
CFString Reference
Core Foundation

2008-10-15

Apple Inc.
© 2003, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, eMac,
Mac, and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

iPhone is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

CFString Reference 7

Overview 7
Functions by Task 8

Creating a CFString 8
Searching Strings 9
Comparing Strings 9
Accessing Characters 9
Working With Encodings 10
Getting Numeric Values 11
Getting String Properties 11
String File System Representations 11
Getting Paragraph Bounds 12

Functions 12
CFShowStr 12
CFSTR 13
CFStringCompare 13
CFStringCompareWithOptions 14
CFStringCompareWithOptionsAndLocale 15
CFStringConvertEncodingToIANACharSetName 16
CFStringConvertEncodingToNSStringEncoding 16
CFStringConvertEncodingToWindowsCodepage 17
CFStringConvertIANACharSetNameToEncoding 17
CFStringConvertNSStringEncodingToEncoding 18
CFStringConvertWindowsCodepageToEncoding 18
CFStringCreateArrayBySeparatingStrings 19
CFStringCreateArrayWithFindResults 20
CFStringCreateByCombiningStrings 21
CFStringCreateCopy 21
CFStringCreateExternalRepresentation 22
CFStringCreateFromExternalRepresentation 23
CFStringCreateWithBytes 24
CFStringCreateWithBytesNoCopy 25
CFStringCreateWithCharacters 26
CFStringCreateWithCharactersNoCopy 27
CFStringCreateWithCString 28
CFStringCreateWithCStringNoCopy 29
CFStringCreateWithFileSystemRepresentation 30
CFStringCreateWithFormat 31
CFStringCreateWithFormatAndArguments 32
CFStringCreateWithPascalString 32
CFStringCreateWithPascalStringNoCopy 33

3
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFStringCreateWithSubstring 34
CFStringFind 35
CFStringFindCharacterFromSet 36
CFStringFindWithOptions 37
CFStringFindWithOptionsAndLocale 38
CFStringGetBytes 39
CFStringGetCharacterAtIndex 40
CFStringGetCharacterFromInlineBuffer 41
CFStringGetCharacters 41
CFStringGetCharactersPtr 42
CFStringGetCString 43
CFStringGetCStringPtr 44
CFStringGetDoubleValue 44
CFStringGetFastestEncoding 45
CFStringGetFileSystemRepresentation 45
CFStringGetIntValue 46
CFStringGetLength 47
CFStringGetLineBounds 47
CFStringGetListOfAvailableEncodings 48
CFStringGetMaximumSizeForEncoding 49
CFStringGetMaximumSizeOfFileSystemRepresentation 49
CFStringGetMostCompatibleMacStringEncoding 50
CFStringGetNameOfEncoding 50
CFStringGetParagraphBounds 51
CFStringGetPascalString 52
CFStringGetPascalStringPtr 53
CFStringGetRangeOfComposedCharactersAtIndex 53
CFStringGetSmallestEncoding 54
CFStringGetSystemEncoding 54
CFStringGetTypeID 55
CFStringHasPrefix 56
CFStringHasSuffix 56
CFStringInitInlineBuffer 57
CFStringIsEncodingAvailable 57

Data Types 58
CFStringCompareFlags 58
CFStringEncoding 58
CFStringEncodings 59
CFStringInlineBuffer 59
CFStringRef 59

Constants 60
String Comparison Flags 60
Built-in String Encodings 61
Invalid String Encoding Flag 63
External String Encodings 64

4
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Document Revision History 79

Index 81

5
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CONTENTS

6
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Derived From: CFPropertyList : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFBase.h
CFString.h
CFStringEncodingExt.h

Companion guides Property List Programming Topics for Core Foundation
Strings Programming Guide for Core Foundation
Data Formatting Guide for Core Foundation

Overview

CFString provides a suite of efficient string-manipulation and string-conversion functions. It offers seamless
Unicode support and facilitates the sharing of data between Carbon and Cocoa programs. CFString is relevant
for any Carbon application that uses strings. If your application supports (or is planning to support) Unicode,
CFString is recommended. CFString creates immutable strings—use CFMutableString to create and manage
a string that can be changed after it has been created.

CFString has two primitive functions, CFStringGetLength (page 47) and
CFStringGetCharacterAtIndex (page 40), that provide the basis for all other functions in its interface.
The CFStringGetLength function returns the total number (in terms of UTF-16 code pairs) of characters
in the string. The CFStringGetCharacterAtIndex function gives access to each character in the string
by index, with index values starting at 0.

CFString provides functions for finding and comparing strings. It also provides functions for reading numeric
values from strings, for combining strings in various ways, and for converting a string to different forms (such
as encoding and case changes). A number of functions, for example CFStringFindWithOptions, allow
you to specify a range over which to operate within a string. The specified range must not exceed the length
of the string. Debugging options may help you to catch any errors that arise if a range does exceed a string’s
length.

Like other Core Foundation types, CFStrings can be hashed using the CFHash function. Note, though, that
hash values are not guaranteed to remain equal between releases of the operating system. In particular, hash
values are different between Mac OS X v10.3 and v10.4. If you need to make a hash value persistent and
consistent across different releases, you should use an alternate technique, such as SHA-1.

CFString is “toll-free bridged” with its Cocoa Foundation counterpart, NSString. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. Therefore,
in a method where you see an NSString * parameter, you can pass in a CFStringRef, and in a function
where you see a CFStringRef parameter, you can pass in an NSString instance. This also applies to concrete
subclasses of NSString. See Interchangeable Data Types for more information on toll-free bridging.

Overview 7
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Functions by Task

Creating a CFString

CFSTR (page 13)
Creates an immutable string from a constant compile-time string.

CFStringCreateArrayBySeparatingStrings (page 19)
Creates an array of CFString objects from a single CFString object.

CFStringCreateByCombiningStrings (page 21)
Creates a single string from the individual CFString objects that comprise the elements of an array.

CFStringCreateCopy (page 21)
Creates an immutable copy of a string.

CFStringCreateFromExternalRepresentation (page 23)
Creates a string from its “external representation.”

CFStringCreateWithBytes (page 24)
Creates a string from a buffer containing characters in a specified encoding.

CFStringCreateWithBytesNoCopy (page 25)
Creates a string from a buffer, containing characters in a specified encoding, that might serve as the
backing store for the new string.

CFStringCreateWithCharacters (page 26)
Creates a string from a buffer of Unicode characters.

CFStringCreateWithCharactersNoCopy (page 27)
Creates a string from a buffer of Unicode characters that might serve as the backing store for the
object.

CFStringCreateWithCString (page 28)
Creates an immutable string from a C string.

CFStringCreateWithCStringNoCopy (page 29)
Creates a CFString object from an external C string buffer that might serve as the backing store for
the object.

CFStringCreateWithFormat (page 31)
Creates an immutable string from a formatted string and a variable number of arguments.

CFStringCreateWithFormatAndArguments (page 32)
Creates an immutable string from a formatted string and a variable number of arguments (specified
in a parameter of type va_list).

CFStringCreateWithPascalString (page 32)
Creates an immutable CFString object from a Pascal string.

CFStringCreateWithPascalStringNoCopy (page 33)
Creates a CFString object from an external Pascal string buffer that might serve as the backing store
for the object.

CFStringCreateWithSubstring (page 34)
Creates an immutable string from a segment (substring) of an existing string.

8 Functions by Task
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Searching Strings

CFStringCreateArrayWithFindResults (page 20)
Searches a string for multiple occurrences of a substring and creates an array of ranges identifying
the locations of these substrings within the target string.

CFStringFind (page 35)
Searches for a substring within a string and, if it is found, yields the range of the substring within the
object's characters.

CFStringFindCharacterFromSet (page 36)
Query the range of the first character contained in the specified character set.

CFStringFindWithOptions (page 37)
Searches for a substring within a range of the characters represented by a string and, if the substring
is found, returns its range within the object's characters.

CFStringFindWithOptionsAndLocale (page 38)
Returns a Boolean value that indicates whether a given string was found in a given source string.

CFStringGetLineBounds (page 47)
Given a range of characters in a string, obtains the line bounds—that is, the indexes of the first
character and the final characters of the lines containing the range.

Comparing Strings

CFStringCompare (page 13)
Compares one string with another string.

CFStringCompareWithOptions (page 14)
Compares a range of the characters in one string with that of another string.

CFStringCompareWithOptionsAndLocale (page 15)
Compares a range of the characters in one string with another string using a given locale.

CFStringHasPrefix (page 56)
Determines if the character data of a string begin with a specified sequence of characters.

CFStringHasSuffix (page 56)
Determines if a string ends with a specified sequence of characters.

Accessing Characters

CFStringCreateExternalRepresentation (page 22)
Creates an “external representation” of a CFString object, that is, a CFData object.

CFStringGetBytes (page 39)
Fetches a range of the characters from a string into a byte buffer after converting the characters to
a specified encoding.

CFStringGetCharacterAtIndex (page 40)
Returns the Unicode character at a specified location in a string.

CFStringGetCharacters (page 41)
Copies a range of the Unicode characters from a string to a user-provided buffer.

Functions by Task 9
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringGetCharactersPtr (page 42)
Quickly obtains a pointer to the contents of a string as a buffer of Unicode characters.

CFStringGetCharacterFromInlineBuffer (page 41)
Returns the Unicode character at a specific location in an in-line buffer.

CFStringGetCString (page 43)
Copies the character contents of a string to a local C string buffer after converting the characters to
a given encoding.

CFStringGetCStringPtr (page 44)
Quickly obtains a pointer to a C-string buffer containing the characters of a string in a given encoding.

CFStringGetLength (page 47)
Returns the number (in terms of UTF-16 code pairs) of Unicode characters in a string.

CFStringGetPascalString (page 52)
Copies the character contents of a CFString object to a local Pascal string buffer after converting the
characters to a requested encoding.

CFStringGetPascalStringPtr (page 53)
Quickly obtains a pointer to a Pascal buffer containing the characters of a string in a given encoding.

CFStringGetRangeOfComposedCharactersAtIndex (page 53)
Returns the range of the composed character sequence at a specified index.

CFStringInitInlineBuffer (page 57)
Initializes an in-line buffer to use for efficient access of a CFString object's characters.

Working With Encodings

CFStringConvertEncodingToIANACharSetName (page 16)
Returns the name of the IANA registry “charset” that is the closest mapping to a specified string
encoding.

CFStringConvertEncodingToNSStringEncoding (page 16)
Returns the Cocoa encoding constant that maps most closely to a given Core Foundation encoding
constant.

CFStringConvertEncodingToWindowsCodepage (page 17)
Returns the Windows codepage identifier that maps most closely to a given Core Foundation encoding
constant.

CFStringConvertIANACharSetNameToEncoding (page 17)
Returns the Core Foundation encoding constant that is the closest mapping to a given IANA registry
“charset” name.

CFStringConvertNSStringEncodingToEncoding (page 18)
Returns the Core Foundation encoding constant that is the closest mapping to a given Cocoa encoding.

CFStringConvertWindowsCodepageToEncoding (page 18)
Returns the Core Foundation encoding constant that is the closest mapping to a given Windows
codepage identifier.

CFStringGetFastestEncoding (page 45)
Returns for a CFString object the character encoding that requires the least conversion time.

CFStringGetListOfAvailableEncodings (page 48)
Returns a pointer to a list of string encodings supported by the current system.

10 Functions by Task
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringGetMaximumSizeForEncoding (page 49)
Returns the maximum number of bytes a string of a specified length (in Unicode characters) will take
up if encoded in a specified encoding.

CFStringGetMostCompatibleMacStringEncoding (page 50)
Returns the most compatible Mac OS script value for the given input encoding.

CFStringGetNameOfEncoding (page 50)
Returns the canonical name of a specified string encoding.

CFStringGetSmallestEncoding (page 54)
Returns the smallest encoding on the current system for the character contents of a string.

CFStringGetSystemEncoding (page 54)
Returns the default encoding used by the operating system when it creates strings.

CFStringIsEncodingAvailable (page 57)
Determines whether a given Core Foundation string encoding is available on the current system.

Getting Numeric Values

CFStringGetDoubleValue (page 44)
Returns the primary double value represented by a string.

CFStringGetIntValue (page 46)
Returns the integer value represented by a string.

Getting String Properties

CFShowStr (page 12)
Prints the attributes of a string during debugging.

CFStringGetTypeID (page 55)
Returns the type identifier for the CFString opaque type.

String File System Representations

CFStringCreateWithFileSystemRepresentation (page 30)
Creates a CFString from a zero-terminated POSIX file system representation.

CFStringGetFileSystemRepresentation (page 45)
Extracts the contents of a string as a NULL-terminated 8-bit string appropriate for passing to POSIX
APIs.

CFStringGetMaximumSizeOfFileSystemRepresentation (page 49)
Determines the upper bound on the number of bytes required to hold the file system representation
of the string.

Functions by Task 11
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Getting Paragraph Bounds

CFStringGetParagraphBounds (page 51)
Given a range of characters in a string, obtains the paragraph bounds—that is, the indexes of the first
character and the final characters of the paragraph(s) containing the range.

Functions

CFShowStr
Prints the attributes of a string during debugging.

void CFShowStr (
 CFStringRef str
);

Parameters
str

The string whose attributes you want to print.

Discussion
Use this function to learn about specific attributes of a CFString object during debugging. These attributes
include the following:

 ■ Length (in Unicode characters)

 ■ Whether originally it was an 8-bit string and, if so, whether it was a C (HasNullByte) or Pascal
(HasLengthByte) string

 ■ Whether it is a mutable or an immutable object

 ■ The allocator used to create it

 ■ The memory address of the character contents and whether those contents are in-line

The information provided by this function is for debugging purposes only. The values of any of these attributes
might change between different releases and on different platforms. Note in particular that this function
does not show the contents of the string. If you want to display the contents of the string, use CFShow.

Special Considerations

You can use CFShowStr in one of two general ways. If your debugger supports function calls (such as gdb
does), call CFShowStr in the debugger:

(gdb) call (void) CFShowStr(string)
Length 11
IsEightBit 1
HasLengthByte 1
HasNullByte 1
InlineContents 1
Allocator SystemDefault
Mutable 0
Contents 0x4e7c0

12 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

You can also incorporate calls to CFShowStr in a test version of your code to print descriptions of CFString
objects to the console.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFSTR
Creates an immutable string from a constant compile-time string.

CFStringRef CFSTR (
 const char *cStr
);

Parameters
cStr

A constant C string (that is, text enclosed in double-quotation marks) from which the string is to be
created. The characters enclosed by the quotation marks must be ASCII characters, otherwise the
behavior is undefined.

Return Value
An immutable string, or NULL if there was a problem creating the object. The returned object is a constant.
You may retain and release it, similar to other immutable CFString objects, but are not required to do so—it
will remain valid until the program terminates.

Discussion
The CFSTR macro is a convenient way to create CFString representations of constant compile-time strings.

A value returned by CFSTR has the following semantics:

 ■ Values returned from CFSTR are not released by CFString—they are guaranteed to be valid until the
program terminates.

 ■ Values returned from CFSTR can be retained and released in a balanced fashion, like any other CFString,
but you are not required to do so.

Non-ASCII characters (that is, character codes greater than 127) are not supported. If you use them, the result
is undefined. Even if using them works for you in testing, it might not work if the user selects a different
language preference.

Note that when using this macro as an initializer, you must compile using the flag -fconstant-cfstrings
(see Options Controlling C Dialect).

CFStringCompare
Compares one string with another string.

Functions 13
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

http://developer.apple.com/documentation/DeveloperTools/gcc-3.3/gcc/C-Dialect-Options.html

CFComparisonResult CFStringCompare (
 CFStringRef theString1,
 CFStringRef theString2,
 CFOptionFlags compareOptions
);

Parameters
theString1

The first string to use in the comparison.

theString2
The second string to use in the comparison.

compareOptions
Flags that select different types of comparisons, such as localized comparison, case-insensitive
comparison, and non-literal comparison. If you want the default comparison behavior, pass 0. See
“String Comparison Flags” (page 60) for the available flags.

Return Value
A CFComparisonResult value that indicates whether theString1 is equal to, less than, or greater than
theString2.

Discussion
You can affect how the comparison proceeds by specifying one or more option flags in compareOptions.
Not all comparison options are currently implemented.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageBrowserView
ImageClient
MoreIsBetter
MoreOSL
NSLMiniBrowser

Declared In
CFString.h

CFStringCompareWithOptions
Compares a range of the characters in one string with that of another string.

CFComparisonResult CFStringCompareWithOptions (
 CFStringRef theString1,
 CFStringRef theString2,
 CFRange rangeToCompare,
 CFOptionFlags compareOptions
);

Parameters
theString1

The first string to use in the comparison.

theString2
The second string to use in the comparison.

14 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

rangeToCompare
The range of characters in theString1 to be used in the comparison to theString2. To use the
whole string, pass the range CFRangeMake(0, CFStringGetLength(theString1)) or use
CFStringCompare (page 13). The specified range must not exceed the length of the string.

compareOptions
Flags that select different types of comparisons, such as localized comparison, case-insensitive
comparison, and non-literal comparison. If you want the default comparison behavior, pass 0. See
“String Comparison Flags” (page 60) for the available flags.

Return Value
A CFComparisonResult value that indicates whether theString1 is equal to, less than, or greater than
theString2.

Discussion
You can affect how the comparison proceeds by specifying one or more option flags in compareOptions.

If you want to compare one entire string with another string, use the CFStringCompare (page 13) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringCompareWithOptionsAndLocale
Compares a range of the characters in one string with another string using a given locale.

CFComparisonResult CFStringCompareWithOptionsAndLocale (
 CFStringRef theString1,
 CFStringRef theString2,
 CFRange rangeToCompare,
 CFOptionFlags compareOptions,
 CFLocaleRef locale
);

Parameters
theString1

The first string to use in the comparison.

theString2
The second string to use in the comparison. The full range of this string is used.

rangeToCompare
The range of characters in theString1 to be used in the comparison to theString2. To use the
whole string, pass the range CFRangeMake(0, CFStringGetLength(theString1)). The specified
range must not exceed the bounds of the string.

compareOptions
Flags that select different types of comparisons, such as case-insensitive comparison and non-literal
comparison. If you want the default comparison behavior, pass 0. See “String Comparison Flags” (page
60) for the available flags. kCFCompareBackwards and kCFCompareAnchored are not applicable.

Functions 15
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

locale
The locale to use for the comparison. NULL specifies the canonical locale (the return value from
CFLocaleGetSystem). The locale argument affects both equality and ordering algorithms. For
example, in some locales, accented characters are ordered immediately after the base; other locales
order them after “z”.

Return Value
A CFComparisonResult value that indicates whether theString1 is equal to, less than, or greater than
theString2.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFString.h

CFStringConvertEncodingToIANACharSetName
Returns the name of the IANA registry “charset” that is the closest mapping to a specified string encoding.

CFStringRef CFStringConvertEncodingToIANACharSetName (
 CFStringEncoding encoding
);

Parameters
encoding

The Core Foundation string encoding to use.

Return Value
The name of the IANA “charset” that is the closest mapping to encoding. Returns NULL if the encoding is
not recognized.

Discussion
TheCFStringConvertIANACharSetNameToEncoding (page 17) function is complementary to this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringConvertEncodingToNSStringEncoding
Returns the Cocoa encoding constant that maps most closely to a given Core Foundation encoding constant.

UInt32 CFStringConvertEncodingToNSStringEncoding (
 CFStringEncoding encoding
);

Parameters
encoding

The Core Foundation string encoding to use.

16 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Return Value
The Cocoa encoding (of type NSStringEncoding) that is closest to the Core Foundation encoding encoding.
The behavior is undefined if an invalid string encoding is passed.

Discussion
The CFStringConvertNSStringEncodingToEncoding (page 18) function is complementary to this
function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
CFString.h

CFStringConvertEncodingToWindowsCodepage
Returns the Windows codepage identifier that maps most closely to a given Core Foundation encoding
constant.

UInt32 CFStringConvertEncodingToWindowsCodepage (
 CFStringEncoding encoding
);

Parameters
encoding

The Core Foundation string encoding to use.

Return Value
The Windows codepage value that is closest to the Core Foundation encoding encoding. The behavior is
undefined if an invalid string encoding is passed.

Discussion
TheCFStringConvertWindowsCodepageToEncoding (page 18) function is complementary to this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringConvertIANACharSetNameToEncoding
Returns the Core Foundation encoding constant that is the closest mapping to a given IANA registry “charset”
name.

Functions 17
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringEncoding CFStringConvertIANACharSetNameToEncoding (
 CFStringRef theString
);

Parameters
IANAName

The IANA “charset” name to use.

Return Value
The Core Foundation string encoding that is closest to the IANA “charset” IANAName. Returns the
kCFStringEncodingInvalidId (page 64) constant if the name is not recognized.

Discussion
TheCFStringConvertEncodingToIANACharSetName (page 16) function is complementary to this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringConvertNSStringEncodingToEncoding
Returns the Core Foundation encoding constant that is the closest mapping to a given Cocoa encoding.

CFStringEncoding CFStringConvertNSStringEncodingToEncoding (
 UInt32 encoding
);

Parameters
encoding

The Cocoa string encoding (of type NSStringEncoding) to use.

Return Value
The Core Foundation string encoding that is closest to the Cocoa string encoding encoding. Returns the
kCFStringEncodingInvalidId (page 64) constant if the mapping is not known.

Discussion
The CFStringConvertEncodingToNSStringEncoding (page 16) function is complementary to this
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringConvertWindowsCodepageToEncoding
Returns the Core Foundation encoding constant that is the closest mapping to a given Windows codepage
identifier.

18 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringEncoding CFStringConvertWindowsCodepageToEncoding (
 UInt32 codepage
);

Parameters
codepage

The Windows codepage identifier to use.

Return Value
The Core Foundation string encoding that is closest to the Windows codepage identifier codepage. Returns
the kCFStringEncodingInvalidId (page 64) constant if the mapping is not known.

Discussion
TheCFStringConvertEncodingToWindowsCodepage (page 17) function is complementary to this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringCreateArrayBySeparatingStrings
Creates an array of CFString objects from a single CFString object.

CFArrayRef CFStringCreateArrayBySeparatingStrings (
 CFAllocatorRef alloc,
 CFStringRef theString,
 CFStringRef separatorString
);

Parameters
alloc

The allocator to use to allocate memory for the new CFArray object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

theString
The string to be divided into substrings. The substrings should be separated by separatorString.

separatorString
A string containing the character or characters used to separate the substrings in theString.

Return Value
A new array that contains CFString objects that represent substrings of theString, or NULL if there was a
problem creating the object. The order of elements in the array is identical to the order of the substrings in
theString. If separatorString does not occur in theString, the result is an array containing theString.
If separatorString is equal to theString, then the result is an array containing two empty strings.
Ownership follows the Create Rule.

Discussion
This function provides a convenient way to convert units of data captured in a single string to a form (an
array) suitable for iterative processing. One or more delimiter characters (or “separator string”) separates the
substrings in the source string—these characters are frequently whitespace characters such as tabs and
newlines (carriage returns). For example, you might have a file containing a localized list of place names with
each name separated by a tab character. You could create a CFString object from this file and call this function
on the string to obtain a CFArray object whose elements are these place names.

Functions 19
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

See also CFStringCreateByCombiningStrings (page 21).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iTunesController
MoreIsBetter
MoreSCF
QISA

Declared In
CFString.h

CFStringCreateArrayWithFindResults
Searches a string for multiple occurrences of a substring and creates an array of ranges identifying the
locations of these substrings within the target string.

CFArrayRef CFStringCreateArrayWithFindResults (
 CFAllocatorRef alloc,
 CFStringRef theString,
 CFStringRef stringToFind,
 CFRange rangeToSearch,
 CFOptionFlags compareOptions
);

Parameters
alloc

The allocator to use to allocate memory for the new CFArray object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

theString
The string in which to search for stringToFind.

stringToFind
The string to search for in theString.

rangeToSearch
The range of characters within theString to be searched. The specified range must not exceed the
length of the string.

compareOptions
Flags that select different types of comparisons, such as localized comparison, case-insensitive
comparison, and non-literal comparison. If you want the default comparison behavior, pass 0. See
“String Comparison Flags” (page 60) for the available flags.

Return Value
An array that contains pointers to CFRange structures identifying the character locations of stringToFind
in theString. Returns NULL, if no matching substring is found in the source object, or if there was a problem
creating the array. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

20 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Declared In
CFString.h

CFStringCreateByCombiningStrings
Creates a single string from the individual CFString objects that comprise the elements of an array.

CFStringRef CFStringCreateByCombiningStrings (
 CFAllocatorRef alloc,
 CFArrayRef theArray,
 CFStringRef separatorString
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

theArray
An array of CFString objects to concatenate. This value should not be NULL.

separatorString
The string to insert between the substrings in the returned string. This value is commonly a whitespace
character such as a tab or a newline (carriage return). If this value is not a valid CFString object, an
assertion is raised.

Return Value
A string that contains a concatenation of the strings in theArray separated by separatorString. The
order of the substrings in the string is identical to the order of the elements in theArray.

If theArray is empty, returns an empty CFString object; if theArray contains one CFString object, that
object is returned (without the separator string). Returns NULL if there was a problem in creating the string.
Ownership follows the Create Rule.

Discussion
See also CFStringCreateArrayBySeparatingStrings (page 19).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MyFirstJNIProject

Declared In
CFString.h

CFStringCreateCopy
Creates an immutable copy of a string.

Functions 21
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringRef CFStringCreateCopy (
 CFAllocatorRef alloc,
 CFStringRef theString
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

theString
The string to copy.

Return Value
An immutable string whose contents are identical to theString. Returns NULL if there was a problem
copying the object. Ownership follows the Create Rule.

Discussion
The resulting object has the same Unicode contents as the original object, but it is always immutable. It
might also have different storage characteristics, and hence might reply differently to functions such as
CFStringGetCStringPtr (page 44). Also, if the specified allocator and the allocator of the original object
are the same, and the string is already immutable, this function may simply increment the retention count
without making a true copy. However, the resulting object is a true immutable copy, except the operation
was a lot more efficient.

You should use this function in situations where a string is or could be mutable, and you need to take a
snapshot of its current value. For example, you might decide to pass a copy of a string to a function that
stores its current value in a list for later use.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockBrowser
HID Calibrator
HID Explorer
NSLMiniBrowser
QTMetaData

Declared In
CFString.h

CFStringCreateExternalRepresentation
Creates an “external representation” of a CFString object, that is, a CFData object.

22 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFDataRef CFStringCreateExternalRepresentation (
 CFAllocatorRef alloc,
 CFStringRef theString,
 CFStringEncoding encoding,
 UInt8 lossByte
);

Parameters
alloc

The allocator to use to allocate memory for the new CFData object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

theString
The string to convert to an external representation.

encoding
The string encoding to use for the external representation.

lossByte
The character value to assign to characters that cannot be converted to the requested encoding. Pass
0 if you want conversion to stop at the first such error; if this happens, the function returns NULL.

Return Value
A CFData object that stores the characters of the CFString object as an “external representation.” Returns
NULL if no loss byte was specified and the function could not convert the characters to the specified encoding.
Ownership follows the Create Rule.

Discussion
In the CFData object form, the string can be written to disk as a file or be sent out over a network. If the
encoding of the characters in the data object is Unicode, the function may insert a BOM (byte-order marker)
to indicate endianness. However, representations created with encoding constants
kCFStringEncodingUTF16BE, kCFStringEncodingUTF16LE, kCFStringEncodingUTF32BE, and
kCFStringEncodingUTF32LE do not include a BOM because the byte order is explicitly indicated by the
letters “BE” (big-endian) and “LE” (little-endian).

This function allows the specification of a “loss byte” to represent characters that cannot be converted to
the requested encoding.

When you create an external representation from a CFMutableString object, it loses this mutability characteristic
when it is converted back to a CFString object.

The CFStringCreateFromExternalRepresentation (page 23) function complements this function by
creating a CFString object from an “external representation” CFData object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringCreateFromExternalRepresentation
Creates a string from its “external representation.”

Functions 23
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringRef CFStringCreateFromExternalRepresentation (
 CFAllocatorRef alloc,
 CFDataRef data,
 CFStringEncoding encoding
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

data
The CFData object containing bytes that hold the characters in the specified encoding.

encoding
The encoding to use when interpreting the bytes in the data argument.

Return Value
An immutable string containing the characters from data, or NULL if there was a problem creating the object.
Ownership follows the Create Rule.

Discussion
In the CFData object form, the string can be written to disk as a file or be sent out over a network. If the
encoding of the characters in the data object is Unicode, the function reads any BOM (byte order marker)
and properly resolves endianness.

The CFStringCreateExternalRepresentation (page 22) function complements this function by creating
an “external representation” CFData object from a string.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringCreateWithBytes
Creates a string from a buffer containing characters in a specified encoding.

CFStringRef CFStringCreateWithBytes (
 CFAllocatorRef alloc,
 const UInt8 *bytes,
 CFIndex numBytes,
 CFStringEncoding encoding,
 Boolean isExternalRepresentation
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

bytes
A buffer containing characters in the encoding specified by encoding. The buffer must not contain
a length byte (as in Pascal buffers) or any terminating NULL character (as in C buffers).

24 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

numBytes
The number of bytes in bytes.

encoding
The string encoding of the characters in the buffer.

isExternalRepresentation
true if the characters in the byte buffer are in an “external representation” format—that is, whether
the buffer contains a BOM (byte order marker). This is usually the case for bytes that are read in from
a text file or received over the network. Otherwise, pass false.

Return Value
An immutable string, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Discussion
This function handles character data in an “external representation” format by interpreting any BOM (byte
order marker) character and performing any necessary byte swapping.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonMDEF
ImageClient
MFSLives
MoreIsBetter
NSLMiniBrowser

Declared In
CFString.h

CFStringCreateWithBytesNoCopy
Creates a string from a buffer, containing characters in a specified encoding, that might serve as the backing
store for the new string.

CFStringRef CFStringCreateWithBytesNoCopy (
 CFAllocatorRef alloc,
 const UInt8 *bytes,
 CFIndex numBytes,
 CFStringEncoding encoding,
 Boolean isExternalRepresentation,
 CFAllocatorRef contentsDeallocator
);

Parameters
alloc

The allocator to use to allocate memory for the new CFString object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

bytes
A buffer containing characters in the encoding specified by encoding. The buffer must not contain
a length byte (as in Pascal buffers) or any terminating NULL character (as in C buffers).

numBytes
The number of bytes in bytes.

Functions 25
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

encoding
The character encoding of bytes.

isExternalRepresentation
true if the characters in the byte buffer are in an “external representation” format—that is, whether
the buffer contains a BOM (byte order marker). This is usually the case for bytes that are read in from
a text file or received over the network. Otherwise, pass false.

contentsDeallocator
The allocator to use to deallocate bytes when it is no longer needed. You can pass NULL or
kCFAllocatorDefault to request the default allocator for this purpose. If the buffer does not need
to be deallocated, or if you want to assume responsibility for deallocating the buffer (and not have
the string deallocate it), pass kCFAllocatorNull.

Return Value
A new string whose contents are bytes. Ownership follows the Create Rule.

Discussion
This function takes an explicit length, and allows you to specify whether the data is an external format—that
is, whether to pay attention to the BOM character (if any) and do byte swapping if necessary

Special Considerations

If an error occurs during the creation of the string, then bytes is not deallocated. In this case, the caller is
responsible for freeing the buffer. This allows the caller to continue trying to create a string with the buffer,
without having the buffer deallocated.

Availability
Available in Mac OS X v10.5 and later.

See Also
CFStringCreateWithBytes (page 24)
CFStringCreateWithCharactersNoCopy (page 27)
CFStringCreateWithCStringNoCopy (page 29)
CFStringCreateWithPascalStringNoCopy (page 33)

Declared In
CFString.h

CFStringCreateWithCharacters
Creates a string from a buffer of Unicode characters.

CFStringRef CFStringCreateWithCharacters (
 CFAllocatorRef alloc,
 const UniChar *chars,
 CFIndex numChars
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

chars
The buffer of Unicode characters to copy into the new string.

26 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

numChars
The number of characters in the buffer pointed to by chars. Only this number of characters will be
copied to internal storage.

Return Value
An immutable string containing chars, or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Discussion
This function creates an immutable string from a client-supplied Unicode buffer. You must supply a count
of the characters in the buffer. This function always copies the characters in the provided buffer into internal
storage.

To save memory, this function might choose to store the characters internally in a 8-bit backing store. That
is, just because a buffer of UniChar characters was used to initialize the object does not mean you will get
back a non-NULL result from CFStringGetCharactersPtr (page 42).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Custom_HIView_Tutorial
MoreIsBetter
QISA
QTSetMovieAudioDevice
TypeServicesForUnicode

Declared In
CFString.h

CFStringCreateWithCharactersNoCopy
Creates a string from a buffer of Unicode characters that might serve as the backing store for the object.

CFStringRef CFStringCreateWithCharactersNoCopy (
 CFAllocatorRef alloc,
 const UniChar *chars,
 CFIndex numChars,
 CFAllocatorRef contentsDeallocator
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

chars
The Unicode buffer that has been allocated and initialized with Unicode characters.

numChars
The number of characters in the buffer pointed to by chars. Only this number of characters will be
copied to internal storage.

Functions 27
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

contentsDeallocator
The allocator to use to deallocate the external buffer when it is no longer needed. You can pass NULL
or kCFAllocatorDefault to request the default allocator for this purpose. If the buffer does not
need to be deallocated, or if you want to assume responsibility for deallocating the buffer (and not
have the string deallocate it), pass kCFAllocatorNull.

Return Value
An immutable string containing chars, or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Discussion
Unless the situation warrants otherwise, the returned object does not copy the external buffer to internal
storage but instead uses the buffer as its backing store. However, you should never count on the object using
the external buffer since it could copy the buffer to internal storage or might even dump the buffer altogether
and use alternative means for storing the characters.

The function includes a contentsDeallocator parameter with which to specify an allocator to use for
deallocating the external buffer when the string is deallocated. If you want to assume responsibility for
deallocating this memory, specify kCFAllocatorNull for this parameter.

If at creation time CFString decides it can't use the buffer, and there is a contentsDeallocator, it will use
this allocator to free the buffer at that time.

Special Considerations

If an error occurs during the creation of the string, then chars is not deallocated. In this case, the caller is
responsible for freeing the buffer. This allows the caller to continue trying to create a string with the buffer,
without having the buffer deallocated.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFStringCreateWithCharacters (page 26)
CFStringCreateWithBytesNoCopy (page 25)
CFStringCreateWithCStringNoCopy (page 29)
CFStringCreateWithPascalStringNoCopy (page 33)

Declared In
CFString.h

CFStringCreateWithCString
Creates an immutable string from a C string.

CFStringRef CFStringCreateWithCString (
 CFAllocatorRef alloc,
 const char *cStr,
 CFStringEncoding encoding
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

28 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

cStr
The NULL-terminated C string to be used to create the CFString object. The string must use an 8-bit
encoding.

encoding
The encoding of the characters in the C string. The encoding must specify an 8-bit encoding.

Return Value
An immutable string containing cStr (after stripping off the NULL terminating character), or NULL if there
was a problem creating the object. Ownership follows the Create Rule.

Discussion
A C string is a string of 8-bit characters terminated with an 8-bit NULL. Unichar and Unichar32 are not
considered C strings.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFFTPSample
DockBrowser
MoreIsBetter
NSLMiniBrowser
Quartz EB

Declared In
CFString.h

CFStringCreateWithCStringNoCopy
Creates a CFString object from an external C string buffer that might serve as the backing store for the object.

CFStringRef CFStringCreateWithCStringNoCopy (
 CFAllocatorRef alloc,
 const char *cStr,
 CFStringEncoding encoding,
 CFAllocatorRef contentsDeallocator
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

cStr
The NULL-terminated C string to be used to create the CFString object. The string must use an 8-bit
encoding.

encoding
The encoding of the characters in the C string. The encoding must specify an 8-bit encoding.

contentsDeallocator
The CFAllocator object to use to deallocate the external string buffer when it is no longer needed.
You can pass NULL or kCFAllocatorDefault to request the default allocator for this purpose. If
the buffer does not need to be deallocated, or if you want to assume responsibility for deallocating
the buffer (and not have the CFString object deallocate it), pass kCFAllocatorNull.

Functions 29
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Return Value
An immutable string containing cStr (after stripping off the NULL terminating character), or NULL if there
was a problem creating the object. Ownership follows the Create Rule.

Discussion
A C string is a string of 8-bit characters terminated with an 8-bit NULL. Unichar and Unichar32 are not
considered C strings.

Unless the situation warrants otherwise, the created object does not copy the external buffer to internal
storage but instead uses the buffer as its backing store. However, you should never assume that the object
is using the external buffer since the object might copy the buffer to internal storage or even dump the
buffer altogether and store the characters in another way.

The function includes a contentsDeallocator parameter with which to specify an allocator to use for
deallocating the external buffer when the CFString object is deallocated. If you want to assume responsibility
for deallocating this memory, specify kCFAllocatorNull for this parameter.

If at creation time the CFString object decides it can't use the buffer, and the function specifies a
contentsDeallocator allocator, it will use this allocator to free the buffer at that time.

Special Considerations

If an error occurs during the creation of the string, then cStr is not deallocated. In this case, the caller is
responsible for freeing the buffer. This allows the caller to continue trying to create a string with the buffer,
without having the buffer deallocated.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFStringCreateWithCString (page 28)
CFStringCreateWithBytesNoCopy (page 25)
CFStringCreateWithCharactersNoCopy (page 27)
CFStringCreateWithPascalStringNoCopy (page 33)

Declared In
CFString.h

CFStringCreateWithFileSystemRepresentation
Creates a CFString from a zero-terminated POSIX file system representation.

CFStringRef CFStringCreateWithFileSystemRepresentation (
 CFAllocatorRef alloc,
 const char *buffer
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

buffer
The C string that you want to convert.

30 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Return Value
A string that represents buffer. The result is NULL if there was a problem in creating the string (possible if
the conversion fails due to bytes in the buffer not being a valid sequence of bytes for the appropriate character
encoding). Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFString.h

CFStringCreateWithFormat
Creates an immutable string from a formatted string and a variable number of arguments.

CFStringRef CFStringCreateWithFormat (
 CFAllocatorRef alloc,
 CFDictionaryRef formatOptions,
 CFStringRef format,
 ...
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

formatOptions
A CFDictionary object containing formatting options for the string (such as the thousand-separator
character, which is dependent on locale). Currently, these options are an unimplemented feature.

format
The formatted string with printf-style specifiers. For information on supported specifiers, see String
Format Specifiers.

...
Variable list of the values to be inserted in format.

Return Value
An immutable string, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Calibrator
HID Explorer
HID Utilities Source
MoreIsBetter
QISA

Declared In
CFString.h

Functions 31
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringCreateWithFormatAndArguments
Creates an immutable string from a formatted string and a variable number of arguments (specified in a
parameter of type va_list).

CFStringRef CFStringCreateWithFormatAndArguments (
 CFAllocatorRef alloc,
 CFDictionaryRef formatOptions,
 CFStringRef format,
 va_list arguments
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

formatOptions
A CFDictionary object containing formatting options for the string (such as the thousand-separator
character, which is dependent on locale). Currently, these options are an unimplemented feature.

format
The formatted string with printf-style specifiers. For information on supported specifiers, see String
Format Specifiers.

arguments
The variable argument list of values to be inserted into the formatted string contained in format.

Return Value
An immutable string, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Discussion
The programming interface for variable argument lists (va_list, va_start, va_end, and so forth) is declared
in the standard C header file stdarg.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringCreateWithPascalString
Creates an immutable CFString object from a Pascal string.

CFStringRef CFStringCreateWithPascalString (
 CFAllocatorRef alloc,
 ConstStr255Param pStr,
 CFStringEncoding encoding
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

32 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

pStr
The Pascal string to be used to create the string.

encoding
The encoding of the characters in the Pascal string.

Return Value
An immutable string containing pStr, or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Discussion
This function creates an immutable CFString objects from the character contents of a Pascal string (after
stripping off the initial length byte).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AppearanceSampleUpdated
BasicInputMethod
Carbon Porting Tutorial
JustDraw
MoreIsBetter

Declared In
CFString.h

CFStringCreateWithPascalStringNoCopy
Creates a CFString object from an external Pascal string buffer that might serve as the backing store for the
object.

CFStringRef CFStringCreateWithPascalStringNoCopy (
 CFAllocatorRef alloc,
 ConstStr255Param pStr,
 CFStringEncoding encoding,
 CFAllocatorRef contentsDeallocator
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

pStr
The Pascal string to be used to create the string.

encoding
The encoding of the characters in the Pascal string.

contentsDeallocator
The CFAllocator object to use to deallocate the external string buffer when it is no longer needed.
Pass NULL or kCFAllocatorDefault to request the default allocator for this purpose. If the buffer
does not need to be deallocated, or if you want to assume responsibility for deallocating the buffer
(and not have the string deallocate it), pass kCFAllocatorNull.

Functions 33
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Return Value
An immutable string containing pStr, or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Discussion
This function creates an immutable CFString objects from the character contents of a Pascal string (after
stripping off the initial length byte).

Unless the situation warrants otherwise, the created object does not copy the external buffer to internal
storage but instead uses the buffer as its backing store. However, you should never assume that the object
is using the external buffer since the object might copy the buffer to internal storage or even dump the
buffer altogether and store the characters in another way.

The function includes a contentsDeallocator parameter with which to specify an allocator to use for
deallocating the external buffer when the string is deallocated. If you want to assume responsibility for
deallocating this memory, specify kCFAllocatorNull for this parameter.

If at creation time the string decides it can't use the buffer, and there is an allocator specified in the
contentsDeallocator parameter, it will use this allocator to free the buffer at that time.

Special Considerations

If an error occurs during the creation of the string, then pStr is not deallocated. In this case, the caller is
responsible for freeing the buffer. This allows the caller to continue trying to create a string with the buffer,
without having the buffer deallocated.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFStringCreateWithPascalString (page 32)
CFStringCreateWithBytesNoCopy (page 25)
CFStringCreateWithCStringNoCopy (page 29)
CFStringCreateWithCharactersNoCopy (page 27)

Declared In
CFString.h

CFStringCreateWithSubstring
Creates an immutable string from a segment (substring) of an existing string.

CFStringRef CFStringCreateWithSubstring (
 CFAllocatorRef alloc,
 CFStringRef str,
 CFRange range
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

str
The string from which to create the new string.

34 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

range
The range of characters in str to copy. The specified range must not exceed the length of the string.

Return Value
An immutable string, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioQueueTools
DockBrowser
MoreIsBetter
MoreSCF
TypeServicesForUnicode

Declared In
CFString.h

CFStringFind
Searches for a substring within a string and, if it is found, yields the range of the substring within the object's
characters.

CFRange CFStringFind (
 CFStringRef theString,
 CFStringRef stringToFind,
 CFOptionFlags compareOptions
);

Parameters
theString

The string in which to search for stringToFind.

stringToFind
The string to search for in theString.

compareOptions
Flags that select different types of comparisons, such as localized comparison, case-insensitive
comparison, and non-literal comparison. If you want the default comparison behavior, pass 0. See
“String Comparison Flags” (page 60) for the available flags.

Return Value
The range of the located substring within theString. If a match is not located, the returned CFRange
structure will have a location of kCFNotFound and a length of 0 (either of which is enough to indicate failure).

Discussion
This function is a convenience when you want to know if the entire range of characters represented by a
string contains a particular substring. If you want to search only part of the characters of a string, use the
CFStringFindWithOptions (page 37) function. Both of these functions return upon finding the first
occurrence of the substring, so if you want to find out about multiple occurrences, call the
CFStringCreateArrayWithFindResults (page 20) function.

Depending on the comparison-option flags specified, the length of the resulting range might be different
than the length of the search string.

Functions 35
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioQueueTools
CIVideoDemoGL
TypeServicesForUnicode

Declared In
CFString.h

CFStringFindCharacterFromSet
Query the range of the first character contained in the specified character set.

Boolean CFStringFindCharacterFromSet (
 CFStringRef theString,
 CFCharacterSetRef theSet,
 CFRange rangeToSearch,
 CFOptionFlags searchOptions,
 CFRange *result
);

Parameters
theString

The string to search.

theSet
The character set against which the membership of characters is checked.

rangeToSearch
The range of characters within theString to search. If the range location or end point (defined by
the location plus length minus 1) are outside the index space of the string (0 to N-1 inclusive, where
N is the length of the string), the behavior is undefined. The specified range must not exceed the
length of the string. If the range length is negative, the behavior is undefined. The range may be
empty (length 0), in which case no search is performed.

searchOptions
The option flags to control the search behavior. The supported options are
kCFCompareBackwards (page 60) and kCFCompareAnchored (page 60). If other option flags are
specified, the behavior is undefined.

result
On return, a pointer to a CFRange structure (supplied by the caller) in which the search result is stored.
Note that the length of this range could be more than 1 (if the character in question is a multi-byte
character). If a pointer to an invalid structure is passed, the behavior is undefined.

Return Value
true if a character in the character set is found and result is filled, false otherwise.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFString.h

36 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringFindWithOptions
Searches for a substring within a range of the characters represented by a string and, if the substring is found,
returns its range within the object's characters.

Boolean CFStringFindWithOptions (
 CFStringRef theString,
 CFStringRef stringToFind,
 CFRange rangeToSearch,
 CFOptionFlags searchOptions,
 CFRange *result
);

Parameters
theString

The string in which to to search for stringToFind.

stringToFind
The substring to search for in theString.

rangeToSearch
A range of the characters to search in theString. The specified range must not exceed the length
of the string.

searchOptions
The option flags to control the search behavior. The supported options are
kCFCompareBackwards (page 60), kCFCompareAnchored (page 60),
kCFCompareCaseInsensitive (page 60), kCFCompareNonliteral (page 60), and
kCFCompareLocalized (page 61) (available in Mac OS X v10.0 and later). Uses the current user
locale (the return value from CFLocaleCopyCurrent) if kCFCompareLocalized is specified. If other
option flags are specified, the behavior is undefined.

result
On return, if the function result is true, contains the starting location and length of the found substring.
You may pass NULL if you only want to know if the substring exists in the larger string.

Return Value
true if the substring was found, false otherwise.

Discussion
This function allows you to search only part of the characters of a string for a substring. It returns the found
range indirectly, in the final result parameter. If you want to know if the entire range of characters
represented by a string contains a particular substring, you can use the convenience function
CFStringFind (page 35). Both of these functions return upon finding the first occurrence of the substring,
so if you want to find out about multiple occurrences, call the
CFStringCreateArrayWithFindResults (page 20) function.

Depending on the comparison-option flags specified, the length of the resulting range might be different
than the length of the search string.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockBrowser
MoreIsBetter
MoreOSL

Functions 37
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

MoreSCF
QISA

Declared In
CFString.h

CFStringFindWithOptionsAndLocale
Returns a Boolean value that indicates whether a given string was found in a given source string.

Boolean CFStringFindWithOptionsAndLocale (
 CFStringRef theString,
 CFStringRef stringToFind,
 CFRange rangeToSearch,
 CFOptionFlags searchOptions,
 CFLocaleRef locale,
 CFRange *result
);

Parameters
theString

The string in which to to search for stringToFind.

stringToFind
The substring to search for in theString.

rangeToSearch
A range of the characters to search in theString. The specified range must not exceed the length
of the string.

searchOptions
The option flags to control the search behavior. See “String Comparison Flags” (page 60) for
possible values. kCFCompareNumerically (page 61) is ignored.

locale
The locale to use for the search comparison. NULL specifies the canonical locale (the return value
from CFLocaleGetSystem).

The locale argument affects the equality checking algorithm. For example, for the Turkish locale,
case-insensitive compare matches “I” to “ı” (Unicode code point U+0131, Latin Small Dotless I), not
the normal “i” character.

result
On return, if the function result is true contains the starting location and length of the found substring.
You may pass NULL if you only want to know if the theString contains stringToFind.

Return Value
true if the substring was found, false otherwise.

Discussion
If stringToFind is the empty string (zero length), nothing is found.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFString.h

38 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringGetBytes
Fetches a range of the characters from a string into a byte buffer after converting the characters to a specified
encoding.

CFIndex CFStringGetBytes (
 CFStringRef theString,
 CFRange range,
 CFStringEncoding encoding,
 UInt8 lossByte,
 Boolean isExternalRepresentation,
 UInt8 *buffer,
 CFIndex maxBufLen,
 CFIndex *usedBufLen
);

Parameters
theString

The string upon which to operate.

range
The range of characters in theString to process. The specified range must not exceed the length
of the string.

encoding
The string encoding of the characters to copy to the byte buffer. 8, 16, and 32-bit encodings are
supported.

lossByte
A character (for example, '?') that should be substituted for characters that cannot be converted to
the specified encoding. Pass 0 if you do not want lossy conversion to occur.

isExternalRepresentation
true if you want the result to be in an “external representation” format, otherwise false. In an
“external representation” format, the result may contain a byte order marker (BOM) specifying
endianness and this function might have to perform byte swapping.

buffer
The byte buffer into which the converted characters are written. The buffer can be allocated on the
heap or stack. Pass NULL if you do not want conversion to take place but instead want to know if
conversion will succeed (the function result is greater than 0) and, if so, how many bytes are required
(usedBufLen).

maxBufLen
The size of buffer and the maximum number of bytes that can be written to it.

usedBufLen
On return, the number of converted bytes actually in buffer. You may pass NULL if you are not
interested in this information.

Return Value
The number of characters converted.

Discussion
This function is the basic encoding-conversion function for CFString objects. As with the other functions that
get the character contents of CFString objects, it allows conversion to a supported 8-bit encoding. Unlike
most of those other functions, it also allows “lossy conversion.” The function permits the specification of a
“loss byte” in a parameter; if a character cannot be converted this character is substituted and conversion
proceeds. (With the other functions, conversion stops at the first error and the operation fails.)

Functions 39
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Because this function takes a range and returns the number of characters converted, it can be called repeatedly
with a small fixed size buffer and different ranges of the string to do the conversion incrementally.

This function also handles any necessary manipulation of character data in an “external representation”
format. This format makes the data portable and persistent (disk-writable); in Unicode it often includes a
BOM (byte order marker) that specifies the endianness of the data.

The CFStringCreateExternalRepresentation (page 22) function also handles external representations
and performs lossy conversions. The complementary function CFStringCreateWithBytes (page 24)
creates a string from the characters in a byte buffer.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioburntest
bulkerase
databurntest
MoreIsBetter
QISA

Declared In
CFString.h

CFStringGetCharacterAtIndex
Returns the Unicode character at a specified location in a string.

UniChar CFStringGetCharacterAtIndex (
 CFStringRef theString,
 CFIndex idx
);

Parameters
theString

The string from which the Unicode character is obtained.

idx
The position of the Unicode character in the CFString.

Return Value
A Unicode character.

Discussion
This function is typically called in a loop to fetch the Unicode characters of a string in sequence or to fetch
a character at a known position (first or last, for example). Using it in a loop can be inefficient, especially with
longer strings, so consider the CFStringGetCharacters (page 41) function or the in-line buffer functions
(CFStringInitInlineBuffer (page 57) and CFStringGetCharacterFromInlineBuffer (page 41))
as alternatives.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AuthForAll

40 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

MFSLives
MoreSCF

Declared In
CFString.h

CFStringGetCharacterFromInlineBuffer
Returns the Unicode character at a specific location in an in-line buffer.

UniChar CFStringGetCharacterFromInlineBuffer (
 CFStringInlineBuffer *buf,
 CFIndex idx
);

Parameters
buf

The initialized CFStringInlineBuffer (page 59) structure in which the characters are stored. You
should initialize the structure with the CFStringInitInlineBuffer (page 57) function.

idx
The location of a character in the in-line buffer buf. This index is relative to the range specified when
buf was created.

Return Value
A Unicode character, or 0 if a location outside the original range is specified.

Discussion
This function accesses one of the characters of a string written to an in-line buffer. It is typically called from
within a loop to access each character in the buffer in sequence. You should initialize the buffer with the
CFStringInitInlineBuffer (page 57) function. The in-line buffer functions, along with the
CFStringInlineBuffer (page 59) structure, give you fast access to the characters of a CFString object.
The technique for in-line buffer access combines the convenience of one-at-a-time character access with the
efficiency of bulk access.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetCharacters
Copies a range of the Unicode characters from a string to a user-provided buffer.

void CFStringGetCharacters (
 CFStringRef theString,
 CFRange range,
 UniChar *buffer
);

Parameters
theString

The string from which the characters are to be obtained.

Functions 41
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

range
The range of characters to copy. The specified range must not exceed the length of the string.

buffer
The UniChar buffer of length range.length that you have allocated on the stack or heap. On return,
the buffer contains the requested Unicode characters.

Discussion
Use this function to obtain some or all of the Unicode characters represented by a CFString object. If this
operation involves a large number of characters, the function call can be expensive in terms of memory.
Instead you might want to consider using the in-line buffer functions CFStringInitInlineBuffer (page
57) and CFStringGetCharacterFromInlineBuffer (page 41) to extract the characters incrementally.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQuartzDrawingWPrinting
Custom_HIView_Tutorial
HITextViewDemo
MoreIsBetter
QISA

Declared In
CFString.h

CFStringGetCharactersPtr
Quickly obtains a pointer to the contents of a string as a buffer of Unicode characters.

const UniChar * CFStringGetCharactersPtr (
 CFStringRef theString
);

Parameters
theString

The string whose contents you wish to access.

Return Value
A pointer to a buffer of Unicode character, or NULL if the internal storage of theString does not allow this
to be returned efficiently.

Discussion
This function either returns the requested pointer immediately, with no memory allocations and no copying,
or it returns NULL. If the latter is the result, call an alternative function such as CFStringGetCharacters (page
41) function to extract the characters.

Whether or not this function returns a valid pointer or NULL depends on many factors, all of which depend
on how the string was created and its properties. In addition, the function result might change between
different releases and on different platforms. So do not count on receiving a non-NULL result from this
function under any circumstances (except when the object is created with
CFStringCreateMutableWithExternalCharactersNoCopy).

Availability
Available in Mac OS X v10.0 and later.

42 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Related Sample Code
TypeServicesForUnicode

Declared In
CFString.h

CFStringGetCString
Copies the character contents of a string to a local C string buffer after converting the characters to a given
encoding.

Boolean CFStringGetCString (
 CFStringRef theString,
 char *buffer,
 CFIndex bufferSize,
 CFStringEncoding encoding
);

Parameters
theString

The string whose contents you wish to access.

buffer
The C string buffer into which to copy the string. The buffer must be at least bufferSize bytes in
length. On return, the buffer contains the converted characters. If there is an error in conversion, the
buffer contains only partial results.

bufferSize
The length of the local buffer in bytes (accounting for the NULL-terminator byte).

encoding
The string encoding to which the character contents of theString should be converted. The encoding
must specify an 8-bit encoding.

Return Value
true upon success or false if the conversion fails or the provided buffer is too small.

Discussion
This function is useful when you need your own copy of a string’s character data as a C string. You also
typically call it as a “backup” when a prior call to the CFStringGetCStringPtr (page 44) function fails.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFHostSample
HID Calibrator
HID Config Save
HID Explorer
MoreIsBetter

Declared In
CFString.h

Functions 43
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringGetCStringPtr
Quickly obtains a pointer to a C-string buffer containing the characters of a string in a given encoding.

const char * CFStringGetCStringPtr (
 CFStringRef theString,
 CFStringEncoding encoding
);

Parameters
theString

The string whose contents you wish to access.

encoding
The string encoding to which the character contents of theString should be converted. The encoding
must specify an 8-bit encoding.

Return Value
A pointer to a C string or NULL if the internal storage of theString does not allow this to be returned
efficiently.

Discussion
This function either returns the requested pointer immediately, with no memory allocations and no copying,
in constant time, or returns NULL. If the latter is the result, call an alternative function such as the
CFStringGetCString (page 43) function to extract the characters.

Whether or not this function returns a valid pointer or NULL depends on many factors, all of which depend
on how the string was created and its properties. In addition, the function result might change between
different releases and on different platforms. So do not count on receiving a non-NULL result from this
function under any circumstances.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ColorMatching
ColorSyncDevices
ColorSyncDevices-Cocoa
InkSample
NSLMiniBrowser

Declared In
CFString.h

CFStringGetDoubleValue
Returns the primary double value represented by a string.

44 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

double CFStringGetDoubleValue (
 CFStringRef str
);

Parameters
str

A string that represents a double value. The only allowed characters are the ASCII digit characters
(ASCII 0x30 - 0x39), the plus sign (ASCII 0x2B), the minus sign (ASCII 0x2D), and the period character
(ASCII 0x2E).

Return Value
The double value represented by str, or 0.0 if there is a scanning error (if the string contains disallowed
characters or does not represent a double value).

Discussion
Consider the following example:

double val = CFStringGetDoubleValue(CFSTR("0.123"));

The variable val in this example would contain the value 0.123 after the function is called.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetFastestEncoding
Returns for a CFString object the character encoding that requires the least conversion time.

CFStringEncoding CFStringGetFastestEncoding (
 CFStringRef theString
);

Parameters
theString

The string for which to determine the fastest encoding.

Return Value
The string encoding to which theString can be converted the fastest.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetFileSystemRepresentation
Extracts the contents of a string as a NULL-terminated 8-bit string appropriate for passing to POSIX APIs.

Functions 45
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Boolean CFStringGetFileSystemRepresentation (
 CFStringRef string,
 char *buffer,
 CFIndex maxBufLen
);

Parameters
string

The string to convert.

buffer
The C string buffer into which to copy the string. The buffer must be at least maxBufLen bytes in
length. On return, the buffer contains the converted characters.

maxBufLen
The maximum length of the buffer.

Return Value
true if the string is correctly converted; false if the conversion fails, or the results don’t fit into the buffer.

Discussion
You can use CFStringGetMaximumSizeOfFileSystemRepresentation (page 49) if you want to make
sure the buffer is of sufficient length.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFString.h

CFStringGetIntValue
Returns the integer value represented by a string.

SInt32 CFStringGetIntValue (
 CFStringRef str
);

Parameters
str

A string that represents a signed integer value. The only allowed characters are the ASCII digit characters
(ASCII 0x30 - 0x39), the plus sign (ASCII 0x2B), the minus sign (ASCII 0x2D), and the period character
(ASCII 0x2E).

Return Value
The signed integer value represented by str. The result is 0 if there is a scanning error (if the string contains
disallowed characters or does not represent an integer value) or INT_MAX or INT_MIN if there is an overflow
error.

Discussion
Consider the following example:

SInt32 val = CFStringGetIntValue(CFSTR("-123"));

The variable val in this example would contain the value -123 after the function is called.

46 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetLength
Returns the number (in terms of UTF-16 code pairs) of Unicode characters in a string.

CFIndex CFStringGetLength (
 CFStringRef theString
);

Parameters
theString

The string to examine.

Return Value
The number (in terms of UTF-16 code pairs) of characters stored in theString.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Custom_HIView_Tutorial
MoreIsBetter
MoreSCF
QISA
TypeServicesForUnicode

Declared In
CFString.h

CFStringGetLineBounds
Given a range of characters in a string, obtains the line bounds—that is, the indexes of the first character
and the final characters of the lines containing the range.

void CFStringGetLineBounds (
 CFStringRef theString,
 CFRange range,
 CFIndex *lineBeginIndex,
 CFIndex *lineEndIndex,
 CFIndex *contentsEndIndex
);

Parameters
theString

The string containing the specified range of characters.

range
The range of characters to consider. The specified range must not exceed the length of the string.

Functions 47
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

lineBeginIndex
On return, the index of the first character of the containing line. Pass NULL if you do not want this
result.

lineEndIndex
On return, the index of the first character of the line after the specified range. Pass NULL if you do not
want this result.

contentsEndIndex
On return, the index of the last character of the containing line, excluding any line-separator characters.
Pass NULL if you are not interested in this result.

Discussion
This function is a convenience function for determining the beginning and ending indexes of one or more
lines in the given range of a string. It is useful, for example, when each line represents a “record” of some
sort; you might search for some substring, but want to extract the record of which the substring is a part.

To determine line separation, the function looks for the standard line-separator characters: carriage returns
(CR and CRLF), linefeeds (LF), and Unicode line and paragraph separators. The three final parameters of the
function indirectly return, in order, the index of the first character that starts the line, the index of the first
character of the next line (including end-of-line characters), and the index of the last character of the line
(excluding end-of-line characters). Pass NULL for any of these parameters if you aren't interested in the result.

To determine the number of characters in the line:

 ■ Subtract lineBeginIndex from lineEndIndex to find the number of characters in the line, including
the line separators.

 ■ Subtract lineBeginIndex from contentsEndIndex to find the number of characters in the line,
excluding the line separators.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetListOfAvailableEncodings
Returns a pointer to a list of string encodings supported by the current system.

const CFStringEncoding * CFStringGetListOfAvailableEncodings (
 void
);

Return Value
A pointer to a kCFStringEncodingInvalidId (page 64)-terminated list of enum constants, each of type
CFStringEncoding (page 58).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

48 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Declared In
CFString.h

CFStringGetMaximumSizeForEncoding
Returns the maximum number of bytes a string of a specified length (in Unicode characters) will take up if
encoded in a specified encoding.

CFIndex CFStringGetMaximumSizeForEncoding (
 CFIndex length,
 CFStringEncoding encoding
);

Parameters
length

The number of Unicode characters to evaluate.

encoding
The string encoding for the number of characters specified by length.

Return Value
The maximum number of bytes that could be required to represent length number of Unicode characters
with the string encoding encoding. The number of bytes that the encoding actually ends up requiring when
converting any particular string could be less than this, but never more.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFHostSample
IOPrintSuperClasses
MoreIsBetter
simpleJavaLauncher

Declared In
CFString.h

CFStringGetMaximumSizeOfFileSystemRepresentation
Determines the upper bound on the number of bytes required to hold the file system representation of the
string.

CFIndex CFStringGetMaximumSizeOfFileSystemRepresentation (
 CFStringRef string
);

Parameters
string

The string to convert.

Return Value
The upper bound on the number of bytes required to hold the file system representation of the string.

Functions 49
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Discussion
The result is returned quickly as a rough approximation, and could be much larger than the actual space
required. The result includes space for the zero termination. If you are allocating a buffer for long-term storage,
you should reallocate it to be the right size after calling CFStringGetFileSystemRepresentation (page
45).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFString.h

CFStringGetMostCompatibleMacStringEncoding
Returns the most compatible Mac OS script value for the given input encoding.

CFStringEncoding CFStringGetMostCompatibleMacStringEncoding (
 CFStringEncoding encoding
);

Parameters
encoding

The encoding for which you wish to find a compatible Mac OS script value.

Return Value
The most compatible Mac OS script value for encoding.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
CFString.h

CFStringGetNameOfEncoding
Returns the canonical name of a specified string encoding.

CFStringRef CFStringGetNameOfEncoding (
 CFStringEncoding encoding
);

Parameters
encoding

The string encoding to use.

Return Value
Name of encoding; non-localized. Ownership follows the Get Rule.

50 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Discussion
This function returns the “canonical” name of the string encoding because the return value has to be the
same no matter what localization is chosen. In other words, it can't change based on the International
Preferences language panel setting. The canonical name is usually expressed in English.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetParagraphBounds
Given a range of characters in a string, obtains the paragraph bounds—that is, the indexes of the first character
and the final characters of the paragraph(s) containing the range.

void CFStringGetParagraphBounds (
 CFStringRef string,
 CFRange range,
 CFIndex *parBeginIndex,
 CFIndex *parEndIndex,
 CFIndex *contentsEndIndex
);

Parameters
theString

The string containing the specified range of characters.

range
The range of characters to consider. The specified range must not exceed the length of the string.

parBeginIndex
On return, the index of the first character of the containing paragraph. Pass NULL if you do not want
this result.

parEndIndex
On return, the index of the first character of the paragraph after the specified range. Pass NULL if you
do not want this result.

contentsEndIndex
On return, the index of the last character of the containing paragraph, excluding any
paragraph-separator characters. Pass NULL if you are not interested in this result.

Discussion
This function is the same as CFStringGetLineBounds (page 47)(), however it onlys look for paragraphs
(that is, it does not stop at Unicode NextLine or LineSeparator characters).

This function is a convenience function for determining the beginning and ending indexes of one or more
paragraph in the given range of a string. It is useful, for example, when each line represents a “record” of
some sort; you might search for some substring, but want to extract the record of which the substring is a
part.

To determine line separation, the function looks for the standard paragraph-separator characters: carriage
returns (CR and CRLF), linefeeds (LF), and Unicode paragraph separators. The three final parameters of the
function indirectly return, in order, the index of the first character that starts the line, the index of the first
character of the next line (including end-of-line characters), and the index of the last character of the line
(excluding end-of-line characters). Pass NULL for any of these parameters if you aren't interested in the result.

Functions 51
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

To determine the number of characters in the paragraph:

 ■ Subtract parBeginIndex from parEndIndex to find the number of characters in the paragraph,
including the paragraph separators.

 ■ Subtract parBeginIndex from contentsEndIndex to find the number of characters in the paragraph,
excluding the paragraph separators.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFString.h

CFStringGetPascalString
Copies the character contents of a CFString object to a local Pascal string buffer after converting the characters
to a requested encoding.

Boolean CFStringGetPascalString (
 CFStringRef theString,
 StringPtr buffer,
 CFIndex bufferSize,
 CFStringEncoding encoding
);

Parameters
theString

The string to examine.

buffer
The Pascal string buffer into which to copy the theString. The buffer must be at least bufferSize
bytes in length. On return, contains the converted characters. If there is an error in conversion, the
buffer contains only partial results.

bufferSize
The length of the local buffer in bytes (accounting for the length byte).

encoding
The string encoding to which the character contents of theString should be converted.

Return Value
true if the operation succeeds or false if the conversion fails or the provided buffer is too small.

Discussion
This function is useful when you need your own copy of a CFString object's character data as a Pascal string.
You can also call it as a “backup” operation when a prior call to the CFStringGetPascalStringPtr (page
53) function fails.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GrabBag
MoreIsBetter
QISA

52 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

QTKitTimeCode

Declared In
CFString.h

CFStringGetPascalStringPtr
Quickly obtains a pointer to a Pascal buffer containing the characters of a string in a given encoding.

ConstStringPtr CFStringGetPascalStringPtr (
 CFStringRef theString,
 CFStringEncoding encoding
);

Parameters
theString

The string to examine.

encoding
The string encoding to which the character contents of theString should be converted.

Return Value
A pointer to a Pascal string buffer or NULL if the internal storage of theString does not allow this to be
returned efficiently.

Discussion
This function either returns the requested pointer immediately, with no memory allocations and no copying,
in constant time, or returns NULL. If the latter is returned, call an alternative function such as the
CFStringGetPascalString (page 52) function to extract the characters.

Whether or not this function returns a valid pointer or NULL depends on many factors, all of which depend
on how the string was created and its properties. In addition, the function result might change between
different releases and on different platforms. So do not count on receiving a non-NULL result from this
function under any circumstances.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GrabBag

Declared In
CFString.h

CFStringGetRangeOfComposedCharactersAtIndex
Returns the range of the composed character sequence at a specified index.

Functions 53
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFRange CFStringGetRangeOfComposedCharactersAtIndex (
 CFStringRef theString,
 CFIndex theIndex
);

Parameters
theString

The string to examine.

theIndex
The index of the character contained in the composed character sequence. If the index is outside the
range of the string (0 to N-1 inclusive, where N is the length of the string), the behavior is undefined.

Return Value
The range of the composed character sequence.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFString.h

CFStringGetSmallestEncoding
Returns the smallest encoding on the current system for the character contents of a string.

CFStringEncoding CFStringGetSmallestEncoding (
 CFStringRef theString
);

Parameters
theString

The string for which to find the smallest encoding.

Return Value
The string encoding that has the smallest representation of theString.

Discussion
This function returns the supported encoding that requires the least space (in terms of bytes needed to
represent one character) to represent the character contents of a string. This information is not always
immediately available, so this function might need to compute it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetSystemEncoding
Returns the default encoding used by the operating system when it creates strings.

54 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringEncoding CFStringGetSystemEncoding (
 void
);

Return Value
The default string encoding.

Discussion
This function returns the default text encoding used by the OS when it creates strings. In Mac OS X, this
encoding is determined by the user's preferred language setting. The preferred language is the first language
listed in the International pane of the System Preferences.

In most situations you will not want to use this function, however, because your primary interest will be your
application's default text encoding. The application encoding is required when you create a CFStringRef from
strings stored in Resource Manager resources, which typically use one of the Mac encodings such as MacRoman
or MacJapanese.

To get your application's default text encoding, call the GetApplicationTextEncoding Carbon function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
HID Utilities Source
NSLMiniBrowser
QISA

Declared In
CFString.h

CFStringGetTypeID
Returns the type identifier for the CFString opaque type.

CFTypeID CFStringGetTypeID (
 void
);

Return Value
The type identifier for the CFString opaque type.

Discussion
CFMutableString objects have the same type identifier as CFString objects.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DRDataBurnCarbonUI
DREraseCarbonUI
MoreIsBetter
MoreSCF

Functions 55
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

QISA

Declared In
CFString.h

CFStringHasPrefix
Determines if the character data of a string begin with a specified sequence of characters.

Boolean CFStringHasPrefix (
 CFStringRef theString,
 CFStringRef prefix
);

Parameters
theString

The string to search.

prefix
The prefix to search for.

Return Value
true if theString begins with prefix, false if otherwise.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AppleScriptRunner
HID Calibrator
MoreIsBetter
MoreSCF
QISA

Declared In
CFString.h

CFStringHasSuffix
Determines if a string ends with a specified sequence of characters.

Boolean CFStringHasSuffix (
 CFStringRef theString,
 CFStringRef suffix
);

Parameters
theString

The string to be evaluated.

suffix
The suffix to search for.

Return Value
true if theString ends with suffix, false otherwise.

56 Functions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Calibrator
HID Config Save
HID Explorer
MoreIsBetter
QISA

Declared In
CFString.h

CFStringInitInlineBuffer
Initializes an in-line buffer to use for efficient access of a CFString object's characters.

void CFStringInitInlineBuffer (
 CFStringRef str,
 CFStringInlineBuffer *buf,
 CFRange range
);

Parameters
str

The string to copy to the in-line buffer.

buf
The (uninitialized) CFStringInlineBuffer (page 59) structure to initialize. On return, an initialized
structure that can be used in a CFStringGetCharacterFromInlineBuffer (page 41) function
call. Typically this buffer is allocated on the stack.

range
The range of characters in str to copy to buf. The specified range must not exceed the length of the
string.

Discussion
This function initializes an CFStringInlineBuffer (page 59) structure that can be used for accessing the
characters of a string. Once the buffer is initialized you can call the
CFStringGetCharacterFromInlineBuffer (page 41) function to access the characters in the buffer one
at a time. The in-line buffer functions, along with the CFStringInlineBuffer (page 59) structure, give
you fast access to the characters of a string. The technique for in-line buffer access combines the convenience
of one-at-a-time character access with the efficiency of bulk access.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringIsEncodingAvailable
Determines whether a given Core Foundation string encoding is available on the current system.

Functions 57
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Boolean CFStringIsEncodingAvailable (
 CFStringEncoding encoding
);

Parameters
encoding

The Core Foundation string encoding to test.

Return Value
true if the encoding is available, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

Data Types

CFStringCompareFlags
A CFOptionFlags type for specifying options for string comparison .

typedef CFOptionFlags CFStringCompareFlags;

Discussion
See “String Comparison Flags” (page 60) for values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringEncoding
An integer type for constants used to specify supported string encodings in various CFString functions.

typedef UInt32 CFStringEncoding;

Discussion
This type is used to define the constants for the built-in encodings (see “Built-in String Encodings” (page 61)
for a list) and for platform-dependent encodings (see “External String Encodings” (page 64)). If CFString does
not recognize or support the string encoding of a particular string, CFString functions will identify the string’s
encoding as kCFStringEncodingInvalidId (page 64).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

58 Data Types
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

CFStringEncodings
Index type for constants used to specify external string encodings.

typedef CFIndex CFStringEncodings;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFStringEncodingExt.h

CFStringInlineBuffer
Defines the buffer and related fields used for in-line buffer access of characters in CFString objects.

struct CFStringInlineBuffer {
 UniChar buffer[64];
 CFStringRef theString;
 const UniChar *directBuffer;
 CFRange rangeToBuffer;
 CFIndex bufferedRangeStart;
 CFIndex bufferedRangeEnd;
};

Discussion
This structure is used for in-line buffer access of characters contained by a CFString object. Use the
CFStringInitInlineBuffer (page 57) function for initializing the fields of this structure; do not do it
manually. Once the buffer is initialized, use the CFStringGetCharacterFromInlineBuffer (page 41)
function to access characters from the buffer. Do not access the fields directly as they might change between
releases.

The only reason this structure is not opaque is to allow the in-line functions to access its fields.

Declared In
CFString.h

CFStringRef
A reference to a CFString object.

typedef const struct __CFString *CFStringRef;

Discussion
The CFStringRef type refers to a CFString object, which “encapsulates” a Unicode string along with its
length. CFString is an opaque type that defines the characteristics and behavior of CFString objects.

Values of type CFStringRefmay refer to immutable or mutable strings, as CFMutableString objects respond
to all functions intended for immutable CFString objects. Functions which accept CFStringRef values, and
which need to hold on to the values immutably, should call CFStringCreateCopy (page 21) (instead of
CFRetain) to do so.

Availability
Available in Mac OS X v10.0 and later.

Data Types 59
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

Declared In
CFBase.h

Constants

String Comparison Flags
Flags that specify how string comparisons are performed.

enum CFStringCompareFlags {
 kCFCompareCaseInsensitive = 1,
 kCFCompareBackwards = 4,
 kCFCompareAnchored = 8,
 kCFCompareNonliteral = 16,
 kCFCompareLocalized = 32,
 kCFCompareNumerically = 64,
 kCFCompareDiacriticInsensitive = 128,
 kCFCompareWidthInsensitive = 256,
 kCFCompareForcedOrdering = 512
};

Constants
kCFCompareCaseInsensitive

Specifies that the comparison should ignore differences in case between alphabetical characters.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFCompareBackwards
Specifies that the comparison should start at the last elements of the entities being compared (for
example, strings or arrays).

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFCompareAnchored
Performs searching only on characters at the beginning or end of the range.

No match at the beginning or end means nothing is found, even if a matching sequence of characters
occurs elsewhere in the string.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFCompareNonliteral
Specifies that loose equivalence is acceptable, especially as pertains to diacritical marks.

For example, “ö” represented as two distinct characters (“o” and “umlaut”) is equivalent to “ö”
represented by a single character (“o-umlaut”). Note that this is not the same as diacritic insensitivity.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

60 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFCompareLocalized
Specifies that the comparison should take into account differences related to locale, such as the
thousands separator character.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFCompareNumerically
Specifies that represented numeric values should be used as the basis for comparison and not the
actual character values.

For example, “version 2” is less than “version 2.5”.

This comparison does not work if kCFCompareLocalized is specified on systems before Mac OS X
v10.3.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFCompareDiacriticInsensitive
Specifies that the comparison should ignore diacritic markers.

For example, “ö” (“o-umlaut”) is equivalent to “o”.

Diacritic markers are designated as all non-spacing marks below U+0510.

Available in Mac OS X v10.5 and later.

Declared in CFString.h.

kCFCompareWidthInsensitive
Specifies that the comparison should ignore width differences.

For example, “a” is equivalent to UFF41.

Available in Mac OS X v10.5 and later.

Declared in CFString.h.

kCFCompareForcedOrdering
Specifies that the comparison is forced to return either kCFCompareLessThan or
kCFCompareGreaterThan if the strings are equivalent but not strictly equal.

You use this option for stability when sorting (for example, with kCFCompareCaseInsensitive
specified “aaa” is greater than “AAA”).

Available in Mac OS X v10.5 and later.

Declared in CFString.h.

Discussion
These constants are flags intended for use in the comparison-option parameters in comparison functions
such as CFStringCompare (page 13). If you want to request multiple options, combine them with a
bitwise-OR operation.

Declared In
CFString.h

Built-in String Encodings
Encodings that are built-in on all platforms on which Mac OS X runs.

Constants 61
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

enum CFStringBuiltInEncodings {
 kCFStringEncodingMacRoman = 0,
 kCFStringEncodingWindowsLatin1 = 0x0500,
 kCFStringEncodingISOLatin1 = 0x0201,
 kCFStringEncodingNextStepLatin = 0x0B01,
 kCFStringEncodingASCII = 0x0600,
 kCFStringEncodingUnicode = 0x0100,
 kCFStringEncodingUTF8 = 0x08000100,
 kCFStringEncodingNonLossyASCII = 0x0BFF,

 kCFStringEncodingUTF16 = 0x0100,
 kCFStringEncodingUTF16BE = 0x10000100,
 kCFStringEncodingUTF16LE = 0x14000100,
 kCFStringEncodingUTF32 = 0x0c000100,
 kCFStringEncodingUTF32BE = 0x18000100,
 kCFStringEncodingUTF32LE = 0x1c000100
};
typedef enum CFStringBuiltInEncodings CFStringBuiltInEncodings;

Constants
kCFStringEncodingMacRoman

An encoding constant that identifies the Mac Roman encoding.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingWindowsLatin1
An encoding constant that identifies the Windows Latin 1 encoding (ANSI codepage 1252).

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingISOLatin1
An encoding constant that identifies the ISO Latin 1 encoding (ISO 8859-1)

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingNextStepLatin
An encoding constant that identifies the NextStep/OpenStep encoding.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingASCII
An encoding constant that identifies the ASCII encoding (decimal values 0 through 127).

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingUnicode
An encoding constant that identifies the Unicode encoding.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingUTF8
An encoding constant that identifies the UTF 8 encoding.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

62 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingNonLossyASCII
An encoding constant that identifies non-lossy ASCII encoding.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingUTF16
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF16Format encoding
(alias of kCFStringEncodingUnicode).

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringEncodingUTF16BE
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF16BEFormat
encoding. This constant specifies big-endian byte order.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringEncodingUTF16LE
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF16LEFormat
encoding. This constant specifies little-endian byte order.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringEncodingUTF32
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF32Format encoding.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringEncodingUTF32BE
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF32BEFormat
encoding. This constant specifies big-endian byte order.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringEncodingUTF32LE
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF32LEFormat
encoding. This constant specifies little-endian byte order.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

Declared In
CFString.h

Invalid String Encoding Flag
Special value returned from functions to indicate a string encoding that is not supported or recognized by
CFString.

Constants 63
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

#define kCFStringEncodingInvalidId (0xffffffffU)

Constants
kCFStringEncodingInvalidId

Used as a function result to identify an encoding that is not supported or recognized by CFString.

Available in Mac OS X v10.2 and later.

Declared in CFString.h.

Declared In
CFString.h

External String Encodings
CFStringEncoding constants for encodings that may be supported by CFString.

64 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

enum {
 kCFStringEncodingMacRoman = 0L,
 kCFStringEncodingMacJapanese = 1,
 kCFStringEncodingMacChineseTrad = 2,
 kCFStringEncodingMacKorean = 3,
 kCFStringEncodingMacArabic = 4,
 kCFStringEncodingMacHebrew = 5,
 kCFStringEncodingMacGreek = 6,
 kCFStringEncodingMacCyrillic = 7,
 kCFStringEncodingMacDevanagari = 9,
 kCFStringEncodingMacGurmukhi = 10,
 kCFStringEncodingMacGujarati = 11,
 kCFStringEncodingMacOriya = 12,
 kCFStringEncodingMacBengali = 13,
 kCFStringEncodingMacTamil = 14,
 kCFStringEncodingMacTelugu = 15,
 kCFStringEncodingMacKannada = 16,
 kCFStringEncodingMacMalayalam = 17,
 kCFStringEncodingMacSinhalese = 18,
 kCFStringEncodingMacBurmese = 19,
 kCFStringEncodingMacKhmer = 20,
 kCFStringEncodingMacThai = 21,
 kCFStringEncodingMacLaotian = 22,
 kCFStringEncodingMacGeorgian = 23,
 kCFStringEncodingMacArmenian = 24,
 kCFStringEncodingMacChineseSimp = 25,
 kCFStringEncodingMacTibetan = 26,
 kCFStringEncodingMacMongolian = 27,
 kCFStringEncodingMacEthiopic = 28,
 kCFStringEncodingMacCentralEurRoman = 29,
 kCFStringEncodingMacVietnamese = 30,
 kCFStringEncodingMacExtArabic = 31,
 kCFStringEncodingMacSymbol = 33,
 kCFStringEncodingMacDingbats = 34,
 kCFStringEncodingMacTurkish = 35,
 kCFStringEncodingMacCroatian = 36,
 kCFStringEncodingMacIcelandic = 37,
 kCFStringEncodingMacRomanian = 38,
 kCFStringEncodingMacCeltic = 39,
 kCFStringEncodingMacGaelic = 40,
 kCFStringEncodingMacFarsi = 0x8C,
 kCFStringEncodingMacUkrainian = 0x98,
 kCFStringEncodingMacInuit = 0xEC,
 kCFStringEncodingMacVT100 = 0xFC,
 kCFStringEncodingMacHFS = 0xFF,
 kCFStringEncodingISOLatin1 = 0x0201,
 kCFStringEncodingISOLatin2 = 0x0202,
 kCFStringEncodingISOLatin3 = 0x0203,
 kCFStringEncodingISOLatin4 = 0x0204,
 kCFStringEncodingISOLatinCyrillic = 0x0205,
 kCFStringEncodingISOLatinArabic = 0x0206,
 kCFStringEncodingISOLatinGreek = 0x0207,
 kCFStringEncodingISOLatinHebrew = 0x0208,
 kCFStringEncodingISOLatin5 = 0x0209,
 kCFStringEncodingISOLatin6 = 0x020A,
 kCFStringEncodingISOLatinThai = 0x020B,
 kCFStringEncodingISOLatin7 = 0x020D,
 kCFStringEncodingISOLatin8 = 0x020E,

Constants 65
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

 kCFStringEncodingISOLatin9 = 0x020F,
 kCFStringEncodingISOLatin10 = 0x0210,
 kCFStringEncodingDOSLatinUS = 0x0400,
 kCFStringEncodingDOSGreek = 0x0405,
 kCFStringEncodingDOSBalticRim = 0x0406,
 kCFStringEncodingDOSLatin1 = 0x0410,
 kCFStringEncodingDOSGreek1 = 0x0411,
 kCFStringEncodingDOSLatin2 = 0x0412,
 kCFStringEncodingDOSCyrillic = 0x0413,
 kCFStringEncodingDOSTurkish = 0x0414,
 kCFStringEncodingDOSPortuguese = 0x0415,
 kCFStringEncodingDOSIcelandic = 0x0416,
 kCFStringEncodingDOSHebrew = 0x0417,
 kCFStringEncodingDOSCanadianFrench = 0x0418,
 kCFStringEncodingDOSArabic = 0x0419,
 kCFStringEncodingDOSNordic = 0x041A,
 kCFStringEncodingDOSRussian = 0x041B,
 kCFStringEncodingDOSGreek2 = 0x041C,
 kCFStringEncodingDOSThai = 0x041D,
 kCFStringEncodingDOSJapanese = 0x0420,
 kCFStringEncodingDOSChineseSimplif = 0x0421,
 kCFStringEncodingDOSKorean = 0x0422,
 kCFStringEncodingDOSChineseTrad = 0x0423,
 kCFStringEncodingWindowsLatin1 = 0x0500,
 kCFStringEncodingWindowsLatin2 = 0x0501,
 kCFStringEncodingWindowsCyrillic = 0x0502,
 kCFStringEncodingWindowsGreek = 0x0503,
 kCFStringEncodingWindowsLatin5 = 0x0504,
 kCFStringEncodingWindowsHebrew = 0x0505,
 kCFStringEncodingWindowsArabic = 0x0506,
 kCFStringEncodingWindowsBalticRim = 0x0507,
 kCFStringEncodingWindowsVietnamese = 0x0508,
 kCFStringEncodingWindowsKoreanJohab = 0x0510,
 kCFStringEncodingASCII = 0x0600,
 kCFStringEncodingANSEL = 0x0601,
 kCFStringEncodingJIS_X0201_76 = 0x0620,
 kCFStringEncodingJIS_X0208_83 = 0x0621,
 kCFStringEncodingJIS_X0208_90 = 0x0622,
 kCFStringEncodingJIS_X0212_90 = 0x0623,
 kCFStringEncodingJIS_C6226_78 = 0x0624,
 kCFStringEncodingShiftJIS_X0213_00 = 0x0628,
 kCFStringEncodingShiftJIS_X0213_MenKuTen = 0x0629,
 kCFStringEncodingGB_2312_80 = 0x0630,
 kCFStringEncodingGBK_95 = 0x0631,
 kCFStringEncodingGB_18030_2000 = 0x0632,
 kCFStringEncodingKSC_5601_87 = 0x0640,
 kCFStringEncodingKSC_5601_92_Johab = 0x0641,
 kCFStringEncodingCNS_11643_92_P1 = 0x0651,
 kCFStringEncodingCNS_11643_92_P2 = 0x0652,
 kCFStringEncodingCNS_11643_92_P3 = 0x0653,
 kCFStringEncodingISO_2022_JP = 0x0820,
 kCFStringEncodingISO_2022_JP_2 = 0x0821,
 kCFStringEncodingISO_2022_JP_1 = 0x0822,
 kCFStringEncodingISO_2022_JP_3 = 0x0823,
 kCFStringEncodingISO_2022_CN = 0x0830,
 kCFStringEncodingISO_2022_CN_EXT = 0x0831,
 kCFStringEncodingISO_2022_KR = 0x0840,
 kCFStringEncodingEUC_JP = 0x0920,

66 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

 kCFStringEncodingEUC_CN = 0x0930,
 kCFStringEncodingEUC_TW = 0x0931,
 kCFStringEncodingEUC_KR = 0x0940,
 kCFStringEncodingShiftJIS = 0x0A01,
 kCFStringEncodingKOI8_R = 0x0A02,
 kCFStringEncodingBig5 = 0x0A03,
 kCFStringEncodingMacRomanLatin1 = 0x0A04,
 kCFStringEncodingHZ_GB_2312 = 0x0A05,
 kCFStringEncodingBig5_HKSCS_1999 = 0x0A06,
 kCFStringEncodingVISCII = 0x0A07,
 kCFStringEncodingKOI8_U = 0x0A08,
 kCFStringEncodingBig5_E = 0x0A09,
 kCFStringEncodingNextStepLatin = 0x0B01,
 kCFStringEncodingNextStepJapanese = 0x0B02,
 kCFStringEncodingEBCDIC_US = 0x0C01,
 kCFStringEncodingEBCDIC_CP037 = 0x0C02,
};

Constants
kCFStringEncodingMacJapanese

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacChineseTrad

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacKorean

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacArabic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacHebrew

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacGreek

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacCyrillic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacDevanagari

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacGurmukhi

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Constants 67
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingMacGujarati

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacOriya

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacBengali

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacTamil

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacTelugu

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacKannada

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacMalayalam

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacSinhalese

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacBurmese

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacKhmer

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacThai

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacLaotian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacGeorgian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

68 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingMacArmenian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacChineseSimp

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacTibetan

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacMongolian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacEthiopic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacCentralEurRoman

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacVietnamese

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacExtArabic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacSymbol

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacDingbats

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacTurkish

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacCroatian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacIcelandic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Constants 69
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingMacRomanian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacCeltic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacGaelic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacFarsi
Like MacArabic but uses Farsi digits

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacUkrainian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacInuit

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacVT100
VT100102 font from Comm Toolbox: Latin-1 repertoire + box drawing etc

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacHFS
Meta-value, should never appear in a table

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin2
ISO 8859-2

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin3
ISO 8859-3

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin4
ISO 8859-4

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

70 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingISOLatinCyrillic
ISO 8859-5

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatinArabic
ISO 8859-6, =ASMO 708, =DOS CP 708

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatinGreek
ISO 8859-7

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatinHebrew
ISO 8859-8

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin5
ISO 8859-9

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin6
ISO 8859-10

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatinThai
ISO 8859-11

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin7
ISO 8859-13

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin8
ISO 8859-14

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin9
ISO 8859-15

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Constants 71
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingISOLatin10
ISO 8859-16

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSLatinUS
code page 437

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSGreek
code page 737 (formerly code page 437G)

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSBalticRim
code page 775

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSLatin1
code page 850, "Multilingual"

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSGreek1
code page 851

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSLatin2
code page 852, Slavic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSCyrillic
code page 855, IBM Cyrillic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSTurkish
code page 857, IBM Turkish

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSPortuguese
code page 860

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

72 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingDOSIcelandic
code page 861

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSHebrew
code page 862

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSCanadianFrench
code page 863

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSArabic
code page 864

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSNordic
code page 865

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSRussian
code page 866

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSGreek2
code page 869, IBM Modern Greek

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSThai
code page 874, also for Windows

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSJapanese
code page 932, also for Windows

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSChineseSimplif
code page 936, also for Windows

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Constants 73
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingDOSKorean
code page 949, also for Windows; Unified Hangul Code

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSChineseTrad
code page 950, also for Windows

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsLatin2
code page 1250, Central Europe

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsCyrillic
code page 1251, Slavic Cyrillic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsGreek
code page 1253

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsLatin5
code page 1254, Turkish

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsHebrew
code page 1255

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsArabic
code page 1256

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsBalticRim
code page 1257

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsVietnamese
code page 1258

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

74 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingWindowsKoreanJohab
code page 1361, for Windows NT

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingANSEL
ANSEL (ANSI Z39.47)

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingJIS_X0201_76

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingJIS_X0208_83

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingJIS_X0208_90

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingJIS_X0212_90

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingJIS_C6226_78

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingShiftJIS_X0213_00
Shift-JIS format encoding of JIS X0213 planes 1 and 2

Available in Mac OS X v10.2 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingShiftJIS_X0213_MenKuTen
JIS X0213 in plane-row-column notation

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingGB_2312_80

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingGBK_95
annex to GB 13000-93; for Windows 95

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingGB_18030_2000

Available in Mac OS X v10.2 and later.

Declared in CFStringEncodingExt.h.

Constants 75
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingKSC_5601_87
same as KSC 5601-92 without Johab annex

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingKSC_5601_92_Johab
KSC 5601-92 Johab annex

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingCNS_11643_92_P1
CNS 11643-1992 plane 1

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingCNS_11643_92_P2
CNS 11643-1992 plane 2

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingCNS_11643_92_P3
CNS 11643-1992 plane 3 (was plane 14 in 1986 version)

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_JP

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_JP_2

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_JP_1
RFC 2237

Available in Mac OS X v10.2 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_JP_3
JIS X0213

Available in Mac OS X v10.2 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_CN

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_CN_EXT

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

76 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingISO_2022_KR

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEUC_JP
ISO 646, 1-byte katakana, JIS 208, JIS 212

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEUC_CN
ISO 646, GB 2312-80

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEUC_TW
ISO 646, CNS 11643-1992 Planes 1-16

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEUC_KR
ISO 646, KS C 5601-1987

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingShiftJIS
plain Shift-JIS

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingKOI8_R
Russian internet standard

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingBig5
Big-5 (has variants)

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacRomanLatin1
Mac OS Roman permuted to align with ISO Latin-1

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingHZ_GB_2312
HZ (RFC 1842, for Chinese mail & news)

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Constants 77
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

kCFStringEncodingBig5_HKSCS_1999
Big-5 with Hong Kong special char set supplement

Available in Mac OS X v10.2 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingVISCII
RFC 1456, Vietnamese

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingKOI8_U
RFC 2319, Ukrainian

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingBig5_E
Taiwan Big-5E standard

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingNextStepJapanese
NextStep Japanese encoding

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEBCDIC_US
basic EBCDIC-US

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEBCDIC_CP037
code page 037, extended EBCDIC (Latin-1 set) for US,Canada...

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Discussion
See the CFStringEncodingExt.h header file for the most current list of external string encodings and for
more details.

Declared In
CFStringEncodingExt.h

78 Constants
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

CFString Reference

This table describes the changes to CFString Reference.

NotesDate

Added explanation of how locale argument affects
CFStringCompareWithOptionsAndLocale and CFStringFindWithOptionsAndLocale
functions.

2008-10-15

Added information to CFStringCreateExternalRepresentation function description
about string encodings that do not include a BOM.

2008-03-11

Clarified the definition of the CFStringGetDoubleValue function.2007-10-31

Updated to include new API in Mac OS X v10.5.2007-07-11

Clarified encodings supported by C string representations.2007-07-10

Clarified parameter descriptions for CFStringGetBytes; clarified behavior of
NoCopy creation functions on failure.

2007-03-06

Corrected minor typographical errors.2007-01-08

Clarified the return value of CFStringGetLength.2006-12-05

Clarified the string argument to CFStringCreateWithCString.2006-06-28

Clarified the meaning of kCFCompareAnchored.2006-01-10

Made minor changes to text to conform to reference consistency guidelines.2005-12-06

Corrected link in Companion Documents.2005-11-09

Updated to include new API and encodings for Mac OS X version 10.4.2005-04-29

Added note to Introduction regarding hash values.2004-11-02

Added note regarding use of -fconstant-cfstringswith CFSTR(), and link
to string formatting codes.

2004-08-31

Added note that specified ranges must not exceed length of string.2004-04-22

Minor bug fix to description of the result parameter in
CFStringFindCharacterFromSet.

2004-02-21

Minor bug fix related to CFShowStr.2004-02-10

Minor bug fix related to Cocoa encoding conversion.2004-01-30

79
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Updated per new Mac OS X v10.3 API, and fixed other miscellaneous errors.2003-08-01

First version of this document.2003-01-01

80
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

B

Built-in String Encodings 61

C

CFShowStr function 12
CFSTR function 13
CFStringCompare function 13
CFStringCompareFlags data type 58
CFStringCompareWithOptions function 14
CFStringCompareWithOptionsAndLocale function

15
CFStringConvertEncodingToIANACharSetName

function 16
CFStringConvertEncodingToNSStringEncoding

function 16
CFStringConvertEncodingToWindowsCodepage

function 17
CFStringConvertIANACharSetNameToEncoding

function 17
CFStringConvertNSStringEncodingToEncoding

function 18
CFStringConvertWindowsCodepageToEncoding

function 18
CFStringCreateArrayBySeparatingStrings function

19
CFStringCreateArrayWithFindResults function 20
CFStringCreateByCombiningStrings function 21
CFStringCreateCopy function 21
CFStringCreateExternalRepresentation function

22
CFStringCreateFromExternalRepresentation

function 23
CFStringCreateWithBytes function 24
CFStringCreateWithBytesNoCopy function 25
CFStringCreateWithCharacters function 26
CFStringCreateWithCharactersNoCopy function 27
CFStringCreateWithCString function 28
CFStringCreateWithCStringNoCopy function 29

CFStringCreateWithFileSystemRepresentation
function 30

CFStringCreateWithFormat function 31
CFStringCreateWithFormatAndArguments function

32
CFStringCreateWithPascalString function 32
CFStringCreateWithPascalStringNoCopy function

33
CFStringCreateWithSubstring function 34
CFStringEncoding data type 58
CFStringEncodings data type 59
CFStringFind function 35
CFStringFindCharacterFromSet function 36
CFStringFindWithOptions function 37
CFStringFindWithOptionsAndLocale function 38
CFStringGetBytes function 39
CFStringGetCharacterAtIndex function 40
CFStringGetCharacterFromInlineBuffer function

41
CFStringGetCharacters function 41
CFStringGetCharactersPtr function 42
CFStringGetCString function 43
CFStringGetCStringPtr function 44
CFStringGetDoubleValue function 44
CFStringGetFastestEncoding function 45
CFStringGetFileSystemRepresentation function

45
CFStringGetIntValue function 46
CFStringGetLength function 47
CFStringGetLineBounds function 47
CFStringGetListOfAvailableEncodings function

48
CFStringGetMaximumSizeForEncoding function 49
CFStringGetMaximumSizeOfFileSystemRepresentation

function 49
CFStringGetMostCompatibleMacStringEncoding

function 50
CFStringGetNameOfEncoding function 50
CFStringGetParagraphBounds function 51
CFStringGetPascalString function 52
CFStringGetPascalStringPtr function 53

81
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Index

CFStringGetRangeOfComposedCharactersAtIndex
function 53

CFStringGetSmallestEncoding function 54
CFStringGetSystemEncoding function 54
CFStringGetTypeID function 55
CFStringHasPrefix function 56
CFStringHasSuffix function 56
CFStringInitInlineBuffer function 57
CFStringInlineBuffer structure 59
CFStringIsEncodingAvailable function 57
CFStringRef data type 59

E

External String Encodings 64

I

Invalid String Encoding Flag 63

K

kCFCompareAnchored constant 60
kCFCompareBackwards constant 60
kCFCompareCaseInsensitive constant 60
kCFCompareDiacriticInsensitive constant 61
kCFCompareForcedOrdering constant 61
kCFCompareLocalized constant 61
kCFCompareNonliteral constant 60
kCFCompareNumerically constant 61
kCFCompareWidthInsensitive constant 61
kCFStringEncodingANSEL constant 75
kCFStringEncodingASCII constant 62
kCFStringEncodingBig5 constant 77
kCFStringEncodingBig5_E constant 78
kCFStringEncodingBig5_HKSCS_1999 constant 78
kCFStringEncodingCNS_11643_92_P1 constant 76
kCFStringEncodingCNS_11643_92_P2 constant 76
kCFStringEncodingCNS_11643_92_P3 constant 76
kCFStringEncodingDOSArabic constant 73
kCFStringEncodingDOSBalticRim constant 72
kCFStringEncodingDOSCanadianFrench constant 73
kCFStringEncodingDOSChineseSimplif constant 73
kCFStringEncodingDOSChineseTrad constant 74
kCFStringEncodingDOSCyrillic constant 72
kCFStringEncodingDOSGreek constant 72
kCFStringEncodingDOSGreek1 constant 72
kCFStringEncodingDOSGreek2 constant 73
kCFStringEncodingDOSHebrew constant 73

kCFStringEncodingDOSIcelandic constant 73
kCFStringEncodingDOSJapanese constant 73
kCFStringEncodingDOSKorean constant 74
kCFStringEncodingDOSLatin1 constant 72
kCFStringEncodingDOSLatin2 constant 72
kCFStringEncodingDOSLatinUS constant 72
kCFStringEncodingDOSNordic constant 73
kCFStringEncodingDOSPortuguese constant 72
kCFStringEncodingDOSRussian constant 73
kCFStringEncodingDOSThai constant 73
kCFStringEncodingDOSTurkish constant 72
kCFStringEncodingEBCDIC_CP037 constant 78
kCFStringEncodingEBCDIC_US constant 78
kCFStringEncodingEUC_CN constant 77
kCFStringEncodingEUC_JP constant 77
kCFStringEncodingEUC_KR constant 77
kCFStringEncodingEUC_TW constant 77
kCFStringEncodingGBK_95 constant 75
kCFStringEncodingGB_18030_2000 constant 75
kCFStringEncodingGB_2312_80 constant 75
kCFStringEncodingHZ_GB_2312 constant 77
kCFStringEncodingInvalidId constant 64
kCFStringEncodingISOLatin1 constant 62
kCFStringEncodingISOLatin10 constant 72
kCFStringEncodingISOLatin2 constant 70
kCFStringEncodingISOLatin3 constant 70
kCFStringEncodingISOLatin4 constant 70
kCFStringEncodingISOLatin5 constant 71
kCFStringEncodingISOLatin6 constant 71
kCFStringEncodingISOLatin7 constant 71
kCFStringEncodingISOLatin8 constant 71
kCFStringEncodingISOLatin9 constant 71
kCFStringEncodingISOLatinArabic constant 71
kCFStringEncodingISOLatinCyrillic constant 71
kCFStringEncodingISOLatinGreek constant 71
kCFStringEncodingISOLatinHebrew constant 71
kCFStringEncodingISOLatinThai constant 71
kCFStringEncodingISO_2022_CN constant 76
kCFStringEncodingISO_2022_CN_EXT constant 76
kCFStringEncodingISO_2022_JP constant 76
kCFStringEncodingISO_2022_JP_1 constant 76
kCFStringEncodingISO_2022_JP_2 constant 76
kCFStringEncodingISO_2022_JP_3 constant 76
kCFStringEncodingISO_2022_KR constant 77
kCFStringEncodingJIS_C6226_78 constant 75
kCFStringEncodingJIS_X0201_76 constant 75
kCFStringEncodingJIS_X0208_83 constant 75
kCFStringEncodingJIS_X0208_90 constant 75
kCFStringEncodingJIS_X0212_90 constant 75
kCFStringEncodingKOI8_R constant 77
kCFStringEncodingKOI8_U constant 78
kCFStringEncodingKSC_5601_87 constant 76
kCFStringEncodingKSC_5601_92_Johab constant 76

82
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

INDEX

kCFStringEncodingMacArabic constant 67
kCFStringEncodingMacArmenian constant 69
kCFStringEncodingMacBengali constant 68
kCFStringEncodingMacBurmese constant 68
kCFStringEncodingMacCeltic constant 70
kCFStringEncodingMacCentralEurRoman constant

69
kCFStringEncodingMacChineseSimp constant 69
kCFStringEncodingMacChineseTrad constant 67
kCFStringEncodingMacCroatian constant 69
kCFStringEncodingMacCyrillic constant 67
kCFStringEncodingMacDevanagari constant 67
kCFStringEncodingMacDingbats constant 69
kCFStringEncodingMacEthiopic constant 69
kCFStringEncodingMacExtArabic constant 69
kCFStringEncodingMacFarsi constant 70
kCFStringEncodingMacGaelic constant 70
kCFStringEncodingMacGeorgian constant 68
kCFStringEncodingMacGreek constant 67
kCFStringEncodingMacGujarati constant 68
kCFStringEncodingMacGurmukhi constant 67
kCFStringEncodingMacHebrew constant 67
kCFStringEncodingMacHFS constant 70
kCFStringEncodingMacIcelandic constant 69
kCFStringEncodingMacInuit constant 70
kCFStringEncodingMacJapanese constant 67
kCFStringEncodingMacKannada constant 68
kCFStringEncodingMacKhmer constant 68
kCFStringEncodingMacKorean constant 67
kCFStringEncodingMacLaotian constant 68
kCFStringEncodingMacMalayalam constant 68
kCFStringEncodingMacMongolian constant 69
kCFStringEncodingMacOriya constant 68
kCFStringEncodingMacRoman constant 62
kCFStringEncodingMacRomanian constant 70
kCFStringEncodingMacRomanLatin1 constant 77
kCFStringEncodingMacSinhalese constant 68
kCFStringEncodingMacSymbol constant 69
kCFStringEncodingMacTamil constant 68
kCFStringEncodingMacTelugu constant 68
kCFStringEncodingMacThai constant 68
kCFStringEncodingMacTibetan constant 69
kCFStringEncodingMacTurkish constant 69
kCFStringEncodingMacUkrainian constant 70
kCFStringEncodingMacVietnamese constant 69
kCFStringEncodingMacVT100 constant 70
kCFStringEncodingNextStepJapanese constant 78
kCFStringEncodingNextStepLatin constant 62
kCFStringEncodingNonLossyASCII constant 63
kCFStringEncodingShiftJIS constant 77
kCFStringEncodingShiftJIS_X0213_00 constant 75
kCFStringEncodingShiftJIS_X0213_MenKuTen

constant 75

kCFStringEncodingUnicode constant 62
kCFStringEncodingUTF16 constant 63
kCFStringEncodingUTF16BE constant 63
kCFStringEncodingUTF16LE constant 63
kCFStringEncodingUTF32 constant 63
kCFStringEncodingUTF32BE constant 63
kCFStringEncodingUTF32LE constant 63
kCFStringEncodingUTF8 constant 62
kCFStringEncodingVISCII constant 78
kCFStringEncodingWindowsArabic constant 74
kCFStringEncodingWindowsBalticRim constant 74
kCFStringEncodingWindowsCyrillic constant 74
kCFStringEncodingWindowsGreek constant 74
kCFStringEncodingWindowsHebrew constant 74
kCFStringEncodingWindowsKoreanJohab constant

75
kCFStringEncodingWindowsLatin1 constant 62
kCFStringEncodingWindowsLatin2 constant 74
kCFStringEncodingWindowsLatin5 constant 74
kCFStringEncodingWindowsVietnamese constant 74

S

String Comparison Flags 60

83
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

INDEX

	CFString Reference
	Contents
	CFString Reference
	Overview
	Functions by Task
	Creating a CFString
	Searching Strings
	Comparing Strings
	Accessing Characters
	Working With Encodings
	Getting Numeric Values
	Getting String Properties
	String File System Representations
	Getting Paragraph Bounds

	Functions
	CFShowStr
	CFSTR
	CFStringCompare
	CFStringCompareWithOptions
	CFStringCompareWithOptionsAndLocale
	CFStringConvertEncodingToIANACharSetName
	CFStringConvertEncodingToNSStringEncoding
	CFStringConvertEncodingToWindowsCodepage
	CFStringConvertIANACharSetNameToEncoding
	CFStringConvertNSStringEncodingToEncoding
	CFStringConvertWindowsCodepageToEncoding
	CFStringCreateArrayBySeparatingStrings
	CFStringCreateArrayWithFindResults
	CFStringCreateByCombiningStrings
	CFStringCreateCopy
	CFStringCreateExternalRepresentation
	CFStringCreateFromExternalRepresentation
	CFStringCreateWithBytes
	CFStringCreateWithBytesNoCopy
	CFStringCreateWithCharacters
	CFStringCreateWithCharactersNoCopy
	CFStringCreateWithCString
	CFStringCreateWithCStringNoCopy
	CFStringCreateWithFileSystemRepresentation
	CFStringCreateWithFormat
	CFStringCreateWithFormatAndArguments
	CFStringCreateWithPascalString
	CFStringCreateWithPascalStringNoCopy
	CFStringCreateWithSubstring
	CFStringFind
	CFStringFindCharacterFromSet
	CFStringFindWithOptions
	CFStringFindWithOptionsAndLocale
	CFStringGetBytes
	CFStringGetCharacterAtIndex
	CFStringGetCharacterFromInlineBuffer
	CFStringGetCharacters
	CFStringGetCharactersPtr
	CFStringGetCString
	CFStringGetCStringPtr
	CFStringGetDoubleValue
	CFStringGetFastestEncoding
	CFStringGetFileSystemRepresentation
	CFStringGetIntValue
	CFStringGetLength
	CFStringGetLineBounds
	CFStringGetListOfAvailableEncodings
	CFStringGetMaximumSizeForEncoding
	CFStringGetMaximumSizeOfFileSystemRepresentation
	CFStringGetMostCompatibleMacStringEncoding
	CFStringGetNameOfEncoding
	CFStringGetParagraphBounds
	CFStringGetPascalString
	CFStringGetPascalStringPtr
	CFStringGetRangeOfComposedCharactersAtIndex
	CFStringGetSmallestEncoding
	CFStringGetSystemEncoding
	CFStringGetTypeID
	CFStringHasPrefix
	CFStringHasSuffix
	CFStringInitInlineBuffer
	CFStringIsEncodingAvailable

	Data Types
	CFStringCompareFlags
	CFStringEncoding
	CFStringEncodings
	CFStringInlineBuffer
	CFStringRef

	Constants
	String Comparison Flags
	Built-in String Encodings
	Invalid String Encoding Flag
	External String Encodings

	Revision History
	Index
	B
	C
	E
	I
	K
	S

