to be
allocated. Zero indicates no hints. No hints are currently defined, only 0 should be passed for this
argument.

Discussion
The CFAllocatorReallocate function's primary purpose is to reallocate a block of memory to a new (and
usually larger) size. However, based on the values passed in certain of the parameters, this function can also
allocate memory afresh or deallocate a given block of memory. The following summarizes the semantic
combinations:

 ■ If the ptr parameter is non- NULL and the newsize parameter is greater than 0, the behavior is to
reallocate.

 ■ If the ptr parameter is NULL and the newsize parameter is greater than 0, the behavior is to allocate.

 ■ If the ptr parameter is non- NULL and the newsize parameter is 0, the behavior is to deallocate.

The result of the CFAllocatorReallocate function is either an untyped pointer to a block of memory or
NULL. A NULL result indicates either a failure to allocate memory or some other outcome, the precise
interpretation of which is determined by the values of certain parameters and the presence or absence of
callbacks in the allocator context. To summarize, a NULL result can mean one of the following:

 ■ An error occurred in the attempt to allocate memory, such as insufficient free space.

 ■ No allocate, reallocate, or deallocate function callback (depending on parameters) was defined
in the allocator context.

 ■ The semantic operation is "deallocate" (that is, there is no need to return anything).

 ■ The ptr parameter is NULL and the requested size is 0.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorSetDefault
Sets the given allocator as the default for the current thread.

Functions 11
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

void CFAllocatorSetDefault (
 CFAllocatorRef allocator
);

Parameters
allocator

The allocator to set as the default for the current thread.

Discussion
The CFAllocatorSetDefault function sets the allocator that is used in the current thread whenever NULL
is specified as an allocator argument. Generally, most allocations use the default allocator. Because of this,
the default allocator must be prepared to deal with arbitrary memory-allocation requests. In addition, the
size and number of requests can change between releases.

A further characteristic of the default allocator is that it can never be released, even if another allocator
replaces it as the default. Not only is it impractical to release a default allocator (because there might be
caches created somewhere that refer to the allocator) but it is generally safer and more efficient to keep it
around.

If you wish to use a custom allocator in a context, the best approach is to specify it in the first parameter of
creation functions rather than to set it as the default. Generally, setting the default allocator is not encouraged.
If you do set an allocator as the default, either do it for the life time of your application or do it in a nested
fashion (that is, restore the previous allocator before you exit your context). The latter approach might be
more appropriate for plug-ins or libraries that wish to set the default allocator.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Callbacks

CFAllocatorAllocateCallBack
A prototype for a function callback that allocates memory of a requested size.

typedef void *(*CFAllocatorAllocateCallBack) (
 CFIndex allocSize,
 CFOptionFlags hint,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void *MyCallBack (
 CFIndex allocSize,
 CFOptionFlags hint,
 void *info
);

12 Callbacks
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

Parameters
allocSize

This function allocates a block of memory of at least allocSize bytes (always greater than 0).

hint
A bitfield that is currently not used (always set to 0).

info
An untyped pointer to program-defined data. Allocate memory for the data and assign a pointer to
it. This data is often control information for the allocator. It may be NULL.

Return Value
A pointer to the start of the block.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorCopyDescriptionCallBack
A prototype for a function callback that provides a description of the specified data.

typedef CFStringRef (*CFAllocatorCopyDescriptionCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallBack (
 const void *info
);

Parameters
info

An untyped pointer to program-defined data.

Return Value
A CFString object that describes the allocator. The caller is responsible for releasing this object.

Discussion
A prototype for a function callback that provides a description of the data pointed to by the info field. In
implementing this function, return a reference to a CFString object that describes your allocator, particularly
some characteristics of your program-defined data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Callbacks 13
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

CFAllocatorDeallocateCallBack
A prototype for a function callback that deallocates a block of memory.

typedef void (*CFAllocatorDeallocateCallBack) (
 void *ptr,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 void *ptr,
 void *info
);

Parameters
ptr

The block of memory to deallocate.

info
An untyped pointer to program-defined data.

Discussion
A prototype for a function callback that deallocates a given block of memory. In implementing this function,
make the block of memory pointed to by ptr available for subsequent reuse by the allocator but unavailable
for continued use by the program. The ptr parameter cannot be NULL and if the ptr parameter is not a
block of memory that has been previously allocated by the allocator, the results are undefined; abnormal
program termination can occur.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorPreferredSizeCallBack
A prototype for a function callback that gives the size of memory likely to be allocated, given a certain request.

typedef CFIndex (*CFAllocatorPreferredSizeCallBack) (
 CFIndex size,
 CFOptionFlags hint,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

CFIndex MyCallBack (
 CFIndex size,
 CFOptionFlags hint,
 void *info
);

14 Callbacks
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

Parameters
size

The amount of memory requested.

hint
A bitfield that is currently not used (always set to 0).

info
An untyped pointer to program-defined data.

Return Value
The actual size the allocator is likely to allocate given this request.

Discussion
A prototype for a function callback that determines whether there is enough free memory to satisfy a request.
In implementing this function, return the actual size the allocator is likely to allocate given a request for a
block of memory of size size. The hint argument is a bitfield that you should currently not use.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorReallocateCallBack
A prototype for a function callback that reallocates memory of a requested size for an existing block of
memory.

typedef void *(*CFAllocatorReallocateCallBack) (
 void *ptr,
 CFIndex newsize,
 CFOptionFlags hint,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void *MyCallBack (
 void *ptr,
 CFIndex newsize,
 CFOptionFlags hint,
 void *info
);

Parameters
ptr

The block of memory to resize.

newsize
The size of the new allocation.

hint
A bitfield that is currently not used (always set to 0).

info
An untyped pointer to program-defined data.

Callbacks 15
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

Return Value
Pointer to the new block of memory.

Discussion
In implementing this function, change the size of the block of memory pointed to by ptr to the size specified
by newsize and return the pointer to the larger block of memory. Return NULL on any reallocation failure,
leaving the old block of memory untouched. Also return NULL immediately if any of the following conditions
if the ptr parameter is NULL or the newsize parameter is not greater than 0. Leave the contents of the old
block of memory unchanged up to the lesser of the new or old sizes. If the ptr parameter is not a block of
memory that has been previously allocated by the allocator, the results are undefined; abnormal program
termination can occur. The hint argument is a bitfield that you should currently not use (that is, assign 0).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorReleaseCallBack
A prototype for a function callback that releases the given data.

typedef void (*CFAllocatorReleaseCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *info
);

Parameters
info

The data to be released.

Discussion
A prototype for a function callback that releases the data pointed to by the info field. In implementing this
function, release (or free) the data you have defined for the allocator context.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorRetainCallBack
A prototype for a function callback that retains the given data.

16 Callbacks
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

typedef const void *(*CFAllocatorRetainCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 const void *info
);

Parameters
info

The data to be retained.

Discussion
A prototype for a function callback that retains the data pointed to by the info field. In implementing this
function, retain the data you have defined for the allocator context in this field. (This might make sense only
if the data is a Core Foundation object.)

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Data Types

CFAllocatorContext
A structure that defines the context or operating environment for an allocator (CFAllocator) object. Every
Core Foundation allocator object must have a context defined for it.

struct CFAllocatorContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
 CFAllocatorAllocateCallBack allocate;
 CFAllocatorReallocateCallBack reallocate;
 CFAllocatorDeallocateCallBack deallocate;
 CFAllocatorPreferredSizeCallBack preferredSize;
};
typedef struct CFAllocatorContext CFAllocatorContext;

Fields
version

An integer of type CFIndex. Assign the version number of the allocator. Currently the only valid value
is 0.

info
An untyped pointer to program-defined data. Allocate memory for this data and assign a pointer to
it. This data is often control information for the allocator. You may assign NULL.

Data Types 17
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

retain
A prototype for a function callback that retains the data pointed to by the info field. In implementing
this function, retain the data you have defined for the allocator context in this field. (This might make
sense only if the data is a Core Foundation object.) You may set this function pointer to NULL.

release
A prototype for a function callback that releases the data pointed to by the info field. In implementing
this function, release (or free) the data you have defined for the allocator context. You may set this
function pointer to NULL, but doing so might result in memory leaks.

copyDescription
A prototype for a function callback that provides a description of the data pointed to by the info
field. In implementing this function, return a reference to a CFString object that describes your allocator,
particularly some characteristics of your program-defined data. You may set this function pointer to
NULL, in which case Core Foundation will provide a rudimentary description.

allocate
A prototype for a function callback that allocates memory of a requested size. In implementing this
function, allocate a block of memory of at least size bytes and return a pointer to the start of the
block. The hint argument is a bitfield that you should currently not use (that is, assign 0). The size
parameter should always be greater than 0. If it is not, or if problems in allocation occur, return NULL.
This function pointer may not be assigned NULL.

reallocate
A prototype for a function callback that reallocates memory of a requested size for an existing block
of memory. In implementing this function, change the size of the block of memory pointed to by ptr
to the size specified by newsize and return the pointer to the larger block of memory. Return NULL
on any reallocation failure, leaving the old block of memory untouched. Also return NULL immediately
if any of the following conditions apply:

 ■ The ptr parameter is NULL.

 ■ The newsize parameter is not greater than 0.

Leave the contents of the old block of memory unchanged up to the lesser of the new or old
sizes. If the ptr parameter is not a block of memory that has been previously allocated by the
allocator, the results are undefined; abnormal program termination can occur. The hint argument
is a bitfield that you should currently not use (that is, assign 0). If you set this callback to NULL
the CFAllocatorReallocate (page 10) function returns NULL in most cases when it attempts
to use this allocator.

deallocate
A prototype for a function callback that deallocates a given block of memory. In implementing this
function, make the block of memory pointed to by ptr available for subsequent reuse by the allocator
but unavailable for continued use by the program. The ptr parameter cannot be NULL and if the ptr
parameter is not a block of memory that has been previously allocated by the allocator, the results
are undefined; abnormal program termination can occur. You can set this callback to NULL, in which
case the CFAllocatorDeallocate (page 7) function has no effect.

preferredSize
A prototype for a function callback that determines whether there is enough free memory to satisfy
a request. In implementing this function, return the actual size the allocator is likely to allocate given
a request for a block of memory of size size. The hint argument is a bitfield that you should currently
not use.

Discussion
See the “Memory Management” topic for information on creating a custom CFAllocator object and, as part
of that procedure, the steps for creating a properly initialized CFAllocatorContext structure.

18 Data Types
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorRef
A reference to a CFAllocator object.

typedef const struct __CFAllocator *CFAllocatorRef;

Discussion
The CFAllocatorRef type is a reference type used in many Core Foundation parameters and function
results. It refers to a CFAllocator object, which allocates, reallocates, and deallocates memory for Core
Foundation objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Constants

Predefined Allocators
CFAllocator provides the following predefined allocators. In general, you should use kCFAllocatorDefault
unless one of the special circumstances exist below.

const CFAllocatorRef kCFAllocatorDefault;
const CFAllocatorRef kCFAllocatorSystemDefault;
const CFAllocatorRef kCFAllocatorMalloc;
const CFAllocatorRef kCFAllocatorMallocZone;
const CFAllocatorRef kCFAllocatorNull;
const CFAllocatorRef kCFAllocatorUseContext;

Constants
kCFAllocatorDefault

This is a synonym for NULL.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

kCFAllocatorSystemDefault
Default system allocator.

You rarely need to use this.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

Constants 19
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

kCFAllocatorMalloc
This allocator uses malloc(), realloc(), and free().

Typically you should not use this allocator, use kCFAllocatorDefault instead. This allocator is
useful as the bytesDeallocator in CFData or contentsDeallocator in CFString where the
memory was obtained as a result of malloc type functions.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

kCFAllocatorMallocZone
This allocator explicitly uses the default malloc zone, returned by malloc_default_zone().

You should only use this when an object is safe to be allocated in non-scanned memory.

Available in Mac OS X v10.4 and later.

Declared in CFBase.h.

kCFAllocatorNull
This allocator does nothing—it allocates no memory.

This allocator is useful as the bytesDeallocator in CFData or contentsDeallocator in CFString
where the memory should not be freed.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

kCFAllocatorUseContext
Special allocator argument to CFAllocatorCreate (page 7)—it uses the functions given in the
context to allocate the allocator.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

Declared In
CFBase.h

20 Constants
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CFAllocator Reference

This table describes the changes to CFAllocator Reference.

NotesDate

Added definition for kCFAllocatorMallocZone.2006-12-08

Made minor changes to text to conform to reference consistency guidelines.2005-12-06

Clarified description of the 'hint' argument to CFAllocatorAllocate,
CFAllocatorReallocate and CFAllocatorGetPreferredSizeForSize.

2005-08-11

First version of this document.2003-01-01

21
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

22
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

C

CFAllocatorAllocate function 6
CFAllocatorAllocateCallBack callback 12
CFAllocatorContext structure 17
CFAllocatorCopyDescriptionCallBack callback 13
CFAllocatorCreate function 7
CFAllocatorDeallocate function 7
CFAllocatorDeallocateCallBack callback 14
CFAllocatorGetContext function 8
CFAllocatorGetDefault function 9
CFAllocatorGetPreferredSizeForSize function 9
CFAllocatorGetTypeID function 10
CFAllocatorPreferredSizeCallBack callback 14
CFAllocatorReallocate function 10
CFAllocatorReallocateCallBack callback 15
CFAllocatorRef data type 19
CFAllocatorReleaseCallBack callback 16
CFAllocatorRetainCallBack callback 16
CFAllocatorSetDefault function 11

K

kCFAllocatorDefault constant 19
kCFAllocatorMalloc constant 20
kCFAllocatorMallocZone constant 20
kCFAllocatorNull constant 20
kCFAllocatorSystemDefault constant 19
kCFAllocatorUseContext constant 20

P

Predefined Allocators 19

23
2006-12-08 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Index

	CFAllocator Reference
	Contents
	CFAllocator Reference
	Overview
	Functions by Task
	Creating an Allocator
	Managing Memory with an Allocator
	Getting and Setting the Default Allocator
	Getting an Allocator's Context
	Getting the CFAllocator Type ID

	Functions
	CFAllocatorAllocate
	CFAllocatorCreate
	CFAllocatorDeallocate
	CFAllocatorGetContext
	CFAllocatorGetDefault
	CFAllocatorGetPreferredSizeForSize
	CFAllocatorGetTypeID
	CFAllocatorReallocate
	CFAllocatorSetDefault

	Callbacks
	CFAllocatorAllocateCallBack
	CFAllocatorCopyDescriptionCallBack
	CFAllocatorDeallocateCallBack
	CFAllocatorPreferredSizeCallBack
	CFAllocatorReallocateCallBack
	CFAllocatorReleaseCallBack
	CFAllocatorRetainCallBack

	Data Types
	CFAllocatorContext
	CFAllocatorRef

	Constants
	Predefined Allocators

	Revision History
	Index
	C
	K
	P

