
CFTree Reference
Core Foundation

2005-12-06

Apple Inc.
© 2003, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple and the Apple logo are trademarks of
Apple Inc., registered in the United States and
other countries.

iPhone is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

CFTree Reference 5

Overview 5
Functions by Task 6

Creating Trees 6
Modifying a Tree 6
Sorting a Tree 6
Examining a Tree 6
Performing an Operation on Tree Elements 7
Getting the Tree Type ID 7

Functions 7
CFTreeAppendChild 7
CFTreeApplyFunctionToChildren 8
CFTreeCreate 8
CFTreeFindRoot 9
CFTreeGetChildAtIndex 9
CFTreeGetChildCount 10
CFTreeGetChildren 10
CFTreeGetContext 10
CFTreeGetFirstChild 11
CFTreeGetNextSibling 11
CFTreeGetParent 12
CFTreeGetTypeID 12
CFTreeInsertSibling 12
CFTreePrependChild 13
CFTreeRemove 13
CFTreeRemoveAllChildren 14
CFTreeSetContext 14
CFTreeSortChildren 15

Callbacks 15
CFTreeApplierFunction 15
CFTreeCopyDescriptionCallBack 16
CFTreeReleaseCallBack 17
CFTreeRetainCallBack 17

Data Types 18
CFTreeContext 18
CFTreeRef 18

Document Revision History 19

Index 21

3
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Companion guide Collections Programming Topics for Core Foundation

Declared in CFTree.h

Overview

You use CFTree to create tree structures that represent hierarchical organizations of information. In such
structures, each tree node has exactly one parent tree (except for the root tree, which has no parent) and
can have multiple children. Each CFTree object in the structure has a context associated with it; this context
includes some program-defined data as well as callbacks that operate on that data. The program-defined
data is often used as the basis for determining where CFTree objects fit within the structure. All CFTree objects
are mutable.

You create a CFTree object using the CFTreeCreate (page 8) function. This function takes an allocator
and pointer to a CFTreeGetContext (page 10) structure as parameters. The CFTreeContext (page 18)
structure contains the program-defined data and callbacks needed to describe, retain, and release that data.
If you do not implement these callbacks, your program-defined data will not be retained or released when
trees are added and removed from a parent.

Each CFTree object has a parent and list of children, all of which may be NULL. CFTree provides functions for
adding and removing tree objects from the tree structure. Use the CFTreeAppendChild (page 7),
CFTreeInsertSibling (page 12), or CFTreePrependChild (page 13) functions to add trees to a tree
structure, and the CFTreeRemove (page 13) or CFTreeRemoveAllChildren (page 14) functions to remove
trees.

For the purposes of memory management, CFTree can be thought of as a collection. Typically the only object
that retains a child tree is its parent. Usually, therefore, when you remove a child tree from a tree, the child
tree is destroyed. If you want to use a child tree after you remove it from its parent, you should retain the
child tree first, prior to removing it.

Releasing a tree releases its child trees, and all of their child trees (recursively). Note also that the final release
of a tree (when its retain count decreases to zero) causes all of its child trees, and all of their child trees
(recursively), to be destroyed, regardless of their retain counts. Releasing a child that is still in a tree is therefore
a programming error, and may cause your application to crash.

You can use any of the get functions (functions containing the word “Get”) to obtain the parent, children, or
attributes of a tree. For example, use CFTreeGetChildAtIndex (page 9) to obtain a child of a tree at a
specified location. In common with other Core Foundation “Get” functions, these functions do not retain the
tree that is returned. If you are making other modifications to the tree, you should either retain or make a
deep copy of the child tree returned.

Overview 5
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

You can apply a function to all children of a tree using the CFTreeApplyFunctionToChildren (page 8)
function, and sort children of a tree using the CFTreeSortChildren (page 15) function.

Functions by Task

Creating Trees

CFTreeCreate (page 8)
Creates a new CFTree object.

Modifying a Tree

CFTreeAppendChild (page 7)
Adds a new child to a tree as the last in its list of children.

CFTreeInsertSibling (page 12)
Inserts a new sibling after a given tree.

CFTreeRemoveAllChildren (page 14)
Removes all the children of a tree.

CFTreePrependChild (page 13)
Adds a new child to the specified tree as the first in its list of children.

CFTreeRemove (page 13)
Removes a tree from its parent.

CFTreeSetContext (page 14)
Replaces the context of a tree by releasing the old information pointer and retaining the new one.

Sorting a Tree

CFTreeSortChildren (page 15)
Sorts the immediate children of a tree using a specified comparator function.

Examining a Tree

CFTreeFindRoot (page 9)
Returns the root tree of a given tree.

CFTreeGetChildAtIndex (page 9)
Returns the child of a tree at the specified index.

CFTreeGetChildCount (page 10)
Returns the number of children in a tree.

CFTreeGetChildren (page 10)
Fills a buffer with children from the tree.

6 Functions by Task
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

CFTreeGetContext (page 10)
Returns the context of the specified tree.

CFTreeGetFirstChild (page 11)
Returns the first child of a tree.

CFTreeGetNextSibling (page 11)
Returns the next sibling, adjacent to a given tree, in the parent's children list.

CFTreeGetParent (page 12)
Returns the parent of a given tree.

Performing an Operation on Tree Elements

CFTreeApplyFunctionToChildren (page 8)
Calls a function once for each immediate child of a tree.

Getting the Tree Type ID

CFTreeGetTypeID (page 12)
Returns the type identifier of the CFTree opaque type.

Functions

CFTreeAppendChild
Adds a new child to a tree as the last in its list of children.

void CFTreeAppendChild (
 CFTreeRef tree,
 CFTreeRef newChild
);

Parameters
tree

The tree to which to add newChild.

newChild
The child tree to add to tree. If this parameter is a tree which is already a child of any other tree, the
behavior is undefined.

Discussion
When a child tree is added to another tree, the child tree is retained by its new parent.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

Functions 7
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

CFTreeApplyFunctionToChildren
Calls a function once for each immediate child of a tree.

void CFTreeApplyFunctionToChildren (
 CFTreeRef tree,
 CFTreeApplierFunction applier,
 void *context
);

Parameters
tree

The tree to operate upon.

applier
The callback function to call once for each child in tree. The function must be able to apply to all
the values in the tree.

context
A pointer-sized program-defined value that is passed to the applier function, but is otherwise unused
by this function.

Discussion
Note that the applier only operates one level deep—it does not operate on descendants further removed
than the immediate children of a tree. If the tree is mutable, it is unsafe for the applied function to change
the contents of the tree.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeCreate
Creates a new CFTree object.

CFTreeRef CFTreeCreate (
 CFAllocatorRef allocator,
 const CFTreeContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new tree. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

context
The CFTreeContext (page 18) structure to be copied and used as the context of the new tree. The
information pointer will be retained by the tree if a retain function is provided. If this value is not a
valid C pointer to a CFTreeContext structure-sized block of storage, the result is undefined. If the
version number of the storage is not a valid CFTreeContext version number, the result is undefined.

Return Value
A new CFTree object. Ownership follows the Create Rule.

8 Functions
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeFindRoot
Returns the root tree of a given tree.

CFTreeRef CFTreeFindRoot (
 CFTreeRef tree
);

Parameters
tree

The tree to examine.

Return Value
The root of tree where root is defined as a tree without a parent. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetChildAtIndex
Returns the child of a tree at the specified index.

CFTreeRef CFTreeGetChildAtIndex (
 CFTreeRef tree,
 CFIndex idx
);

Parameters
tree

The tree to examine.

idx
The index of the child obtain. The value must be less than the number of children in tree.

Return Value
The child tree at idx. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

Functions 9
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

CFTreeGetChildCount
Returns the number of children in a tree.

CFIndex CFTreeGetChildCount (
 CFTreeRef tree
);

Parameters
tree

The tree to examine.

Return Value
The number of children in tree.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetChildren
Fills a buffer with children from the tree.

void CFTreeGetChildren (
 CFTreeRef tree,
 CFTreeRef *children
);

Parameters
tree

The tree to examine.

children
The C array of pointer-sized values to be filled with the children from tree. This value must be a valid
pointer to a C array of at least the size of the number of children in tree. Use the
CFTreeGetChildCount (page 10) function to obtain the number of children in tree. You are
responsible for retaining and releasing the returned objects as needed.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetContext
Returns the context of the specified tree.

10 Functions
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

void CFTreeGetContext (
 CFTreeRef tree,
 CFTreeContext *context
);

Parameters
tree

The tree to examine.

context
The CFTreeContext (page 18) structure to be filled in with the context of the specified tree. This
value must be a valid C pointer to a CFTreeContext structure-sized block of storage. If the version
number of the storage is not a valid CFTreeContext structure version number, the result is undefined.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetFirstChild
Returns the first child of a tree.

CFTreeRef CFTreeGetFirstChild (
 CFTreeRef tree
);

Parameters
tree

The tree to examine.

Return Value
The first child of tree. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetNextSibling
Returns the next sibling, adjacent to a given tree, in the parent's children list.

CFTreeRef CFTreeGetNextSibling (
 CFTreeRef tree
);

Parameters
tree

The tree to examine.

Functions 11
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

Return Value
The next sibling, adjacent to tree. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetParent
Returns the parent of a given tree.

CFTreeRef CFTreeGetParent (
 CFTreeRef tree
);

Parameters
tree

The tree to examine.

Return Value
The parent of tree. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetTypeID
Returns the type identifier of the CFTree opaque type.

CFTypeID CFTreeGetTypeID (
 void
);

Return Value
The type identifier of the CFTree opaque type.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeInsertSibling
Inserts a new sibling after a given tree.

12 Functions
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

void CFTreeInsertSibling (
 CFTreeRef tree,
 CFTreeRef newSibling
);

Parameters
tree

The tree after which to insert newSibling. tree must have a parent.

newSibling
The sibling to add. newSibling must not have a parent.

Discussion
When a child tree is added to another tree, the child tree is retained by its new parent.

If you want to manipulate an existing tree structure, since newSibling must not have a parent you need to
remove a tree from its parent in order to move it to a new position. If you do this, you should retain the tree
before you actually remove it from its parent (see CFTreeRemove (page 13)).

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreePrependChild
Adds a new child to the specified tree as the first in its list of children.

void CFTreePrependChild (
 CFTreeRef tree,
 CFTreeRef newChild
);

Parameters
tree

The tree to which to add newChild.

newChild
The child tree to add to tree. This value must not be a child of another tree.

Discussion
When a child tree is added to another tree, the child tree is retained by its new parent.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeRemove
Removes a tree from its parent.

Functions 13
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

void CFTreeRemove (
 CFTreeRef tree
);

Parameters
tree

The tree to remove from its parent.

Discussion
When a child tree is removed from its parent, the parent releases it. If you want to use the child after you
have removed it, you should ensure you retain it before removing it from its parent.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeRemoveAllChildren
Removes all the children of a tree.

void CFTreeRemoveAllChildren (
 CFTreeRef tree
);

Parameters
tree

The tree to modify.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeSetContext
Replaces the context of a tree by releasing the old information pointer and retaining the new one.

void CFTreeSetContext (
 CFTreeRef tree,
 const CFTreeContext *context
);

Parameters
tree

The tree to modify.

14 Functions
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

context
The CFTreeContext (page 18) structure to be copied and used as the context of the new tree. The
information pointer will be retained by the tree if a retain function is provided. If this value is not a
valid C pointer to a CFTreeContext structure-sized block of storage, the result is undefined. If the
version number of the storage is not a valid CFTreeContext version number, the result is undefined.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeSortChildren
Sorts the immediate children of a tree using a specified comparator function.

void CFTreeSortChildren (
 CFTreeRef tree,
 CFComparatorFunction comparator,
 void *context
);

Parameters
tree

The tree to sort.

comparator
The function with a comparator function type signature which is used in the sort operation to compare
children of the tree. The children of the tree are sorted from least to greatest according to this function.

context
A pointer-sized program-defined value that is passed to the comparator function, but is otherwise
unused by this function.

Discussion
Note that the comparator only operates one level deep and does not operate on descendants further removed
than the immediate children of a tree node.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

Callbacks

CFTreeApplierFunction
Type of the callback function used by the CFTree apply function.

Callbacks 15
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

typedef void (*CFTreeApplierFunction) (
 const void *value,
 void *context
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *value,
 void *context
);

Parameters
value

The current child of a tree that is being iterated.

context
The program-defined context parameter that was passed to the applier function.

Discussion
This callback is used by the CFTreeApplyFunctionToChildren (page 8) applier function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeCopyDescriptionCallBack
Callback function used to provide a description of the program-defined information pointer.

typedef CFStringRef (*CFTreeCopyDescriptionCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallBack (
 const void *info
);

Parameters
info

The program-supplied information pointer provided in a CFTreeContext (page 18) structure.

Return Value
A textual description of info. The caller is responsible for releasing this object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

16 Callbacks
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

CFTreeReleaseCallBack
Callback function used to release a previously retained program-defined information pointer.

typedef void (*CFTreeReleaseCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *info
);

Parameters
info

The program-supplied information pointer provided in a CFTreeContext (page 18) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeRetainCallBack
Callback function used to retain a program-defined information pointer.

typedef const void *(*CFTreeRetainCallBack) (
const void *info
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 const void *info
);

Parameters
info

The program-supplied information pointer provided in a CFTreeContext (page 18) structure.

Return Value
The value to use whenever the information pointer is retained, which is usually the info parameter passed
to this callback, but may be a different value if a different value should be used.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

Callbacks 17
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

Data Types

CFTreeContext
Structure containing program-defined data and callbacks for a CFTree object.

struct CFTreeContext {
 CFIndex version;
 void *info;
 CFTreeRetainCallBack retain;
 CFTreeReleaseCallBack release;
 CFTreeCopyDescriptionCallBack copyDescription;
};
typedef struct CFTreeContext CFTreeContext;

Fields
version

The version number of the structure type being passed in as a parameter to a CFTree creation function.
This structure is version 0.

info
A C pointer to a program-defined block of data, referred to as the information pointer.

retain
The callback used to retain the info field. If this parameter is not a pointer to a function of the correct
prototype, the behavior is undefined. This value may be NULL.

release
The callback used to release a previously retained info field. If this parameter is not a pointer to a
function of the correct prototype, the behavior is undefined. This value may be NULL.

copyDescription
The callback used to provide a description of the info field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeRef
A reference to a CFTree object.

typedef struct __CFTree *CFTreeRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

18 Data Types
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CFTree Reference

This table describes the changes to CFTree Reference.

NotesDate

Made minor changes to text to conform to reference consistency guidelines.2005-12-06

Moved Introduction to new Introduction page. Clarified memory management
issues in Introduction and tree manipulation function descriptions.

2005-04-29

Added note to Introduction regarding removal of children from tree.2004-12-02

Correction to parameter description of CFTreeGetChildAtIndex.2004-02-11

First version of this document.2003-01-01

19
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

20
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

C

CFTreeAppendChild function 7
CFTreeApplierFunction callback 15
CFTreeApplyFunctionToChildren function 8
CFTreeContext structure 18
CFTreeCopyDescriptionCallBack callback 16
CFTreeCreate function 8
CFTreeFindRoot function 9
CFTreeGetChildAtIndex function 9
CFTreeGetChildCount function 10
CFTreeGetChildren function 10
CFTreeGetContext function 10
CFTreeGetFirstChild function 11
CFTreeGetNextSibling function 11
CFTreeGetParent function 12
CFTreeGetTypeID function 12
CFTreeInsertSibling function 12
CFTreePrependChild function 13
CFTreeRef data type 18
CFTreeReleaseCallBack callback 17
CFTreeRemove function 13
CFTreeRemoveAllChildren function 14
CFTreeRetainCallBack callback 17
CFTreeSetContext function 14
CFTreeSortChildren function 15

21
2005-12-06 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Index

	CFTree Reference
	Contents
	CFTree Reference
	Overview
	Functions by Task
	Creating Trees
	Modifying a Tree
	Sorting a Tree
	Examining a Tree
	Performing an Operation on Tree Elements
	Getting the Tree Type ID

	Functions
	CFTreeAppendChild
	CFTreeApplyFunctionToChildren
	CFTreeCreate
	CFTreeFindRoot
	CFTreeGetChildAtIndex
	CFTreeGetChildCount
	CFTreeGetChildren
	CFTreeGetContext
	CFTreeGetFirstChild
	CFTreeGetNextSibling
	CFTreeGetParent
	CFTreeGetTypeID
	CFTreeInsertSibling
	CFTreePrependChild
	CFTreeRemove
	CFTreeRemoveAllChildren
	CFTreeSetContext
	CFTreeSortChildren

	Callbacks
	CFTreeApplierFunction
	CFTreeCopyDescriptionCallBack
	CFTreeReleaseCallBack
	CFTreeRetainCallBack

	Data Types
	CFTreeContext
	CFTreeRef

	Revision History
	Index
	C

