
CFSocket Reference
Core Foundation

2008-10-15

Apple Inc.
© 2003, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

CFSocket Reference 5

Overview 5
Functions by Task 5

Creating Sockets 5
Configuring Sockets 6
Using Sockets 6

Functions 6
CFSocketConnectToAddress 6
CFSocketCopyAddress 7
CFSocketCopyPeerAddress 7
CFSocketCreate 8
CFSocketCreateConnectedToSocketSignature 9
CFSocketCreateRunLoopSource 10
CFSocketCreateWithNative 11
CFSocketCreateWithSocketSignature 11
CFSocketDisableCallBacks 12
CFSocketEnableCallBacks 13
CFSocketGetContext 13
CFSocketGetNative 14
CFSocketGetSocketFlags 14
CFSocketGetTypeID 15
CFSocketInvalidate 15
CFSocketIsValid 16
CFSocketSendData 16
CFSocketSetAddress 17
CFSocketSetSocketFlags 18

Callbacks 19
CFSocketCallBack 19

Data Types 20
CFSocketContext 20
CFSocketNativeHandle 20
CFSocketRef 21
CFSocketSignature 21

Constants 21
Callback Types 21
CFSocket Flags 23
Error Codes 24

3
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History 25

Index 27

4
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFSocket.h

Companion guides CFNetwork Programming Guide
Threading Programming Guide

Overview

A CFSocket is a communications channel implemented with a BSD socket.

CFSockets can be created from scratch (CFSocketCreate (page 8) and
CFSocketCreateWithSocketSignature (page 11)), from a pre-existing BSD socket
(CFSocketCreateWithNative (page 11)), or already connected to a remote socket
(CFSocketCreateConnectedToSocketSignature (page 9)).

To listen for messages, you need to create a run loop source with CFSocketCreateRunLoopSource (page
10) and add it to a run loop with CFRunLoopAddSource. You can select the types of socket activities, such
as connection attempts or data arrivals, that cause the source to fire and invoke your CFSocket’s callback
function. To send data, you store the data in a CFData and call CFSocketSendData (page 16).

Unlike Mach and message ports, sockets support communication over a network.

Functions by Task

Creating Sockets

CFSocketCreate (page 8)
Creates a CFSocket object of a specified protocol and type.

CFSocketCreateConnectedToSocketSignature (page 9)
Creates a CFSocket object and opens a connection to a remote socket.

CFSocketCreateWithNative (page 11)
Creates a CFSocket object for a pre-existing native socket.

CFSocketCreateWithSocketSignature (page 11)
Creates a CFSocket object using information from a CFSocketSignature structure.

Overview 5
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

Configuring Sockets

CFSocketCopyAddress (page 7)
Returns the local address of a CFSocket object.

CFSocketCopyPeerAddress (page 7)
Returns the remote address to which a CFSocket object is connected.

CFSocketDisableCallBacks (page 12)
Disables the callback function of a CFSocket object for certain types of socket activity.

CFSocketEnableCallBacks (page 13)
Enables the callback function of a CFSocket object for certain types of socket activity.

CFSocketGetContext (page 13)
Returns the context information for a CFSocket object.

CFSocketGetNative (page 14)
Returns the native socket associated with a CFSocket object.

CFSocketGetSocketFlags (page 14)
Returns flags that control certain behaviors of a CFSocket object.

CFSocketSetAddress (page 17)
Binds a local address to a CFSocket object.

CFSocketSetSocketFlags (page 18)
Sets flags that control certain behaviors of a CFSocket object.

Using Sockets

CFSocketConnectToAddress (page 6)
Opens a connection to a remote socket.

CFSocketCreateRunLoopSource (page 10)
Creates a CFRunLoopSource object for a CFSocket object.

CFSocketGetTypeID (page 15)
Returns the type identifier for the CFSocket opaque type.

CFSocketInvalidate (page 15)
Invalidates a CFSocket object, stopping it from sending or receiving any more messages.

CFSocketIsValid (page 16)
Returns a Boolean value that indicates whether a CFSocket object is valid and able to send or receive
messages.

CFSocketSendData (page 16)
Sends data over a CFSocket object.

Functions

CFSocketConnectToAddress
Opens a connection to a remote socket.

6 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

CFSocketError CFSocketConnectToAddress (
 CFSocketRef s,
 CFDataRef address,
 CFTimeInterval timeout
);

Parameters
s

The CFSocket object with which to connect to address.

address
A CFData object containing a struct sockaddr appropriate for the protocol family of s, indicating
the remote address to which to connect.

timeout
The time to wait for a connection to succeed. If a negative value is used, this function does not wait
for the connection and instead lets the connection attempt happen in the background. If s requested
a kCFSocketConnectCallBack, you will receive a callback when the background connection
succeeds or fails.

Return Value
An error code indicating success or failure of the connection attempt.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketCopyAddress
Returns the local address of a CFSocket object.

CFDataRef CFSocketCopyAddress (
 CFSocketRef s
);

Parameters
s

The CFSocket object to examine.

Return Value
The local address, stored as a struct sockaddr in a CFData object, of s. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketCopyPeerAddress
Returns the remote address to which a CFSocket object is connected.

Functions 7
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

CFDataRef CFSocketCopyPeerAddress (
 CFSocketRef s
);

Parameters
s

The CFSocket object to examine.

Return Value
The remote address, stored as a struct sockaddr in a CFData object, to which s is connected. Ownership
follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketCreate
Creates a CFSocket object of a specified protocol and type.

CFSocketRef CFSocketCreate (
 CFAllocatorRef allocator,
 SInt32 protocolFamily,
 SInt32 socketType,
 SInt32 protocol,
 CFOptionFlags callBackTypes,
 CFSocketCallBack callout,
 const CFSocketContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

protocolFamily
The protocol family for the socket. If negative or 0 is passed, the socket defaults to PF_INET.

socketType
The socket type to create. If protocolFamily is PF_INET and socketType is negative or 0, the
socket type defaults to SOCK_STREAM.

protocol
The protocol for the socket. If protocolFamily is PF_INET and protocol is negative or 0, the
socket protocol defaults to IPPROTO_TCP if socketType is SOCK_STREAM or IPPROTO_UDP if
socketType is SOCK_DGRAM.

callBackTypes
A bitwise-OR combination of the types of socket activity that should cause callout to be called. See
Callback Types (page 21) for the possible activity values.

callout
The function to call when one of the activities indicated by callBackTypes occurs.

8 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

context
A structure holding contextual information for the CFSocket object. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call. Can be NULL.

Return Value
The new CFSocket object, or NULL if an error occurred. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaEcho
CocoaHTTPServer
CocoaSOAP

Declared In
CFSocket.h

CFSocketCreateConnectedToSocketSignature
Creates a CFSocket object and opens a connection to a remote socket.

CFSocketRef CFSocketCreateConnectedToSocketSignature (
 CFAllocatorRef allocator,
 const CFSocketSignature *signature,
 CFOptionFlags callBackTypes,
 CFSocketCallBack callout,
 const CFSocketContext *context,
 CFTimeInterval timeout
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

signature
A CFSocketSignature (page 21) identifying the communication protocol and address to which
the CFSocket object should connect.

callBackTypes
A bitwise-OR combination of the types of socket activity that should cause callout to be called. See
Callback Types (page 21) for the possible activity values.

callout
The function to call when one of the activities indicated by callBackTypes occurs.

context
A structure holding contextual information for the CFSocket object. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call. Can be NULL.

Functions 9
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

timeout
The time to wait for a connection to succeed. If a negative value is used, this function does not wait
for the connection and instead lets the connection attempt happen in the background. If
callBackTypes includes kCFSocketConnectCallBack, you will receive a callback when the
background connection succeeds or fails.

Return Value
The new CFSocket object, or NULL if an error occurred. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketCreateRunLoopSource
Creates a CFRunLoopSource object for a CFSocket object.

CFRunLoopSourceRef CFSocketCreateRunLoopSource (
 CFAllocatorRef allocator,
 CFSocketRef s,
 CFIndex order
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

s
The CFSocket object for which to create a run loop source.

order
A priority index indicating the order in which run loop sources are processed. When multiple run loop
sources are firing in a single pass through the run loop, the sources are processed in increasing order
of this parameter. If the run loop is set to process only one source per loop, only the highest priority
source, the one with the lowest order value, is processed.

Return Value
The new CFRunLoopSource object for s. Ownership follows the Create Rule.

Discussion
The run loop source is not automatically added to a run loop. To add the source to a run loop, use
CFRunLoopAddSource.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer
CocoaEcho
CocoaHTTPServer
CocoaSOAP
DNSServiceMetaQuery

10 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

Declared In
CFSocket.h

CFSocketCreateWithNative
Creates a CFSocket object for a pre-existing native socket.

CFSocketRef CFSocketCreateWithNative (
 CFAllocatorRef allocator,
 CFSocketNativeHandle sock,
 CFOptionFlags callBackTypes,
 CFSocketCallBack callout,
 const CFSocketContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

sock
The native socket for which to create a CFSocket object.

callBackTypes
A bitwise-OR combination of the types of socket activity that should cause callout to be called. See
Callback Types (page 21) for the possible activity values.

callout
The function to call when one of the activities indicated by callBackTypes occurs.

context
A structure holding contextual information for the CFSocket object. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call. Can be NULL.

Return Value
The new CFSocket object, or NULL if an error occurred. If a CFSocket object already exists for sock, the
function returns the pre-existing object instead of creating a new object; the context, callout, and
callBackTypes parameters are ignored in this case. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer
DNSServiceMetaQuery

Declared In
CFSocket.h

CFSocketCreateWithSocketSignature
Creates a CFSocket object using information from a CFSocketSignature structure.

Functions 11
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

CFSocketRef CFSocketCreateWithSocketSignature (
 CFAllocatorRef allocator,
 const CFSocketSignature *signature,
 CFOptionFlags callBackTypes,
 CFSocketCallBack callout,
 const CFSocketContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

signature
A CFSocketSignature (page 21) identifying the communication protocol and address with which
to create the CFSocket object.

callBackTypes
A bitwise-OR combination of the types of socket activity that should cause callout to be called. See
Callback Types (page 21) for the possible activity values.

callout
The function to call when one of the activities indicated by callBackTypes occurs.

context
A structure holding contextual information for the CFSocket object. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call. Can be NULL.

Return Value
The new CFSocket object, or NULL if an error occurred. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketDisableCallBacks
Disables the callback function of a CFSocket object for certain types of socket activity.

void CFSocketDisableCallBacks (
 CFSocketRef s,
 CFOptionFlags callBackTypes
);

Parameters
s

The CFSocket object to modify.

callBackTypes
A bitwise-OR combination of CFSocket activity types that should not cause the callback function of
s to be called. See Callback Types (page 21) for a list of callback types.

Discussion
If you no longer want certain types of callbacks that you requested when creating s, you can use this function
to temporarily disable the callback. Use CFSocketEnableCallBacks (page 13) to reenable a callback type.

12 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFSocket.h

CFSocketEnableCallBacks
Enables the callback function of a CFSocket object for certain types of socket activity.

void CFSocketEnableCallBacks (
 CFSocketRef s,
 CFOptionFlags callBackTypes
);

Parameters
s

The CFSocket object to modify.

callBackTypes
A bitwise-OR combination of CFSocket activity types that should cause the callback function of s to
be called. See Callback Types (page 21) for a list of callback types.

Discussion
If a callback type is not automatically reenabled, you can use this function to enable the callback. A callback
type that is not automatically reenabled still does not get reenabled after enabling it with this function; use
CFSocketSetSocketFlags (page 18) to have the callback type reenabled automatically.

Be sure to enable only callback types that your CFSocket object actually possesses and has requested when
creating the CFSocket object; the result of enabling other callback types is undefined.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CFLocalServer

Declared In
CFSocket.h

CFSocketGetContext
Returns the context information for a CFSocket object.

void CFSocketGetContext (
 CFSocketRef s,
 CFSocketContext *context
);

Parameters
s

The CFSocket object to examine.

Functions 13
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

context
A pointer to the structure into which the context information for s is to be copied. The information
being returned is usually the same information you passed to CFSocketCreate (page 8),
CFSocketCreateConnectedToSocketSignature (page 9), CFSocketCreateWithNative (page
11), or CFSocketCreateWithSocketSignature (page 11) when creating the CFSocket object.
However, if CFSocketCreateWithNative (page 11) returned a cached CFSocket object instead of
creating a new object, context is filled with information from the original CFSocket object instead
of the information you passed to the function.

Discussion
The context version number for CFSocket is currently 0. Before calling this function, you need to initialize
the version member of context to 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketGetNative
Returns the native socket associated with a CFSocket object.

CFSocketNativeHandle CFSocketGetNative (
 CFSocketRef s
);

Parameters
s

The CFSocket object to examine.

Return Value
The native socket associated with s. If s has been invalidated, returns -1, INVALID_SOCKET.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer
CocoaEcho
CocoaHTTPServer
CocoaSOAP

Declared In
CFSocket.h

CFSocketGetSocketFlags
Returns flags that control certain behaviors of a CFSocket object.

14 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

CFOptionFlags CFSocketGetSocketFlags (
 CFSocketRef s
);

Parameters
s

The CFSocket to examine.

Return Value
A bitwise-OR combination of flags controlling the behavior of s. See CFSocket Flags (page 23) for the list of
available flags.

Discussion
See CFSocketSetSocketFlags (page 18) for details on what the flags of a CFSocket mean.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
DNSServiceMetaQuery

Declared In
CFSocket.h

CFSocketGetTypeID
Returns the type identifier for the CFSocket opaque type.

CFTypeID CFSocketGetTypeID ();

Return Value
The type identifier for the CFSocket opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketInvalidate
Invalidates a CFSocket object, stopping it from sending or receiving any more messages.

void CFSocketInvalidate (
 CFSocketRef s
);

Parameters
s

The CFSocket object to invalidate.

Functions 15
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

Discussion
Invalidating a CFSocket object prevents the port from ever sending or receiving any more messages. The
CFSocket object is not deallocated, though. The CFSocketContext (page 20) info information, which was
provided when s was created, is released, if a release callback was specified in its context structure. Also, if
a run loop source was created for s, the run loop source is invalidated, as well.

You should always invalidate a socket when you are done using it. If you have requested, using
CFSocketSetSocketFlags (page 18), that the underlying socket not automatically close when invalidating
the wrapping CFSocket object, you must invalidate the CFSocket object before closing the socket yourself.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer
CocoaEcho
CocoaHTTPServer
CocoaSOAP
DNSServiceMetaQuery

Declared In
CFSocket.h

CFSocketIsValid
Returns a Boolean value that indicates whether a CFSocket object is valid and able to send or receive messages.

Boolean CFSocketIsValid (
 CFSocketRef s
);

Parameters
s

The CFSocket object to examine.

Return Value
true if s can be used for communication, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketSendData
Sends data over a CFSocket object.

16 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

CFSocketError CFSocketSendData (
 CFSocketRef s,
 CFDataRef address,
 CFDataRef data,
 CFTimeInterval timeout
);

Parameters
s

The CFSocket object to use.

address
The address, stored as a struct sockaddr in a CFData object, to which to send the contents of
data. If NULL, the data are sent to the address to which s is already connected.

data
The data to send.

timeout
The time to wait for the data to be sent.

Return Value
An error code indicating success or failure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketSetAddress
Binds a local address to a CFSocket object.

CFSocketError CFSocketSetAddress (
 CFSocketRef s,
 CFDataRef address
);

Parameters
s

The CFSocket object to modify.

address
A CFData object containing a struct sockaddr appropriate for the protocol family of s.

Return Value
An error code indicating success or failure.

Discussion
Once s is bound to address, depending on the socket’s protocol, other processes and computers can connect
to s.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaEcho

Functions 17
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

CocoaHTTPServer
CocoaSOAP

Declared In
CFSocket.h

CFSocketSetSocketFlags
Sets flags that control certain behaviors of a CFSocket object.

void CFSocketSetSocketFlags (
 CFSocketRef s,
 CFOptionFlags flags
);

Parameters
s

The CFSocket object to modify.

flags
A bitwise-OR combination of flags controlling the behavior of s. See CFSocket Flags (page 23) for
the list of available flags.

Discussion
The flags argument controls whether callbacks of a given type are automatically reenabled after they are
triggered, and whether the underlying native socket is closed when s is invalidated.

By default kCFSocketReadCallBack, kCFSocketAcceptCallBack, and kCFSocketDataCallBack
callbacks are automatically reenabled, whereas kCFSocketWriteCallBack callbacks are not;
kCFSocketConnectCallBack callbacks can only occur once, so they cannot be reenabled. Be careful about
automatically re-enabling read and write callbacks, because this implies that the callbacks will be sent
repeatedly if the socket remains readable or writable respectively. Be sure to set these flags only for callback
types that your CFSocket object actually possesses; the result of setting them for other callback types is
undefined.

By default the underlying native socket will be closed when s is invalidated, but it will not be if the
kCFSocketCloseOnInvalidate flag is turned off. This can be useful when you want to destroy a CFSocket
object but continue to use the underlying native socket. The CFSocket object must still be invalidated when
it will no longer be used. Do not in either case close the underlying native socket without invalidating the
CFSocket object.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
DNSServiceMetaQuery

Declared In
CFSocket.h

18 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

Callbacks

CFSocketCallBack
Callback invoked when certain types of activity takes place on a CFSocket object.

typedef void (*CFSocketCallBack) (
 CFSocketRef s,
 CFSocketCallBackType callbackType,
 CFDataRef address,
 const void *data,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFSocketRef s,
 CFSocketCallBackType callbackType,
 CFDataRef address,
 const void *data,
 void *info
);

Parameters
s

The CFSocket object that experienced some activity.

callbackType
The type of activity detected.

address
A CFData object holding the contents of a struct sockaddr appropriate for the protocol family of
s, identifying the remote address to which s is connected. This value is NULL except for
kCFSocketAcceptCallBack and kCFSocketDataCallBack callbacks.

data
Data appropriate for the callback type. For a kCFSocketConnectCallBack that failed in the
background, it is a pointer to an SInt32 error code; for a kCFSocketAcceptCallback, it is a pointer
to a CFSocketNativeHandle (page 20); or for a kCFSocketDataCallBack, it is a CFData object
containing the incoming data. In all other cases, it is NULL.

info
The info member of the CFSocketContext (page 20) structure that was used when creating the
CFSocket object.

Discussion
You specify this callback when you create the CFSocket object with CFSocketCreate (page 8),
CFSocketCreateConnectedToSocketSignature (page 9), CFSocketCreateWithNative (page 11),
or CFSocketCreateWithSocketSignature (page 11).

Availability
Available in Mac OS X v10.0 and later.

Callbacks 19
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

Declared In
CFSocket.h

Data Types

CFSocketContext
A structure that contains program-defined data and callbacks with which you can configure a CFSocket
object’s behavior.

struct CFSocketContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct CFSocketContext CFSocketContext;

Fields
version

Version number of the structure. Must be 0.

info
An arbitrary pointer to program-defined data, which can be associated with the CFSocket object at
creation time. This pointer is passed to all the callbacks defined in the context.

retain
A retain callback for your program-defined info pointer. Can be NULL.

release
A release callback for your program-defined info pointer. Can be NULL.

copyDescription
A copy description callback for your program-defined info pointer. Can be NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketNativeHandle
Type for the platform-specific native socket handle.

typedef int CFSocketNativeHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

20 Data Types
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

CFSocketRef
A reference to a CFSocket object.

typedef struct __CFSocket *CFSocketRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketSignature
A structure that fully specifies the communication protocol and connection address of a CFSocket object.

struct CFSocketSignature {
 SInt32 protocolFamily;
 SInt32 socketType;
 SInt32 protocol;
 CFDataRef address;
};
typedef struct CFSocketSignature CFSocketSignature;

Fields
protocolFamily

The protocol family of the socket.

socketType
The socket type of the socket.

protocol
The protocol type of the socket.

address
A CFData object holding the contents of a struct sockaddr appropriate for the given protocol
family, identifying the address of the socket.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

Constants

Callback Types
Types of socket activity that can cause the callback function of a CFSocket object to be called.

Constants 21
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

enum CFSocketCallBackType {
 kCFSocketNoCallBack = 0,
 kCFSocketReadCallBack = 1,
 kCFSocketAcceptCallBack = 2,
 kCFSocketDataCallBack = 3,
 kCFSocketConnectCallBack = 4,
 kCFSocketWriteCallBack = 8
};
typedef enum CFSocketCallBackType CFSocketCallBackType;

Constants
kCFSocketNoCallBack

No callback should be made for any activity.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketReadCallBack
The callback is called when data is available to be read or a new connection is waiting to be accepted.
The data is not automatically read; the callback must read the data itself.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketAcceptCallBack
New connections will be automatically accepted and the callback is called with the data argument
being a pointer to a CFSocketNativeHandle (page 20) of the child socket. This callback is usable
only with listening sockets.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketDataCallBack
Incoming data will be read in chunks in the background and the callback is called with the data
argument being a CFData object containing the read data.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketConnectCallBack
If a connection attempt is made in the background by calling CFSocketConnectToAddress (page
6) or CFSocketCreateConnectedToSocketSignature (page 9) with a negative timeout value,
this callback type is made when the connect finishes. In this case the data argument is either NULL
or a pointer to an SInt32 error code, if the connect failed. This callback will never be sent more than
once for a given socket.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketWriteCallBack
The callback is called when the socket is writable. This callback type may be useful when large amounts
of data are being sent rapidly over the socket and you want a notification when there is space in the
kernel buffers for more data.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

22 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

Discussion
The callback types for which a callback is made is determined when the CFSocket object is created, such as
with CFSocketCreate (page 8), or later with CFSocketEnableCallBacks (page 13) and
CFSocketDisableCallBacks (page 12).

The kCFSocketReadCallBack, kCFSocketAcceptCallBack, and kCFSocketDataCallBack callbacks
are mutually exclusive.

Version Notes
kCFSocketWriteCallBack is available in Mac OS X v10.2 and later.

CFSocket Flags
Flags that can be set on a CFSocket object to control its behavior.

enum {
 kCFSocketAutomaticallyReenableReadCallBack = 1,
 kCFSocketAutomaticallyReenableAcceptCallBack = 2,
 kCFSocketAutomaticallyReenableDataCallBack = 3,
 kCFSocketAutomaticallyReenableWriteCallBack = 8,
 kCFSocketCloseOnInvalidate = 128
};

Constants
kCFSocketAutomaticallyReenableReadCallBack

When enabled using CFSocketSetSocketFlags (page 18), the read callback is called every time
the sockets has data to be read. When disabled, the read callback is called only once the next time
data are available. The read callback is automatically reenabled by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

kCFSocketAutomaticallyReenableAcceptCallBack
When enabled using CFSocketSetSocketFlags (page 18), the accept callback is called every time
someone connects to your socket. When disabled, the accept callback is called only once the next
time a new socket connection is accepted. The accept callback is automatically reenabled by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

kCFSocketAutomaticallyReenableDataCallBack
When enabled using CFSocketSetSocketFlags (page 18), the data callback is called every time
the socket has read some data. When disabled, the data callback is called only once the next time
data are read. The data callback is automatically reenabled by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

kCFSocketAutomaticallyReenableWriteCallBack
When enabled using CFSocketSetSocketFlags (page 18), the write callback is called every time
more data can be written to the socket. When disabled, the write callback is called only the next time
data can be written. The write callback is not automatically reenabled by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

Constants 23
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

kCFSocketCloseOnInvalidate
When enabled using CFSocketSetSocketFlags (page 18), the native socket associated with a
CFSocket object is closed when the CFSocket object is invalidated. When disabled, the native socket
remains open. This option is enabled by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

Discussion
The flags for a CFSocket object are set with CFSocketSetSocketFlags (page 18). To immediately enable
or disable a callback, use CFSocketEnableCallBacks (page 13) and CFSocketDisableCallBacks (page
12).

Error Codes
Error codes for many CFSocket functions.

enum CFSocketError {
 kCFSocketSuccess = 0,
 kCFSocketError = -1,
 kCFSocketTimeout = -2
};
typedef enum CFSocketError CFSocketError;

Constants
kCFSocketSuccess

The socket operation succeeded.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketError
The socket operation failed.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketTimeout
The socket operation timed out.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

24 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFSocket Reference

This table describes the changes to CFSocket Reference.

NotesDate

Added links to companion guides.2008-10-15

Made minor formatting changes.2006-07-06

Updated information regarding INVALID_SOCKET.2006-06-28

Replaced the term "connection rendezvous sockets" with "listening sockets."2006-04-04

Made formatting changes.2006-02-07

Removed reference to retired document.2005-11-09

Fixed typo in discussion of callback types.2005-08-11

First version of this document.2003-01-01

25
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

26
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

C

Callback Types 21
CFSocket Flags 23
CFSocketCallBack callback 19
CFSocketConnectToAddress function 6
CFSocketContext structure 20
CFSocketCopyAddress function 7
CFSocketCopyPeerAddress function 7
CFSocketCreate function 8
CFSocketCreateConnectedToSocketSignature

function 9
CFSocketCreateRunLoopSource function 10
CFSocketCreateWithNative function 11
CFSocketCreateWithSocketSignature function 11
CFSocketDisableCallBacks function 12
CFSocketEnableCallBacks function 13
CFSocketGetContext function 13
CFSocketGetNative function 14
CFSocketGetSocketFlags function 14
CFSocketGetTypeID function 15
CFSocketInvalidate function 15
CFSocketIsValid function 16
CFSocketNativeHandle data type 20
CFSocketRef data type 21
CFSocketSendData function 16
CFSocketSetAddress function 17
CFSocketSetSocketFlags function 18
CFSocketSignature structure 21

E

Error Codes 24

K

kCFSocketAcceptCallBack constant 22

kCFSocketAutomaticallyReenableAcceptCallBack
constant 23

kCFSocketAutomaticallyReenableDataCallBack
constant 23

kCFSocketAutomaticallyReenableReadCallBack
constant 23

kCFSocketAutomaticallyReenableWriteCallBack
constant 23

kCFSocketCloseOnInvalidate constant 24
kCFSocketConnectCallBack constant 22
kCFSocketDataCallBack constant 22
kCFSocketError constant 24
kCFSocketNoCallBack constant 22
kCFSocketReadCallBack constant 22
kCFSocketSuccess constant 24
kCFSocketTimeout constant 24
kCFSocketWriteCallBack constant 22

27
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Index

	CFSocket Reference
	Contents
	CFSocket Reference
	Overview
	Functions by Task
	Creating Sockets
	Configuring Sockets
	Using Sockets

	Functions
	CFSocketConnectToAddress
	CFSocketCopyAddress
	CFSocketCopyPeerAddress
	CFSocketCreate
	CFSocketCreateConnectedToSocketSignature
	CFSocketCreateRunLoopSource
	CFSocketCreateWithNative
	CFSocketCreateWithSocketSignature
	CFSocketDisableCallBacks
	CFSocketEnableCallBacks
	CFSocketGetContext
	CFSocketGetNative
	CFSocketGetSocketFlags
	CFSocketGetTypeID
	CFSocketInvalidate
	CFSocketIsValid
	CFSocketSendData
	CFSocketSetAddress
	CFSocketSetSocketFlags

	Callbacks
	CFSocketCallBack

	Data Types
	CFSocketContext
	CFSocketNativeHandle
	CFSocketRef
	CFSocketSignature

	Constants
	Callback Types
	CFSocket Flags
	Error Codes

	Revision History
	Index
	C
	E
	K

