
CFBag Reference
Core Foundation

2007-05-22

Apple Inc.
© 2003, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, and Cocoa are
trademarks of Apple Inc., registered in the
United States and other countries.

iPhone is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

CFBag Reference 5

Overview 5
Functions by Task 5

Creating a Bag 5
Examining a Bag 6
Applying a Function to the Contents of a Bag 6
Getting the CFBag Type ID 6

Functions 6
CFBagApplyFunction 6
CFBagContainsValue 7
CFBagCreate 7
CFBagCreateCopy 8
CFBagGetCount 9
CFBagGetCountOfValue 9
CFBagGetTypeID 10
CFBagGetValue 10
CFBagGetValueIfPresent 11
CFBagGetValues 11

Callbacks 12
CFBagApplierFunction 12
CFBagCopyDescriptionCallBack 12
CFBagEqualCallBack 13
CFBagHashCallBack 14
CFBagReleaseCallBack 14
CFBagRetainCallBack 15

Data Types 16
CFBagCallBacks 16
CFBagRef 16

Constants 17
Predefined Callback Structures 17

Document Revision History 19

Index 21

3
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

4
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Companion guide Collections Programming Topics for Core Foundation

Declared in CFBag.h

Overview

CFBag and its derived mutable type, CFMutableBag, manage non-sequential collections of values called bags
in which there can be duplicate values. CFBag creates static bags and CFMutableBag creates dynamic bags.

Use bags or sets as an alternative to arrays when the order of elements isn't important and performance in
testing whether a value is contained in the collection is a consideration—while arrays are ordered, testing
for membership is slower than with bags or sets. Use bags over sets if you want to allow duplicate values in
your collections.

You create a static bag object using either the CFBagCreate (page 7) or CFBagCreateCopy (page 8)
function. These functions return a bag containing the values you pass in as arguments. (Note that bags can't
contain NULL pointers; in most cases, though, you can use the kCFNull constant instead.) Values are not
copied but retained using the retain callback provided when the bag was created. Similarly, when a value is
removed from a bag, it is released using the release callback.

CFBag provides functions for querying the values of a bag. The CFBagGetCount (page 9) returns the
number of values in a bag, the CFBagContainsValue (page 7) function checks if a value is in a bag, and
CFBagGetValues (page 11) returns a C array containing all the values in a bag.

The CFBagApplyFunction (page 6) function lets you apply a function to all values in a bag.

Functions by Task

Creating a Bag

CFBagCreate (page 7)
Creates an immutable bag containing specified values.

CFBagCreateCopy (page 8)
Creates an immutable bag with the values of another bag.

Overview 5
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

Examining a Bag

CFBagContainsValue (page 7)
Reports whether or not a value is in a bag.

CFBagGetCount (page 9)
Returns the number of values currently in a bag.

CFBagGetCountOfValue (page 9)
Returns the number of times a value occurs in a bag.

CFBagGetValue (page 10)
Returns a requested value from a bag.

CFBagGetValueIfPresent (page 11)
Reports whether or not a value is in a bag, and returns that value indirectly if it exists.

CFBagGetValues (page 11)
Fills a buffer with values from a bag.

Applying a Function to the Contents of a Bag

CFBagApplyFunction (page 6)
Calls a function once for each value in a bag.

Getting the CFBag Type ID

CFBagGetTypeID (page 10)
Returns the type identifier for the CFBag opaque type.

Functions

CFBagApplyFunction
Calls a function once for each value in a bag.

void CFBagApplyFunction (
 CFBagRef theBag,
 CFBagApplierFunction applier,
 void *context
);

Parameters
theBag

The bag to operate upon.

applier
The callback function to call once for each value in the theBag. If this parameter is not a pointer to
a function of the correct prototype, the behavior is undefined. If there are values in the range that
the applier function does not expect or cannot properly apply to, the behavior is undefined.

6 Functions
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

context
A pointer-sized program-defined value, which is passed as the second parameter to the applier
function, but is otherwise unused by this function. If the context is not what is expected by the applier
function, the behavior is undefined.

Discussion
While this function iterates over a mutable collection, it is unsafe for the applier function to change the
contents of the collection.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagContainsValue
Reports whether or not a value is in a bag.

Boolean CFBagContainsValue (
 CFBagRef theBag,
 const void *value
);

Parameters
theBag

The bag to examine.

value
The value to match in theBag. The equal callback provided when theBag was created is used to
compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If value, or any other
value in theBag, is not understood by the equal callback, the behavior is undefined.

Return Value
true if value is contained in theBag, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagCreate
Creates an immutable bag containing specified values.

Functions 7
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

CFBagRef CFBagCreate (
 CFAllocatorRef allocator,
 const void **values,
 CFIndex numValues,
 const CFBagCallBacks *callBacks
);

Parameters
allocator

The allocator to use to allocate memory for the new bag and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

values
A C array of the pointer-sized values to be in the new bag. This parameter may be NULL if the
numValues parameter is 0. The C array is not changed or freed by this function. values must be a
valid pointer to a C array of at least numValues elements.

numValues
The number of values to copy from the values C array in the new CFBag object. If the number is
negative or is greater than the actual number of values, the behavior is undefined.

callBacks
A pointer to a CFBagCallBacks (page 16) structure initialized with the callbacks to use to retain, release,
describe, and compare values in the bag. A copy of the contents of the callbacks structure is made,
so that a pointer to a structure on the stack can be passed in or can be reused for multiple collection
creations. This parameter may be NULL, which is treated as if a valid structure of version 0 with all
fields NULL had been passed in. Otherwise, if any of the fields are not valid pointers to functions of
the correct type, or this parameter is not a valid pointer to a CFBagCallBacks (page 16) structure, the
behavior is undefined. If any value put into the collection is not one understood by one of the callback
functions, the behavior when that callback function is used is undefined. If the collection contains
CFType objects only, then pass kCFTypeBagCallBacks (page 17) as this parameter to use the default
callback functions.

Return Value
A new bag, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagCreateCopy
Creates an immutable bag with the values of another bag.

CFBagRef CFBagCreateCopy (
 CFAllocatorRef allocator,
 CFBagRef theBag
);

Parameters
allocator

The allocator to use to allocate memory for the new bag and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

8 Functions
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

theBag
The bag to copy. The pointer values from theBag are copied into the new bag. However, the values
are also retained by the new bag. The count of the new bag is the same as the count of theBag. The
new bag uses the same callbacks as theBag.

Return Value
A new bag that contains the same values as theBag, or NULL if there was a problem creating the object.
Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetCount
Returns the number of values currently in a bag.

CFIndex CFBagGetCount (
 CFBagRef theBag
);

Parameters
theBag

The bag to examine.

Return Value
The number of values in theBag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetCountOfValue
Returns the number of times a value occurs in a bag.

CFIndex CFBagGetCountOfValue (
 CFBagRef theBag,
 const void *value
);

Parameters
theBag

The bag to examine.

value
The value for which to find matches in theBag. The equal callback provided when theBagwas created
is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If value, or any
other value in theBag, is not understood by the equal callback, the behavior is undefined.

Functions 9
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

Return Value
The number of times value occurs in theBag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetTypeID
Returns the type identifier for the CFBag opaque type.

CFTypeID CFBagGetTypeID (
 void
);

Return Value
The type identifier for the CFBag opaque type.

Special Considerations

CFMutableBag objects have the same type identifier as CFBag objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetValue
Returns a requested value from a bag.

const void * CFBagGetValue (
 CFBagRef theBag,
 const void *value
);

Parameters
theBag

The bag to examine.

value
The value for which to find matches in theBag. The equal callback provided when theBagwas created
is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If value, or any
other value in theBag, is not understood by the equal callback, the behavior is undefined.

Return Value
A pointer to value, or NULL if value is not in theBag. If the value is a Core Foundation object, ownership
follows the Get Rule.

Discussion
Depending on the implementation of the equal callback specified when creating theBag, the value returned
may not have the same pointer equality as value.

10 Functions
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetValueIfPresent
Reports whether or not a value is in a bag, and returns that value indirectly if it exists.

Boolean CFBagGetValueIfPresent (
 CFBagRef theBag,
 const void *candidate,
 const void **value
);

Parameters
theBag

The bag to be searched.

candidate
The value for which to find matches in theBag. The equal callback provided when theBagwas created
is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If candidate,
or any other value in theBag, is not understood by the equal callback, the behavior is undefined.

value
A pointer to a value object. Set to the matching value if it exists in the bag, otherwise NULL. If the
value is a Core Foundation object, ownership follows the Get Rule.

Return Value
true if value is present in theBag, otherwise false.

Discussion
Depending on the implementation of the equal callback specified when creating theBag, the value returned
in value may not have the same pointer equality as candidate.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetValues
Fills a buffer with values from a bag.

void CFBagGetValues (
 CFBagRef theBag,
 const void **values
);

Parameters
theBag

The bag to examine.

Functions 11
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

values
A C array of pointer-sized values to be filled with values from theBag. The value must be a valid C
array of the appropriate type and size (that is, a size equal to the count of theBag).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

Callbacks

CFBagApplierFunction
Prototype of a callback function that may be applied to every value in a bag.

typedef void (*CFBagApplierFunction) (
 const void *value,
 void *context
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *value,
 void *context
);

Parameters
value

The current value in a bag.

context
The program-defined context parameter given to the apply function.

Discussion
This callback is passed to the CFBagApplyFunction (page 6) function which iterates over the values in a
bag and applies the behavior defined in the applier function to each value in a bag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagCopyDescriptionCallBack
Prototype of a callback function used to get a description of a value in a bag.

12 Callbacks
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

typedef CFStringRef (*CFBagCopyDescriptionCallBack) (
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallBack (
 const void *value
);

Parameters
value

The value to be described.

Return Value
A textual description of value. mmancreate

Discussion
This callback is passed to CFBagCreate (page 7) in a CFBagCallBacks (page 16) structure. This callback
is used by the CFCopyDescription function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagEqualCallBack
Prototype of a callback function used to determine if two values in a bag are equal.

typedef Boolean (*CFBagEqualCallBack) (
 const void *value1,
 const void *value2
);

If you name your function MyCallBack, you would declare it like this:

Boolean MyCallBack (
 const void *value1,
 const void *value2
);

Parameters
value1

A value in the bag.

value2
Another value in the bag.

Return Value
true if value1 and value2 are equal, false otherwise.

Discussion
This callback is passed to CFBagCreate (page 7) in a CFBagCallBacks (page 16) structure.

Callbacks 13
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagHashCallBack
Prototype of a callback function invoked to compute a hash code for a value. Hash codes are used when
values are accessed, added, or removed from a collection.

typedef CFHashCode (*CFBagHashCallBack) (
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

CFHashCode CFBagHashCallBack (
 const void *value
);

Parameters
value

The value used to compute the hash code.

Return Value
An integer that can be used as a table address in a hash table structure.

Discussion
This callback is passed to CFBagCreate (page 7) in a CFBagCallBacks (page 16) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagReleaseCallBack
Prototype of a callback function used to release a value before it’s removed from a bag.

typedef void (*CFBagReleaseCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFAllocatorRef allocator,
 const void *value
);

14 Callbacks
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

Parameters
allocator

The bag’s allocator.

value
The value being removed from the bag.

Discussion
This callback is passed to CFBagCreate (page 7) in a CFBagCallBacks (page 16) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagRetainCallBack
Prototype of a callback function used to retain a value being added to a bag.

typedef const void *(*CFBagRetainCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 CFAllocatorRef allocator,
 const void *value
);

Parameters
allocator

The bag’s allocator.

value
The value being added to the bag.

Return Value
The value to store in the bag, which is usually the value parameter passed to this callback, but may be a
different value if a different value should be stored in the collection.

Discussion
This callback is passed to CFBagCreate (page 7) in a CFBagCallBacks (page 16) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

Callbacks 15
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

Data Types

CFBagCallBacks
This structure contains the callbacks used to retain, release, describe, and compare the values of a CFBag
object.

struct CFBagCallBacks {
 CFIndex version;
 CFBagRetainCallBack retain;
 CFBagReleaseCallBack release;
 CFBagCopyDescriptionCallBack copyDescription;
 CFBagEqualCallBack equal;
 CFBagHashCallBack hash;
};
typedef struct CFBagCallBacks CFBagCallBacks;

Fields
version

The version number of this structure. If not one of the defined version numbers for this opaque type,
the behavior is undefined. The current version of this structure is 0.

retain
The callback used to retain each value as they are added to the collection. If NULL, values are not
retained. See CFBagRetainCallBack (page 15) for a descriptions of this function’s parameters.

release
The callback used to release values as they are removed from the collection. If NULL, values are not
released. See CFBagReleaseCallBack (page 14) for a description of this callback.

copyDescription
The callback used to create a descriptive string representation of each value in the collection. If NULL,
the collection will create a simple description of each value. See
CFBagCopyDescriptionCallBack (page 12) for a description of this callback.

equal
The callback used to compare values in the collection for equality for some operations. If NULL, the
collection will use pointer equality to compare values in the collection. See
CFBagEqualCallBack (page 13) for a description of this callback.

hash
The callback used to compute a hash code for values in a collection. If NULL, the collection computes
a hash code by converting the pointer value to an integer. See CFBagHashCallBack (page 14) for
a description of this callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagRef
A reference to an immutable bag object.

16 Data Types
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

typedef const struct __CFBag *CFBagRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

Constants

Predefined Callback Structures
CFBag provides some predefined callbacks for your convenience.

const CFBagCallBacks kCFTypeBagCallBacks;
const CFBagCallBacks kCFCopyStringBagCallBacks;

Constants
kCFTypeBagCallBacks

Predefined CFBagCallBacks (page 16) structure containing a set of callbacks appropriate for use
when the values in a CFBag are all CFType-derived objects. The retain callback is CFRetain, the release
callback is CFRelease, the copy callback is CFCopyDescription, the equal callback is CFEqual,
and the hash callback is CFHash. Therefore, if you use this constant when creating the collection,
items are automatically retained when added to the collection, and released when removed from the
collection.

Available in Mac OS X v10.0 and later.

Declared in CFBag.h.

kCFCopyStringBagCallBacks
Predefined CFBagCallBacks (page 16) structure containing a set of callbacks appropriate for use
when the values in a CFBag are all CFString objects. The bag makes immutable copies of the strings
placed into it.

Available in Mac OS X v10.0 and later.

Declared in CFBag.h.

Constants 17
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

18 Constants
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFBag Reference

This table describes the changes to CFBag Reference.

NotesDate

Made minor changes to text to conform to reference consistency guidelines.2007-05-22

Made minor changes to text to conform to reference consistency guidelines.2005-12-06

Cosmetic changes to conform to documentation guidelines.2005-08-11

Enhanced description of all the kCFType*Callbacks and added link to
Carbon-Cocoa integration document.

2003-08-01

First version of this document.2003-01-01

19
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

20
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

C

CFBagApplierFunction callback 12
CFBagApplyFunction function 6
CFBagCallBacks structure 16
CFBagContainsValue function 7
CFBagCopyDescriptionCallBack callback 12
CFBagCreate function 7
CFBagCreateCopy function 8
CFBagEqualCallBack callback 13
CFBagGetCount function 9
CFBagGetCountOfValue function 9
CFBagGetTypeID function 10
CFBagGetValue function 10
CFBagGetValueIfPresent function 11
CFBagGetValues function 11
CFBagHashCallBack callback 14
CFBagRef data type 16
CFBagReleaseCallBack callback 14
CFBagRetainCallBack callback 15

K

kCFCopyStringBagCallBacks constant 17
kCFTypeBagCallBacks constant 17

P

Predefined Callback Structures 17

21
2007-05-22 | © 2003, 2007 Apple Inc. All Rights Reserved.

Index

	CFBag Reference
	Contents
	CFBag Reference
	Overview
	Functions by Task
	Creating a Bag
	Examining a Bag
	Applying a Function to the Contents of a Bag
	Getting the CFBag Type ID

	Functions
	CFBagApplyFunction
	CFBagContainsValue
	CFBagCreate
	CFBagCreateCopy
	CFBagGetCount
	CFBagGetCountOfValue
	CFBagGetTypeID
	CFBagGetValue
	CFBagGetValueIfPresent
	CFBagGetValues

	Callbacks
	CFBagApplierFunction
	CFBagCopyDescriptionCallBack
	CFBagEqualCallBack
	CFBagHashCallBack
	CFBagReleaseCallBack
	CFBagRetainCallBack

	Data Types
	CFBagCallBacks
	CFBagRef

	Constants
	Predefined Callback Structures

	Revision History
	Index
	C
	K
	P

