
Core Foundation Framework Reference
Core Foundation

2007-10-31

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Bonjour,
Carbon, Cocoa, ColorSync, eMac, iTunes,
Leopard, Logic, Mac, Mac OS, Macintosh,
Quartz, and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

Aperture, Numbers, and Spotlight are
trademarks of Apple Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 17

Part I Opaque Types 19

Chapter 1 CFAllocator Reference 21

Overview 21
Functions by Task 21
Functions 22
Callbacks 28
Data Types 33
Constants 35

Chapter 2 CFArray Reference 37

Overview 37
Functions by Task 38
Functions 39
Callbacks 47
Data Types 51
Constants 52

Chapter 3 CFAttributedString Reference 53

Overview 53
Functions by Task 54
Functions 55
Data Types 61

Chapter 4 CFBag Reference 63

Overview 63
Functions by Task 63
Functions 64
Callbacks 70
Data Types 74
Constants 75

Chapter 5 CFBinaryHeap Reference 77

Overview 77

3
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Functions 77
Callbacks 83
Data Types 86
Constants 87

Chapter 6 CFBitVector Reference 89

Overview 89
Functions by Task 89
Functions 90
Data Types 95

Chapter 7 CFBoolean Reference 97

Overview 97
Functions 97
Data Types 98
Constants 99

Chapter 8 CFBundle Reference 101

Overview 101
Functions by Task 102
Functions 106
Data Types 138
Constants 139

Chapter 9 CFCalendar Reference 141

Overview 141
Functions by Task 142
Functions 144
Data Types 156
Constants 156

Chapter 10 CFCharacterSet Reference 159

Overview 159
Functions by Task 159
Functions 160
Data Types 166
Constants 167

Chapter 11 CFData Reference 171

Overview 171

4
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Functions by Task 171
Functions 172
Data Types 177

Chapter 12 CFDate Reference 179

Overview 179
Functions 179
Data Types 182

Chapter 13 CFDateFormatter Reference 183

Overview 183
Functions by Task 183
Functions 184
Data Types 192
Constants 192

Chapter 14 CFDictionary Reference 199

Overview 199
Functions by Task 200
Functions 201
Callbacks 209
Data Types 213
Constants 215

Chapter 15 CFError Reference 217

Overview 217
Functions by Task 217
Functions 218
Data Types 224
Constants 224

Chapter 16 CFFileDescriptor Reference 227

Overview 227
Functions by Task 228
Functions 229
Data Types 233
Constants 235

Chapter 17 CFLocale Reference 237

Overview 237

5
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Functions by Task 237
Functions 239
Data Types 248
Constants 248

Chapter 18 CFMachPort Reference 253

Overview 253
Functions by Task 253
Functions 254
Callbacks 260
Data Types 261

Chapter 19 CFMessagePort Reference 263

Overview 263
Functions by Task 263
Functions 264
Callbacks 272
Data Types 273
Constants 274

Chapter 20 CFMutableArray Reference 277

Overview 277
Functions 277
Data Types 285

Chapter 21 CFMutableAttributedString Reference 287

Overview 287
Functions by Task 288
Functions 289
Data Types 294

Chapter 22 CFMutableBag Reference 297

Overview 297
Functions by Task 297
Functions 298
Data Types 302

Chapter 23 CFMutableBitVector Reference 303

Overview 303
Functions by Task 303

6
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Functions 304
Data Types 308

Chapter 24 CFMutableCharacterSet Reference 309

Overview 309
Functions by Task 309
Functions 310
Data Types 314

Chapter 25 CFMutableData Reference 315

Overview 315
Functions 315
Data Types 320

Chapter 26 CFMutableDictionary Reference 321

Overview 321
Functions by Task 321
Functions 322
Data Types 327

Chapter 27 CFMutableSet Reference 329

Overview 329
Functions 329
Data Types 333

Chapter 28 CFMutableString Reference 335

Overview 335
Functions 335
Data Types 352
Constants 353

Chapter 29 CFNotificationCenter Reference 357

Overview 357
Functions by Task 358
Functions 358
Callbacks 364
Data Types 365
Constants 366

7
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 30 CFNull Reference 369

Overview 369
Functions 369
Data Types 370
Constants 370

Chapter 31 CFNumber Reference 371

Overview 371
Functions by Task 371
Functions 372
Data Types 377
Constants 377

Chapter 32 CFNumberFormatter Reference 381

Overview 381
Functions by Task 381
Functions 382
Data Types 389
Constants 391

Chapter 33 CFPlugIn Reference 401

Overview 401
Functions by Task 401
Functions 402
Callbacks 410
Data Types 412
Constants 412

Chapter 34 CFPlugInInstance Reference 415

Overview 415
Functions 415
Callbacks 417
Data Types 418

Chapter 35 CFPropertyList Reference 419

Overview 419
Functions by Task 420
Functions 420
Data Types 425
Constants 425

8
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 36 CFReadStream Reference 427

Overview 427
Functions by Task 427
Functions 429
Callbacks 438
Data Types 439

Chapter 37 CFRunLoop Reference 441

Overview 441
Functions by Task 442
Functions 443
Data Types 457
Constants 457

Chapter 38 CFRunLoopObserver Reference 459

Overview 459
Functions 459
Callbacks 463
Data Types 464
Constants 465

Chapter 39 CFRunLoopSource Reference 467

Overview 467
Functions 468
Callbacks 471
Data Types 476

Chapter 40 CFRunLoopTimer Reference 479

Overview 479
Functions 479
Callbacks 485
Data Types 485

Chapter 41 CFSet Reference 487

Overview 487
Functions by Task 488
Functions 488
Callbacks 495
Data Types 498
Constants 500

9
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 42 CFSocket Reference 501

Overview 501
Functions by Task 501
Functions 502
Callbacks 515
Data Types 516
Constants 517

Chapter 43 CFString Reference 521

Overview 521
Functions by Task 522
Functions 526
Data Types 572
Constants 574

Chapter 44 CFStringTokenizer Reference 593

Overview 593
Functions by Task 594
Functions 595
Data Types 601
Constants 601

Chapter 45 CFTimeZone Reference 605

Overview 605
Functions by Task 605
Functions 607
Data Types 615
Constants 616

Chapter 46 CFTree Reference 619

Overview 619
Functions by Task 620
Functions 621
Callbacks 629
Data Types 632

Chapter 47 CFType Reference 633

Overview 633
Functions by Task 633
Functions 634

10
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Data Types 641

Chapter 48 CFURL Reference 643

Overview 643
Functions by Task 643
Functions 646
Data Types 673
Constants 673

Chapter 49 CFUserNotification Reference 677

Overview 677
Functions 677
Callbacks 686
Data Types 687
Constants 687

Chapter 50 CFUUID Reference 693

Overview 693
Functions by Task 693
Functions 694
Data Types 700

Chapter 51 CFWriteStream Reference 703

Overview 703
Functions by Task 703
Functions 705
Callbacks 714
Data Types 715

Chapter 52 CFXMLNode Reference 717

Overview 717
Functions 717
Data Types 721
Constants 727

Chapter 53 CFXMLParser Reference 731

Overview 731
Functions 731
Callbacks 738
Data Types 744

11
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constants 746

Chapter 54 CFXMLTree Reference 751

Overview 751
Functions 751
Data Types 757
Constants 757

Part II Managers 759

Chapter 55 Base Utilities Reference 761

Overview 761
Functions 761
Callbacks 762
Data Types 763
Constants 764

Chapter 56 Byte-Order Utilities Reference 771

Overview 771
Functions 771
Data Types 781
Constants 782

Chapter 57 Core Foundation URL Access Utilities Reference 783

Overview 783
Functions 783
Constants 787

Chapter 58 Preferences Utilities Reference 791

Overview 791
Functions by Task 791
Functions 792
Constants 803

Chapter 59 Socket Name Server Utilities Reference 805

Overview 805
Functions 805
Constants 810

12
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 60 Time Utilities Reference 811

Overview 811
Functions 811
Data Types 817
Constants 818

Part III Other References 821

Chapter 61 CFStream Reference 823

Overview 823
Functions 823
Data Types 826
Constants 827

10.5 Symbol Changes 835

C Symbols 835

10.4 Symbol Changes 849

C Symbols 849

10.3 Symbol Changes 859

C Symbols 859

10.2 Symbol Changes 871

C Symbols 871

10.1 Symbol Changes 877

C Symbols 877

Document Revision History 881

Index 883

13
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

14
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tables and Listings

Chapter 9 CFCalendar Reference 141

Table 9-1 Calendrical components parameter descriptors 142

Chapter 48 CFURL Reference 643

Listing 48-1 Code sample illustrating CFURLCopyLastPathComponent 649

15
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

16
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

TABLES AND LISTINGS

Framework /System/Library/Frameworks/CoreFoundation.framework

Header file directories /System/Library/Frameworks/CoreFoundation.framework/Headers

Declared in CFArray.h
CFAttributedString.h
CFBag.h
CFBase.h
CFBinaryHeap.h
CFBitVector.h
CFBundle.h
CFByteOrder.h
CFCalendar.h
CFCharacterSet.h
CFData.h
CFDate.h
CFDateFormatter.h
CFDictionary.h
CFError.h
CFFTPStream.h
CFFileDescriptor.h
CFHTTPStream.h
CFHost.h
CFLocale.h
CFMachPort.h
CFMessagePort.h
CFNetServices.h
CFNotificationCenter.h
CFNumber.h
CFNumberFormatter.h
CFPlugIn.h
CFPreferences.h
CFPropertyList.h
CFRunLoop.h
CFSet.h
CFSocket.h
CFSocketStream.h
CFStream.h
CFString.h
CFStringEncodingExt.h
CFStringTokenizer.h
CFTimeZone.h
CFTree.h
CFURL.h
CFURLAccess.h
CFUUID.h
CFUserNotification.h

17
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

CFXMLNode.h
CFXMLParser.h

Core Foundation is a framework that provides fundamental software services useful to application services,
application environments, and to applications themselves. Core Foundation also provides abstractions for
common data types, facilitates internationalization with Unicode string storage, and offers a suite of utilities
such as plug-in support, XML property lists, URL resource access, and preferences.

For a summary of new API introduced in Mac OS X v10.5, see Core Foundation Reference Update.

18
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

19
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART I

Opaque Types

20
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART I

Opaque Types

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFBase.h

Companion guide Memory Management Programming Guide for Core Foundation

Overview

CFAllocator is an opaque type that allocates and deallocates memory for you. You never have to allocate,
reallocate, or deallocate memory directly for Core Foundation objects—and rarely should you. You pass
CFAllocator objects into functions that create objects; these functions have “Create” embedded in their
names, for example, CFStringCreateWithPascalString. The creation functions use the allocators to
allocate memory for the objects they create.

Functions by Task

Creating an Allocator

CFAllocatorCreate (page 23)
Creates an allocator object.

Managing Memory with an Allocator

CFAllocatorAllocate (page 22)
Allocates memory using the specified allocator.

CFAllocatorDeallocate (page 23)
Deallocates a block of memory with a given allocator.

CFAllocatorGetPreferredSizeForSize (page 25)
Obtains the number of bytes likely to be allocated upon a specific request.

CFAllocatorReallocate (page 26)
Reallocates memory using the specified allocator.

Overview 21
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

Getting and Setting the Default Allocator

CFAllocatorGetDefault (page 25)
Gets the default allocator object for the current thread.

CFAllocatorSetDefault (page 27)
Sets the given allocator as the default for the current thread.

Getting an Allocator's Context

CFAllocatorGetContext (page 24)
Obtains the context of the specified allocator or of the default allocator.

Getting the CFAllocator Type ID

CFAllocatorGetTypeID (page 26)
Returns the type identifier for the CFAllocator opaque type.

Functions

CFAllocatorAllocate
Allocates memory using the specified allocator.

void * CFAllocatorAllocate (
 CFAllocatorRef allocator,
 CFIndex size,
 CFOptionFlags hint
);

Parameters
allocator

The allocator to use to allocate the memory. Pass NULL or kCFAllocatorDefault to use the current
default allocator.

size
The size of the memory to allocate.

hint
A bitfield containing flags that suggest how memory is to be allocated. 0 indicates no hints. No hints
are currently defined, so only 0 should be passed for this value.

Return Value
A pointer to the newly allocated memory.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

22 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

Related Sample Code
Carbon Porting Tutorial
MoreIsBetter
MoreSCF
QISA

Declared In
CFBase.h

CFAllocatorCreate
Creates an allocator object.

CFAllocatorRef CFAllocatorCreate (
 CFAllocatorRef allocator,
 CFAllocatorContext *context
);

Parameters
allocator

The existing allocator to use to allocate memory for the new allocator. Pass the
kCFAllocatorUseContext (page 36) constant for this parameter to allocate memory using the
appropriate function callback specified in the context parameter. Pass NULL or
kCFAllocatorDefault (page 35) to allocate memory for the new allocator using the default allocator.

context
A structure of type CFAllocatorContext (page 33). The fields of this structure hold (among other
things) function pointers to callbacks used for allocating, reallocating, and deallocating memory.

Return Value
The new allocator object, or NULL if there was a problem allocating memory. Ownership follows the Create
Rule.

Discussion
You use this function to create custom allocators which you can then pass into various Core Foundation
object-creation functions. You must implement a function callback that allocates memory and assign it to
the allocate field of this structure. You typically also implement deallocate, reallocate, and preferred-size
callbacks.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorDeallocate
Deallocates a block of memory with a given allocator.

Functions 23
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

void CFAllocatorDeallocate (
 CFAllocatorRef allocator,
 void *ptr
);

Parameters
allocator

The allocator that was used to allocate the block of memory pointed to by ptr.

ptr
An untyped pointer to a block of memory to deallocate using allocator.

Discussion
If the allocator does not specify a deallocate callback function, the memory is not deallocated.

Special Considerations

You must use the same allocator to deallocate memory as was used to allocate it.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
MoreIsBetter
MoreSCF
QISA

Declared In
CFBase.h

CFAllocatorGetContext
Obtains the context of the specified allocator or of the default allocator.

void CFAllocatorGetContext (
 CFAllocatorRef allocator,
 CFAllocatorContext *context
);

Parameters
allocator

The allocator to examine. Pass NULL to obtain the context of the default allocator.

context
On return, contains the context of allocator.

Discussion
An allocator's context, a structure of type CFAllocatorContext, holds pointers to various function callbacks
(particularly those that allocate, reallocate, and deallocate memory for an object). The context also contains
a version number and the info field for program-defined data. To obtain the value of the info field you
usually first have to get an allocator's context.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

24 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

Declared In
CFBase.h

CFAllocatorGetDefault
Gets the default allocator object for the current thread.

CFAllocatorRef CFAllocatorGetDefault (
 void
);

Return Value
A reference to the default allocator for the current thread. If none has been explicitly set, returns the generic
system allocator, kCFAllocatorSystemDefault (page 35). Ownership follows the Get Rule.

Discussion
See the discussion for CFAllocatorSetDefault (page 27) for more detail on the default allocator and for
advice on how and when to set a custom allocator as the default.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BasicDataBrowser

Declared In
CFBase.h

CFAllocatorGetPreferredSizeForSize
Obtains the number of bytes likely to be allocated upon a specific request.

CFIndex CFAllocatorGetPreferredSizeForSize (
 CFAllocatorRef allocator,
 CFIndex size,
 CFOptionFlags hint
);

Parameters
allocator

The allocator to use, or NULL for the default allocator.

size
The number of bytes to allocate. If the value is 0 or less, the result is the same value.

hint
A bitfield of type CFOptionsFlags. Pass flags to the allocator that suggest how memory is to be
allocated. 0 indicates no hints. No hints are currently defined, only 0 should be passed for this argument.

Return Value
The number of bytes likely to be allocated upon a specific request.

Functions 25
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

Discussion
The return value depends on the allocator's internal allocation strategy, and will be equal to or larger than
size. Calling this function may help you better match your memory allocation or reallocation strategy to
that of the allocator.

Note that the return value depends on the internal implementation of the allocator and the results may
change from release to release or from platform to platform.

If no function callback is assigned to the preferredSize field of the allocator's context (see the
CFAllocatorContext structure), then the value of size is returned.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorGetTypeID
Returns the type identifier for the CFAllocator opaque type.

CFTypeID CFAllocatorGetTypeID (
 void
);

Return Value
The type identifier for the CFAllocator opaque type.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorReallocate
Reallocates memory using the specified allocator.

void * CFAllocatorReallocate (
 CFAllocatorRef allocator,
 void *ptr,
 CFIndex newsize,
 CFOptionFlags hint
);

Parameters
allocator

The allocator to use for reallocating memory. Pass NULL to request the default allocator.

26 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

ptr
An untyped pointer to a block of memory to reallocate to a new size. If ptr is NULL and newsize is
greater than 0, memory is allocated (using the allocate function callback of the allocator's context).
If ptr is NULL and newsize is 0, the result is NULL.

newsize
The number of bytes to allocate. If you pass 0 and the ptr parameter is non-NULL, the block of memory
that ptr points to is typically deallocated. If you pass 0 for this parameter and the ptr parameter is
NULL, nothing happens and the result returned is NULL.

hint
A bitfield of type CFOptionsFlags. Pass flags to the allocator that suggest how memory is to be
allocated. Zero indicates no hints. No hints are currently defined, only 0 should be passed for this
argument.

Discussion
The CFAllocatorReallocate function's primary purpose is to reallocate a block of memory to a new (and
usually larger) size. However, based on the values passed in certain of the parameters, this function can also
allocate memory afresh or deallocate a given block of memory. The following summarizes the semantic
combinations:

 ■ If the ptr parameter is non- NULL and the newsize parameter is greater than 0, the behavior is to
reallocate.

 ■ If the ptr parameter is NULL and the newsize parameter is greater than 0, the behavior is to allocate.

 ■ If the ptr parameter is non- NULL and the newsize parameter is 0, the behavior is to deallocate.

The result of the CFAllocatorReallocate function is either an untyped pointer to a block of memory or
NULL. A NULL result indicates either a failure to allocate memory or some other outcome, the precise
interpretation of which is determined by the values of certain parameters and the presence or absence of
callbacks in the allocator context. To summarize, a NULL result can mean one of the following:

 ■ An error occurred in the attempt to allocate memory, such as insufficient free space.

 ■ No allocate, reallocate, or deallocate function callback (depending on parameters) was defined
in the allocator context.

 ■ The semantic operation is "deallocate" (that is, there is no need to return anything).

 ■ The ptr parameter is NULL and the requested size is 0.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorSetDefault
Sets the given allocator as the default for the current thread.

Functions 27
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

void CFAllocatorSetDefault (
 CFAllocatorRef allocator
);

Parameters
allocator

The allocator to set as the default for the current thread.

Discussion
The CFAllocatorSetDefault function sets the allocator that is used in the current thread whenever NULL
is specified as an allocator argument. Generally, most allocations use the default allocator. Because of this,
the default allocator must be prepared to deal with arbitrary memory-allocation requests. In addition, the
size and number of requests can change between releases.

A further characteristic of the default allocator is that it can never be released, even if another allocator
replaces it as the default. Not only is it impractical to release a default allocator (because there might be
caches created somewhere that refer to the allocator) but it is generally safer and more efficient to keep it
around.

If you wish to use a custom allocator in a context, the best approach is to specify it in the first parameter of
creation functions rather than to set it as the default. Generally, setting the default allocator is not encouraged.
If you do set an allocator as the default, either do it for the life time of your application or do it in a nested
fashion (that is, restore the previous allocator before you exit your context). The latter approach might be
more appropriate for plug-ins or libraries that wish to set the default allocator.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Callbacks

CFAllocatorAllocateCallBack
A prototype for a function callback that allocates memory of a requested size.

typedef void *(*CFAllocatorAllocateCallBack) (
 CFIndex allocSize,
 CFOptionFlags hint,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void *MyCallBack (
 CFIndex allocSize,
 CFOptionFlags hint,
 void *info
);

28 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

Parameters
allocSize

This function allocates a block of memory of at least allocSize bytes (always greater than 0).

hint
A bitfield that is currently not used (always set to 0).

info
An untyped pointer to program-defined data. Allocate memory for the data and assign a pointer to
it. This data is often control information for the allocator. It may be NULL.

Return Value
A pointer to the start of the block.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorCopyDescriptionCallBack
A prototype for a function callback that provides a description of the specified data.

typedef CFStringRef (*CFAllocatorCopyDescriptionCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallBack (
 const void *info
);

Parameters
info

An untyped pointer to program-defined data.

Return Value
A CFString object that describes the allocator. The caller is responsible for releasing this object.

Discussion
A prototype for a function callback that provides a description of the data pointed to by the info field. In
implementing this function, return a reference to a CFString object that describes your allocator, particularly
some characteristics of your program-defined data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Callbacks 29
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

CFAllocatorDeallocateCallBack
A prototype for a function callback that deallocates a block of memory.

typedef void (*CFAllocatorDeallocateCallBack) (
 void *ptr,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 void *ptr,
 void *info
);

Parameters
ptr

The block of memory to deallocate.

info
An untyped pointer to program-defined data.

Discussion
A prototype for a function callback that deallocates a given block of memory. In implementing this function,
make the block of memory pointed to by ptr available for subsequent reuse by the allocator but unavailable
for continued use by the program. The ptr parameter cannot be NULL and if the ptr parameter is not a
block of memory that has been previously allocated by the allocator, the results are undefined; abnormal
program termination can occur.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorPreferredSizeCallBack
A prototype for a function callback that gives the size of memory likely to be allocated, given a certain request.

typedef CFIndex (*CFAllocatorPreferredSizeCallBack) (
 CFIndex size,
 CFOptionFlags hint,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

CFIndex MyCallBack (
 CFIndex size,
 CFOptionFlags hint,
 void *info
);

30 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

Parameters
size

The amount of memory requested.

hint
A bitfield that is currently not used (always set to 0).

info
An untyped pointer to program-defined data.

Return Value
The actual size the allocator is likely to allocate given this request.

Discussion
A prototype for a function callback that determines whether there is enough free memory to satisfy a request.
In implementing this function, return the actual size the allocator is likely to allocate given a request for a
block of memory of size size. The hint argument is a bitfield that you should currently not use.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorReallocateCallBack
A prototype for a function callback that reallocates memory of a requested size for an existing block of
memory.

typedef void *(*CFAllocatorReallocateCallBack) (
 void *ptr,
 CFIndex newsize,
 CFOptionFlags hint,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void *MyCallBack (
 void *ptr,
 CFIndex newsize,
 CFOptionFlags hint,
 void *info
);

Parameters
ptr

The block of memory to resize.

newsize
The size of the new allocation.

hint
A bitfield that is currently not used (always set to 0).

info
An untyped pointer to program-defined data.

Callbacks 31
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

Return Value
Pointer to the new block of memory.

Discussion
In implementing this function, change the size of the block of memory pointed to by ptr to the size specified
by newsize and return the pointer to the larger block of memory. Return NULL on any reallocation failure,
leaving the old block of memory untouched. Also return NULL immediately if any of the following conditions
if the ptr parameter is NULL or the newsize parameter is not greater than 0. Leave the contents of the old
block of memory unchanged up to the lesser of the new or old sizes. If the ptr parameter is not a block of
memory that has been previously allocated by the allocator, the results are undefined; abnormal program
termination can occur. The hint argument is a bitfield that you should currently not use (that is, assign 0).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorReleaseCallBack
A prototype for a function callback that releases the given data.

typedef void (*CFAllocatorReleaseCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *info
);

Parameters
info

The data to be released.

Discussion
A prototype for a function callback that releases the data pointed to by the info field. In implementing this
function, release (or free) the data you have defined for the allocator context.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorRetainCallBack
A prototype for a function callback that retains the given data.

32 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

typedef const void *(*CFAllocatorRetainCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 const void *info
);

Parameters
info

The data to be retained.

Discussion
A prototype for a function callback that retains the data pointed to by the info field. In implementing this
function, retain the data you have defined for the allocator context in this field. (This might make sense only
if the data is a Core Foundation object.)

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Data Types

CFAllocatorContext
A structure that defines the context or operating environment for an allocator (CFAllocator) object. Every
Core Foundation allocator object must have a context defined for it.

struct CFAllocatorContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
 CFAllocatorAllocateCallBack allocate;
 CFAllocatorReallocateCallBack reallocate;
 CFAllocatorDeallocateCallBack deallocate;
 CFAllocatorPreferredSizeCallBack preferredSize;
};
typedef struct CFAllocatorContext CFAllocatorContext;

Fields
version

An integer of type CFIndex. Assign the version number of the allocator. Currently the only valid value
is 0.

info
An untyped pointer to program-defined data. Allocate memory for this data and assign a pointer to
it. This data is often control information for the allocator. You may assign NULL.

Data Types 33
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

retain
A prototype for a function callback that retains the data pointed to by the info field. In implementing
this function, retain the data you have defined for the allocator context in this field. (This might make
sense only if the data is a Core Foundation object.) You may set this function pointer to NULL.

release
A prototype for a function callback that releases the data pointed to by the info field. In implementing
this function, release (or free) the data you have defined for the allocator context. You may set this
function pointer to NULL, but doing so might result in memory leaks.

copyDescription
A prototype for a function callback that provides a description of the data pointed to by the info
field. In implementing this function, return a reference to a CFString object that describes your allocator,
particularly some characteristics of your program-defined data. You may set this function pointer to
NULL, in which case Core Foundation will provide a rudimentary description.

allocate
A prototype for a function callback that allocates memory of a requested size. In implementing this
function, allocate a block of memory of at least size bytes and return a pointer to the start of the
block. The hint argument is a bitfield that you should currently not use (that is, assign 0). The size
parameter should always be greater than 0. If it is not, or if problems in allocation occur, return NULL.
This function pointer may not be assigned NULL.

reallocate
A prototype for a function callback that reallocates memory of a requested size for an existing block
of memory. In implementing this function, change the size of the block of memory pointed to by ptr
to the size specified by newsize and return the pointer to the larger block of memory. Return NULL
on any reallocation failure, leaving the old block of memory untouched. Also return NULL immediately
if any of the following conditions apply:

 ■ The ptr parameter is NULL.

 ■ The newsize parameter is not greater than 0.

Leave the contents of the old block of memory unchanged up to the lesser of the new or old
sizes. If the ptr parameter is not a block of memory that has been previously allocated by the
allocator, the results are undefined; abnormal program termination can occur. The hint argument
is a bitfield that you should currently not use (that is, assign 0). If you set this callback to NULL
the CFAllocatorReallocate (page 26) function returns NULL in most cases when it attempts
to use this allocator.

deallocate
A prototype for a function callback that deallocates a given block of memory. In implementing this
function, make the block of memory pointed to by ptr available for subsequent reuse by the allocator
but unavailable for continued use by the program. The ptr parameter cannot be NULL and if the ptr
parameter is not a block of memory that has been previously allocated by the allocator, the results
are undefined; abnormal program termination can occur. You can set this callback to NULL, in which
case the CFAllocatorDeallocate (page 23) function has no effect.

preferredSize
A prototype for a function callback that determines whether there is enough free memory to satisfy
a request. In implementing this function, return the actual size the allocator is likely to allocate given
a request for a block of memory of size size. The hint argument is a bitfield that you should currently
not use.

Discussion
See the “Memory Management” topic for information on creating a custom CFAllocator object and, as part
of that procedure, the steps for creating a properly initialized CFAllocatorContext structure.

34 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFAllocatorRef
A reference to a CFAllocator object.

typedef const struct __CFAllocator *CFAllocatorRef;

Discussion
The CFAllocatorRef type is a reference type used in many Core Foundation parameters and function
results. It refers to a CFAllocator object, which allocates, reallocates, and deallocates memory for Core
Foundation objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Constants

Predefined Allocators
CFAllocator provides the following predefined allocators. In general, you should use kCFAllocatorDefault
unless one of the special circumstances exist below.

const CFAllocatorRef kCFAllocatorDefault;
const CFAllocatorRef kCFAllocatorSystemDefault;
const CFAllocatorRef kCFAllocatorMalloc;
const CFAllocatorRef kCFAllocatorMallocZone;
const CFAllocatorRef kCFAllocatorNull;
const CFAllocatorRef kCFAllocatorUseContext;

Constants
kCFAllocatorDefault

This is a synonym for NULL.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

kCFAllocatorSystemDefault
Default system allocator.

You rarely need to use this.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

Constants 35
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

kCFAllocatorMalloc
This allocator uses malloc(), realloc(), and free().

Typically you should not use this allocator, use kCFAllocatorDefault instead. This allocator is
useful as the bytesDeallocator in CFData or contentsDeallocator in CFString where the
memory was obtained as a result of malloc type functions.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

kCFAllocatorMallocZone
This allocator explicitly uses the default malloc zone, returned by malloc_default_zone().

You should only use this when an object is safe to be allocated in non-scanned memory.

Available in Mac OS X v10.4 and later.

Declared in CFBase.h.

kCFAllocatorNull
This allocator does nothing—it allocates no memory.

This allocator is useful as the bytesDeallocator in CFData or contentsDeallocator in CFString
where the memory should not be freed.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

kCFAllocatorUseContext
Special allocator argument to CFAllocatorCreate (page 23)—it uses the functions given in the
context to allocate the allocator.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

Declared In
CFBase.h

36 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFAllocator Reference

Derived From: CFPropertyList : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFArray.h

Companion guides Collections Programming Topics for Core Foundation
Property List Programming Topics for Core Foundation

Overview

CFArray and its derived mutable type, CFMutableArray, manage ordered collections of values called arrays.
CFArray creates static arrays and CFMutableArray creates dynamic arrays.

You create a static array object using either the CFArrayCreate (page 41) or CFArrayCreateCopy (page
42) function. These functions return an array containing the values you pass in as arguments. (Note that
arrays can’t contain NULL pointers; in most cases, though, you can use the kCFNull constant instead.) Values
are not copied but retained using the retain callback provided when an array was created. Similarly, when a
value is removed from an array, it is released using the release callback.

CFArray’s two primitive functions CFArrayGetCount (page 43) and CFArrayGetValueAtIndex (page 46)
provide the basis for all other functions in its interface. The CFArrayGetCount (page 43) function returns
the number of elements in an array; CFArrayGetValueAtIndex (page 46) gives you access to an array’s
elements by index, with index values starting at 0.

A number of CFArray functions allow you to operate over a range of values in an array, for example
CFArrayApplyFunction (page 39) lets you apply a function to values in an array, and
CFArrayBSearchValues (page 39) searches an array for the value that matches its parameter. Recall that
a range is defined as {start, length}, therefore to operate over the entire array the range you supply
should be {0, N} (where N is the count of the array).

CFArray is “toll-free bridged” with its Cocoa Foundation counterpart, NSArray. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. Therefore,
in a method where you see an NSArray * parameter, you can pass in a CFArrayRef, and in a function
where you see a CFArrayRef parameter, you can pass in an NSArray instance. This also applies to concrete
subclasses of NSArray. See Interchangeable Data Types for more information on toll-free bridging.

Overview 37
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

Functions by Task

Creating an Array

CFArrayCreate (page 41)
Creates a new immutable array with the given values.

CFArrayCreateCopy (page 42)
Creates a new immutable array with the values from another array.

Examining an Array

CFArrayBSearchValues (page 39)
Searches an array for a value using a binary search algorithm.

CFArrayContainsValue (page 40)
Reports whether or not a value is in an array.

CFArrayGetCount (page 43)
Returns the number of values currently in an array.

CFArrayGetCountOfValue (page 44)
Counts the number of times a given value occurs in an array.

CFArrayGetFirstIndexOfValue (page 44)
Searches an array forward for a value.

CFArrayGetLastIndexOfValue (page 45)
Searches an array backward for a value.

CFArrayGetValues (page 47)
Fills a buffer with values from an array.

CFArrayGetValueAtIndex (page 46)
Retrieves a value at a given index.

Applying a Function to Elements

CFArrayApplyFunction (page 39)
Calls a function once for each element in range in an array.

Getting the CFArray Type ID

CFArrayGetTypeID (page 46)
Returns the type identifier for the CFArray opaque type.

38 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

Functions

CFArrayApplyFunction
Calls a function once for each element in range in an array.

void CFArrayApplyFunction (
 CFArrayRef theArray,
 CFRange range,
 CFArrayApplierFunction applier,
 void *context
);

Parameters
theArray

The array to whose elements to apply the function.

range
The range of values within theArray to which to apply the applier function. The range must not
exceed the bounds of theArray. The range may be empty (length 0).

applier
The callback function to call once for each value in the given range in theArray. If there are values
in the range that the applier function does not expect or cannot properly apply to, the behavior is
undefined.

context
A pointer-sized program-defined value, which is passed as the second argument to the applier
function, but is otherwise unused by this function. If the context is not what is expected by the applier
function, the behavior is undefined.

Discussion
While this function iterates over a mutable collection, it is unsafe for the applier function to change the
contents of the collection.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
HID Manager Basics
HID Utilities Source

Declared In
CFArray.h

CFArrayBSearchValues
Searches an array for a value using a binary search algorithm.

Functions 39
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

CFIndex CFArrayBSearchValues (
 CFArrayRef theArray,
 CFRange range,
 const void *value,
 CFComparatorFunction comparator,
 void *context
);

Parameters
theArray

An array, sorted from least to greatest according to the comparator function.

range
The range within theArray to search. The range must not exceed the bounds of theArray. The
range may be empty (length 0).

value
The value for which to find a match in theArray. If value, or any other value in theArray, is not
understood by the comparator callback, the behavior is undefined.

comparator
The function with the comparator function type signature that is used in the binary search operation
to compare values in theArray with the given value. If there are values in the range that the
comparator function does not expect or cannot properly compare, the behavior is undefined.

context
A pointer-sized program-defined value, which is passed as the third argument to the comparator
function, but is otherwise unused by this function. If the context is not what is expected by the
comparator function, the behavior is undefined.

Return Value
The return value is one of the following:

 ■ The index of a value that matched, if the target value matches one or more in the range.

 ■ Greater than or equal to the end point of the range, if the value is greater than all the values in the range.

 ■ The index of the value greater than the target value, if the value lies between two of (or less than all of)
the values in the range.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MoreIsBetter
MoreSCF
QISA

Declared In
CFArray.h

CFArrayContainsValue
Reports whether or not a value is in an array.

40 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

Boolean CFArrayContainsValue (
 CFArrayRef theArray,
 CFRange range,
 const void *value
);

Parameters
theArray

The array to search.

range
The range within theArray to search. The range must not exceed the bounds of theArray). The
range may be empty (length 0).

value
The value to match in theArray. The equal callback provided when theArray was created is used
to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If value, or any other
value in theArray, is not understood by the equal callback, the behavior is undefined.

Return Value
true, if value is in the specified range of theArray, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MoreIsBetter
MoreSCF
PMPrinterPrintWithFile
QISA
SeeMyFriends

Declared In
CFArray.h

CFArrayCreate
Creates a new immutable array with the given values.

CFArrayRef CFArrayCreate (
 CFAllocatorRef allocator,
 const void **values,
 CFIndex numValues,
 const CFArrayCallBacks *callBacks
);

Parameters
allocator

The allocator to use to allocate memory for the new array and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

Functions 41
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

values
A C array of the pointer-sized values to be in the new array. The values in the new array are ordered
in the same order in which they appear in this C array. This value may be NULL if numValues is 0.
This C array is not changed or freed by this function. If values is not a valid pointer to a C array of at
least numValues elements, the behavior is undefined.

numValues
The number of values to copy from the values C array into the new array. This number will be the
count of the new array—it must not be negative or greater than the number of elements in values.

callBacks
A pointer to a CFArrayCallBacks (page 51) structure initialized with the callbacks for the array to
use on each value in the collection. The retain callback is used within this function, for example, to
retain all of the new values from the values C array. A copy of the contents of the callbacks structure
is made, so that a pointer to a structure on the stack can be passed in or can be reused for multiple
collection creations.

This value may be NULL, which is treated as if a valid structure of version 0 with all fields NULL had
been passed in. Otherwise, if any of the fields are not valid pointers to functions of the correct type,
or this value is not a valid pointer to a CFArrayCallBacks (page 51) structure, the behavior is
undefined. If any value put into the collection is not one understood by one of the callback functions,
the behavior when that callback function is used is undefined.

If the collection contains only CFType objects, then pass kCFTypeArrayCallBacks (page 52) to
use the default callback functions.

Return Value
A new immutable array containing numValues from values, or NULL if there was a problem creating the
object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPreferences
ImageClient
MoreIsBetter
MoreSCF
QISA

Declared In
CFArray.h

CFArrayCreateCopy
Creates a new immutable array with the values from another array.

42 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

CFArrayRef CFArrayCreateCopy (
 CFAllocatorRef allocator,
 CFArrayRef theArray
);

Parameters
allocator

The allocator to use to allocate memory for the new array and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

theArray
The array to copy.

Return Value
A new CFArray object that contains the same values as theArray. Ownership follows the Create Rule.

Discussion
The pointer values from theArray are copied into the new array; the values are also retained by the new
array. The count of the new array is the same as theArray. The new array uses the same callbacks as
theArray.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
IdentitySample

Declared In
CFArray.h

CFArrayGetCount
Returns the number of values currently in an array.

CFIndex CFArrayGetCount (
 CFArrayRef theArray
);

Parameters
theArray

The array to examine.

Return Value
The number of values in theArray.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
ImageClient
MoreIsBetter
MoreSCF
QISA

Functions 43
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

Declared In
CFArray.h

CFArrayGetCountOfValue
Counts the number of times a given value occurs in an array.

CFIndex CFArrayGetCountOfValue (
 CFArrayRef theArray,
 CFRange range,
 const void *value
);

Parameters
theArray

The array to examine.

range
The range within theArray to search. The range must lie within the bounds of theArray). The range
may be empty (length 0).

value
The value for which to find matches in theArray. The equal callback provided when theArray was
created is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If value,
or any other value in theArray, is not understood by the equal callback, the behavior is undefined.

Return Value
The number of times value occurs in theArray, within the specified range.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFArray.h

CFArrayGetFirstIndexOfValue
Searches an array forward for a value.

CFIndex CFArrayGetFirstIndexOfValue (
 CFArrayRef theArray,
 CFRange range,
 const void *value
);

Parameters
theArray

The array to examine.

range
The range within theArray to search. The range must lie within the bounds of theArray. The range
may be empty (length 0). The search progresses from the lowest index defined by the range to the
highest.

44 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

value
The value for which to find a match in theArray. The equal callback provided when theArray was
created is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If value,
or any other value in theArray, is not understood by the equal callback, the behavior is undefined.

Return Value
The lowest index of the matching values in the range, or -1 if no value in the range matched.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
ImageClient
MoreIsBetter
MoreSCF
QISA

Declared In
CFArray.h

CFArrayGetLastIndexOfValue
Searches an array backward for a value.

CFIndex CFArrayGetLastIndexOfValue (
 CFArrayRef theArray,
 CFRange range,
 const void *value
);

Parameters
theArray

The array to examine.

range
The range within theArray to search. The range must not exceed the bounds of theArray. The
range may be empty (length 0). The search progresses from the highest index defined by the range
to the lowest.

value
The value for which to find a match in theArray. The equal callback provided when theArray was
created is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If value,
or any other value in theArray, is not understood by the equal callback, the behavior is undefined.

Return Value
The highest index of the matching values in the range, or -1 if no value in the range matched.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFArray.h

Functions 45
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

CFArrayGetTypeID
Returns the type identifier for the CFArray opaque type.

CFTypeID CFArrayGetTypeID (
 void
);

Return Value
The type identifier for the CFArray opaque type.

Special Considerations

CFMutableArray objects have the same type identifier as CFArray objects.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
MoreIsBetter
MoreSCF
QISA
UIElementInspector

Declared In
CFArray.h

CFArrayGetValueAtIndex
Retrieves a value at a given index.

const void * CFArrayGetValueAtIndex (
 CFArrayRef theArray,
 CFIndex idx
);

Parameters
theArray

The array to examine.

idx
The index of the value to retrieve. If the index is outside the index space of theArray (0 to N-1
inclusive (where N is the count of theArray), the behavior is undefined.

Return Value
The value at the idx index in theArray. If the return value is a Core Foundation Object, ownership follows
the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Config Save
ImageClient
MoreIsBetter

46 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

MoreSCF
QISA

Declared In
CFArray.h

CFArrayGetValues
Fills a buffer with values from an array.

void CFArrayGetValues (
 CFArrayRef theArray,
 CFRange range,
 const void **values
);

Parameters
theArray

The array to examine.

range
The range of values within theArray to retrieve. The range must lie within the bounds of theArray.
The range may be empty (length 0), in which case no values are put into the buffer values.

values
A C array of pointer-sized values to be filled with values from theArray. The values in the C array are
in the same order as they appear in theArray. If this value is not a valid pointer to a C array of at
least range.length pointers, the behavior is undefined. If the values are Core Foundation objects,
ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
GrabBag
MoreIsBetter
MoreSCF
QISA

Declared In
CFArray.h

Callbacks

CFArrayApplierFunction
Prototype of a callback function that may be applied to every value in an array.

Callbacks 47
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

typedef void (*CFArrayApplierFunction) (
 const void *value,
 void *context
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *value,
 void *context
);

Parameters
value

The current value in an array.

context
The program-defined context parameter given to the applier function.

Discussion
This callback is passed to the CFArrayApplyFunction (page 39) function, which iterates over the values
in an array and applies the behavior defined in the applier function to each value in an array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFArray.h

CFArrayCopyDescriptionCallBack
Prototype of a callback function used to get a description of a value in an array.

typedef CFStringRef (*CFArrayCopyDescriptionCallBack) (
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallBack (
 const void *value
);

Parameters
value

The value to be described.

Return Value
A textual description of value. The caller is responsible for releasing this object.

Discussion
This callback is passed to CFArrayCreate (page 41) in a CFArrayCallBacks (page 51) structure. This
callback is used by the CFCopyDescription (page 634) function.

48 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFArray.h

CFArrayEqualCallBack
Prototype of a callback function used to determine if two values in an array are equal.

typedef Boolean (*CFArrayEqualCallBack) (
 const void *value1,
 const void *value2
);

If you name your function MyCallBack, you would declare it like this:

Boolean MyCallBack (
 const void *value1,
 const void *value2
);

Parameters
value1

A value in an array to be compared with value2 for equality.

value2
A value in an array to be compared with value1 for equality.

Return Value
true if value1 and value2 are equal, false otherwise.

Discussion
This callback is passed to CFArrayCreate (page 41) in a CFArrayCallBacks (page 51) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFArray.h

CFArrayReleaseCallBack
Prototype of a callback function used to release a value before it’s removed from an array.

typedef void (*CFArrayReleaseCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFAllocatorRef allocator,

Callbacks 49
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

 const void *value
);

Parameters
allocator

The array’s allocator.

value
The value being removed from an array.

Discussion
This callback is passed to CFArrayCreate (page 41) in a CFArrayCallBacks (page 51) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFArray.h

CFArrayRetainCallBack
Prototype of a callback function used to retain a value being added to an array.

typedef const void *(*CFArrayRetainCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 CFAllocatorRef allocator,
 const void *value
);

Parameters
allocator

The array’s allocator.

value
The value being added to an array.

Return Value
The value to store in an array, which is usually the value parameter passed to this callback, but may be a
different value if a different value should be stored in an array.

Discussion
This callback is passed to CFArrayCreate (page 41) in a CFArrayCallBacks (page 51) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFArray.h

50 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

Data Types

CFArrayCallBacks
Structure containing the callbacks of a CFArray.

struct CFArrayCallBacks {
 CFIndex version;
 CFArrayRetainCallBack retain;
 CFArrayReleaseCallBack release;
 CFArrayCopyDescriptionCallBack copyDescription;
 CFArrayEqualCallBack equal;
};
typedef struct CFArrayCallBacks CFArrayCallBacks;

Fields
version

The version number of this structure. If not one of the defined version numbers for this opaque type,
the behavior is undefined. The current version of this structure is 0.

retain
The callback used to retain each value as they are added to the collection. If NULL, values are not
retained. See CFArrayRetainCallBack (page 50) for a description of this callback.

release
The callback used to release values as they are removed from the collection. If NULL, values are not
released. See CFArrayReleaseCallBack (page 49) for a description of this callback.

copyDescription
The callback used to create a descriptive string representation of each value in the collection. If NULL,
the collection will create a simple description of each value. See
CFArrayCopyDescriptionCallBack (page 48) for a description of this callback.

equal
The callback used to compare values in the array for equality for some operations. If NULL, the collection
will use pointer equality to compare values in the collection. See CFArrayEqualCallBack (page
49) for a description of this callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFArray.h

CFArrayRef
A reference to an immutable array object.

typedef const struct __CFArray *CFArrayRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFArray.h

Data Types 51
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

Constants

Predefined Callback Structures
CFArray provides some predefined callbacks for your convenience.

const CFArrayCallBacks kCFTypeArrayCallBacks;

Constants
kCFTypeArrayCallBacks

Predefined CFArrayCallBacks (page 51) structure containing a set of callbacks appropriate for use
when the values in a CFArray are all CFType-derived objects. The retain callback is CFRetain, the
release callback is CFRelease, the copy callback is CFCopyDescription, and the equal callback is
CFEqual. Therefore, if you use this constant when creating the collection, items are automatically
retained when added to the collection, and released when removed from the collection.

Available in Mac OS X v10.0 and later.

Declared in CFArray.h.

52 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFArray Reference

Derived From: CFType Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFAttributedString.h
CFBase.h

Companion guides Property List Programming Topics for Core Foundation
Strings Programming Guide for Core Foundation
Data Formatting Guide for Core Foundation

Overview

Instances of CFAttributedString manage character strings and associated sets of attributes (for example, font
and kerning information) that apply to individual characters or ranges of characters in the string.
CFAttributedString as defined in CoreFoundation provides the basic container functionality, while higher
levels provide definitions for standard attributes, their values, and additional behaviors involving these.
CFAttributedString represents an immutable string—use CFMutableAttributedString to create and manage
an attributed string that can be changed after it has been created.

iPhone OS Note: While Core Foundation on iPhone OS contains CFAttributedString, there are no additions
to the APIs in UIKit to add specific attributes such as font, style, or color, and there are no APIs to draw
attributed strings.

CFAttributedString is not a “subclass” of CFString; that is, it does not respond to CFString function calls.
CFAttributedString conceptually contains a CFString to which it applies attributes. This protects you from
ambiguities caused by the semantic differences between simple and attributed string.

Attributes are identified by key/value pairs stored in CFDictionary objects. Keys must be CFString objects,
while the corresponding values are CFType objects of an appropriate type. See the attribute constants in
NSAttributedString Application Kit Additions Reference for standard attribute names.

Important: Attribute dictionaries set for an attributed string must always be created with
kCFCopyStringDictionaryKeyCallbacks for their dictionary key callbacks and kCFTypeDictionaryValueCallBacks
for their value callbacks; otherwise it's an error.

On Mac OS X, CFAttributedString is “toll-free bridged” with its Cocoa Foundation counterpart,
NSAttributedString. This means that the Core Foundation type is interchangeable in function or method calls
with the bridged Foundation object. Therefore, in a method where you see an NSAttributedString *
parameter, you can pass in a CFAttributedStringRef, and in a function where you see a

Overview 53
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFAttributedString Reference

CFAttributedStringRef parameter, you can pass in an NSAttributedString instance. This also applies
to concrete subclasses of NSAttributedString. See Interchangeable Data Types for more information on
toll-free bridging.

iPhone OS Note: NSAttributedString is not available on iPhone OS.

Functions by Task

Creating a CFAttributedString

CFAttributedStringCreate (page 55)
Creates an attributed string with specified string and attributes.

CFAttributedStringCreateCopy (page 55)
Creates an immutable copy of an attributed string.

CFAttributedStringCreateWithSubstring (page 56)
Creates a sub-attributed string from the specified range.

CFAttributedStringGetLength (page 59)
Returns the length of the attributed string in characters.

CFAttributedStringGetString (page 60)
Returns the string for an attributed string.

Accessing Attributes

CFAttributedStringGetAttribute (page 57)
Returns the value of a given attribute of an attributed string at a specified location.

CFAttributedStringGetAttributes (page 58)
Returns the attributes of an attributed string at a specified location.

CFAttributedStringGetAttributeAndLongestEffectiveRange (page 57)
Returns the value of a given attribute of an attributed string at a specified location.

CFAttributedStringGetAttributesAndLongestEffectiveRange (page 59)
Returns the attributes of an attributed string at a specified location.

Getting Attributed String Properties

CFAttributedStringGetTypeID (page 60)
Returns the type identifier for the CFAttributedString opaque type.

54 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFAttributedString Reference

Functions

CFAttributedStringCreate
Creates an attributed string with specified string and attributes.

CFAttributedStringRef CFAttributedStringCreate (
 CFAllocatorRef alloc,
 CFStringRef str,
 CFDictionaryRef attributes
);

Parameters
alloc

The allocator to use to allocate memory for the new attributed string. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

str
A string that specifies the characters to use in the new attributed string. This value is copied.

attributes
A dictionary that contains the attributes to apply to the new attributed string. This value is copied.

Return Value
An attributed string that contains the characters from str and the attributes specified by attributes. The
result is NULL if there was a problem in creating the attributed string. Ownership follows the Create Rule.

Discussion
Note that both the string and the attributes dictionary are copied. The specified attributes are applied to the
whole string. If you want to apply different attributes to different ranges of the string, you should use a
mutable attributed string.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreTextArc
CoreTextTest

Declared In
CFAttributedString.h

CFAttributedStringCreateCopy
Creates an immutable copy of an attributed string.

Functions 55
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFAttributedString Reference

CFAttributedStringRef CFAttributedStringCreateCopy (
 CFAllocatorRef alloc,
 CFAttributedStringRef aStr
);

Parameters
alloc

The allocator to use to allocate memory for the new attributed string. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

aStr
The attributed string to copy.

Return Value
An immutable attributed string with characters and attributes identical to those of aStr. Returns NULL if
there was a problem copying the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringCreateWithSubstring
Creates a sub-attributed string from the specified range.

CFAttributedStringRef CFAttributedStringCreateWithSubstring (
 CFAllocatorRef alloc,
 CFAttributedStringRef aStr,
 CFRange range
);

Parameters
alloc

The allocator to use to allocate memory for the new attributed string. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

theString
The attributed string to copy.

range
The range of the attributed string to copy. range must not exceed the bounds of aStr.

Return Value
A new attributed string whose string and attributes are copied from from the specified range of the supplied
attributed string. Returns NULL if there was a problem copying the object. Ownership follows the Create
Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

56 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFAttributedString Reference

CFAttributedStringGetAttribute
Returns the value of a given attribute of an attributed string at a specified location.

CFTypeRef CFAttributedStringGetAttribute (
 CFAttributedStringRef aStr,
 CFIndex loc,
 CFStringRef attrName,
 CFRange *effectiveRange
);

Parameters
str

The attributed string to examine.

loc
The location in str at which to determine the attributes. loc must not exceed the bounds of str.

attrName
The name of the attribute whose value you want to determine.

effectiveRange
If not NULL, upon return contains a range including loc over which exactly the same set of attributes
apply as at loc.

Return Value
The value of the specified attribute at the specified location in str. Ownership follows the Get Rule.

Discussion
For performance reasons, a range returned in effectiveRange is not necessarily the maximal range. If you
need the maximum range, you should use
CFAttributedStringGetAttributeAndLongestEffectiveRange (page 57).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringGetAttributeAndLongestEffectiveRange
Returns the value of a given attribute of an attributed string at a specified location.

CFTypeRef CFAttributedStringGetAttributeAndLongestEffectiveRange (
 CFAttributedStringRef aStr,
 CFIndex loc,
 CFStringRef attrName,
 CFRange inRange,
 CFRange *longestEffectiveRange
);

Parameters
str

The attributed string to examine.

Functions 57
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFAttributedString Reference

loc
The location in str at which to determine the attributes. It is a programming error for loc to specify
a location outside the bounds of str.

attrName
The name of the attribute whose value you want to determine.

inRange
The range in str within which you want to find the longest effective range of the attributes at loc.
inRange must not exceed the bounds of str.

effectiveRange
If not NULL, upon return contains the maximal range within inRange over which the exact same set
of attributes apply. The returned range is clipped to inRange.

Return Value
A dictionary that contains the attributes of str at the specified location. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringGetAttributes
Returns the attributes of an attributed string at a specified location.

CFDictionaryRef CFAttributedStringGetAttributes (
 CFAttributedStringRef aStr,
 CFIndex loc,
 CFRange *effectiveRange
);

Parameters
str

The attributed string to examine.

loc
The location in str at which to determine the attributes. loc must not exceed the bounds of str.

effectiveRange
If not NULL, upon return contains a range including loc over which exactly the same set of attributes
apply as at loc.

Return Value
A dictionary that contains the attributes of str at the specified location. Ownership follows the Get Rule.

Discussion
For performance reasons, a range returned in effectiveRange is not necessarily the maximal range. If you
need the maximum range, you should use
CFAttributedStringGetAttributesAndLongestEffectiveRange (page 59).

Note that the returned attribute dictionary might change in unpredictable ways if the attributed string is
edited after this call. If you want to preserve the state of the dictionary, you should make an actual copy of
it rather than just retaining it. In addition, you should make no assumptions about the relationship of the
actual dictionary returned by this call and the dictionary originally used to set the attributes, other than the
fact that the values stored in the dictionaries will be identical (that is, ==) to those originally specified.

58 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFAttributedString Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringGetAttributesAndLongestEffectiveRange
Returns the attributes of an attributed string at a specified location.

CFDictionaryRef CFAttributedStringGetAttributesAndLongestEffectiveRange (
 CFAttributedStringRef aStr,
 CFIndex loc,
 CFRange inRange,
 CFRange *longestEffectiveRange
);

Parameters
str

The attributed string to examine.

loc
The location in str at which to determine the attributes. loc must not exceed the bounds of str.

inRange
The range in str within to find the longest effective range of the attributes at loc. inRange must
not exceed the bounds of str.

effectiveRange
If not NULL, upon return contains the maximal range within inRange over which the exact same set
of attributes apply. The returned range is clipped to inRange.

Return Value
A dictionary that contains the attributes of str at the specified location. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringGetLength
Returns the length of the attributed string in characters.

CFIndex CFAttributedStringGetLength (
 CFAttributedStringRef aStr
);

Parameters
str

The attributed string to examine.

Return Value
The length of the attributed string in characters; this is the same as
CFStringGetLength(CFAttributedStringGetString(aStr)).

Functions 59
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFAttributedString Reference

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreTextTest

Declared In
CFAttributedString.h

CFAttributedStringGetString
Returns the string for an attributed string.

CFStringRef CFAttributedStringGetString (
 CFAttributedStringRef aStr
);

Parameters
aStr

The attributed string to examine.

Return Value
An immutable string containing the characters from aStr, or NULL if there was a problem creating the object.
Ownership follows the Get Rule.

Discussion
For performance reasons, the string returned will often be the backing store of the attributed string, and it
might therefore change if the attributed string is edited. However, this is an implementation detail, and you
should not rely on this behavior.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringGetTypeID
Returns the type identifier for the CFAttributedString opaque type.

CFTypeID CFAttributedStringGetTypeID (
 void
);

Return Value
The type identifier for the CFAttributedString opaque type.

Discussion
CFMutableAttributedString objects have the same type identifier as CFAttributedString objects.

Availability
Available in Mac OS X v10.4 and later.

60 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFAttributedString Reference

Declared In
CFAttributedString.h

Data Types

CFAttributedStringRef
A reference to a CFAttributedString object.

typedef const struct __CFAttributedString *CFAttributedStringRef;

Discussion
The CFAttributedStringRef type refers to an object that combines a CFString object with a collection
of attributes that specify how the characters in the string should be displayed. CFAttributedString is an
opaque type that defines the characteristics and behavior of CFAttributedString objects.

Values of type CFAttributedStringRef may refer to immutable or mutable strings, as
CFMutableAttributedString objects respond to all functions intended for immutable CFAttributedString
objects. Functions which accept CFAttributedStringRef values, and which need to hold on to the values
immutably, should call CFAttributedStringCreateWithSubstring (page 56) (instead of CFRetain (page
639)) to do so.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

Data Types 61
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFAttributedString Reference

62 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFAttributedString Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFBag.h

Companion guide Collections Programming Topics for Core Foundation

Overview

CFBag and its derived mutable type, CFMutableBag, manage non-sequential collections of values called bags
in which there can be duplicate values. CFBag creates static bags and CFMutableBag creates dynamic bags.

Use bags or sets as an alternative to arrays when the order of elements isn't important and performance in
testing whether a value is contained in the collection is a consideration—while arrays are ordered, testing
for membership is slower than with bags or sets. Use bags over sets if you want to allow duplicate values in
your collections.

You create a static bag object using either the CFBagCreate (page 65) or CFBagCreateCopy (page 66)
function. These functions return a bag containing the values you pass in as arguments. (Note that bags can't
contain NULL pointers; in most cases, though, you can use the kCFNull constant instead.) Values are not
copied but retained using the retain callback provided when the bag was created. Similarly, when a value is
removed from a bag, it is released using the release callback.

CFBag provides functions for querying the values of a bag. The CFBagGetCount (page 67) returns the
number of values in a bag, the CFBagContainsValue (page 65) function checks if a value is in a bag, and
CFBagGetValues (page 69) returns a C array containing all the values in a bag.

The CFBagApplyFunction (page 64) function lets you apply a function to all values in a bag.

Functions by Task

Creating a Bag

CFBagCreate (page 65)
Creates an immutable bag containing specified values.

CFBagCreateCopy (page 66)
Creates an immutable bag with the values of another bag.

Overview 63
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

Examining a Bag

CFBagContainsValue (page 65)
Reports whether or not a value is in a bag.

CFBagGetCount (page 67)
Returns the number of values currently in a bag.

CFBagGetCountOfValue (page 67)
Returns the number of times a value occurs in a bag.

CFBagGetValue (page 68)
Returns a requested value from a bag.

CFBagGetValueIfPresent (page 69)
Reports whether or not a value is in a bag, and returns that value indirectly if it exists.

CFBagGetValues (page 69)
Fills a buffer with values from a bag.

Applying a Function to the Contents of a Bag

CFBagApplyFunction (page 64)
Calls a function once for each value in a bag.

Getting the CFBag Type ID

CFBagGetTypeID (page 68)
Returns the type identifier for the CFBag opaque type.

Functions

CFBagApplyFunction
Calls a function once for each value in a bag.

void CFBagApplyFunction (
 CFBagRef theBag,
 CFBagApplierFunction applier,
 void *context
);

Parameters
theBag

The bag to operate upon.

applier
The callback function to call once for each value in the theBag. If this parameter is not a pointer to
a function of the correct prototype, the behavior is undefined. If there are values in the range that
the applier function does not expect or cannot properly apply to, the behavior is undefined.

64 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

context
A pointer-sized program-defined value, which is passed as the second parameter to the applier
function, but is otherwise unused by this function. If the context is not what is expected by the applier
function, the behavior is undefined.

Discussion
While this function iterates over a mutable collection, it is unsafe for the applier function to change the
contents of the collection.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagContainsValue
Reports whether or not a value is in a bag.

Boolean CFBagContainsValue (
 CFBagRef theBag,
 const void *value
);

Parameters
theBag

The bag to examine.

value
The value to match in theBag. The equal callback provided when theBag was created is used to
compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If value, or any other
value in theBag, is not understood by the equal callback, the behavior is undefined.

Return Value
true if value is contained in theBag, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagCreate
Creates an immutable bag containing specified values.

Functions 65
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

CFBagRef CFBagCreate (
 CFAllocatorRef allocator,
 const void **values,
 CFIndex numValues,
 const CFBagCallBacks *callBacks
);

Parameters
allocator

The allocator to use to allocate memory for the new bag and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

values
A C array of the pointer-sized values to be in the new bag. This parameter may be NULL if the
numValues parameter is 0. The C array is not changed or freed by this function. values must be a
valid pointer to a C array of at least numValues elements.

numValues
The number of values to copy from the values C array in the new CFBag object. If the number is
negative or is greater than the actual number of values, the behavior is undefined.

callBacks
A pointer to a CFBagCallBacks (page 74) structure initialized with the callbacks to use to retain, release,
describe, and compare values in the bag. A copy of the contents of the callbacks structure is made,
so that a pointer to a structure on the stack can be passed in or can be reused for multiple collection
creations. This parameter may be NULL, which is treated as if a valid structure of version 0 with all
fields NULL had been passed in. Otherwise, if any of the fields are not valid pointers to functions of
the correct type, or this parameter is not a valid pointer to a CFBagCallBacks (page 74) structure, the
behavior is undefined. If any value put into the collection is not one understood by one of the callback
functions, the behavior when that callback function is used is undefined. If the collection contains
CFType objects only, then pass kCFTypeBagCallBacks (page 75) as this parameter to use the default
callback functions.

Return Value
A new bag, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagCreateCopy
Creates an immutable bag with the values of another bag.

CFBagRef CFBagCreateCopy (
 CFAllocatorRef allocator,
 CFBagRef theBag
);

Parameters
allocator

The allocator to use to allocate memory for the new bag and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

66 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

theBag
The bag to copy. The pointer values from theBag are copied into the new bag. However, the values
are also retained by the new bag. The count of the new bag is the same as the count of theBag. The
new bag uses the same callbacks as theBag.

Return Value
A new bag that contains the same values as theBag, or NULL if there was a problem creating the object.
Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetCount
Returns the number of values currently in a bag.

CFIndex CFBagGetCount (
 CFBagRef theBag
);

Parameters
theBag

The bag to examine.

Return Value
The number of values in theBag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetCountOfValue
Returns the number of times a value occurs in a bag.

CFIndex CFBagGetCountOfValue (
 CFBagRef theBag,
 const void *value
);

Parameters
theBag

The bag to examine.

value
The value for which to find matches in theBag. The equal callback provided when theBagwas created
is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If value, or any
other value in theBag, is not understood by the equal callback, the behavior is undefined.

Functions 67
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

Return Value
The number of times value occurs in theBag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetTypeID
Returns the type identifier for the CFBag opaque type.

CFTypeID CFBagGetTypeID (
 void
);

Return Value
The type identifier for the CFBag opaque type.

Special Considerations

CFMutableBag objects have the same type identifier as CFBag objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetValue
Returns a requested value from a bag.

const void * CFBagGetValue (
 CFBagRef theBag,
 const void *value
);

Parameters
theBag

The bag to examine.

value
The value for which to find matches in theBag. The equal callback provided when theBagwas created
is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If value, or any
other value in theBag, is not understood by the equal callback, the behavior is undefined.

Return Value
A pointer to value, or NULL if value is not in theBag. If the value is a Core Foundation object, ownership
follows the Get Rule.

Discussion
Depending on the implementation of the equal callback specified when creating theBag, the value returned
may not have the same pointer equality as value.

68 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetValueIfPresent
Reports whether or not a value is in a bag, and returns that value indirectly if it exists.

Boolean CFBagGetValueIfPresent (
 CFBagRef theBag,
 const void *candidate,
 const void **value
);

Parameters
theBag

The bag to be searched.

candidate
The value for which to find matches in theBag. The equal callback provided when theBagwas created
is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If candidate,
or any other value in theBag, is not understood by the equal callback, the behavior is undefined.

value
A pointer to a value object. Set to the matching value if it exists in the bag, otherwise NULL. If the
value is a Core Foundation object, ownership follows the Get Rule.

Return Value
true if value is present in theBag, otherwise false.

Discussion
Depending on the implementation of the equal callback specified when creating theBag, the value returned
in value may not have the same pointer equality as candidate.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagGetValues
Fills a buffer with values from a bag.

void CFBagGetValues (
 CFBagRef theBag,
 const void **values
);

Parameters
theBag

The bag to examine.

Functions 69
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

values
A C array of pointer-sized values to be filled with values from theBag. The value must be a valid C
array of the appropriate type and size (that is, a size equal to the count of theBag).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

Callbacks

CFBagApplierFunction
Prototype of a callback function that may be applied to every value in a bag.

typedef void (*CFBagApplierFunction) (
 const void *value,
 void *context
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *value,
 void *context
);

Parameters
value

The current value in a bag.

context
The program-defined context parameter given to the apply function.

Discussion
This callback is passed to the CFBagApplyFunction (page 64) function which iterates over the values in a
bag and applies the behavior defined in the applier function to each value in a bag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagCopyDescriptionCallBack
Prototype of a callback function used to get a description of a value in a bag.

70 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

typedef CFStringRef (*CFBagCopyDescriptionCallBack) (
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallBack (
 const void *value
);

Parameters
value

The value to be described.

Return Value
A textual description of value. mmancreate

Discussion
This callback is passed to CFBagCreate (page 65) in a CFBagCallBacks (page 74) structure. This callback
is used by the CFCopyDescription (page 634) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagEqualCallBack
Prototype of a callback function used to determine if two values in a bag are equal.

typedef Boolean (*CFBagEqualCallBack) (
 const void *value1,
 const void *value2
);

If you name your function MyCallBack, you would declare it like this:

Boolean MyCallBack (
 const void *value1,
 const void *value2
);

Parameters
value1

A value in the bag.

value2
Another value in the bag.

Return Value
true if value1 and value2 are equal, false otherwise.

Discussion
This callback is passed to CFBagCreate (page 65) in a CFBagCallBacks (page 74) structure.

Callbacks 71
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagHashCallBack
Prototype of a callback function invoked to compute a hash code for a value. Hash codes are used when
values are accessed, added, or removed from a collection.

typedef CFHashCode (*CFBagHashCallBack) (
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

CFHashCode CFBagHashCallBack (
 const void *value
);

Parameters
value

The value used to compute the hash code.

Return Value
An integer that can be used as a table address in a hash table structure.

Discussion
This callback is passed to CFBagCreate (page 65) in a CFBagCallBacks (page 74) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagReleaseCallBack
Prototype of a callback function used to release a value before it’s removed from a bag.

typedef void (*CFBagReleaseCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFAllocatorRef allocator,
 const void *value
);

72 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

Parameters
allocator

The bag’s allocator.

value
The value being removed from the bag.

Discussion
This callback is passed to CFBagCreate (page 65) in a CFBagCallBacks (page 74) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagRetainCallBack
Prototype of a callback function used to retain a value being added to a bag.

typedef const void *(*CFBagRetainCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 CFAllocatorRef allocator,
 const void *value
);

Parameters
allocator

The bag’s allocator.

value
The value being added to the bag.

Return Value
The value to store in the bag, which is usually the value parameter passed to this callback, but may be a
different value if a different value should be stored in the collection.

Discussion
This callback is passed to CFBagCreate (page 65) in a CFBagCallBacks (page 74) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

Callbacks 73
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

Data Types

CFBagCallBacks
This structure contains the callbacks used to retain, release, describe, and compare the values of a CFBag
object.

struct CFBagCallBacks {
 CFIndex version;
 CFBagRetainCallBack retain;
 CFBagReleaseCallBack release;
 CFBagCopyDescriptionCallBack copyDescription;
 CFBagEqualCallBack equal;
 CFBagHashCallBack hash;
};
typedef struct CFBagCallBacks CFBagCallBacks;

Fields
version

The version number of this structure. If not one of the defined version numbers for this opaque type,
the behavior is undefined. The current version of this structure is 0.

retain
The callback used to retain each value as they are added to the collection. If NULL, values are not
retained. See CFBagRetainCallBack (page 73) for a descriptions of this function’s parameters.

release
The callback used to release values as they are removed from the collection. If NULL, values are not
released. See CFBagReleaseCallBack (page 72) for a description of this callback.

copyDescription
The callback used to create a descriptive string representation of each value in the collection. If NULL,
the collection will create a simple description of each value. See
CFBagCopyDescriptionCallBack (page 70) for a description of this callback.

equal
The callback used to compare values in the collection for equality for some operations. If NULL, the
collection will use pointer equality to compare values in the collection. See
CFBagEqualCallBack (page 71) for a description of this callback.

hash
The callback used to compute a hash code for values in a collection. If NULL, the collection computes
a hash code by converting the pointer value to an integer. See CFBagHashCallBack (page 72) for
a description of this callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagRef
A reference to an immutable bag object.

74 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

typedef const struct __CFBag *CFBagRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

Constants

Predefined Callback Structures
CFBag provides some predefined callbacks for your convenience.

const CFBagCallBacks kCFTypeBagCallBacks;
const CFBagCallBacks kCFCopyStringBagCallBacks;

Constants
kCFTypeBagCallBacks

Predefined CFBagCallBacks (page 74) structure containing a set of callbacks appropriate for use
when the values in a CFBag are all CFType-derived objects. The retain callback is CFRetain, the release
callback is CFRelease, the copy callback is CFCopyDescription, the equal callback is CFEqual,
and the hash callback is CFHash. Therefore, if you use this constant when creating the collection,
items are automatically retained when added to the collection, and released when removed from the
collection.

Available in Mac OS X v10.0 and later.

Declared in CFBag.h.

kCFCopyStringBagCallBacks
Predefined CFBagCallBacks (page 74) structure containing a set of callbacks appropriate for use
when the values in a CFBag are all CFString objects. The bag makes immutable copies of the strings
placed into it.

Available in Mac OS X v10.0 and later.

Declared in CFBag.h.

Constants 75
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

76 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFBag Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFBinaryHeap.h

Companion guide Collections Programming Topics for Cocoa

Overview

CFBinaryHeap implements a container that stores values sorted using a binary search algorithm. All binary
heaps are mutable; there is not a separate immutable variety. Binary heaps can be useful as priority queues.

Functions

CFBinaryHeapAddValue
Adds a value to a binary heap.

void CFBinaryHeapAddValue (
 CFBinaryHeapRef heap,
 const void *value
);

Parameters
heap

The binary heap to use.

value
The value to add to the binary heap. The value is retained by the binary heap using the retain callback
provided in the CFBinaryHeapCallBacks (page 86) structure when the binary heap was created.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapApplyFunction
Iteratively applies a function to all the values in a binary heap.

Overview 77
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

void CFBinaryHeapApplyFunction (
 CFBinaryHeapRef heap,
 CFBinaryHeapApplierFunction applier,
 void *context
);

Parameters
heap

The binary heap to use.

applier
The callback function to call once for each value in heap.

context
A program-defined value that is passed to the applier callback function, but is otherwise unused
by this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapContainsValue
Returns whether a given value is in a binary heap.

Boolean CFBinaryHeapContainsValue (
 CFBinaryHeapRef heap,
 const void *value
);

Parameters
heap

The binary heap to search.

value
The value for which to find matches in the binary heap. The compare callback provided in the
CFBinaryHeapCallBacks (page 86) structure when the binary heap was created is used to compare
values. If value, or any of the values in the binary heap, are not understood by the compare callback,
the behavior is undefined.

Return Value
true if value is a member of heap, false otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapCreate
Creates a new mutable or fixed-mutable binary heap.

78 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

CFBinaryHeapRef CFBinaryHeapCreate (
 CFAllocatorRef allocator,
 CFIndex capacity,
 const CFBinaryHeapCallBacks *callBacks,
 const CFBinaryHeapCompareContext *compareContext
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

capacity
The maximum number of values that can be contained by the binary heap. The binary heap starts
empty and can grow to this number of values. If this parameter is 0, the binary heap's maximum
capacity is limited only by memory.

callBacks
A pointer to a CFBinaryHeapCallBacks (page 86) structure initialized with the callbacks that
operate on the values placed into the binary heap. If the binary heap will be holding CFString
objects, pass the kCFStringBinaryHeapCallBacks (page 87) constant. This functions makes a
copy of the contents of the callbacks structure, so that a pointer to a structure on the stack can be
passed in, or can be reused for multiple binary heap creations. This callbacks parameter may not be
NULL.

compareContext
Not used. Pass NULL.

Return Value
A new CFBinaryHeap object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapCreateCopy
Creates a new mutable or fixed-mutable binary heap with the values from a pre-existing binary heap.

CFBinaryHeapRef CFBinaryHeapCreateCopy (
 CFAllocatorRef allocator,
 CFIndex capacity,
 CFBinaryHeapRef heap
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

Functions 79
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

capacity
The maximum number of values that can be contained by the binary heap. The binary heap starts
with the same number of values as heap and can grow to this number of values. If this parameter is
0, the binary heap's maximum capacity is limited only by memory. If nonzero, capacity must be
large enough to hold all the values in heap.

heap
The binary heap which is to be copied. The values from the binary heap are copied as pointers into
the new binary heap (that is, the values themselves are copied, not that to which the values point, if
anything). However, the values are also retained by the new binary heap.

Return Value
A new CFBinaryHeap object holding the same values as heap. The new binary heap uses the same callbacks
as heap. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapGetCount
Returns the number of values currently in a binary heap.

CFIndex CFBinaryHeapGetCount (
 CFBinaryHeapRef heap
);

Parameters
heap

The binary heap to use.

Return Value
The number of values in heap.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapGetCountOfValue
Counts the number of times a given value occurs in a binary heap.

CFIndex CFBinaryHeapGetCountOfValue (
 CFBinaryHeapRef heap,
 const void *value
);

Parameters
heap

The binary heap to search.

80 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

value
The value for which to find matches in the binary heap. The compare callback provided in the
CFBinaryHeapCallBacks (page 86) structure when the binary heap was created is used to compare.
If value, or any of the values in the binary heap, are not understood by the compare callback, the
behavior is undefined.

Return Value
The number of times value occurs in heap.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapGetMinimum
Returns the minimum value in a binary heap.

const void * CFBinaryHeapGetMinimum (
 CFBinaryHeapRef heap
);

Parameters
heap

The binary heap to use.

Return Value
The minimum value in heap as determined by the binary heap’s compare callback. If heap contains several
equal minimum values, any one may be returned. If the value is a Core Foundation object, ownership follows
the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapGetMinimumIfPresent
Returns the minimum value in a binary heap, if present.

Boolean CFBinaryHeapGetMinimumIfPresent (
 CFBinaryHeapRef heap,
 const void **value
);

Parameters
heap

The binary heap to use.

value
On return, the minimum value in heap as determined by the binary heap’s compare callback. If heap
contains several equal minimum values, any one may be returned. If the value is a Core Foundation
object, ownership follows the Get Rule.

Functions 81
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

Return Value
true if a minimum value exists in heap, false otherwise. false is returned only if heap is empty.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapGetTypeID
Returns the type identifier of the CFBinaryHeap opaque type.

CFTypeID CFBinaryHeapGetTypeID (
 void
);

Return Value
The type identifier of the CFBinaryHeap opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapGetValues
Copies all the values from a binary heap into a sorted C array.

void CFBinaryHeapGetValues (
 CFBinaryHeapRef heap,
 const void **values
);

Parameters
heap

The binary heap to use.

values
On return, the memory pointed to by this argument holds a C array of all the values in heap, sorted
from minimum to maximum values. You must allocate sufficient memory to hold all the values in
heap before calling this function. If the values are Core Foundation objects, ownership follows the
Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

82 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

CFBinaryHeapRemoveAllValues
Removes all values from a binary heap, making it empty.

void CFBinaryHeapRemoveAllValues (
 CFBinaryHeapRef heap
);

Parameters
heap

The binary heap to use.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapRemoveMinimumValue
Removes the minimum value from a binary heap.

void CFBinaryHeapRemoveMinimumValue (
 CFBinaryHeapRef heap
);

Parameters
heap

The binary heap to use.

Discussion
If heap contains several equal minimum values, only one of them is removed. If heap is empty, this function
does nothing.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

Callbacks

CFBinaryHeapApplierFunction
Callback function used to apply a function to all members of a binary heap.

typedef void (*CFBinaryHeapApplierFunction) (
 const void *val,
 void *context
);

If you name your function MyCallBack, you would declare it like this:

Callbacks 83
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

void MyCallBack (
 const void *val,
 void *context
);

Parameters
val

The current value from the binary heap.

context
The program-defined context parameter given to the CFBinaryHeapApplyFunction (page 77)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapCompareCallBack
Callback function used to compare two members of a binary heap.

typedef CFComparisonResult (*CFBinaryHeapCompareCallBack) (
 const void *ptr1,
 const void *ptr2,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

CFComparisonResult MyCallBack (
 const void *ptr1,
 const void *ptr2,
 void *info
);

Parameters
ptr1

First value to compare.

ptr2
Second value to compare.

info
Not used. Should always be NULL.

Return Value
kCFCompareLessThan if ptr1 is less than ptr2, kCFCompareEqualTo if ptr1 and ptr2 are equal, or
kCFCompareGreaterThan if ptr1 is greater than ptr2.

CFBinaryHeapCopyDescriptionCallBack
Callback function used to get a description of a value in a binary heap.

84 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

typedef CFStringRef (*CFBinaryHeapCopyDescriptionCallBack) (
 const void *ptr
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallBack (
 const void *ptr
);

Parameters
ptr

The value to be described.

CFBinaryHeapReleaseCallBack
Callback function used to release a value before it is removed from a binary heap.

typedef void (*CFBinaryHeapReleaseCallBack) (
 CFAllocatorRef allocator,
 const void *ptr
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFAllocatorRef allocator,
 const void *ptr
);

Parameters
allocator

The binary heap’s allocator.

ptr
The value to release.

CFBinaryHeapRetainCallBack
Callback function used to retain a value being added to a binary heap.

typedef const void *(*CFBinaryHeapRetainCallBack) (
 CFAllocatorRef allocator,
 const void *ptr
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 CFAllocatorRef allocator,
 const void *ptr
);

Callbacks 85
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

Parameters
allocator

The binary heap’s allocator.

ptr
The value to retain.

Return Value
The value to store in the binary heap, which is usually the ptr parameter passed to this callback, but may
be a different value if a different value should be stored in the binary heap.

Data Types

CFBinaryHeapCallBacks
Structure containing the callbacks for values for a CFBinaryHeap object.

struct CFBinaryHeapCallBacks {
 CFIndex version;
 CFBinaryHeapRetainCallBack retain;
 CFBinaryHeapReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
 CFBinaryHeapCompareCallBack compare;
};
typedef struct CFBinaryHeapCallBacks CFBinaryHeapCallBacks;

Fields
version

The version number of the structure type being passed in as a parameter to the CFBinaryHeap
creation functions. This structure is version 0.

retain
The callback used to add a retain for the binary heap on values as they are put into the binary heap.
This callback returns the value to use as the value in the binary heap, which is usually the value
parameter passed to this callback, but may be a different value if a different value should be added
to the binary heap. If this field is NULL, the binary heap does nothing to retain a value being added.

release
The callback used to remove a retain previously added for the binary heap from values as they are
removed from the binary heap. If this field is NULL, the binary heap does nothing to release a value
being removed.

copyDescription
The callback used to create a descriptive string representation of each value in the binary heap. This
is used by the CFCopyDescription (page 634) function. If this field is NULL, the binary heap constructs
a CFString object describing the value based on its pointer value.

compare
The callback used to compare values in the binary heap in some operations. This field cannot be NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

86 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

CFBinaryHeapCompareContext
Not used.

struct CFBinaryHeapCompareContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct CFBinaryHeapCompareContext CFBinaryHeapCompareContext;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

CFBinaryHeapRef
A reference to a binary heap object.

typedef struct __CFBinaryHeap *CFBinaryHeapRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBinaryHeap.h

Constants

Predefined Callback Structures
CFBinaryHeap provides some predefined callbacks for your convenience.

const CFBinaryHeapCallBacks kCFStringBinaryHeapCallBacks;

Constants
kCFStringBinaryHeapCallBacks

Predefined CFBinaryHeapCallBacks (page 86) structure containing a set of callbacks appropriate
for use when the values in a binary heap are all CFString objects.

Available in Mac OS X v10.0 and later.

Declared in CFBinaryHeap.h.

Constants 87
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

88 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFBinaryHeap Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFBitVector.h

Companion guide Collections Programming Topics for Core Foundation

Overview

CFBitVector and its derived mutable type, CFMutableBitVector, manage ordered collections of bit values,
which are either 0 or 1. CFBitVector creates static bit vectors and CFMutableBitVector creates dynamic bit
vectors.

Functions by Task

Creating a Bit Vector

CFBitVectorCreate (page 90)
Creates an immutable bit vector from a block of memory.

CFBitVectorCreateCopy (page 91)
Creates an immutable bit vector that is a copy of another bit vector.

Getting Information About a Bit Vector

CFBitVectorContainsBit (page 90)
Returns whether a bit vector contains a particular bit value.

CFBitVectorGetBitAtIndex (page 92)
Returns the bit value at a given index in a bit vector.

CFBitVectorGetBits (page 92)
Returns the bit values in a range of indices in a bit vector.

CFBitVectorGetCount (page 92)
Returns the number of bit values in a bit vector.

CFBitVectorGetCountOfBit (page 93)
Counts the number of times a certain bit value occurs within a range of bits in a bit vector.

Overview 89
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFBitVector Reference

CFBitVectorGetFirstIndexOfBit (page 93)
Locates the first occurrence of a certain bit value within a range of bits in a bit vector.

CFBitVectorGetLastIndexOfBit (page 94)
Locates the last occurrence of a certain bit value within a range of bits in a bit vector.

Getting the CFBitVector Type ID

CFBitVectorGetTypeID (page 95)
Returns the type identifier for the CFBitVector opaque type.

Functions

CFBitVectorContainsBit
Returns whether a bit vector contains a particular bit value.

Boolean CFBitVectorContainsBit (
 CFBitVectorRef bv,
 CFRange range,
 CFBit value
);

Parameters
bv

The bit vector to search.

range
The range of bits in bv to search.

value
The bit value for which to search.

Return Value
true if the specified range of bits in bv contains value, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorCreate
Creates an immutable bit vector from a block of memory.

90 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFBitVector Reference

CFBitVectorRef CFBitVectorCreate (
 CFAllocatorRef allocator,
 const UInt8 *bytes,
 CFIndex numBits
);

Parameters
allocator

The allocator to use to allocate memory for the new bit vector. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

bytes
A pointer to the bit values to store in the new bit vector. The values are copied into the bit vector’s
own memory. The bit indices are numbered left-to-right with 0 being the left-most, or most-significant,
bit in the byte stream.

numBits
The number of bits in the bit vector.

Return Value
A new bit vector. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorCreateCopy
Creates an immutable bit vector that is a copy of another bit vector.

CFBitVectorRef CFBitVectorCreateCopy (
 CFAllocatorRef allocator,
 CFBitVectorRef bv
);

Parameters
allocator

The allocator to use to allocate memory for the new bit vector. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

bv
The bit vector to copy.

Return Value
A new bit vector holding the same bit values as bv. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

Functions 91
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFBitVector Reference

CFBitVectorGetBitAtIndex
Returns the bit value at a given index in a bit vector.

CFBit CFBitVectorGetBitAtIndex (
 CFBitVectorRef bv,
 CFIndex idx
);

Parameters
bv

The bit vector to examine.

idx
The index of the bit value in bv to return.

Return Value
The bit value at index idx in bv.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorGetBits
Returns the bit values in a range of indices in a bit vector.

void CFBitVectorGetBits (
 CFBitVectorRef bv,
 CFRange range,
 UInt8 *bytes
);

Parameters
bv

The bit vector to examine.

range
The range of bit values to return.

bytes
On return, contains the requested bit values from bv. This argument must point to enough memory
to hold the number of bits requested. The requested bits are left-aligned with the first requested bit
stored in the left-most, or most-significant, bit of the byte stream.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorGetCount
Returns the number of bit values in a bit vector.

92 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFBitVector Reference

CFIndex CFBitVectorGetCount (
 CFBitVectorRef bv
);

Parameters
bv

The bit vector to examine.

Return Value
The current size of bv.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorGetCountOfBit
Counts the number of times a certain bit value occurs within a range of bits in a bit vector.

CFIndex CFBitVectorGetCountOfBit (
 CFBitVectorRef bv,
 CFRange range,
 CFBit value
);

Parameters
bv

The bit vector to examine.

range
The range of bits in bv to search.

value
The bit value to count.

Return Value
The number of occurrences of value in the specified range of bv.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorGetFirstIndexOfBit
Locates the first occurrence of a certain bit value within a range of bits in a bit vector.

Functions 93
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFBitVector Reference

CFIndex CFBitVectorGetFirstIndexOfBit (
 CFBitVectorRef bv,
 CFRange range,
 CFBit value
);

Parameters
bv

The bit vector to examine.

range
The range of bits in bv to search.

value
The bit value for which to search.

Return Value
The index of the first occurrence of value in the specified range of bv, or kCFNotFound if value is not
present.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorGetLastIndexOfBit
Locates the last occurrence of a certain bit value within a range of bits in a bit vector.

CFIndex CFBitVectorGetLastIndexOfBit (
 CFBitVectorRef bv,
 CFRange range,
 CFBit value
);

Parameters
bv

The bit vector to examine.

range
The range of bits in bv to search.

value
The bit value for which to search.

Return Value
The index of the last occurrence of value in the specified range of bv, or kCFNotFound if value is not
present.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

94 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFBitVector Reference

CFBitVectorGetTypeID
Returns the type identifier for the CFBitVector opaque type.

CFTypeID CFBitVectorGetTypeID (
 void
);

Return Value
The type identifier for the CFBitVector opaque type.

Discussion
CFMutableBitVector objects have the same type identifier as CFBitVector objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

Data Types

CFBit
A binary value of either 0 or 1.

typedef UInt32 CFBit;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorRef
A reference to an immutable bit vector object.

typedef const struct __CFBitVector *CFBitVectorRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

Data Types 95
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFBitVector Reference

96 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFBitVector Reference

Derived From: CFPropertyList : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFNumber.h

Companion guide Property List Programming Topics for Core Foundation

Overview

CFBoolean objects are used to wrap boolean values for use in Core Foundation property lists and collection
types.

Functions

CFBooleanGetTypeID
Returns the Core Foundation type identifier for the CFBoolean opaque type.

CFTypeID CFBooleanGetTypeID (
 void
);

Return Value
The Core Foundation type identifier for CFBoolean opaque type.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa PDE with Carbon Printing
DRDataBurnCarbonUI
DREraseCarbonUI
HID Manager Basics
QISA

Declared In
CFNumber.h

Overview 97
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFBoolean Reference

CFBooleanGetValue
Returns the value of a CFBoolean object as a standard C type Boolean.

Boolean CFBooleanGetValue (
 CFBooleanRef boolean
);

Parameters
boolean

The boolean to examine.

Return Value
The value of boolean.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
databurntest
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
HID Utilities Source
SeeMyFriends

Declared In
CFNumber.h

Data Types

CFBooleanRef
A reference to a CFBoolean object.

typedef const struct __CFBoolean *CFBooleanRef;

Discussion
CFBoolean objects are used to wrap boolean values for use in Core Foundation property lists and collection
types.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFNumber.h

98 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFBoolean Reference

Constants

Boolean Values
CFBoolean evaluates to either true or false values where kCFBooleanTrue is the true, and kCFBooleanFalse
is the false value.

const CFBooleanRef kCFBooleanTrue;
const CFBooleanRef kCFBooleanFalse;

Constants
kCFBooleanTrue

Boolean true value.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFBooleanFalse
Boolean false value.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

Constants 99
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFBoolean Reference

100 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFBoolean Reference

Derived From: CFType Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFBundle.h

Companion guides Bundle Programming Guide
Plug-ins

Overview

CFBundle allows you to use a folder hierarchy called a bundle to organize and locate many types of application
resources including images, sounds, localized strings, and executable code. In Mac OS X, bundles can also
be used by CFM applications to load and execute functions from Mach-O frameworks. You can use bundles
to support multiple languages or execute your application on multiple operating environments.

You create a bundle object using one of the CFBundleCreate... functions. CFBundle provides several
functions for finding resources within a bundle. The CFBundleCopyResourceURL (page 115) function returns
the location of a resource of the specified name and type, and in the specified subdirectory. Use
CFBundleCopyResourceURLForLocalization (page 115) to restrict the search to a specific localization
name. Use CFBundleCopyResourceURLsOfType (page 117) to get the locations of all resources of a specified
type.

CFBundle provides functions for getting bundle information, such as its identifier and information dictionary.
Use the CFBundleGetIdentifier (page 126) function to get the identifier of a bundle, and the
CFBundleGetInfoDictionary (page 127) function to get its information dictionary. The principal intended
purpose for locating bundles by identifier is so that code (in frameworks, plugins, etc.) can find its own bundle.

You can also obtain locations of subdirectories in a bundle represented as CFURL objects. The
CFBundleCopyExecutableURL (page 109) function returns the location of the application’s executable. The
functions CFBundleCopyResourceURL (page 115), CFBundleCopySharedFrameworksURL (page 119),
CFBundleCopyPrivateFrameworksURL (page 113), CFBundleCopySharedSupportURL (page 120), and
CFBundleCopyBuiltInPlugInsURL (page 107) return the location of a bundle’s subdirectory containing
resources, shared frameworks, private frameworks, shared support files, and plug-ins respectively.

Other functions are used to manage localizations. The CFBundleCopyLocalizedString (page 112) and
CFBundleCopyLocalizationsForURL (page 112) functions return a localized string from a bundle’s strings
file. The CFBundleCopyLocalizationsForPreferences (page 111) function returns the localizations that
CFBundle would prefer, given the specified bundle and user preference localizations.

Unlike some other Core Foundation opaque types with similar Cocoa Foundation names (such as CFString
and NSString), NSBundle objects cannot be cast (“toll-free bridged”) to CFBundle objects.

Overview 101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Unlike NSBundle, which does not support unloading (because the Objective C runtime does not support the
unloading of Objective C code), you can unload CFBundle objects.

CFBundleGetFunctionPointerForName (page 125) and related calls automatically load a bundle if it is
not already loaded. When the last reference to the CFBundle object is released and it is finally deallocated,
then the code will be unloaded if it is still loaded and if the executable is of a type that supports unloading.
If you keep this in mind, and if you make sure that everything that uses the bundle keeps a retain on the
CFBundle object, then you can just use the bundle naturally and never have to worry about when it is loaded
and unloaded.

On the other hand, if you want to manually manage when the bundle is loaded and unloaded, then you can
use CFBundleLoadExecutable (page 132) and CFBundleUnloadExecutable (page 135)—although this
technique is not recommended. These functions force immediate loading and unloading of the executable
(if it has not already been loaded/unloaded, and in the case of unloading if the executable is of a type that
supports unloading). If you do this, then the code calling CFBundleUnloadExecutable is responsible for
making sure that there are no remaining references to anything in the bundle's code before it is unloaded.
In the previous approach, by contrast, this responsibility can be distributed to the individual code sections
that use the bundle, by making sure that each one keeps its own retain on the CFBundle object.

One further point about CFBundle reference counting: if you are taking the first approach, but do not actually
wish the bundle's code to be unloaded (as is often the case), or if you are taking the second approach of
manually managing the unloading yourself, then in many cases you do not actually have to worry about
releasing a CFBundle object. CFBundle instances are uniqued, so there is only one CFBundle object for a
given bundle, and rarely are there so many bundles being considered at once that the memory usage for
CFBundle objects would be significant. There are cases in which a process could create CFBundle objects for
potentially an unlimited number of bundles, and such processes would wish to balance retains and releases
carefully, but such cases are likely to be rare.

Note that it is best to compile any unloadable bundles with the flag -fno-constant-cfstrings—see
Bundle Programming Guide for more details.

Functions by Task

Creating and Accessing Bundles

CFBundleCreate (page 121)
Creates a CFBundle object.

CFBundleCreateBundlesFromDirectory (page 122)
Searches a directory and constructs an array of CFBundle objects from all valid bundles in the specified
directory.

CFBundleGetAllBundles (page 122)
Returns an array containing all of the bundles currently open in the application.

CFBundleGetBundleWithIdentifier (page 123)
Locate a bundle given its program-defined identifier.

CFBundleGetMainBundle (page 128)
Returns an application’s main bundle.

102 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Loading and Unloading a Bundle

CFBundleIsExecutableLoaded (page 131)
Obtains information about the load status for a bundle’s main executable.

CFBundlePreflightExecutable (page 134)
Returns a Boolean value that indicates whether a given bundle is loaded or appears to be loadable.

CFBundleLoadExecutable (page 132)
Loads a bundle’s main executable code into memory and dynamically links it into the running
application.

CFBundleLoadExecutableAndReturnError (page 132)
Returns a Boolean value that indicates whether a given bundle is loaded, attempting to load it if
necessary.

CFBundleUnloadExecutable (page 135)
Unloads the main executable for the specified bundle.

Finding Locations in a Bundle

CFBundleCopyAuxiliaryExecutableURL (page 106)
Returns the location of a bundle’s auxiliary executable code.

CFBundleCopyBuiltInPlugInsURL (page 107)
Returns the location of a bundle’s built in plug-in.

CFBundleCopyExecutableURL (page 109)
Returns the location of a bundle’s main executable code.

CFBundleCopyPrivateFrameworksURL (page 113)
Returns the location of a bundle’s private Frameworks directory.

CFBundleCopyResourcesDirectoryURL (page 114)
Returns the location of a bundle’s Resources directory.

CFBundleCopySharedFrameworksURL (page 119)
Returns the location of a bundle’s shared frameworks directory.

CFBundleCopySharedSupportURL (page 120)
Returns the location of a bundle’s shared support files directory.

CFBundleCopySupportFilesDirectoryURL (page 120)
Returns the location of the bundle’s support files directory.

Locating Bundle Resources

CFBundleCloseBundleResourceMap (page 106)
Closes an open resource map for a bundle.

CFBundleCopyResourceURL (page 115)
Returns the location of a resource contained in the specified bundle.

CFBundleCopyResourceURLInDirectory (page 116)
Returns the location of a resource contained in the specified bundle directory without requiring the
creation of a CFBundle object.

Functions by Task 103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFBundleCopyResourceURLsOfType (page 117)
Assembles an array of URLs specifying all of the resources of the specified type found in a bundle.

CFBundleCopyResourceURLsOfTypeInDirectory (page 119)
Returns an array of CFURL objects describing the locations of all resources in a bundle of the specified
type without needing to create a CFBundle object.

CFBundleCopyResourceURLForLocalization (page 115)
Returns the location of a localized resource in a bundle.

CFBundleCopyResourceURLsOfTypeForLocalization (page 118)
Returns an array containing copies of the URL locations for a specified bundle, resource, and localization
name.

CFBundleOpenBundleResourceFiles (page 133)
Opens the non-localized and localized resource files (if any) for a bundle in separate resource maps.

CFBundleOpenBundleResourceMap (page 134)
Opens the non-localized and localized resource files (if any) for a bundle in a single resource map.

Managing Localizations

CFBundleCopyBundleLocalizations (page 107)
Returns an array containing a bundle’s localizations.

CFBundleCopyLocalizedString (page 112)
Returns a localized string from a bundle’s strings file.

CFBundleCopyLocalizationsForPreferences (page 111)
Given an array of possible localizations and preferred locations, returns the one or more of them that
CFBundle would use, without reference to the current application context.

CFBundleCopyLocalizationsForURL (page 112)
Returns an array containing the localizations for a bundle or executable at a particular location.

CFBundleCopyPreferredLocalizationsFromArray (page 113)
Given an array of possible localizations, returns the one or more of them that CFBundle would use in
the current application context.

CFCopyLocalizedString (page 135)
Searches the default strings file Localizable.strings for the string associated with the specified
key.

CFCopyLocalizedStringFromTable (page 136)
Searches the specified strings file for the string associated with the specified key.

CFCopyLocalizedStringFromTableInBundle (page 136)
Returns a localized version of the specified string.

CFCopyLocalizedStringWithDefaultValue (page 137)
Returns a localized version of a localization string.

Managing Executable Code

CFBundleGetDataPointerForName (page 123)
Returns a data pointer to a symbol of the given name.

104 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFBundleGetDataPointersForNames (page 124)
Returns a C array of data pointer to symbols of the given names.

CFBundleGetFunctionPointerForName (page 125)
Returns a pointer to a function in a bundle’s executable code using the function name as the search
key.

CFBundleGetFunctionPointersForNames (page 126)
Constructs a function table containing pointers to all of the functions found in a bundle’s main
executable code.

CFBundleGetPlugIn (page 129)
Returns a bundle’s plug-in.

Getting Bundle Properties

CFBundleCopyBundleURL (page 108)
Returns the location of a bundle.

CFBundleGetDevelopmentRegion (page 124)
Returns the bundle’s development region from the bundle’s information property list.

CFBundleGetIdentifier (page 126)
Returns the bundle identifier from a bundle’s information property list.

CFBundleGetInfoDictionary (page 127)
Returns a bundle’s information dictionary.

CFBundleGetLocalInfoDictionary (page 127)
Returns a bundle’s localized information dictionary.

CFBundleGetValueForInfoDictionaryKey (page 130)
Returns a value (localized if possible) from a bundle’s information dictionary.

CFBundleCopyInfoDictionaryInDirectory (page 110)
Returns a bundle’s information dictionary.

CFBundleCopyInfoDictionaryForURL (page 110)
Returns the information dictionary for a given URL location.

CFBundleGetPackageInfo (page 128)
Returns a bundle’s package type and creator.

CFBundleGetPackageInfoInDirectory (page 129)
Returns a bundle’s package type and creator without having to create a CFBundle object.

CFBundleCopyExecutableArchitectures (page 108)
Returns an array of CFNumbers representing the architectures a given bundle provides.

CFBundleCopyExecutableArchitecturesForURL (page 109)
Returns an array of CFNumbers representing the architectures a given URL provides.

CFBundleGetVersionNumber (page 131)
Returns a bundle’s version number.

Getting the CFBundle Type ID

CFBundleGetTypeID (page 130)
Returns the type identifier for the CFBundle opaque type.

Functions by Task 105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Functions

CFBundleCloseBundleResourceMap
Closes an open resource map for a bundle.

void CFBundleCloseBundleResourceMap (
 CFBundleRef bundle,
 CFBundleRefNum refNum
);

Parameters
bundle

The bundle whose resource map is referenced by refNum.

refNum
The reference number for a resource map to close.

Discussion
You open a resource map using either CFBundleOpenBundleResourceFiles (page 133) or
CFBundleOpenBundleResourceMap (page 134).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleCopyAuxiliaryExecutableURL
Returns the location of a bundle’s auxiliary executable code.

CFURLRef CFBundleCopyAuxiliaryExecutableURL (
 CFBundleRef bundle,
 CFStringRef executableName
);

Parameters
bundle

The bundle to examine.

executableName
The name of bundle’s auxiliary executable code.

Return Value
The URL location of the specified bundle’s auxiliary executable code, or NULL if it could not be found.
Ownership follows the Create Rule.

Discussion
This function can be used to find executables other than your main executable. This is useful, for instance,
for applications that have some command line tool that is packaged with and used by the application. The
tool can be packaged in the various platform executable directories in the bundle and can be located with
this function. This allows an application to ship versions of the tool for each platform as it does for the main
application executable.

106 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
BSDLLCTest
MoreIsBetter
QISA

Declared In
CFBundle.h

CFBundleCopyBuiltInPlugInsURL
Returns the location of a bundle’s built in plug-in.

CFURLRef CFBundleCopyBuiltInPlugInsURL (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
A CFURL object describing the location of bundle’s built in plug-ins, or NULL if it could not be found.
Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BasicPlugIn
PDEProject
QISA

Declared In
CFBundle.h

CFBundleCopyBundleLocalizations
Returns an array containing a bundle’s localizations.

CFArrayRef CFBundleCopyBundleLocalizations (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
An array containing bundle’s localizations. Ownership follows the Create Rule.

Functions 107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Discussion
The array returned by this function is typically passed as a parameter to either the
CFBundleCopyPreferredLocalizationsFromArray (page 113) or
CFBundleCopyLocalizationsForPreferences (page 111) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleCopyBundleURL
Returns the location of a bundle.

CFURLRef CFBundleCopyBundleURL (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
A CFURL object describing the location of bundle, or NULL if the specified bundle does not exist. Ownership
follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GrabBag
HID Utilities Source
QISA
simpleJavaLauncher

Declared In
CFBundle.h

CFBundleCopyExecutableArchitectures
Returns an array of CFNumbers representing the architectures a given bundle provides.

CFArrayRef CFBundleCopyExecutableArchitectures (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

108 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Return Value
If the bundle's executable exists and is a Mach-o file, returns an array of CFNumbers whose values are integers
representing the architectures the file provides. Possible values are listed in “Architecture Types” (page 140).
If the executable is not a Mach-o file, returns NULL. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.5 and later.

See Also
CFBundleCopyExecutableArchitecturesForURL (page 109)

Declared In
CFBundle.h

CFBundleCopyExecutableArchitecturesForURL
Returns an array of CFNumbers representing the architectures a given URL provides.

CFArrayRef CFBundleCopyExecutableArchitecturesForURL (
 CFURLRef url
);

Parameters
url

The URL to examine.

Return Value
For a directory URL, if the bundle's executable exists and is a Mach-o file, returns an array of CFNumbers
whose values are integers representing the architectures the URL provides. For a plain file URL representing
an unbundled executable, returns the architectures it provides if it is a Mach-o file. Possible values are listed
in “Architecture Types” (page 140). If there is no bundle executable or if the executable is not a Mach-o file,
returns NULL. Ownership follows the Create Rule.

Discussion
For a directory URL, this is equivalent to calling CFBundleCopyExecutableArchitectures (page 108) on
the corresponding bundle.

Availability
Available in Mac OS X v10.5 and later.

See Also
CFBundleCopyExecutableArchitectures (page 108)

Declared In
CFBundle.h

CFBundleCopyExecutableURL
Returns the location of a bundle’s main executable code.

Functions 109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFURLRef CFBundleCopyExecutableURL (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
A CFURL object describing the location of bundle’s executable code, or NULL if none is found. Ownership
follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CheckExecutableArchitecture
MemoryBasedBundle

Declared In
CFBundle.h

CFBundleCopyInfoDictionaryForURL
Returns the information dictionary for a given URL location.

CFDictionaryRef CFBundleCopyInfoDictionaryForURL (
 CFURLRef url
);

Parameters
url

A CFURL object describing the location of a file.

Return Value
A CFDictionary object containing url’s information dictionary. Ownership follows the Create Rule.

Discussion
For a directory URL, this is equivalent to CFBundleCopyInfoDictionaryInDirectory (page 110). For a
plain file URL representing an unbundled application, this function will attempt to read an information
dictionary either from the (__TEXT, __info_plist) section of the file (for a Mach-o file) or from a plst
resource.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFBundle.h

CFBundleCopyInfoDictionaryInDirectory
Returns a bundle’s information dictionary.

110 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFDictionaryRef CFBundleCopyInfoDictionaryInDirectory (
 CFURLRef bundleURL
);

Parameters
bundleURL

A CFURL object describing the location of a bundle.

Return Value
A CFDictionary object containing the information dictionary for a bundle located at bundleURL. Ownership
follows the Create Rule.

Discussion
This function provides a means to obtain an information dictionary for a bundle without first creating a
CFBundle object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleCopyLocalizationsForPreferences
Given an array of possible localizations and preferred locations, returns the one or more of them that CFBundle
would use, without reference to the current application context.

CFArrayRef CFBundleCopyLocalizationsForPreferences (
 CFArrayRef locArray,
 CFArrayRef prefArray
);

Parameters
locArray

An array of possible localizations to search.

prefArray
An array of preferred localizations. If NULL, the user’s actual preferred localizations will be used.

Return Value
An array containing the localizations that CFBundle would use. Ownership follows the Create Rule.

Discussion
This is not the same as CFBundleCopyPreferredLocalizationsFromArray (page 113), because that
function takes the current application context into account. To determine the localizations that another
application would use, apply this function to the result of CFBundleCopyBundleLocalizations (page
107).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFBundle.h

Functions 111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFBundleCopyLocalizationsForURL
Returns an array containing the localizations for a bundle or executable at a particular location.

CFArrayRef CFBundleCopyLocalizationsForURL (
 CFURLRef url
);

Parameters
url

The location of a bundle’s localizations.

Return Value
An array containing the localizations available at url. Ownership follows the Create Rule.

Discussion
For a directory URL, this is equivalent to calling the CFBundleCopyBundleLocalizations (page 107)
function on the corresponding bundle. For a plain file URL representing an unbundled application, this will
attempt to determine its localizations using the kCFBundleLocalizationsKey (page 140) and
kCFBundleDevelopmentRegionKey (page 139) keys in the dictionary returned by
CFBundleCopyInfoDictionaryForURL (page 110), or a vers resource if those are not present.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFBundle.h

CFBundleCopyLocalizedString
Returns a localized string from a bundle’s strings file.

CFStringRef CFBundleCopyLocalizedString (
 CFBundleRef bundle,
 CFStringRef key,
 CFStringRef value,
 CFStringRef tableName
);

Parameters
bundle

The bundle to examine.

key
The key for the localized string to retrieve. This key will be used to look up the localized string in the
strings file. Typically the key is identical to the value of the localized string in the development
language.

value
A default value to return if no value exists for key.

tableName
The name of the strings file to search. The name should not include the strings filename extension.
The case of the string must match that of the file name, even on file systems (such as HFS+) that are
not case sensitive with regards to file names

112 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Return Value
A CFString object that contains the localized string. If no value exists for key, returns value unless value is
NULL or an empty string, in which case key is returned instead. Ownership follows the Create Rule.

Discussion
This is the base function from which the other localized string macros are derived. In general you should not
use this function because the genstrings development tool only recognizes the macro version of this call
when generating strings files. See CFCopyLocalizedString (page 135) for details on how to use these
macros.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MoreSCF
QISA

Declared In
CFBundle.h

CFBundleCopyPreferredLocalizationsFromArray
Given an array of possible localizations, returns the one or more of them that CFBundle would use in the
current application context.

CFArrayRef CFBundleCopyPreferredLocalizationsFromArray (
 CFArrayRef locArray
);

Parameters
locArray

An array of possible localizations.

Return Value
A subset of locArray that CFBundle would use in the current application context. Ownership follows the
Create Rule.

Discussion
You can obtain locArray using the CFBundleCopyBundleLocalizations (page 107) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleCopyPrivateFrameworksURL
Returns the location of a bundle’s private Frameworks directory.

Functions 113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFURLRef CFBundleCopyPrivateFrameworksURL (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
A CFURL object describing the location of bundle’s private frameworks directory, or NULL if it could not be
found. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa

Declared In
CFBundle.h

CFBundleCopyResourcesDirectoryURL
Returns the location of a bundle’s Resources directory.

CFURLRef CFBundleCopyResourcesDirectoryURL (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
A CFURL object describing the location of bundle’s resources directory, or NULL if it could not be found.
Ownership follows the Create Rule.

Discussion
In general, you should never need to use this function. Use CFBundleCopyResourceURL (page 115) and
similar functions instead.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AppleScriptRunner
CarbonCocoa_PictureCursor
FileNotification
PBORenderToVertexArray

Declared In
CFBundle.h

114 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFBundleCopyResourceURL
Returns the location of a resource contained in the specified bundle.

CFURLRef CFBundleCopyResourceURL (
 CFBundleRef bundle,
 CFStringRef resourceName,
 CFStringRef resourceType,
 CFStringRef subDirName
);

Parameters
bundle

The bundle to examine.

resourceName
The name of the requested resource.

resourceType
The abstract type of the requested resource. The type is expressed as a filename extension, such as
jpg. Pass NULL if you don’t need to search by type.

subDirName
The name of the subdirectory of the bundle’s resources directory to search. Pass NULL to search the
standard CFBundle resource locations.

Return Value
A CFURL object describing the location of the requested resource, or NULL if the resource cannot be found.
Ownership follows the Create Rule.

Discussion
For example, if a bundle contains a subdirectory WaterSounds that includes a file Water1.aiff, you can
retrieve the URL for the file using:

CFBundleCopyResourceURL(bundle, CFSTR("Water1"), CFSTR("aiff"),
CFSTR("WaterSounds"));

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreTextTest
HID Utilities Source
QISA
QuartzCache
SampleDS

Declared In
CFBundle.h

CFBundleCopyResourceURLForLocalization
Returns the location of a localized resource in a bundle.

Functions 115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFURLRef CFBundleCopyResourceURLForLocalization (
 CFBundleRef bundle,
 CFStringRef resourceName,
 CFStringRef resourceType,
 CFStringRef subDirName,
 CFStringRef localizationName
);

Parameters
bundle

The bundle to examine.

resourceName
The name of the requested resource.

resourceType
The abstract type of the resource to locate. The type is expressed as a filename extension, such as
jpg.

subDirName
The name of the subdirectory of the bundle’s resources directory to search. Pass NULL to search the
standard CFBundle resource locations.

localizationName
The name of the localization. This value should correspond to the name of one of the bundle's
language-specific resource directories without the .lproj extension. (This parameter is treated
literally: If you pass "de", the function will not match resources in a German.lproj directory in the
bundle.)

Return Value
The location of a localized resource in bundle, or NULL if the resource could not be found. Ownership follows
the Create Rule.

Discussion
Note that file names are case-sensitive, even on file systems (such as HFS+) that are not case sensitive with
regards to file names.

You should typically have little reason to use this function (see Getting the Current Language and
Locale)—CFBundle’s interfaces automatically apply the user’s preferences to determine which localized
resource files to return in response to a programmatic request. See also
CFBundleCopyBundleLocalizations (page 107) for how to determine what localizations are available

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleCopyResourceURLInDirectory
Returns the location of a resource contained in the specified bundle directory without requiring the creation
of a CFBundle object.

116 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFURLRef CFBundleCopyResourceURLInDirectory (
 CFURLRef bundleURL,
 CFStringRef resourceName,
 CFStringRef resourceType,
 CFStringRef subDirName
);

Parameters
bundleURL

The bundle to examine.

resourceName
The name of the requested resource.

resourceType
The abstract type of the requested resource. The type is expressed as a filename extension, such as
jpg. Pass NULL if you don’t need to search by type.

subDirName
The name of the subdirectory of the bundle’s resources directory to search. Pass NULL to search the
standard CFBundle resource locations.

Return Value
A CFURL object describing the location of the requested resource, or NULL if the resource cannot be found.
Ownership follows the Create Rule.

Discussion
This function provides a means to obtain package information for a bundle without first creating a bundle.
However, since CFBundle objects cache search results, it is faster to create a CFBundle object if you need to
repeatedly access resources.

Note that searches are case-sensitive, even on file systems (such as HFS+) that are not case sensitive with
regards to file names.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleCopyResourceURLsOfType
Assembles an array of URLs specifying all of the resources of the specified type found in a bundle.

CFArrayRef CFBundleCopyResourceURLsOfType (
 CFBundleRef bundle,
 CFStringRef resourceType,
 CFStringRef subDirName
);

Parameters
bundle

The bundle to examine.

resourceType
The abstract type of the resources to locate. The type is expressed as a filename extension, such as
jpg.

Functions 117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

subDirName
The name of the subdirectory of the bundle’s resources directory to search. Pass NULL to search the
standard CFBundle resource locations.

Return Value
A CFArray object containing CFURL objects of the requested resources. Ownership follows the Create Rule.

Discussion
Note that searches are case-sensitive, even on file systems (such as HFS+) that are not case sensitive with
regards to file names.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Carbon Porting Tutorial

Declared In
CFBundle.h

CFBundleCopyResourceURLsOfTypeForLocalization
Returns an array containing copies of the URL locations for a specified bundle, resource, and localization
name.

CFArrayRef CFBundleCopyResourceURLsOfTypeForLocalization (
 CFBundleRef bundle,
 CFStringRef resourceType,
 CFStringRef subDirName,
 CFStringRef localizationName
);

Parameters
bundle

The bundle to examine.

resourceType
The abstract type of the resources to locate. The type is expressed as a filename extension, such as
jpg.

subDirName
The name of the subdirectory of the bundle’s Resources directory to search. Pass NULL to search the
standard CFBundle resource locations.

localizationName
The name of the localization. This value should correspond to the name of one of the bundle's
language-specific resource directories without the .lproj extension. (This parameter is treated
literally: If you pass "de", the function will not match resources in a German.lproj directory in the
bundle.)

Return Value
A CFArray object containing copies of the requested locations. Ownership follows the Create Rule.

Discussion
Note that file names are case-sensitive, even on file systems (such as HFS+) that are not case sensitive with
regards to file names.

118 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

You should typically have little reason to use this function (see Getting the Current Language and
Locale)—CFBundle’s interfaces automatically apply the user’s preferences to determine which localized
resource files to return in response to a programmatic request. See also
CFBundleCopyBundleLocalizations (page 107) for how to determine what localizations are available

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleCopyResourceURLsOfTypeInDirectory
Returns an array of CFURL objects describing the locations of all resources in a bundle of the specified type
without needing to create a CFBundle object.

CFArrayRef CFBundleCopyResourceURLsOfTypeInDirectory (
 CFURLRef bundleURL,
 CFStringRef resourceType,
 CFStringRef subDirName
);

Parameters
bundleURL

The location of a bundle to examine.

resourceType
The abstract type of the resources to locate. The type is expressed as a filename extension, such as
jpg.

subDirName
The name of the subdirectory of the bundle’s resources directory to search. Pass NULL to search the
standard CFBundle resource locations.

Return Value
A CFArray object containing the CFURL objects of the requested resources. Ownership follows the Create
Rule.

Discussion
This function provides a means to obtain an array containing the locations of all of the requested resources
without first creating a CFBundle object. However, since CFBundle objects cache search results, it is faster to
create a CFBundle object if you need to repeatedly access resources.

Note that file names are case-sensitive, even on file systems (such as HFS+) that are not case sensitive with
regards to file names.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleCopySharedFrameworksURL
Returns the location of a bundle’s shared frameworks directory.

Functions 119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFURLRef CFBundleCopySharedFrameworksURL (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
A CFURL object containing the location of bundle’s shared frameworks directory, or NULL if it could not be
found. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleCopySharedSupportURL
Returns the location of a bundle’s shared support files directory.

CFURLRef CFBundleCopySharedSupportURL (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
A CFURL object containing the location of bundle’s shared support files directory, or NULL if it could not be
found. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BasicInputMethod

Declared In
CFBundle.h

CFBundleCopySupportFilesDirectoryURL
Returns the location of the bundle’s support files directory.

CFURLRef CFBundleCopySupportFilesDirectoryURL (
 CFBundleRef bundle
);

Parameters
bundle

The CFBundle object whose support files directory you want to locate.

120 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Return Value
A CFURL object describing the location of the bundle’s support files directory, or NULL if it could not be
found. Ownership follows the Create Rule.

Discussion
In general, you should never need to use this function. Use CFBundleCopyResourceURL (page 115) and
similar functions instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleCreate
Creates a CFBundle object.

CFBundleRef CFBundleCreate (
 CFAllocatorRef allocator,
 CFURLRef bundleURL
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault (page
35) to use the current default allocator.

bundleURL
The location of the bundle for which to create a CFBundle object.

Return Value
A CFBundle object created from the bundle at bundleURL. Ownership follows the Create Rule.

Returns NULL if there was a memory allocation problem. May return an existing CFBundle object with the
reference count incremented. May return NULL if the bundle doesn’t exist at bundleURL (see Discussion).

Discussion
Once a bundle has been created, it is cached; the bundle cache is flushed only periodically. CFBundleCreate
does not check that a cached bundle still exists in the filesystem. If a bundle is deleted from the filesystem,
it is therefore possible for CFBundleCreate to return a cached bundle that has actually been deleted.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MemoryBasedBundle
MoreIsBetter
QISA
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa

Declared In
CFBundle.h

Functions 121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFBundleCreateBundlesFromDirectory
Searches a directory and constructs an array of CFBundle objects from all valid bundles in the specified
directory.

CFArrayRef CFBundleCreateBundlesFromDirectory (
 CFAllocatorRef allocator,
 CFURLRef directoryURL,
 CFStringRef bundleType
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault (page
35) to use the current default allocator.

directoryURL
The location of the directory to search for valid bundles.

bundleType
The abstract type of the bundles to locate and create. The type is expressed as a filename extension,
such as bundle. Pass NULL to create CFBundle objects for bundles of any type.

Return Value
A CFArray object containing CFBundle objects created from the contents of the specified directory. Returns
an empty array if no bundles exist at directoryURL, and NULL if there was a memory allocation problem.
Ownership follows the Create Rule.

Discussion
The array returned by this function will not contain stale CFBundle references.

Special Considerations

The Create Rule applies both to the array returned and to the bundles in the array. In order to properly dispose
of the returned value, you must release the array and any bundles returned in the array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleGetAllBundles
Returns an array containing all of the bundles currently open in the application.

CFArrayRef CFBundleGetAllBundles (
 void
);

Return Value
A CFArray object containing CFBundle objects for each open bundle in the application. Ownership follows
the Get Rule.

Discussion
This function is potentially expensive, so use with care.

122 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleGetBundleWithIdentifier
Locate a bundle given its program-defined identifier.

CFBundleRef CFBundleGetBundleWithIdentifier (
 CFStringRef bundleID
);

Parameters
bundleID

The identifier of the bundle to locate. Note that identifier names are case-sensitive.

Return Value
A CFBundle object, or NULL if the bundle was not found. Ownership follows the Get Rule.

Discussion
For a bundle to be located using its identifier, the bundle object must have already been created. The principal
intended purpose for locating bundles by identifier is so that code (in frameworks, plugins, etc.) can find its
own bundle. If a bundle is created, then the bundle deleted from the filesystem and this function invoked
afterwards, it will still return the original bundle.

Bundle identifiers are created by entering a value for the key CFBundleIdentifier in the bundle’s
Info.plist file.

To guarantee uniqueness, bundle identifiers take the form of Java style package names, such as
com.MyCompany.MyApp.bundleName.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonMDEF
FilterDemo
QTPixelBufferVCToCGImage
SampleCMPlugIn
SampleDS

Declared In
CFBundle.h

CFBundleGetDataPointerForName
Returns a data pointer to a symbol of the given name.

Functions 123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

void * CFBundleGetDataPointerForName (
 CFBundleRef bundle,
 CFStringRef symbolName
);

Parameters
bundle

The bundle to examine.

symbolName
The name of the symbol you are searching for.

Return Value
A data pointer to a symbol named symbolName in bundle, or NULL if symbolName cannot be found.
Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleGetDataPointersForNames
Returns a C array of data pointer to symbols of the given names.

void CFBundleGetDataPointersForNames (
 CFBundleRef bundle,
 CFArrayRef symbolNames,
 void *stbl[]
);

Parameters
bundle

The bundle to examine.

symbolNames
A CFArray object containing CFString objects representing the symbol names to search for.

stbl
A C array into which this function stores the data pointers for the symbols specified in symbolNames.
The array contains NULL for any names in symbolNames that cannot be found.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleGetDevelopmentRegion
Returns the bundle’s development region from the bundle’s information property list.

124 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFStringRef CFBundleGetDevelopmentRegion (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
A CFString object containing the name of the bundle’s development region. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleGetFunctionPointerForName
Returns a pointer to a function in a bundle’s executable code using the function name as the search key.

void * CFBundleGetFunctionPointerForName (
 CFBundleRef bundle,
 CFStringRef functionName
);

Parameters
bundle

The bundle to examine.

functionName
The name of the function to locate.

Return Value
A pointer to a function in a bundle’s executable code, or NULL if functionName cannot be found. Ownership
follows the Get Rule.

Discussion
Calling this function will cause the bundle’s code to be loaded if necessary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
PDEProject
QISA
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
VideoProcessing

Declared In
CFBundle.h

Functions 125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFBundleGetFunctionPointersForNames
Constructs a function table containing pointers to all of the functions found in a bundle’s main executable
code.

void CFBundleGetFunctionPointersForNames (
 CFBundleRef bundle,
 CFArrayRef functionNames,
 void *ftbl[]
);

Parameters
bundle

The bundle to examine.

functionNames
A CFArray object containing a list of the function names to locate.

ftbl
A C array into which this function stores the function pointers for the symbols specified in
functionNames. The array contains NULL for any names in functionNames that cannot be found.

Discussion
Calling this function causes the bundle’s code to be loaded if necessary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleGetIdentifier
Returns the bundle identifier from a bundle’s information property list.

CFStringRef CFBundleGetIdentifier (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
A CFString object containing the bundle’s identifier, or NULL if none was specified in the information property
list. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPrefTopScores

Declared In
CFBundle.h

126 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFBundleGetInfoDictionary
Returns a bundle’s information dictionary.

CFDictionaryRef CFBundleGetInfoDictionary (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
A CFDictionary object containing the data stored in the bundle’s information property list (the Info.plist
file). This is a global information dictionary. CFBundle may add extra keys to this dictionary for its own use.
Ownership follows the Get Rule.

Discussion
You should typically use CFBundleGetValueForInfoDictionaryKey (page 130) rather than retrieving
values directly from the info dictionary because the function will return localized values if any are available.
Use CFBundleGetInfoDictionary only if you know that the key you are interested in will not be localized.

To retrieve an info dictionary without creating a CFBundle object, see
CFBundleCopyInfoDictionaryInDirectory (page 110) and
CFBundleCopyInfoDictionaryForURL (page 110).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest

Declared In
CFBundle.h

CFBundleGetLocalInfoDictionary
Returns a bundle’s localized information dictionary.

CFDictionaryRef CFBundleGetLocalInfoDictionary (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
A dictionary containing the key-value pairs in bundle’s localized information dictionary (from the
InfoPlist.strings file for the current locale). Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
VertexPerformanceTest

Functions 127
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Declared In
CFBundle.h

CFBundleGetMainBundle
Returns an application’s main bundle.

CFBundleRef CFBundleGetMainBundle (
 void
);

Return Value
A CFBundle object representing the application’s main bundle, or NULL if it is not possible to create a bundle.
Ownership follows the Get Rule.

Discussion
CFBundle creates a main bundle whenever it possibly can, even for unbundled apps. There are a few situations
in which it is not possible, so you should check the return value against NULL, but this happens only in
exceptional circumstances.

For an explanation of the main bundle, see Locating and Opening Bundles in Bundle Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
Carbon Porting Tutorial
HID Utilities Source
MoreIsBetter
QISA

Declared In
CFBundle.h

CFBundleGetPackageInfo
Returns a bundle’s package type and creator.

void CFBundleGetPackageInfo (
 CFBundleRef bundle,
 UInt32 *packageType,
 UInt32 *packageCreator
);

Parameters
bundle

The bundle to examine.

packageType
On return, the four-letter Mac OS-style type code for the bundle. This is APPL for applications, FMWK
for frameworks, and BNDL for generic bundles. Or a more specific type code for generic bundles.

128 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

packageCreator
On return, the four-letter Mac OS-style “creator” code for the bundle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleGetPackageInfoInDirectory
Returns a bundle’s package type and creator without having to create a CFBundle object.

Boolean CFBundleGetPackageInfoInDirectory (
 CFURLRef url,
 UInt32 *packageType,
 UInt32 *packageCreator
);

Parameters
url

The location of a bundle.

packageType
On return, the four-letter Mac OS-style type code for the bundle. This is APPL for applications, FMWK
for frameworks, and BNDL for generic bundles. Or a more specific type code for generic bundles.

packageCreator
On return, the four-letter Mac OS-style “creator” code for the bundle.

Return Value
true if the package type and creator were found, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleGetPlugIn
Returns a bundle’s plug-in.

CFPlugInRef CFBundleGetPlugIn (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Return Value
The plug-in for bundle. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Functions 129
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Declared In
CFBundle.h

CFBundleGetTypeID
Returns the type identifier for the CFBundle opaque type.

CFTypeID CFBundleGetTypeID (
 void
);

Return Value
The type identifier for the CFBundle opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleGetValueForInfoDictionaryKey
Returns a value (localized if possible) from a bundle’s information dictionary.

CFTypeRef CFBundleGetValueForInfoDictionaryKey (
 CFBundleRef bundle,
 CFStringRef key
);

Parameters
bundle

The bundle to examine.

key
The key for the value to return.

Return Value
A value corresponding to key in bundle’s information dictionary. If available, a localized value is returned,
otherwise the global value is returned. Ownership follows the Get Rule.

Discussion
You should use this function rather than retrieving values directly from the info dictionary (Info.plist)
because CFBundleGetValueForInfoDictionaryKey returns localized values if any are available (from
the InfoPlist.strings file for the current locale).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPreferences
GrabBag
PDEProject
SampleCMPlugIn

130 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Declared In
CFBundle.h

CFBundleGetVersionNumber
Returns a bundle’s version number.

UInt32 CFBundleGetVersionNumber (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine. The bundle’s version number can be number or a string of the standard form
“2.5.3d5”.

Return Value
A Mac OS vers resource style version number. If the bundle’s version number is a number, it is interpreted
as the unsigned long integer format defined by the vers resource on Mac OS 9. If it is a string, it is
automatically converted to the numeric representation, where the major version number is restricted to 2
BCD digits (in other words, it must be in the range 0-99) and the minor and bug fix version numbers are each
restricted to a single BCD digit (0-9). See Technical Note TN1132 for more details.

Discussion
This function is only supported for the Mac OS vers resource style version numbers. Where other version
number styles—namely X, or X.Y, or X.Y.Z—are used, you can use
CFBundleGetValueForInfoDictionaryKey (page 130) with the key kCFBundleVersionKey to extract
the version number as a string from the bundle’s information dictionary.

Some version numbers of the form X, X.Y, and X.Y.Z may work with this function, if X <= 99, Y <= 9, and Z
<= 9. Thus a version number 76.5.4 will work, but 76.12 will not work.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iTunesController

Declared In
CFBundle.h

CFBundleIsExecutableLoaded
Obtains information about the load status for a bundle’s main executable.

Boolean CFBundleIsExecutableLoaded (
 CFBundleRef bundle
);

Parameters
bundle

The bundle to examine.

Functions 131
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Return Value
true if bundle’s main executable has been loaded, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
VideoProcessing

Declared In
CFBundle.h

CFBundleLoadExecutable
Loads a bundle’s main executable code into memory and dynamically links it into the running application.

Boolean CFBundleLoadExecutable (
 CFBundleRef bundle
);

Parameters
bundle

The bundle whose main executable you want to load.

Return Value
true if the executable was successfully loaded, otherwise false.

Discussion
You should typically try to avoid using this function, but instead use
CFBundleGetFunctionPointerForName (page 125) and related functions since these make memory
management of the bundle easier.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CallMachOFramework
CFM_MachO_CFM
MoreIsBetter
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa

Declared In
CFBundle.h

CFBundleLoadExecutableAndReturnError
Returns a Boolean value that indicates whether a given bundle is loaded, attempting to load it if necessary.

132 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Boolean CFBundleLoadExecutableAndReturnError (
 CFBundleRef bundle,
 CFErrorRef *error
);

Parameters
bundle

The bundle to examine.

error
Upon return, if an error occurs contains a CFError that describes the problem. Ownership follows the
Create Rule.

Return Value
If bundle is already loaded, returns true. If bundle is not already loaded, attempts to load bundle; if that
attempt succeeds returns true, otherwise returns false.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFBundle.h

CFBundleOpenBundleResourceFiles
Opens the non-localized and localized resource files (if any) for a bundle in separate resource maps.

SInt32 CFBundleOpenBundleResourceFiles (
 CFBundleRef bundle,
 CFBundleRefNum *refNum,
 CFBundleRefNum *localizedRefNum
);

Parameters
bundle

The bundle whose resource map you want to open.

refNum
On return, the reference number of the non-localized resource map.

localizedRefNum
On return, the reference number of the localized resource map.

Return Value
An error code. The function returns 0 (noErr) if successful. If the bundle contains more than one resource
file, the function returns an error code only if none was opened. The most common error is resFNotFound,
but the function may also pass through other errors returned from the Resource Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

Functions 133
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFBundleOpenBundleResourceMap
Opens the non-localized and localized resource files (if any) for a bundle in a single resource map.

CFBundleRefNum CFBundleOpenBundleResourceMap (
 CFBundleRef bundle
);

Parameters
bundle

The bundle whose resource map you want to open.

Return Value
A distinct reference number for the resource map.

Discussion
Creates and makes current a single read-only resource map containing the non-localized and localized
resource files. If this function is called multiple times, it opens the files multiple times and returns distinct
reference numbers for each. Use CFBundleCloseBundleResourceMap (page 106) to close a resource map.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SampleDS

Declared In
CFBundle.h

CFBundlePreflightExecutable
Returns a Boolean value that indicates whether a given bundle is loaded or appears to be loadable.

Boolean CFBundlePreflightExecutable (
 CFBundleRef bundle,
 CFErrorRef *error
);

Parameters
bundle

The bundle to examine.

error
Upon return, if an error occurs contains a CFError that describes the problem. Ownership follows the
Create Rule.

Return Value
true if bundle is loaded or upon inspection appears to be loadable, otherwise false.

Discussion
If this function returns true, this does not mean that the bundle is definitively loadable, since it may fail to
load due to link errors or other problems not readily detectable.

Availability
Available in Mac OS X v10.5 and later.

134 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Declared In
CFBundle.h

CFBundleUnloadExecutable
Unloads the main executable for the specified bundle.

void CFBundleUnloadExecutable (
 CFBundleRef bundle
);

Parameters
bundle

The bundle whose main executable you want to unload.

Discussion
You should typically try to avoid using this function, but instead use
CFBundleGetFunctionPointerForName (page 125) and related functions since these make management
of the bundle easier (when the last reference to the CFBundle object is released, and it is finally deallocated,
then the code will be unloaded if it is still loaded, and if the executable is of a type that supports unloading).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFM_MachO_CFM
HID Utilities Source

Declared In
CFBundle.h

CFCopyLocalizedString
Searches the default strings file Localizable.strings for the string associated with the specified key.

CFStringRef CFCopyLocalizedString (
 CFStringRef key,
 const char *comment
);

Parameters
key

The development language version of the string. This string is used as the search key to locate the
localized version of the string.

comment
A comment to provide the translators with contextual information necessary for proper translation.

Return Value
The localized version of the requested string. Returns key if no value corresponding to key is found. Ownership
follows the Create Rule.

Discussion
This is a macro variant of CFBundleCopyLocalizedString (page 112) for use with the genstrings tool.

Functions 135
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQuartzDrawingWPrinting
PDEProject
QISA
Quartz2DBasics
TypeServicesForUnicode

Declared In
CFBundle.h

CFCopyLocalizedStringFromTable
Searches the specified strings file for the string associated with the specified key.

CFStringRef CFCopyLocalizedStringFromTable (
 CFStringRef key,
 CFStringRef tableName,
 const char *comment
);

Parameters
key

The development language version of the string. This string is used as the search key to locate the
localized version of the string.

tableName
The name of the strings file to search. The name should not include the strings filename extension.
The case of the string must match that of the file name, even on file systems (such as HFS+) that are
not case sensitive with regards to file names

comment
A comment to provide the translators with contextual information necessary for proper translation.

Return Value
The localized version of the requested string, or key if no value corresponding to key is found. Ownership
follows the Create Rule.

Discussion
This is a macro variant of CFBundleCopyLocalizedString (page 112) for use with the genstrings tool.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFCopyLocalizedStringFromTableInBundle
Returns a localized version of the specified string.

136 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

CFStringRef CFCopyLocalizedStringFromTableInBundle (
 CFStringRef key,
 CFStringRef tableName,
 CFBundleRef bundle,
 const char *comment
);

Parameters
key

The development language version of the string. This string is used as the search key to locate the
localized version of the string.

tableName
The name of the strings file to search. The name should not include the strings filename extension.
The case of the string must match that of the file name, even on file systems (such as HFS+) that are
not case sensitive with regards to file names

bundle
The bundle to examine.

comment
A comment to provide the translators with contextual information necessary for proper translation.

Return Value
The localized version of the requested string, or key if no value corresponding to key is found. Ownership
follows the Create Rule.

Discussion
This is a macro variant of CFBundleCopyLocalizedString (page 112) for use with the genstrings tool.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Carbon Porting Tutorial
PDEProject

Declared In
CFBundle.h

CFCopyLocalizedStringWithDefaultValue
Returns a localized version of a localization string.

CFStringRef CFCopyLocalizedStringWithDefaultValue (
 CFStringRef key,
 CFStringRef tableName,
 CFBundleRef bundle,
 CFStringRef value,
 const char *comment
);

Parameters
key

The development language version of the string. This string is used as the search key to locate the
localized version of the string.

Functions 137
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

tableName
The name of the strings file to search. The name should not include the strings filename extension.

bundle
The bundle to examine.

value
The default value for the requested localization string.

comment
A comment to provide the translators with contextual information necessary for proper translation.

Return Value
The localized version of the requested string, or key if no value corresponding to key is found. Ownership
follows the Create Rule.

Discussion
This is a macro variant of CFBundleCopyLocalizedString (page 112) for use with the genstrings tool.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFBundle.h

Data Types

CFBundleRef
A reference to a CFBundle object.

typedef struct __CFBundle *CFBundleRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBundle.h

CFBundleRefNum
Type that identifies a distinct reference number for a resource map.

#if __LP64__
typedef int CFBundleRefNum;
#else /* __LP64__ */
typedef SInt16 CFBundleRefNum;
#endif /* __LP64__ */

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFBundle.h

138 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Constants

Information Property List Keys
Standard keys found in a bundle’s information property list file.

const CFStringRef kCFBundleInfoDictionaryVersionKey;
const CFStringRef kCFBundleExecutableKey;
const CFStringRef kCFBundleIdentifierKey;
const CFStringRef kCFBundleVersionKey;
const CFStringRef kCFBundleDevelopmentRegionKey;
const CFStringRef kCFBundleNameKey;
const CFStringRef kCFBundleLocalizationsKey;

Constants
kCFBundleInfoDictionaryVersionKey

The version of the information property list format.

Available in Mac OS X v10.0 and later.

Declared in CFBundle.h.

kCFBundleExecutableKey
The name of the executable in this bundle (if any).

Available in Mac OS X v10.0 and later.

Declared in CFBundle.h.

kCFBundleIdentifierKey
The bundle identifier.

Available in Mac OS X v10.0 and later.

Declared in CFBundle.h.

kCFBundleVersionKey
The version number of the bundle.

For Mac OS 9 style version numbers (for example “2.5.3d5”), clients can use
CFBundleGetVersionNumber (page 131) instead of accessing this key directly since that function
will properly convert the version string into its compact integer representation.

Available in Mac OS X v10.0 and later.

Declared in CFBundle.h.

kCFBundleDevelopmentRegionKey
The name of the development language of the bundle.

When CFBundle looks for resources, the fallback is to look in the lproj whose name is given by the
kCFBundleDevelopmentRegionKey in the Info.plist file. You must, therefore, ensure that a
bundle contains an lproj with that exact name containing a copy of every localized resource, otherwise
CFBundle cannot guarantee the fallback mechanism will work.

Available in Mac OS X v10.0 and later.

Declared in CFBundle.h.

Constants 139
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

kCFBundleNameKey
The human-readable name of the bundle.

This key is often found in the InfoPlist.strings since it is usually localized.

Available in Mac OS X v10.0 and later.

Declared in CFBundle.h.

kCFBundleLocalizationsKey
Allows an unbundled application that handles localization itself to specify which localizations it has
available.

Available in Mac OS X v10.2 and later.

Declared in CFBundle.h.

Declared In
CFBundle.h

Architecture Types
Constants that identify executable architecture types.

enum {
 kCFBundleExecutableArchitectureI386 = 0x00000007,
 kCFBundleExecutableArchitecturePPC = 0x00000012,
 kCFBundleExecutableArchitectureX86_64 = 0x01000007,
 kCFBundleExecutableArchitecturePPC64 = 0x01000012
};

Constants
kCFBundleExecutableArchitectureI386

Specifies the 32-bit Intel architecture.

Available in Mac OS X v10.5 and later.

Declared in CFBundle.h.

kCFBundleExecutableArchitecturePPC
Specifies the 32-bit PowerPC architecture.

Available in Mac OS X v10.5 and later.

Declared in CFBundle.h.

kCFBundleExecutableArchitectureX86_64
Specifies the 64-bit Intel architecture.

Available in Mac OS X v10.5 and later.

Declared in CFBundle.h.

kCFBundleExecutableArchitecturePPC64
Specifies the 64-bit PowerPC architecture.

Available in Mac OS X v10.5 and later.

Declared in CFBundle.h.

Declared In
CFBundle.h

140 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CFBundle Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFCalendar.h

Companion guides Locales Programming Guide
Dates and Times Programming Guide for Core Foundation
Internationalization Programming Topics

Overview

The CFCalendar opaque type represents a calendar system. The associated API provides information about
a calendar and supports calendrical computations such as determining the range of a given calendrical unit
and adding units to a given absolute time.

CFAbsoluteTime is the operational lingua franca of CFCalendar—to do calendar arithmetic, you start and
end with an absolute time; to convert between a decomposed date in one calendar and another calendar,
you first convert to an absolute time. CFAbsoluteTime provides the absolute scale and epoch for dates and
times, which can then be rendered into a particular calendar, for calendrical computations or user display.

In a calendar, day, week, weekday, month, and year numbers are generally 1-based, but there may be
calendar-specific exceptions. Ordinal numbers, where they occur, are 1-based. Some calendars represented
by this API may have to map their basic unit concepts into year/month/week/day/… nomenclature. For
example, a calendar composed of 4 quarters in a year instead of 12 months uses the “month” unit to represent
quarters. The particular values of the unit are defined by each calendar, and are not necessarily “consistent
with” or have a “correspondence with,” values for that unit in another calendar.

Several CFCalendar functions (CFCalendarComposeAbsoluteTime (page 145),
CFCalendarDecomposeAbsoluteTime (page 148), CFCalendarAddComponents (page 144), and
CFCalendarGetComponentDifference (page 149)) take a description string that describes the calendrical
components provided in a varargs parameter area. You can provide as many components as you need (or
choose to), in whatever order you choose. When there is incomplete information to compute an absolute
time, default values similar to 0 and 1 are usually chosen by a calendar, but this is a calendar-specific choice.
If you provide inconsistent information, calendar-specific disambiguation is performed (which may involve
ignoring one or more of the parameters). The characters of the description string specify the units and order
of the parameters which follow. The characters are adopted from the corresponding format characters used
by CFDateFormatter when possible, as shown in Table 9-1.

Overview 141
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

Table 9-1 Calendrical components parameter descriptors

Value TypeMeaningSymbol

intyeary

intmonthM

intdayd

inthourH

intminutem

intseconds

Information related to formatting dates and times and name-related calendar information is managed by
CFDateFormatter.

CFCalendar is subject to some limitations. There is no leap second handling—the existence of leap seconds
is ignored as in the other CoreFoundation API. In general, historical accuracy of calendars is not guaranteed.
There is currently no API for defining your own calendars.

CFCalendar is “toll-free bridged” with its Cocoa Foundation counterpart, NSCalendar. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSCalendar * parameter, you can pass in a CFCalendarRef,
and in a function where you see a CFCalendarRef parameter, you can pass in an NSCalendar instance. See
Interchangeable Data Types for more information on toll-free bridging.

The CFCalendar opaque type is available in Mac OS X v10.4 and later.

Functions by Task

Creating a Calendar

CFCalendarCopyCurrent (page 146)
Returns a copy of the logical calendar for the current user.

CFCalendarCreateWithIdentifier (page 147)
Returns a calendar object for the calendar identified by a calendar identifier.

Calendrical Calculations

CFCalendarAddComponents (page 144)
Computes the absolute time when specified components are added to a given absolute time.

CFCalendarComposeAbsoluteTime (page 145)
Computes the absolute time from components in a description string.

142 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

CFCalendarDecomposeAbsoluteTime (page 148)
Computes the components which are indicated by the componentDesc description string for the
given absolute time.

CFCalendarGetComponentDifference (page 149)
Computes the difference between the two absolute times, in terms of specified calendrical components.

Getting Ranges of Units

CFCalendarGetRangeOfUnit (page 153)
Returns the range of values that one unit can take on within a larger unit during which a specific
absolute time occurs.

CFCalendarGetOrdinalityOfUnit (page 152)
Returns the ordinal number of a calendrical unit within a larger unit at a specified absolute time.

CFCalendarGetTimeRangeOfUnit (page 153)
Returns by reference the start time and duration of a given calendar unit that contains a given absolute
time.

CFCalendarGetMaximumRangeOfUnit (page 150)
Returns the maximum range limits of the values that a specified unit can take on in a given calendar.

CFCalendarGetMinimumRangeOfUnit (page 151)
Returns the minimum range limits of the values that a specified unit can take on in a given calendar.

Getting and Setting the Time Zone

CFCalendarCopyTimeZone (page 147)
Returns a time zone object for a specified calendar.

CFCalendarSetTimeZone (page 155)
Sets the time zone for a calendar.

Getting the Identifier

CFCalendarGetIdentifier (page 150)
Returns the given calendar’s identifier.

Getting and Setting the Locale

CFCalendarCopyLocale (page 146)
Returns a locale object for a specified calendar.

CFCalendarSetLocale (page 155)
Sets the locale for a calendar.

Functions by Task 143
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

Getting and Setting Day Information

CFCalendarGetFirstWeekday (page 150)
Returns the index of first weekday for a specified calendar.

CFCalendarSetFirstWeekday (page 154)
Sets the first weekday for a calendar.

CFCalendarGetMinimumDaysInFirstWeek (page 151)
Returns the minimum number of days in the first week of a specified calendar.

CFCalendarSetMinimumDaysInFirstWeek (page 155)
Sets the minimum number of days in the first week of a specified calendar.

Getting the Type ID

CFCalendarGetTypeID (page 154)
Returns the type identifier for the CFCalendar opaque type.

Functions

CFCalendarAddComponents
Computes the absolute time when specified components are added to a given absolute time.

Boolean CFCalendarAddComponents (
 CFCalendarRef calendar,
 CFAbsoluteTime *at,
 CFOptionFlags options,
 const unsigned char *componentDesc,
 ...
);

Parameters
calendar

The calendar to use for the computation.

at
A reference to an absolute time. On input, points to the absolute time to which components are to
be added; on output, points to the result of the computation.

options
Options for the calculation. For valid values, see “Constants” (page 156).

componentDesc
A string that describes the components provided in the vararg parameters.

...
Vararg parameters giving amounts of each calendrical component in the order specified by
componentDesc. The amounts to add may be negative, zero, positive, or any combination thereof.

144 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

Return Value
TRUE—and in at the computed time—if at falls inside the defined range of the calendar and it is possible
to calculate the absolute time when the components (the calendrical components specified by
componentDesc and given in the varargs) are added to the input absolute time at; otherwise FALSE.

Discussion
Some operations can be ambiguous, and the behavior of the computation is calendar-specific, but generally
components are added in the order specified.

If you specify a “wrap” option (kCFCalendarComponentsWrap (page 158)), the specified components should
be incremented and wrap around to zero/one on overflow, but should not cause higher units to be
incremented. When “Wrap” is false, overflow in a unit carries into the higher units, as in typical addition.

Note that some computations can take a relatively long time to perform.

The following example shows how to add 2 months and 3 days to absolute time at‘s current value using an
existing calendar (gregorian):

CFCalendarAddComponents(gregorian, &at, 0, "Md", 2, 3);

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarComposeAbsoluteTime
Computes the absolute time from components in a description string.

Boolean CFCalendarComposeAbsoluteTime (
 CFCalendarRef calendar,
 CFAbsoluteTime *at,
 const unsigned char *componentDesc,
 ...
);

Parameters
calendar

The calendar to use for the computation.

at
Upon return, contains the computed absolute time.

componentDesc
A string that describes the components provided in the vararg parameters.

...
Vararg parameters giving amounts of each calendrical component in the order specified by
componentDesc. The amounts to add may be negative, zero, positive, or any combination thereof.

Return Value
TRUE—and inat the absolute time computed from the given components—if thecomponentDescdescription
string can be converted into an absolute time, otherwise FALSE. Also returns FALSE for out-of-range values.

Functions 145
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

Discussion
When there are insufficient components provided to completely specify an absolute time, a calendar uses
default values of its choice. When there is inconsistent information, a calendar may ignore some of the
parameters or the function may return FALSE. Unnecessary components are ignored (for example, Day takes
precedence over Weekday + Weekday ordinal). Note that some computations can take a relatively long time
to perform.

The following example shows how to use this function to initialize an absolute time, at, to 6 January 1965
14:10:00, for a given calendar gregorian .

CFCalendarComposeAbsoluteTime(gregorian, &at, "yMdHms", 1965, 1, 6, 14, 10,
00);

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarCopyCurrent
Returns a copy of the logical calendar for the current user.

CFCalendarRef CFCalendarCopyCurrent (
 void
);

Return Value
The logical calendar for the current user that is formed from the settings for the current user’s chosen system
locale overlaid with any custom settings the user has specified in System Preferences. This function may
return a retained cached object, not a new object. Ownership follows the Create Rule.

Discussion
Settings you get from this calendar do not change if user defaults change so that your operations are
consistent.

Typically you perform some operations on the returned object and then release it. The returned object may
be cached, so you do not need to hold on to it indefinitely.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarCopyLocale
Returns a locale object for a specified calendar.

146 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

CFLocaleRef CFCalendarCopyLocale (
 CFCalendarRef calendar
);

Parameters
calendar

The calendar to examine.

Return Value
A copy of the locale object for the specified calendar. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarCopyTimeZone
Returns a time zone object for a specified calendar.

CFTimeZoneRef CFCalendarCopyTimeZone (
 CFCalendarRef calendar
);

Parameters
calendar

The calendar to examine.

Return Value
A copy of the time zone object for the specified calendar. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarCreateWithIdentifier
Returns a calendar object for the calendar identified by a calendar identifier.

CFCalendarRef CFCalendarCreateWithIdentifier (
 CFAllocatorRef allocator,
 CFStringRef identifier
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

ident
A calendar identifier. Calendar identifier constants are given in CFLocaleRef (page 248).

Functions 147
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

Return Value
A calendar object for the calendar identified by ident. If the identifier is unknown (if, for example, it is either
an unrecognized string, or the calendar is not supported by the current version of the operating system),
returns NULL. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarDecomposeAbsoluteTime
Computes the components which are indicated by the componentDesc description string for the given
absolute time.

Boolean CFCalendarDecomposeAbsoluteTime (
 CFCalendarRef calendar,
 CFAbsoluteTime at,
 const unsigned char *componentDesc,
 ...
);

Parameters
calendar

The calendar to use for the computation.

at
An absolute time.

componentDesc
A string that describes the components provided in the vararg parameters.

...
Vararg pointers to storage for each of the desired components. On successful return, the pointers are
filled with values of the corresponding components. The type of all units is int.

Return Value
TRUE if the function is able to compute the components indicated by the componentDesc description string
for the given absolute time, and fills the values to the components given in the varargs. Returns FALSE if the
absolute time falls outside the defined range of the calendar, or the computation cannot be performed.

Discussion
The Weekday ordinality, when requested, refers to the next larger (than Week) of the requested units. Some
computations can take a relatively long time to perform.

The following example shows how to use this function to determine the current year, month, and day, using
an existing calendar (gregorian):

CFCalendarDecomposeAbsoluteTime(gregorian, CFAbsoluteTimeGetCurrent(), "yMd",
 &year, &month, &day);

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

148 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

CFCalendarGetComponentDifference
Computes the difference between the two absolute times, in terms of specified calendrical components.

Boolean CFCalendarGetComponentDifference (
 CFCalendarRef calendar,
 CFAbsoluteTime startingAT,
 CFAbsoluteTime resultAT,
 CFOptionFlags options,
 const unsigned char *componentDesc,
 ...
);

Parameters
calendar

The calendar to use for the computation.

startingAT
The starting absolute time.

resultAT
The result absolute time.

options
Options for the calculation. For valid values, see “Constants” (page 156).

componentDesc
A string that describes the components provided in the vararg parameters.

...
Vararg pointers to storage for each of the desired components. On successful return, the pointers are
filled with values of the corresponding components. The type of all units is int.

Return Value
TRUE—and in the varargs the differences—if it is possible to calculate the difference (result - starting) between
resultAT and startingAT in terms of the calendrical components specified by componentDesc. Returns
FALSE if either absolute time falls outside the defined range of the calendar, or the computation cannot be
performed.

Discussion
The result is lossy if there isn’t a small enough unit requested to hold the full precision of the difference.
Some operations can be ambiguous, and the behavior of the computation is calendar-specific, but generally
larger components will be computed before smaller components; for example, in the Gregorian calendar a
result might be 1month and 5 days, instead of, for example, 0months and 35 days. The resulting component
values may be negative if later is before earlier.

This computation is roughly the inverse of the CFCalendarAddComponents (page 144) operation, but
calendrical arithmetic is invertible only in simple cases. This computation tends to be several times more
expensive than the Add operation.

The following example shows how to get the approximate number of days between two absolute times
(at1, at2) using an existing calendar (gregorian):

CFCalendarGetComponentDifference(gregorian, at1, at2, 0, "d", &days);

Availability
Available in Mac OS X v10.4 and later.

Functions 149
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

Declared In
CFCalendar.h

CFCalendarGetFirstWeekday
Returns the index of first weekday for a specified calendar.

CFIndex CFCalendarGetFirstWeekday (
 CFCalendarRef calendar
);

Parameters
calendar

The calendar to examine.

Return Value
The index of the first weekday of the specified calendar.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarGetIdentifier
Returns the given calendar’s identifier.

CFStringRef CFCalendarGetIdentifier (
 CFCalendarRef calendar
);

Parameters
calendar

The calendar to examine.

Return Value
A string representation of calendar’s identifier. Calendar identifier constants can be found in
CFLocaleRef (page 248). Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarGetMaximumRangeOfUnit
Returns the maximum range limits of the values that a specified unit can take on in a given calendar.

150 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

CFRange CFCalendarGetMaximumRangeOfUnit (
 CFCalendarRef calendar,
 CFCalendarUnit unit
);

Parameters
calendar

The calendar to examine.

unit
A calendar unit. For valid values see CFCalendarUnit (page 156).

Return Value
The maximum range limits of the values that the specified unit can take on in calendar. For example, in
the Gregorian calendar the maximum ranges for the Day unit is 1-31.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarGetMinimumDaysInFirstWeek
Returns the minimum number of days in the first week of a specified calendar.

CFIndex CFCalendarGetMinimumDaysInFirstWeek (
 CFCalendarRef calendar
);

Parameters
calendar

The calendar to examine.

Return Value
The minimum number of days in the first week of calendar.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarGetMinimumRangeOfUnit
Returns the minimum range limits of the values that a specified unit can take on in a given calendar.

CFRange CFCalendarGetMinimumRangeOfUnit (
 CFCalendarRef calendar,
 CFCalendarUnit unit
);

Parameters
calendar

The calendar to examine.

Functions 151
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

unit
A calendar unit. For valid values see CFCalendarUnit (page 156).

Return Value
The minimum range limits of the values that the specified unit can take on in calendar. For example, in the
Gregorian calendar the minimum ranges for the Day unit is 1-28.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarGetOrdinalityOfUnit
Returns the ordinal number of a calendrical unit within a larger unit at a specified absolute time.

CFIndex CFCalendarGetOrdinalityOfUnit (
 CFCalendarRef calendar,
 CFCalendarUnit smallerUnit,
 CFCalendarUnit biggerUnit,
 CFAbsoluteTime at
);

Parameters
calendar

The calendar to examine.

smallerUnit
A calendar unit. For valid values see CFCalendarUnit (page 156).

biggerUnit
A calendar unit. For valid values see CFCalendarUnit (page 156).

at
An absolute time.

Return Value
The ordinal number of the calendar unit specified by smallerUnit within the calendar unit specified by
biggerUnit at the absolute time at. For example, the time 00:45 is in the first hour of the day, and for units
Hour and Day respectively, the result would be 1.

If the biggerUnit parameter is not logically bigger than the smallerUnit parameter in the calendar, or
the given combination of units does not make sense (or is a computation which is undefined), the result is
kCFNotFound.

Discussion
The ordinality is in most cases not the same as the decomposed value of the unit. Typically return values are
1 and greater; an exception is the week-in-month calculation, which returns 0 for days before the first week
in the month containing the date. Note that some computations can take a relatively long time to perform.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

152 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

CFCalendarGetRangeOfUnit
Returns the range of values that one unit can take on within a larger unit during which a specific absolute
time occurs.

CFRange CFCalendarGetRangeOfUnit (
 CFCalendarRef calendar,
 CFCalendarUnit smallerUnit,
 CFCalendarUnit biggerUnit,
 CFAbsoluteTime at
);

Parameters
calendar

The calendar to examine.

smallerUnit
A calendar unit. For valid values see CFCalendarUnit (page 156).

biggerUnit
A calendar unit. For valid values see CFCalendarUnit (page 156).

at
An absolute time.

Return Value
The range of values that the calendar unit specified by smallerUnit can take on within the calendar unit
specified by biggerUnit that includes the absolute time at. For example, the range the Day unit can take
on in the Month in which the absolute time lies.

If biggerUnit is not logically bigger than smallerUnit in the calendar, or the given combination of units
does not make sense (or is a computation which is undefined), the result is {kCFNotFound, kCFNotFound}.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarGetTimeRangeOfUnit
Returns by reference the start time and duration of a given calendar unit that contains a given absolute time.

Boolean CFCalendarGetTimeRangeOfUnit (
 CFCalendarRef calendar,
 CFCalendarUnit unit,
 CFAbsoluteTime at,
 CFAbsoluteTime *startp,
 CFTimeInterval *tip
);

Parameters
calendar

The calendar to examine.

unit
A calendar unit (for valid values, see CFCalendarUnit (page 156)).

Functions 153
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

at
An absolute time.

startp
Upon return, contains the beginning of the calendar unit specified by unit that contains the time
at.

tip
Upon return, contains the duration of the calendar unit specified by unit that contains the time at.

Return Value
true if the values of startp and tip could be calculated, otherwise false.

Discussion
The function may fail if, for example, you try to get the range of a kCFCalendarUnitWeekday and specify
a time (at) that is during a weekend.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFCalendar.h

CFCalendarGetTypeID
Returns the type identifier for the CFCalendar opaque type.

CFTypeID CFCalendarGetTypeID (
 void
);

Return Value
The type identifier for the CFCalendar opaque type.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarSetFirstWeekday
Sets the first weekday for a calendar.

void CFCalendarSetFirstWeekday (
 CFCalendarRef calendar,
 CFIndex wkdy
);

Parameters
calendar

The calendar to modify.

wkdy
The index to set for the first weekday of calendar.

154 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarSetLocale
Sets the locale for a calendar.

void CFCalendarSetLocale (
 CFCalendarRef calendar,
 CFLocaleRef locale
);

Parameters
calendar

The calendar to modify.

locale
The locale to set for calendar.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarSetMinimumDaysInFirstWeek
Sets the minimum number of days in the first week of a specified calendar.

void CFCalendarSetMinimumDaysInFirstWeek (
 CFCalendarRef calendar,
 CFIndex mwd
);

Parameters
calendar

The calendar to modify.

mwd
The number to set as the minimum number of days in the first week of calendar.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

CFCalendarSetTimeZone
Sets the time zone for a calendar.

Functions 155
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

void CFCalendarSetTimeZone (
 CFCalendarRef calendar,
 CFTimeZoneRef tz
);

Parameters
calendar

The calendar to modify.

locale
The time zone to set for calendar.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

Data Types

CFCalendarRef
A reference to a CFCalendar object.

typedef const struct __CFCalendar *CFCalendarRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFCalendar.h

Constants

CFCalendarUnit
CFCalendarUnit constants are used to specify calendrical units, such as day or month, in various calendar
calculations.

156 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

typedef enum {
 kCFCalendarUnitEra = (1 << 1),
 kCFCalendarUnitYear = (1 << 2),
 kCFCalendarUnitMonth = (1 << 3),
 kCFCalendarUnitDay = (1 << 4),
 kCFCalendarUnitHour = (1 << 5),
 kCFCalendarUnitMinute = (1 << 6),
 kCFCalendarUnitSecond = (1 << 7),
 kCFCalendarUnitWeek = (1 << 8),
 kCFCalendarUnitWeekday = (1 << 9),
 kCFCalendarUnitWeekdayOrdinal = (1 << 10),
} CFCalendarUnit;

Constants
kCFCalendarUnitEra

Specifies the era unit.

Available in Mac OS X v10.4 and later.

Declared in CFCalendar.h.

kCFCalendarUnitYear
Specifies the year unit.

Available in Mac OS X v10.4 and later.

Declared in CFCalendar.h.

kCFCalendarUnitMonth
Specifies the month unit.

Available in Mac OS X v10.4 and later.

Declared in CFCalendar.h.

kCFCalendarUnitDay
Specifies the day unit.

Available in Mac OS X v10.4 and later.

Declared in CFCalendar.h.

kCFCalendarUnitHour
Specifies the hour unit.

Available in Mac OS X v10.4 and later.

Declared in CFCalendar.h.

kCFCalendarUnitMinute
Specifies the minute unit.

Available in Mac OS X v10.4 and later.

Declared in CFCalendar.h.

kCFCalendarUnitSecond
Specifies the second unit.

Available in Mac OS X v10.4 and later.

Declared in CFCalendar.h.

kCFCalendarUnitWeek
Specifies the week unit.

Available in Mac OS X v10.4 and later.

Declared in CFCalendar.h.

Constants 157
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

kCFCalendarUnitWeekday
Specifies the weekday unit.

The weekday units are the numbers 1-N (where for the Gregorian calendar N=7 and 1 is Sunday).

Available in Mac OS X v10.4 and later.

Declared in CFCalendar.h.

kCFCalendarUnitWeekdayOrdinal
Specifies the ordinal weekday unit.

The weekday ordinal unit describes ordinal position within the month unit of the corresponding
weekday unit. For example, in the Gregorian calendar a weekday ordinal unit of 2 for a weekday unit
3 indicates "the second Tuesday in the month".

Available in Mac OS X v10.4 and later.

Declared in CFCalendar.h.

Component Wrapping Options
The wrapping option specifies overflow behavior for calendar components in calendrical calculations—see
CFCalendarAddComponents (page 144) and CFCalendarGetComponentDifference (page 149).

enum {
 kCFCalendarComponentsWrap = (1 << 0)
}

Constants
kCFCalendarComponentsWrap

Specifies that the components specified for calendar components should be incremented and wrap
around to zero/one on overflow, but should not cause higher units to be incremented.

Available in Mac OS X v10.4 and later.

Declared in CFCalendar.h.

158 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CFCalendar Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFCharacterSet.h

Companion guide Strings Programming Guide for Core Foundation

Overview

A CFCharacterSet object represents a set of Unicode compliant characters. CFString uses CFCharacterSet
objects to group characters together for searching operations, so that they can find any of a particular set
of characters during a search. The two opaque types, CFCharacterSet and CFMutableCharacterSet, define
the interface for static and dynamic character sets, respectively. The objects you create using these opaque
types are referred to as character set objects (and when no confusion will result, merely as character sets).

CFCharacterSet's principal function, CFCharacterSetIsCharacterMember (page 165), provides the basis
for all other functions in its interface. You create a character set using one of the CFCharacterSetCreate...
functions. You may also use any one of the predefined character sets using the
CFCharacterSetGetPredefined (page 164) function.

CFCharacterSet is “toll-free bridged” with its Cocoa Foundation counterpart, NSCharacterSet. This means that
the Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSCharacterSet * parameter, you can pass in a
CFCharacterSetRef, and in a function where you see a CFCharacterSetRef parameter, you can pass in
an NSCharacterSet instance. This capability also applies to concrete subclasses of NSCharacterSet. See
Interchangeable Data Types for more information on toll-free bridging.

Functions by Task

Creating Character Sets

CFCharacterSetCreateCopy (page 161)
Creates a new character set with the values from a given character set.

CFCharacterSetCreateInvertedSet (page 161)
Creates a new immutable character set that is the invert of the specified character set.

CFCharacterSetCreateWithCharactersInRange (page 163)
Creates a new character set with the values from the given range of Unicode characters.

Overview 159
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

CFCharacterSetCreateWithCharactersInString (page 163)
Creates a new character set with the values in the given string.

CFCharacterSetCreateWithBitmapRepresentation (page 162)
Creates a new immutable character set with the bitmap representation specified by given data.

Getting Predefined Character Sets

CFCharacterSetGetPredefined (page 164)
Returns a predefined character set.

Querying Character Sets

CFCharacterSetCreateBitmapRepresentation (page 160)
Creates a new immutable data with the bitmap representation from the given character set.

CFCharacterSetHasMemberInPlane (page 164)
Reports whether or not a character set contains at least one member character in the specified plane.

CFCharacterSetIsCharacterMember (page 165)
Reports whether or not a given Unicode character is in a character set.

CFCharacterSetIsLongCharacterMember (page 165)
Reports whether or not a given UTF-32 character is in a character set.

CFCharacterSetIsSupersetOfSet (page 166)
Reports whether or not a character set is a superset of another set.

Getting the Character Set Type Identifier

CFCharacterSetGetTypeID (page 164)
Returns the type identifier of the CFCharacterSet opaque type.

Functions

CFCharacterSetCreateBitmapRepresentation
Creates a new immutable data with the bitmap representation from the given character set.

CFDataRef CFCharacterSetCreateBitmapRepresentation (
 CFAllocatorRef alloc,
 CFCharacterSetRef theSet
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

160 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

theSet
The set from which to create a bitmap representation. Refer to the comments for
CFCharacterSetCreateWithBitmapRepresentation (page 162) for the detailed discussion of
the bitmap representation format.

Return Value
A new CFData object containing a bitmap representation of theSet. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetCreateCopy
Creates a new character set with the values from a given character set.

CFCharacterSetRef CFCharacterSetCreateCopy (
 CFAllocatorRef alloc,
 CFCharacterSetRef theSet
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

theSet
The character set to copy.

Return Value
A new character set that is a copy of theSet. Ownership follows the Create Rule.

Discussion
This function tries to compact the backing store where applicable.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFCharacterSet.h

CFCharacterSetCreateInvertedSet
Creates a new immutable character set that is the invert of the specified character set.

Functions 161
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

CFCharacterSetRef CFCharacterSetCreateInvertedSet (
 CFAllocatorRef alloc,
 CFCharacterSetRef theSet
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

theSet
The character set from which to create an inverted set.

Return Value
A new character set that is the invert of theSet. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFCharacterSet.h

CFCharacterSetCreateWithBitmapRepresentation
Creates a new immutable character set with the bitmap representation specified by given data.

CFCharacterSetRef CFCharacterSetCreateWithBitmapRepresentation (
 CFAllocatorRef alloc,
 CFDataRef theData
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

theData
A CFData object that specifies the bitmap representation of the Unicode character points the for the
new character set. The bitmap representation could contain all the Unicode character range starting
from BMP to Plane 16. The first 8KiB (8192 bytes) of the data represent the BMP range. The BMP range
8KiB can be followed by zero to sixteen 8KiB bitmaps, each prepended with the plane index byte. For
example, the bitmap representing the BMP and Plane 2 has the size of 16385 bytes (8KiB for BMP, 1
byte index, and a 8KiB bitmap for Plane 2). The plane index byte, in this case, contains the integer
value two.

If the data contains a Plane index byte outside of the valid Plane range (1 to 16), the behavior is
undefined.

Return Value
A new character set containing the indicated characters from theData. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

162 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

CFCharacterSetCreateWithCharactersInRange
Creates a new character set with the values from the given range of Unicode characters.

CFCharacterSetRef CFCharacterSetCreateWithCharactersInRange (
 CFAllocatorRef alloc,
 CFRange theRange
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

theRange
The Unicode range of characters of the new character set. The function accepts the range in 32-bit
in the UTF-32 format. The valid character point range is from 0x00000 to 0x10FFFF.

Return Value
A new character set that contains a contiguous range of Unicode characters. Ownership follows the Create
Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetCreateWithCharactersInString
Creates a new character set with the values in the given string.

CFCharacterSetRef CFCharacterSetCreateWithCharactersInString (
 CFAllocatorRef alloc,
 CFStringRef theString
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

theString
A string containing the characters for the new set.

Return Value
A new character set containing the characters from theString. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

Functions 163
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

CFCharacterSetGetPredefined
Returns a predefined character set.

CFCharacterSetRef CFCharacterSetGetPredefined (
 CFCharacterSetPredefinedSet theSetIdentifier
);

Parameters
theSetIdentifier

A predefined character set. See “Predefined CFCharacterSet Selector Values” (page 167) for the list of
available character sets.

Return Value
A predefined character set. This instance is owned by Core Foundation.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetGetTypeID
Returns the type identifier of the CFCharacterSet opaque type.

CFTypeID CFCharacterSetGetTypeID (
 void
);

Return Value
The type identifier of the CFCharacterSet opaque type.

Discussion
CFMutableCharacterSet objects have the same type identifier as CFCharacterSet objects.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetHasMemberInPlane
Reports whether or not a character set contains at least one member character in the specified plane.

164 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

Boolean CFCharacterSetHasMemberInPlane (
 CFCharacterSetRef theSet,
 CFIndex thePlane
);

Parameters
theSet

The character set to examine.

thePlane
The plane number to be checked for the membership. The valid value range is from 0 to 16. If the
value is outside of the valid plane number range, the behavior is undefined.

Return Value
true if at least one member character is in the specified plane, otherwise false.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFCharacterSet.h

CFCharacterSetIsCharacterMember
Reports whether or not a given Unicode character is in a character set.

Boolean CFCharacterSetIsCharacterMember (
 CFCharacterSetRef theSet,
 UniChar theChar
);

Parameters
theSet

The character set to examine.

theChar
The Unicode character for which to test against the character set. Note that this function takes 16-bit
Unicode character value; hence, it does not support access to the non-BMP planes.

Return Value
true if theSet contains theChar, otherwise false.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetIsLongCharacterMember
Reports whether or not a given UTF-32 character is in a character set.

Functions 165
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

Boolean CFCharacterSetIsLongCharacterMember (
 CFCharacterSetRef theSet,
 UTF32Char theChar
);

Parameters
theSet

The character set to examine.

theChar
The UTF-32 character for which to test against the character set.

Return Value
true if theSet contains theChar, otherwise false.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFCharacterSet.h

CFCharacterSetIsSupersetOfSet
Reports whether or not a character set is a superset of another set.

Boolean CFCharacterSetIsSupersetOfSet (
 CFCharacterSetRef theSet,
 CFCharacterSetRef theOtherset
);

Parameters
theSet

The character set to be checked for the membership of theOtherSet.

theOtherSet
The character set to be checked whether or not it is a subset of theSet.

Return Value
true if theSet is a superset of theOtherSet, otherwise false.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFCharacterSet.h

Data Types

CFCharacterSetPredefinedSet
Defines a predefined character set.

166 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

typedef CFIndex CFCharacterSetPredefinedSet;

Discussion
See “Predefined CFCharacterSet Selector Values” (page 167) for values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetRef
A reference to an immutable character set object.

typedef const struct __CFCharacterSet *CFCharacterSetRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

Constants

Predefined CFCharacterSet Selector Values
Identifiers for the available predefined CFCharacterSet objects.

Constants 167
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

enum {
 kCFCharacterSetControl = 1,
 kCFCharacterSetWhitespace,
 kCFCharacterSetWhitespaceAndNewline,
 kCFCharacterSetDecimalDigit,
 kCFCharacterSetLetter,
 kCFCharacterSetLowercaseLetter,
 kCFCharacterSetUppercaseLetter,
 kCFCharacterSetNonBase,
 kCFCharacterSetDecomposable,
 kCFCharacterSetAlphaNumeric,
 kCFCharacterSetPunctuation,
 kCFCharacterSetCapitalizedLetter = 13,
 kCFCharacterSetSymbol = 14,
 kCFCharacterSetNewline = 15,
 kCFCharacterSetIllegal = 12
};

Constants
kCFCharacterSetControl

Control character set (Unicode General Category Cc and Cf).

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetWhitespace
Whitespace character set (Unicode General Category Zs and U0009 CHARACTER TABULATION).

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetWhitespaceAndNewline
Whitespace and Newline character set (Unicode General Category Z*, U000A ~ U000D, and U0085).

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetDecimalDigit
Decimal digit character set.

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetLetter
Letter character set (Unicode General Category L* & M*).

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetLowercaseLetter
Lowercase character set (Unicode General Category Ll).

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetUppercaseLetter
Uppercase character set (Unicode General Category Lu and Lt).

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

168 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

kCFCharacterSetNonBase
Non-base character set (Unicode General Category M*).

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetDecomposable
Canonically decomposable character set.

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetAlphaNumeric
Alpha Numeric character set (Unicode General Category L*, M*, & N*).

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetPunctuation
Punctuation character set (Unicode General Category P*).

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetCapitalizedLetter
Titlecase character set (Unicode General Category Lt).

Available in Mac OS X v10.2 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetSymbol
Symbol character set (Unicode General Category S*).

Available in Mac OS X v10.3 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetNewline
Newline character set (U000A ~ U000D, U0085, U2028, and U2029).

Available in Mac OS X v10.5 and later.

Declared in CFCharacterSet.h.

kCFCharacterSetIllegal
Illegal character set.

Available in Mac OS X v10.0 and later.

Declared in CFCharacterSet.h.

Discussion
Use these constants with the CFCharacterSetGetPredefined (page 164) function to get one of the
predefined character sets.

Declared In
CFCharacterSet.h

Constants 169
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

170 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CFCharacterSet Reference

Derived From: CFPropertyList : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFData.h

Companion guides Binary Data Programming Guide for Core Foundation
Property List Programming Topics for Core Foundation

Overview

CFData and its derived mutable type, CFMutableData, provide support for data objects, object-oriented
wrappers for byte buffers. Data objects let simple allocated buffers (that is, data with no embedded pointers)
take on the behavior of Core Foundation objects. CFData creates static data objects, and CFMutableData
creates dynamic data objects. Data objects are typically used for raw data storage.

You use the CFDataCreate (page 172) and CFDataCreateCopy (page 173) functions to create static data
objects. These functions make a new copy of the supplied data. To create a data object that uses the supplied
buffer instead of making a separate copy, use the CFDataCreateWithBytesNoCopy (page 174) function.
You use the CFDataGetBytes (page 176) function to retrieve the bytes and the CFDataGetLength (page
176) function to get the length of the bytes.

CFData is “toll-free bridged” with its Cocoa Foundation counterpart, NSData. What this means is that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object. In
other words, in a method where you see an NSData * parameter, you can pass in a CFDataRef, and in a
function where you see a CFDataRef parameter, you can pass in an NSData instance. This also applies to
concrete subclasses of NSData. See Interchangeable Data Types for more information on toll-free bridging.

Functions by Task

Creating a CFData Object

CFDataCreate (page 172)
Creates an immutable CFData object using data copied from a specified byte buffer.

CFDataCreateCopy (page 173)
Creates an immutable copy of a CFData object.

CFDataCreateWithBytesNoCopy (page 174)
Creates an immutable CFData object from an external (client-owned) byte buffer.

Overview 171
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CFData Reference

Examining a CFData Object

CFDataGetBytePtr (page 175)
Returns a read-only pointer to the bytes of a CFData object.

CFDataGetBytes (page 176)
Copies the byte contents of a CFData object to an external buffer.

CFDataGetLength (page 176)
Returns the number of bytes contained by a CFData object.

Getting the CFData Type ID

Functions

CFDataGetTypeID
Returns the type identifier for the CFData opaque type.

CFTypeID CFDataGetTypeID (
 void
);

Return Value
The type identifier for the CFData opaque type.

Discussion
CFMutableData objects have the same type identifier as CFData objects.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer
MoreSCF
RecentItems

Declared In
CFData.h

CFDataCreate
Creates an immutable CFData object using data copied from a specified byte buffer.

172 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CFData Reference

CFDataRef CFDataCreate (
 CFAllocatorRef allocator,
 const UInt8 *bytes,
 CFIndex length
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

bytes
A pointer to the byte buffer that contains the raw data to be copied into theData.

length
The number of bytes in the buffer (bytes).

Return Value
A new CFData object, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Discussion
You must supply a count of the bytes in the buffer. This function always copies the bytes in the provided
buffer into internal storage.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
BasicInputMethod
DTSCarbonShell
QTCarbonShell
TypeServicesForUnicode

Declared In
CFData.h

CFDataCreateCopy
Creates an immutable copy of a CFData object.

CFDataRef CFDataCreateCopy (
 CFAllocatorRef allocator,
 CFDataRef theData
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

theData
The CFData object to copy.

Functions 173
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CFData Reference

Return Value
An immutable copy of theData, or NULL if there was a problem creating the object. Ownership follows the
Create Rule.

Discussion
The resulting object has the same byte contents as the original object, but it is always immutable. If the
specified allocator and the allocator of the original object are the same, and the string is already immutable,
this function may simply increment the retain count without making a true copy. To the caller, however, the
resulting object is a true immutable copy, except the operation was more efficient.

Use this function when you need to pass a CFData object into another function by value (not reference).

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter

Declared In
CFData.h

CFDataCreateWithBytesNoCopy
Creates an immutable CFData object from an external (client-owned) byte buffer.

CFDataRef CFDataCreateWithBytesNoCopy (
 CFAllocatorRef allocator,
 const UInt8 *bytes,
 CFIndex length,
 CFAllocatorRef bytesDeallocator
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

bytes
A pointer to the byte buffer to be used as the backing store of the CFData object.

length
The number of bytes in the buffer bytes.

bytesDeallocator
The allocator to use to deallocate the external buffer when the CFData object is deallocated. If the
default allocator is suitable for this purpose, pass NULL or kCFAllocatorDefault. If you do not
want the created CFData object to deallocate the buffer (that is, you assume responsibility for freeing
it yourself), pass kCFAllocatorNull.

Return Value
A new CFData object, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

174 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CFData Reference

Discussion
This function creates an immutable CFData object from a buffer of unstructured bytes. Unless the situation
warrants otherwise, the created object does not copy the external buffer to internal storage but instead uses
the buffer as its backing store. However, you should never count on the object using the external buffer since
it could copy the buffer to internal storage or might even dump the buffer altogether and use alternative
means for storing the bytes.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
MoreIsBetter
QISA

Declared In
CFData.h

CFDataGetBytePtr
Returns a read-only pointer to the bytes of a CFData object.

const UInt8 * CFDataGetBytePtr (
 CFDataRef theData
);

Parameters
theData

The CFData object to examine.

Return Value
A read-only pointer to the bytes associated with theData.

Discussion
This function is guaranteed to return a pointer to a CFData object's internal bytes. CFData, unlike CFString,
does not hide its internal storage.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
CFHostSample
CFLocalServer
MoreSCF
TypeServicesForUnicode

Declared In
CFData.h

Functions 175
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CFData Reference

CFDataGetBytes
Copies the byte contents of a CFData object to an external buffer.

void CFDataGetBytes (
 CFDataRef theData,
 CFRange range,
 UInt8 *buffer
);

Parameters
theData

The CFData object to examine.

range
The range of bytes in theData to get. To get all of the contents, pass
CFRangeMake(0,CFDataGetLength(theData)).

buffer
A pointer to the byte buffer of length range.length that is allocated on the stack or heap. On return,
the buffer contains the requested range of bytes.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BasicInputMethod
DTSCarbonShell
MoreIsBetter
QISA
QTCarbonShell

Declared In
CFData.h

CFDataGetLength
Returns the number of bytes contained by a CFData object.

CFIndex CFDataGetLength (
 CFDataRef theData
);

Parameters
theData

The CFData object to examine.

Return Value
An index that specifies the number of bytes in theData.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

176 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CFData Reference

Related Sample Code
CFLocalServer
MoreIsBetter
QISA
RecentItems
TypeServicesForUnicode

Declared In
CFData.h

Data Types

CFDataRef
A reference to an immutable CFData object.

typedef const struct __CFData *CFDataRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFData.h

Data Types 177
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CFData Reference

178 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CFData Reference

Derived From: CFPropertyList : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFDate.h

Companion guides Dates and Times Programming Guide for Core Foundation
Property List Programming Topics for Core Foundation

Overview

CFDate objects store dates and times that can be compared to other dates and times. CFDate objects are
immutable—there is no mutable counterpart for this opaque type.

CFDate provides functions for creating dates, comparing dates, and computing intervals. You use the
CFDateCreate (page 180) function to create CFDate objects. You use theCFDateCompare (page 179) function
to compare two dates, and the CFDateGetTimeIntervalSinceDate (page 181) function to compute a
time interval. Additional functions for managing dates and times are described in Time Utilities Reference

CFDate is “toll-free bridged” with its Core Foundation counterpart, NSDate. What this means is that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. In other
words, in a method where you see an NSDate * parameter, you can pass in a CFDateRef, and in a function
where you see a CFDateRef parameter, you can pass in an NSDate instance. This also applies to concrete
subclasses of NSDate. See Interchangeable Data Types for more information on toll-free bridging.

Functions

CFDateCompare
Compares two CFDate objects and returns a comparison result.

CFComparisonResult CFDateCompare (
 CFDateRef theDate,
 CFDateRef otherDate,
 void *context
);

Parameters
theDate

The date to compare to otherDate.

Overview 179
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CFDate Reference

otherDate
The date to compare to theDate.

context
Unused. Pass NULL.

Return Value
A CFComparisonResult (page 764) value that indicates whether theDate is equal to, less than, or greater
than otherDate.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

CFDateCreate
Creates a CFDate object given an absolute time.

CFDateRef CFDateCreate (
 CFAllocatorRef allocator,
 CFAbsoluteTime at
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

at
The absolute time to convert to a CFDate object.

Return Value
A date object that represents the absolute time at. Ownership follows the Create Rule.

Discussion
CFDate objects must always be created using absolute time. Time intervals are not supported.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPrefTopScores
NSOperationSample

Declared In
CFDate.h

CFDateGetAbsoluteTime
Returns a CFDate object’s absolute time.

180 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CFDate Reference

CFAbsoluteTime CFDateGetAbsoluteTime (
 CFDateRef theDate
);

Parameters
theDate

The date to examine.

Return Value
The absolute time of theDate.

Discussion
Absolute time is measured in seconds relative to the absolute reference date of Jan 1 2001 00:00:00 GMT. A
positive value represents a date after the reference date, a negative value represents a date before it. For
example, the absolute time -32940326 is equivalent to December 16th, 1999 at 17:54:34.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

CFDateGetTimeIntervalSinceDate
Returns the number of elapsed seconds between the given CFDate objects.

CFTimeInterval CFDateGetTimeIntervalSinceDate (
 CFDateRef theDate,
 CFDateRef otherDate
);

Parameters
theDate

The date to compare to otherDate.

otherDate
The date to compare to theDate.

Return Value
The number of elapsed seconds between theDate and otherDate. The result is positive if theDate is later
than otherDate.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

CFDateGetTypeID
Returns the type identifier for the CFDate opaque type.

Functions 181
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CFDate Reference

CFTypeID CFDateGetTypeID (
 void
);

Return Value
The type identifier for the CFDate opaque type.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFFTPSample
CFPrefTopScores

Declared In
CFDate.h

Data Types

CFDateRef
A reference to an immutable CFDate object.

typedef const struct __CFDate *CFDateRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

182 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CFDate Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFDateFormatter.h

Companion guide Data Formatting Guide for Core Foundation

Overview

CFDateFormatter objects format the textual representations of CFDate and CFAbsoluteTime objects, and
convert textual representations of dates and times into CFDate and CFAbsoluteTime objects. You can express
the representation of dates and times very flexibly, for example “Thu 22 Dec 1994” is just as acceptable as
“12/22/94.” You specify how strings are formatted and parsed by setting a format string and other properties
of a CFDateFormatter object. The format of the format string itself is defined by Unicode Technical Standard
#35.

The CFDateFormatter opaque type is available in Mac OS X v10.3 and later.

Functions by Task

Creating a Date Formatter

CFDateFormatterCreate (page 185)
Creates a new CFDateFormatter object, localized to the given locale, which will format dates to the
given date and time styles.

Configuring a Date Formatter

CFDateFormatterSetFormat (page 190)
Sets the format string of the given date formatter to the specified value.

CFDateFormatterSetProperty (page 191)
Sets a date formatter property using a key-value pair.

Overview 183
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

http://unicode.org/reports/tr35/tr35-6.html#Date_Format_Patterns
http://unicode.org/reports/tr35/tr35-6.html#Date_Format_Patterns

Parsing Strings

CFDateFormatterCreateDateFromString (page 186)
Returns a date object representing a given string.

CFDateFormatterGetAbsoluteTimeFromString (page 188)
Returns an absolute time object representing a given string.

Creating Strings From Data

CFDateFormatterCreateStringWithAbsoluteTime (page 187)
Returns a string representation of the given absolute time using the specified date formatter.

CFDateFormatterCreateStringWithDate (page 187)
Returns a string representation of the given date using the specified date formatter.

Getting Information About a Date Formatter

CFDateFormatterCopyProperty (page 184)
Returns a copy of a date formatter’s value for a given key.

CFDateFormatterGetDateStyle (page 189)
Returns the date style used to create the given date formatter object.

CFDateFormatterGetFormat (page 189)
Returns a format string for the given date formatter object.

CFDateFormatterGetLocale (page 189)
Returns the locale object used to create the given date formatter object.

CFDateFormatterGetTimeStyle (page 190)
Returns the time style used to create the given date formatter object.

Getting the CFDateFormatter Type ID

CFDateFormatterGetTypeID (page 190)
Returns the type identifier for CFDateFormatter.

Functions

CFDateFormatterCopyProperty
Returns a copy of a date formatter’s value for a given key.

184 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

CFTypeRef CFDateFormatterCopyProperty (
 CFDateFormatterRef formatter,
 CFStringRef key
);

Parameters
formatter

The date formatter to examine.

key
The property key for the value to obtain. See “Date Formatter Property Keys” (page 194) for a description
of possible values for this parameter.

Return Value
A CFType object that is a copy of the property value for key, or NULL if there is no value specified for key.
Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

CFDateFormatterCreate
Creates a new CFDateFormatter object, localized to the given locale, which will format dates to the given
date and time styles.

CFDateFormatterRef CFDateFormatterCreate (
 CFAllocatorRef allocator,
 CFLocaleRef locale,
 CFDateFormatterStyle dateStyle,
 CFDateFormatterStyle timeStyle
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

locale
The locale to use for localization. If NULL uses the default system local. Use
CFLocaleCopyCurrent (page 240) to specify the locale of the current user.

dateStyle
The date style to use when formatting dates. See “Date Formatter Styles” (page 192) for possible values.

timeStyle
The time style to use when formatting times. See “Date Formatter Styles” (page 192) for possible
values.

Return Value
A new date formatter, localized to the given locale, which will format dates to the given date and time styles.
Returns NULL if there was a problem creating the object. Ownership follows the Create Rule.

Functions 185
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

Discussion
You can use kCFDateFormatterNoStyle to suppress output for the date or time. The following code
fragment illustrates the creation and use of a date formatter that only outputs the date information (memory
management is omitted for clarity).

CFLocaleRef locale = CFLocaleCreate(kCFAllocatorDefault, CFSTR("en_GB"));

CFDateFormatterRef formatter = CFDateFormatterCreate(
 kCFAllocatorDefault, locale, kCFDateFormatterMediumStyle,
kCFDateFormatterNoStyle);

CFDateRef date = CFDateCreate(kCFAllocatorDefault, 123456);
CFStringRef dateAsString = CFDateFormatterCreateStringWithDate (
 kCFAllocatorDefault, formatter, date);

CFShow(dateAsString);
// outputs "2 Jan 2001"

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CFFTPSample
CFPrefTopScores

Declared In
CFDateFormatter.h

CFDateFormatterCreateDateFromString
Returns a date object representing a given string.

CFDateRef CFDateFormatterCreateDateFromString (
 CFAllocatorRef allocator,
 CFDateFormatterRef formatter,
 CFStringRef string,
 CFRange *rangep
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

formatter
The date formatter object to use to parse string.

string
The string that contains the date.

rangep
A reference to the range within the string specifying the substring to be parsed. If NULL, the whole
string is parsed. Upon return, contains the range that defines the extent of the parse (may be less
than the given range).

186 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

Return Value
A new date that represents string, or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

CFDateFormatterCreateStringWithAbsoluteTime
Returns a string representation of the given absolute time using the specified date formatter.

CFStringRef CFDateFormatterCreateStringWithAbsoluteTime (
 CFAllocatorRef allocator,
 CFDateFormatterRef formatter,
 CFAbsoluteTime at
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

formatter
The date formatter object that specifies the format of the returned string.

at
The absolute time for which to generate a string representation.

Return Value
A new string that represents at in the specified format. Returns NULL if there was a problem creating the
object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

CFDateFormatterCreateStringWithDate
Returns a string representation of the given date using the specified date formatter.

CFStringRef CFDateFormatterCreateStringWithDate (
 CFAllocatorRef allocator,
 CFDateFormatterRef formatter,
 CFDateRef date
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

Functions 187
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

formatter
The date formatter object that specifies the format of the returned string.

date
The date object for which to create a string representation.

Return Value
A new string that represents date in the specified format. Returns NULL if there was a problem creating the
object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CFFTPSample
CFPrefTopScores

Declared In
CFDateFormatter.h

CFDateFormatterGetAbsoluteTimeFromString
Returns an absolute time object representing a given string.

Boolean CFDateFormatterGetAbsoluteTimeFromString (
 CFDateFormatterRef formatter,
 CFStringRef string,
 CFRange *rangep,
 CFAbsoluteTime *atp
);

Parameters
formatter

The date formatter object to use to parse string.

string
The string that contains the time to be parsed.

rangep
Reference to the range within the string specifying the substring to be parsed. If NULL, the whole
string is parsed. On return, the range that defines the extent of the parse (may be less than the given
range).

atp
An absolute time value, returned by reference, that represents string. Ownership follows the Get
Rule.

Return Value
true if the string was parsed successfully, otherwise false.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

188 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

CFDateFormatterGetDateStyle
Returns the date style used to create the given date formatter object.

CFDateFormatterStyle CFDateFormatterGetDateStyle (
 CFDateFormatterRef formatter
);

Parameters
formatter

The date formatter to examine.

Return Value
The date style used to create formatter.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

CFDateFormatterGetFormat
Returns a format string for the given date formatter object.

CFStringRef CFDateFormatterGetFormat (
 CFDateFormatterRef formatter
);

Parameters
formatter

The date formatter to examine.

Return Value
The format string for formatter as was specified by calling the CFDateFormatterSetFormat (page 190)
function, or derived from the date formatter’s date or time styles. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

CFDateFormatterGetLocale
Returns the locale object used to create the given date formatter object.

CFLocaleRef CFDateFormatterGetLocale (
 CFDateFormatterRef formatter
);

Parameters
formatter

The date formatter object to examine.

Functions 189
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

Return Value
The locale object used to create formatter. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

CFDateFormatterGetTimeStyle
Returns the time style used to create the given date formatter object.

CFDateFormatterStyle CFDateFormatterGetTimeStyle (
 CFDateFormatterRef formatter
);

Parameters
formatter

The date formatter to examine.

Return Value
The time style used to create formatter.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

CFDateFormatterGetTypeID
Returns the type identifier for CFDateFormatter.

CFTypeID CFDateFormatterGetTypeID (
 void
);

Return Value
The type identifier for the CFDateFormatter opaque type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

CFDateFormatterSetFormat
Sets the format string of the given date formatter to the specified value.

190 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

void CFDateFormatterSetFormat (
 CFDateFormatterRef formatter,
 CFStringRef formatString
);

Parameters
formatter

The date formatter to modify.

formatString
The format string for formatter. The syntax of this string is defined by Unicode Technical Standard
#35..

Discussion
The format string may override other properties previously set using other functions. If this function is not
called, the default value of the format string is derived from the date formatter’s date and time styles.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

CFDateFormatterSetProperty
Sets a date formatter property using a key-value pair.

void CFDateFormatterSetProperty (
 CFDateFormatterRef formatter,
 CFStringRef key,
 CFTypeRef value
);

Parameters
formatter

The date formatter to modify.

key
The name of the property to set. See “Date Formatter Property Keys” (page 194) for a description of
possible values for this parameter.

value
The value for key. This should be a CFType object corresponding to the specified key.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

Functions 191
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

http://unicode.org/reports/tr35/tr35-6.html#Date_Format_Patterns
http://unicode.org/reports/tr35/tr35-6.html#Date_Format_Patterns

Data Types

CFDateFormatterRef
A reference to a CFDateFormatter object.

typedef struct __CFDateFormatter *CFDateFormatterRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

CFDateFormatterStyle
Data type for predefined date and time format styles.

typedef CFIndex CFDateFormatterStyle;

Discussion
For possible values, see “Date Formatter Styles” (page 192).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFDateFormatter.h

Constants

Date Formatter Styles
Predefined date and time format styles.

192 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

enum {
 kCFDateFormatterNoStyle = 0,
 kCFDateFormatterShortStyle = 1,
 kCFDateFormatterMediumStyle = 2,
 kCFDateFormatterLongStyle = 3,
 kCFDateFormatterFullStyle = 4
};

Constants
kCFDateFormatterNoStyle

Specifies no output.

You use this constant to suppress output for the date or time (see CFDateFormatterCreate (page
185) for more details).

Available in Mac OS X v10.3 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterShortStyle
Specifies a short style, typically numeric only, such as “11/23/37” or “3:30pm”.

Available in Mac OS X v10.3 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterMediumStyle
Specifies a medium style, typically with abbreviated text, such as “Nov 23, 1937”.

Available in Mac OS X v10.3 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterLongStyle
Specifies a long style, typically with full text, such as “November 23, 1937” or “3:30:32pm”.

Available in Mac OS X v10.3 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterFullStyle
Specifies a full style with complete details, such as “Tuesday, April 12, 1952 AD” or “3:30:42pm PST”.

Available in Mac OS X v10.3 and later.

Declared in CFDateFormatter.h.

Discussion
The format for these date and time styles is not exact because they depend on the locale, user preference
settings, and the operating system version. Do not use these constants if you want an exact format, for
example if you are parsing an external data file which contains date information in a fixed format. There are
several different “lengths” of the formats:

 ■ "long" era names, for example "Anno Domini" instead of "AD"

 ■ "very short" names for months and weekdays; for example, "F" instead of "Friday"

 ■ "standalone" names for months and weekdays (for some locales or languages, a month name displayed
in isolation needs to be written differently than a month name within a displayed date)

 ■ names of quarters; for example, "Q2" for a short quarter name

Declared In
CFDateFormatter.h

Constants 193
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

Date Formatter Property Keys
Keys used in key-value pairs to discover and specify the value of date formatter properties—used in conjunction
with CFDateFormatterCopyProperty (page 184) and CFDateFormatterSetProperty (page 191).

const CFStringRef kCFDateFormatterIsLenient;
const CFStringRef kCFDateFormatterTimeZone;
const CFStringRef kCFDateFormatterCalendarName;
const CFStringRef kCFDateFormatterDefaultFormat;

const CFStringRef kCFDateFormatterTwoDigitStartDate;
const CFStringRef kCFDateFormatterDefaultDate;
const CFStringRef kCFDateFormatterCalendar;
const CFStringRef kCFDateFormatterEraSymbols;
const CFStringRef kCFDateFormatterMonthSymbols;
const CFStringRef kCFDateFormatterShortMonthSymbols;
const CFStringRef kCFDateFormatterWeekdaySymbols;
const CFStringRef kCFDateFormatterShortWeekdaySymbols;
const CFStringRef kCFDateFormatterAMSymbol;
const CFStringRef kCFDateFormatterPMSymbol;

const CFStringRef kCFDateFormatterLongEraSymbols;
const CFStringRef kCFDateFormatterVeryShortMonthSymbols;
const CFStringRef kCFDateFormatterStandaloneMonthSymbols;
const CFStringRef kCFDateFormatterShortStandaloneMonthSymbols;
const CFStringRef kCFDateFormatterVeryShortStandaloneMonthSymbols;
const CFStringRef kCFDateFormatterVeryShortWeekdaySymbols;
const CFStringRef kCFDateFormatterStandaloneWeekdaySymbols;
const CFStringRef kCFDateFormatterShortStandaloneWeekdaySymbols;
const CFStringRef kCFDateFormatterVeryShortStandaloneWeekdaySymbols;
const CFStringRef kCFDateFormatterQuarterSymbols;
const CFStringRef kCFDateFormatterShortQuarterSymbols;
const CFStringRef kCFDateFormatterStandaloneQuarterSymbols;
const CFStringRef kCFDateFormatterShortStandaloneQuarterSymbols;
const CFStringRef kCFDateFormatterGregorianStartDate;

Constants
kCFDateFormatterIsLenient

Specifies the lenient property, a CFBoolean object where a true value indicates that the parsing of
strings into date or absolute time values will be fuzzy.

The formatter will use heuristics to guess at the date which is intended by the string. As with any
guessing, it may get the result date wrong (that is, a date other than that which was intended).

Available in Mac OS X v10.3 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterTimeZone
Specifies the time zone property, a CFTimeZone object.

Available in Mac OS X v10.3 and later.

Declared in CFDateFormatter.h.

194 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

kCFDateFormatterCalendarName
Specifies the calendar name, a CFString object.

With Mac OS X version 10.3, kCFGregorianCalendar (page 197) is the only possible value. With Mac
OS X version 10.4, kCFGregorianCalendar and other calendar names are specified by CFLocale.

Available in Mac OS X v10.3 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterDefaultFormat
The original format string for the formatter (given the date & time style and locale specified at creation).

Available in Mac OS X v10.3 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterTwoDigitStartDate
Specifies the property representing the date from which two-digit years start, a CFDate object.

Available in Mac OS X v10.4 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterDefaultDate
Specifies the default date property, a CFDate object.

Available in Mac OS X v10.4 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterCalendar
Specifies the calendar property, a CFCalendar object.

Available in Mac OS X v10.4 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterEraSymbols
Specifies the era symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.4 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterMonthSymbols
Specifies the month symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.4 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterShortMonthSymbols
Specifies the short month symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.4 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterWeekdaySymbols
Specifies the weekday symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.4 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterShortWeekdaySymbols
Specifies the short weekday symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.4 and later.

Declared in CFDateFormatter.h.

Constants 195
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

kCFDateFormatterAMSymbol
Specifies the AM symbol property, a CFString object.

Available in Mac OS X v10.4 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterPMSymbol
Specifies the PM symbol property, a CFString object.

Available in Mac OS X v10.4 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterLongEraSymbols
Specifies the long era symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterVeryShortMonthSymbols
Specifies the very short month symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterStandaloneMonthSymbols
Specifies the standalone month symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterShortStandaloneMonthSymbols
Specifies the short standalone month symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterVeryShortStandaloneMonthSymbols
Specifies the very short standalone month symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterVeryShortWeekdaySymbols
Specifies the very short weekday symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterStandaloneWeekdaySymbols
Specifies the standalone weekday symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterShortStandaloneWeekdaySymbols
Specifies the short standalone weekday symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

196 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

kCFDateFormatterVeryShortStandaloneWeekdaySymbols
Specifies the very short standalone weekday symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterQuarterSymbols
Specifies the quarter symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterShortQuarterSymbols
Specifies the short quarter symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterStandaloneQuarterSymbols
Specifies the standalone quarter symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterShortStandaloneQuarterSymbols
Specifies the short standalone quarter symbols property, a CFArray of CFString objects.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

kCFDateFormatterGregorianStartDate
Specifies the Gregorian start date property, a CFDate object.

This is used to specify the start date for the Gregorian calendar switch from the Julian calendar.
Different locales switched at different times. Normally you should just accept the locale's default date
for the switch.

Available in Mac OS X v10.5 and later.

Declared in CFDateFormatter.h.

Discussion
The values for these keys are all CFType objects. The specific types for each key are specified above.

Declared In
CFDateFormatter.h

Calendar Names
Calendar names used by CFDateFormatter.

const CFStringRef kCFGregorianCalendar;

Constants
kCFGregorianCalendar

The name of the calendar currently supported by the kCFDateFormatterCalendarName (page 195)
property.

Available in Mac OS X v10.3 and later.

Declared in CFLocale.h.

Constants 197
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

Declared In
CFDateFormatter.h

198 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CFDateFormatter Reference

Derived From: CFPropertyList Reference : CFType Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFDictionary.h

Companion guides Collections Programming Topics for Core Foundation
Property List Programming Topics for Core Foundation

Overview

CFDictionary and its derived mutable type, CFMutableDictionary Reference, manage associations of key-value
pairs. CFDictionary creates static dictionaries where you set the key-value pairs when first creating a dictionary
and cannot modify them afterward; CFMutableDictionary creates dynamic dictionaries where you can add
or delete key-value pairs at any time, and the dictionary automatically allocates memory as needed.

A key-value pair within a dictionary is called an entry. Each entry consists of one object that represents the
key and a second object that is that key’s value. Within a dictionary, the keys are unique. That is, no two keys
in a single dictionary are equal (as determined by the equal callback). Internally, a dictionary uses a hash
table to organize its storage and to provide rapid access to a value given the corresponding key.

Keys for a CFDictionary may be of any C type, however note that if you want to convert a CFPropertyList to
XML, any dictionary’s keys must be CFString objects.

You create static dictionaries using either the CFDictionaryCreate (page 203) or
CFDictionaryCreateCopy (page 204) function. Key-value pairs are passed as parameters to
CFDictionaryCreate (page 203). When adding key-value pairs to a dictionary, the keys and values are not
copied—they are retained so they are not invalidated before the dictionary is deallocated.

CFDictionary provides functions for querying the values of a dictionary. The function
CFDictionaryGetCount (page 205) returns the number of key-value pairs in a dictionary; the
CFDictionaryContainsValue (page 202) function checks if a value is in a dictionary; and
CFDictionaryGetKeysAndValues (page 206) returns a C array containing all the values and a C array
containing all the keys in a dictionary.

The CFDictionaryApplyFunction (page 201) function lets you apply a function to all key-value pairs in a
dictionary.

CFDictionary is “toll-free bridged” with its Cocoa Foundation counterpart, NSDictionary. This means that
the Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSDictionary * parameter, you can pass in a CFDictionaryRef,
and in a function where you see a CFDictionaryRef parameter, you can pass in an NSDictionary instance.
This also applies to concrete subclasses of NSDictionary. See Interchangeable Data Types for more information
on toll-free bridging.

Overview 199
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

Functions by Task

Creating a dictionary

CFDictionaryCreate (page 203)
Creates an immutable dictionary containing the specified key-value pairs.

CFDictionaryCreateCopy (page 204)
Creates and returns a new immutable dictionary with the key-value pairs of another dictionary.

Examining a dictionary

CFDictionaryContainsKey (page 201)
Returns a Boolean value that indicates whether a given key is in a dictionary.

CFDictionaryContainsValue (page 202)
Returns a Boolean value that indicates whether a given value is in a dictionary.

CFDictionaryGetCount (page 205)
Returns the number of key-value pairs in a dictionary.

CFDictionaryGetCountOfKey (page 205)
Returns the number of times a key occurs in a dictionary.

CFDictionaryGetCountOfValue (page 206)
Counts the number of times a given value occurs in the dictionary.

CFDictionaryGetKeysAndValues (page 206)
Fills two buffers with the keys and values from a dictionary.

CFDictionaryGetValue (page 208)
Returns the value associated with a given key.

CFDictionaryGetValueIfPresent (page 208)
Returns a Boolean value that indicates whether a given value for a given key is in a dictionary, and
returns that value indirectly if it exists.

Applying a function to a dictionary

CFDictionaryApplyFunction (page 201)
Calls a function once for each key-value pair in a dictionary.

Getting the CFDictionary type ID

CFDictionaryGetTypeID (page 207)
Returns the type identifier for the CFDictionary opaque type.

200 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

Functions

CFDictionaryApplyFunction
Calls a function once for each key-value pair in a dictionary.

void CFDictionaryApplyFunction (
 CFDictionaryRef theDict,
 CFDictionaryApplierFunction applier,
 void *context
);

Parameters
theDict

The dictionary to operate upon.

applier
The callback function to call once for each key-value pair in theDict. If this parameter is not a pointer
to a function of the correct prototype, the behavior is undefined. If there are keys or values which the
applier function does not expect or cannot properly apply to, the behavior is undefined.

context
A pointer-sized program-defined value, which is passed as the third parameter to the applier function,
but is otherwise unused by this function. The value must be appropriate for the applier function.

Discussion
If this function iterates over a mutable collection, it is unsafe for the applier function to change the contents
of the collection.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ColorSyncDevices
IOPrintSuperClasses
MoreIsBetter
MoreSCF
QISA

Declared In
CFDictionary.h

CFDictionaryContainsKey
Returns a Boolean value that indicates whether a given key is in a dictionary.

Functions 201
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

Boolean CFDictionaryContainsKey (
 CFDictionaryRef theDict,
 const void *key
);

Parameters
theDict

The dictionary to examine.

key
The key for which to find matches in theDict. The key hash and equal callbacks provided when the
dictionary was created, are used to compare. If the hash callback is NULL, key is treated as a pointer
and converted to an integer. If the equal callback is NULL, pointer equality (in C, ==) is used. If key,
or any of the keys in the dictionary, is not understood by the equal callback, the behavior is undefined.

Return Value
true if key is in the dictionary, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
MoreIsBetter
MoreSCF
QISA
SeeMyFriends

Declared In
CFDictionary.h

CFDictionaryContainsValue
Returns a Boolean value that indicates whether a given value is in a dictionary.

Boolean CFDictionaryContainsValue (
 CFDictionaryRef theDict,
 const void *value
);

Parameters
theDict

The dictionary to examine.

value
The value for which to find matches in theDict. The value equal callback provided when the dictionary
was created is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If
value, or any other value in the dictionary, is not understood by the equal callback, the behavior is
undefined.

Return Value
true if value is in the dictionary, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

202 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

Declared In
CFDictionary.h

CFDictionaryCreate
Creates an immutable dictionary containing the specified key-value pairs.

CFDictionaryRef CFDictionaryCreate (
 CFAllocatorRef allocator,
 const void **keys,
 const void **values,
 CFIndex numValues,
 const CFDictionaryKeyCallBacks *keyCallBacks,
 const CFDictionaryValueCallBacks *valueCallBacks
);

Parameters
allocator

The allocator to use to allocate memory for the new dictionary. Pass NULL or
kCFAllocatorDefault (page 35) to use the current default allocator.

keys
A C array of the pointer-sized keys to be in the new dictionary. This value may be NULL if the
numValues parameter is 0. This C array is not changed or freed by this function. The value must be
a valid pointer to a C array of at least numValues pointers.

values
A C array of the pointer-sized values to be in the new dictionary. This value may be NULL if the
numValues parameter is 0. This C array is not changed or freed by this function. The value must be
a valid pointer to a C array of at least numValues elements.

numValues
The number of key-value pairs to copy from the keys and values C arrays into the new dictionary.
This number will be the count of the dictionary; it must be non-negative and less than or equal to
the actual number of keys or values.

keyCallBacks
A pointer to a CFDictionaryKeyCallBacks (page 213) structure initialized with the callbacks to
use to retain, release, describe, and compare keys in the dictionary. A copy of the contents of the
callbacks structure is made, so that a pointer to a structure on the stack can be passed in or can be
reused for multiple collection creations.

This value may be NULL, which is treated as if a valid structure of version 0 with all fields NULL had
been passed in. Otherwise, if any of the fields are not valid pointers to functions of the correct type,
or this parameter is not a valid pointer to a CFDictionaryKeyCallBacks (page 213) structure, the
behavior is undefined. If any of the keys put into the collection is not one understood by one of the
callback functions the behavior when that callback function is used is undefined.

If the collection will contain CFType objects only, then pass a pointer to
kCFTypeDictionaryKeyCallBacks (page 216) as this parameter to use the default callback functions.

Functions 203
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

valueCallBacks
A pointer to a CFDictionaryValueCallBacks (page 214) structure initialized with the callbacks to
use to retain, release, describe, and compare values in the dictionary. A copy of the contents of the
callbacks structure is made, so that a pointer to a structure on the stack can be passed in or can be
reused for multiple collection creations.

This value may be NULL, which is treated as if a valid structure of version 0 with all fields NULL had
been passed in. Otherwise, if any of the fields are not valid pointers to functions of the correct type,
or this parameter is not a valid pointer to a CFDictionaryValueCallBacks structure, the behavior
is undefined. If any value put into the collection is not one understood by one of the callback functions
the behavior when that callback function is used is undefined.

If the collection will contain CFType objects only, then pass a pointer to
kCFTypeDictionaryValueCallBacks (page 216) as this parameter to use the default callback
functions.

Return Value
A new dictionary, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
HITextViewDemo
MoreIsBetter
MoreSCF
QISA

Declared In
CFDictionary.h

CFDictionaryCreateCopy
Creates and returns a new immutable dictionary with the key-value pairs of another dictionary.

CFDictionaryRef CFDictionaryCreateCopy (
 CFAllocatorRef allocator,
 CFDictionaryRef theDict
);

Parameters
allocator

The allocator to use to allocate memory for the new dictionary. Pass NULL or
kCFAllocatorDefault (page 35) to use the current default allocator.

theDict
The dictionary to copy. The keys and values from the dictionary are copied as pointers into the new
dictionary. However, the keys and values are also retained by the new dictionary. The count of the
new dictionary is the same as the count of theDict. The new dictionary uses the same callbacks as
theDict.

Return Value
A new dictionary that contains the same key-value pairs as theDict, or NULL if there was a problem creating
the object. Ownership follows the Create Rule.

204 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryGetCount
Returns the number of key-value pairs in a dictionary.

CFIndex CFDictionaryGetCount (
 CFDictionaryRef theDict
);

Parameters
theDict

The dictionary to examine.

Return Value
The number of number of key-value pairs in theDict.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
MoreIsBetter
MoreSCF
QISA
SeeMyFriends

Declared In
CFDictionary.h

CFDictionaryGetCountOfKey
Returns the number of times a key occurs in a dictionary.

CFIndex CFDictionaryGetCountOfKey (
 CFDictionaryRef theDict,
 const void *key
);

Parameters
theDict

The dictionary to examine.

key
The key for which to find matches in theDict. The key hash and equal callbacks provided when the
dictionary was created are used to compare. If the hash callback was NULL, the key is treated as a
pointer and converted to an integer. If the equal callback was NULL, pointer equality (in C, ==) is used.
If key, or any of the keys in the dictionary, is not understood by the equal callback, the behavior is
undefined.

Functions 205
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

Return Value
Returns 1 if a matching key is used by the dictionary, otherwise 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryGetCountOfValue
Counts the number of times a given value occurs in the dictionary.

CFIndex CFDictionaryGetCountOfValue (
 CFDictionaryRef theDict,
 const void *value
);

Parameters
theDict

The dictionary to examine.

value
The value for which to find matches in theDict. The value equal callback provided when the dictionary
was created is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If
value, or any other value in the dictionary, is not understood by the equal callback, the behavior is
undefined.

Return Value
The number of times the value occurs in theDict.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryGetKeysAndValues
Fills two buffers with the keys and values from a dictionary.

void CFDictionaryGetKeysAndValues (
 CFDictionaryRef theDict,
 const void **keys,
 const void **values
);

Parameters
theDict

The dictionary to examine.

206 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

keys
A C array of pointer-sized values that, on return, is filled with keys from the theDict. The keys and
values C arrays are parallel to each other (that is, the items at the same indices form a key-value pair
from the dictionary). This value must be a valid pointer to a C array of the appropriate type and size
(that is, a size equal to the count of theDict), or NULL if the keys are not required. If the keys are
Core Foundation objects, ownership follows the Get Rule.

values
A C array of pointer-sized values that, on return, is filled with values from the theDict. The keys and
values C arrays are parallel to each other (that is, the items at the same indices form a key-value pair
from the dictionary). This value must be a valid pointer to a C array of the appropriate type and size
(that is, a size equal to the count of theDict), or NULL if the values are not required. If the values are
Core Foundation objects, ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
MoreIsBetter
MoreSCF
QISA
SeeMyFriends

Declared In
CFDictionary.h

CFDictionaryGetTypeID
Returns the type identifier for the CFDictionary opaque type.

CFTypeID CFDictionaryGetTypeID (
 void
);

Return Value
The type identifier for the CFDictionary opaque type.

Discussion
CFMutableDictionary objects have the same type identifier as CFDictionary objects.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
HID Utilities Source
MoreIsBetter
MoreSCF
QISA

Declared In
CFDictionary.h

Functions 207
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

CFDictionaryGetValue
Returns the value associated with a given key.

const void * CFDictionaryGetValue (
 CFDictionaryRef theDict,
 const void *key
);

Parameters
theDict

The dictionary examine.

key
The key for which to find a match in theDict. The key hash and equal callbacks provided when the
dictionary was created are used to compare. If the hash callback was NULL, the key is treated as a
pointer and converted to an integer. If the equal callback was NULL, pointer equality (in C, ==) is used.
If key, or any of the keys in theDict, is not understood by the equal callback, the behavior is
undefined.

Return Value
The value associated with key in theDict, or NULL if no key-value pair matching key exists. Since NULL is
also a valid value in some dictionaries, use CFDictionaryGetValueIfPresent (page 208) to distinguish
between a value that is not found, and a NULL value. If the value is a Core Foundation object, ownership
follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioburntest
databurntest
MoreIsBetter
MoreSCF
QISA

Declared In
CFDictionary.h

CFDictionaryGetValueIfPresent
Returns a Boolean value that indicates whether a given value for a given key is in a dictionary, and returns
that value indirectly if it exists.

Boolean CFDictionaryGetValueIfPresent (
 CFDictionaryRef theDict,
 const void *key,
 const void **value
);

Parameters
theDict

The dictionary to examine.

208 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

key
The key for which to find a match in theDict. The key hash and equal callbacks provided when the
dictionary was created are used to compare. If the hash callback was NULL, key is treated as a pointer
and converted to an integer. If the equal callback was NULL, pointer equality (in C, ==) is used. If key,
or any of the keys in theDict, is not understood by the equal callback, the behavior is undefined.

value
A pointer to memory which, on return, is filled with the pointer-sized value if a matching key is found.
If no key match is found, the contents of the storage pointed to by this parameter are undefined. This
value may be NULL, in which case the value from the dictionary is not returned (but the return value
of this function still indicates whether or not the key-value pair was present). If the value is a Core
Foundation object, ownership follows the Get Rule.

Return Value
true if a matching key was found, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlbumToSlideshow
HID Utilities Source
MoreIsBetter
MoreSCF
QISA

Declared In
CFDictionary.h

Callbacks

CFDictionaryApplierFunction
Prototype of a callback function that may be applied to every key-value pair in a dictionary.

typedef void (*CFDictionaryApplierFunction) (
 const void *key,
 const void *value,
 void *context
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *key,
 const void *value,
 void *context
);

Callbacks 209
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

Parameters
key

The key associated with the current key-value pair.

value
The value associated with the current key-value pair.

context
The program-defined context parameter given to the apply function.

Discussion
This callback is passed to the CFDictionaryApplyFunction (page 201) function which iterates over the
key-value pairs in a dictionary and applies the behavior defined in the applier function to each key-value pair
in a dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryCopyDescriptionCallBack
Prototype of a callback function used to get a description of a value or key in a dictionary.

typedef CFStringRef (*CFDictionaryCopyDescriptionCallBack)(
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallback (
 const void *value
);

Parameters
value

The value to be described.

Return Value
A text description of value.

Discussion
This callback is passed to CFDictionaryCreate (page 203) in a CFDictionaryKeyCallBacks (page 213)
structure or CFDictionaryValueCallBacks (page 214). This callback is used by the
CFCopyDescription (page 634) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

210 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

CFDictionaryEqualCallBack
Prototype of a callback function used to determine if two values or keys in a dictionary are equal.

typedef Boolean (*CFDictionaryEqualCallBack) (
 const void *value1,
 const void *value2
);

If you name your function MyCallBack, you would declare it like this:

Boolean MyCallBack (
 const void *value1,
 const void *value2
);

Parameters
value1

A value in the dictionary.

value2
Another value in the dictionary.

Discussion
This callback is passed to CFDictionaryCreate (page 203) in a CFDictionaryKeyCallBacks (page 213)
and CFDictionaryValueCallBacks (page 214) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryHashCallBack
Prototype of a callback function invoked to compute a hash code for a key. Hash codes are used when
key-value pairs are accessed, added, or removed from a collection.

typedef CFHashCode (*CFDictionaryHashCallBack) (
 const void *value
);

If you name your function MyDictionaryHashCallBack, you would declare it like this:

CFHashCode MyDictionaryHashCallBack (
 const void *value
);

Parameters
value

The value used to compute the hash code.

Return Value
An integer that can be used as a table address in a hash table structure.

Callbacks 211
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

Discussion
This callback is passed to CFDictionaryCreate (page 203) in a CFDictionaryKeyCallBacks (page 213)
structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryReleaseCallBack
Prototype of a callback function used to release a key-value pair before it’s removed from a dictionary.

typedef void (*CFDictionaryReleaseCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFAllocatorRef allocator,
 const void *value
);

Parameters
allocator

The dictionary’s allocator.

value
The value being removed from the dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryRetainCallBack
Prototype of a callback function used to retain a value or key being added to a dictionary.

typedef const void *(*CFDictionaryRetainCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 CFAllocatorRef allocator,
 const void *value

212 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

);

Parameters
allocator

The dictionary’s allocator.

value
The value being added to the dictionary.

Return Value
The value or key to store in the dictionary, which is usually the value parameter passed to this callback, but
may be a different value if a different value should be stored in the collection.

Discussion
This callback is passed to CFDictionaryCreate (page 203) in a CFDictionaryKeyCallBacks (page 213)
and CFDictionaryValueCallBacks (page 214) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

Data Types

CFDictionaryKeyCallBacks
This structure contains the callbacks used to retain, release, describe, and compare the keys in a dictionary.

struct CFDictionaryKeyCallBacks {
 CFIndex version;
 CFDictionaryRetainCallBack retain;
 CFDictionaryReleaseCallBack release;
 CFDictionaryCopyDescriptionCallBack copyDescription;
 CFDictionaryEqualCallBack equal;
 CFDictionaryHashCallBack hash;
};
typedef struct CFDictionaryKeyCallBacks CFDictionaryKeyCallBacks;

Fields
version

The version number of this structure. If not one of the defined version numbers for this opaque type,
the behavior is undefined. The current version of this structure is 0.

retain
The callback used to retain each key as they are added to the collection. This callback returns the
value to use as the key in the dictionary, which is usually the value parameter passed to this callback,
but may be a different value if a different value should be used as the key. If NULL, keys are not
retained. See CFDictionaryRetainCallBack (page 212) for a descriptions of this function’s
parameters.

Data Types 213
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

release
The callback used to release keys as they are removed from the dictionary. If NULL, keys are not
released. See CFDictionaryReleaseCallBack (page 212) for a description of this callback.

copyDescription
The callback used to create a descriptive string representation of each key in the dictionary. If NULL,
the collection will create a simple description of each key. See
CFDictionaryCopyDescriptionCallBack (page 210) for a description of this callback.

equal
The callback used to compare keys in the dictionary for equality. If NULL, the collection will use pointer
equality to compare keys in the collection. See CFDictionaryEqualCallBack (page 211) for a
description of this callback.

hash
The callback used to compute a hash code for keys as they are used to access, add, or remove values
in the dictionary. If NULL, the collection computes a hash code by converting the pointer value to an
integer. See CFDictionaryHashCallBack (page 211) for a description of this callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryRef
A reference to an immutable dictionary object.

typedef const struct __CFDictionary *CFDictionaryRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryValueCallBacks
This structure contains the callbacks used to retain, release, describe, and compare the values in a dictionary.

struct CFDictionaryValueCallBacks {
 CFIndex version;
 CFDictionaryRetainCallBack retain;
 CFDictionaryReleaseCallBack release;
 CFDictionaryCopyDescriptionCallBack copyDescription;
 CFDictionaryEqualCallBack equal;
};
typedef struct CFDictionaryValueCallBacks CFDictionaryValueCallBacks;

Fields
version

The version number of this structure. If not one of the defined version numbers for this opaque type,
the behavior is undefined. The current version of this structure is 0.

214 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

retain
The callback used to retain each value as they are added to the collection. This callback returns the
value to use as the value in the dictionary, which is usually the value parameter passed to this callback,
but may be a different value if a different value should be used as the value. If NULL, values are not
retained. See CFDictionaryRetainCallBack (page 212) for a descriptions of this function’s
parameters.

release
The callback used to release values as they are removed from the dictionary. If NULL, values are not
released. See CFDictionaryReleaseCallBack (page 212) for a description of this callback.

copyDescription
The callback used to create a descriptive string representation of each value in the dictionary. If NULL,
the collection will create a simple description of each value. See
CFDictionaryCopyDescriptionCallBack (page 210) for a description of this callback.

equal
The callback used to compare values in the dictionary for equality. If NULL, the collection will use
pointer equality to compare values in the collection. See CFDictionaryEqualCallBack (page 211)
for a description of this callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

Constants

Predefined Callback Structures
CFDictionary provides some predefined callbacks for your convenience.

Constants 215
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

const CFDictionaryKeyCallBacks kCFCopyStringDictionaryKeyCallBacks;
const CFDictionaryKeyCallBacks kCFTypeDictionaryKeyCallBacks;
const CFDictionaryValueCallBacks kCFTypeDictionaryValueCallBacks;

Constants
kCFCopyStringDictionaryKeyCallBacks

PredefinedCFDictionaryKeyCallBacks (page 213) structure containing a set of callbacks appropriate
for use when the keys of a CFDictionary are all CFString objects, which may be mutable and need to
be copied in order to serve as constant keys for the values in the dictionary.

You typically use a pointer to this constant when creating a new dictionary.

Important: For performance reasons, the default kCFCopyStringDictionaryKeyCallBacks behavior
uses CFEqual (page 635) which does not normalize the strings. This means that, for example, it does not
consider CFStrings to be equal when they are the same but one is in pre-composed form (say, originating
from a UTF-16 text file) and the other in decomposed form (say, originating from a file name). In cases where
you use strings from different sources, you may want to pre-normalize the keys or else use a different set of
functions to perform the comparison.

Available in Mac OS X v10.0 and later.

Declared in CFDictionary.h.

kCFTypeDictionaryKeyCallBacks
PredefinedCFDictionaryKeyCallBacks (page 213) structure containing a set of callbacks appropriate
for use when the keys of a CFDictionary are all CFType-derived objects.

The retain callback is CFRetain, the release callback is CFRelease, the copy callback is
CFCopyDescription, the equal callback is CFEqual. Therefore, if you use a pointer to this constant
when creating the dictionary, keys are automatically retained when added to the collection, and
released when removed from the collection.

Available in Mac OS X v10.0 and later.

Declared in CFDictionary.h.

kCFTypeDictionaryValueCallBacks
Predefined CFDictionaryValueCallBacks (page 214) structure containing a set of callbacks
appropriate for use when the values in a CFDictionary are all CFType-derived objects.

The retain callback is CFRetain, the release callback is CFRelease, the copy callback is
CFCopyDescription, and the equal callback is CFEqual. Therefore, if you use a pointer to this
constant when creating the dictionary, values are automatically retained when added to the collection,
and released when removed from the collection.

Available in Mac OS X v10.0 and later.

Declared in CFDictionary.h.

216 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CFDictionary Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFError.h

Companion guide Error Handling Programming Guide For Cocoa

Overview

A CFError object encapsulates rich and extensible error information than is possible using only an error code
or error string. The core attributes of a CFError object are an error domain (represented by a string), a
domain-specific error code and a user info dictionary containing application specific information. Errors are
required to have a domain and an error code within that domain. The optional "userInfo" dictionary may
provide additional information that might be useful for the interpretation and reporting of the error. This
dictionary can even contain an “underlying” error, which is wrapped as an error bubbles up through various
layers.

Several well-known domains are defined corresponding to Mach, POSIX, and OSStatus errors. In addition,
CFError allows you to attach an arbitrary user info dictionary to an error object, and provides the means to
return a human-readable description for the error.

In general, a method should signal an error condition by—for example—returning false or NULL rather
than by the simple presence of an error object. The method can then optionally return an CFError object by
reference, in order to further describe the error.

CFError is toll-free bridged to NSError in the Foundation framework—for more details on toll-free bridging,
see Interchangeable Data Types. NSError has some additional guidelines which makes it easy to automatically
report errors to users and even try to recover from them. See Error Handling Programming Guide For Cocoa
for more information on NSError programming guidelines.

Functions by Task

Creating a CFError

CFErrorCreate (page 221)
Creates a new CFError object.

CFErrorCreateWithUserInfoKeysAndValues (page 221)
Creates a new CFError object using given keys and values to create the user info dictionary.

Overview 217
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CFError Reference

Getting Information About an Error

CFErrorGetDomain (page 223)
Returns the error domain for a given CFError.

CFErrorGetCode (page 222)
Returns the error code for a given CFError.

CFErrorCopyUserInfo (page 220)
Returns the user info dictionary for a given CFError.

CFErrorCopyDescription (page 218)
Returns a human-presentable description for a given error.

CFErrorCopyFailureReason (page 219)
Returns a human-presentable failure reason for a given error.

CFErrorCopyRecoverySuggestion (page 220)
Returns a human presentable recovery suggestion for a given error.

Getting the CFError Type ID

CFErrorGetTypeID (page 223)
Returns the type identifier for the CFError opaque type.

Functions

CFErrorCopyDescription
Returns a human-presentable description for a given error.

CFStringRef CFErrorCopyDescription (
 CFErrorRef err
);

Parameters
err

The CFError to examine. If this is not a valid CFError, the behavior is undefined.

Return Value
A localized, human-presentable description of err. This function never returns NULL. Ownership follows the
Create Rule.

Discussion
This is a complete sentence or two which says what failed and why it failed. The structure of the description
depends on the details provided in the user info dictionay. The rules for computing the return value are as
follows:

1. If the value in the user info dictionary for kCFErrorLocalizedDescriptionKey (page 225) is not NULL,
returns that value as-is.

2. If the value in the user info dictionary for kCFErrorLocalizedFailureReasonKey (page 225) is not
NULL, generate an error from that.

218 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CFError Reference

The description is something like: "Operation could not be completed. " +
kCFErrorLocalizedFailureReasonKey

3. Generate as good a user-presentable string as possible from kCFErrorDescriptionKey (page 225),
the domain, and code.

The description is something like like: "Operation could not be completed. Error domain/code occurred.
" or "Operation could not be completed. " + kCFErrorDescriptionKey + " (Error domain/code)"

Toll-free bridged instances of NSError might provide additional behaviors for manufacturing a description
string.

You should not depend on the exact contents or format of the returned string, as it might change in different
releases of the operating system.

When you create a CFError, you should try to make sure the return value is human-presentable and localized
by providing a value for kCFErrorLocalizedDescriptionKey (page 225) in the user info dictionary.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFError.h

CFErrorCopyFailureReason
Returns a human-presentable failure reason for a given error.

CFStringRef CFErrorCopyFailureReason (
 CFErrorRef err
);

Parameters
err

The CFError to examine. If this is not a valid CFError, the behavior is undefined.

Return Value
A localized, human-presentable failure reason for err, or NULL if no user-presentable string is available.
Ownership follows the Create Rule.

Discussion
The failure reason is a complete sentence which describes why the operation failed. In many cases this will
be just the "because" part of the description (but as a complete sentence, which makes localization easier).
For example, an error description "Could not save file 'Letter' in folder 'Documents' because the volume
'MyDisk' doesn't have enough space." might have a corresponding failure reason, "The volume 'MyDisk'
doesn't have enough space."

By default, this function looks for a value for the kCFErrorLocalizedFailureReasonKey (page 225) key
in the user info dictionary. Toll-free bridged instances of NSError might provide additional behaviors for
manufacturing this value.

When you create a CFError, you should try to make sure the return value is human-presentable and localized
by providing a value for kCFErrorLocalizedFailureReasonKey (page 225) in the user info dictionary.

Functions 219
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CFError Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFError.h

CFErrorCopyRecoverySuggestion
Returns a human presentable recovery suggestion for a given error.

CFStringRef CFErrorCopyRecoverySuggestion (
 CFErrorRef err
);

Parameters
err

The CFError to examine. If this is not a valid CFError, the behavior is undefined.

Return Value
A localized, human-presentable recovery suggestion for err, or NULL if no user-presentable string is available.
Ownership follows the Create Rule.

Discussion
This is the string that can be displayed as the “informative” (or “secondary”) message on an alert panel. For
example, an error description “Could not save file ‘Letter’ in folder ‘Documents’ because the volume ‘MyDisk’
doesn’t have enough space.“ might have a corresponding recovery suggestion, “Remove some files from the
volume and try again.“

By default, this function looks for a value for the kCFErrorLocalizedRecoverySuggestionKey (page
225) key in the user info dictionary. Toll-free bridged instances of NSErrormight provide additional behaviors
for manufacturing this value.

When you create a CFError, you should try to make sure the return value is human-presentable and localized
by providing a value forkCFErrorLocalizedRecoverySuggestionKey (page 225) in the user info dictionary.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFError.h

CFErrorCopyUserInfo
Returns the user info dictionary for a given CFError.

CFDictionaryRef CFErrorCopyUserInfo (
 CFErrorRef err
);

Parameters
err

The error to examine. If this is not a valid CFError, the behavior is undefined.

220 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CFError Reference

Return Value
A dictionary containing the same keys and values as in the userInfo dictionary err was created with. Returns
an empty dictionary if NULL was supplied to the create function. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFError.h

CFErrorCreate
Creates a new CFError object.

CFErrorRef CFErrorCreate (
 CFAllocatorRef allocator,
 CFStringRef domain,
 CFIndex code,
 CFDictionaryRef userInfo
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

domain
A CFString that identifies the error domain. If this reference is NULL or is otherwise not a valid CFString,
the behavior is undefined.

code
A CFIndex that identifies the error code. The code is interpreted within the context of the error domain.

userInfo
A CFDictionary created with kCFCopyStringDictionaryKeyCallBacks and
kCFTypeDictionaryValueCallBacks (page 216). The dictionary is copied with
CFDictionaryCreateCopy (page 204). If you do not want the userInfo dictionary, you can pass NULL,
in which case an empty dictionary will be assigned.

Return Value
A new CFError object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFError.h

CFErrorCreateWithUserInfoKeysAndValues
Creates a new CFError object using given keys and values to create the user info dictionary.

Functions 221
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CFError Reference

CFErrorRef CFErrorCreateWithUserInfoKeysAndValues (
 CFAllocatorRef allocator,
 CFStringRef domain,
 CFIndex code,
 const void *const *userInfoKeys,
 const void *const *userInfoValues,
 CFIndex numUserInfoValues
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

domain
A CFString that identifies the error domain. If this reference is NULL or is otherwise not a valid CFString,
the behavior is undefined.

code
A CFIndex that identifies the error code. The code is interpreted within the context of the error domain.

userInfoKeys
An array of numUserInfoValues CFStrings used as keys in creating the userInfo dictionary. The value
of this parameter can be NULL if numUserInfoValues is 0.

userInfoValues
An array of numUserInfoValues CF types used as values in creating the userInfo dictionary. The
value of this parameter can be NULL if numUserInfoValues is 0.

numUserInfoValues
The number of keys and values in the userInfoKeys and userInfoValues arrays.

Return Value
A new CFError object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFError.h

CFErrorGetCode
Returns the error code for a given CFError.

CFIndex CFErrorGetCode (
 CFErrorRef err
);

Parameters
err

The error to examine. If this is not a valid CFError, the behavior is undefined.

Return Value
The error code of err.

222 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CFError Reference

Discussion
Note that this function returns the error code for the specified CFError, not an error return for the current
call.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFError.h

CFErrorGetDomain
Returns the error domain for a given CFError.

CFStringRef CFErrorGetDomain (
 CFErrorRef err
);

Parameters
err

The error to examine. If this is not a valid CFError, the behavior is undefined.

Return Value
The error domain for err. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFError.h

CFErrorGetTypeID
Returns the type identifier for the CFError opaque type.

CFTypeID CFErrorGetTypeID (
 void
);

Return Value
The type identifier for the CFError opaque type.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFError.h

Functions 223
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CFError Reference

Data Types

CFErrorRef
A reference to a CFError object.

typedef struct __CFError * CFErrorRef;

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFError.h

Constants

Error domains
These constants define domains for CFError objects.

const CFStringRef kCFErrorDomainPOSIX;
const CFStringRef kCFErrorDomainOSStatus;
const CFStringRef kCFErrorDomainMach;
const CFStringRef kCFErrorDomainCocoa;

Constants
kCFErrorDomainPOSIX

A constant that specified the POSIX domain.

Available in Mac OS X v10.5 and later.

Declared in CFError.h.

kCFErrorDomainOSStatus
A constant that specified the OS domain.

Available in Mac OS X v10.5 and later.

Declared in CFError.h.

kCFErrorDomainMach
A constant that specified the Mach domain.

Available in Mac OS X v10.5 and later.

Declared in CFError.h.

kCFErrorDomainCocoa
A constant that specified the Cocoa domain.

Available in Mac OS X v10.5 and later.

Declared in CFError.h.

Discussion
The value of "code" will correspond to preexisting values in these domains.

224 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CFError Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFError.h

Keys for the user info dictionary
Keys in the userInfo dictionary.

const CFStringRef kCFErrorLocalizedDescriptionKey;
const CFStringRef kCFErrorLocalizedFailureReasonKey;
const CFStringRef kCFErrorLocalizedRecoverySuggestionKey;
const CFStringRef kCFErrorDescriptionKey;
const CFStringRef kCFErrorUnderlyingErrorKey;

Constants
kCFErrorLocalizedDescriptionKey

Key to identify the end user-presentable description in the userInfo dictionary.

Available in Mac OS X v10.5 and later.

Declared in CFError.h.

kCFErrorLocalizedFailureReasonKey
Key to identify the end user-presentable failure reason in the userInfo dictionary.

Available in Mac OS X v10.5 and later.

Declared in CFError.h.

kCFErrorLocalizedRecoverySuggestionKey
Key to identify the end user-presentable recovery suggestion in the userInfo dictionary.

Available in Mac OS X v10.5 and later.

Declared in CFError.h.

kCFErrorDescriptionKey
Key to identify the description in the userInfo dictionary.

When you create a CFError, you can provide a value for this key if you do not have localizable error
strings. The description should be a complete sentence if possible, and should not contain the domain
name or error code.

Available in Mac OS X v10.5 and later.

Declared in CFError.h.

kCFErrorUnderlyingErrorKey
Key to identify the underlying error in the userInfo dictionary.

Available in Mac OS X v10.5 and later.

Declared in CFError.h.

Discussion
When you create a user info dictionary, at a minimum you should provide values for one of
kCFErrorLocalizedDescriptionKey and kCFErrorLocalizedFailureReasonKey; ideally you should
provide values for kCFErrorLocalizedDescriptionKey, kCFErrorLocalizedFailureReasonKey, and
kCFErrorLocalizedRecoverySuggestionKey.

Availability
Available in Mac OS X v10.5 and later.

Constants 225
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CFError Reference

Declared In
NSError.h

226 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CFError Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFFileDescriptor.h

Overview

The CFFileDescriptor provides an opaque type to monitor file descriptors for read and write activity via
CFRunLoop.

You use CFFileDescriptor to monitor file descriptors for read and write activity via CFRunLoop using callbacks.
Each call back is one-shot, and must be re-enabled if you want to get another one.

You can re-enable the callback in the callback function itself, but you must completely service the file descriptor
before doing so. For example, if you create a CFFileDescriptor for a pipe and get a callback because there
are bytes to be read, then if you don't read all of the bytes but nevertheless re-enable the CFFileDescriptor
for read activity, you'll get called back again immediately.

You can monitor kqueue file descriptors for read activity to find out when an event the kqueue is filtering
for has occurred. You are responsible for understanding the use of the kevent() API and inserting and removing
filters from the kqueue file descriptor yourself.

The following example takes a UNIX process ID as argument, and watches up to 20 seconds, and reports if
the process terminates in that time:

// cc test.c -framework CoreFoundation -O
#include <CoreFoundation/CoreFoundation.h>
#include <unistd.h>
#include <sys/event.h>
static void noteProcDeath(CFFileDescriptorRef fdref, CFOptionFlags callBackTypes,
 void *info) {
 struct kevent kev;
 int fd = CFFileDescriptorGetNativeDescriptor(fdref);
 kevent(fd, NULL, 0, &kev, 1, NULL);
 // take action on death of process here
 printf("process with pid '%u' died\n", (unsigned int)kev.ident);
 CFFileDescriptorInvalidate(fdref);
 CFRelease(fdref); // the CFFileDescriptorRef is no longer of any use in this
 example
}
// one argument, an integer pid to watch, required
int main(int argc, char *argv[]) {
 if (argc < 2) exit(1);
 int fd = kqueue();
 struct kevent kev;

Overview 227
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CFFileDescriptor Reference

 EV_SET(&kev, atoi(argv[1]), EVFILT_PROC, EV_ADD|EV_ENABLE, NOTE_EXIT, 0,
NULL);
 kevent(fd, &kev, 1, NULL, 0, NULL);
 CFFileDescriptorRef fdref = CFFileDescriptorCreate(kCFAllocatorDefault, fd,
 true, noteProcDeath, NULL);
 CFFileDescriptorEnableCallBacks(fdref, kCFFileDescriptorReadCallBack);
 CFRunLoopSourceRef source =
CFFileDescriptorCreateRunLoopSource(kCFAllocatorDefault, fdref, 0);
 CFRunLoopAddSource(CFRunLoopGetMain(), source, kCFRunLoopDefaultMode);
 CFRelease(source);
 // run the run loop for 20 seconds
 CFRunLoopRunInMode(kCFRunLoopDefaultMode, 20.0, false);
 return 0;
}

Functions by Task

Creating a CFFileDescriptor

CFFileDescriptorCreate (page 229)
Creates a new CFFileDescriptor.

Getting Information About a File Descriptor

CFFileDescriptorGetNativeDescriptor (page 232)
Returns the native file descriptor for a given CFFileDescriptor.

CFFileDescriptorIsValid (page 233)
Returns a Boolean value that indicates whether the native file descriptor for a given CFFileDescriptor
is valid.

CFFileDescriptorGetContext (page 231)
Gets the context for a given CFFileDescriptor.

Invalidating a File Descriptor

CFFileDescriptorInvalidate (page 232)
Invalidates the native file descriptor for a given CFFileDescriptor.

Managing Callbacks

CFFileDescriptorEnableCallBacks (page 231)
Enables callbacks for a given CFFileDescriptor.

CFFileDescriptorDisableCallBacks (page 230)
Disables callbacks for a given CFFileDescriptor.

228 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CFFileDescriptor Reference

Creating a Run Loop Source

CFFileDescriptorCreateRunLoopSource (page 230)
Creates a new runloop source for a given CFFileDescriptor.

Getting the CFFileDescriptor Type ID

CFFileDescriptorGetTypeID (page 232)
Returns the type identifier for the CFFileDescriptor opaque type.

Functions

CFFileDescriptorCreate
Creates a new CFFileDescriptor.

CFFileDescriptorRef CFFileDescriptorCreate (
 CFAllocatorRef allocator,
 CFFileDescriptorNativeDescriptor fd,
 Boolean closeOnInvalidate,
 CFFileDescriptorCallBack callout,
 const CFFileDescriptorContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new bag and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

fd
The file descriptor for the new CFFileDescriptor.

closeOnInvalidate
true if the new CFFileDescriptor should close fd when it is invalidated, otherwise false.

callout
The CFFileDescriptorCallBack for the new CFFileDescriptor.

context
Contextual information for the new CFFileDescriptor.

Return Value
A new CFFileDescriptor or NULL if there was a problem creating the object. Ownership follows the Create
Rule.

Availability
Available in Mac OS X v10.5 and later.

See Also
CFFileDescriptorGetContext (page 231)
CFFileDescriptorInvalidate (page 232)

Functions 229
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CFFileDescriptor Reference

Declared In
CFFileDescriptor.h

CFFileDescriptorCreateRunLoopSource
Creates a new runloop source for a given CFFileDescriptor.

CFRunLoopSourceRef CFFileDescriptorCreateRunLoopSource (
 CFAllocatorRef allocator,
 CFFileDescriptorRef f,
 CFIndex order
);

Parameters
allocator

The allocator to use to allocate memory for the new bag and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

f
A CFFileDescriptor.

order
The order for the new run loop (see CFRunLoopSourceCreate (page 468)).

Return Value
A new runloop source for f, or NULL if there was a problem creating the object. Ownership follows the Create
Rule.

Discussion
The context for the new runloop (see CFRunLoopSourceCreate (page 468)) is the same as the context
passed in when the CFFileDescriptor was created (see CFFileDescriptorCreate (page 229)).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFFileDescriptor.h

CFFileDescriptorDisableCallBacks
Disables callbacks for a given CFFileDescriptor.

void CFFileDescriptorDisableCallBacks (
 CFFileDescriptorRef f,
 CFOptionFlags callBackTypes
);

Parameters
f

A CFFileDescriptor.

callBackTypes
A bitmask that specifies which callbacks to disable (see “Callback Identifiers” (page 235) for possible
components).

230 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CFFileDescriptor Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
CFFileDescriptorEnableCallBacks (page 231)

Declared In
CFFileDescriptor.h

CFFileDescriptorEnableCallBacks
Enables callbacks for a given CFFileDescriptor.

void CFFileDescriptorEnableCallBacks (
 CFFileDescriptorRef f,
 CFOptionFlags callBackTypes
);

Parameters
f

A CFFileDescriptor.

callBackTypes
A bitmask that specifies which callbacks to enable (see “Callback Identifiers” (page 235) for possible
components).

Availability
Available in Mac OS X v10.5 and later.

See Also
CFFileDescriptorDisableCallBacks (page 230)

Declared In
CFFileDescriptor.h

CFFileDescriptorGetContext
Gets the context for a given CFFileDescriptor.

void CFFileDescriptorGetContext (
 CFFileDescriptorRef f,
 CFFileDescriptorContext *context
);

Parameters
f

A CFFileDescriptor.

context
Upon return, contains the context passed to f in CFFileDescriptorCreate (page 229).

Availability
Available in Mac OS X v10.5 and later.

Functions 231
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CFFileDescriptor Reference

See Also
CFFileDescriptorCreate (page 229)

Declared In
CFFileDescriptor.h

CFFileDescriptorGetNativeDescriptor
Returns the native file descriptor for a given CFFileDescriptor.

CFFileDescriptorNativeDescriptor CFFileDescriptorGetNativeDescriptor (
 CFFileDescriptorRef f
);

Parameters
f

A CFFileDescriptor.

Return Value
The native file descriptor for f.

Availability
Available in Mac OS X v10.5 and later.

See Also
CFFileDescriptorInvalidate (page 232)

Declared In
CFFileDescriptor.h

CFFileDescriptorGetTypeID
Returns the type identifier for the CFFileDescriptor opaque type.

CFTypeID CFFileDescriptorGetTypeID (
 void
);

Return Value
The type identifier for the CFFileDescriptor opaque type.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFFileDescriptor.h

CFFileDescriptorInvalidate
Invalidates the native file descriptor for a given CFFileDescriptor.

232 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CFFileDescriptor Reference

void CFFileDescriptorInvalidate (
 CFFileDescriptorRef f,
);

Parameters
f

A CFFileDescriptor.

Availability
Available in Mac OS X v10.5 and later.

See Also
CFFileDescriptorIsValid (page 233)
CFFileDescriptorGetNativeDescriptor (page 232)

Declared In
CFFileDescriptor.h

CFFileDescriptorIsValid
Returns a Boolean value that indicates whether the native file descriptor for a given CFFileDescriptor is valid.

Boolean CFFileDescriptorIsValid (
 CFFileDescriptorRef f,
);

Parameters
f

A CFFileDescriptor.

Return Value
true if the native file descriptor for f is valid, otherwise false.

Availability
Available in Mac OS X v10.5 and later.

See Also
CFFileDescriptorInvalidate (page 232)

Declared In
CFFileDescriptor.h

Data Types

CFFileDescriptorNativeDescriptor
Defines a type for the native file descriptor.

typedef int CFFileDescriptorNativeDescriptor;

Availability
Available in Mac OS X v10.5 and later.

Data Types 233
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CFFileDescriptor Reference

Declared In
CFFileDescriptor.h

CFFileDescriptorCallBack
Defines a structure for a callback for a CFFileDescriptor.

typedef void (*CFFileDescriptorCallBack) (
 CFFileDescriptorRef f,
 CFOptionFlags callBackTypes,
 void *info
);

Declared In
CFFileDescriptor.h

CFFileDescriptorContext
Defines a structure for the context of a CFFileDescriptor.

typedef struct {
 CFIndex version;
 void * info;
 void * (*retain)(void *info);
 void (*release)(void *info);
 CFStringRef (*copyDescription)(void *info);
} CFFileDescriptorContext;

Fields
version

The version number of this structure. If not one of the defined version numbers for this opaque type,
the behavior is undefined. The current version of this structure is 0.

info

retain
The retain callback used by the CFFileDescriptor.

release
The release callback used by the CFFileDescriptor.

copyDescription
The callback used to create a descriptive string representation of the CFFileDescriptor.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFFileDescriptor.h

CFFileDescriptorRef
A reference to an CFFileDescriptor object.

234 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CFFileDescriptor Reference

typedef struct __CFFileDescriptor * CFFileDescriptorRef;

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFFileDescriptor.h

Constants

Callback Identifiers
Constants that identify the read and write callbacks.

enum {
 kCFFileDescriptorReadCallBack = 1 << 0,
 kCFFileDescriptorWriteCallBack = 1 << 1
};

Constants
kCFFileDescriptorReadCallBack

Identifies the read callback.

Available in Mac OS X v10.5 and later.

Declared in CFFileDescriptor.h.

kCFFileDescriptorWriteCallBack
Identifies the write callback.

Available in Mac OS X v10.5 and later.

Declared in CFFileDescriptor.h.

Declared In
CFFileDescriptor.h

Constants 235
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CFFileDescriptor Reference

236 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CFFileDescriptor Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFLocale.h

Companion guides Locales Programming Guide
Internationalization Programming Topics

Overview

Unicode operations such as collation and text boundary determination can be affected by the conventions
of a particular language or region. CFLocale objects specify language-specific or region-specific information
for locale-sensitive operations.

The CFLocale opaque type provides support for obtaining available locales, obtaining localized locale names,
and converting among locale data formats. Locale identifiers in Mac OS X follow the IETF’s BCP 47. CFLocale
never uses Script Manager codes (except for the legacy support provided by
CFLocaleCreateCanonicalLocaleIdentifierFromScriptManagerCodes (page 243))—the Script
Manager and all its concepts are deprecated.

For more information on locale identifiers and the use of CFLocale, see Locales Programming Guide. It is also
useful to read the ICU’s User Guide for the Locale Class.

CFLocale is “toll-free bridged” with its Cocoa Foundation counterpart, NSLocale. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. Therefore,
in a method where you see an NSLocale * parameter, you can pass in a CFLocaleRef, and in a function
where you see a CFLocaleRef parameter, you can pass in an NSLocale instance. See Interchangeable Data
Types for more information on toll-free bridging.

Functions by Task

Creating a Locale

CFLocaleCopyCurrent (page 240)
Returns a copy of the logical locale for the current user.

CFLocaleCreate (page 242)
Creates a locale for the given arbitrary locale identifier.

Overview 237
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://icu-project.org/userguide/locale.html

CFLocaleCreateCopy (page 245)
Returns a copy of a locale.

CFLocaleGetSystem (page 247)
Returns the root, canonical locale.

Getting System Locale Information

CFLocaleCopyAvailableLocaleIdentifiers (page 239)
Returns an array of CFString objects that represents all locales for which locale data is available.

Getting ISO Information

CFLocaleCopyISOCountryCodes (page 241)
Returns an array of CFString objects that represents all known legal ISO country codes.

CFLocaleCopyISOLanguageCodes (page 242)
Returns an array of CFString objects that represents all known legal ISO language codes.

CFLocaleCopyISOCurrencyCodes (page 241)
Returns an array of CFString objects that represents all known legal ISO currency codes.

CFLocaleCopyCommonISOCurrencyCodes (page 239)
Returns an array of strings that represents ISO currency codes for currencies in common use.

Language Preferences

CFLocaleCopyPreferredLanguages (page 242)
Returns the array of canonicalized locale IDs that the user prefers.

Getting Information About a Locale

CFLocaleCopyDisplayNameForPropertyValue (page 240)
Returns the display name for the given value.

CFLocaleGetValue (page 247)
Returns the corresponding value for the given key of a locale’s key-value pair.

CFLocaleGetIdentifier (page 246)
Returns the given locale's identifier.

Getting and Creating Locale Identifiers

CFLocaleCreateCanonicalLocaleIdentifierFromScriptManagerCodes (page 243)
Returns a canonical locale identifier from given language and region codes.

CFLocaleCreateCanonicalLanguageIdentifierFromString (page 243)
Returns a canonical language identifier by mapping an arbitrary locale identification string to the
canonical identifier

238 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

CFLocaleCreateCanonicalLocaleIdentifierFromString (page 244)
Returns a canonical locale identifier by mapping an arbitrary locale identification string to the canonical
identifier.

CFLocaleCreateComponentsFromLocaleIdentifier (page 245)
Returns a dictionary containing the result from parsing a locale ID consisting of language, script,
country, variant, and keyword/value pairs.

CFLocaleCreateLocaleIdentifierFromComponents (page 246)
Returns a locale identifier consisting of language, script, country, variant, and keyword/value pairs
derived from a dictionary containing the source information.

Getting the CFLocale Type ID

CFLocaleGetTypeID (page 247)
Returns the type identifier for the CFLocale opaque type.

Functions

CFLocaleCopyAvailableLocaleIdentifiers
Returns an array of CFString objects that represents all locales for which locale data is available.

CFArrayRef CFLocaleCopyAvailableLocaleIdentifiers (
 void
);

Return Value
An array of CFString objects that represents all locales for which locale data is available. Ownership follows
the Create Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFLocale.h

CFLocaleCopyCommonISOCurrencyCodes
Returns an array of strings that represents ISO currency codes for currencies in common use.

CFArrayRef CFLocaleCopyCommonISOCurrencyCodes (
 void
);

Return Value
An array of CFString objects that represents ISO currency codes for currencies in common use. Ownership
follows the Create Rule.

Availability
Available in Mac OS X v10.5 and later.

Functions 239
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

Declared In
CFLocale.h

CFLocaleCopyCurrent
Returns a copy of the logical locale for the current user.

CFLocaleRef CFLocaleCopyCurrent (
 void
);

Return Value
The logical locale for the current user that is formed from the settings for the current user’s chosen system
locale overlaid with any custom settings the user has specified in System Preferences. May return a retained
cached object, not a new object. Ownership follows the Create Rule.

Discussion
Settings you get from this locale do not change as a user's preferences are changed so that your operations
are consistent. Typically you perform some operations on the returned object and then release it. Since the
returned object may be cached, you do not need to hold on to it indefinitely.

Note that locale settings are independent of the user’s language setting. The language of the current locale
may not correspond to the language at the first index in the AppleLanguages array from user defaults. For
more details, see Locale Concepts in Locales Programming Guide; see also
CFLocaleCopyPreferredLanguages (page 242).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CFFTPSample
CFPrefTopScores

Declared In
CFLocale.h

CFLocaleCopyDisplayNameForPropertyValue
Returns the display name for the given value.

CFStringRef CFLocaleCopyDisplayNameForPropertyValue (
 CFLocaleRef displayLocale,
 CFStringRef key,
 CFStringRef value
);

Parameters
displayLocale

A locale object.

key
A string that identifies the type that value is. It must be one of the standard locale property keys
(see “Locale Property Keys” (page 248)).

240 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

value
The value for which the display name is required.

Return Value
The display name for value. Returns NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Discussion
Note that not all locale property keys have values with display name values.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFLocale.h

CFLocaleCopyISOCountryCodes
Returns an array of CFString objects that represents all known legal ISO country codes.

CFArrayRef CFLocaleCopyISOCountryCodes (
 void
);

Return Value
An array of CFString objects that represents all known legal ISO country codes. Ownership follows the Create
Rule.

Discussion
Note: many of these will not have any supporting locale data in Mac OS X.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFLocale.h

CFLocaleCopyISOCurrencyCodes
Returns an array of CFString objects that represents all known legal ISO currency codes.

CFArrayRef CFLocaleCopyISOCurrencyCodes (
 void
);

Return Value
An array of CFString objects that represents all known legal ISO currency codes.Ownership follows the Create
Rule.

Discussion
Note: many of these will not have any supporting locale data in Mac OS X.

Availability
Available in Mac OS X v10.4 and later.

Functions 241
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

Declared In
CFLocale.h

CFLocaleCopyISOLanguageCodes
Returns an array of CFString objects that represents all known legal ISO language codes.

CFArrayRef CFLocaleCopyISOLanguageCodes (
 void
);

Return Value
An array of CFString objects that represents all known legal ISO language codes. Ownership follows the
Create Rule.

Discussion
Note: many of these will not have any supporting locale data in Mac OS X.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFLocale.h

CFLocaleCopyPreferredLanguages
Returns the array of canonicalized locale IDs that the user prefers.

CFArrayRef CFLocaleCopyPreferredLanguages (
 void
);

Return Value
The array of canonicalized CFString locale IDs that the current user prefers. Ownership follows the Create
Rule.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFLocale.h

CFLocaleCreate
Creates a locale for the given arbitrary locale identifier.

242 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

CFLocaleRef CFLocaleCreate (
 CFAllocatorRef allocator,
 CFStringRef localeIdentifier
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

localeIdentifier
A string representation of an arbitrary locale identifier.

Return Value
A new locale that corresponds to the arbitrary locale identifier localeIdentifier. Returns NULL if there
was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFLocale.h

CFLocaleCreateCanonicalLanguageIdentifierFromString
Returns a canonical language identifier by mapping an arbitrary locale identification string to the canonical
identifier

CFStringRef CFLocaleCreateCanonicalLanguageIdentifierFromString (
 CFAllocatorRef allocator,
 CFStringRef localeIdentifier
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

localeIdentifier
A string representation of an arbitrary locale identifier.

Return Value
A string that represents the canonical language identifier for the specified arbitrary locale identifier. Returns
NULL if there was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFLocale.h

CFLocaleCreateCanonicalLocaleIdentifierFromScriptManagerCodes
Returns a canonical locale identifier from given language and region codes.

Functions 243
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

CFStringRef CFLocaleCreateCanonicalLocaleIdentifierFromScriptManagerCodes (
 CFAllocatorRef allocator,
 LangCode lcode,
 RegionCode rcode
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

lcode
A Mac OS X language code.

rcode
A Mac OS X region code.

Return Value
A canonical locale identifier created by mapping lcode and rcode to a locale. Returns NULL if there was a
problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFLocale.h

CFLocaleCreateCanonicalLocaleIdentifierFromString
Returns a canonical locale identifier by mapping an arbitrary locale identification string to the canonical
identifier.

CFStringRef CFLocaleCreateCanonicalLocaleIdentifierFromString (
 CFAllocatorRef allocator,
 CFStringRef localeIdentifier
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

localeIdentifier
A string representation of an arbitrary locale identifier (for example, “English”).

Return Value
A canonical locale identifier created by mapping the arbitrary locale identification string to the canonical
identifier for the corresponding locale (for example, “en”). Returns NULL if there was a problem creating the
object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFLocale.h

244 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

CFLocaleCreateComponentsFromLocaleIdentifier
Returns a dictionary containing the result from parsing a locale ID consisting of language, script, country,
variant, and keyword/value pairs.

CFDictionaryRef CFLocaleCreateComponentsFromLocaleIdentifier (
 CFAllocatorRef allocator,
 CFStringRef localeID
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

localeID
The locale ID to be used when creating the locale dictionary.

Return Value
A dictionary containing the result from parsing a locale ID consisting of language, script, country, variant,
and keyword/value pairs. Returns NULL if there was a problem creating the object. Ownership follows the
Create Rule.

Discussion
The dictionary keys are the constant CFString objects that correspond to the locale ID components; the values
correspond to constants where available. For example: the string "en_US@calendar=japanese" yields a
dictionary with three entries: kCFLocaleLanguageCode=en, kCFLocaleCountryCode=US, and
kCFLocaleCalendarIdentifier=kCFJapaneseCalendar. See also
CFLocaleCreateLocaleIdentifierFromComponents (page 246).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFLocale.h

CFLocaleCreateCopy
Returns a copy of a locale.

CFLocaleRef CFLocaleCreateCopy (
 CFAllocatorRef allocator,
 CFLocaleRef locale
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

locale
The locale object to copy.

Return Value
A new locale that is a copy of locale. Returns NULL if there was a problem creating the object. Ownership
follows the Create Rule.

Functions 245
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFLocale.h

CFLocaleCreateLocaleIdentifierFromComponents
Returns a locale identifier consisting of language, script, country, variant, and keyword/value pairs derived
from a dictionary containing the source information.

CFStringRef CFLocaleCreateLocaleIdentifierFromComponents (
 CFAllocatorRef allocator,
 CFDictionaryRef dictionary
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

dictionary
The dictionary to use when creating the locale identifier.

Return Value
A locale identifier consisting of language, script, country, variant, and keyword/value pairs derived from
dictionary. Returns NULL if there was a problem creating the string. Ownership follows the Create Rule.

Discussion
Reverses the actions of CFLocaleCreateComponentsFromLocaleIdentifier (page 245), creating a single
string from the data in the specified dictionary. For example, the dictionary {kCFLocaleLanguageCode=en,
kCFLocaleCountryCode=US, kCFLocaleCalendarIdentifier=kCFJapaneseCalendar} becomes
"en_US@calendar=japanese".

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFLocale.h

CFLocaleGetIdentifier
Returns the given locale's identifier.

CFStringRef CFLocaleGetIdentifier (
 CFLocaleRef locale
);

Parameters
locale

The locale object to examine.

Return Value
A string representation of locale’s identifier. This may not be the same string that was used to create the
locale—it may be canonicalized. Ownership follows the Get Rule.

246 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFLocale.h

CFLocaleGetSystem
Returns the root, canonical locale.

CFLocaleRef CFLocaleGetSystem (
 void
);

Return Value
The root, canonical locale. Ownership follows the Get Rule.

Discussion
The root locale contains fixed backstop settings for all locale information.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LSMSmartCategorizer

Declared In
CFLocale.h

CFLocaleGetTypeID
Returns the type identifier for the CFLocale opaque type.

CFTypeID CFLocaleGetTypeID (
 void
);

Return Value
The type identifier for the CFLocale opaque type.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFLocale.h

CFLocaleGetValue
Returns the corresponding value for the given key of a locale’s key-value pair.

Functions 247
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

CFTypeRef CFLocaleGetValue (
 CFLocaleRef locale,
 CFStringRef key
);

Parameters
locale

The locale object to examine.

key
The key for which to obtain the corresponding value. Possible values are described in “Locale Property
Keys” (page 248).

Return Value
The value corresponding to the given key in locale. The value may be any type of CFType object. Ownership
follows the Get Rule.

Discussion
Locale objects use key-value pairs to store property values. Use this function to get the value of a specific
property.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFLocale.h

Data Types

CFLocaleRef
A reference to a CFLocale object.

typedef const struct __CFLocale *CFLocaleRef;

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFLocale.h

Constants

Locale Property Keys
Predefined locale keys used to get property values.

248 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

const CFStringRef kCFLocaleMeasurementSystem;
const CFStringRef kCFLocaleDecimalSeparator;
const CFStringRef kCFLocaleGroupingSeparator;
const CFStringRef kCFLocaleCurrencySymbol;
const CFStringRef kCFLocaleCurrencyCode;

const CFStringRef kCFLocaleIdentifier;
const CFStringRef kCFLocaleLanguageCode;
const CFStringRef kCFLocaleCountryCode;
const CFStringRef kCFLocaleScriptCode;
const CFStringRef kCFLocaleVariantCode;
const CFStringRef kCFLocaleExemplarCharacterSet;
const CFStringRef kCFLocaleCalendarIdentifier;
const CFStringRef kCFLocaleCalendar;
const CFStringRef kCFLocaleCollationIdentifier;
const CFStringRef kCFLocaleUsesMetricSystem;

Constants
kCFLocaleMeasurementSystem

Specifies the measurement system used.

The corresponding value is a CFString, for example “Metric” or “U.S.”.

Available in Mac OS X v10.3 and later.

Declared in CFLocale.h.

kCFLocaleDecimalSeparator
Specifies the decimal point string.

The corresponding value is a CFString, for example “.” or “,”.

Available in Mac OS X v10.3 and later.

Declared in CFLocale.h.

kCFLocaleGroupingSeparator
Specifies the separator string between groups of digits.

The corresponding value is a CFString, for example “,” or “.”.

Available in Mac OS X v10.3 and later.

Declared in CFLocale.h.

kCFLocaleCurrencySymbol
Specifies the currency symbol.

The corresponding value is a CFString, for example “$” or “£”.

Available in Mac OS X v10.3 and later.

Declared in CFLocale.h.

kCFLocaleCurrencyCode
Specifies the locale currency code.

The corresponding value is a CFString, for example “USD” or “GBP”.

Available in Mac OS X v10.3 and later.

Declared in CFLocale.h.

Constants 249
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

kCFLocaleIdentifier
Specifies locale identifier.

The corresponding value is a CFString containing the POSIX locale identifier as used by ICU, such as
“ja_JP”. If you have a variant locale or a different currency or calendar, it can be as complex as
“en_US_POSIX@calendar=japanese;currency=EUR” or
“az_Cyrl_AZ@calendar=buddhist;currency=JPY”.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFLocaleLanguageCode
Specifies the locale language code.

The corresponding value is a CFString containing an ISO 639-x/IETF BCP 47 language identifier, such
as “ja”.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFLocaleCountryCode
Specifies the locale country code.

The corresponding value is a CFString containing an ISO county code, such as “JP”.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFLocaleScriptCode
Specifies the locale script code.

The corresponding value is a CFString containing a Unicode script tag (strictly, an ISO 15924 script
tag). Usually this is empty (it is for “ja_JP”). It may be present for locales where a script must be
specified, for example “uz-Latn-UZ” vs. “uz-Cyrl-UZ” for Uzbek in Latin vs. Cyrillic (in the first case
the script code is “Latn”, and in the second it is “Cyrl”).

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFLocaleVariantCode
Specifies the locale variant code.

The corresponding value is a CFString containing the variant name. The variant code is arbitrary and
application-specific. ICU adds “_EURO” to its locale designations for locales that support the Euro
currency. For “en_US_POSIX” the variant is “POSIX”, and for “hy_AM_REVISED” it is “REVISED”.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFLocaleExemplarCharacterSet
Specifies the locale character set.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFLocaleCalendarIdentifier
Specifies the locale calendar identifier.

The corresponding value is a CFString containing the calendar identifier (for possible values, see
“Locale Calendar Identifiers” (page 251)).

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

250 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

kCFLocaleCalendar
Specifies the locale calendar.

The corresponding value is a CFCalendar.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFLocaleCollationIdentifier
Specifies the locale collation identifier.

The corresponding value is a collation.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFLocaleUsesMetricSystem
Specifies the whether the locale uses the metric system.

The corresponding value is a CFBoolean.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

Discussion
Locale objects use key-value pairs to store property values. Use the CFLocaleGetValue (page 247) function
to get the value of a specific property listed above.

Locale Calendar Identifiers
Predefined locale keys used to get calendar values—values for kCFLocaleCalendarIdentifier.

const CFStringRef kCFGregorianCalendar;
const CFStringRef kCFBuddhistCalendar;
const CFStringRef kCFChineseCalendar;
const CFStringRef kCFHebrewCalendar;
const CFStringRef kCFIslamicCalendar;
const CFStringRef kCFIslamicCivilCalendar;
const CFStringRef kCFJapaneseCalendar;

Constants
kCFGregorianCalendar

Specifies the Gregorian calendar.

Available in Mac OS X v10.3 and later.

Declared in CFLocale.h.

kCFBuddhistCalendar
Specifies the Buddhist calendar.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFChineseCalendar
Specifies the Chinese calendar.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

Constants 251
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

kCFHebrewCalendar
Specifies the Hebrew calendar.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFIslamicCalendar
Specifies the Islamic calendar.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFIslamicCivilCalendar
Specifies the Islamic Civil calendar.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

kCFJapaneseCalendar
Specifies the Japanese calendar.

Available in Mac OS X v10.4 and later.

Declared in CFLocale.h.

Discussion
Locale objects use key-value pairs to store property values. Use the CFLocaleGetValue (page 247) function
to get the value of a specific property listed above.

Locale Change Notification
Identifier for notification sent if the current locale changes.

const CFStringRef kCFLocaleCurrentLocaleDidChangeNotification

Constants
kCFLocaleCurrentLocaleDidChangeNotification

Identifier for the notification sent if the current locale changes.

This is a local notification posted when the user changes locale information in the System Preferences
panel. Keep in mind that there is no order in how notifications are delivered to observers; frameworks
or other parts of your code may also be observing this notification to take their own actions, and
these may not have occurred at the time you receive the notification.

There is no object or user info for this notification.

Available in Mac OS X v10.5 and later.

Declared in CFLocale.h.

Declared In
CFLocale.h

252 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CFLocale Reference

Derived From: CFType Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFMachPort.h

Overview

A CFMachPort object is a wrapper for a native Mach port (mach_port_t). Mach ports are the native
communication channel for the Mac OS X kernel.

CFMachPort does not provide a function to send messages, so you primarily use a CFMachPort object if you
need to listen to a Mach port that you obtained by other means. You can get a callback when a message
arrives on the port or when the port becomes invalid, such as when the native port dies.

To listen for messages you need to create a run loop source with CFMachPortCreateRunLoopSource (page
255) and add it to a run loop with CFRunLoopAddSource (page 445).

Important: If you want to tear down the connection, you must invalidate the port (using
CFMachPortInvalidate (page 258)) before releasing the runloop source and the Mach port object.

To send data, you must use the Mach APIs with the native Mach port, which is not described here. Alternatively,
you can use a CFMessagePort Reference object, which can send arbitrary data.

Mach ports only support communication on the local machine. For network communication, you have to
use a CFSocket Reference object.

Functions by Task

Creating a CFMachPort Object

CFMachPortCreate (page 254)
Creates a CFMachPort object with a new Mach port.

CFMachPortCreateWithPort (page 256)
Creates a CFMachPort object for a pre-existing native Mach port.

Overview 253
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CFMachPort Reference

Configuring a CFMachPort Object

CFMachPortInvalidate (page 258)
Invalidates a CFMachPort object, stopping it from receiving any more messages.

CFMachPortCreateRunLoopSource (page 255)
Creates a CFRunLoopSource object for a CFMachPort object.

CFMachPortSetInvalidationCallBack (page 259)
Sets the callback function invoked when a CFMachPort object is invalidated.

Examining a CFMachPort Object

CFMachPortGetContext (page 256)
Returns the context information for a CFMachPort object.

CFMachPortGetInvalidationCallBack (page 257)
Returns the invalidation callback function for a CFMachPort object.

CFMachPortGetPort (page 257)
Returns the native Mach port represented by a CFMachPort object.

CFMachPortIsValid (page 259)
Returns a Boolean value that indicates whether a CFMachPort object is valid and able to receive
messages.

Getting the CFMachPort Type ID

CFMachPortGetTypeID (page 258)
Returns the type identifier for the CFMachPort opaque type.

Functions

CFMachPortCreate
Creates a CFMachPort object with a new Mach port.

CFMachPortRef CFMachPortCreate (
 CFAllocatorRef allocator,
 CFMachPortCallBack callout,
 CFMachPortContext *context,
 Boolean *shouldFreeInfo
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault (page
35) to use the current default allocator.

callout
The callback function invoked when a message is received on the new Mach port.

254 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CFMachPort Reference

context
A structure holding contextual information for the new Mach port. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call.

shouldFreeInfo
A flag set by the function to indicate whether the info member of context should be freed. The
flag is set to true on failure, false otherwise. shouldFreeInfo can be NULL.

Return Value
The new CFMachPort object or NULL on failure. The CFMachPort object has both send and receive rights.
Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

CFMachPortCreateRunLoopSource
Creates a CFRunLoopSource object for a CFMachPort object.

CFRunLoopSourceRef CFMachPortCreateRunLoopSource (
 CFAllocatorRef allocator,
 CFMachPortRef port,
 CFIndex order
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault (page
35) to use the current default allocator.

port
The Mach port for which to create a CFRunLoopSource object.

order
A priority index indicating the order in which run loop sources are processed. order is currently
ignored by CFMachPort run loop sources. Pass 0 for this value.

Return Value
The new CFRunLoopSource object for port. Ownership follows the Create Rule.

Discussion
The run loop source is not automatically added to a run loop. To add the source to a run loop, use
CFRunLoopAddSource (page 445).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NotifyTool

Declared In
CFMachPort.h

Functions 255
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CFMachPort Reference

CFMachPortCreateWithPort
Creates a CFMachPort object for a pre-existing native Mach port.

CFMachPortRef CFMachPortCreateWithPort (
 CFAllocatorRef allocator,
 mach_port_t portNum,
 CFMachPortCallBack callout,
 CFMachPortContext *context,
 Boolean *shouldFreeInfo
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault (page
35) to use the current default allocator.

portNum
The native Mach port to use.

callout
The callback function invoked when a message is received on the Mach port.

context
A structure holding contextual information for the Mach port. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call.

shouldFreeInfo
A flag set by the function to indicate whether the info member of context should be freed. The
flag is set to true on failure or if a CFMachPort object already exists for portNum, false otherwise.
shouldFreeInfo can be NULL.

Return Value
The new CFMachPort object or NULL on failure. If a CFMachPort object already exists for portNum, the function
returns the pre-existing object instead of creating a new object; the context and callout parameters are
ignored in this case. Ownership follows the Create Rule.

Discussion
The CFMachPort object does not take full ownership of the send and receive rights of the Mach port portNum.
It is the caller’s responsibility to deallocate the Mach port rights after the CFMachPort object is no longer
needed and has been invalidated.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NotifyTool

Declared In
CFMachPort.h

CFMachPortGetContext
Returns the context information for a CFMachPort object.

256 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CFMachPort Reference

void CFMachPortGetContext (
 CFMachPortRef port,
 CFMachPortContext *context
);

Parameters
port

The CFMachPort object to examine.

context
A pointer to the structure into which the context information for port is to be copied. The information
being returned is usually the same information you passed to CFMachPortCreate (page 254) or
CFMachPortCreateWithPort (page 256) when creating port. However, if
CFMachPortCreateWithPort (page 256) returned a cached CFMachPort object instead of creating
a new object, context is filled with information from the original CFMachPort object instead of the
information you passed to the function.

Discussion
The context version number for CFMachPort objects is currently 0. Before calling this function, you need to
initialize the version member of context to 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

CFMachPortGetInvalidationCallBack
Returns the invalidation callback function for a CFMachPort object.

CFMachPortInvalidationCallBack CFMachPortGetInvalidationCallBack (
 CFMachPortRef port
);

Parameters
port

The CFMachPort object to examine.

Return Value
The callback function invoked when port is invalidated. NULL if no callback has been set with
CFMachPortSetInvalidationCallBack (page 259).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

CFMachPortGetPort
Returns the native Mach port represented by a CFMachPort object.

Functions 257
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CFMachPort Reference

mach_port_t CFMachPortGetPort (
 CFMachPortRef port
);

Parameters
port

The CFMachPort object to examine.

Return Value
The native Mach port represented by port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

CFMachPortGetTypeID
Returns the type identifier for the CFMachPort opaque type.

CFTypeID CFMachPortGetTypeID (
 void
);

Return Value
The type identifier for the CFMachPort opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

CFMachPortInvalidate
Invalidates a CFMachPort object, stopping it from receiving any more messages.

void CFMachPortInvalidate (
 CFMachPortRef port
);

Parameters
port

The CFMachPort object to invalidate.

Discussion
Invalidating a CFMachPort object prevents the port from ever receiving any more messages. The CFMachPort
object is not deallocated, though. If the port has not already been invalidated, the port’s invalidation callback
function is invoked, if one has been set with CFMachPortSetInvalidationCallBack (page 259). The
CFMachPortContext (page 261) info information for port is also released, if a release callback was specified
in the port’s context structure. Finally, if a run loop source was created for port, the run loop source is
invalidated, as well.

If the underlying Mach port is destroyed, the CFMachPort object is automatically invalidated.

258 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CFMachPort Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

CFMachPortIsValid
Returns a Boolean value that indicates whether a CFMachPort object is valid and able to receive messages.

Boolean CFMachPortIsValid (
 CFMachPortRef port
);

Parameters
port

The CFMachPort object to examine.

Return Value
true if port can be used for communication, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

CFMachPortSetInvalidationCallBack
Sets the callback function invoked when a CFMachPort object is invalidated.

void CFMachPortSetInvalidationCallBack (
 CFMachPortRef port,
 CFMachPortInvalidationCallBack callout
);

Parameters
port

The CFMachPort object to modify.

callout
The callback function to invoke when port is invalidated. Pass NULL to remove a callback.

Discussion
If port is already invalid, callout is invoked immediately.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

Functions 259
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CFMachPort Reference

Callbacks

CFMachPortCallBack
Callback invoked to process a message received on a CFMachPort object.

typedef void (*CFMachPortCallBack) (
 CFMachPortRef port,
 void *msg,
 CFIndex size,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFMachPortRef port,
 void *msg,
 CFIndex size,
 void *info
);

Parameters
port

The CFMachPort object on which the message msg was received.

msg
The Mach message received on port. The pointer is to a mach_msg_header_t structure.

size
Size of the Mach message msg, excluding the message trailer.

info
The info member of the CFMachPortContext (page 261) structure used when creating port.

Discussion
You specify this callback when creating a CFMachPort object with either CFMachPortCreate (page 254) or
CFMachPortCreateWithPort (page 256). To receive messages on a CFMachPort object (and have this
callback invoked), you must create a run loop source for the port and add it to a run loop.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

CFMachPortInvalidationCallBack
Callback invoked when a CFMachPort object is invalidated.

260 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CFMachPort Reference

typedef void (*CFMachPortInvalidationCallBack) (
 CFMachPortRef port,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFMachPortRef port,
 void *info
);

Parameters
port

The CFMachPort object that has been invalidated.

info
The info member of the CFMachPortContext (page 261) structure used when creating port.

Discussion
Your callback should free any resources allocated for port.

You specify this callback with CFMachPortSetInvalidationCallBack (page 259).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

Data Types

CFMachPortContext
A structure that contains program-defined data and callbacks with which you can configure a CFMachPort
object’s behavior.

struct CFMachPortContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct CFMachPortContext CFMachPortContext;

Fields
version

Version number of the structure. Must be 0.

info
An arbitrary pointer to program-defined data, which can be associated with the CFMachPort object
at creation time. This pointer is passed to all the callbacks defined in the context.

Data Types 261
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CFMachPort Reference

retain
A retain callback for your program-defined info pointer. Can be NULL.

release
A release callback for your program-defined info pointer. Can be NULL.

copyDescription
A copy description callback for your program-defined info pointer. Can be NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

CFMachPortRef
A reference to a CFMachPort object.

typedef struct __CFMachPort *CFMachPortRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMachPort.h

262 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CFMachPort Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFMessagePort.h

Overview

CFMessagePort objects provide a communications channel that can transmit arbitrary data between multiple
threads or processes on the local machine.

You create a local message port with CFMessagePortCreateLocal (page 264) and make it available to
other processes by giving it a name, either when you create it or later with CFMessagePortSetName (page
271). Other processes then connect to it using CFMessagePortCreateRemote (page 265), specifying the
name of the port.

To listen for messages, you need to create a run loop source with
CFMessagePortCreateRunLoopSource (page 266) and add it to a run loop with
CFRunLoopAddSource (page 445).

Important: If you want to tear down the connection, you must invalidate the port (using
CFMessagePortInvalidate (page 268)) before releasing the runloop source and the message port object.

Your message port’s callback function will be called when a message arrives. To send data, you store the
data in a CFData object and call CFMessagePortSendRequest (page 270). You can optionally have the
function wait for a reply and return the reply in another CFData object.

Message ports only support communication on the local machine. For network communication, you have
to use a CFSocket object.

Functions by Task

Creating a CFMessagePort Object

CFMessagePortCreateLocal (page 264)
Returns a local CFMessagePort object.

CFMessagePortCreateRemote (page 265)
Returns a CFMessagePort object connected to a remote port.

Overview 263
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

Configuring a CFMessagePort Object

CFMessagePortCreateRunLoopSource (page 266)
Creates a CFRunLoopSource object for a CFMessagePort object.

CFMessagePortSetInvalidationCallBack (page 271)
Sets the callback function invoked when a CFMessagePort object is invalidated.

CFMessagePortSetName (page 271)
Sets the name of a local CFMessagePort object.

Using a Message Port

CFMessagePortInvalidate (page 268)
Invalidates a CFMessagePort object, stopping it from receiving or sending any more messages.

CFMessagePortSendRequest (page 270)
Sends a message to a remote CFMessagePort object.

Examining a Message Port

CFMessagePortGetContext (page 267)
Returns the context information for a CFMessagePort object.

CFMessagePortGetInvalidationCallBack (page 267)
Returns the invalidation callback function for a CFMessagePort object.

CFMessagePortGetName (page 268)
Returns the name with which a CFMessagePort object is registered.

CFMessagePortIsRemote (page 269)
Returns a Boolean value that indicates whether a CFMessagePort object represents a remote port.

CFMessagePortIsValid (page 269)
Returns a Boolean value that indicates whether a CFMessagePort object is valid and able to send or
receive messages.

Getting the CFMessagePort Type ID

CFMessagePortGetTypeID (page 268)
Returns the type identifier for the CFMessagePort opaque type.

Functions

CFMessagePortCreateLocal
Returns a local CFMessagePort object.

264 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

CFMessagePortRef CFMessagePortCreateLocal (
 CFAllocatorRef allocator,
 CFStringRef name,
 CFMessagePortCallBack callout,
 CFMessagePortContext *context,
 Boolean *shouldFreeInfo
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

name
The name with which to register the port. name can be NULL.

callout
The callback function invoked when a message is received on the message port.

context
A structure holding contextual information for the message port. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call.

shouldFreeInfo
A flag set by the function to indicate whether the info member of context should be freed. The
flag is set to true on failure or if a local port named name already exists, false otherwise.
shouldFreeInfo can be NULL.

Return Value
The new CFMessagePort object, or NULL on failure. If a local port is already named name, the function returns
that port instead of creating a new object; the context and callout parameters are ignored in this case.
Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
BasicInputMethod

Declared In
CFMessagePort.h

CFMessagePortCreateRemote
Returns a CFMessagePort object connected to a remote port.

Functions 265
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

CFMessagePortRef CFMessagePortCreateRemote (
 CFAllocatorRef allocator,
 CFStringRef name
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

name
The name of the remote message port to which to connect.

Return Value
The new CFMessagePort object, or NULL on failure. If a message port has already been created for the remote
port, the pre-existing object is returned. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
BasicInputMethod

Declared In
CFMessagePort.h

CFMessagePortCreateRunLoopSource
Creates a CFRunLoopSource object for a CFMessagePort object.

CFRunLoopSourceRef CFMessagePortCreateRunLoopSource (
 CFAllocatorRef allocator,
 CFMessagePortRef local,
 CFIndex order
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

ms
The message port for which to create a run loop source.

order
A priority index indicating the order in which run loop sources are processed. order is currently
ignored by CFMessagePort object run loop sources. Pass 0 for this value.

Return Value
The new CFRunLoopSource object for ms. Ownership follows the Create Rule.

Discussion
The run loop source is not automatically added to a run loop. To add the source to a run loop, use
CFRunLoopAddSource (page 445).

266 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
BasicInputMethod

Declared In
CFMessagePort.h

CFMessagePortGetContext
Returns the context information for a CFMessagePort object.

void CFMessagePortGetContext (
 CFMessagePortRef ms,
 CFMessagePortContext *context
);

Parameters
ms

The message port to examine.

context
A pointer to the structure into which the context information for ms is to be copied. The information
being returned is usually the same information you passed to CFMessagePortCreateLocal (page
264) when creating ms. However, if CFMessagePortCreateLocal (page 264) returned a cached object
instead of creating a new object, context is filled with information from the original message port
instead of the information you passed to the function.

Discussion
The context version number for message ports is currently 0. Before calling this function, you need to initialize
the version member of context to 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

CFMessagePortGetInvalidationCallBack
Returns the invalidation callback function for a CFMessagePort object.

CFMessagePortInvalidationCallBack CFMessagePortGetInvalidationCallBack (
 CFMessagePortRef ms
);

Parameters
ms

The message port to examine.

Functions 267
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

Return Value
The callback function invoked when ms is invalidated. NULL if no callback has been set with
CFMessagePortSetInvalidationCallBack (page 271).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

CFMessagePortGetName
Returns the name with which a CFMessagePort object is registered.

CFStringRef CFMessagePortGetName (
 CFMessagePortRef ms
);

Parameters
ms

The message port to examine.

Return Value
The registered name of ms, NULL if unnamed. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

CFMessagePortGetTypeID
Returns the type identifier for the CFMessagePort opaque type.

CFTypeID CFMessagePortGetTypeID (
 void
);

Return Value
The type identifier for the CFMessagePort opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

CFMessagePortInvalidate
Invalidates a CFMessagePort object, stopping it from receiving or sending any more messages.

268 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

void CFMessagePortInvalidate (
 CFMessagePortRef ms
);

Parameters
ms

The message port to invalidate.

Discussion
Invalidating a message port prevents the port from ever sending or receiving any more messages; the message
port is not deallocated, though. If the port has not already been invalidated, the port’s invalidation callback
function is invoked, if one has been set with CFMessagePortSetInvalidationCallBack (page 271). The
CFMessagePortContext (page 273) info information for ms is also released, if a release callback was
specified in the port’s context structure. Finally, if a run loop source was created for ms, the run loop source
is also invalidated.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter

Declared In
CFMessagePort.h

CFMessagePortIsRemote
Returns a Boolean value that indicates whether a CFMessagePort object represents a remote port.

Boolean CFMessagePortIsRemote (
 CFMessagePortRef ms
);

Parameters
ms

The message port to examine.

Return Value
true if ms is a remote port, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

CFMessagePortIsValid
Returns a Boolean value that indicates whether a CFMessagePort object is valid and able to send or receive
messages.

Functions 269
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

Boolean CFMessagePortIsValid (
 CFMessagePortRef ms
);

Parameters
ms

The message port to examine.

Return Value
true if ms can be used for communication, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

CFMessagePortSendRequest
Sends a message to a remote CFMessagePort object.

SInt32 CFMessagePortSendRequest (
 CFMessagePortRef remote,
 SInt32 msgid,
 CFDataRef data,
 CFTimeInterval sendTimeout,
 CFTimeInterval rcvTimeout,
 CFStringRef replyMode,
 CFDataRef *returnData
);

Parameters
remote

The message port to which data should be sent.

msgid
An arbitrary integer value that you can send with the message.

data
The data to send to remote.

sendTimeout
The time to wait for data to be sent.

rcvTimeout
The time to wait for a reply to be returned.

replyMode
The run loop mode in which the function should wait for a reply. If the message is a oneway (so no
response is expected), then replyMode should be NULL. If replyMode is non-NULL, the function runs
the run loop waiting for a reply, in that mode. replyMode can be any string name of a run loop mode,
but it should be one with input sources installed. You should use the kCFRunLoopDefaultMode
constant unless you have a specific reason to use a different mode.

returnData
Upon return, contains a CFData object containing the reply data. Ownership follows the Create Rule.

270 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

Return Value
Error code indicating success or failure. See “CFMessagePortSendRequest Error Codes” (page 274) for the
possible return values.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
BasicInputMethod

Declared In
CFMessagePort.h

CFMessagePortSetInvalidationCallBack
Sets the callback function invoked when a CFMessagePort object is invalidated.

void CFMessagePortSetInvalidationCallBack (
 CFMessagePortRef ms,
 CFMessagePortInvalidationCallBack callout
);

Parameters
ms

The message port to examine.

callout
The callback function to invoke when ms is invalidated. Pass NULL to remove a callback.

Discussion
If ms is already invalid, callout is invoked immediately.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

CFMessagePortSetName
Sets the name of a local CFMessagePort object.

Boolean CFMessagePortSetName (
 CFMessagePortRef ms,
 CFStringRef newName
);

Parameters
ms

The local message port to examine.

newName
The new name for ms.

Functions 271
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

Return Value
true if the name change succeeds, otherwise false.

Discussion
Other threads and processes can connect to a named message port with
CFMessagePortCreateRemote (page 265).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

Callbacks

CFMessagePortCallBack
Callback invoked to process a message received on a CFMessagePort object.

typedef CFDataRef (*CFMessagePortCallBack) (
 CFMessagePortRef local,
 SInt32 msgid,
 CFDataRef data,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

CFDataRef MyCallBack (
 CFMessagePortRef local,
 SInt32 msgid,
 CFDataRef data,
 void *info
);

Parameters
local

The local message port that received the message.

msgid
An arbitrary integer value assigned to the message by the sender.

data
The message data.

info
The infomember of the CFMessagePortContext (page 273) structure that was used when creating
local.

Return Value
Data to send back to the sender of the message. The system releases the returned CFData object. Return
NULL if you want an empty reply returned to the sender.

272 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

Discussion
If you want the message data to persist beyond this callback, you must explicitly create a copy of data rather
than merely retain it; the contents of data will be deallocated after the callback exits.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

CFMessagePortInvalidationCallBack
Callback invoked when a CFMessagePort object is invalidated.

typedef void (*CFMessagePortInvalidationCallBack) (
 CFMessagePortRef ms,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFMessagePortRef ms,
 void *info
);

Parameters
ms

The message port that has been invalidated.

info
The infomember of the CFMessagePortContext (page 273) structure that was used when creating
ms, if ms is a local port; NULL if ms is a remote port.

Discussion
Your callback should free any resources allocated for ms.

You specify this callback with CFMessagePortSetInvalidationCallBack (page 271).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

Data Types

CFMessagePortContext
A structure that contains program-defined data and callbacks with which you can configure a CFMessagePort
object’s behavior.

Data Types 273
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

struct CFMessagePortContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct CFMessagePortContext CFMessagePortContext;

Fields
version

Version number of the structure. Must be 0.

info
An arbitrary pointer to program-defined data, which can be associated with the message port at
creation time. This pointer is passed to all the callbacks defined in the context.

retain
A retain callback for your program-defined info pointer. Can be NULL.

release
A release callback for your program-defined info pointer. Can be NULL.

copyDescription
A copy description callback for your program-defined info pointer. Can be NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

CFMessagePortRef
A reference to a message port object.

typedef struct __CFMessagePort *CFMessagePortRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFMessagePort.h

Constants

CFMessagePortSendRequest Error Codes
Error codes for CFMessagePortSendRequest.

274 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

enum {
 kCFMessagePortSuccess = 0,
 kCFMessagePortSendTimeout = -1,
 kCFMessagePortReceiveTimeout = -2,
 kCFMessagePortIsInvalid = -3,
 kCFMessagePortTransportError = -4
};

Constants
kCFMessagePortSuccess

The message was successfully sent and, if a reply was expected, a reply was received.

Available in Mac OS X v10.0 and later.

Declared in CFMessagePort.h.

kCFMessagePortSendTimeout
The message could not be sent before the send timeout.

Available in Mac OS X v10.0 and later.

Declared in CFMessagePort.h.

kCFMessagePortReceiveTimeout
No reply was received before the receive timeout.

Available in Mac OS X v10.0 and later.

Declared in CFMessagePort.h.

kCFMessagePortIsInvalid
The message could not be sent because the message port is invalid.

Available in Mac OS X v10.0 and later.

Declared in CFMessagePort.h.

kCFMessagePortTransportError
An error occurred trying to send the message.

Available in Mac OS X v10.0 and later.

Declared in CFMessagePort.h.

Constants 275
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

276 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CFMessagePort Reference

Derived From: CFArray : CFPropertyList : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFArray.h

Companion guides Collections Programming Topics for Core Foundation
Property List Programming Topics for Core Foundation

Overview

CFMutableArray manages dynamic arrays. The basic interface for managing arrays is provided by CFArray.
CFMutableArray adds functions to modify the contents of an array.

You create a mutable array object using either the CFArrayCreateMutable (page 279) or
CFArrayCreateMutableCopy (page 280) function.

CFMutableArray provides several functions for changing the contents of an array, for example the
CFArrayAppendValue (page 278) and CFArrayInsertValueAtIndex (page 281) functions add values to
an array and CFArrayRemoveValueAtIndex (page 282) removes values from an array. You can also reorder
the contents of an array using CFArrayExchangeValuesAtIndices (page 281) and
CFArraySortValues (page 285).

CFMutableArray is “toll-free bridged” with its Cocoa Foundation counterpart, NSMutableArray. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSMutableArray * parameter, you can pass in a
CFMutableArrayRef, and in a function where you see a CFMutableArrayRef parameter, you can pass in
an NSMutableArray instance. This fact also applies to concrete subclasses of NSMutableArray. See
Interchangeable Data Types for more information on toll-free bridging.

Functions

CFArrayAppendArray
Adds the values from one array to another array.

Overview 277
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CFMutableArray Reference

void CFArrayAppendArray (
 CFMutableArrayRef theArray,
 CFArrayRef otherArray,
 CFRange otherRange
);

Parameters
theArray

The array to which values from otherArray are added. If theArray is a limited-capacity array, adding
otherRange.length values from otherArray must not cause the capacity limit of theArray to
be exceeded.

otherArray
An array providing the values to be added to theArray.

otherRange
The range within otherArray from which to add the values to theArray. The range must not exceed
the index space of otherArray.

Discussion
The new values are retained by theArray using the retain callback provided when theArray was created.
If the values are not of the type expected by the retain callback, the behavior is undefined. The values are
assigned to the indices one larger than the previous largest index in theArray, and beyond, and the count
of theArray is increased by otherRange.length. The values are assigned new indices in theArray from
smallest to largest index in the order in which they appear in otherArray.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageBrowserView

Declared In
CFArray.h

CFArrayAppendValue
Adds a value to an array giving it the new largest index.

void CFArrayAppendValue (
 CFMutableArrayRef theArray,
 const void *value
);

Parameters
theArray

The array to which value is to be added. If theArray is a limited-capacity array and it is full before
this operation, the behavior is undefined.

value
A CFType object or a pointer value to add to theArray.

278 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CFMutableArray Reference

Discussion
The value parameter is retained by theArray using the retain callback provided when theArray was
created. If value is not of the type expected by the retain callback, the behavior is undefined. The value
parameter is assigned to the index one larger than the previous largest index and the count of theArray is
increased by one.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageBrowserView
ImageClient
MoreIsBetter
MoreSCF
QISA

Declared In
CFArray.h

CFArrayCreateMutable
Creates a new empty mutable array.

CFMutableArrayRef CFArrayCreateMutable (
 CFAllocatorRef allocator,
 CFIndex capacity,
 const CFArrayCallBacks *callBacks
);

Parameters
allocator

The allocator to use to allocate memory for the new array and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

capacity
The maximum number of values that can be contained by the new array. The array starts empty and
can grow to this number of values (and it can have less). If this parameter is 0, the array’s maximum
capacity is not limited. The value must not be negative.

callBacks
A pointer to a CFArrayCallBacks structure initialized with the callbacks for the array to use on each
value in the array. A copy of the contents of the callbacks structure is made, so that a pointer to a
structure on the stack can be passed in or can be reused for multiple array creations. This parameter
may be NULL, which is treated as if a valid structure of version 0 with all fields NULL had been passed
in.

If any of the fields are not valid pointers to functions of the correct type, or this parameter is not a
valid pointer to a CFArrayCallBacks structure, the behavior is undefined. If any value put into the
array is not one understood by one of the callback functions, the behavior when that callback function
is used is undefined. If the array contains CFType objects only, then pass kCFTypeArrayCallBacks
as this parameter to use the default callback functions.

Return Value
A new mutable array, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Functions 279
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CFMutableArray Reference

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Calibrator
HID Config Save
HID Explorer
ImageBrowserView
ImageClient

Declared In
CFArray.h

CFArrayCreateMutableCopy
Creates a new mutable array with the values from another array.

CFMutableArrayRef CFArrayCreateMutableCopy (
 CFAllocatorRef allocator,
 CFIndex capacity,
 CFArrayRef theArray
);

Parameters
allocator

The allocator to use to allocate memory for the new array and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

capacity
The maximum number of values that can be contained by the new array. The array starts with the
same count as theArray and can grow to this number of values (and it can have less). If this parameter
is 0, the array’s maximum capacity is not limited. The capacity must not be negative, and must be
greater than or equal to the count of theArray.

theArray
The array to copy. The pointer values from the array are copied into the new array. However, the
values are also retained by the new array.

Return Value
A new mutable array that contains the same values as theArray. The new array has the same count as the
theArray and uses the same callbacks. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPreferences
ComboBoxPrefs
databurntest
MFSLives
MoreSCF

280 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CFMutableArray Reference

Declared In
CFArray.h

CFArrayExchangeValuesAtIndices
Exchanges the values at two indices of an array.

void CFArrayExchangeValuesAtIndices (
 CFMutableArrayRef theArray,
 CFIndex idx1,
 CFIndex idx2
);

Parameters
theArray

The array that contains the values to be swapped.

idx1
The index of the value to swap with the value at idx2. The index must not exceed the index space
of theArray (0 to N-1 inclusive, where N is the count of theArray before the operation).

idx2
The index of the value to swap with the value at idx1. The index must not exceed the index space
of theArray (0 to N-1 inclusive, where N is the count of theArray before the operation).

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFArray.h

CFArrayInsertValueAtIndex
Inserts a value into an array at a given index.

void CFArrayInsertValueAtIndex (
 CFMutableArrayRef theArray,
 CFIndex idx,
 const void *value
);

Parameters
theArray

The array into which value is inserted. If theArray is a fixed-capacity array and it is full before this
operation, the behavior is undefined.

idx
The index at which to insert value. The index must not exceed the index space of theArray (0 to
N-1 inclusive, where N is the count of theArray before the operation. If the index is the same as the
count of theArray, this function has the same effect as CFArrayAppendValue (page 278).

Functions 281
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CFMutableArray Reference

value
The value to insert into theArray. The value is retained by theArray using the retain callback
provided when theArray was created. If value is not of the type expected by the retain callback,
the behavior is undefined.

Discussion
The value parameter is assigned to the index idx, and all values in theArray with equal and larger indices
have their indices increased by one.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPreferences
CFPrefTopScores
ComboBoxPrefs
ImageBrowserView
QTCarbonShell

Declared In
CFArray.h

CFArrayRemoveAllValues
Removes all the values from an array, making it empty.

void CFArrayRemoveAllValues (
 CFMutableArrayRef theArray
);

Parameters
theArray

The array from which all of the values are removed.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageClient

Declared In
CFArray.h

CFArrayRemoveValueAtIndex
Removes the value at a given index from an array.

282 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CFMutableArray Reference

void CFArrayRemoveValueAtIndex (
 CFMutableArrayRef theArray,
 CFIndex idx
);

Parameters
theArray

The array from which the value is to be removed.

idx
The index of the value to remove. The value not lie outside the index space of theArray (0 to N-1
inclusive, where N is the count of theArray before the operation).

Discussion
All values in theArray with indices larger than idx have their indices decreased by one.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ComboBoxPrefs
ImageClient
MFSLives
MoreSCF
QTCarbonShell

Declared In
CFArray.h

CFArrayReplaceValues
Replaces a range of values in an array.

void CFArrayReplaceValues (
 CFMutableArrayRef theArray,
 CFRange range,
 const void **newValues,
 CFIndex newCount
);

Parameters
theArray

The array in which some values are to be replaced. If this parameter is not a valid CFMutableArray
object, the behavior is undefined.

range
The range of values within theArray to replace. The range location or end point (defined by the
location plus length minus 1) must not lie outside the index space of theArray (0 to N-1 inclusive,
where N is the count of theArray). The range length must not be negative. The range may be empty
(length 0), in which case the new values are merely inserted at the range location.

Functions 283
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CFMutableArray Reference

newValues
A C array of the pointer-sized values to be placed into theArray. The new values in theArray are
ordered in the same order in which they appear in this C array. This parameter may be NULL if the
newCount parameter is 0. This C array is not changed or freed by this function. If this parameter is
not a valid pointer to a C array of at least newCount pointers, the behavior is undefined.

newCount
The number of values to copy from the newValues C array into theArray. If this parameter is different
from the range length, the excess newCount values are inserted after the range or the excess range
values are deleted. This parameter may be 0, in which case no new values are replaced into theArray
and the values in the range are simply removed. If this parameter is negative or greater than the
number of values actually in the newValues C array, the behavior is undefined.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
DockBrowser

Declared In
CFArray.h

CFArraySetValueAtIndex
Changes the value at a given index in an array.

void CFArraySetValueAtIndex (
 CFMutableArrayRef theArray,
 CFIndex idx,
 const void *value
);

Parameters
theArray

The array in which the value is to be changed.

idx
The index at which to set the new value. The value must not lie outside the index space of theArray
(0 to N-1 inclusive, where N is the count of the array before the operation).

value
The value to set in theArray. The value is retained by theArray using the retain callback provided
when theArray was created and the previous value at idx is released. If the value is not of the type
expected by the retain callback, the behavior is undefined. The indices of other values are not affected.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
AlbumToSlideshow
Watcher

Declared In
CFArray.h

284 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CFMutableArray Reference

CFArraySortValues
Sorts the values in an array using a given comparison function.

void CFArraySortValues (
 CFMutableArrayRef theArray,
 CFRange range,
 CFComparatorFunction comparator,
 void *context
);

Parameters
theArray

The array whose values are sorted.

range
The range of values within theArray to sort. The range location or end point (defined by the location
plus length minus 1) must not lie outside the index space of theArray (0 to N-1 inclusive, where N
is the count of theArray). The range length must not be negative. The range may be empty (length
0).

comparator
The function with the comparator function type signature that is used in the sort operation to compare
the values in theArray. If this parameter is not a pointer to a function of the correct prototype, the
behavior is undefined. If there are values in theArray that the comparator function does not expect
or cannot properly compare, the behavior is undefined. The values in the range are sorted from least
to greatest according to this function.

context
A pointer-sized program-defined value, which is passed as the third parameter to the comparator
function, but is otherwise unused by this function. If the context is not what is expected by the
comparator function, the behavior is undefined.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Calibrator
HID Explorer
MoreIsBetter
MoreSCF
QISA

Declared In
CFArray.h

Data Types

CFMutableArrayRef
A reference to a mutable array object.

Data Types 285
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CFMutableArray Reference

typedef struct __CFArray *CFMutableArrayRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFArray.h

286 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CFMutableArray Reference

Derived From: CFPropertyList ReferenceCFType Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFMutableAttributedString.h
CFBase.h

Companion guides Property List Programming Topics for Core Foundation
Strings Programming Guide for Core Foundation
Data Formatting Guide for Core Foundation

Overview

Instances of CFMutableAttributedString manage mutable character strings and associated sets of attributes
(for example, font and kerning information) that apply to individual characters or ranges of characters in the
string. CFAttributedString as defined in CoreFoundation provides the basic container functionality, while
higher levels provide definitions for standard attributes, their values, and additional behaviors involving
these. CFMutableAttributedString represents a mutable string—use CFAttributedString to create and manage
an attributed string that cannot be changed after it has been created.

iPhone OS Note: While Core Foundation on iPhone OS contains CFMutableAttributedString, there are no
additions to the APIs in UIKit to add specific attributes such as font, style, or color, and there are no APIs to
draw attributed strings.

CFMutableAttributedString is not a “subclass” of CFMutableString; that is, it does not respond to
CFMutableString (or CFString) function calls. CFAttributedString conceptually contains a CFMutableString to
which it applies attributes. This protects you from ambiguities caused by the semantic differences between
simple and attributed string. Functions defined for CFAttributedString can be applied to a
CFMutableAttributedString object.

Attributes are identified by key/value pairs stored in CFDictionary objects. Keys must be CFString objects,
while the corresponding values are CFType objects of an appropriate type. See the attribute constants in
NSAttributedString Application Kit Additions Reference for standard attribute names on Mac OS X.

Overview 287
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CFMutableAttributedString Reference

Important: Attribute dictionaries set for an attributed string must always be created with
kCFCopyStringDictionaryKeyCallbacks for their dictionary key callbacks and kCFTypeDictionaryValueCallBacks
for their value callbacks; otherwise it's an error.

When you modify the contents of a mutable attributed string, it may have to do a lot of work to ensure it is
internally consistent, and to coalesce runs of identical attributes. You can call
CFAttributedStringBeginEditing (page 289) andCFAttributedStringEndEditing (page 290) around
a set of related mutation calls that don’t require the string to be in consistent state in between, and thereby
reduce the amount of work necessary. These calls can be nested.

On Mac OS X, CFMutableAttributedString is “toll-free bridged” with its Cocoa Foundation counterpart,
NSMutableAttributedString. This means that the Core Foundation type is interchangeable in function or
method calls with the bridged Foundation object. Therefore, in a method where you see an
NSMutableAttributedString * parameter, you can pass in an object of type
CFMutableAttributedStringRef, and in a function where you see a CFMutableAttributedStringRef
parameter, you can pass in an NSMutableAttributedString instance. See Interchangeable Data Types for more
information on toll-free bridging.

iPhone OS Note: NSMutableAttributedString is not available on iPhone OS.

There is not always a 1:1 mapping between NSMutableAttributedString’s methods and
CFMutableAttributedString's functions. For example, to perform an operation equivalent to
NSMutableAttributedString’s appendAttributedString: method on a CFMutableAttributedString
object, you can use CFAttributedStringReplaceAttributedString (page 292) and specify
CFRangeMake(CFAttributedStringGetLength(attrStr), 0) as the range. Alternatively you can cast
the CFMutableAttributedString object to an NSMutableAttributedString object and send the
appendAttributedString: message.

Functions by Task

Creating a CFMutableAttributedString

CFAttributedStringCreateMutableCopy (page 290)
Creates a mutable copy of an attributed string.

CFAttributedStringCreateMutable (page 289)
Creates a mutable attributed string.

Modifying a CFMutableAttributedString

CFAttributedStringBeginEditing (page 289)
Defers internal consistency-checking and coalescing for a mutable attributed string.

CFAttributedStringEndEditing (page 290)
Re-enables internal consistency-checking and coalescing for a mutable attributed string.

CFAttributedStringGetMutableString (page 291)
Gets as a mutable string the string for an attributed string.

288 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CFMutableAttributedString Reference

CFAttributedStringRemoveAttribute (page 291)
Removes the value of a single attribute over a specified range.

CFAttributedStringReplaceString (page 292)
Modifies the string of an attributed string.

CFAttributedStringReplaceAttributedString (page 292)
Replaces the attributed substring over a range with another attributed string.

CFAttributedStringSetAttribute (page 293)
Sets the value of a single attribute over the specified range.

CFAttributedStringSetAttributes (page 294)
Sets the value of attributes of a mutable attributed string over a specified range.

Functions

CFAttributedStringBeginEditing
Defers internal consistency-checking and coalescing for a mutable attributed string.

void CFAttributedStringBeginEditing (
 CFMutableAttributedStringRef aStr
);

Parameters
str

A mutable attributed string that is to be edited.

Discussion
Defers internal consistency-checking and coalescing for a mutable attributed string. You must balance a call
to this function with a corresponding CFAttributedStringEndEditing (page 290).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringCreateMutable
Creates a mutable attributed string.

CFMutableAttributedStringRef CFAttributedStringCreateMutable (
 CFAllocatorRef alloc,
 CFIndex maxLength
);

Parameters
alloc

An allocator to be used to allocate memory for the new attributed string. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

Functions 289
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CFMutableAttributedString Reference

maxLength
The limit on the length of the returned attributed string; exceeding this size during any subsequent
editing operation is a programming error. Pass 0 to specify no limit.

Return Value
A new mutable attributed string. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringCreateMutableCopy
Creates a mutable copy of an attributed string.

CFMutableAttributedStringRef CFAttributedStringCreateMutableCopy (
 CFAllocatorRef alloc,
 CFIndex maxLength,
 CFAttributedStringRef aStr
);

Parameters
alloc

The allocator to be used to allocate memory for the new attributed string. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

maxLength
The limit on the length of the returned attributed string; exceeding this size during any subsequent
editing operation is a programming error. Pass 0 to specify no limit.

aStr
The attributed string to copy.

Return Value
A mutable copy of aStr. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreTextTest

Declared In
CFAttributedString.h

CFAttributedStringEndEditing
Re-enables internal consistency-checking and coalescing for a mutable attributed string.

290 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CFMutableAttributedString Reference

void CFAttributedStringEndEditing (
 CFMutableAttributedStringRef aStr
);

Parameters
str

A mutable attributed string, following a call to CFAttributedStringBeginEditing (page 289).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringGetMutableString
Gets as a mutable string the string for an attributed string.

CFMutableStringRef CFAttributedStringGetMutableString (
 CFMutableAttributedStringRef aStr
);

Parameters
str

The mutable attributed string from which to retrieve the string.

Return Value
The string for the specified attributed string as a mutable string.

Discussion
This function allows you to edit the character contents of the attributed string as if it were a CFMutableString.
Attributes corresponding to the edited range are appropriately modified. If, as a result of the edit, new
characters are introduced into the string, they inherit the attributes of the first replaced character from range.
If no existing characters are replaced by the edit, the new characters inherit the attributes of the character
preceding range if it has any, otherwise of the character following range. If the initial string is empty, the
attributes for the new characters are also empty.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringRemoveAttribute
Removes the value of a single attribute over a specified range.

Functions 291
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CFMutableAttributedString Reference

void CFAttributedStringRemoveAttribute (
 CFMutableAttributedStringRef aStr,
 CFRange range,
 CFStringRef attrName
);

Parameters
str

The mutable attributed string to modify.

range
The range of aStr from which to remove the specified attribute. range must not exceed the bounds
of aStr.

attrName
The name of the attribute to remove.

Discussion
It is not an error of the specified attribute does not exist over the given range.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringReplaceAttributedString
Replaces the attributed substring over a range with another attributed string.

void CFAttributedStringReplaceAttributedString (
 CFMutableAttributedStringRef aStr,
 CFRange range,
 CFAttributedStringRef replacement
);

Parameters
aStr

The mutable attributed string to modify.

range
The range of aStr to be modified. range must not specify characters outside the bounds of aStr.

replacement
The attributed string to replace the contents of aStr in range.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringReplaceString
Modifies the string of an attributed string.

292 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CFMutableAttributedString Reference

void CFAttributedStringReplaceString (
 CFMutableAttributedStringRef aStr,
 CFRange range,
 CFStringRef replacement
);

Parameters
aStr

The mutable attributed string to modify.

range
The range of aStr to be modified. range must not specify characters outside the bounds of aStr.

replacement
The string to replace the existing string in range.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

CFAttributedStringSetAttribute
Sets the value of a single attribute over the specified range.

void CFAttributedStringSetAttribute (
 CFMutableAttributedStringRef aStr,
 CFRange range,
 CFStringRef attrName,
 CFTypeRef value
);

Parameters
aStr

The mutable attributed string to modify.

range
The range of aStr over to which the new attributes apply. range must not exceed the bounds of
aStr.

attrName
The name of the attribute whose value to set.

value
The value of the attribute attrName to apply over range. This value may not be NULL. If you want
to remove an attribute, use CFAttributedStringRemoveAttribute (page 291).

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreTextTest

Declared In
CFAttributedString.h

Functions 293
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CFMutableAttributedString Reference

CFAttributedStringSetAttributes
Sets the value of attributes of a mutable attributed string over a specified range.

void CFAttributedStringSetAttributes (
 CFMutableAttributedStringRef aStr,
 CFRange range,
 CFDictionaryRef replacement,
 Boolean clearOtherAttributes
);

Parameters
aStr

The mutable attributed string to modify.

range
The range of aStr over to which the new attributes apply. range must not exceed the bounds of
aStr.

replacement
A dictionary that contains key-value pairs that specify the new attributes to apply to range. The keys
must be CFString objects, and the corresponding values must be CFType objects.

clearOtherAttributes
If false, existing attributes (that aren’t being replaced) are left alone; otherwise they are cleared.

Discussion
Note that after this call, if it is mutable, changes to replacementwill not affect the contents of the attributed
string.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreTextTest

Declared In
CFAttributedString.h

Data Types

CFMutableAttributedStringRef
A reference to a CFMutableAttributedString object.

typedef struct __CFAttributedString *CFMutableAttributedStringRef;

Discussion
The CFMutableAttributedStringRef type refers to a mutable object that combines a CFString object
with a collection of attributes that specify how the characters in the string should be displayed.
CFMutableAttributedString is an opaque type that defines the characteristics and behavior of
CFMutableAttributedString objects.

CFMutableAttributedString objects also respond to all functions intended for immutable CFAttributedString
objects.

294 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CFMutableAttributedString Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFAttributedString.h

Data Types 295
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CFMutableAttributedString Reference

296 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CFMutableAttributedString Reference

Derived From: CFBag : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFBag.h

Companion guide Collections Programming Topics for Core Foundation

Overview

CFMutableBag manages dynamic bags. The basic interface for managing bags is provided by CFBag.
CFMutableBag adds functions to modify the contents of a bag.

You create a mutable bag object using either the CFBagCreateMutable (page 298) or
CFBagCreateMutableCopy (page 299) function.

CFMutableBag provides several functions for adding and removing values from a bag. The
CFBagAddValue (page 298) function adds a value to a bag and CFBagRemoveValue (page 300) removes
values from a bag.

Functions by Task

Creating a Mutable Bag

CFBagCreateMutable (page 298)
Creates a new empty mutable bag.

CFBagCreateMutableCopy (page 299)
Creates a new mutable bag with the values from another bag.

Modifying a Mutable Bag

CFBagAddValue (page 298)
Adds a value to a mutable bag.

CFBagRemoveAllValues (page 300)
Removes all values from a mutable bag.

CFBagRemoveValue (page 300)
Removes a value from a mutable bag.

Overview 297
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CFMutableBag Reference

CFBagReplaceValue (page 301)
Replaces a value in a mutable bag.

CFBagSetValue (page 301)
Sets a value in a mutable bag.

Functions

CFBagAddValue
Adds a value to a mutable bag.

void CFBagAddValue (
 CFMutableBagRef theBag,
 const void *value
);

Parameters
theBag

The bag to which value is added.

value
A CFType object or a pointer value to add to theBag (or the value itself, if it fits into the size of a
pointer).

Discussion
The value parameter is retained by theBag using the retain callback provided when theBag was created.
If value is not of the type expected by the retain callback, the behavior is undefined. If value already exists
in the collection, it is simply retained again—no memory is allocated for the added value. Use a CFSet object
if you don’t want duplicate values in your collection.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagCreateMutable
Creates a new empty mutable bag.

CFMutableBagRef CFBagCreateMutable (
 CFAllocatorRef allocator,
 CFIndex capacity,
 const CFBagCallBacks *callBacks
);

Parameters
allocator

The allocator object to use to allocate memory for the new bag and its storage for values. Pass NULL
or kCFAllocatorDefault to use the current default allocator.

298 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CFMutableBag Reference

capacity
The maximum number of values that can be contained by the new bag. The bag starts empty and
can grow to this number of values (and it can have less). If this parameter is 0, the bag’s maximum
capacity is not limited. This value must not be negative.

callBacks
A pointer to a CFBagCallBacks structure initialized with the callbacks to use to retain, release,
describe, and compare values in the bag. A copy of the contents of the callbacks structure is made,
so that a pointer to a structure on the stack can be passed in or can be reused for multiple collection
creations. This parameter may be NULL, which is treated as if a valid structure of version 0 with all
fields NULL had been passed in.

If any of the fields are not valid pointers to functions of the correct type, or this parameter is not a
valid pointer to a CFBagCallBacks structure, the behavior is undefined. If any value put into the
collection is not one understood by one of the callback functions, the behavior when that callback
function is used is undefined.

If the collection contains only CFType objects, then pass kCFTypeBagCallBacks as this parameter
to use the default callback functions.

Return Value
A new mutable bag, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Discussion
This function creates an new empty mutable bag to which you can add values using the CFBagAddValue (page
298) function. The capacity parameter specifies the maximum number of values that the CFBag object can
contain. If it is 0, then there is no limit to the number of values that can be added (aside from constraints
such as available memory).

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagCreateMutableCopy
Creates a new mutable bag with the values from another bag.

CFMutableBagRef CFBagCreateMutableCopy (
 CFAllocatorRef allocator,
 CFIndex capacity,
 CFBagRef theBag
);

Parameters
allocator

The allocator to use to allocate memory for the new bag and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

capacity
The maximum number of values that can be contained by the new bag. The bag starts with the same
count as theBag, and can grow to this number of values (and it can have less). If this value is 0, the
bag’s maximum capacity is not limited. This value must be greater than or equal to the count of
theBag, and must not be negative.

Functions 299
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CFMutableBag Reference

theBag
The bag to copy. The pointer values from theBag are copied into the new bag. However, the values
are also retained by the new bag. The count of the new bag is the same as the count of theBag. The
new bag uses the same callbacks as theBag.

Return Value
A new mutable bag that contains the same values as theBag. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagRemoveAllValues
Removes all values from a mutable bag.

void CFBagRemoveAllValues (
 CFMutableBagRef theBag
);

Parameters
theBag

The bag from which all of the values are to be removed.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagRemoveValue
Removes a value from a mutable bag.

void CFBagRemoveValue (
 CFMutableBagRef theBag,
 const void *value
);

Parameters
theBag

The bag from which value is to be removed.

value
The value to be removed from the collection.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

300 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CFMutableBag Reference

Declared In
CFBag.h

CFBagReplaceValue
Replaces a value in a mutable bag.

void CFBagReplaceValue (
 CFMutableBagRef theBag,
 const void *value
);

Parameters
theBag

The bag from which value is to be replaced.

value
The value to be replaced in the collection. If this value does not already exist in the collection, the
function does nothing. You may pass the value itself instead of a pointer if it is pointer-size or less.
The equal callback provided when theBag was created is used to compare. If the equal callback was
NULL, pointer equality (in C, ==) is used. If value, or any other value in theBag, is not understood
by the equal callback, the behavior is undefined.

Discussion
Depending on the implementation of the equal callback specified when creating theBag, the object that is
replaced by value may not have the same pointer equality.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

CFBagSetValue
Sets a value in a mutable bag.

void CFBagSetValue (
 CFMutableBagRef theBag,
 const void *value
);

Parameters
theBag

The bag in which value is to be set.

value
The value to be set in the collection. If this value already exists in theBag, it is replaced. You may pass
the value itself instead of a pointer to it if the value is pointer-size or less. If theBag is fixed-size and
the value is beyond its capacity, the behavior is undefined.

Discussion
Depending on the implementation of the equal callback specified when creating theBag, the value that is
replaced by value may not have the same pointer equality.

Functions 301
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CFMutableBag Reference

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

Data Types

CFMutableBagRef
A reference to a mutable bag object.

typedef struct __CFBag *CFMutableBagRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBag.h

302 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CFMutableBag Reference

Derived From: CFBitVector : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFBitVector.h

Companion guide Collections Programming Topics for Core Foundation

Overview

CFMutableBitVector objects manage dynamic bit vectors. The basic interface for managing bit vectors is
provided by CFBitVector. CFMutableBitVector adds functions to modify the contents of a bit vector.

You create a mutable bit vector object using either the CFBitVectorCreateMutable (page 304) or
CFBitVectorCreateMutableCopy (page 304) function. You add to and remove from a bit vector by altering
the size of the bit vector with the CFBitVectorSetCount (page 307) function

Functions by Task

Creating a CFMutableBitVector Object

CFBitVectorCreateMutable (page 304)
Creates a mutable bit vector.

CFBitVectorCreateMutableCopy (page 304)
Creates a new mutable bit vector from a pre-existing bit vector.

Modifying a Bit Vector

CFBitVectorFlipBitAtIndex (page 305)
Flips a bit value in a bit vector.

CFBitVectorFlipBits (page 305)
Flips a range of bit values in a bit vector.

CFBitVectorSetAllBits (page 306)
Sets all bits in a bit vector to a particular value.

CFBitVectorSetBitAtIndex (page 306)
Sets the value of a particular bit in a bit vector.

Overview 303
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

CFMutableBitVector Reference

CFBitVectorSetBits (page 307)
Sets a range of bits in a bit vector to a particular value.

CFBitVectorSetCount (page 307)
Changes the size of a mutable bit vector.

Functions

CFBitVectorCreateMutable
Creates a mutable bit vector.

CFMutableBitVectorRef CFBitVectorCreateMutable (
 CFAllocatorRef allocator,
 CFIndex capacity
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

capacity
The maximum number of values that can be contained by the new bit vector. The bit vector starts
empty and can grow to this number of values. If 0, the new bit vector can grow to any size.

Return Value
A new bit vector. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorCreateMutableCopy
Creates a new mutable bit vector from a pre-existing bit vector.

CFMutableBitVectorRef CFBitVectorCreateMutableCopy (
 CFAllocatorRef allocator,
 CFIndex capacity,
 CFBitVectorRef bv
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

304 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

CFMutableBitVector Reference

capacity
The maximum number of values that can be contained by the new bit vector. The bit vector starts
with the same number of values as bv and can grow to this number of values. If 0, the new bit vector
can grow to any size. If non-zero, capacity must be large enough to hold all bit values from bv.

bv
The bit vector to copy.

Return Value
A new bit vector holding the same bit values as bv. Ownership follows the Create Rule

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorFlipBitAtIndex
Flips a bit value in a bit vector.

void CFBitVectorFlipBitAtIndex (
 CFMutableBitVectorRef bv,
 CFIndex idx
);

Parameters
bv

The bit vector to modify.

idx
The index of the bit value to flip.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorFlipBits
Flips a range of bit values in a bit vector.

void CFBitVectorFlipBits (
 CFMutableBitVectorRef bv,
 CFRange range
);

Parameters
bv

The bit vector to modify.

range
The range of bit values in bv to flip.

Functions 305
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

CFMutableBitVector Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorSetAllBits
Sets all bits in a bit vector to a particular value.

void CFBitVectorSetAllBits (
 CFMutableBitVectorRef bv,
 CFBit value
);

Parameters
bv

The bit vector to modify.

value
The bit value to which to set all bits in bv.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorSetBitAtIndex
Sets the value of a particular bit in a bit vector.

void CFBitVectorSetBitAtIndex (
 CFMutableBitVectorRef bv,
 CFIndex idx,
 CFBit value
);

Parameters
bv

The bit vector to modify.

idx
The index of the bit value to set.

value
The bit value to which to set the bit at index idx.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

306 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

CFMutableBitVector Reference

CFBitVectorSetBits
Sets a range of bits in a bit vector to a particular value.

void CFBitVectorSetBits (
 CFMutableBitVectorRef bv,
 CFRange range,
 CFBit value
);

Parameters
bv

The bit vector to modify.

range
The range of bits to set.

value
The bit value to which to set the range of bits.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

CFBitVectorSetCount
Changes the size of a mutable bit vector.

void CFBitVectorSetCount (
 CFMutableBitVectorRef bv,
 CFIndex count
);

Parameters
bv

The bit vector to modify.

count
The new size for bv. If count is greater than the current size of bv, the additional bit values are set
to 0.

Discussion
If bv was created with a fixed capacity, you cannot increase its size beyond that capacity.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

Functions 307
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

CFMutableBitVector Reference

Data Types

CFMutableBitVectorRef
A reference to a mutable bit vector object.

typedef struct __CFBitVector *CFMutableBitVectorRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBitVector.h

308 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

CFMutableBitVector Reference

Derived From: CFCharacterSet : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFCharacterSet.h

Companion guide Strings Programming Guide for Core Foundation

Overview

CFMutableCharacterSet manages dynamic character sets. The basic interface for managing character sets is
provided by CFCharacterSet. CFMutableCharacterSet adds functions to modify the contents of a character
set.

You create a mutable character set object using either the CFCharacterSetCreateMutable (page 311) or
CFCharacterSetCreateMutableCopy (page 311) function.

CFMutableCharacterSet is “toll-free bridged” with its Cocoa Foundation counterpart, NSMutableCharacterSet.
This means that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSMutableCharacterSet * parameter, you
can pass in aCFMutableCharacterSetRef, and in a function where you see aCFMutableCharacterSetRef
parameter, you can pass in an NSMutableCharacterSet instance. This capability also applies to concrete
subclasses of NSMutableCharacterSet. See Interchangeable Data Types for more information on toll-free
bridging.

Functions by Task

Creating a Mutable Character Set

CFCharacterSetCreateMutable (page 311)
Creates a new empty mutable character set.

CFCharacterSetCreateMutableCopy (page 311)
Creates a new mutable character set with the values from another character set.

Adding Characters

CFCharacterSetAddCharactersInRange (page 310)
Adds a given range to a character set.

Overview 309
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CFMutableCharacterSet Reference

CFCharacterSetAddCharactersInString (page 311)
Adds the characters in a given string to a character set.

Removing Characters

CFCharacterSetRemoveCharactersInRange (page 313)
Removes a given range of Unicode characters from a character set.

CFCharacterSetRemoveCharactersInString (page 313)
Removes the characters in a given string from a character set.

Logical Operations

CFCharacterSetIntersect (page 312)
Forms an intersection of two character sets.

CFCharacterSetInvert (page 312)
Inverts the content of a given character set.

CFCharacterSetUnion (page 314)
Forms the union of two character sets.

Functions

CFCharacterSetAddCharactersInRange
Adds a given range to a character set.

void CFCharacterSetAddCharactersInRange (
 CFMutableCharacterSetRef theSet,
 CFRange theRange
);

Parameters
theSet

The character set to modify.

theRange
The range to add to the character set. The range is specified in 32-bits in UTF-32 format, and must lie
within the valid Unicode character range (from 0x00000 to 0x10FFFF).

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

310 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CFMutableCharacterSet Reference

CFCharacterSetAddCharactersInString
Adds the characters in a given string to a character set.

void CFCharacterSetAddCharactersInString (
 CFMutableCharacterSetRef theSet,
 CFStringRef theString
);

Parameters
theSet

The character set to modify.

theString
A string containing the characters to add to theSet.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetCreateMutable
Creates a new empty mutable character set.

CFMutableCharacterSetRef CFCharacterSetCreateMutable (
 CFAllocatorRef alloc
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

Return Value
A new empty mutable character set. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetCreateMutableCopy
Creates a new mutable character set with the values from another character set.

Functions 311
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CFMutableCharacterSet Reference

CFMutableCharacterSetRef CFCharacterSetCreateMutableCopy (
 CFAllocatorRef alloc,
 CFCharacterSetRef theSet
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

theSet
The character set to copy.

Return Value
A new mutable character set containing the same characters as theSet. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetIntersect
Forms an intersection of two character sets.

void CFCharacterSetIntersect (
 CFMutableCharacterSetRef theSet,
 CFCharacterSetRef theOtherSet
);

Parameters
theSet

The source character set, modified by intersection with theOtherSet.

theOtherSet
The character set with which the intersection is formed.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetInvert
Inverts the content of a given character set.

312 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CFMutableCharacterSet Reference

void CFCharacterSetInvert (
 CFMutableCharacterSetRef theSet
);

Parameters
theSet

The character set to invert.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetRemoveCharactersInRange
Removes a given range of Unicode characters from a character set.

void CFCharacterSetRemoveCharactersInRange (
 CFMutableCharacterSetRef theSet,
 CFRange theRange
);

Parameters
theSet

The character set to modify.

theRange
The range to remove from the character set. The range is specified in 32-bits in UTF-32 format, and
must lie within the valid Unicode character range (from 0x00000 to 0x10FFFF).

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetRemoveCharactersInString
Removes the characters in a given string from a character set.

void CFCharacterSetRemoveCharactersInString (
 CFMutableCharacterSetRef theSet,
 CFStringRef theString
);

Parameters
theSet

The character set to modify.

theString
A string containing the characters to remove from theSet.

Functions 313
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CFMutableCharacterSet Reference

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

CFCharacterSetUnion
Forms the union of two character sets.

void CFCharacterSetUnion (
 CFMutableCharacterSetRef theSet,
 CFCharacterSetRef theOtherSet
);

Parameters
theSet

The source character set, modified by union with theOtherSet.

theOtherSet
The character set with which the union is formed.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

Data Types

CFMutableCharacterSetRef
A reference to a mutable character set object.

typedef struct __CFCharacterSet *CFMutableCharacterSetRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFCharacterSet.h

314 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CFMutableCharacterSet Reference

Derived From: CFData : CFPropertyList : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFData.h

Companion guides Binary Data Programming Guide for Core Foundation
Property List Programming Topics for Core Foundation

Overview

CFMutableData manages dynamic binary data. The basic interface for managing binary data is provided by
CFData. CFMutableData adds functions to modify the contents of a binary data object.

You create a mutable data object using either the CFDataCreateMutable (page 316) or
CFDataCreateMutableCopy (page 317) function.

Bytes are added to a data object with the CFDataAppendBytes (page 315) function. Bytes are removed from
a data object with the CFDataDeleteBytes (page 317) function.

CFMutableData is “toll-free bridged” with its Cocoa Foundation counterpart, NSMutableData. What this means
is that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. In other words, in a method where you see an NSMutableData * parameter, you can pass in a
CFMutableDataRef, and in a function where you see a CFMutableDataRef parameter, you can pass in an
NSMutableData instance. This also applies to concrete subclasses of NSMutableData. See Interchangeable
Data Types for more information on toll-free bridging.

Functions

CFDataAppendBytes
Appends the bytes from a byte buffer to the contents of a CFData object.

Overview 315
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CFMutableData Reference

void CFDataAppendBytes (
 CFMutableDataRef theData,
 const UInt8 *bytes,
 CFIndex length
);

Parameters
theData

A CFMutableData object. If you pass an immutable CFData object, the behavior is not defined.

bytes
A pointer to the buffer of bytes to be added to theData.

length
The number of bytes in the byte buffer bytes.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
CFLocalServer
ImageClient

Declared In
CFData.h

CFDataCreateMutable
Creates an empty CFMutableData object.

CFMutableDataRef CFDataCreateMutable (
 CFAllocatorRef allocator,
 CFIndex capacity
);

Parameters
allocator

The CFAllocator object to be used to allocate memory for the new object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

capacity
The maximum number of bytes that the CFData object can contain. If 0, the object can grow to a size
only limited by the constraints of available memory and address space.

Return Value
A CFMutableData object or NULL if there was a problem creating the object. Ownership follows the Create
Rule.

Discussion
This function creates an empty (that is, content-less) CFMutableData object. You can add raw data to this
object with theCFDataAppendBytes (page 315) function, and thereafter you can replace and delete characters
with the appropriate CFMutableData functions. If the capacity parameter is greater than 0, any attempt
to add characters beyond this limit can result in undefined behavior.

316 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CFMutableData Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
CFLocalServer
ImageClient
SeeMyFriends
UnsharpMask

Declared In
CFData.h

CFDataCreateMutableCopy
Creates a CFMutableData object by copying another CFData object.

CFMutableDataRef CFDataCreateMutableCopy (
 CFAllocatorRef allocator,
 CFIndex capacity,
 CFDataRef theData
);

Parameters
allocator

The CFAllocator object to be used to allocate memory for the new object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

capacity
The maximum number of bytes the object should contain. If 0, the object can grow to a size only
limited by the constraints of available memory and address space. Note that initially the created
CFData object still has the same length as the original object; this parameter simply specifies what
the maximum size is. CFData might try to optimize its internal storage by paying attention to this
value.

theData
The CFData object to be copied.

Return Value
A CFMutableData object that has the same contents as the original object. Returns NULL if there was a
problem copying the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFData.h

CFDataDeleteBytes
Deletes the bytes in a CFMutableData object within a specified range.

Functions 317
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CFMutableData Reference

void CFDataDeleteBytes (
 CFMutableDataRef theData,
 CFRange range
);

Parameters
theData

A CFMutableData object. If you pass an immutable CFData object, the behavior is not defined.

range
The range of bytes (that is, the starting byte and the number of bytes from that point) to delete from
theData's byte buffer.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer

Declared In
CFData.h

CFDataGetMutableBytePtr
Returns a pointer to a mutable byte buffer of a CFMutableData object.

UInt8 *CFDataGetMutableBytePtr (
 CFMutableDataRef theData
);

Parameters
theData

A CFMutableData object. If you pass an immutable CFData object, the behavior is not defined.

Return Value
A pointer to the bytes associated with theData.

Discussion
If the length of theData’s data is not zero, this function is guaranteed to return a pointer to a CFMutableData
object's internal bytes. If the length of theData’s data is zero, this function may or may not return NULL
dependent upon many factors related to how the object was created (moreover, in this case the function
result might change between different releases and on different platforms).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFData.h

CFDataIncreaseLength
Increases the length of a CFMutableData object's internal byte buffer, zero-filling the extension to the buffer.

318 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CFMutableData Reference

void CFDataIncreaseLength (
 CFMutableDataRef theData,
 CFIndex extraLength
);

Parameters
theData

A CFMutableData object. If you pass an immutable CFData object, the behavior is not defined.

extraLength
The number of bytes by which to increase the byte buffer.

Discussion
This function increases the length of a CFMutableData object’s underlying byte buffer to a new size, initializing
the new bytes to 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFData.h

CFDataReplaceBytes
Replaces those bytes in a CFMutableData object that fall within a specified range with other bytes.

void CFDataReplaceBytes (
 CFMutableDataRef theData,
 CFRange range,
 const UInt8 *newBytes,
 CFIndex newLength
);

Parameters
theData

A CFMutableData object. If you pass an immutable CFData object, the behavior is not defined.

range
The range of bytes (that is, the starting byte and the number of bytes from that point) to delete from
theData's byte buffer.

newBytes
A pointer to the buffer containing the replacement bytes.

newLength
The number of bytes in the byte buffer newBytes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFData.h

CFDataSetLength
Resets the length of a CFMutableData object's internal byte buffer.

Functions 319
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CFMutableData Reference

void CFDataSetLength (
 CFMutableDataRef theData,
 CFIndex length
);

Parameters
theData

A CFMutableData object. If you pass an immutable CFData object, the behavior is not defined.

length
The new size of theData’s byte buffer.

Discussion
This function resets the length of a CFMutableData object’s underlying byte buffer to a new size. If that size
is less than the current size, it truncates the excess bytes. If that size is greater than the current size, it zero-fills
the extension to the byte buffer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFData.h

Data Types

CFMutableDataRef
A reference to a CFMutableData object.

typedef struct __CFData *CFMutableDataRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFData.h

320 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CFMutableData Reference

Derived From: CFDictionary : CFPropertyList : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFDictionary.h

Companion guides Collections Programming Topics for Core Foundation
Property List Programming Topics for Core Foundation

Overview

CFMutableDictionary manages dynamic dictionaries. The basic interface for managing dictionaries is provided
by CFDictionary. CFMutableDictionary adds functions to modify the contents of a dictionary.

You create a mutable dictionary object using either the CFDictionaryCreateMutable (page 323) or
CFDictionaryCreateMutableCopy (page 324) function. You can add key-value pairs using the
CFDictionaryAddValue (page 322) and CFDictionarySetValue (page 326) functions. When adding
key-value pairs to a dictionary, the keys and values are not copied—they are retained so they are not
invalidated before the dictionary is deallocated. You can remove key-value pairs using the
CFDictionaryRemoveValue (page 325) function. When removing key-value pairs from a dictionary, the
keys and values are released.

CFMutableDictionary is “toll-free bridged” with its Cocoa Foundation counterpart, NSMutableDictionary.
What this means is that the Core Foundation type is interchangeable in function or method calls with the
bridged Foundation object. This means that in a method where you see an NSMutableDictionary *
parameter, you can pass in a CFMutableDictionaryRef, and in a function where you see a
CFMutableDictionaryRef parameter, you can pass in an NSMutableDictionary instance. This also applies
to concrete subclasses of NSMutableDictionary. See Interchangeable Data Types for more information on
toll-free bridging.

Functions by Task

Creating a Mutable Dictionary

CFDictionaryCreateMutable (page 323)
Creates a new mutable dictionary.

CFDictionaryCreateMutableCopy (page 324)
Creates a new mutable dictionary with the key-value pairs from another dictionary.

Overview 321
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CFMutableDictionary Reference

Modifying a Dictionary

CFDictionaryAddValue (page 322)
Adds a key-value pair to a dictionary if the specified key is not already present.

CFDictionaryRemoveAllValues (page 325)
Removes all the key-value pairs from a dictionary, making it empty.

CFDictionaryRemoveValue (page 325)
Removes a key-value pair.

CFDictionaryReplaceValue (page 326)
Replaces a value corresponding to a given key.

CFDictionarySetValue (page 326)
Sets the value corresponding to a given key.

Functions

CFDictionaryAddValue
Adds a key-value pair to a dictionary if the specified key is not already present.

void CFDictionaryAddValue (
 CFMutableDictionaryRef theDict,
 const void *key,
 const void *value
);

Parameters
theDict

The dictionary to modify. If the dictionary is a fixed-capacity dictionary and it is full before this
operation, the behavior is undefined.

key
The key for the value to add to the dictionary—a CFType object or a pointer value. The key is retained
by the dictionary using the retain callback provided when the dictionary was created, so must be of
the type expected by the callback. If a key which matches key is already present in the dictionary,
this function does nothing ("add if absent").

value
A CFType object or a pointer value to add to the dictionary. The value is retained by the dictionary
using the retain callback provided when the dictionary was created, so must be of the type expected
by the callback.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
AddressBookCarbon
MoreIsBetter
MoreSCF
QISA

322 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CFMutableDictionary Reference

SeeMyFriends

Declared In
CFDictionary.h

CFDictionaryCreateMutable
Creates a new mutable dictionary.

CFMutableDictionaryRef CFDictionaryCreateMutable (
 CFAllocatorRef allocator,
 CFIndex capacity,
 const CFDictionaryKeyCallBacks *keyCallBacks,
 const CFDictionaryValueCallBacks *valueCallBacks
);

Parameters
allocator

The allocator to use to allocate memory for the new dictionary and its storage for key-value pairs.
Pass NULL or kCFAllocatorDefault to use the current default allocator.

capacity
The maximum number of key-value pairs that can be contained by the dictionary. The dictionary
starts empty and can grow to this number of key-value pairs (and it can have less). Pass 0 to specify
no limit. The value must not be negative.

keyCallBacks
A pointer to a CFDictionaryKeyCallBacks structure initialized with the callbacks to use to retain,
release, describe, and compare keys in the dictionary. A copy of the contents of the callbacks structure
is made, so that a pointer to a structure on the stack can be passed in or can be reused for multiple
collection creations.

This value may be NULL, which is treated as a valid structure of version 0with all fields NULL. Otherwise,
if any of the fields are not valid pointers to functions of the correct type, or this value is not a valid
pointer to a CFDictionaryKeyCallBacks structure, the behavior is undefined. If any of the keys
put into the collection is not one understood by one of the callback functions, the behavior when
that callback function is used is undefined.

If the dictionary will contain only CFType objects, then pass a pointer to
kCFTypeDictionaryKeyCallBacks as this parameter to use the default callback functions.

valueCallBacks
A pointer to a CFDictionaryValueCallBacks structure initialized with the callbacks to use to
retain, release, describe, and compare values in the dictionary. A copy of the contents of the callbacks
structure is made, so that a pointer to a structure on the stack can be passed in or can be reused for
multiple collection creations.

This value may be NULL, which is treated as a valid structure of version 0with all fields NULL. Otherwise,
if any of the fields are not valid pointers to functions of the correct type, or this value is not a valid
pointer to a CFDictionaryValueCallBacks structure, the behavior is undefined. If any value put
into the collection is not one understood by one of the callback functions, the behavior when that
callback function is used is undefined.

If the dictionary will contain CFType objects only, then pass a pointer to
kCFTypeDictionaryValueCallBacks as this parameter to use the default callback functions.

Return Value
A new dictionary, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Functions 323
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CFMutableDictionary Reference

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageClient
MoreIsBetter
QISA
SCSIOldAndNew
SeeMyFriends

Declared In
CFDictionary.h

CFDictionaryCreateMutableCopy
Creates a new mutable dictionary with the key-value pairs from another dictionary.

CFMutableDictionaryRef CFDictionaryCreateMutableCopy (
 CFAllocatorRef allocator,
 CFIndex capacity,
 CFDictionaryRef theDict
);

Parameters
allocator

The allocator to use to allocate memory for the new dictionary and its storage for key-value pairs.
Pass NULL or kCFAllocatorDefault to use the current default allocator.

capacity
The maximum number of key-value pairs that can be contained by the returned dictionary. The
dictionary starts empty, and can grow to this number of key-value pairs (and it can have less). The
value must be greater than or equal to the count of theDict, or 0 to specify no limit

theDict
The dictionary to copy. The keys and values from the dictionary are copied as pointers into the new
dictionary, not that which the values point to (if anything). The keys and values are also retained by
the new dictionary. The count of the new dictionary is the same as the count of theDict. The new
dictionary uses the same callbacks as theDict.

Return Value
A new dictionary that contains the same values as theDict. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
MoreIsBetter
MoreSCF
QISA
Quartz 2D Transformer

324 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CFMutableDictionary Reference

Declared In
CFDictionary.h

CFDictionaryRemoveAllValues
Removes all the key-value pairs from a dictionary, making it empty.

void CFDictionaryRemoveAllValues (
 CFMutableDictionaryRef theDict
);

Parameters
theDict

The dictionary to modify.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
DockBrowser
SeeMyFriends

Declared In
CFDictionary.h

CFDictionaryRemoveValue
Removes a key-value pair.

void CFDictionaryRemoveValue (
 CFMutableDictionaryRef theDict,
 const void *key
);

Parameters
theDict

The dictionary to modify.

key
The key of the value to remove from theDict. If a key which matches key is present in theDict,
the key-value pair is removed from the dictionary, otherwise this function does nothing ("remove if
present").

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
DockBrowser
ImageClient
MoreIsBetter
MoreSCF

Functions 325
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CFMutableDictionary Reference

QISA

Declared In
CFDictionary.h

CFDictionaryReplaceValue
Replaces a value corresponding to a given key.

void CFDictionaryReplaceValue (
 CFMutableDictionaryRef theDict,
 const void *key,
 const void *value
);

Parameters
theDict

The dictionary to modify.

key
The key of the value to replace in theDict. If a key which matches key is present in the dictionary,
the value is changed to the value, otherwise this function does nothing ("replace if present").

value
The new value for key. The value object is retained by theDict using the retain callback provided
when theDict was created, and the old value is released. value must be of the type expected by
the retain and release callbacks.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
SeeMyFriends

Declared In
CFDictionary.h

CFDictionarySetValue
Sets the value corresponding to a given key.

void CFDictionarySetValue (
 CFMutableDictionaryRef theDict,
 const void *key,
 const void *value
);

Parameters
theDict

The dictionary to modify. If this parameter is a fixed-capacity dictionary and it is full before this
operation, and the key does not exist in the dictionary, the behavior is undefined.

326 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CFMutableDictionary Reference

key
The key of the value to set in theDict. If a key which matches key is already present in the dictionary,
only the value for the key is changed ("add if absent, replace if present"). If no key matches key, the
key-value pair is added to the dictionary.

If a key-value pair is added, both key and value are retained by the dictionary, using the retain
callback provided when theDict was created. key must be of the type expected by the key retain
callback.

value
The value to add to or replace in theDict. value is retained using the value retain callback provided
when theDict was created, and the previous value if any is released. value must be of the type
expected by the retain and release callbacks.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageClient
MoreIsBetter
MoreSCF
QISA
SCSIOldAndNew

Declared In
CFDictionary.h

Data Types

CFMutableDictionaryRef
A reference to a mutable dictionary object.

typedef struct __CFDictionary *CFMutableDictionaryRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

Data Types 327
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CFMutableDictionary Reference

328 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CFMutableDictionary Reference

Derived From: CFSet : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFSet.h

Companion guide Collections Programming Topics for Core Foundation

Overview

CFMutableSet manages dynamic sets. The basic interface for managing sets is provided by CFSet. CFMutableSet
adds functions to modify the contents of a set.

You create a mutable set object using either the CFSetCreateMutable (page 330) or
CFSetCreateMutableCopy (page 331) function.

CFMutableSet provides several functions for adding and removing values from a set. The
CFSetAddValue (page 329) function adds a value to a set and CFSetRemoveValue (page 332) removes a
value from a set.

CFMutableSet is “toll-free bridged” with its Cocoa Foundation counterpart, NSMutableSet. What this means
is that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. This means that in a method where you see an NSMutableSet * parameter, you can pass in a
CFMutableSetRef, and in a function where you see a CFMutableSetRef parameter, you can pass in an
NSMutableSet instance. This also applies to concrete subclasses of NSMutableSet. See Interchangeable Data
Types for more information on toll-free bridging.

Functions

CFSetAddValue
Adds a value to a CFMutableSet object.

void CFSetAddValue (
 CFMutableSetRef theSet,
 const void *value
);

Parameters
theSet

The set to modify.

Overview 329
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

CFMutableSet Reference

value
A CFType object or a pointer value to add to theSet (or the value itself, if it fits into the size of a
pointer).

value is retained by theSet using the retain callback provided when theSet was created. If value
is not of the type expected by the retain callback, the behavior is undefined. If value already exists
in the collection, this function returns without doing anything.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer

Declared In
CFSet.h

CFSetCreateMutable
Creates an empty CFMutableSet object.

CFMutableSetRef CFSetCreateMutable (
 CFAllocatorRef allocator,
 CFIndex capacity,
 const CFSetCallBacks *callBacks
);

Parameters
allocator

The allocator to use to allocate memory for the new set and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

capacity
The maximum number of values that can be contained by new set. The set starts empty and can grow
to this number of values (and it can have less). If this parameter is 0, the set’s maximum capacity is
not limited. The value must not be negative.

callBacks
A pointer to a CFSetCallBacks structure initialized with the callbacks to use to retain, release,
describe, and compare values in the set. A copy of the contents of the callbacks structure is made, so
that a pointer to a structure on the stack can be passed in or can be reused for multiple collection
creations. This parameter may be NULL, which is treated as if a valid structure of version 0 with all
fields NULL had been passed in.

If any of the fields are not valid pointers to functions of the correct type, or this parameter is not a
valid pointer to a CFSetCallBacks structure, the behavior is undefined. If any value put into the
collection is not one understood by one of the callback functions, the behavior when that callback
function is used is undefined.

If the collection contains CFType objects only, then pass kCFTypeSetCallBacks as this parameter
to use the default callback functions.

Return Value
A new mutable set, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

330 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

CFMutableSet Reference

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer

Declared In
CFSet.h

CFSetCreateMutableCopy
Creates a new mutable set with the values from another set.

CFMutableSetRef CFSetCreateMutableCopy (
 CFAllocatorRef allocator,
 CFIndex capacity,
 CFSetRef theSet
);

Parameters
allocator

The allocator to use to allocate memory for the new set and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

capacity
The maximum number of values that can be contained by the new set. The set starts with the same
count as theSet, and can grow to this number of values (and it can have less). If this parameter is 0,
the set’s maximum capacity is not limited. This parameter must be greater than or equal to the count
of theSet, or the behavior is undefined. If this parameter is negative, the behavior is undefined.

theSet
The set to copy. The pointer values from theSet are copied into the new set. The values are also
retained by the new set. The count of the new set is the same as the count of theSet. The new set
uses the same callbacks as theSet.

Return Value
A new mutable set that contains the same values as theSet. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetRemoveAllValues
Removes all values from a CFMutableSet object.

Functions 331
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

CFMutableSet Reference

void CFSetRemoveAllValues (
 CFMutableSetRef theSet
);

Parameters
theSet

The set to modify.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetRemoveValue
Removes a value from a CFMutableSet object.

void CFSetRemoveValue (
 CFMutableSetRef theSet,
 const void *value
);

Parameters
theSet

The set to modify.

value
The value to remove from theSet.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer

Declared In
CFSet.h

CFSetReplaceValue
Replaces a value in a CFMutableSet object.

void CFSetReplaceValue (
 CFMutableSetRef theSet,
 const void *value
);

Parameters
theSet

The set to modify.

332 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

CFMutableSet Reference

value
The value to replace in theSet. If this value does not already exist in theSet, the function does
nothing. You may pass the value itself instead of a pointer if it is pointer-size or less. The equal callback
provided when theSet was created is used to compare. If the equal callback was NULL, pointer
equality (in C, ==) is used. If value, or any other value in theSet, is not understood by the equal
callback, the behavior is undefined.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetSetValue
Sets a value in a CFMutableSet object.

void CFSetSetValue (
 CFMutableSetRef theSet,
 const void *value
);

Parameters
theSet

The set to modify.

value
The value to be set in theSet. If this value already exists in theSet, it is replaced. You may pass the
value itself instead of a pointer to it if the value is pointer-size or less. If theSet is fixed-size and
setting the value would increase its size beyond its capacity, the behavior is undefined.

Discussion
Depending on the implementation of the equal callback specified when creating theSet, the value that is
replaced by value may not have the same pointer equality.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

Data Types

CFMutableSetRef
A reference to a mutable set object.

Data Types 333
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

CFMutableSet Reference

typedef struct __CFSet *CFMutableSetRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

334 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

CFMutableSet Reference

Derived From: CFString : CFPropertyList : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFString.h
CFBase.h

Companion guides Property List Programming Topics for Core Foundation
Strings Programming Guide for Core Foundation

Overview

CFMutableString manages dynamic strings. The basic interface for managing strings is provided by CFString.
CFMutableString adds functions to modify the contents of a string.

CFMutableString is “toll-free bridged” with its Cocoa Foundation counterpart, NSMutableString. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSMutableString * parameter, you can pass in a
CFMutableStringRef, and in a function where you see a CFMutableStringRef parameter, you can pass
in an NSMutableString instance. This also applies to concrete subclasses of NSMutableString. See
Interchangeable Data Types for more information on toll-free bridging.

Functions

CFStringAppend
Appends the characters of a string to those of a CFMutableString object.

void CFStringAppend (
 CFMutableStringRef theString,
 CFStringRef appendedString
);

Parameters
theString

The string to which appendedString is appended. If theString is not a CFMutableString object,
an assertion is raised.

appendedString
The string to append.

Overview 335
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

Discussion
This function reallocates the backing store of theString to accommodate the new length.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
KillEveryOneButMe
MovieVideoChart
ProfileSystem
QTMetaData
TypeServicesForUnicode

Declared In
CFString.h

CFStringAppendCharacters
Appends a buffer of Unicode characters to the character contents of a CFMutableString object.

void CFStringAppendCharacters (
 CFMutableStringRef theString,
 const UniChar *chars,
 CFIndex numChars
);

Parameters
theString

The string to which the characters in chars are appended.

chars
A pointer to a buffer of Unicode characters.

numChars
The number of Unicode characters in chars.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringAppendCString
Appends a C string to the character contents of a CFMutableString object.

336 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

void CFStringAppendCString (
 CFMutableStringRef theString,
 const char *cStr,
 CFStringEncoding encoding
);

Parameters
theString

The string to which the characters from cStr are appended. If this value is not a CFMutableString
object, an assertion is raised.

cStr
A pointer to a C string buffer.

encoding
The encoding of the characters in cStr.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioburntest
simpleJavaLauncher

Declared In
CFString.h

CFStringAppendFormat
Appends a formatted string to the character contents of a CFMutableString object.

void CFStringAppendFormat (
 CFMutableStringRef theString,
 CFDictionaryRef formatOptions,
 CFStringRef format,
 ...
);

Parameters
theString

The string to which the formatted characters from format are appended. If this value is not a
CFMutableString object, an assertion is raised.

formatOptions
A dictionary containing formatting options for the string (such as the thousand-separator character,
which is dependent on locale). Currently, these options are an unimplemented feature.

format
A formatted string with printf-style specifiers.

...
Variable list of the values to be inserted in format.

Functions 337
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

Discussion
A formatted string is one with printf-style format specifiers embedded in the text such as %d (decimal), %f
(double), and %@ (Core Foundation object). The subsequent arguments, in order, are substituted for the
specifiers in the character data appended to theString. You can also reorder the arguments in the string
by using modifiers of the form "n$" with the format specifiers (for example, %2$d).

For more information on supported specifiers, see the relevant section in Strings Programming Guide for Core
Foundation.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Custom_HIView_Tutorial
DockBrowser
GetHWEthernetAddr
MoreIsBetter
MovieVideoChart

Declared In
CFString.h

CFStringAppendFormatAndArguments
Appends a formatted string to the character contents of a CFMutableString object.

void CFStringAppendFormatAndArguments (
 CFMutableStringRef theString,
 CFDictionaryRef formatOptions,
 CFStringRef format,
 va_list arguments
);

Parameters
theString

The string to which the formatted characters from format are appended. If this value is not a
CFMutableString object, an assertion is raised.

formatOptions
A dictionary containing formatting options for the string (such as the thousand-separator character,
which is dependent on locale). Currently, these options are an unimplemented feature.

format
A formatted string with printf-style specifiers.

arguments
List of values to be inserted in format.

Discussion
A formatted string is one with printf-style format specifiers embedded in the text such as %d (decimal), %f
(double), and %@ (Core Foundation object). The subsequent arguments, in order, are substituted for the
specifiers in the character data appended to theString. You can also reorder the arguments in the string
by using modifiers of the form "n$" with the format specifiers (for example, %2$d).

338 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

For more information on supported specifiers, see the relevant section in Strings Programming Guide for Core
Foundation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringAppendPascalString
Appends a Pascal string to the character contents of a CFMutableString object.

void CFStringAppendPascalString (
 CFMutableStringRef theString,
 ConstStr255Param pStr,
 CFStringEncoding encoding
);

Parameters
theString

The string to which the characters in pStr are appended. If this value is not a CFMutableString object,
an assertion is raised.

pStr
A Pascal string buffer.

encoding
The string encoding of the characters in pStr.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringCapitalize
Changes the first character in each word of a string to uppercase (if it is a lowercase alphabetical character).

void CFStringCapitalize (
 CFMutableStringRef theString,
 CFLocaleRef locale
);

Parameters
theString

The string to be capitalized. If this value is not a CFMutableString object, an assertion is raised.

locale
A locale that specifies a particular language or region. Prior to Mac OS X v10.3, this parameter was
an untyped pointer and not used.

Availability
Available in Mac OS X v10.0 and later.

Functions 339
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

Declared In
CFString.h

CFStringCreateMutable
Creates an empty CFMutableString object.

CFMutableStringRef CFStringCreateMutable (
 CFAllocatorRef alloc,
 CFIndex maxLength
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

maxLength
The maximum number of Unicode characters that can be stored by the returned string. Pass 0 if there
should be no character limit. Note that initially the string still has a length of 0; this parameter simply
specifies what the maximum size is. CFMutableString might try to optimize its internal storage by
paying attention to this value.

Return Value
A new empty CFMutableString object or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Discussion
This function creates an empty (that is, content-less) CFMutableString object. You can add character data to
this object with any of the CFStringAppend... functions, and thereafter you can insert, delete, replace,
pad, and trim characters with the appropriate CFString functions. If the maxLength parameter is greater
than 0, any attempt to add characters beyond this limit results in a run-time error.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iTunesController
KillEveryOneButMe
MovieVideoChart
QTMetaData
simpleJavaLauncher

Declared In
CFString.h

CFStringCreateMutableCopy
Creates a mutable copy of a string.

340 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

CFMutableStringRef CFStringCreateMutableCopy (
 CFAllocatorRef alloc,
 CFIndex maxLength,
 CFStringRef theString
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

maxLength
The maximum number of Unicode characters that can be stored by the returned object. Pass 0 if there
should be no character limit. Note that initially the returned object still has the same length as the
string argument; this parameter simply specifies what the maximum size is. CFString might try to
optimize its internal storage by paying attention to this value.

theString
A string to copy.

Return Value
A string that has the same contents as theString. Returns NULL if there was a problem copying the object.
Ownership follows the Create Rule.

Discussion
The returned mutable string is identical to the original string except for (perhaps) the mutability attribute.
You can add character data to the returned string with any of the CFStringAppend... functions, and you
can insert, delete, replace, pad, and trim characters with the appropriate CFString functions. If the maxLength
parameter is greater than 0, any attempt to add characters beyond this limit results in a run-time error.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Custom_HIView_Tutorial
DTSCarbonShell
iTunesController
MFSLives
MoreSCF

Declared In
CFString.h

CFStringCreateMutableWithExternalCharactersNoCopy
Creates a CFMutableString object whose Unicode character buffer is controlled externally.

Functions 341
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

CFMutableStringRef CFStringCreateMutableWithExternalCharactersNoCopy (
 CFAllocatorRef alloc,
 UniChar *chars,
 CFIndex numChars,
 CFIndex capacity,
 CFAllocatorRef externalCharactersAllocator
);

Parameters
alloc

The allocator to use to allocate memory for the string. Pass NULL or kCFAllocatorDefault to use
the current default allocator.

chars
The Unicode character buffer for the new CFMutableString. Before calling, create this buffer on the
stack or heap and optionally initialize it with Unicode character data. Upon return, the created CFString
object keeps its own copy of the pointer to this buffer. You may pass in NULL if there is no initial
buffer being provided.

numChars
The number of characters initially in the Unicode buffer pointed to by chars.

capacity
The capacity of the external buffer (chars); that is, the maximum number of Unicode characters that
can be stored. This value should be 0 if no initial buffer is provided.

externalCharactersAllocator
The allocator to use to reallocate the external buffer when editing takes place and for deallocating
the buffer when string is deallocated. If the default allocator is suitable for these purposes, pass NULL.
If you do not want the new string to reallocate or deallocate memory for the buffer (that is, you assume
responsibility for these things yourself), pass kCFAllocatorNull.

Return Value
A new mutable string, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Discussion
This function permits you to create a CFMutableString object whose backing store is an external Unicode
character buffer—that is, a buffer that you control (or can control) entirely. This function allows you to take
advantage of the features of CFString, particularly the CFMutableString functions that add and modify
character data. But at the same time you can directly add, delete, modify, and examine the characters in the
buffer. You can even replace the buffer entirely. If, however, you directly modify or replace the character
buffer, you should inform the CFString object of this change with the
CFStringSetExternalCharactersNoCopy (page 349) function.

If you mutate the character contents with the CFString functions, and the buffer needs to be enlarged, the
CFString object calls the allocation callbacks specified for the allocator externalCharactersAllocator.

This function should be used in special circumstances where you want to create a CFString wrapper around
an existing, potentially large UniChar buffer you own. Using this function causes the CFString object to
forgo some of its internal optimizations, so it should be avoided in general use. That is, if you want to create
a CFString object from a small UniChar buffer, and you don't need to continue owning the buffer, use one
of the other creation functions (for instance CFStringCreateWithCharacters (page 540)) instead.

Availability
Available in Mac OS X v10.0 and later.

342 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

Declared In
CFString.h

CFStringDelete
Deletes a range of characters in a string.

void CFStringDelete (
 CFMutableStringRef theString,
 CFRange range
);

Parameters
theString

A string from which characters are to be deleted.

range
The range of characters in theString to delete.

Discussion
The characters after the deleted range are adjusted to “fill in” the gap.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockBrowser
HID Calibrator
HID Config Save
HID Explorer

Declared In
CFString.h

CFStringFindAndReplace
Replaces all occurrences of a substring within a given range.

CFIndex CFStringFindAndReplace (
 CFMutableStringRef theString,
 CFStringRef stringToFind,
 CFStringRef replacementString,
 CFRange rangeToSearch,
 CFOptionFlags compareOptions
);

Parameters
theString

The string to modify.

stringToFind
The substring to search for in theString.

replacementString
The replacement string for stringToFind.

Functions 343
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

rangeToSearch
The range within which to search in theString.

compareOptions
Flags that select different types of comparisons, such as localized comparison, case-insensitive
comparison, and non-literal comparison. If you want the default comparison behavior, pass 0. See
CFStringCompareFlags (page 572) for the available flags.

Return Value
The number of instances of stringToFind that were replaced.

Discussion
The possible values of compareOptions are combinations of the kCFCompareCaseInsensitive (page
574), kCFCompareBackwards (page 574), kCFCompareNonliteral (page 574), and
kCFCompareAnchored (page 574) constants.

The kCFCompareBackwards option can be used to replace a substring starting from the end, which could
produce different results. For example, if the parameter theString is “AAAAA”, stringToFind is “AA”, and
replacementString is “B”, then the result is normally “BBA”. However, if the kCFCompareBackwards
constant is used, the result is “ABB.”

The kCFCompareAnchored option assures that only anchored but multiple instances are found (the instances
must be consecutive at start or end). For example, if the parameter theString is “AAXAA”, stringToFind
is “A”, and replacementString is “B”, then the result is normally “BBXBB.” However, if the
kCFCompareAnchored constant is used, the result is “BBXAA.”

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
simpleJavaLauncher

Declared In
CFString.h

CFStringFold
Folds a given string into the form specified by optional flags.

void CFStringFold (
 CFMutableStringRef theString,
 CFOptionFlags theFlags,
 CFLocaleRef theLocale
);

Parameters
theString

The string which is to be folded. If this parameter is not a valid mutable CFString, the behavior is
undefined.

344 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

theFlags
The equivalency flags which describes the character folding form. See “String Comparison Flags” in
CFStringReference for possible values. Only those flags containing the word "insensitive" are recognized;
other flags are ignored.

Folding with kCFCompareCaseInsensitive removes case distinctions in accordance with the
mapping specified by ftp://ftp.unicode.org/Public/UNIDATA/CaseFolding.txt. Folding with
kCFCompareDiacriticInsensitive removes distinctions of accents and other diacritics. Folding
with kCFCompareWidthInsensitive removes character width distinctions by mapping characters
in the range U+FF00-U+FFEF to their ordinary equivalents.

theLocale
The locale to use for the operation. NULL specifies the canonical locale (the return value from
CFLocaleGetSystem (page 247)).

The locale argument affects the case mapping algorithm. For example, for the Turkish locale,
case-insensitive compare matches “I” to “ı” (Unicode code point U+0131, Latin Small Dotless I), not
the normal “i” character.

Discussion
Character foldings are operations that convert any of a set of characters sharing similar semantics into a
single representative from that set.

You can use this function to preprocess strings that are to be compared, searched, or indexed. Note that
folding does not include normalization, so you must use CFStringNormalize (page 346) in addition to
CFStringFold in order to obtain the effect of kCFCompareNonliteral.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
DerivedProperty

Declared In
CFString.h

CFStringInsert
Inserts a string at a specified location in the character buffer of a CFMutableString object.

void CFStringInsert (
 CFMutableStringRef str,
 CFIndex idx,
 CFStringRef insertedStr
);

Parameters
str

The string to be modified. If this value is not a CFMutableString object, an assertion is raised.

index
The index of the character in str after which the new characters are to be inserted. If the index is out
of bounds, an assertion is raised.

insertedStr
The string to insert into str.

Functions 345
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

ftp://ftp.unicode.org/Public/UNIDATA/CaseFolding.txt

Discussion
To accommodate the new characters, this function moves any existing characters to the right of the inserted
characters the appropriate number of positions.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Explorer
iTunesController

Declared In
CFString.h

CFStringLowercase
Changes all uppercase alphabetical characters in a CFMutableString to lowercase.

void CFStringLowercase (
 CFMutableStringRef theString,
 CFLocaleRef locale
);

Parameters
theString

The string to be lowercased. If this value is not a CFMutableString object, an assertion is raised.

locale
The locale to use when the lowercasing operation is performed. Prior to Mac OS X v10.3 this parameter
was an untyped pointer and not used.

The locale argument affects the case mapping algorithm. For example, for the Turkish locale,
case-insensitive compare matches “I” to “ı” (Unicode code point U+0131, Latin Small Dotless I), not
the normal “i” character.

Special Considerations

The locale parameter type changed from void * to CFLocaleRef in Mac OS X v10.3.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MoreIsBetter
MoreSCF
NSLMiniBrowser
QISA

Declared In
CFString.h

CFStringNormalize
Normalizes the string into the specified form as described in Unicode Technical Report #15.

346 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

void CFStringNormalize (
 CFMutableStringRef theString,
 CFStringNormalizationForm theForm
);

Parameters
theString

The string to be normalized.

theForm
The form to normalize theString.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
DerivedProperty
MFSLives
MoreSCF

Declared In
CFString.h

CFStringPad
Enlarges a string, padding it with specified characters, or truncates the string.

void CFStringPad (
 CFMutableStringRef theString,
 CFStringRef padString,
 CFIndex length,
 CFIndex indexIntoPad
);

Parameters
theString

The string to modify.

padString
A string containing the characters with which to fill the extended character buffer. Pass NULL to
truncate the string.

length
The new length of theString. If this length is greater than the current length, padding takes place;
if it is less, truncation takes place.

indexIntoPad
The index of the character in padStringwith which to begin padding. If you are truncating the string
represented by the object, this parameter is ignored.

Discussion
This function has two purposes. It either enlarges the character buffer of a CFMutableString object to a given
length, padding the added length with a given character or characters, or it truncates the character buffer
to a smaller size. The key parameter for this behavior is length; if it is greater than the current length of the
represented string, padding takes place, and if it less than the current length, truncation occurs.

For example, say you have a string, aMutStr, containing the characters "abcdef". The call

Functions 347
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

CFStringPad(aMutStr, CFSTR("123"), 9, 1);

results in aMutStr containing "abcdef231". However, the following call

CFStringPad(aMutStr, NULL, 3, 0);

results in aMutStr containing "abc".

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringReplace
Replaces part of the character contents of a CFMutableString object with another string.

void CFStringReplace (
 CFMutableStringRef theString,
 CFRange range,
 CFStringRef replacement
);

Parameters
theString

The string to modify. The characters are adjusted left or right (depending on the length of the
substituted string) and the character buffer of the object is resized accordingly. If this value is not a
CFMutableString object, an assertion is raised.

range
The range of characters in theString to replace.

replacement
The replacement string to put into theString.

Discussion
Although you can use this function to replace all characters in a CFMutableString object (by specifying a
range of (0, CFStringGetLength(theString))), it is more convenient to use the
CFStringReplaceAll (page 349) function for that purpose.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
MoreIsBetter
MoreSCF
QISA
QTCarbonShell

Declared In
CFString.h

348 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

CFStringReplaceAll
Replaces all characters of a CFMutableString object with other characters.

void CFStringReplaceAll (
 CFMutableStringRef theString,
 CFStringRef replacement
);

Parameters
theString

The string to modify. If this value is not a CFMutableString object, an assertion is raised.

replacement
The replacement string to put into theString.

Discussion
The character buffer of theString is resized according to the length of the new characters.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageBrowserView
iTunesController

Declared In
CFString.h

CFStringSetExternalCharactersNoCopy
Notifies a CFMutableString object that its external backing store of Unicode characters has changed.

void CFStringSetExternalCharactersNoCopy (
 CFMutableStringRef theString,
 UniChar *chars,
 CFIndex length,
 CFIndex capacity
);

Parameters
theString

The string to act as a “wrapper” for the external backing store (chars). If this value is not a
CFMutableString object, an assertion is raised.

chars
The external (client-owned) Unicode buffer acting as the backing store for theString.

length
The current length of the contents of chars (in Unicode characters).

capacity
The capacity of the Unicode buffer—that is, the total number of Unicode characters that can be stored
in it before the buffer has to be grown.

Functions 349
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

Discussion
You use this function to reallocate memory for a string, if necessary, and change its references to the data
in the buffer. The object must have been created with the
CFStringCreateMutableWithExternalCharactersNoCopy (page 341) function; see the discussion of
this function for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringTransform
Perform in-place transliteration on a mutable string.

Boolean CFStringTransform (
 CFMutableStringRef string,
 CFRange *range,
 CFStringRef transform,
 Boolean reverse
);

Parameters
string

The string to transform.

range
A pointer to the range over which the transformation is applied. NULL causes the whole string to be
transformed. On return, range is modified to reflect the new range corresponding to the original
range.

transform
A CFString object that identifies the transformation to apply. For a list of valid values, see “Transform
Identifiers for CFStringTransform” (page 353). On Mac OS X v10.4 and later, you can also use any valid
ICU transform ID defined in the ICU User Guide for Transforms.

reverse
A Boolean that, if true, specifies that the inverse transform should be used (if it exists).

Return Value
true if the transform is successful; otherwise false.

Discussion
The transformation represented by transform is applied to the given range of string, modifying it in place.
Only the specified range is modified, but the transform may look at portions of the string outside that range
for context. Reasons that the transform may be unsuccessful include an invalid transform identifier, and
attempting to reverse an irreversible transform.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFString.h

350 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

http://icu.sourceforge.net/userguide/Transform.html

CFStringTrim
Trims a specified substring from the beginning and end of a CFMutableString object.

void CFStringTrim (
 CFMutableStringRef theString,
 CFStringRef trimString
);

Parameters
theString

The string to trim. If this value is not a CFMutableString object, an assertion is raised.

trimString
The string to trim from theString. The characters of the trim string are treated as a substring and
not individually; for example, if the mutable characters are "abc X" and the trim string is "XY", the
mutable characters are not affected.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MoreSCF

Declared In
CFString.h

CFStringTrimWhitespace
Trims whitespace from the beginning and end of a CFMutableString object.

void CFStringTrimWhitespace (
 CFMutableStringRef theString
);

Parameters
theString

The string to trim. If this value is not a CFMutableString object, an assertion is raised.

Discussion
Whitespace for this function includes space characters, tabs, newlines, carriage returns, and any similar
characters that do not have a visible representation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringUppercase
Changes all lowercase alphabetical characters in a CFMutableString object to uppercase.

Functions 351
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

void CFStringUppercase (
 CFMutableStringRef theString,
 CFLocaleRef locale
);

Parameters
theString

The string to uppercase. If this value is not a CFMutableString object, an assertion is raised.

locale
A CFLocale object that specifies a particular language or region. Prior to Mac OS X v10.3, this parameter
was an untyped pointer and not used.

The locale argument affects the case mapping algorithm. For example, for the Turkish locale,
case-insensitive compare matches “I” to “ı” (Unicode code point U+0131, Latin Small Dotless I), not
the normal “i” character.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

Data Types

CFMutableStringRef
A reference to a CFMutableString object.

typedef CFStringRef CFMutableStringRef;

Discussion
The type refers to a CFMutableString object, which “encapsulates” a Unicode string along with its length;
the object has the attribute of being mutable, which means that its character contents can be modified.
CFString is an opaque type that defines the characteristics and behavior of CFString objects, both immutable
and mutable.

CFMutableString derives from CFString. Therefore, you can pass CFMutableString objects into functions
accepting CFString objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

352 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

Constants

String Normalization Forms
Unicode normalization forms as described in Unicode Technical Report #15.

enum CFStringNormalizationForm {
 kCFStringNormalizationFormD = 0,
 kCFStringNormalizationFormKD = 1,
 kCFStringNormalizationFormC = 2,
 kCFStringNormalizationFormKC = 3
};
typedef enum CFStringNormalizationForm CFStringNormalizationForm;

Constants
kCFStringNormalizationFormD

Canonical decomposition.

Available in Mac OS X v10.2 and later.

Declared in CFString.h.

kCFStringNormalizationFormKD
Compatibility decomposition.

Available in Mac OS X v10.2 and later.

Declared in CFString.h.

kCFStringNormalizationFormC
Canonical decomposition followed by canonical composition.

Available in Mac OS X v10.2 and later.

Declared in CFString.h.

kCFStringNormalizationFormKC
Compatibility decomposition followed by canonical composition.

Available in Mac OS X v10.2 and later.

Declared in CFString.h.

Transform Identifiers for CFStringTransform
Constants that identify transforms used with CFStringTransform (page 350).

Constants 353
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

const CFStringRef kCFStringTransformStripCombiningMarks;
const CFStringRef kCFStringTransformToLatin;
const CFStringRef kCFStringTransformFullwidthHalfwidth;
const CFStringRef kCFStringTransformLatinKatakana;
const CFStringRef kCFStringTransformLatinHiragana;
const CFStringRef kCFStringTransformHiraganaKatakana;
const CFStringRef kCFStringTransformMandarinLatin;
const CFStringRef kCFStringTransformLatinHangul;
const CFStringRef kCFStringTransformLatinArabic;
const CFStringRef kCFStringTransformLatinHebrew;
const CFStringRef kCFStringTransformLatinThai;
const CFStringRef kCFStringTransformLatinCyrillic;
const CFStringRef kCFStringTransformLatinGreek;
const CFStringRef kCFStringTransformToXMLHex;
const CFStringRef kCFStringTransformToUnicodeName;
const CFStringRef kCFStringTransformStripDiacritics;

Constants
kCFStringTransformStripCombiningMarks

The identifier of a transform to strip combining marks (accents or diacritics).

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformToLatin
The identifier of a transform to transliterate all text possible to Latin script. Ideographs are transliterated
as Mandarin Chinese.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformFullwidthHalfwidth
The identifier of a reversible transform to convert full-width characters to their half-width equivalents.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformLatinKatakana
The identifier of a reversible transform to transliterate text to Katakana from Latin.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformLatinHiragana
The identifier of a reversible transform to transliterate text to Hiragana from Latin.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformHiraganaKatakana
The identifier of a reversible transform to transliterate text to Katakana from Hiragana.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformMandarinLatin
The identifier of a reversible transform to transliterate text to Latin from ideographs interpreted as
Mandarin Chinese.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

354 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

kCFStringTransformLatinHangul
The identifier of a reversible transform to transliterate text to Hangul from Latin.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformLatinArabic
The identifier of a reversible transform to transliterate text to Arabic from Latin.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformLatinHebrew
The identifier of a reversible transform to transliterate text to Hebrew from Latin.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformLatinThai
The identifier of a reversible transform to transliterate text to Thai from Latin.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformLatinCyrillic
The identifier of a reversible transform to transliterate text to Cyrillic from Latin.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformLatinGreek
The identifier of a reversible transform to transliterate text to Greek from Latin.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformToXMLHex
The identifier of a reversible transform to transliterate characters other than printable ASCII to
XML/HTML numeric entities.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformToUnicodeName
The identifier of a reversible transform to transliterate characters other than printable ASCII (minus
braces) to their Unicode character name in braces.

Examples include {AIRPLANE} and {GREEK CAPITAL LETTER PSI}.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringTransformStripDiacritics
The identifier of a transform to remove diacritic markings.

Available in Mac OS X v10.5 and later.

Declared in CFString.h.

Discussion
On Mac OS X v10.4 and later, with CFStringTransform (page 350) you can also use any valid ICU transform
ID defined in the ICU User Guide for Transforms.

Constants 355
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

http://icu.sourceforge.net/userguide/Transform.html

356 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CFMutableString Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFNotificationCenter.h

Companion guide Notification Programming Topics for Cocoa

Overview

A CFNotificationCenter object provides the means by which you can send a message, or notification, to any
number of recipients, or observers, without having to know anything about the recipients. A notification
message consists of a notification name (a CFString), a pointer value that identifies the object posting the
notification, and an optional dictionary that contains additional information about the particular notification.

To register as an observer of a notification, you call CFNotificationCenterAddObserver (page 358),
providing an identifier for your observer, the callback function that should be called when the notification
is posted, and the name of the notification and the object in which you are interested. The observer identifier
is passed back to the callback function, along with the notification information. You can use the identifier to
distinguish multiple observers using the same callback function. The identifier is also used to unregister the
observer with CFNotificationCenterRemoveObserver (page 364) and
CFNotificationCenterRemoveEveryObserver (page 363).

To send a notification, you call CFNotificationCenterPostNotification (page 361), passing in the
notification information. The notification center then looks up all the observers that registered for this
notification and sends the notification information to their callback functions.

There are three types of CFNotificationCenter—a distributed notification center, a local notification center,
and a Darwin notification center—an application may have at most one of each type. The distributed
notification is obtained with CFNotificationCenterGetDistributedCenter (page 360). A distributed
notification center delivers notifications between applications. In this case, the notification object must always
be a CFString object and the notification dictionary must contain only property list values. The local and
Darwin notification centers are available in Mac OS X version 10.4 and later, and obtained using
CFNotificationCenterGetLocalCenter (page 361) and
CFNotificationCenterGetDarwinNotifyCenter (page 360) respectively.

Unlike some other Core Foundation opaque types with names similar to a Cocoa Foundation class (such as
CFString and NSString), CFNotificationCenter objects cannot be cast (“toll-free bridged”) to
NSNotificationCenter objects or vice-versa.

Overview 357
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

Functions by Task

Accessing a Notification Center

CFNotificationCenterGetDarwinNotifyCenter (page 360)
Returns the application’s Darwin notification center.

CFNotificationCenterGetDistributedCenter (page 360)
Returns the application’s distributed notification center.

CFNotificationCenterGetLocalCenter (page 361)
Returns the application’s local notification center.

Posting a Notification

CFNotificationCenterPostNotification (page 361)
Posts a notification for an object.

CFNotificationCenterPostNotificationWithOptions (page 362)
Posts a notification for an object using specified options.

Adding and Removing Observers

CFNotificationCenterAddObserver (page 358)
Registers an observer to receive notifications.

CFNotificationCenterRemoveEveryObserver (page 363)
Stops an observer from receiving any notifications from any object.

CFNotificationCenterRemoveObserver (page 364)
Stops an observer from receiving certain notifications.

Getting the CFNotificationCenter Type ID

CFNotificationCenterGetTypeID (page 361)
Returns the type identifier for the CFNotificationCenter opaque type.

Functions

CFNotificationCenterAddObserver
Registers an observer to receive notifications.

358 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

void CFNotificationCenterAddObserver (
 CFNotificationCenterRef center,
 const void *observer,
 CFNotificationCallback callBack,
 CFStringRef name,
 const void *object,
 CFNotificationSuspensionBehavior suspensionBehavior
);

Parameters
center

The notification center to which to add the observer.

observer
The observer. In Mac OS X v10.3 and later, this parameter may be NULL.

callBack
The callback function to call when object posts the notification named name.

name
The name of the notification to observe. If NULL, callback is called for any notification posted by
object.

If center is a Darwin notification center, this value must not be NULL.

object
The object to observe. For distributed notifications, object must be a CFString object. If NULL,
callback is called when a notification named name is posted by any object.

If center is a Darwin notification center, this value is ignored.

suspensionBehavior
Flag indicating how notifications should be handled when the application is in the background. See
“Notification Delivery Suspension Behavior” (page 366) for the list of available values.

If center is a Darwin notification center, this value is ignored.

Discussion
The first time an observer is registered with a distributed notification center, the notification center creates
a connection with the system-wide notification server and places a listening port into the common modes
of the current thread’s run loop. When a notification is delivered, it is processed on this initial thread, even
if the observer that is receiving the notification registered for the notification on a different thread.

Because loaded frameworks may potentially spawn threads and add their own observers before your code
executes, you cannot know for certain which thread will receive distributed notifications. If you need to
control which thread processes a notification, your callback function must be able to forward the notification
to the proper thread. You can use a CFMessagePort object or a custom CFRunLoopSource object to send
notifications to the correct thread’s run loop.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
VideoViewer
XcodeClientServer

Declared In
CFNotificationCenter.h

Functions 359
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

CFNotificationCenterGetDarwinNotifyCenter
Returns the application’s Darwin notification center.

CFNotificationCenterRef CFNotificationCenterGetDarwinNotifyCenter (
 void
);

Return Value
The application’s Darwin notification center.

Discussion
This notification center is used to cover the <notify.h> Core OS notification mechanism (see
/usr/include/notify.h). An application has only one Darwin notification center, so this function returns
the same value each time it is called.

The Darwin Notify Center has no notion of per-user sessions, all notifications are system-wide. As with
distributed notifications, the main thread's run loop must be running in one of the common modes (usually
kCFRunLoopDefaultMode) for Darwin-style notifications to be delivered.

Important: Several function parameters are ignored by Darwin notification centers. To ensure future
compatibility, you should pass NULL or 0 for all ignored arguments.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFNotificationCenter.h

CFNotificationCenterGetDistributedCenter
Returns the application’s distributed notification center.

CFNotificationCenterRef CFNotificationCenterGetDistributedCenter (
 void
);

Return Value
The application’s distributed notification center. An application has only one distributed notification center,
so this function returns the same value each time it is called.

Discussion
A distributed notification center delivers notifications between applications. A notification object used with
a distributed notification center must always be a CFString object and the notification dictionary must contain
only property list values.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
VideoViewer
XcodeClientServer

360 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

Declared In
CFNotificationCenter.h

CFNotificationCenterGetLocalCenter
Returns the application’s local notification center.

CFNotificationCenterRef CFNotificationCenterGetLocalCenter (
 void
);

Return Value
The application’s local notification center. An application has only one local notification center, so this function
returns the same value each time it is called.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFNotificationCenter.h

CFNotificationCenterGetTypeID
Returns the type identifier for the CFNotificationCenter opaque type.

CFTypeID CFNotificationCenterGetTypeID (
 void
);

Return Value
The type identifier for the CFNotificationCenter opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFNotificationCenter.h

CFNotificationCenterPostNotification
Posts a notification for an object.

void CFNotificationCenterPostNotification (
 CFNotificationCenterRef center,
 CFStringRef name,
 const void *object,
 CFDictionaryRef userInfo,
 Boolean deliverImmediately
);

Parameters
center

The notification center to post the notification.

Functions 361
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

name
The name of the notification to post. This value must not be NULL.

object
The object posting the notification. If NULL, the notification is sent only to observers that are observing
all objects. In other words, only observers that registered for the notification with a NULL value for
object will receive the notification.

If you want to allow your clients to register for notifications using Cocoa APIs (seeNSNotificationCenter
Class Reference), then object must be a Core Foundation or Cocoa object.

For distributed notifications, object must be a CFString object.

If center is a Darwin notification center, this value is ignored.

userInfo
A dictionary passed to observers. You populate this dictionary with additional information describing
the notification. For distributed notifications, the dictionary must contain only property list objects.
This value may be NULL.

If center is a Darwin notification center, this value is ignored.

deliverImmediately
If true, the notification is delivered to all observers immediately, even if some observers are in
suspended (background) applications and they requested different suspension behavior when
registering for the notification. If false, each observer’s requested suspension behavior is respected.

If center is a Darwin notification center, this value is ignored.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
XcodeClientServer

Declared In
CFNotificationCenter.h

CFNotificationCenterPostNotificationWithOptions
Posts a notification for an object using specified options.

void CFNotificationCenterPostNotificationWithOptions (
 CFNotificationCenterRef center,
 CFStringRef name,
 const void *object,
 CFDictionaryRef userInfo,
 CFOptionFlags options
);

Parameters
center

The notification center to post the notification.

name
The name of the notification to post. This value must not be NULL.

362 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

object
The object posting the notification. If NULL, the notification is sent only to observers that are observing
all objects. In other words, only observers that registered for the notification with a NULL value for
object will receive the notification.

If you want to allow your clients to register for notifications using Cocoa APIs (seeNSNotificationCenter
Class Reference), then object must be a Core Foundation or Cocoa object.

For distributed notifications, object must be a CFString object.

If center is a Darwin notification center, this value is ignored.

userInfo
A dictionary to pass to observers. You populate this dictionary with additional information describing
the notification. For distributed notifications, the dictionary must contain only property list objects.
Can be NULL.

If center is a Darwin notification center, this value is ignored.

options
Specifies if the notification should be posted immediately, or to all sessions. See “Notification Posting
Options” (page 367) for possible values.

If center is a Darwin notification center, this value is ignored.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNotificationCenter.h

CFNotificationCenterRemoveEveryObserver
Stops an observer from receiving any notifications from any object.

void CFNotificationCenterRemoveEveryObserver (
 CFNotificationCenterRef center,
 const void *observer
);

Parameters
center

The notification center from which to remove observers.

observer
The observer. This value must not be NULL.

Discussion
If you no longer want an observer to receive any notifications, perhaps because the observer is being
deallocated, you can call this function to unregister the observer from all the notifications for which it had
previously registered.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
XcodeClientServer

Functions 363
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

Declared In
CFNotificationCenter.h

CFNotificationCenterRemoveObserver
Stops an observer from receiving certain notifications.

void CFNotificationCenterRemoveObserver (
 CFNotificationCenterRef center,
 const void *observer,
 CFStringRef name,
 const void *object
);

Parameters
center

The notification center to modify.

observer
The observer. This value must not be NULL.

name
The name of the notification to stop observing. If NULL, observer stops receiving callbacks for all
notifications posted by object.

object
The object to stop observing. For distributed notifications, objectmust be a CFString object. If NULL,
observer stops receiving callbacks for all objects posting notifications named name.

If center is a Darwin notification center, this value is ignored.

Discussion
If both name and object are NULL, this function unregisters observer from all the notifications for which
it had previously registered with center.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
VideoViewer
XcodeClientServer

Declared In
CFNotificationCenter.h

Callbacks

CFNotificationCallback
Callback function invoked for each observer of a notification when the notification is posted.

364 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

typedef void (*CFNotificationCallback) (
 CFNotificationCenterRef center,
 void *observer,
 CFStringRef name,
 const void *object,
 CFDictionaryRef userInfo
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFNotificationCenterRef center,
 void *observer,
 CFStringRef name,
 const void *object,
 CFDictionaryRef userInfo
);

Parameters
center

The notification center handling the notification.

observer
An arbitrary value, other than NULL, that identifies the observer.

name
The name of the notification being posted.

object
An arbitrary value that identifies the object posting the notification. For distributed notifications,
object is always a CFString object. This value could be NULL.

userInfo
A dictionary containing additional information regarding the notification. This value could be NULL.

If the notification center is a Darwin notification center, this value must be ignored.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFNotificationCenter.h

Data Types

CFNotificationCenterRef
The type of a reference to a CFNotificationCenter.

typedef struct *CFNotificationCenterRef;

Availability
Available in Mac OS X v10.0 and later.

Data Types 365
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

Declared In
CFNotificationCenter.h

Constants

Notification Delivery Suspension Behavior
Suspension flags that indicate how distributed notifications should be handled when the receiving application
is in the background.

enum CFNotificationSuspensionBehavior {
 CFNotificationSuspensionBehaviorDrop = 1,
 CFNotificationSuspensionBehaviorCoalesce = 2,
 CFNotificationSuspensionBehaviorHold = 3,
 CFNotificationSuspensionBehaviorDeliverImmediately = 4
};
typedef enum CFNotificationSuspensionBehavior CFNotificationSuspensionBehavior;

Constants
CFNotificationSuspensionBehaviorDrop

The server will not queue any notifications of the specified name and object while the receiving
application is in the background.

Available in Mac OS X v10.0 and later.

Declared in CFNotificationCenter.h.

CFNotificationSuspensionBehaviorCoalesce
The server will only queue the last notification of the specified name and object; earlier notifications
are dropped.

Available in Mac OS X v10.0 and later.

Declared in CFNotificationCenter.h.

CFNotificationSuspensionBehaviorHold
The server will hold all matching notifications until the queue has been filled (queue size determined
by the server) at which point the server may flush queued notifications.

Available in Mac OS X v10.0 and later.

Declared in CFNotificationCenter.h.

CFNotificationSuspensionBehaviorDeliverImmediately
The server will deliver notifications of the specified name and object whether or not the application
is in the background. When a notification with this suspension behavior is matched, it has the effect
of first flushing any queued notifications.

Available in Mac OS X v10.0 and later.

Declared in CFNotificationCenter.h.

Discussion
An application selects the suspension behavior for a given notification when it registers an observer for that
notification with CFNotificationCenterAddObserver (page 358).

366 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

Notification Posting Options
Possible options when posting notifications.

enum {
 kCFNotificationDeliverImmediately = (1 << 0),
 kCFNotificationPostToAllSessions = (1 << 1)
};

Constants
kCFNotificationDeliverImmediately

Delivers the notification immediately.

Available in Mac OS X v10.3 and later.

Declared in CFNotificationCenter.h.

kCFNotificationPostToAllSessions
Delivers the notification to all sessions.

Available in Mac OS X v10.3 and later.

Declared in CFNotificationCenter.h.

Discussion
Use these constants when calling the CFNotificationCenterPostNotificationWithOptions (page
362) function.

Constants 367
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

368 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CFNotificationCenter Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFBase.h

Companion guide Collections Programming Topics for Core Foundation

Overview

The CFNull opaque type defines a unique object used to represent null values in collection objects (which
don’t allow NULL values). CFNull objects are neither created nor destroyed. Instead, a single CFNull constant
object—kCFNull (page 370)—is defined and is used wherever a null value is needed.

The CFNull opaque type is available in Mac OS X v10.2 and later.

Functions

CFNullGetTypeID
Returns the type identifier for the CFNull opaque type.

CFTypeID CFNullGetTypeID (
 void
);

Return Value
The type identifier for the CFNull opaque type.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFBase.h

Overview 369
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

CFNull Reference

Data Types

CFNullRef
A reference to a CFNull object.

typedef const struct __CFNull *CFNullRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFBase.h

Constants

Predefined Value
Predefined CFNull object.

const CFNullRef kCFNull;

Constants
kCFNull

The singleton CFNull object.

Available in Mac OS X v10.2 and later.

Declared in CFBase.h.

370 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

CFNull Reference

Derived From: CFPropertyList : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFNumber.h

Companion guide Property List Programming Topics for Core Foundation

Overview

CFNumber encapsulates C scalar (numeric) types. It provides functions for setting and accessing the value
as any basic C type. It also provides a compare function to determine the ordering of two CFNumber objects.
CFNumber objects are used to wrap numerical values for use in Core Foundation property lists and collections.

CFNumber objects are not intended as a replacement for C scalar values and should not be used in APIs or
implementations where scalar values are more appropriate and efficient.

Note: In order to improve performance, some commonly-used numbers (such as 0 and 1) are uniqued. You
should not expect that allocating multiple CFNumber instances will necessarily result in distinct objects.

CFNumber is “toll-free bridged” with its Cocoa Foundation counterpart, NSNumber. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. Therefore,
in a method where you see an NSNumber * parameter, you can pass in a CFNumberRef, and in a function
where you see a CFNumberRef parameter, you can pass in an NSNumber instance. This fact also applies to
concrete subclasses of NSNumber. See Integrating Carbon and Cocoa in Your Application for more information
on toll-free bridging.

Functions by Task

Creating a Number

CFNumberCreate (page 373)
Creates a CFNumber object using a specified value.

Overview 371
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

CFNumber Reference

Getting Information About Numbers

CFNumberGetByteSize (page 374)
Returns the number of bytes used by a CFNumber object to store its value.

CFNumberGetType (page 374)
Returns the type used by a CFNumber object to store its value.

CFNumberGetValue (page 375)
Obtains the value of a CFNumber object cast to a specified type.

CFNumberIsFloatType (page 376)
Determines whether a CFNumber object contains a value stored as one of the defined floating point
types.

Comparing Numbers

CFNumberCompare (page 372)
Compares two CFNumber objects and returns a comparison result.

Getting the CFNumber Type ID

CFNumberGetTypeID (page 375)
Returns the type identifier for the CFNumber opaque type.

Functions

CFNumberCompare
Compares two CFNumber objects and returns a comparison result.

CFComparisonResult CFNumberCompare (
 CFNumberRef number,
 CFNumberRef otherNumber,
 void *context
);

Parameters
number

The first CFNumber object to compare.

otherNumber
The second CFNumber object to compare.

context
Pass NULL.

Return Value
A CFComparisonResult (page 764) constant that indicates whether number is equal to, less than, or greater
than otherNumber.

372 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

CFNumber Reference

Discussion
When comparing two CFNumber objects using this function, one or both objects can represent a special-case
number such as signed 0, signed infinity, or NaN.

The following rules apply:

 ■ Negative 0 compares less than positive 0.

 ■ Positive infinity compares greater than everything except itself, to which it compares equal.

 ■ Negative infinity compares less than everything except itself, to which it compares equal.

 ■ If both numbers are NaN, then they compare equal.

 ■ If only one of the numbers is NaN, then the NaN compares greater than the other number if it is negative,
and smaller than the other number if it is positive.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFNumber.h

CFNumberCreate
Creates a CFNumber object using a specified value.

CFNumberRef CFNumberCreate (
 CFAllocatorRef allocator,
 CFNumberType theType,
 const void *valuePtr
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the default allocator.

theType
A constant that specifies the data type of the value to convert. See Number Types (page 377) for a list
of possible values.

valuePtr
A pointer to the value for the returned number object.

Return Value
A new number with the value specified by valuePtr. Ownership follows the Create Rule.

Discussion
The theType parameter is not necessarily preserved when creating a new CFNumber object. The CFNumber
object will be created using whatever internal storage type the creation function deems appropriate. Use
the function CFNumberGetType (page 374) to find out what type the CFNumber object used to store your
value.

Availability
Available in CarbonLib v1.0 and later.

Functions 373
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

CFNumber Reference

Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
HID Calibrator
HID Explorer
MoreIsBetter
QTMetaData

Declared In
CFNumber.h

CFNumberGetByteSize
Returns the number of bytes used by a CFNumber object to store its value.

CFIndex CFNumberGetByteSize (
 CFNumberRef number
);

Parameters
number

The CFNumber object to examine.

Return Value
The size in bytes of the value contained in number.

Discussion
Because a CFNumber object might store a value using a type different from that of the original value with
which it was created, this function may return a size different from the size of the original value's type.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFNumber.h

CFNumberGetType
Returns the type used by a CFNumber object to store its value.

CFNumberType CFNumberGetType (
 CFNumberRef number
);

Parameters
number

The CFNumber object to examine.

Return Value
A constant that indicates the data type of the value contained in number. See Number Types (page 377) for
a list of possible values.

374 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

CFNumber Reference

Discussion
The type specified in the call to CFNumberCreate (page 373) is not necessarily preserved when a new
CFNumber object is created—it uses whatever internal storage type the creation function deems appropriate.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFNumber.h

CFNumberGetTypeID
Returns the type identifier for the CFNumber opaque type.

CFTypeID CFNumberGetTypeID (
 void
);

Return Value
The type identifier for the CFNumber opaque type.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
CFFTPSample
MoreIsBetter
MoreSCF
QISA

Declared In
CFNumber.h

CFNumberGetValue
Obtains the value of a CFNumber object cast to a specified type.

Boolean CFNumberGetValue (
 CFNumberRef number,
 CFNumberType theType,
 void *valuePtr
);

Parameters
number

The CFNumber object to examine.

theType
A constant that specifies the data type to return. See Number Types (page 377) for a list of possible
values.

Functions 375
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

CFNumber Reference

valuePtr
On return, contains the value of number.

Return Value
true if the operation was successful, otherwise false.

Discussion
If the argument type differs from the return type, and the conversion is lossy or the return value is out of
range, then this function passes back an approximate value in valuePtr and returns false.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioCDSample
BSDLLCTest
MoreIsBetter
MoreSCF
QISA

Declared In
CFNumber.h

CFNumberIsFloatType
Determines whether a CFNumber object contains a value stored as one of the defined floating point types.

Boolean CFNumberIsFloatType (
 CFNumberRef number
);

Parameters
number

The CFNumber object to examine.

Return Value
true if number's value is one of the defined floating point types, otherwise false. The valid floating point
types are listed in Number Types (page 377).

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFNumber.h

376 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

CFNumber Reference

Data Types

CFNumberRef
A reference to a CFNumber object.

typedef const struct __CFNumber *CFNumberRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFNumber.h

Constants

Number Types
Flags used by CFNumber to indicate the data type of a value.

enum CFNumberType {
 kCFNumberSInt8Type = 1,
 kCFNumberSInt16Type = 2,
 kCFNumberSInt32Type = 3,
 kCFNumberSInt64Type = 4,
 kCFNumberFloat32Type = 5,
 kCFNumberFloat64Type = 6,
 kCFNumberCharType = 7,
 kCFNumberShortType = 8,
 kCFNumberIntType = 9,
 kCFNumberLongType = 10,
 kCFNumberLongLongType = 11,
 kCFNumberFloatType = 12,
 kCFNumberDoubleType = 13,
 kCFNumberCFIndexType = 14,
 kCFNumberNSIntegerType = 15,
 kCFNumberCGFloatType = 16,
 kCFNumberMaxType = 16
};
typedef enum CFNumberType CFNumberType;

Constants
kCFNumberSInt8Type

Eight-bit, signed integer. The SInt8 data type is defined in MacTypes.h.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

Data Types 377
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

CFNumber Reference

kCFNumberSInt16Type
Sixteen-bit, signed integer. The SInt16 data type is defined in MacTypes.h.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberSInt32Type
Thirty-two-bit, signed integer. The SInt32 data type is defined in MacTypes.h.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberSInt64Type
Sixty-four-bit, signed integer. The SInt64 data type is defined in MacTypes.h.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberFloat32Type
Thirty-two-bit real. The Float32 data type is defined in MacTypes.h.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberFloat64Type
Sixty-four-bit real. The Float64 data type is defined in MacTypes.h and conforms to the 64-bit IEEE
754 standard.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberCharType
Basic C char type.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberShortType
Basic C short type.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberIntType
Basic C int type.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberLongType
Basic C long type.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberLongLongType
Basic C long long type.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

378 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

CFNumber Reference

kCFNumberFloatType
Basic C float type.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberDoubleType
Basic C double type.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberCFIndexType
CFIndex value.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberNSIntegerType
NSInteger value.

Available in Mac OS X v10.5 and later.

Declared in CFNumber.h.

kCFNumberCGFloatType
CGFloat value.

Available in Mac OS X v10.5 and later.

Declared in CFNumber.h.

kCFNumberMaxType
Same as kCFNumberCGFloatType.

Note that on Mac OS X v10.4, kCFNumberMaxType was the same as kCFNumberCFIndexType .

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

Discussion
The type specified in the call to CFNumberCreate (page 373) is not necessarily preserved when creating a
new CFNumber object. A CFNumber object uses whatever internal storage type the creation function deems
appropriate. Use the CFNumberGetType (page 374) function to find out what type the CFNumber object
used to store your value.

Predefined Values
CFNumber provides some predefined number values.

const CFNumberRef kCFNumberNaN;
const CFNumberRef kCFNumberNegativeInfinity;
const CFNumberRef kCFNumberPositiveInfinity;

Constants
kCFNumberNaN

“Not a Number.” This value is often the result of an invalid operation, such as the square-root of a
negative number.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

Constants 379
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

CFNumber Reference

kCFNumberNegativeInfinity
Designates a negative infinity value.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

kCFNumberPositiveInfinity
Designates a positive infinity value.

Available in Mac OS X v10.0 and later.

Declared in CFNumber.h.

380 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

CFNumber Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFNumberFormatter.h

Companion guide Data Formatting Guide for Core Foundation

Overview

CFNumberFormatter objects format the textual representations of CFNumber objects, and convert textual
representations of numbers into CFNumber objects. The representation encompasses integers, floats, and
doubles; floats and doubles can be formatted to a specified decimal position. You specify how strings are
formatted and parsed by setting a format string and other properties of a CFNumberFormatter object. The
format of the format string itself is defined by Unicode Technical Standard #35.

Note that CFNumberFormatter is not thread-safe. Do not use a single instance from multiple threads.

The CFNumberFormatter opaque type is available in Mac OS X v10.3 and later.

Unlike some other Core Foundation opaque types with names similar to a corresponding Cocoa Foundation
class (such as CFString and NSString), CFNumberFormatter objects cannot be cast ("toll-free bridged") to
NSNumberFormatter objects.

Functions by Task

Creating a Number Formatter

CFNumberFormatterCreate (page 383)
Creates a new CFNumberFormatter object, localized to the given locale, which will format numbers
to the given style.

Configuring a Number Formatter

CFNumberFormatterSetFormat (page 388)
Sets the format string of a number formatter.

CFNumberFormatterSetProperty (page 389)
Sets a number formatter property using a key-value pair.

Overview 381
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

http://unicode.org/reports/tr35/tr35-6.html#Number_Format_Patterns

Formatting Values

CFNumberFormatterCreateNumberFromString (page 383)
Returns a number object representing a given string.

CFNumberFormatterCreateStringWithNumber (page 384)
Returns a string representation of the given number using the specified number formatter.

CFNumberFormatterCreateStringWithValue (page 385)
Returns a string representation of the given number or value using the specified number formatter.

CFNumberFormatterGetDecimalInfoForCurrencyCode (page 385)
Returns the number of fraction digits that should be displayed, and the rounding increment, for a
given currency.

CFNumberFormatterGetValueFromString (page 388)
Returns a number or value representing a given string.

Examining a Number Formatter

CFNumberFormatterCopyProperty (page 382)
Returns a copy of a number formatter’s value for a given key.

CFNumberFormatterGetFormat (page 386)
Returns a format string for the given number formatter object.

CFNumberFormatterGetLocale (page 387)
Returns the locale object used to create the given number formatter object.

CFNumberFormatterGetStyle (page 387)
Returns the number style used to create the given number formatter object.

Getting the CFNumberFormatter Type ID

CFNumberFormatterGetTypeID (page 387)
Returns the type identifier for the CFNumberFormatter opaque type.

Functions

CFNumberFormatterCopyProperty
Returns a copy of a number formatter’s value for a given key.

CFTypeRef CFNumberFormatterCopyProperty (
 CFNumberFormatterRef formatter,
 CFStringRef key
);

Parameters
formatter

The number formatter to examine.

382 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

key
A property key. See “Number Formatter Property Keys” (page 392) for valid values.

Return Value
A CFType object that is a copy of the property value for key. Returns NULL if there is no value specified for
key. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterCreate
Creates a new CFNumberFormatter object, localized to the given locale, which will format numbers to the
given style.

CFNumberFormatterRef CFNumberFormatterCreate (
 CFAllocatorRef allocator,
 CFLocaleRef locale,
 CFNumberFormatterStyle style
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

locale
A locale to use for localization. If NULL, the function uses the default system locale. Use
CFLocaleCopyCurrent (page 240) to specify the locale of the current user.

style
A number style. See “Number Formatter Styles” (page 391) for possible values.

Return Value
A new number formatter, localized to the given locale, which will format numbers using the given style.
Returns NULL if there was a problem creating the formatter. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterCreateNumberFromString
Returns a number object representing a given string.

Functions 383
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

CFNumberRef CFNumberFormatterCreateNumberFromString (
 CFAllocatorRef allocator,
 CFNumberFormatterRef formatter,
 CFStringRef string,
 CFRange *rangep,
 CFOptionFlags options
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

formatter
The number formatter to use.

string
The string to parse.

rangep
A reference to a range that specifies the substring of string to be parsed. If NULL, the whole string
is parsed. On return, contains the range of the actual extent of the parse (may be less than the given
range).

options
Specifies various configuration options to change the behavior of the parse. Currently,
kCFNumberFormatterParseIntegersOnly (page 397) is the only possible value for this parameter.

Return Value
A new number that represents the given string. Returns NULL if there was a problem creating the number.
Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterCreateStringWithNumber
Returns a string representation of the given number using the specified number formatter.

CFStringRef CFNumberFormatterCreateStringWithNumber (
 CFAllocatorRef allocator,
 CFNumberFormatterRef formatter,
 CFNumberRef number
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

formatter
The number formatter to use.

number
The number from which to create a string representation.

384 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

Return Value
A new string that represents the given number in the specified format. Returns NULL if there was a problem
creating the string. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterCreateStringWithValue
Returns a string representation of the given number or value using the specified number formatter.

CFStringRef CFNumberFormatterCreateStringWithValue (
 CFAllocatorRef allocator,
 CFNumberFormatterRef formatter,
 CFNumberType numberType,
 const void *valuePtr
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

formatter
The number formatter to use.

numberType
The type of value that valuePtr references. Valid values are listed in CFNumberType (page 377).

valuePtr
A pointer to the value to be converted.

Return Value
A new string that represents the given number or value formatted by formatter. Returns NULL if there was
a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterGetDecimalInfoForCurrencyCode
Returns the number of fraction digits that should be displayed, and the rounding increment, for a given
currency.

Functions 385
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

Boolean CFNumberFormatterGetDecimalInfoForCurrencyCode (
 CFStringRef currencyCode,
 int32_t *defaultFractionDigits,
 double *roundingIncrement
);

Parameters
currencyCode

A string containing a ISO 4217 3-letter currency code. For example, AUD for Australian Dollars, EUR
for Euros.

defaultFractionDigits
Upon return, contains the number of fraction digits that should be displayed for the currency specified
by currencyCode.

roundingIncrement
Upon return, contains the rounding increment for the currency specified by currencyCode, or 0.0
if no rounding is done by the currency.

Return Value
true if the information was obtained successfully, otherwise false (for example, if the currency code is
unknown or the information is not available).

Discussion
The returned values are not localized because these are properties of the currency.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterGetFormat
Returns a format string for the given number formatter object.

CFStringRef CFNumberFormatterGetFormat (
 CFNumberFormatterRef formatter
);

Parameters
formatter

The number formatter to examine.

Return Value
The format string for formatter as was specified by calling the CFNumberFormatterSetFormat (page
388) function, or derived from the number formatter’s style. The format of this string is defined by Unicode
Technical Standard #35.. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

386 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

http://unicode.org/reports/tr35/tr35-6.html#Number_Format_Patterns
http://unicode.org/reports/tr35/tr35-6.html#Number_Format_Patterns

CFNumberFormatterGetLocale
Returns the locale object used to create the given number formatter object.

CFLocaleRef CFNumberFormatterGetLocale (
 CFNumberFormatterRef formatter
);

Parameters
formatter

The number formatter to examine.

Return Value
The locale used to create formatter. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterGetStyle
Returns the number style used to create the given number formatter object.

CFNumberFormatterStyle CFNumberFormatterGetStyle (
 CFNumberFormatterRef formatter
);

Parameters
formatter

The number formatter to examine.

Return Value
The number style used to create formatter.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterGetTypeID
Returns the type identifier for the CFNumberFormatter opaque type.

CFTypeID CFNumberFormatterGetTypeID (
 void
);

Return Value
The type identifier for the CFNumberFormatter opaque type.

Availability
Available in Mac OS X v10.3 and later.

Functions 387
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

Declared In
CFNumberFormatter.h

CFNumberFormatterGetValueFromString
Returns a number or value representing a given string.

Boolean CFNumberFormatterGetValueFromString (
 CFNumberFormatterRef formatter,
 CFStringRef string,
 CFRange *rangep,
 CFNumberType numberType,
 void *valuePtr
);

Parameters
formatter

The number formatter to use.

string
The string to parse.

rangep
A reference to a range that specifies the substring of string to be parsed. If NULL, the whole string
is parsed. Upon return, contains the range of the actual extent of the parse (may be less than the
given range).

numberType
The type of value that valuePtr references. Valid values are listed in CFNumberType (page 377).

valuePtr
Upon return, contains a number or value representing the string in the specified format. You are
responsible for releasing this value.

Return Value
true if the string was parsed successfully, otherwise false.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterSetFormat
Sets the format string of a number formatter.

void CFNumberFormatterSetFormat (
 CFNumberFormatterRef formatter,
 CFStringRef formatString
);

Parameters
formatter

The number formatter to modify.

388 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

formatString
The format string to be used by formatter. The format of this string is defined by Unicode Technical
Standard #35.

Discussion
The format string may override other properties previously set using other functions. If this function is not
called, the default value of the format string is derived from the number formatter’s style.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterSetProperty
Sets a number formatter property using a key-value pair.

void CFNumberFormatterSetProperty (
 CFNumberFormatterRef formatter,
 CFStringRef key,
 CFTypeRef value
);

Parameters
formatter

The number formatter to modify.

key
The name of the property of formatter to set. See “Number Formatter Property Keys” (page 392) for
a description of possible values.

value
The value of the specified key. This must be an instance of the correct CFType object for the
corresponding key.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

Data Types

CFNumberFormatterOptionFlags
Type for constants specifying how numbers should be parsed.

typedef CFOptionFlags CFNumberFormatterOptionFlags;

Discussion
For values, see “Number Format Options” (page 397).

Data Types 389
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

http://unicode.org/reports/tr35/tr35-6.html#Number_Format_Patterns
http://unicode.org/reports/tr35/tr35-6.html#Number_Format_Patterns

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterPadPosition
Type for constants specifying how numbers should be padded.

typedef CFIndex CFNumberFormatterPadPosition;

Discussion
For values, see “Padding Positions” (page 398).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterRef
A reference to a CFNumberFormatter object.

typedef struct __CFNumberFormatter *CFNumberFormatterRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

CFNumberFormatterStyle
Type for constants specifying a formatter style.

typedef CFIndex CFNumberFormatterStyle;

Discussion
For values, see “Number Formatter Styles” (page 391).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFNumberFormatter.h

390 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

Constants

Number Formatter Styles
Predefined number format styles.

enum {
 kCFNumberFormatterNoStyle = 0,
 kCFNumberFormatterDecimalStyle = 1,
 kCFNumberFormatterCurrencyStyle = 2,
 kCFNumberFormatterPercentStyle = 3,
 kCFNumberFormatterScientificStyle = 4,
 kCFNumberFormatterSpellOutStyle = 5
};

Constants
kCFNumberFormatterNoStyle

Specifies no style.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterDecimalStyle
Specifies a decimal style format.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterCurrencyStyle
Specifies a currency style format.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterPercentStyle
Specifies a percent style format.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterScientificStyle
Specifies a scientific style format.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterSpellOutStyle
Specifies a spelled out format.

Available in Mac OS X v10.4 and later.

Declared in CFNumberFormatter.h.

Discussion
The format for these number styles is not exact because they depend on the locale, user preference settings,
and operating system version. Do not use these constants if you want an exact format (for example, if you
are parsing data in a given format). In general, however, you are encouraged to use these styles to
accommodate user preferences.

Constants 391
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

Declared In
CFNumberFormatter.h

Number Formatter Property Keys
The keys used in key-value pairs to specify the value of number formatter properties.

const CFStringRef kCFNumberFormatterCurrencyCode;
const CFStringRef kCFNumberFormatterDecimalSeparator;
const CFStringRef kCFNumberFormatterCurrencyDecimalSeparator;
const CFStringRef kCFNumberFormatterAlwaysShowDecimalSeparator;
const CFStringRef kCFNumberFormatterGroupingSeparator;
const CFStringRef kCFNumberFormatterUseGroupingSeparator;
const CFStringRef kCFNumberFormatterPercentSymbol;
const CFStringRef kCFNumberFormatterZeroSymbol;
const CFStringRef kCFNumberFormatterNaNSymbol;
const CFStringRef kCFNumberFormatterInfinitySymbol;
const CFStringRef kCFNumberFormatterMinusSign;
const CFStringRef kCFNumberFormatterPlusSign;
const CFStringRef kCFNumberFormatterCurrencySymbol;
const CFStringRef kCFNumberFormatterExponentSymbol;
const CFStringRef kCFNumberFormatterMinIntegerDigits;
const CFStringRef kCFNumberFormatterMaxIntegerDigits;
const CFStringRef kCFNumberFormatterMinFractionDigits;
const CFStringRef kCFNumberFormatterMaxFractionDigits;
const CFStringRef kCFNumberFormatterGroupingSize;
const CFStringRef kCFNumberFormatterSecondaryGroupingSize;
const CFStringRef kCFNumberFormatterRoundingMode;
const CFStringRef kCFNumberFormatterRoundingIncrement;
const CFStringRef kCFNumberFormatterFormatWidth;
const CFStringRef kCFNumberFormatterPaddingPosition;
const CFStringRef kCFNumberFormatterPaddingCharacter;
const CFStringRef kCFNumberFormatterDefaultFormat;
const CFStringRef kCFNumberFormatterMultiplier;
const CFStringRef kCFNumberFormatterPositivePrefix;
const CFStringRef kCFNumberFormatterPositiveSuffix;
const CFStringRef kCFNumberFormatterNegativePrefix;
const CFStringRef kCFNumberFormatterNegativeSuffix;
const CFStringRef kCFNumberFormatterPerMillSymbol;
const CFStringRef kCFNumberFormatterInternationalCurrencySymbol;
const CFStringRef kCFNumberFormatterCurrencyGroupingSeparator;
const CFStringRef kCFNumberFormatterIsLenient;
const CFStringRef kCFNumberFormatterUseSignificantDigits;
const CFStringRef kCFNumberFormatterMinSignificantDigits;
const CFStringRef kCFNumberFormatterMaxSignificantDigits;

Constants
kCFNumberFormatterCurrencyCode

Specifies the currency code, a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

392 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

kCFNumberFormatterDecimalSeparator
Specifies the decimal separator, a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterCurrencyDecimalSeparator
Specifies the currency decimal separator, a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterAlwaysShowDecimalSeparator
Specifies if the result of converting a value to a string should always contain the decimal separator,
even if the number is an integer.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterGroupingSeparator
Specifies the grouping separator, a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterUseGroupingSeparator
Specifies if the grouping separator should be used, a CFBoolean object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterPercentSymbol
Specifies the string that is used to represent the percent symbol, a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterZeroSymbol
Specifies the string that is used to represent zero, a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterNaNSymbol
Specifies the string that is used to represent NaN (“not a number”) when values are converted to
strings, a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterInfinitySymbol
Specifies the string that is used to represent the symbol for infinity, a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterMinusSign
Specifies the symbol for the minus sign, a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

Constants 393
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

kCFNumberFormatterPlusSign
Specifies the symbol for the plus sign, a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterCurrencySymbol
Specifies the symbol for the currency, a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterExponentSymbol
Specifies the exponent symbol (“E” or “e”) in the scientific notation of numbers (for example, as in
1.0e+56), a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterMinIntegerDigits
Specifies the minimum number of integer digits before a decimal point, a CFNumber object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterMaxIntegerDigits
Specifies the maximum number of integer digits before a decimal point, a CFNumber object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterMinFractionDigits
Specifies the minimum number of digits after a decimal point, a CFNumber object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterMaxFractionDigits
Specifies the maximum number of digits after a decimal point, a CFNumber object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterGroupingSize
Specifies how often the “thousands” or grouping separator appears, as in “10,000,000”, a CFNumber
object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterSecondaryGroupingSize
Specifies how often the secondary grouping separator appears, a CFNumber object. See Unicode
Technical Standard #35 for more information.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

394 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

http://unicode.org/reports/tr35/tr35-6.html#Number_Format_Patterns
http://unicode.org/reports/tr35/tr35-6.html#Number_Format_Patterns

kCFNumberFormatterRoundingMode
Specifies how the last digit is rounded, as when 3.1415926535... is rounded to three decimal
places, as in 3.142, a CFNumber object. See “Rounding Modes” (page 397) for possible values.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterRoundingIncrement
Specifies a positive rounding increment, or 0.0 to disable rounding, a CFNumber object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterFormatWidth
Specifies the width of a formatted number within a string that is either left justified or right justified
based on the value of kCFNumberFormatterPaddingPosition (page 395), a CFNumber object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterPaddingPosition
Specifies the position of a formatted number within a string, a CFNumber object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterPaddingCharacter
Specifies the padding character to use when placing a formatted number within a string, a CFString
object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterDefaultFormat
The original format string for the formatter (given the date and time style and locale specified at
creation), a CFString object.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterMultiplier
Specifies the multiplier to use when placing a formatted number within a string, a CFNumber object.

Available in Mac OS X v10.4 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterPositivePrefix
Specifies the plus sign prefix symbol to use when placing a formatted number within a string, a
CFString object.

Available in Mac OS X v10.4 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterPositiveSuffix
Specifies the plus sign suffix symbol to use when placing a formatted number within a string, a
CFString object.

Available in Mac OS X v10.4 and later.

Declared in CFNumberFormatter.h.

Constants 395
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

kCFNumberFormatterNegativePrefix
Specifies the minus sign prefix symbol to use when placing a formatted number within a string, a
CFString object.

Available in Mac OS X v10.4 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterNegativeSuffix
Specifies the minus sign suffix symbol to use when placing a formatted number within a string, a
CFString object.

Available in Mac OS X v10.4 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterPerMillSymbol
Specifies the per mill (1/1000) symbol to use when placing a formatted number within a string, a
CFString object.

Available in Mac OS X v10.4 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterInternationalCurrencySymbol
Specifies the international currency symbol to use when placing a formatted number within a string,
a CFString object.

Available in Mac OS X v10.4 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterCurrencyGroupingSeparator
Specifies the grouping symbol to use when placing a currency value within a string, a CFString
object.

Available in Mac OS X v10.5 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterIsLenient
Specifies whether the formatter is lenient, aCFBoolean object.

Available in Mac OS X v10.5 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterUseSignificantDigits
Specifies the whether the formatter uses significant digits, a CFBoolean object.

Available in Mac OS X v10.5 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterMinSignificantDigits
Specifies the minimum number of significant digits to use, aCFNumber object.

Available in Mac OS X v10.5 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterMaxSignificantDigits
Specifies the maximum number of significant digits to use, aCFNumber object.

Available in Mac OS X v10.5 and later.

Declared in CFNumberFormatter.h.

Discussion
The values for these keys are all CFType objects. The specific types for each key are specified above.

396 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

Declared In
CFNumberFormatter.h

Number Format Options
These constants are used to specify how numbers should be parsed.

enum {
 kCFNumberFormatterParseIntegersOnly = 1
};

Constants
kCFNumberFormatterParseIntegersOnly

Specifies that only integers should be parsed.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

Declared In
CFNumberFormatter.h

Rounding Modes
These constants are used to specify how numbers should be rounded.

typedef enum {
 kCFNumberFormatterRoundCeiling = 0,
 kCFNumberFormatterRoundFloor = 1,
 kCFNumberFormatterRoundDown = 2,
 kCFNumberFormatterRoundUp = 3,
 kCFNumberFormatterRoundHalfEven = 4,
 kCFNumberFormatterRoundHalfDown = 5,
 kCFNumberFormatterRoundHalfUp = 6
} CFNumberFormatterRoundingMode;

Constants
kCFNumberFormatterRoundCeiling

Round up to next larger number with the proper number of fraction digits.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterRoundFloor
Round down to next larger number with the proper number of fraction digits.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterRoundDown
Round down to next larger number with the proper number of fraction digits.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

Constants 397
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

kCFNumberFormatterRoundUp
Round up to next larger number with the proper number of fraction digits.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterRoundHalfEven
Round the last digit, when followed by a 5, toward an even digit (.25 -> .2, .35 -> .4)

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterRoundHalfDown
Round down when a 5 follows putative last digit.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterRoundHalfUp
Round up when a 5 follows putative last digit.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

Declared In
CFNumberFormatter.h

Padding Positions
These constants are used to specify how numbers should be padded.

typedef enum {
 kCFNumberFormatterPadBeforePrefix = 0,
 kCFNumberFormatterPadAfterPrefix = 1,
 kCFNumberFormatterPadBeforeSuffix = 2,
 kCFNumberFormatterPadAfterSuffix = 3
};

Constants
kCFNumberFormatterPadBeforePrefix

Specifies the number of padding characters before the prefix.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterPadAfterPrefix
Specifies the number of padding characters after the prefix.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

kCFNumberFormatterPadBeforeSuffix
Specifies the number of padding characters before the suffix.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

398 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

kCFNumberFormatterPadAfterSuffix
Specifies the number of padding characters after the suffix.

Available in Mac OS X v10.3 and later.

Declared in CFNumberFormatter.h.

Declared In
CFNumberFormatter.h

Constants 399
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

400 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

CFNumberFormatter Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFPlugIn.h
CFBundle.h

Companion guide Plug-ins

Overview

CFPlugIn provides a standard architecture for application extensions. With CFPlugIn, you can design your
application as a host framework that uses a set of executable code modules called plug-ins to provide certain
well-defined areas of functionality. This approach allows third-party developers to add features to your
application without requiring access to your source code. You can also bundle together plug-ins for multiple
platforms and let CFPlugIn transparently load the appropriate plug-in at runtime. You can use CFPlugIn
to add plug-in capability to, or write a plug-in for, your application.

Functions by Task

Creating Plug-Ins

CFPlugInCreate (page 403)
Creates a CFPlugIn given its URL.

CFPlugInInstanceCreate (page 405)
Creates a CFPlugIn instance of a given type using a given factory.

Registration

CFPlugInRegisterFactoryFunction (page 406)
Registers a factory function and its UUID with a CFPlugIn object.

CFPlugInRegisterFactoryFunctionByName (page 407)
Registers a factory function with a CFPlugIn object using the function's name instead of its UUID.

CFPlugInRegisterPlugInType (page 407)
Registers a type and its corresponding factory function with a CFPlugIn object.

Overview 401
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

CFPlugInUnregisterFactory (page 409)
Removes the given function from a plug-in’s list of registered factory functions.

CFPlugInUnregisterPlugInType (page 409)
Removes the given type from a plug-in’s list of registered types.

CFPlugIn Miscellaneous Functions

CFPlugInAddInstanceForFactory (page 402)
Registers a new instance of a type with CFPlugIn. .

CFPlugInFindFactoriesForPlugInType (page 403)
Searches all registered plug-ins for factory functions capable of creating an instance of the given type.

CFPlugInFindFactoriesForPlugInTypeInPlugIn (page 404)
Searches the given plug-in for factory functions capable of creating an instance of the given type.

CFPlugInGetBundle (page 404)
Returns a plug-in's bundle.

CFPlugInGetTypeID (page 405)
Returns the type identifier for the CFPlugIn opaque type.

CFPlugInIsLoadOnDemand (page 406)
Determines where or not a plug-in is loaded on demand.

CFPlugInRemoveInstanceForFactory (page 408)
Unregisters an instance of a type with CFPlugIn.

CFPlugInSetLoadOnDemand (page 408)
Enables or disables load on demand for plug-ins that do dynamic registration (only when a client
requests an instance of a supported type).

Functions

CFPlugInAddInstanceForFactory
Registers a new instance of a type with CFPlugIn. .

void CFPlugInAddInstanceForFactory (
 CFUUIDRef factoryID
);

Parameters
factoryID

The CFUUID object representing the plug-in factory.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CIAnnotation
CoreRecipes

402 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

SampleCMPlugIn
Spotlight
SpotlightFortunes

Declared In
CFPlugIn.h

CFPlugInCreate
Creates a CFPlugIn given its URL.

CFPlugInRef CFPlugInCreate (
 CFAllocatorRef allocator,
 CFURLRef plugInURL
);

Parameters
allocator

The allocator to use to allocate memory for the new plug-in. Pass NULL or kCFAllocatorDefault
to use the default allocator.

plugInURL
The location of the plug-in.

Return Value
A new plug-in. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BasicPlugIn

Declared In
CFPlugIn.h

CFPlugInFindFactoriesForPlugInType
Searches all registered plug-ins for factory functions capable of creating an instance of the given type.

CFArrayRef CFPlugInFindFactoriesForPlugInType (
 CFUUIDRef typeUUID
);

Parameters
typeUUID

A UUID type.

Return Value
An array of UUIDs for factory functions capable of creating an instance of the given type.

Availability
Available in CarbonLib v1.1 and later.

Functions 403
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInFindFactoriesForPlugInTypeInPlugIn
Searches the given plug-in for factory functions capable of creating an instance of the given type.

CFArrayRef CFPlugInFindFactoriesForPlugInTypeInPlugIn (
 CFUUIDRef typeUUID,
 CFPlugInRef plugIn
);

Parameters
typeUUID

A UUID type.

plugIn
The plug-in to search.

Return Value
An array of UUIDs for factory functions capable of creating an instance of the given type.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BasicPlugIn

Declared In
CFPlugIn.h

CFPlugInGetBundle
Returns a plug-in's bundle.

CFBundleRef CFPlugInGetBundle (
 CFPlugInRef plugIn
);

Parameters
plugIn

The plug-in whose bundle to obtain.

Return Value
The bundle for plugIn. Ownership follows the Get Rule.

Discussion
You should always use this function to get a plug-in's bundle. Never attempt to access the plug-in directly
as a bundle.

Availability
Available in CarbonLib v1.0 and later.

404 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInGetTypeID
Returns the type identifier for the CFPlugIn opaque type.

CFTypeID CFPlugInGetTypeID (
 void
);

Return Value
The type identifier for the CFPlugIn opaque type.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInInstanceCreate
Creates a CFPlugIn instance of a given type using a given factory.

void * CFPlugInInstanceCreate (
 CFAllocatorRef allocator,
 CFUUIDRef factoryUUID,
 CFUUIDRef typeUUID
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the default allocator.

factoryUUID
The UUID representing the factory function to use to create a plug-in of the given type.

typeUUID
The UUID type.

Return Value
Returns the IUnknown interface for the new plug-in.

Discussion
The plug-in host uses this function to create an instance of the given type. Unless the plug-in is using dynamic
registration, this function causes the plug-in's code to be loaded into memory.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Functions 405
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

Related Sample Code
BasicPlugIn

Declared In
CFPlugIn.h

CFPlugInIsLoadOnDemand
Determines where or not a plug-in is loaded on demand.

Boolean CFPlugInIsLoadOnDemand (
 CFPlugInRef plugIn
);

Parameters
plugIn

The plug-in to query.

Return Value
true if the plug-in is loaded only when a client requests an instance of a supported type, otherwise false.

Discussion
Plug-ins that do static registration are load on demand by default. Plug-ins that do dynamic registration are
not load on demand by default.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInRegisterFactoryFunction
Registers a factory function and its UUID with a CFPlugIn object.

Boolean CFPlugInRegisterFactoryFunction (
 CFUUIDRef factoryUUID,
 CFPlugInFactoryFunction func
);

Parameters
factoryUUID

The CFUUID object representing the factory function to register.

func
The factory function pointer to register.

Return Value
true if the factory function was successfully registered, otherwise false.

Discussion
This function is used by a plug-in or host when performing dynamic registration.

406 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInRegisterFactoryFunctionByName
Registers a factory function with a CFPlugIn object using the function's name instead of its UUID.

Boolean CFPlugInRegisterFactoryFunctionByName (
 CFUUIDRef factoryUUID,
 CFPlugInRef plugIn,
 CFStringRef functionName
);

Parameters
factoryUUID

The CFUUID object representing the factory function to register.

plugIn
The plug-in containing functionName.

functionName
The name of the factory function to register.

Return Value
true if the factory function was successfully registered, otherwise false.

Discussion
This function is used by a plug-in or host when performing dynamic registration.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInRegisterPlugInType
Registers a type and its corresponding factory function with a CFPlugIn object.

Boolean CFPlugInRegisterPlugInType (
 CFUUIDRef factoryUUID,
 CFUUIDRef typeUUID
);

Parameters
factoryUUID

The CFUUID object representing the factory function that can create the type being registered.

typeUUID
The UUID type to register.

Functions 407
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

Return Value
true if the factory function was successfully registered, otherwise false.

Discussion
This function is used by a plug-in or host when performing dynamic registration.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInRemoveInstanceForFactory
Unregisters an instance of a type with CFPlugIn.

void CFPlugInRemoveInstanceForFactory (
 CFUUIDRef factoryID
);

Parameters
factoryID

The CFUUID object representing the plug-in factory.

Discussion
If the instance counts of every factory in a plug-in are zero, the plug-in can be unloaded.]

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CIAnnotation
CoreRecipes
SampleCMPlugIn
Spotlight
SpotlightFortunes

Declared In
CFPlugIn.h

CFPlugInSetLoadOnDemand
Enables or disables load on demand for plug-ins that do dynamic registration (only when a client requests
an instance of a supported type).

408 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

void CFPlugInSetLoadOnDemand (
 CFPlugInRef plugIn,
 Boolean flag
);

Parameters
plugIn

The plug-in to be loaded on demand.

flag
true to enable load on demand, false otherwise.

Discussion
Plug-ins that do static registration are load on demand by default. Plug-ins that do dynamic registration are
not load on demand by default.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInUnregisterFactory
Removes the given function from a plug-in’s list of registered factory functions.

Boolean CFPlugInUnregisterFactory (
 CFUUIDRef factoryUUID
);

Parameters
factoryUUID

The CFUUID object representing the factory to unregister.

Return Value
true if the factory function was successfully unregistered, otherwise false.

Discussion
Used by a plug-in or host when performing dynamic registration.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInUnregisterPlugInType
Removes the given type from a plug-in’s list of registered types.

Functions 409
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

Boolean CFPlugInUnregisterPlugInType (
 CFUUIDRef factoryUUID,
 CFUUIDRef typeUUID
);

Parameters
factoryUUID

The CFUUID object representing the factory function for the type to unregister.

typeUUID
The UUID type to unregister.

Return Value
true if the factory function was successfully unregistered, otherwise false.

Discussion
Used by a plug-in or host when performing dynamic registration.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

Callbacks

CFPlugInDynamicRegisterFunction
A callback which provides a plug-in the opportunity to dynamically register its types with a host.

typedef void (*CFPlugInDynamicRegisterFunction) (
 CFPlugInRef plugIn
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFPlugInRef plugIn
);

Parameters
plugIn

The CFPlugIn object that is engaged in dynamic registration. When using in C++, this parameter
functions as a this pointer for the plug-in.

Discussion
This callback is called as a plug-in is being loaded. This provides the plugin the means to dynamically register
its types and factories with a plug-in’s host. The call is triggered by the presence of
kCFPlugInDynamicRegistrationKey (page 412) in the plug-in's information property list.

Availability
Available in Mac OS X v10.0 and later.

410 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

Declared In
CFPlugIn.h

CFPlugInFactoryFunction
Callback function that a plug-in author must implement to create a plug-in instance.

typedef void *(*CFPlugInFactoryFunction) (
 CFAllocatorRef allocator,
 CFUUIDRef typeUUID
);

If you name your function MyCallBack, you would declare it like this:

void *MyCallBack (
 CFAllocatorRef allocator,
 CFUUIDRef typeUUID
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the default allocator.

typeUUID
The UUID type to instantiate.

Discussion
The plug-in author's implementation of this function is registered with CFPlugIn either statically in the
plug-in's information property list, or dynamically. This function is executed as a result of a call to
CFPlugInInstanceCreate (page 405) by the plug-in host.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInUnloadFunction
Callback function that is called, if present, just before a plug-in's code is unloaded.

typedef void (*CFPlugInUnloadFunction) (
 CFPlugInRef plugIn
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFPlugInRef plugIn
);

Callbacks 411
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

Parameters
plugIn

The CFPlugIn object that is about to be unloaded from memory. When writing in C++, this parameter
functions as a this pointer for the plug-in.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

Data Types

CFPlugInRef
A reference to a CFPlugin object.

typedef struct __CFBundle *CFPlugInRef;

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CFBundle.h

Constants

Information Property List Keys
A plug-in’s information property list can contain these keys used for registering types, factories, and interfaces.

const CFStringRef kCFPlugInDynamicRegistrationKey;
const CFStringRef kCFPlugInDynamicRegisterFunctionKey;
const CFStringRef kCFPlugInUnloadFunctionKey;
const CFStringRef kCFPlugInFactoriesKey;
const CFStringRef kCFPlugInTypesKey;

Constants
kCFPlugInDynamicRegistrationKey

Indicates whether a plug-in requires dynamic registration.

Available in Mac OS X v10.0 and later.

Declared in CFPlugIn.h.

kCFPlugInDynamicRegisterFunctionKey
Used to specify a plug-in’s registration function.

Available in Mac OS X v10.0 and later.

Declared in CFPlugIn.h.

412 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

kCFPlugInUnloadFunctionKey
Used to specify a plug-in’s unload function.

Available in Mac OS X v10.0 and later.

Declared in CFPlugIn.h.

kCFPlugInFactoriesKey
Used to statically register factory functions.

Available in Mac OS X v10.0 and later.

Declared in CFPlugIn.h.

kCFPlugInTypesKey
Used to statically register the factories that can create each supported type.

Available in Mac OS X v10.0 and later.

Declared in CFPlugIn.h.

Availability
Mac OS X version 10.0 and later

Declared In
CFPlugIn.h

Constants 413
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

414 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

CFPlugIn Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFPlugIn.h

Companion guide Plug-ins

Overview

CFPlugInInstance is deprecated. Use the functions defined by CFPlugIn instead.

Functions

CFPlugInInstanceCreateWithInstanceDataSize
Not recommended.

Not recommended

CFPlugInInstanceRef CFPlugInInstanceCreateWithInstanceDataSize (
 CFAllocatorRef allocator,
 CFIndex instanceDataSize,
 CFPlugInInstanceDeallocateInstanceDataFunction deallocateInstanceFunction,
 CFStringRef factoryName,
 CFPlugInInstanceGetInterfaceFunction getInterfaceFunction
);

Availability
Not recommended. Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInInstanceGetFactoryName
Not recommended.

Not recommended

Overview 415
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

CFPlugInInstance Reference

CFStringRef CFPlugInInstanceGetFactoryName (
 CFPlugInInstanceRef instance
);

Availability
Not recommended. Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInInstanceGetInstanceData
Not recommended.

Not recommended

void * CFPlugInInstanceGetInstanceData (
 CFPlugInInstanceRef instance
);

Availability
Not recommended. Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInInstanceGetInterfaceFunctionTable
Not recommended.

Not recommended

Boolean CFPlugInInstanceGetInterfaceFunctionTable (
 CFPlugInInstanceRef instance,
 CFStringRef interfaceName,
 void **ftbl
);

Availability
Not recommended. Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInInstanceGetTypeID
Not recommended.

Not recommended

416 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

CFPlugInInstance Reference

CFTypeID CFPlugInInstanceGetTypeID (
 void
);

Availability
Not recommended. Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

Callbacks

CFPlugInInstanceDeallocateInstanceDataFunction
Not recommended.

Not recommended

typedef void (*CFPlugInInstanceDeallocateInstanceDataFunction) (
 void *instanceData
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 void *instanceData
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

CFPlugInInstanceGetInterfaceFunction
Not recommended.

Not recommended

typedef Boolean (*CFPlugInInstanceGetInterfaceFunction) (
 CFPlugInInstanceRef instance,
 CFStringRef interfaceName,
 void **ftbl
);

If you name your function MyCallBack, you would declare it like this:

Boolean MyCallBack (
 CFPlugInInstanceRef instance,
 CFStringRef interfaceName,

Callbacks 417
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

CFPlugInInstance Reference

 void **ftbl
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

Data Types

CFPlugInInstanceRef
Not recommended.

typedef struct __CFPlugInInstance *CFPlugInInstanceRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFPlugIn.h

418 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

CFPlugInInstance Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFPropertyList.h
CFBase.h

Companion guides Property List Programming Topics for Core Foundation
XML Programming Topics for Core Foundation

Overview

CFPropertyList provides functions that convert property list objects to and from several serialized formats
such as XML. The CFPropertyListRef (page 425) type that denotes CFPropertyList objects is an abstract
type for property list objects. Depending on the contents of the XML data used to create the property list,
CFPropertyListRef can be any of the property list objects: CFData, CFString, CFArray, CFDictionary, CFDate,
CFBoolean, and CFNumber. Note that if you use a property list to generate XML, the keys of any dictionaries
in the property list must be CFString objects.

It is important to understand that CFPropertyList provides an abstraction for all the property list types—you
can think of CFPropertyList in object-oriented terms as being the superclass of CFString, CFNumber,
CFDictionary, and so on. When a Core Foundation function returns a CFPropertyListRef, it means that
the value may be any of the property list types. For example, CFPreferencesCopyAppValue (page 795)
returns a CFPropertyListRef. This means that the value returned can be a CFString object, a CFNumber
object, a CFDictionary object, and so on again. You can use CFGetTypeID (page 637) to determine what type
of object a property list value is.

You use one of the CFPropertyListCreate... functions to create a property list object given an existing
property list object, raw XML data (as in a file), or a stream. You can also convert a property list object to XML
using the CFPropertyListCreateXMLData (page 423) function. You use the
CFPropertyListWriteToStream (page 424) function to write a property list to an output stream, and
validate a property list object using the CFPropertyListIsValid (page 423) function. CFPropertyList
properly takes care of endian issues—a property list (whether represented by a stream, XML, or a CFData
object) created on a PowerPC-based Macintosh is correctly interpreted on an Intel-based Macintosh, and
vice versa.

For code examples illustrating how to read and write property list files, see Property List Programming Topics
for Core Foundation and in particular Saving and Restoring Property Lists.

Overview 419
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

CFPropertyList Reference

Functions by Task

Creating a Property List

CFPropertyListCreateDeepCopy (page 420)
Recursively creates a copy of a given property list.

CFPropertyListCreateFromXMLData (page 422)
Creates a property list using the specified XML or binary property list data.

CFPropertyListCreateFromStream (page 421)
Creates a property list using data from a stream.

Exporting a Property List

CFPropertyListCreateXMLData (page 423)
Creates an XML representation of the specified property list.

CFPropertyListWriteToStream (page 424)
Writes the bytes of a property list serialization out to a stream.

Validating a Property List

CFPropertyListIsValid (page 423)
Determines if a property list is valid.

Functions

CFPropertyListCreateDeepCopy
Recursively creates a copy of a given property list.

CFPropertyListRef CFPropertyListCreateDeepCopy (
 CFAllocatorRef allocator,
 CFPropertyListRef propertyList,
 CFOptionFlags mutabilityOption
);

Parameters
allocator

The allocator to use to allocate memory for the new property list. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

propertyList
The property list to copy. This may be any of the standard property list objects, for example a CFArray
or a CFDictionary object.

420 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

CFPropertyList Reference

mutabilityOption
A constant that specifies the degree of mutability of the returned property list. See Property List
Mutability Options (page 426) for descriptions of possible values.

Return Value
A new property list that is a copy of propertyList. Ownership follows the Create Rule.

Discussion
Recursively creates a copy of the given property list so nested arrays and dictionaries are copied as well as
the top-most container.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
MoreIsBetter
MoreSCF
QISA

Declared In
CFPropertyList.h

CFPropertyListCreateFromStream
Creates a property list using data from a stream.

CFPropertyListRef CFPropertyListCreateFromStream (
 CFAllocatorRef allocator,
 CFReadStreamRef stream,
 CFIndex streamLength,
 CFOptionFlags mutabilityOption,
 CFPropertyListFormat *format,
 CFStringRef *errorString
);

Parameters
allocator

The allocator to use to allocate memory for the new property list. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

stream
The stream whose data contains the content. The stream must be opened and configured—this
function simply reads bytes from the stream. The stream may contain any supported property list
type (see Property List Formats (page 425)).

streamLength
The number of bytes to read. If 0, this function will read to the end of the stream.

mutabilityOption
A constant that specifies the degree of mutability for the returned property list. See Property List
Mutability Options (page 426) for descriptions of possible values.

format
A constant that specifies the format of the property list. See Property List Formats (page 425) for
possible values.

Functions 421
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

CFPropertyList Reference

errorString
On return, NULL if the conversion is successful, otherwise a string that describes the nature of the
error. Error messages are not localized, but may be in the future, so they are not suitable for comparison.

Pass NULL if you do not wish to receive an error string. Ownership follows the Create Rule.

Return Value
A new property list initialized with the data contained in stream. Ownership follows the Create Rule.

Discussion
This function simply reads bytes from stream starting at the current location to the end, which is expected
to be the end of the property list, or up to the number of bytes specified by streamLength if it is not 0.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFPropertyList.h

CFPropertyListCreateFromXMLData
Creates a property list using the specified XML or binary property list data.

CFPropertyListRef CFPropertyListCreateFromXMLData (
 CFAllocatorRef allocator,
 CFDataRef xmlData,
 CFOptionFlags mutabilityOption,
 CFStringRef *errorString
);

Parameters
allocator

The allocator to use to allocate memory for the new property list. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

data
The raw bytes to convert into a property list. The bytes may be the content of an XML file or of a
binary property list (see Property List Formats (page 425)).

mutabilityOption
A constant that specifies the degree of mutability for the returned property list. See Property List
Mutability Options (page 426) for descriptions of possible values.

errorString
On return, NULL if the conversion is successful, otherwise a string that describes the nature of the
error. Error messages are not localized, but may be in the future, so they are not currently suitable
for comparison.

Pass NULL if you do not wish to receive an error string. Ownership follows the Create Rule.

Return Value
A new property list if the conversion is successful, otherwise NULL. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

422 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

CFPropertyList Reference

Related Sample Code
BSDLLCTest
HID Utilities Source
MoreIsBetter
QISA
StickiesExample

Declared In
CFPropertyList.h

CFPropertyListCreateXMLData
Creates an XML representation of the specified property list.

CFDataRef CFPropertyListCreateXMLData (
 CFAllocatorRef allocator,
 CFPropertyListRef propertyList
);

Parameters
allocator

The allocator to use to allocate memory for the new data object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

propertyList
The property list to convert. This may be any of the standard property list objects, for example a
CFArray or a CFDictionary object.

Return Value
A CFData object containing the XML data. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
CFPrefTopScores
MoreIsBetter
QISA
StickiesExample

Declared In
CFPropertyList.h

CFPropertyListIsValid
Determines if a property list is valid.

Functions 423
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

CFPropertyList Reference

Boolean CFPropertyListIsValid (
 CFPropertyListRef plist,
 CFPropertyListFormat format
);

Parameters
plist

The property list to validate.

format
A constant that specifies the allowable format of plist. See Property List Formats (page 425) for
possible values.

Return Value
true if the object graph rooted at plist is a valid property list graph—that is, the property list contains no
cycles, only contains property list objects, and all dictionary keys are strings; otherwise false.

Discussion
The debugging library version of this function prints out some useful messages.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFPropertyList.h

CFPropertyListWriteToStream
Writes the bytes of a property list serialization out to a stream.

CFIndex CFPropertyListWriteToStream (
 CFPropertyListRef propertyList,
 CFWriteStreamRef stream,
 CFPropertyListFormat format,
 CFStringRef *errorString
);

Parameters
propertyList

The property list to write out.

stream
The stream to write to. The stream must be opened and configured—this function simply writes bytes
to the stream.

format
A constant that specifies the format used to write propertyList. See Property List Formats (page
425) for possible values.

errorString
On return, NULL if the conversion is successful, otherwise a string that describes the nature of the
errors. Error messages are not localized, but may be in the future, so they are not currently suitable
for comparison.

Pass NULL if you do not wish to receive an error string. Ownership follows the Create Rule.

424 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

CFPropertyList Reference

Return Value
The number of bytes written, or 0 if an error occurred. If 0 is returned, errorString will contain an error
message.

Discussion
This function leaves the stream open after reading the content. When reading a property list, this function
expects the reading stream to end wherever the writing ended, so that the end of the property list data can
be identified.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFPropertyList.h

Data Types

CFPropertyListRef
A reference to a CFPropertyList object.

typedef CFTypeRef CFPropertyListRef;

Discussion
This is an abstract type for property list objects. The return value of theCFPropertyListCreateFromXMLData
function depends on the contents of the given XML data. CFPropertyListRef can be a reference to any
of the property list objects: CFData, CFString, CFArray, CFDictionary, CFDate, CFBoolean, and CFNumber.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Constants

Property List Formats
Specifies the format of a property list.

Data Types 425
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

CFPropertyList Reference

enum CFPropertyListFormat {
 kCFPropertyListOpenStepFormat = 1,
 kCFPropertyListXMLFormat_v1_0 = 100,
 kCFPropertyListBinaryFormat_v1_0 = 200
};
typedef enum CFPropertyListFormat CFPropertyListFormat;

Constants
kCFPropertyListOpenStepFormat

OpenStep format (use of this format is discouraged).

Available in Mac OS X v10.2 and later.

Declared in CFPropertyList.h.

kCFPropertyListXMLFormat_v1_0
XML format version 1.0.

Available in Mac OS X v10.2 and later.

Declared in CFPropertyList.h.

kCFPropertyListBinaryFormat_v1_0
Binary format version 1.0.

Available in Mac OS X v10.2 and later.

Declared in CFPropertyList.h.

Property List Mutability Options
Option flags that determine the degree of mutability of newly created property lists.

enum CFPropertyListMutabilityOptions {
 kCFPropertyListImmutable = 0,
 kCFPropertyListMutableContainers = 1,
 kCFPropertyListMutableContainersAndLeaves = 2
};
typedef enum CFPropertyListMutabilityOptions CFPropertyListMutabilityOptions;

Constants
kCFPropertyListImmutable

Specifies that the property list should be immutable.

Available in Mac OS X v10.0 and later.

Declared in CFPropertyList.h.

kCFPropertyListMutableContainers
Specifies that the property list should have mutable containers but immutable leaves.

Available in Mac OS X v10.0 and later.

Declared in CFPropertyList.h.

kCFPropertyListMutableContainersAndLeaves
Specifies that the property list should have mutable containers and mutable leaves.

Available in Mac OS X v10.0 and later.

Declared in CFPropertyList.h.

426 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

CFPropertyList Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFStream.h

Overview

CFReadStream provides an interface for reading a byte stream either synchronously or asynchronously. You
can create streams that read bytes from a block of memory, a file, or a generic socket. All streams need to
be opened, using CFReadStreamOpen (page 434), before reading.

Use CFWriteStream for writing byte streams. The CFNetwork framework defines an additional type of stream
for reading responses to HTTP requests.

CFReadStream is “toll-free bridged” with its Cocoa Foundation counterpart, NSInputStream. This means that
the Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSInputStream * parameter, you can pass in a CFReadStreamRef,
and in a function where you see a CFReadStreamRef parameter, you can pass in an NSInputStream instance.
Note, however, that you may have either a delegate or callbacks but not both. See Interchangeable Data
Types for more information on toll-free bridging.

Functions by Task

Creating a Read Stream

CFReadStreamCreateWithBytesNoCopy (page 430)
Creates a readable stream for a block of memory.

CFReadStreamCreateWithFile (page 431)
Creates a readable stream for a file.

Opening and Closing a Read Stream

CFReadStreamClose (page 429)
Closes a readable stream.

CFReadStreamOpen (page 434)
Opens a stream for reading.

Overview 427
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

Reading from a Stream

CFReadStreamRead (page 434)
Reads data from a readable stream.

Scheduling a Read Stream

CFReadStreamScheduleWithRunLoop (page 435)
Schedules a stream into a run loop.

CFReadStreamUnscheduleFromRunLoop (page 438)
Removes a read stream from a given run loop.

Examining Stream Properties

CFReadStreamCopyProperty (page 430)
Returns the value of a property for a stream.

CFReadStreamGetBuffer (page 431)
Returns a pointer to a stream’s internal buffer of unread data, if possible.

CFReadStreamCopyError (page 429)
Returns the error associated with a stream.

CFReadStreamGetError (page 432)
Returns the error status of a stream. (Deprecated. Use CFReadStreamCopyError (page 429) instead.)

CFReadStreamGetStatus (page 433)
Returns the current state of a stream.

CFReadStreamHasBytesAvailable (page 433)
Returns a Boolean value that indicates whether a readable stream has data that can be read without
blocking.

Setting Stream Properties

CFReadStreamSetClient (page 436)
Assigns a client to a stream, which receives callbacks when certain events occur.

CFReadStreamSetProperty (page 437)
Sets the value of a property for a stream.

Getting the CFReadStream Type ID

CFReadStreamGetTypeID (page 433)
Returns the type identifier the CFReadStream opaque type.

428 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

Functions

CFReadStreamClose
Closes a readable stream.

void CFReadStreamClose (
 CFReadStreamRef stream
);

Parameters
stream

The stream to close.

Discussion
This function terminates the flow of bytes and releases any system resources required by the stream. The
stream is removed from any run loops in which it was scheduled. Once closed, the stream cannot be reopened.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample
CFNetworkHTTPDownload
ImageClient

Declared In
CFStream.h

CFReadStreamCopyError
Returns the error associated with a stream.

CFErrorRef CFReadStreamCopyError (
 CFReadStreamRef stream
);

Parameters
stream

The stream to examine.

Return Value
A CFError object that describes the current problem with stream, or NULL if there is no error. Ownership
follows the Create Rule.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFStream.h

Functions 429
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

CFReadStreamCopyProperty
Returns the value of a property for a stream.

CFTypeRef CFReadStreamCopyProperty (
 CFReadStreamRef stream,
 CFStringRef propertyName
);

Parameters
stream

The stream to examine.

propertyName
The name of the stream property to obtain. The available properties for standard Core Foundation
streams are listed in CFStream Reference.

Return Value
The value of the property propertyName. Ownership follows the Create Rule.

Discussion
Each type of stream can define a set of properties that either describe or configure individual streams. A
property can be any information about a stream, other than the actual data the stream handles. Examples
include the headers from an HTTP transmission, the expected number of bytes, file permission information,
and so on. Use CFReadStreamSetProperty (page 437) to modify the value of a property, although some
properties are read-only.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample
ImageClient

Declared In
CFStream.h

CFReadStreamCreateWithBytesNoCopy
Creates a readable stream for a block of memory.

CFReadStreamRef CFReadStreamCreateWithBytesNoCopy (
 CFAllocatorRef alloc,
 const UInt8 *bytes,
 CFIndex length,
 CFAllocatorRef bytesDeallocator
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

bytes
The memory buffer to read. This memory must exist for the lifetime of the new stream.

430 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

length
The size of bytes.

bytesDeallocator
The allocator to use to deallocate bytes when the stream is deallocated. Pass kCFAllocatorNull
to prevent the stream from deallocating bytes.

Return Value
The new read stream, or NULL on failure. Ownership follows the Create Rule.

Discussion
You must open the stream, using CFReadStreamOpen (page 434), before reading from it.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CFStream.h

CFReadStreamCreateWithFile
Creates a readable stream for a file.

CFReadStreamRef CFReadStreamCreateWithFile (
 CFAllocatorRef alloc,
 CFURLRef fileURL
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

fileURL
The URL of the file to read. The URL must use the file scheme.

Return Value
The new readable stream object, or NULL on failure. Ownership follows the Create Rule.

Discussion
You must open the stream, using CFReadStreamOpen (page 434), before reading from it.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample

Declared In
CFStream.h

CFReadStreamGetBuffer
Returns a pointer to a stream’s internal buffer of unread data, if possible.

Functions 431
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

const UInt8 * CFReadStreamGetBuffer (
 CFReadStreamRef stream,
 CFIndex maxBytesToRead,
 CFIndex *numBytesRead
);

Parameters
stream

The stream to examine.

maxBytesToRead
The maximum number of bytes to read. If greater than 0, maxBytesToRead limits the number of
bytes read; if 0 or less, all available bytes are read.

numBytesRead
On return, contains the length of returned buffer. If stream is not open or has encountered an error,
numBytesRead is set to -1.

Return Value
A pointer to the internal buffer of unread data for stream, if possible; NULL otherwise. The buffer is good
only until the next stream operation called on the stream. You should neither change the contents of the
returned buffer nor attempt to deallocate the buffer; it is still owned by the stream. The bytes returned in
the buffer are considered read from the stream.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CFStream.h

CFReadStreamGetError
Returns the error status of a stream. (Deprecated. Use CFReadStreamCopyError (page 429) instead.)

CFStreamError CFReadStreamGetError (
 CFReadStreamRef stream
);

Parameters
stream

The stream to examine.

Return Value
The error status of stream returned in a CFStreamError (page 826) structure.

The error field is 0 if no error has occurred. If the error field is not 0, the domain field contains a code that
identifies the domain in which the value of the error field should be interpreted.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample

Declared In
CFStream.h

432 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

CFReadStreamGetStatus
Returns the current state of a stream.

CFStreamStatus CFReadStreamGetStatus (
 CFReadStreamRef stream
);

Parameters
stream

The stream to examine.

Return Value
The current state of stream. See CFStreamStatus (page 827) for the list of possible states.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CFStream.h

CFReadStreamGetTypeID
Returns the type identifier the CFReadStream opaque type.

CFTypeID CFReadStreamGetTypeID (
 void
);

Return Value
The type identifier for the CFReadStream opaque type.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample

Declared In
CFStream.h

CFReadStreamHasBytesAvailable
Returns a Boolean value that indicates whether a readable stream has data that can be read without blocking.

Boolean CFReadStreamHasBytesAvailable (
 CFReadStreamRef stream
);

Parameters
stream

The stream to examine.

Functions 433
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

Return Value
TRUE if data can be read from stream without blocking, otherwise FALSE. If stream cannot tell if data is
available without actually trying to read the data, this function returns TRUE.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CFStream.h

CFReadStreamOpen
Opens a stream for reading.

Boolean CFReadStreamOpen (
 CFReadStreamRef stream
);

Parameters
stream

The stream to open.

Return Value
TRUE if stream was successfully opened, FALSE otherwise. If stream is not in the
kCFStreamStatusNotOpen (page 828) state, this function returns FALSE.

Discussion
Opening a stream causes it to reserve all the system resources it requires. If the stream can open in the
background without blocking, this function always returns true. To learn when a background open operation
completes, you can either schedule the stream into a run loop with
CFReadStreamScheduleWithRunLoop (page 435) and wait for the stream’s client (set with
CFReadStreamSetClient (page 436)) to be notified or you can poll the stream using
CFReadStreamGetStatus (page 433), waiting for a status of kCFStreamStatusOpen (page 828) or
kCFStreamStatusError (page 828).

You do not need to wait until a stream has finished opening in the background before calling the
CFReadStreamRead (page 434) function. The read operation will simply block until the open has completed.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample
CFNetworkHTTPDownload
ImageClient

Declared In
CFStream.h

CFReadStreamRead
Reads data from a readable stream.

434 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

CFIndex CFReadStreamRead (
 CFReadStreamRef stream,
 UInt8 *buffer,
 CFIndex bufferLength
);

Parameters
stream

The stream from which to read.

buffer
The buffer into which to place the data.

bufferLength
The size of buffer and the maximum number of bytes to read.

Return Value
The number of bytes read; 0 if the stream has reached its end; or -1 if either the stream is not open or an
error occurs.

Discussion
If stream is in the process of opening, this function waits until it has completed. This function blocks until
at least one byte is available; it does not block until buffer is filled. To avoid blocking, call this function only
if CFReadStreamHasBytesAvailable (page 433) returns TRUE or after the stream’s client (set with
CFReadStreamSetClient (page 436)) is notified of a kCFStreamEventHasBytesAvailable (page 831)
event.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample
CFNetworkHTTPDownload
ImageClient

Declared In
CFStream.h

CFReadStreamScheduleWithRunLoop
Schedules a stream into a run loop.

void CFReadStreamScheduleWithRunLoop (
 CFReadStreamRef stream,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
stream

The stream to schedule.

runLoop
The run loop with which to schedule stream.

Functions 435
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

runLoopMode
The run loop mode of runLoop in which to schedule stream.

Discussion
After scheduling streamwith a run loop, its client (set with CFReadStreamSetClient (page 436)) is notified
when various events happen with the stream, such as when it finishes opening, when it has bytes available,
and when an error occurs. A stream can be scheduled with multiple run loops and run loop modes. Use
CFReadStreamUnscheduleFromRunLoop (page 438) to later remove stream from the run loop.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample
CFNetworkHTTPDownload
ImageClient

Declared In
CFStream.h

CFReadStreamSetClient
Assigns a client to a stream, which receives callbacks when certain events occur.

Boolean CFReadStreamSetClient (
 CFReadStreamRef stream,
 CFOptionFlags streamEvents,
 CFReadStreamClientCallBack clientCB,
 CFStreamClientContext *clientContext
);

Parameters
stream

The stream to modify.

streamEvents
The set of events for which the client should receive callbacks. The events are listed in
CFStreamEventType (page 831). If you pass kCFStreamEventNone (page 831), the current client for
stream is removed.

clientCB
The client callback function to be called when one of the events requested in streamEvents occurs.
If NULL, the current client for stream is removed.

clientContext
A structure holding contextual information for the stream client. The function copies the information
out of the structure, so the memory pointed to by clientContext does not need to persist beyond
the function call. If NULL, the current client for stream is removed.

Return Value
TRUE if the stream supports asynchronous notification, otherwise FALSE.

Discussion
To avoid polling and blocking, you can register a client to hear about interesting events that occur on a
stream. Only one client per stream is allowed; registering a new client replaces the previous one.

436 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

Once you have set a client, you need to schedule the stream in a run loop using
CFReadStreamScheduleWithRunLoop (page 435) so that the client can receive the asynchronous
notifications. You can schedule each stream in multiple run loops (for example, if you are using a thread
pool). It is the caller's responsibility to ensure that at least one of the scheduled run loops is being run,
otherwise the callback cannot be called.

Although all Core Foundation streams currently support asynchronous notification, future stream types may
not. If a stream does not support asynchronous notification, this function returns false. Typically, such
streams never block for device I/O (for example, a stream reading memory) and don’t benefit from
asynchronous notification.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample
CFNetworkHTTPDownload
ImageClient

Declared In
CFStream.h

CFReadStreamSetProperty
Sets the value of a property for a stream.

Boolean CFReadStreamSetProperty (
 CFReadStreamRef stream,
 CFStringRef propertyName,
 CFTypeRef propertyValue
);

Parameters
stream

The stream to modify.

propertyName
The name of the property to set. The available properties for standard Core Foundation streams are
listed in CFStream Reference.

propertyValue
The value to which to set the property propertyName for stream. The allowed data type of the value
depends on the property being set.

Return Value
TRUE if stream recognizes and accepts the given property-value pair, otherwiseFALSE.

Discussion
Each type of stream can define a set of properties that either describe or configure individual streams. A
property can be any interesting information about a stream. Examples include the headers from an HTTP
transmission, the expected number of bytes, file permission information, and so on. Properties that can be
set configure the behavior of the stream and may be modifiable only at particular times, such as before the
stream has been opened. (In fact, you should assume that you can set properties only before opening the
stream, unless otherwise noted.) To read the value of a property use CFReadStreamCopyProperty (page
430), although some properties are write-only.

Functions 437
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CFFTPSample
CFNetworkHTTPDownload
CocoaEcho
CocoaHTTPServer
ImageClient

Declared In
CFStream.h

CFReadStreamUnscheduleFromRunLoop
Removes a read stream from a given run loop.

void CFReadStreamUnscheduleFromRunLoop (
 CFReadStreamRef stream,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
stream

The stream to unschedule.

runLoop
The run loop from which to remove stream.

runLoopMode
The run loop mode of runLoop from which to remove stream.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample
CFNetworkHTTPDownload
ImageClient

Declared In
CFStream.h

Callbacks

CFReadStreamClientCallBack
Callback invoked when certain types of activity takes place on a readable stream.

438 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

typedef void (*CFReadStreamClientCallBack) (
 CFReadStreamRef stream,
 CFStreamEventType eventType,
 void *clientCallBackInfo
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFReadStreamRef stream,
 CFStreamEventType eventType,
 void *clientCallBackInfo
);

Parameters
stream

The stream that experienced the event eventType.

eventType
The event that caused the callback to be called. The possible events are listed in
CFStreamEventType (page 831).

clientCallBackInfo
The infomember of the CFStreamClientContext (page 440) structure that was used when setting
the client for stream.

Discussion
This callback is called only for the events requested when setting the client with
CFReadStreamSetClient (page 436).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFStream.h

Data Types

CFReadStreamRef
A reference to a readable stream object.

typedef struct __CFReadStream *CFReadStreamRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFStream.h

Data Types 439
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

CFStreamClientContext
A structure that contains program-defined data and callbacks with which you can configure a stream’s client
behavior.

struct CFStreamClientContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct CFStreamClientContext CFStreamClientContext;

Fields
version

Version number of the structure. Must be 0.

info
An arbitrary pointer to program-defined data, which can be associated with the client. This pointer
is passed to the callbacks defined in the context and to the client callback function
CFReadStreamClientCallBack (page 438).

retain
A retain callback for your program-defined info pointer. Can be NULL.

release
A release callback for your program-defined info pointer. Can be NULL.

copyDescription
A copy description callback for your program-defined info pointer. Can be NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFStream.h

440 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

CFReadStream Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFRunLoop.h

Companion guide Run Loops

Overview

A CFRunLoop object monitors sources of input to a task and dispatches control when they become ready
for processing. Examples of input sources might include user input devices, network connections, periodic
or time-delayed events, and asynchronous callbacks.

Three types of objects can be monitored by a run loop: sources (CFRunLoopSource), timers (CFRunLoopTimer),
and observers (CFRunLoopObserver). To receive callbacks when these objects need processing, you must
first place these objects into a run loop with CFRunLoopAddSource (page 445), CFRunLoopAddTimer (page
446), or CFRunLoopAddObserver (page 444). You can later remove an object from the run loop (or invalidate
it) to stop receiving its callback.

Run loops have different modes in which they can run. Each mode has its own set of objects that the run
loop monitors while running in that mode. Core Foundation defines a default mode,
kCFRunLoopDefaultMode (page 458), to hold objects that should be monitored while the application (or
thread) is sitting idle. Additional modes are created automatically when an object is added to an unrecognized
mode. Each run loop has its own independent set of modes.

Core Foundation also defines a special pseudo-mode kCFRunLoopCommonModes (page 458) to hold objects
that should be shared by a set of “common” modes. A mode is added to the set of “common” modes by
calling CFRunLoopAddCommonMode (page 443). The default mode, kCFRunLoopDefaultMode (page 458), is
always a member of the set of common modes. The kCFRunLoopCommonModes (page 458) constant is never
passed to CFRunLoopRunInMode (page 454). Each run loop has its own independent set of common modes.

There is exactly one run loop per thread. You neither create nor destroy a thread’s run loop. Core Foundation
automatically creates it for you as needed. You obtain the current thread’s run loop with
CFRunLoopGetCurrent (page 450). Call CFRunLoopRun (page 454) to run the current thread’s run loop in
the default mode until the run loop is stopped with CFRunLoopStop (page 455). You can also call
CFRunLoopRunInMode (page 454) to run the current thread’s run loop in a specified mode for a set period
of time (or until the run loop is stopped). A run loop can only run if the requested mode has at least one
source or timer to monitor.

Overview 441
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

Run loops can be run recursively. You can call CFRunLoopRun (page 454) or CFRunLoopRunInMode (page
454) from within any run loop callout and create nested run loop activations on the current thread’s call stack.
You are not restricted in which modes you can run from within a callout. You can create another run loop
activation running in any available run loop mode, including any modes already running higher in the call
stack.

Cocoa and Carbon each build upon CFRunLoop to implement their own higher-level event loop. When writing
a Cocoa or Carbon application, you can add your sources, timers, and observers to their run loop objects and
modes. Your objects will then get monitored as part of the regular application event loop. Use the NSRunLoop
instance method getCFRunLoop to obtain the CFRunLoop corresponding to a Cocoa run loop. In Carbon
applications, use the GetCFRunLoopFromEventLoop function.

Functions by Task

Getting a Run Loop

CFRunLoopGetCurrent (page 450)
Returns the CFRunLoop object for the current thread.

CFRunLoopGetMain (page 450)
Returns the main CFRunLoop object.

Starting and Stopping a Run Loop

CFRunLoopRun (page 454)
Runs the current thread’s CFRunLoop object in its default mode indefinitely.

CFRunLoopRunInMode (page 454)
Runs the current thread’s CFRunLoop object in a particular mode.

CFRunLoopWakeUp (page 456)
Wakes a waiting CFRunLoop object.

CFRunLoopStop (page 455)
Forces a CFRunLoop object to stop running.

CFRunLoopIsWaiting (page 451)
Returns a Boolean value that indicates whether the run loop is waiting for an event.

Managing Sources

CFRunLoopAddSource (page 445)
Adds a CFRunLoopSource object to a run loop mode.

CFRunLoopContainsSource (page 447)
Returns a Boolean value that indicates whether a run loop mode contains a particular CFRunLoopSource
object.

CFRunLoopRemoveSource (page 452)
Removes a CFRunLoopSource object from a run loop mode.

442 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

Managing Observers

CFRunLoopAddObserver (page 444)
Adds a CFRunLoopObserver object to a run loop mode.

CFRunLoopContainsObserver (page 446)
Returns a Boolean value that indicates whether a run loop mode contains a particular
CFRunLoopObserver object.

CFRunLoopRemoveObserver (page 452)
Removes a CFRunLoopObserver object from a run loop mode.

Managing Run Loop Modes

CFRunLoopAddCommonMode (page 443)
Adds a mode to the set of run loop common modes.

CFRunLoopCopyAllModes (page 449)
Returns an array that contains all the defined modes for a CFRunLoop object.

CFRunLoopCopyCurrentMode (page 449)
Returns the name of the mode in which a given run loop is currently running.

Managing Timers

CFRunLoopAddTimer (page 446)
Adds a CFRunLoopTimer object to a run loop mode.

CFRunLoopGetNextTimerFireDate (page 450)
Returns the time at which the next timer will fire.

CFRunLoopRemoveTimer (page 453)
Removes a CFRunLoopTimer object from a run loop mode.

CFRunLoopContainsTimer (page 448)
Returns a Boolean value that indicates whether a run loop mode contains a particular CFRunLoopTimer
object.

Getting the CFRunLoop Type ID

CFRunLoopGetTypeID (page 451)
Returns the type identifier for the CFRunLoop opaque type.

Functions

CFRunLoopAddCommonMode
Adds a mode to the set of run loop common modes.

Functions 443
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

void CFRunLoopAddCommonMode (
 CFRunLoopRef rl,
 CFStringRef mode
);

Parameters
rl

The run loop to modify. Each run loop has its own independent list of modes that are in the set of
common modes.

mode
The run loop mode to add to the set of common modes of rl.

Discussion
Sources, timers, and observers get registered to one or more run loop modes and only run when the run
loop is running in one of those modes. Common modes are a set of run loop modes for which you can define
a set of sources, timers, and observers that are shared by these modes. Instead of registering a source, for
example, to each specific run loop mode, you can register it once to the run loop’s common pseudo-mode
and it will be automatically registered in each run loop mode in the common mode set. Likewise, when a
mode is added to the set of common modes, any sources, timers, or observers already registered to the
common pseudo-mode are added to the newly added common mode.

Once a mode is added to the set of common modes, it cannot be removed.

The Add, Contains, and Remove functions for sources, timers, and observers operate on a run loop’s set of
common modes when you use the constant kCFRunLoopCommonModes (page 458) for the run loop mode.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFRunLoopCopyAllModes (page 449)
CFRunLoopCopyCurrentMode (page 449)

Declared In
CFRunLoop.h

CFRunLoopAddObserver
Adds a CFRunLoopObserver object to a run loop mode.

void CFRunLoopAddObserver (
 CFRunLoopRef rl,
 CFRunLoopObserverRef observer,
 CFStringRef mode
);

Parameters
rl

The run loop to modify.

observer
The run loop observer to add.

444 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

mode
The run loop mode to which to add observer. Use the constant kCFRunLoopCommonModes (page
458) to add observer to the set of objects monitored by all the common modes.

Discussion
A run loop observer can be registered in only one run loop at a time, although it can be added to multiple
run loop modes within that run loop.

If rl already contains observer in mode, this function does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFRunLoopContainsObserver (page 446)
CFRunLoopRemoveObserver (page 452)

Declared In
CFRunLoop.h

CFRunLoopAddSource
Adds a CFRunLoopSource object to a run loop mode.

void CFRunLoopAddSource (
 CFRunLoopRef rl,
 CFRunLoopSourceRef source,
 CFStringRef mode
);

Parameters
rl

The run loop to modify.

source
The run loop source to add.

mode
The run loop mode to which to add source. Use the constant kCFRunLoopCommonModes (page 458)
to add source to the set of objects monitored by all the common modes.

Discussion
If source is a version 0 source, this function calls the schedule callback function specified in the context
structure for source. See CFRunLoopSourceContext for more details.

A run loop source can be registered in multiple run loops and run loop modes at the same time. When the
source is signaled, whichever run loop that happens to detect the signal first will fire the source.

If rl already contains source in mode, this function does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFRunLoopContainsSource (page 447)
CFRunLoopRemoveSource (page 452)

Functions 445
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

Related Sample Code
audioburntest
bulkerase
CFLocalServer
databurntest
ImageClient

Declared In
CFRunLoop.h

CFRunLoopAddTimer
Adds a CFRunLoopTimer object to a run loop mode.

void CFRunLoopAddTimer (
 CFRunLoopRef rl,
 CFRunLoopTimerRef timer,
 CFStringRef mode
);

Parameters
rl

The run loop to modify.

timer
The run loop timer to add.

mode
The run loop mode of rl to which to add timer. Use the constant kCFRunLoopCommonModes (page
458) to add timer to the set of objects monitored by all the common modes.

Discussion
A run loop timer can be registered in only one run loop at a time, although it can be added to multiple run
loop modes within that run loop.

If rl already contains timer in mode, this function does nothing.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Watcher
Worm

Declared In
CFRunLoop.h

CFRunLoopContainsObserver
Returns a Boolean value that indicates whether a run loop mode contains a particular CFRunLoopObserver
object.

446 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

Boolean CFRunLoopContainsObserver (
 CFRunLoopRef rl,
 CFRunLoopObserverRef observer,
 CFStringRef mode
);

Parameters
rl

The run loop to examine.

observer
The run loop observer for which to search.

mode
The run loop mode in which to search for observer. Use the constant
kCFRunLoopCommonModes (page 458) to search for observer in the set of objects monitored by all
the common modes.

Return Value
true if observer is in mode mode of the run loop rl, otherwise false.

Discussion
If observerwas added to kCFRunLoopCommonModes (page 458), this function returns true if mode is either
kCFRunLoopCommonModes (page 458) or any of the modes that has been added to the set of common modes.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFRunLoopAddObserver (page 444)
CFRunLoopRemoveObserver (page 452)

Declared In
CFRunLoop.h

CFRunLoopContainsSource
Returns a Boolean value that indicates whether a run loop mode contains a particular CFRunLoopSource
object.

Boolean CFRunLoopContainsSource (
 CFRunLoopRef rl,
 CFRunLoopSourceRef source,
 CFStringRef mode
);

Parameters
rl

The run loop to examine.

source
The run loop source for which to search.

mode
The run loop mode of rl in which to search. Use the constant kCFRunLoopCommonModes (page 458)
to search for source in the set of objects monitored by all the common modes.

Functions 447
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

Return Value
true if source is in mode mode of the run loop rl, otherwise false.

Discussion
If source was added to kCFRunLoopCommonModes (page 458), this function returns true if mode is either
kCFRunLoopCommonModes (page 458) or any of the modes that has been added to the set of common modes.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFRunLoopAddSource (page 445)
CFRunLoopRemoveSource (page 452)

Related Sample Code
HID Manager Basics
HID Utilities Source

Declared In
CFRunLoop.h

CFRunLoopContainsTimer
Returns a Boolean value that indicates whether a run loop mode contains a particular CFRunLoopTimer
object.

Boolean CFRunLoopContainsTimer (
 CFRunLoopRef rl,
 CFRunLoopTimerRef timer,
 CFStringRef mode
);

Parameters
rl

The run loop to examine.

timer
The run loop timer for which to search.

mode
The run loop mode of rl in which to search for timer. Use the constant
kCFRunLoopCommonModes (page 458) to search for timer in the set of objects monitored by all the
common modes.

Return Value
true if timer is in mode mode of the run loop rl, false otherwise.

Discussion
If timer was added to kCFRunLoopCommonModes (page 458), this function returns true if mode is either
kCFRunLoopCommonModes (page 458) or any of the modes that has been added to the set of common modes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

448 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

CFRunLoopCopyAllModes
Returns an array that contains all the defined modes for a CFRunLoop object.

CFArrayRef CFRunLoopCopyAllModes (
 CFRunLoopRef rl
);

Parameters
rl

The run loop to examine.

Return Value
An array that contains all the run loop modes defined for rl. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFRunLoopAddCommonMode (page 443)
CFRunLoopCopyCurrentMode (page 449)

Declared In
CFRunLoop.h

CFRunLoopCopyCurrentMode
Returns the name of the mode in which a given run loop is currently running.

CFStringRef CFRunLoopCopyCurrentMode (
 CFRunLoopRef rl
);

Parameters
rl

The run loop to examine.

Return Value
The mode in which rl is currently running; NULL if rl is not running. Ownership follows the Create Rule.

Discussion
When run on the current thread’s run loop, the returned value identifies the run loop mode that made the
callout in which your code is currently executing.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFRunLoopAddCommonMode (page 443)
CFRunLoopCopyAllModes (page 449)

Declared In
CFRunLoop.h

Functions 449
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

CFRunLoopGetCurrent
Returns the CFRunLoop object for the current thread.

CFRunLoopRef CFRunLoopGetCurrent (
 void
);

Return Value
Current thread’s run loop. Ownership follows the Get Rule.

Discussion
Each thread has exactly one run loop associated with it.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFRunLoopGetMain (page 450)

Related Sample Code
audioburntest
CFLocalServer
databurntest
DockBrowser
ImageClient

Declared In
CFRunLoop.h

CFRunLoopGetMain
Returns the main CFRunLoop object.

CFRunLoopRef CFRunLoopGetMain (
 void
);

Return Value
The main run loop. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFRunLoop.h

CFRunLoopGetNextTimerFireDate
Returns the time at which the next timer will fire.

450 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

CFAbsoluteTime CFRunLoopGetNextTimerFireDate (
 CFRunLoopRef rl,
 CFStringRef mode
);

Parameters
rl

The run loop to examine.

mode
The run loop mode within rl to test.

Return Value
The earliest firing time of the run loop timers registered in mode for the run loop rl.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopGetTypeID
Returns the type identifier for the CFRunLoop opaque type.

CFTypeID CFRunLoopGetTypeID (
 void
);

Return Value
The type identifier for the CFRunLoop opaque type.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer

Declared In
CFRunLoop.h

CFRunLoopIsWaiting
Returns a Boolean value that indicates whether the run loop is waiting for an event.

Boolean CFRunLoopIsWaiting (
 CFRunLoopRef rl
);

Parameters
rl

The run loop to examine.

Functions 451
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

Return Value
true if rl has no events to process and is blocking, waiting for a source or timer to become ready to fire;
false if rl either is not running or is currently processing a source, timer, or observer.

Discussion
This function is useful only to test the state of another thread’s run loop. When called with the current thread’s
run loop, this function always returns false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopRemoveObserver
Removes a CFRunLoopObserver object from a run loop mode.

void CFRunLoopRemoveObserver (
 CFRunLoopRef rl,
 CFRunLoopObserverRef observer,
 CFStringRef mode
);

Parameters
rl

The run loop to modify.

observer
The run loop observer to remove.

mode
The run loop mode of rl from which to remove observer. Use the constant
kCFRunLoopCommonModes (page 458) to remove observer from the set of objects monitored by all
the common modes.

Discussion
If rl does not contain observer in mode, this function does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFRunLoopAddObserver (page 444)
CFRunLoopContainsObserver (page 446)

Declared In
CFRunLoop.h

CFRunLoopRemoveSource
Removes a CFRunLoopSource object from a run loop mode.

452 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

void CFRunLoopRemoveSource (
 CFRunLoopRef rl,
 CFRunLoopSourceRef source,
 CFStringRef mode
);

Parameters
rl

The run loop to modify.

source
The run loop source to remove.

mode
The run loop mode of rl from which to remove source. Use the constant
kCFRunLoopCommonModes (page 458) to remove source from the set of objects monitored by all
the common modes.

Discussion
If source is a version 0 source, this function calls the cancel callback function specified in the context
structure for source. See CFRunLoopSourceContext and CFRunLoopSourceContext1for more details.

If rl does not contain source in mode, this function does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFRunLoopAddSource (page 445)
CFRunLoopContainsSource (page 447)

Related Sample Code
BackgroundExporter
DNSServiceMetaQuery
HID Manager Basics
HID Utilities Source

Declared In
CFRunLoop.h

CFRunLoopRemoveTimer
Removes a CFRunLoopTimer object from a run loop mode.

void CFRunLoopRemoveTimer (
 CFRunLoopRef rl,
 CFRunLoopTimerRef timer,
 CFStringRef mode
);

Parameters
rl

The run loop to modify.

Functions 453
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

timer
The run loop timer to remove.

mode
The run loop mode of rl from which to remove timer. Use the constant
kCFRunLoopCommonModes (page 458) to remove timer from the set of objects monitored by all the
common modes.

Discussion
If rl does not contain timer in mode, this function does nothing.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopRun
Runs the current thread’s CFRunLoop object in its default mode indefinitely.

void CFRunLoopRun (
 void
);

Discussion
The current thread’s run loop runs in the default mode (see "Default Run Loop Mode" (page 458)) until the
run loop is stopped with CFRunLoopStop (page 455) or all the sources and timers are removed from the
default run loop mode.

Run loops can be run recursively. You can call CFRunLoopRun from within any run loop callout and create
nested run loop activations on the current thread’s call stack.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioburntest
bulkerase
CFLocalServer
databurntest
SimpleDial

Declared In
CFRunLoop.h

CFRunLoopRunInMode
Runs the current thread’s CFRunLoop object in a particular mode.

454 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

SInt32 CFRunLoopRunInMode (
 CFStringRef mode,
 CFTimeInterval seconds,
 Boolean returnAfterSourceHandled
);

Parameters
mode

The run loop mode to run. mode can be any arbitrary CFString. You do not need to explicitly create
a run loop mode, although a run loop mode needs to contain at least one source or timer to run.

seconds
The length of time to run the run loop. If 0, only one pass is made through the run loop before
returning; if multiple sources or timers are ready to fire immediately, only one (possibly two if one is
a version 0 source) will be fired, regardless of the value of returnAfterSourceHandled.

returnAfterSourceHandled
A flag indicating whether the run loop should exit after processing one source. If false, the run loop
continues processing events until seconds has passed.

Return Value
A value indicating the reason the run loop exited. Possible values are described below.

Discussion
Run loops can be run recursively. You can call CFRunLoopRunInMode from within any run loop callout and
create nested run loop activations on the current thread’s call stack. You are not restricted in which modes
you can run from within a callout. You can create another run loop activation running in any available run
loop mode, including any modes already running higher in the call stack.

The run loop exits with the following return values under the indicated conditions:

 ■ kCFRunLoopRunFinished. The run loop mode mode has no sources or timers.

 ■ kCFRunLoopRunStopped. The run loop was stopped with CFRunLoopStop (page 455).

 ■ kCFRunLoopRunTimedOut. The time interval seconds passed.

 ■ kCFRunLoopRunHandledSource. A source was processed. This exit condition only applies when
returnAfterSourceHandled is true.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioQueueTest
AudioQueueTools
CocoaSOAP
FSFileOperation
HID Manager Basics

Declared In
CFRunLoop.h

CFRunLoopStop
Forces a CFRunLoop object to stop running.

Functions 455
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

void CFRunLoopStop (
 CFRunLoopRef rl
);

Parameters
rl

The run loop to stop.

Discussion
This function forces rl to stop running and return control to the function that called CFRunLoopRun (page
454) or CFRunLoopRunInMode (page 454) for the current run loop activation. If the run loop is nested with a
callout from one activation starting another activation running, only the innermost activation is exited.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioburntest
bulkerase
CFFTPSample
CFLocalServer
databurntest

Declared In
CFRunLoop.h

CFRunLoopWakeUp
Wakes a waiting CFRunLoop object.

void CFRunLoopWakeUp (
 CFRunLoopRef rl
);

Parameters
rl

The run loop to wake up.

Discussion
A run loop goes to sleep when it is waiting for a source or timer to become ready to fire. If no source or timer
fires, the run loop stays there until it times out or is explicitly woken up. If a run loop is modified, such as a
new source added, you need to wake up the run loop to allow it to process the change. Version 0 sources
use CFRunLoopWakeUp to cause the run loop to wake up after setting a source to be signaled, if they want
the source handled immediately.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

456 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

Data Types

CFRunLoopRef
A reference to a run loop object.

typedef struct __CFRunLoop *CFRunLoopRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

Constants

CFRunLoopRunInMode Exit Codes
Return codes for CFRunLoopRunInMode, identifying the reason the run loop exited.

enum {
 kCFRunLoopRunFinished = 1,
 kCFRunLoopRunStopped = 2,
 kCFRunLoopRunTimedOut = 3,
 kCFRunLoopRunHandledSource = 4
};

Constants
kCFRunLoopRunFinished

The running run loop mode has no sources or timers to process.

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

kCFRunLoopRunStopped
CFRunLoopStop (page 455) was called on the run loop.

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

kCFRunLoopRunTimedOut
The specified time interval for running the run loop has passed.

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

kCFRunLoopRunHandledSource
A source has been processed. This value is returned only if the run loop was told to run only until a
source was processed.

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

Data Types 457
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

Common Mode Flag
A run loop pseudo-mode that manages objects monitored in the “common” modes.

const CFStringRef kCFRunLoopCommonModes;

Constants
kCFRunLoopCommonModes

Objects added to a run loop using this value as the mode are monitored by all run loop modes that
have been declared as a member of the set of “common” modes with
CFRunLoopAddCommonMode (page 443).

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

Discussion
Run loops never run in this mode. This pseudo-mode is used only as a special set of sources, timers, and
observers that is shared by other modes. See “Managing Objects in a Run Loop” (page 443) for more details.

Default Run Loop Mode
Default run loop mode.

const CFStringRef kCFRunLoopDefaultMode;

Constants
kCFRunLoopDefaultMode

Run loop mode that should be used when a thread is in its default, or idle, state, waiting for an event.
This mode is used when the run loop is started with CFRunLoopRun (page 454).

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

458 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

CFRunLoop Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFRunLoop.h

Companion guide Run Loops

Overview

A CFRunLoopObserver provides a general means to receive callbacks at different points within a running run
loop. In contrast to sources, which fire when an asynchronous event occurs, and timers, which fire when a
particular time passes, observers fire at special locations within the execution of the run loop, such as before
sources are processed or before the run loop goes to sleep, waiting for an event to occur. Observers can be
either one-time events or repeated every time through the run loop’s loop.

Each run loop observer can be registered in only one run loop at a time, although it can be added to multiple
run loop modes within that run loop.

Functions

CFRunLoopObserverCreate
Creates a CFRunLoopObserver object.

CFRunLoopObserverRef CFRunLoopObserverCreate (
 CFAllocatorRef allocator,
 CFOptionFlags activities,
 Boolean repeats,
 CFIndex order,
 CFRunLoopObserverCallBack callout,
 CFRunLoopObserverContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

Overview 459
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

CFRunLoopObserver Reference

activities
Set of flags identifying the activity stages of the run loop during which the observer should be called.
See Run Loop Activities (page 465)for the list of stages. To have the observer called at multiple stages
in the run loop, combine the Run Loop Activities (page 465) values using the bitwise-OR operator.

repeats
A flag identifying whether the observer should be called only once or every time through the run
loop. If repeats is false, the observer is invalidated after it is called once, even if the observer was
scheduled to be called at multiple stages within the run loop.

order
A priority index indicating the order in which run loop observers are processed. When multiple run
loop observers are scheduled in the same activity stage in a given run loop mode, the observers are
processed in increasing order of this parameter. Pass 0 unless there is a reason to do otherwise.

callout
The callback function invoked when the observer runs.

context
A structure holding contextual information for the run loop observer. The function copies the
information out of the structure, so the memory pointed to by context does not need to persist
beyond the function call. Can be NULL if the observer does not need the context’s info pointer to
keep track of state.

Return Value
The new CFRunLoopObserver object. Ownership follows the Create Rule.

Discussion
The run loop observer is not automatically added to a run loop. To add the observer to a run loop, use
CFRunLoopAddObserver (page 444). An observer can be registered to only one run loop, although it can
be added to multiple run loop modes within that run loop.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopObserverDoesRepeat
Returns a Boolean value that indicates whether a CFRunLoopObserver repeats.

Boolean CFRunLoopObserverDoesRepeat (
 CFRunLoopObserverRef observer
);

Parameters
observer

The run loop observer to examine.

Return Value
true if observer is processed during every pass through the run loop; false if observer is processed
once and then is invalidated.

Availability
Available in Mac OS X v10.0 and later.

460 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

CFRunLoopObserver Reference

Declared In
CFRunLoop.h

CFRunLoopObserverGetActivities
Returns the run loop stages during which an observer runs.

CFOptionFlags CFRunLoopObserverGetActivities (
 CFRunLoopObserverRef observer
);

Parameters
observer

The run loop observer to examine.

Return Value
A bitwise-OR combination of all the run loop stages in which observer is called. See Run Loop Activities (page
465) for the list of stages.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopObserverGetContext
Returns the context information for a CFRunLoopObserver object.

void CFRunLoopObserverGetContext (
 CFRunLoopObserverRef observer,
 CFRunLoopObserverContext *context
);

Parameters
observer

The run loop observer to examine.

context
Upon return, contains the context information for observer. This is the same information passed to
CFRunLoopObserverCreate (page 459) when creating observer.

Discussion
The context version number for run loop observers is currently 0. Before calling this function, you need to
initialize the version member of context to 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

Functions 461
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

CFRunLoopObserver Reference

CFRunLoopObserverGetOrder
Returns the ordering parameter for a CFRunLoopObserver object.

CFIndex CFRunLoopObserverGetOrder (
 CFRunLoopObserverRef observer
);

Parameters
observer

The run loop observer to examine.

Return Value
The ordering parameter for observer. When multiple observers are scheduled in the same run loop mode
and stage, this value determines the order (from small to large) in which the observers are called.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopObserverGetTypeID
Returns the type identifier for the CFRunLoopObserver opaque type.

CFTypeID CFRunLoopObserverGetTypeID (
 void
);

Return Value
The type identifier for the CFRunLoopObserver opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopObserverInvalidate
Invalidates a CFRunLoopObserver object, stopping it from ever firing again.

void CFRunLoopObserverInvalidate (
 CFRunLoopObserverRef observer
);

Parameters
observer

The run loop observer to invalidate.

Discussion
Once invalidated, observer will never fire and call its callback function again. This function automatically
removes observer from all run loop modes in which it had been added. The memory is not deallocated
unless the run loop held the only reference to observer.

462 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

CFRunLoopObserver Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopObserverIsValid
Returns a Boolean value that indicates whether a CFRunLoopObserver object is valid and able to fire.

Boolean CFRunLoopObserverIsValid (
 CFRunLoopObserverRef observer
);

Parameters
observer

The run loop observer to examine.

Return Value
true if observer is valid, otherwise false.

Discussion
A nonrepeating observer is automatically invalidated after it is called once.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

Callbacks

CFRunLoopObserverCallBack
Callback invoked when a CFRunLoopObserver object is fired.

typedef void (*CFRunLoopObserverCallBack) (
 CFRunLoopObserverRef observer,
 CFRunLoopActivity activity,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFRunLoopObserverRef observer,
 CFRunLoopActivity activity,
 void *info
);

Callbacks 463
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

CFRunLoopObserver Reference

Parameters
observer

The run loop observer that is firing.

activity
The current activity stage of the run loop.

info
The info member of the CFRunLoopObserverContext (page 464) structure that was used when
creating the run loop observer.

Discussion
You specify this callback when you create the run loop observer with CFRunLoopObserverCreate (page
459).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

Data Types

CFRunLoopObserverContext
A structure that contains program-defined data and callbacks with which you can configure a
CFRunLoopObserver object’s behavior.

struct CFRunLoopObserverContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct CFRunLoopObserverContext CFRunLoopObserverContext;

Fields
version

Version number of the structure. Must be 0.

info
An arbitrary pointer to program-defined data, which can be associated with the run loop observer at
creation time. This pointer is passed to all the callbacks defined in the context.

retain
A retain callback for your program-defined info pointer. Can be NULL.

release
A release callback for your program-defined info pointer. Can be NULL.

copyDescription
A copy description callback for your program-defined info pointer. Can be NULL.

Availability
Available in Mac OS X v10.0 and later.

464 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

CFRunLoopObserver Reference

Declared In
CFRunLoop.h

CFRunLoopObserverRef
A reference to a run loop observer object.

typedef struct __CFRunLoopObserver *CFRunLoopObserverRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

Constants

Run Loop Activities
Run loop activity stages in which run loop observers can be scheduled.

enum CFRunLoopActivity {
 kCFRunLoopEntry = (1 << 0),
 kCFRunLoopBeforeTimers = (1 << 1),
 kCFRunLoopBeforeSources = (1 << 2),
 kCFRunLoopBeforeWaiting = (1 << 5),
 kCFRunLoopAfterWaiting = (1 << 6),
 kCFRunLoopExit = (1 << 7),
 kCFRunLoopAllActivities = 0x0FFFFFFFU
};
typedef enum CFRunLoopActivity CFRunLoopActivity;

Constants
kCFRunLoopEntry

The entrance of the run loop, before entering the event processing loop. This activity occurs once for
each call to CFRunLoopRun (page 454) and CFRunLoopRunInMode (page 454).

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

kCFRunLoopBeforeTimers
Inside the event processing loop before any timers are processed.

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

kCFRunLoopBeforeSources
Inside the event processing loop before any sources are processed.

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

Constants 465
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

CFRunLoopObserver Reference

kCFRunLoopBeforeWaiting
Inside the event processing loop before the run loop sleeps, waiting for a source or timer to fire. This
activity does not occur if CFRunLoopRunInMode (page 454) is called with a timeout of 0 seconds. It
also does not occur in a particular iteration of the event processing loop if a version 0 source fires.

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

kCFRunLoopAfterWaiting
Inside the event processing loop after the run loop wakes up, but before processing the event that
woke it up. This activity occurs only if the run loop did in fact go to sleep during the current loop.

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

kCFRunLoopExit
The exit of the run loop, after exiting the event processing loop. This activity occurs once for each
call to CFRunLoopRun (page 454) and CFRunLoopRunInMode (page 454).

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

kCFRunLoopAllActivities
A combination of all the preceding stages.

Available in Mac OS X v10.0 and later.

Declared in CFRunLoop.h.

Discussion
The run loop stages in which an observer is scheduled are selected when the observer is created with
CFRunLoopObserverCreate (page 459).

466 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

CFRunLoopObserver Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFRunLoop.h

Companion guide Run Loops

Overview

A CFRunLoopSource object is an abstraction of an input source that can be put into a run loop. Input sources
typically generate asynchronous events, such as messages arriving on a network port or actions performed
by the user.

An input source type normally defines an API for creating and operating on objects of the type, as if it were
a separate entity from the run loop, then provides a function to create a CFRunLoopSource for an object.
The run loop source can then be registered with the run loop and act as an intermediary between the run
loop and the actual input source type object. Examples of input sources include CFMachPort, CFMessagePort,
and CFSocket.

There are two categories of sources. Version 0 sources, so named because the version field of their context
structure is 0, are managed manually by the application. When a source is ready to fire, some part of the
application, perhaps code on a separate thread waiting for an event, must call
CFRunLoopSourceSignal (page 471) to tell the run loop that the source is ready to fire. The run loop source
for CFSocket is currently implemented as a version 0 source.

Version 1 sources are managed by the run loop and kernel. These sources use Mach ports to signal when the
sources are ready to fire. A source is automatically signaled by the kernel when a message arrives on the
source’s Mach port. The contents of the message are given to the source to process when the source is fired.
The run loop sources for CFMachPort and CFMessagePort are currently implemented as version 1 sources.

When creating your own custom run loop source, you can choose which version works best for you.

A run loop source can be registered in multiple run loops and run loop modes at the same time. When the
source is signaled, whichever run loop that happens to detect the signal first will fire the source. Adding a
source to multiple threads’ run loops can be used to manage a pool of “worker” threads that is processing
discrete sets of data, such as client-server messages over a network or entries in a job queue filled by a
“manager” thread. As messages arrive or jobs get added to the queue, the source gets signaled and a random
thread receives and processes the request.

Overview 467
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

Functions

CFRunLoopSourceCreate
Creates a CFRunLoopSource object.

CFRunLoopSourceRef CFRunLoopSourceCreate (
 CFAllocatorRef allocator,
 CFIndex order,
 CFRunLoopSourceContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

order
A priority index indicating the order in which run loop sources are processed. When multiple run loop
sources are firing in a single pass through the run loop, the sources are processed in increasing order
of this parameter. If the run loop is set to process only one source per loop, only the highest priority
source, the one with the lowest order value, is processed. This value is ignored for version 1 sources.
Pass 0 unless there is a reason to do otherwise.

context
A structure holding contextual information for the run loop source. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call.

Return Value
The new CFRunLoopSource object. You are responsible for releasing this object.

Discussion
The run loop source is not automatically added to a run loop. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SimpleAudioExtraction
simpleJavaLauncher

Declared In
CFRunLoop.h

CFRunLoopSourceGetContext
Returns the context information for a CFRunLoopSource object.

468 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

void CFRunLoopSourceGetContext (
 CFRunLoopSourceRef source,
 CFRunLoopSourceContext *context
);

Parameters
source

The run loop source to examine.

context
A pointer to the structure into which the context information for source is to be copied. The
information being returned is the same information passed to CFRunLoopSourceCreate (page 468)
when creating source.

Discussion
Run loop sources come in two versions with different-sized context structures. context must point to the
correct version of the structure for source. Before calling this function, you need to initialize the version
member of context with the version number (either 0 or 1) of source.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopSourceGetOrder
Returns the ordering parameter for a CFRunLoopSource object.

CFIndex CFRunLoopSourceGetOrder (
 CFRunLoopSourceRef source
);

Parameters
source

The run loop source to examine.

Return Value
The ordering parameter for source, which the run loop uses (for version 0 sources only) to determine the
order in which sources are processed when multiple sources are firing.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopSourceGetTypeID
Returns the type identifier of the CFRunLoopSource opaque type.

Functions 469
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

CFTypeID CFRunLoopSourceGetTypeID (
 void
);

Return Value
The type identifier for the CFRunLoopSource opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopSourceInvalidate
Invalidates a CFRunLoopSource object, stopping it from ever firing again.

void CFRunLoopSourceInvalidate (
 CFRunLoopSourceRef source
);

Parameters
source

The run loop source to invalidate.

Discussion
Once invalidated, sourcewill never fire and call its perform callback function again. This function automatically
removes source from all the run loop modes in which it was registered. If source is a version 0 source, this
function calls its cancel callback function as it is removed from each run loop mode. The memory for source
is not deallocated unless the run loop held the only reference to source.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioburntest
bulkerase
CFLocalServer
databurntest
ImageClient

Declared In
CFRunLoop.h

CFRunLoopSourceIsValid
Returns a Boolean value that indicates whether a CFRunLoopSource object is valid and able to fire.

470 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

Boolean CFRunLoopSourceIsValid (
 CFRunLoopSourceRef source
);

Parameters
source

The run loop source to examine.

Return Value
true if source is valid, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopSourceSignal
Signals a CFRunLoopSource object, marking it as ready to fire.

void CFRunLoopSourceSignal (
 CFRunLoopSourceRef source
);

Parameters
source

The run loop source to signal.

Discussion
This function has no effect on version 1 sources, which are automatically handled when Mach messages
arrive for them. After signaling a version 0 source, you need to call CFRunLoopWakeUp (page 456) on one of
the run loops in which the source is registered to get the source handled immediately.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SimpleAudioExtraction

Declared In
CFRunLoop.h

Callbacks

CFRunLoopCancelCallBack
Callback invoked when a version 0 CFRunLoopSource object is removed from a run loop mode.

Callbacks 471
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

typedef void (*CFRunLoopCancelCallBack) (
 void *info,
 CFRunLoopRef rl,
 CFStringRef mode
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 void *info,
 CFRunLoopRef rl,
 CFStringRef mode
);

Parameters
info

The info member of the CFRunLoopSourceContext (page 476) structure that was used when
creating the run loop source.

rl
The run loop from which the run loop source is being removed.

mode
The run loop mode from which the run loop source is being removed.

Discussion
You specify this callback in the CFRunLoopSourceContext (page 476) structure when creating the run loop
source.

CFRunLoopEqualCallBack
Callback invoked to test two CFRunLoopSource objects for equality.

typedef Boolean (*CFRunLoopEqualCallBack) (
 const void *info1,
 const void *info2
);

If you name your function MyCallBack, you would declare it like this:

Boolean MyCallBack (
 const void *info1,
 const void *info2
);

Parameters
info1

The info member of the CFRunLoopSourceContext (page 476) or
CFRunLoopSourceContext1 (page 477) structure that was used when creating the first run loop
source to test.

info2
The info member of the CFRunLoopSourceContext (page 476) or
CFRunLoopSourceContext1 (page 477) structure that was used when creating the second run loop
source to test.

472 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

Return Value
true if info1 and info2 should be considered equal; otherwise false.

Discussion
You specify this callback in theCFRunLoopSourceContext (page 476) orCFRunLoopSourceContext1 (page
477) structure when creating the run loop source.

CFRunLoopGetPortCallBack
Callback invoked to obtain the native Mach port represented by a version 1 CFRunLoopSource object.

typedef mach_port_t (*CFRunLoopGetPortCallBack) (
 void *info
);

If you name your function MyCallBack, you would declare it like this:

mach_port_t MyCallBack (
 void *info
);

Parameters
info

The info member of the CFRunLoopSourceContext1 (page 477) structure that was used when
creating the run loop source.

Return Value
The native Mach port for the run loop source.

Discussion
This callback is called whenever the run loop needs a source’s Mach port, which can happen in each iteration
of the run loop’s loop. Because of the frequency with which the run loop may call this callback, make the
function as efficient as possible.

A version 1 run loop source must have a one-to-one relationship between itself and its Mach port. Each
source must have only one Mach port associated with it and each Mach port must represent only one source.

You specify this callback in the CFRunLoopSourceContext1 (page 477) structure when creating the run
loop source.

CFRunLoopHashCallBack
Callback invoked to compute a hash code for the info pointer of a CFRunLoopSource object.

typedef CFHashCode (*CFRunLoopHashCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

CFHashCode MyCallBack (
 const void *info
);

Callbacks 473
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

Parameters
info

The info member of the CFRunLoopSourceContext (page 476) or
CFRunLoopSourceContext1 (page 477) structure that was used when creating the run loop source.

Return Value
A hash code value for info.

Discussion
If a hash callback is not provided for a source, the info pointer is used.

You specify this callback in theCFRunLoopSourceContext (page 476) orCFRunLoopSourceContext1 (page
477) structure when creating the run loop source.

CFRunLoopMachPerformCallBack
Callback invoked to process and optionally reply to a message received on a version 1 CFRunLoopSource
object (Mach port-based sources).

typedef void *(*CFRunLoopMachPerformCallBack) (
 void *msg,
 CFIndex size,
 CFAllocatorRef allocator,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void *MyCallBack (
 void *msg,
 CFIndex size,
 CFAllocatorRef allocator,
 void *info
);

Parameters
msg

The Mach message received on the Mach port. The pointer is to a mach_msg_header_t structure. A
version 0 format trailer (mach_msg_format_0_trailer_t) is at the end of the Mach message.

size
Size of the Mach message in msg, excluding the message trailer.

allocator
The allocator object that should be used to allocate a reply message.

info
The info member of the CFRunLoopSourceContext1 (page 477) structure that was used when
creating the run loop source.

Return Value
An optional Mach message to be sent in response to the received message. The message must be allocated
using allocator. Return NULL if you want an empty reply returned to the sender.

474 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

Discussion
You only need to provide this callback if you create your own version 1 run loop source. CFMachPort and
CFMessagePort run loop sources already implement this callback to forward the received message to the
CFMachPort’s or CFMessagePort’s own callback function, which you do need to implement.

You specify this callback in the CFRunLoopSourceContext1 (page 477) structure when creating the run
loop source.

CFRunLoopPerformCallBack
Callback invoked when a message is received on a version 0 CFRunLoopSource object.

typedef void (*CFRunLoopPerformCallBack) (
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 void *info
);

Parameters
info

The info member of the CFRunLoopSourceContext (page 476) structure that was used when
creating the run loop source.

Discussion
You only need to provide this callback if you create your own version 0 run loop source. CFSocket run loop
sources already implement this callback to forward the received message to the CFSocket’s own callback
function, which you do need to implement.

You specify this callback in the CFRunLoopSourceContext (page 476) structure when creating the run loop
source.

CFRunLoopScheduleCallBack
Callback invoked when a version 0 CFRunLoopSource object is added to a run loop mode.

typedef void (*CFRunLoopScheduleCallBack) (
 void *info,
 CFRunLoopRef rl,
 CFStringRef mode
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 void *info,
 CFRunLoopRef rl,
 CFStringRef mode
);

Callbacks 475
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

Parameters
info

The info member of the CFRunLoopSourceContext (page 476) structure that was used when
creating the run loop source.

rl
The run loop in which the source is being scheduled.

mode
The run loop mode in which the source is being scheduled.

Discussion
You specify this callback in the CFRunLoopSourceContext (page 476) structure when creating the run loop
source.

Data Types

CFRunLoopSourceContext
A structure that contains program-defined data and callbacks with which you can configure a version 0
CFRunLoopSource’s behavior.

struct CFRunLoopSourceContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
 CFRunLoopEqualCallBack equal;
 CFRunLoopHashCallBack hash;
 CFRunLoopScheduleCallBack schedule;
 CFRunLoopCancelCallBack cancel;
 CFRunLoopPerformCallBack perform;
};
typedef struct CFRunLoopSourceContext CFRunLoopSourceContext;

Fields
version

Version number of the structure. Must be 0.

info
An arbitrary pointer to program-defined data, which can be associated with the CFRunLoopSource
at creation time. This pointer is passed to all the callbacks defined in the context.

retain
A retain callback for your program-defined info pointer. Can be NULL.

release
A release callback for your program-defined info pointer. Can be NULL.

copyDescription
A copy description callback for your program-defined info pointer. Can be NULL.

equal
An equality test callback for your program-defined info pointer. Can be NULL.

476 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

hash
A hash calculation callback for your program-defined info pointer. Can be NULL.

schedule
A scheduling callback for the run loop source. This callback is called when the source is added to a
run loop mode. Can be NULL.

cancel
A cancel callback for the run loop source. This callback is called when the source is removed from a
run loop mode. Can be NULL.

perform
A perform callback for the run loop source. This callback is called when the source has fired.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopSourceContext1
A structure that contains program-defined data and callbacks with which you can configure a version 1
CFRunLoopSource’s behavior.

struct CFRunLoopSourceContext1 {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
 CFRunLoopEqualCallBack equal;
 CFRunLoopHashCallBack hash;
 CFRunLoopGetPortCallBack getPort;
 CFRunLoopMachPerformCallBack perform;
};
typedef struct CFRunLoopSourceContext1 CFRunLoopSourceContext1;

Fields
version

Version number of the structure. Must be 1.

info
An arbitrary pointer to program-defined data, which can be associated with the run loop source at
creation time. This pointer is passed to all the callbacks defined in the context.

retain
A retain callback for your program-defined info pointer. Can be NULL.

release
A release callback for your program-defined info pointer. Can be NULL.

copyDescription
A copy description callback for your program-defined info pointer. Can be NULL.

equal
An equality test callback for your program-defined info pointer. Can be NULL.

Data Types 477
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

hash
A hash calculation callback for your program-defined info pointer. Can be NULL.

getPort
A callback to retrieve the native Mach port represented by the source. This callback is called when
the source is either added to or removed from a run loop mode.

perform
A perform callback for the run loop source. This callback is called when the source has fired.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopSourceRef
A reference to a run loop source object.

typedef struct __CFRunLoopSource *CFRunLoopSourceRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

478 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

CFRunLoopSource Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFRunLoop.h

Companion guide Run Loops

Overview

A CFRunLoopTimer object represents a specialized run loop source that fires at a preset time in the future.
Timers can fire either only once or repeatedly at fixed time intervals. Repeating timers can also have their
next firing time manually adjusted.

A timer is not a real-time mechanism; it fires only when one of the run loop modes to which the timer has
been added is running and able to check if the timer’s firing time has passed. If a timer’s firing time occurs
while the run loop is in a mode that is not monitoring the timer or during a long callout, the timer does not
fire until the next time the run loop checks the timer. Therefore, the actual time at which the timer fires
potentially can be a significant period of time after the scheduled firing time.

A repeating timer reschedules itself based on the scheduled firing time, not the actual firing time. For example,
if a timer is scheduled to fire at a particular time and every 5 seconds after that, the scheduled firing time
will always fall on the original 5 second time intervals, even if the actual firing time gets delayed. If the firing
time is delayed so far that it passes one or more of the scheduled firing times, the timer is fired only once
for that time period; the timer is then rescheduled, after firing, for the next scheduled firing time in the future.

Each run loop timer can be registered in only one run loop at a time, although it can be added to multiple
run loop modes within that run loop.

CFRunLoopTimer is “toll-free bridged” with its Cocoa Foundation counterpart, NSTimer. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSTimer * parameter, you can pass in a CFRunLoopTimerRef,
and in a function where you see a CFRunLoopTimerRef parameter, you can pass in an NSTimer instance.
This also applies to concrete subclasses of NSTimer. See Interchangeable Data Types for more information
on toll-free bridging.

Functions

CFRunLoopTimerCreate
Creates a new CFRunLoopTimer object.

Overview 479
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

CFRunLoopTimer Reference

CFRunLoopTimerRef CFRunLoopTimerCreate (
 CFAllocatorRef allocator,
 CFAbsoluteTime fireDate,
 CFTimeInterval interval,
 CFOptionFlags flags,
 CFIndex order,
 CFRunLoopTimerCallBack callout,
 CFRunLoopTimerContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

fireDate
The time at which the timer should first fire. The fine precision (sub-millisecond at most) of the fire
date may be adjusted slightly by the timer if there are implementation reasons to do.

interval
The firing interval of the timer. If 0 or negative, the timer fires once and then is automatically
invalidated. The fine precision (sub-millisecond at most) of the interval may be adjusted slightly by
the timer if implementation reasons to do so exist.

flags
Currently ignored. Pass 0 for future compatibility.

order
A priority index indicating the order in which run loop timers are processed. Run loop timers currently
ignore this parameter. Pass 0.

callout
The callback function that is called when the timer fires.

context
A structure holding contextual information for the run loop timer. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call. Can be NULL if the callback function does not need the context’s info pointer to keep
track of state.

Return Value
The new CFRunLoopTimer object. Ownership follows the Create Rule.

Discussion
A timer needs to be added to a run loop mode before it will fire. To add the timer to a run loop, use
CFRunLoopAddTimer (page 446). A timer can be registered to only one run loop at a time, although it can
be in multiple modes within that run loop.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Watcher
Worm

Declared In
CFRunLoop.h

480 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

CFRunLoopTimer Reference

CFRunLoopTimerDoesRepeat
Returns a Boolean value that indicates whether a CFRunLoopTimer object repeats.

Boolean CFRunLoopTimerDoesRepeat (
 CFRunLoopTimerRef timer
);

Parameters
timer

The run loop timer to test.

Return Value
true if timer repeats, or has a periodicity; otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopTimerGetContext
Returns the context information for a CFRunLoopTimer object.

void CFRunLoopTimerGetContext (
 CFRunLoopTimerRef timer,
 CFRunLoopTimerContext *context
);

Parameters
timer

The run loop timer to examine.

context
A pointer to the structure into which the context information for timer is to be copied. The information
being returned is the same information passed to CFRunLoopTimerCreate (page 479) when creating
timer.

Discussion
The context version number for run loop timers is currently 0. Before calling this function, you need to initialize
the version member of context to 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopTimerGetInterval
Returns the firing interval of a repeating CFRunLoopTimer object.

Functions 481
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

CFRunLoopTimer Reference

CFTimeInterval CFRunLoopTimerGetInterval (
 CFRunLoopTimerRef timer
);

Parameters
timer

The run loop timer to examine.

Return Value
The firing interval of timer. Returns 0 if timer does not repeat.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Worm

Declared In
CFRunLoop.h

CFRunLoopTimerGetNextFireDate
Returns the next firing time for a CFRunLoopTimer object.

CFAbsoluteTime CFRunLoopTimerGetNextFireDate (
 CFRunLoopTimerRef timer
);

Parameters
timer

The run loop timer to examine.

Return Value
The next firing time for timer. This time could be a date in the past if a run loop has not been able to process
the timer since the firing time arrived.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopTimerGetOrder
Returns the ordering parameter for a CFRunLoopTimer object.

CFIndex CFRunLoopTimerGetOrder (
 CFRunLoopTimerRef timer
);

Parameters
timer

The run loop timer to examine.

482 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

CFRunLoopTimer Reference

Return Value
The ordering parameter for timer.

Discussion
The ordering parameter is currently ignored by run loop timers.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopTimerGetTypeID
Returns the type identifier of the CFRunLoopTimer opaque type.

CFTypeID CFRunLoopTimerGetTypeID (
 void
);

Return Value
The type identifier for the CFRunLoopTimer opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopTimerInvalidate
Invalidates a CFRunLoopTimer object, stopping it from ever firing again.

void CFRunLoopTimerInvalidate (
 CFRunLoopTimerRef timer
);

Parameters
timer

The run loop timer to invalidate.

Discussion
Once invalidated, timerwill never fire and call its callback function again. This function automatically removes
timer from all run loop modes in which it had been added. The memory is not deallocated unless the run
loop held the only reference to timer.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Worm

Declared In
CFRunLoop.h

Functions 483
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

CFRunLoopTimer Reference

CFRunLoopTimerIsValid
Returns a Boolean value that indicates whether a CFRunLoopTimer object is valid and able to fire.

Boolean CFRunLoopTimerIsValid (
 CFRunLoopTimerRef timer
);

Parameters
timer

The run loop timer to examine.

Return Value
true if timer is valid; otherwise false.

Discussion
A nonrepeating timer is automatically invalidated after it fires.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopTimerSetNextFireDate
Sets the next firing date for a CFRunLoopTimer object .

void CFRunLoopTimerSetNextFireDate (
 CFRunLoopTimerRef timer,
 CFAbsoluteTime fireDate
);

Parameters
timer

The run loop timer to modify.

fireDate
The new firing time for timer.

Discussion
Resetting a timer’s next firing time is a relatively expensive operation and should not be done if it can be
avoided; letting timers autorepeat is more efficient. In some cases, however, manually-adjusted, repeating
timers are useful. For example, if you have an action that will be performed multiple times in the future, but
at irregular time intervals, it would be very expensive to create, add to run loop modes, and then destroy a
timer for each firing event. Instead, you can create a repeating timer with an initial firing time in the distant
future (or the initial firing time) and a very large repeat interval—on the order of decades or more—and add
it to all the necessary run loop modes. Then, when you know when the timer should fire next, you reset the
firing time with CFRunLoopTimerSetNextFireDate, perhaps from the timer’s own callback function. This
technique effectively produces a reusable, asynchronous timer.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Worm

484 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

CFRunLoopTimer Reference

Declared In
CFRunLoop.h

Callbacks

CFRunLoopTimerCallBack
Callback invoked when a CFRunLoopTimer object fires.

typedef void (*CFRunLoopTimerCallBack) (
 CFRunLoopTimerRef timer,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFRunLoopTimerRef timer,
 void *info
);

Parameters
timer

The run loop timer that is firing.

info
The infomember of the CFRunLoopTimerContext (page 485) structure that was used when creating
the run loop timer.

Discussion
If timer repeats, the run loop automatically schedules the next firing time after calling this function, unless
you manually update the firing time within this callback by calling CFRunLoopTimerSetNextFireDate (page
484). If timer does not repeat, the run loop invalidates timer.

You specify this callback when you create the timer with CFRunLoopTimerCreate (page 479).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

Data Types

CFRunLoopTimerContext
A structure that contains program-defined data and callbacks with which you can configure a
CFRunLoopTimer’s behavior.

Callbacks 485
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

CFRunLoopTimer Reference

struct CFRunLoopTimerContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct CFRunLoopTimerContext CFRunLoopTimerContext;

Fields
version

Version number of the structure. Must be 0.

info
An arbitrary pointer to program-defined data, which can be associated with the run loop timer at
creation time. This pointer is passed to all the callbacks defined in the context.

retain
A retain callback for your program-defined info pointer. Can be NULL.

release
A release callback for your program-defined info pointer. Can be NULL.

copyDescription
A copy description callback for your program-defined info pointer. Can be NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

CFRunLoopTimerRef
A reference to a run loop timer object.

typedef struct __CFRunLoopTimer *CFRunLoopTimerRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFRunLoop.h

486 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

CFRunLoopTimer Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFSet.h

Companion guide Collections Programming Topics for Core Foundation

Overview

CFSet and its derived mutable type, CFMutableSet, provide support for the mathematical concept of a set.
A set, both in its mathematical sense and in the implementation of CFSet, is an unordered collection of
distinct elements. CFSet creates static sets and CFMutableSet creates dynamic sets.

Use bags or sets as an alternative to arrays when the order of elements isn't important and performance in
testing whether a value is contained in the collection is a consideration—while arrays are ordered, testing
for membership is slower than with bags or sets. Use bags over sets if you want to allow duplicate values in
your collections.

You create a static set object using either the CFSetCreate (page 490) or CFSetCreateCopy (page 491)
function. These functions return a set containing the values you pass in as arguments. (Note that sets can't
contain NULL pointers; in most cases, though, you can use the kCFNull constant instead.) Values are not
copied but retained using the retain callback provided when the set was created. Similarly, when a value is
removed from a set, it is released using the release callback.

CFSet provides functions for querying the values of a set. The CFSetGetCount (page 491) returns the number
of values in a set, the CFSetContainsValue (page 489) function checks if a value is in a set, and
CFSetGetValues (page 494) returns a C array containing all the values in a set.

CFSet is “toll-free bridged” with its Cocoa Foundation counterpart, NSSet. This means that the Core Foundation
type is interchangeable in function or method calls with the bridged Foundation object. Therefore, in a
method where you see an NSSet * parameter, you can pass in a CFSetRef, and in a function where you
see a CFSetRef parameter, you can pass in an NSSet instance. This also applies to concrete subclasses of
NSSet. See Interchangeable Data Types for more information on toll-free bridging.

Overview 487
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

Functions by Task

Creating Sets

CFSetCreate (page 490)
Creates an immutable CFSet object containing supplied values.

CFSetCreateCopy (page 491)
Creates an immutable set containing the values of an existing set.

Examining a Set

CFSetContainsValue (page 489)
Returns a Boolean that indicates whether a set contains a given value.

CFSetGetCount (page 491)
Returns the number of values currently in a set.

CFSetGetCountOfValue (page 492)
Returns the number of values in a set that match a given value.

CFSetGetValue (page 493)
Obtains a specified value from a set.

CFSetGetValueIfPresent (page 493)
Reports whether or not a value is in a set, and if it exists returns the value indirectly.

CFSetGetValues (page 494)
Obtains all values in a set.

Applying a Function to Set Members

CFSetApplyFunction (page 488)
Calls a function once for each value in a set.

Getting the CFSet Type ID

CFSetGetTypeID (page 492)
Returns the type identifier for the CFSet type.

Functions

CFSetApplyFunction
Calls a function once for each value in a set.

488 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

void CFSetApplyFunction (
 CFSetRef theSet,
 CFSetApplierFunction applier,
 void *context
);

Parameters
theSet

The set to operate upon.

applier
The callback function to call once for each value in the theSet. If this parameter is not a pointer to
a function of the correct prototype, the behavior is undefined. The applier function must be able
to work with all values in theSet.

context
A pointer-sized program-defined value, which is passed as the second parameter to the applier
function, but is otherwise unused by this function.

Discussion
If theSet is mutable, it is unsafe for the applier function to change the contents of the collection.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer
HID Calibrator
HID Config Save
HID Explorer

Declared In
CFSet.h

CFSetContainsValue
Returns a Boolean that indicates whether a set contains a given value.

Boolean CFSetContainsValue (
 CFSetRef theSet,
 const void *value
);

Parameters
theSet

The set to search.

value
The value to match in theSet. Comparisons are made using the equal callback provided when theSet
was created. If the equal callback was NULL, pointer equality (in C, ==) is used.

Return Value
true if value is contained in theSet, otherwise false.

Functions 489
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

Discussion
This function uses the equal callback. value and all elements in the set must be understood by the equal
callback.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer

Declared In
CFSet.h

CFSetCreate
Creates an immutable CFSet object containing supplied values.

CFSetRef CFSetCreate (
 CFAllocatorRef allocator,
 const void **values,
 CFIndex numValues,
 const CFSetCallBacks *callBacks
);

Parameters
allocator

The allocator to use to to allocate memory for the new set and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

values
A C array of the pointer-sized values to be in the new set. This parameter may be NULL if the
numValues parameter is 0. The C array is not changed or freed by this function. values must be a
pointer to a C array of at least numValues elements.

numValues
The number of values to copy from the values C array in the new set.

callBacks
A pointer to a CFSetCallBacks (page 498) structure initialized with the callbacks to use to retain,
release, describe, and compare values in the collection. A copy of the contents of the callbacks structure
is made, so that a pointer to a structure on the stack can be passed in or can be reused for multiple
collection creations.

This value may be NULL, which is treated as a valid structure of version 0 with all fields NULL. If the
collection contains only CFType objects, then pass kCFTypeSetCallBacks (page 500) to use the
default callback functions.

Return Value
A new immutable set, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Discussion
If any value put into the collection is not one understood by one of the callback functions, the behavior when
that callback function is used is undefined.

Availability
Available in CarbonLib v1.0 and later.

490 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetCreateCopy
Creates an immutable set containing the values of an existing set.

CFSetRef CFSetCreateCopy (
 CFAllocatorRef allocator,
 CFSetRef theSet
);

Parameters
allocator

The allocator to use to allocate memory for the new set and its storage for values. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

theSet
The set to copy.

Return Value
A new set that contains the same values as theSet, or NULL if there was a problem creating the object.
Ownership follows the Create Rule.

Discussion
The pointer values from theSet are copied into the new set, and the values are retained by the new set. The
count of the new set is the same as the count of theSet. The new set uses the same callbacks as theSet.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetGetCount
Returns the number of values currently in a set.

CFIndex CFSetGetCount (
 CFSetRef theSet
);

Parameters
theSet

The set to examine.

Return Value
The number of values in theSet.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Functions 491
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

Related Sample Code
CFLocalServer

Declared In
CFSet.h

CFSetGetCountOfValue
Returns the number of values in a set that match a given value.

CFIndex CFSetGetCountOfValue (
 CFSetRef theSet,
 const void *value
);

Parameters
theSet

The set to examine.

value
The value for which to search in theSet. Comparisons are made using the equal callback provided
when theSet was created. If the equal callback was NULL, pointer equality (in C, ==) is used.

Return Value
The number of times value occurs in theSet. By definition, sets can not contain duplicate values, so returns
1 if value is contained in theSet, otherwise 0.

Discussion
This function uses the equal callback. value and all elements in the set must be understood by the equal
callback.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetGetTypeID
Returns the type identifier for the CFSet type.

CFTypeID CFSetGetTypeID (
 void
);

Return Value
The type identifier for the CFSet type.

Discussion
CFMutableSet has the same type identifier as CFSet.

Availability
Available in CarbonLib v1.0 and later.

492 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetGetValue
Obtains a specified value from a set.

const void * CFSetGetValue (
 CFSetRef theSet,
 const void *value
);

Parameters
theSet

The set to examine.

value
The value for which to search in theSet. Comparisons are made using the equal callback provided
when theSet was created. If the equal callback was NULL, pointer equality (in C, ==) is used.

Return Value
A pointer to the requested value, or NULL if the value is not in theSet. If the value is a Core Foundation
object, Ownership follows the Get Rule.

Discussion
Since this function uses the equal callback, value all elements in the set must be understood by the equal
callback. Depending on the implementation of the equal callback specified when creating theSet, the value
returned may not have the same pointer equality as value.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetGetValueIfPresent
Reports whether or not a value is in a set, and if it exists returns the value indirectly.

Boolean CFSetGetValueIfPresent (
 CFSetRef theSet,
 const void *candidate,
 const void **value
);

Parameters
theSet

The set to examine.

Functions 493
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

candidate
The value for which to search in theSet. Comparisons are made using the equal callback provided
when theSet was created. If the equal callback was NULL, pointer equality (in C, ==) is used.

value
Upon return contains the matching value if it exists in theSet, otherwise NULL. If the value is a Core
Foundation object, ownership follows the Get Rule.

Return Value
true if value exists in theSet, otherwise false.

Discussion
This function uses the equal callback. candidate and all elements in the set must be understood by the
equal callback. Depending on the implementation of the equal callback specified when creating theSet,
the value returned in value may not have the same pointer equality as candidate.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetGetValues
Obtains all values in a set.

void CFSetGetValues (
 CFSetRef theSet,
 const void **values
);

Parameters
theSet

The set to examine.

values
A C array of pointer-sized values to be filled with values from theSet. The value must be a valid C
array of the appropriate type and of a size at least equal to the count of theSet). If the values are
Core Foundation objects, ownership follows the Get Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer

Declared In
CFSet.h

494 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

Callbacks

CFSetApplierFunction
Prototype of a callback function that may be applied to every value in a set.

typedef void (*CFSetApplierFunction) (
 const void *value,
 void *context
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *value,
 void *context
);

Parameters
value

The current value in a set.

context
The program-defined context parameter given to the apply function.

Discussion
This callback is passed to the CFSetApplyFunction (page 488) function which iterates over the values in a
set and applies the behavior defined in the applier function to each value in a set.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetCopyDescriptionCallBack
Prototype of a callback function used to get a description of a value in a set.

typedef CFStringRef (*CFSetCopyDescriptionCallBack) (
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallBack (
 const void *value
);

Parameters
value

The value to be described.

Callbacks 495
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

Return Value
A textual description of value. The caller is responsible for releasing this object.

Discussion
This callback is passed to CFSetCreate (page 490) in a CFSetCallBacks (page 498) structure. This callback
is used by the CFCopyDescription (page 634) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetEqualCallBack
Prototype of a callback function used to determine if two values in a set are equal.

typedef Boolean (*CFSetEqualCallBack) (
 const void *value1,
 const void *value2
);

If you name your function MyCallBack, you would declare it like this:

Boolean MyCallBack (
 const void *value1,
 const void *value2
);

Parameters
value1

A value in the set.

value2
Another value in the set.

Return Value
true if value1 and value2 are equal, false otherwise.

Discussion
This callback is passed to CFSetCreate (page 490) in a CFSetCallBacks (page 498) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetHashCallBack
Prototype of a callback function called to compute a hash code for a value. Hash codes are used when values
are accessed, added, or removed from a collection.

496 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

typedef CFHashCode (*CFSetHashCallBack)
(
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

CFHashCode CFSetHashCallBack (
 const void *value
);

Parameters
value

The value used to compute the hash code.

Return Value
An integer that can be used as a table address in a hash table structure.

Discussion
This callback is passed to CFSetCreate (page 490) in a CFSetCallBacks (page 498) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetReleaseCallBack
Prototype of a callback function used to release a value before it’s removed from a set.

typedef void (*CFSetReleaseCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFAllocatorRef allocator,
 const void *value
);

Parameters
allocator

The set’s allocator.

value
The value being removed from the set.

Discussion
This callback is passed to CFSetCreate (page 490) in a CFSetCallBacks (page 498) structure.

Availability
Available in Mac OS X v10.0 and later.

Callbacks 497
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

Declared In
CFSet.h

CFSetRetainCallBack
Prototype of a callback function used to retain a value being added to a set.

typedef const void *(*CFSetRetainCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 CFAllocatorRef allocator,
 const void *value
);

Parameters
allocator

The set’s allocator.

value
The value being added to the set.

Return Value
The value to store in the set, which is usually the value parameter passed to this callback, but may be a
different value if a different value should be stored in the collection.

Discussion
This callback is passed to CFSetCreate (page 490) in a CFSetCallBacks (page 498) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

Data Types

CFSetCallBacks
This structure contains the callbacks used to retain, release, describe, and compare the values of a CFSet
object.

498 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

struct CFSetCallBacks {
 CFIndex version;
 CFSetRetainCallBack retain;
 CFSetReleaseCallBack release;
 CFSetCopyDescriptionCallBack copyDescription;
 CFSetEqualCallBack equal;
 CFSetHashCallBack hash;
};
typedef struct CFSetCallBacks CFSetCallBacks;

Fields
version

The version number of this structure. If not one of the defined version numbers for this opaque type,
the behavior is undefined. The current version of this structure is 0.

retain
The callback used to retain each value as they are added to the collection. If NULL, values are not
retained. See CFSetRetainCallBack (page 498) for a descriptions of this function’s parameters.

release
The callback used to release values as they are removed from the collection. If NULL, values are not
released. See CFSetReleaseCallBack (page 497) for a description of this callback.

copyDescription
The callback used to create a descriptive string representation of each value in the collection. If NULL,
the collection will create a simple description of each value. See
CFSetCopyDescriptionCallBack (page 495) for a description of this callback.

equal
The callback used to compare values in the collection for equality for some operations. If NULL, the
collection will use pointer equality to compare values in the collection. See
CFSetEqualCallBack (page 496) for a description of this callback.

hash
The callback used to compute a hash code for values in a collection. If NULL, the collection computes
a hash code by converting the pointer value to an integer. See CFSetHashCallBack (page 496) for
a description of this callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

CFSetRef
A reference to an immutable set object.

typedef const struct __CFSet *CFSetRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSet.h

Data Types 499
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

Constants

Predefined Callback Structures
CFSet provides some predefined callbacks for your convenience.

const CFSetCallBacks kCFTypeSetCallBacks;
const CFSetCallBacks kCFCopyStringSetCallBacks;

Constants
kCFTypeSetCallBacks

Predefined CFSetCallBacks (page 498) structure containing a set of callbacks appropriate for use
when the values in a CFSet are all CFType-derived objects. The retain callback is CFRetain (page 639),
the release callback is CFRelease (page 639), the copy callback is CFCopyDescription (page 634),
the equal callback is CFEqual (page 635), and the hash callback is CFHash (page 638). Therefore, if
you use this constant when creating the collection, items are automatically retained when added to
the collection, and released when removed from the collection.

Available in Mac OS X v10.0 and later.

Declared in CFSet.h.

kCFCopyStringSetCallBacks
Predefined CFSetCallBacks (page 498) structure containing a set of callbacks appropriate for use
when the values in a set are all CFString objects. The retain callback makes an immutable copy of
strings added to the set.

Available in Mac OS X v10.0 and later.

Declared in CFSet.h.

500 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

CFSet Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFSocket.h

Companion guides CFNetwork Programming Guide
Threading Programming Guide

Overview

A CFSocket is a communications channel implemented with a BSD socket.

CFSockets can be created from scratch (CFSocketCreate (page 504) and
CFSocketCreateWithSocketSignature (page 507)), from a pre-existing BSD socket
(CFSocketCreateWithNative (page 507)), or already connected to a remote socket
(CFSocketCreateConnectedToSocketSignature (page 505)).

To listen for messages, you need to create a run loop source with CFSocketCreateRunLoopSource (page
506) and add it to a run loop with CFRunLoopAddSource (page 445). You can select the types of socket
activities, such as connection attempts or data arrivals, that cause the source to fire and invoke your CFSocket’s
callback function. To send data, you store the data in a CFData and call CFSocketSendData (page 512).

Unlike Mach and message ports, sockets support communication over a network.

Functions by Task

Creating Sockets

CFSocketCreate (page 504)
Creates a CFSocket object of a specified protocol and type.

CFSocketCreateConnectedToSocketSignature (page 505)
Creates a CFSocket object and opens a connection to a remote socket.

CFSocketCreateWithNative (page 507)
Creates a CFSocket object for a pre-existing native socket.

CFSocketCreateWithSocketSignature (page 507)
Creates a CFSocket object using information from a CFSocketSignature structure.

Overview 501
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

Configuring Sockets

CFSocketCopyAddress (page 503)
Returns the local address of a CFSocket object.

CFSocketCopyPeerAddress (page 503)
Returns the remote address to which a CFSocket object is connected.

CFSocketDisableCallBacks (page 508)
Disables the callback function of a CFSocket object for certain types of socket activity.

CFSocketEnableCallBacks (page 509)
Enables the callback function of a CFSocket object for certain types of socket activity.

CFSocketGetContext (page 509)
Returns the context information for a CFSocket object.

CFSocketGetNative (page 510)
Returns the native socket associated with a CFSocket object.

CFSocketGetSocketFlags (page 510)
Returns flags that control certain behaviors of a CFSocket object.

CFSocketSetAddress (page 513)
Binds a local address to a CFSocket object.

CFSocketSetSocketFlags (page 514)
Sets flags that control certain behaviors of a CFSocket object.

Using Sockets

CFSocketConnectToAddress (page 502)
Opens a connection to a remote socket.

CFSocketCreateRunLoopSource (page 506)
Creates a CFRunLoopSource object for a CFSocket object.

CFSocketGetTypeID (page 511)
Returns the type identifier for the CFSocket opaque type.

CFSocketInvalidate (page 511)
Invalidates a CFSocket object, stopping it from sending or receiving any more messages.

CFSocketIsValid (page 512)
Returns a Boolean value that indicates whether a CFSocket object is valid and able to send or receive
messages.

CFSocketSendData (page 512)
Sends data over a CFSocket object.

Functions

CFSocketConnectToAddress
Opens a connection to a remote socket.

502 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

CFSocketError CFSocketConnectToAddress (
 CFSocketRef s,
 CFDataRef address,
 CFTimeInterval timeout
);

Parameters
s

The CFSocket object with which to connect to address.

address
A CFData object containing a struct sockaddr appropriate for the protocol family of s, indicating
the remote address to which to connect.

timeout
The time to wait for a connection to succeed. If a negative value is used, this function does not wait
for the connection and instead lets the connection attempt happen in the background. If s requested
a kCFSocketConnectCallBack, you will receive a callback when the background connection
succeeds or fails.

Return Value
An error code indicating success or failure of the connection attempt.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketCopyAddress
Returns the local address of a CFSocket object.

CFDataRef CFSocketCopyAddress (
 CFSocketRef s
);

Parameters
s

The CFSocket object to examine.

Return Value
The local address, stored as a struct sockaddr in a CFData object, of s. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketCopyPeerAddress
Returns the remote address to which a CFSocket object is connected.

Functions 503
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

CFDataRef CFSocketCopyPeerAddress (
 CFSocketRef s
);

Parameters
s

The CFSocket object to examine.

Return Value
The remote address, stored as a struct sockaddr in a CFData object, to which s is connected. Ownership
follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketCreate
Creates a CFSocket object of a specified protocol and type.

CFSocketRef CFSocketCreate (
 CFAllocatorRef allocator,
 SInt32 protocolFamily,
 SInt32 socketType,
 SInt32 protocol,
 CFOptionFlags callBackTypes,
 CFSocketCallBack callout,
 const CFSocketContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

protocolFamily
The protocol family for the socket. If negative or 0 is passed, the socket defaults to PF_INET.

socketType
The socket type to create. If protocolFamily is PF_INET and socketType is negative or 0, the
socket type defaults to SOCK_STREAM.

protocol
The protocol for the socket. If protocolFamily is PF_INET and protocol is negative or 0, the
socket protocol defaults to IPPROTO_TCP if socketType is SOCK_STREAM or IPPROTO_UDP if
socketType is SOCK_DGRAM.

callBackTypes
A bitwise-OR combination of the types of socket activity that should cause callout to be called. See
Callback Types (page 517) for the possible activity values.

callout
The function to call when one of the activities indicated by callBackTypes occurs.

504 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

context
A structure holding contextual information for the CFSocket object. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call. Can be NULL.

Return Value
The new CFSocket object, or NULL if an error occurred. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaEcho
CocoaHTTPServer
CocoaSOAP

Declared In
CFSocket.h

CFSocketCreateConnectedToSocketSignature
Creates a CFSocket object and opens a connection to a remote socket.

CFSocketRef CFSocketCreateConnectedToSocketSignature (
 CFAllocatorRef allocator,
 const CFSocketSignature *signature,
 CFOptionFlags callBackTypes,
 CFSocketCallBack callout,
 const CFSocketContext *context,
 CFTimeInterval timeout
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

signature
A CFSocketSignature (page 517) identifying the communication protocol and address to which
the CFSocket object should connect.

callBackTypes
A bitwise-OR combination of the types of socket activity that should cause callout to be called. See
Callback Types (page 517) for the possible activity values.

callout
The function to call when one of the activities indicated by callBackTypes occurs.

context
A structure holding contextual information for the CFSocket object. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call. Can be NULL.

Functions 505
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

timeout
The time to wait for a connection to succeed. If a negative value is used, this function does not wait
for the connection and instead lets the connection attempt happen in the background. If
callBackTypes includes kCFSocketConnectCallBack, you will receive a callback when the
background connection succeeds or fails.

Return Value
The new CFSocket object, or NULL if an error occurred. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketCreateRunLoopSource
Creates a CFRunLoopSource object for a CFSocket object.

CFRunLoopSourceRef CFSocketCreateRunLoopSource (
 CFAllocatorRef allocator,
 CFSocketRef s,
 CFIndex order
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

s
The CFSocket object for which to create a run loop source.

order
A priority index indicating the order in which run loop sources are processed. When multiple run loop
sources are firing in a single pass through the run loop, the sources are processed in increasing order
of this parameter. If the run loop is set to process only one source per loop, only the highest priority
source, the one with the lowest order value, is processed.

Return Value
The new CFRunLoopSource object for s. Ownership follows the Create Rule.

Discussion
The run loop source is not automatically added to a run loop. To add the source to a run loop, use
CFRunLoopAddSource (page 445).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer
CocoaEcho
CocoaHTTPServer
CocoaSOAP
DNSServiceMetaQuery

506 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

Declared In
CFSocket.h

CFSocketCreateWithNative
Creates a CFSocket object for a pre-existing native socket.

CFSocketRef CFSocketCreateWithNative (
 CFAllocatorRef allocator,
 CFSocketNativeHandle sock,
 CFOptionFlags callBackTypes,
 CFSocketCallBack callout,
 const CFSocketContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

sock
The native socket for which to create a CFSocket object.

callBackTypes
A bitwise-OR combination of the types of socket activity that should cause callout to be called. See
Callback Types (page 517) for the possible activity values.

callout
The function to call when one of the activities indicated by callBackTypes occurs.

context
A structure holding contextual information for the CFSocket object. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call. Can be NULL.

Return Value
The new CFSocket object, or NULL if an error occurred. If a CFSocket object already exists for sock, the
function returns the pre-existing object instead of creating a new object; the context, callout, and
callBackTypes parameters are ignored in this case. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer
DNSServiceMetaQuery

Declared In
CFSocket.h

CFSocketCreateWithSocketSignature
Creates a CFSocket object using information from a CFSocketSignature structure.

Functions 507
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

CFSocketRef CFSocketCreateWithSocketSignature (
 CFAllocatorRef allocator,
 const CFSocketSignature *signature,
 CFOptionFlags callBackTypes,
 CFSocketCallBack callout,
 const CFSocketContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

signature
A CFSocketSignature (page 517) identifying the communication protocol and address with which
to create the CFSocket object.

callBackTypes
A bitwise-OR combination of the types of socket activity that should cause callout to be called. See
Callback Types (page 517) for the possible activity values.

callout
The function to call when one of the activities indicated by callBackTypes occurs.

context
A structure holding contextual information for the CFSocket object. The function copies the information
out of the structure, so the memory pointed to by context does not need to persist beyond the
function call. Can be NULL.

Return Value
The new CFSocket object, or NULL if an error occurred. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketDisableCallBacks
Disables the callback function of a CFSocket object for certain types of socket activity.

void CFSocketDisableCallBacks (
 CFSocketRef s,
 CFOptionFlags callBackTypes
);

Parameters
s

The CFSocket object to modify.

callBackTypes
A bitwise-OR combination of CFSocket activity types that should not cause the callback function of
s to be called. See Callback Types (page 517) for a list of callback types.

Discussion
If you no longer want certain types of callbacks that you requested when creating s, you can use this function
to temporarily disable the callback. Use CFSocketEnableCallBacks (page 509) to reenable a callback type.

508 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFSocket.h

CFSocketEnableCallBacks
Enables the callback function of a CFSocket object for certain types of socket activity.

void CFSocketEnableCallBacks (
 CFSocketRef s,
 CFOptionFlags callBackTypes
);

Parameters
s

The CFSocket object to modify.

callBackTypes
A bitwise-OR combination of CFSocket activity types that should cause the callback function of s to
be called. See Callback Types (page 517) for a list of callback types.

Discussion
If a callback type is not automatically reenabled, you can use this function to enable the callback. A callback
type that is not automatically reenabled still does not get reenabled after enabling it with this function; use
CFSocketSetSocketFlags (page 514) to have the callback type reenabled automatically.

Be sure to enable only callback types that your CFSocket object actually possesses and has requested when
creating the CFSocket object; the result of enabling other callback types is undefined.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CFLocalServer

Declared In
CFSocket.h

CFSocketGetContext
Returns the context information for a CFSocket object.

void CFSocketGetContext (
 CFSocketRef s,
 CFSocketContext *context
);

Parameters
s

The CFSocket object to examine.

Functions 509
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

context
A pointer to the structure into which the context information for s is to be copied. The information
being returned is usually the same information you passed to CFSocketCreate (page 504),
CFSocketCreateConnectedToSocketSignature (page 505),CFSocketCreateWithNative (page
507), or CFSocketCreateWithSocketSignature (page 507) when creating the CFSocket object.
However, if CFSocketCreateWithNative (page 507) returned a cached CFSocket object instead of
creating a new object, context is filled with information from the original CFSocket object instead
of the information you passed to the function.

Discussion
The context version number for CFSocket is currently 0. Before calling this function, you need to initialize
the version member of context to 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketGetNative
Returns the native socket associated with a CFSocket object.

CFSocketNativeHandle CFSocketGetNative (
 CFSocketRef s
);

Parameters
s

The CFSocket object to examine.

Return Value
The native socket associated with s. If s has been invalidated, returns -1, INVALID_SOCKET.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer
CocoaEcho
CocoaHTTPServer
CocoaSOAP

Declared In
CFSocket.h

CFSocketGetSocketFlags
Returns flags that control certain behaviors of a CFSocket object.

510 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

CFOptionFlags CFSocketGetSocketFlags (
 CFSocketRef s
);

Parameters
s

The CFSocket to examine.

Return Value
A bitwise-OR combination of flags controlling the behavior of s. See CFSocket Flags (page 519) for the list of
available flags.

Discussion
See CFSocketSetSocketFlags (page 514) for details on what the flags of a CFSocket mean.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
DNSServiceMetaQuery

Declared In
CFSocket.h

CFSocketGetTypeID
Returns the type identifier for the CFSocket opaque type.

CFTypeID CFSocketGetTypeID ();

Return Value
The type identifier for the CFSocket opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketInvalidate
Invalidates a CFSocket object, stopping it from sending or receiving any more messages.

void CFSocketInvalidate (
 CFSocketRef s
);

Parameters
s

The CFSocket object to invalidate.

Functions 511
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

Discussion
Invalidating a CFSocket object prevents the port from ever sending or receiving any more messages. The
CFSocket object is not deallocated, though. The CFSocketContext (page 516) info information, which was
provided when s was created, is released, if a release callback was specified in its context structure. Also, if
a run loop source was created for s, the run loop source is invalidated, as well.

You should always invalidate a socket when you are done using it. If you have requested, using
CFSocketSetSocketFlags (page 514), that the underlying socket not automatically close when invalidating
the wrapping CFSocket object, you must invalidate the CFSocket object before closing the socket yourself.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFLocalServer
CocoaEcho
CocoaHTTPServer
CocoaSOAP
DNSServiceMetaQuery

Declared In
CFSocket.h

CFSocketIsValid
Returns a Boolean value that indicates whether a CFSocket object is valid and able to send or receive messages.

Boolean CFSocketIsValid (
 CFSocketRef s
);

Parameters
s

The CFSocket object to examine.

Return Value
true if s can be used for communication, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketSendData
Sends data over a CFSocket object.

512 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

CFSocketError CFSocketSendData (
 CFSocketRef s,
 CFDataRef address,
 CFDataRef data,
 CFTimeInterval timeout
);

Parameters
s

The CFSocket object to use.

address
The address, stored as a struct sockaddr in a CFData object, to which to send the contents of
data. If NULL, the data are sent to the address to which s is already connected.

data
The data to send.

timeout
The time to wait for the data to be sent.

Return Value
An error code indicating success or failure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketSetAddress
Binds a local address to a CFSocket object.

CFSocketError CFSocketSetAddress (
 CFSocketRef s,
 CFDataRef address
);

Parameters
s

The CFSocket object to modify.

address
A CFData object containing a struct sockaddr appropriate for the protocol family of s.

Return Value
An error code indicating success or failure.

Discussion
Once s is bound to address, depending on the socket’s protocol, other processes and computers can connect
to s.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaEcho

Functions 513
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

CocoaHTTPServer
CocoaSOAP

Declared In
CFSocket.h

CFSocketSetSocketFlags
Sets flags that control certain behaviors of a CFSocket object.

void CFSocketSetSocketFlags (
 CFSocketRef s,
 CFOptionFlags flags
);

Parameters
s

The CFSocket object to modify.

flags
A bitwise-OR combination of flags controlling the behavior of s. See CFSocket Flags (page 519) for
the list of available flags.

Discussion
The flags argument controls whether callbacks of a given type are automatically reenabled after they are
triggered, and whether the underlying native socket is closed when s is invalidated.

By default kCFSocketReadCallBack, kCFSocketAcceptCallBack, and kCFSocketDataCallBack
callbacks are automatically reenabled, whereas kCFSocketWriteCallBack callbacks are not;
kCFSocketConnectCallBack callbacks can only occur once, so they cannot be reenabled. Be careful about
automatically re-enabling read and write callbacks, because this implies that the callbacks will be sent
repeatedly if the socket remains readable or writable respectively. Be sure to set these flags only for callback
types that your CFSocket object actually possesses; the result of setting them for other callback types is
undefined.

By default the underlying native socket will be closed when s is invalidated, but it will not be if the
kCFSocketCloseOnInvalidate flag is turned off. This can be useful when you want to destroy a CFSocket
object but continue to use the underlying native socket. The CFSocket object must still be invalidated when
it will no longer be used. Do not in either case close the underlying native socket without invalidating the
CFSocket object.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
DNSServiceMetaQuery

Declared In
CFSocket.h

514 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

Callbacks

CFSocketCallBack
Callback invoked when certain types of activity takes place on a CFSocket object.

typedef void (*CFSocketCallBack) (
 CFSocketRef s,
 CFSocketCallBackType callbackType,
 CFDataRef address,
 const void *data,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFSocketRef s,
 CFSocketCallBackType callbackType,
 CFDataRef address,
 const void *data,
 void *info
);

Parameters
s

The CFSocket object that experienced some activity.

callbackType
The type of activity detected.

address
A CFData object holding the contents of a struct sockaddr appropriate for the protocol family of
s, identifying the remote address to which s is connected. This value is NULL except for
kCFSocketAcceptCallBack and kCFSocketDataCallBack callbacks.

data
Data appropriate for the callback type. For a kCFSocketConnectCallBack that failed in the
background, it is a pointer to an SInt32 error code; for a kCFSocketAcceptCallback, it is a pointer
to a CFSocketNativeHandle (page 516); or for a kCFSocketDataCallBack, it is a CFData object
containing the incoming data. In all other cases, it is NULL.

info
The info member of the CFSocketContext (page 516) structure that was used when creating the
CFSocket object.

Discussion
You specify this callback when you create the CFSocket object with CFSocketCreate (page 504),
CFSocketCreateConnectedToSocketSignature (page 505), CFSocketCreateWithNative (page 507),
or CFSocketCreateWithSocketSignature (page 507).

Availability
Available in Mac OS X v10.0 and later.

Callbacks 515
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

Declared In
CFSocket.h

Data Types

CFSocketContext
A structure that contains program-defined data and callbacks with which you can configure a CFSocket
object’s behavior.

struct CFSocketContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct CFSocketContext CFSocketContext;

Fields
version

Version number of the structure. Must be 0.

info
An arbitrary pointer to program-defined data, which can be associated with the CFSocket object at
creation time. This pointer is passed to all the callbacks defined in the context.

retain
A retain callback for your program-defined info pointer. Can be NULL.

release
A release callback for your program-defined info pointer. Can be NULL.

copyDescription
A copy description callback for your program-defined info pointer. Can be NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketNativeHandle
Type for the platform-specific native socket handle.

typedef int CFSocketNativeHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

516 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

CFSocketRef
A reference to a CFSocket object.

typedef struct __CFSocket *CFSocketRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketSignature
A structure that fully specifies the communication protocol and connection address of a CFSocket object.

struct CFSocketSignature {
 SInt32 protocolFamily;
 SInt32 socketType;
 SInt32 protocol;
 CFDataRef address;
};
typedef struct CFSocketSignature CFSocketSignature;

Fields
protocolFamily

The protocol family of the socket.

socketType
The socket type of the socket.

protocol
The protocol type of the socket.

address
A CFData object holding the contents of a struct sockaddr appropriate for the given protocol
family, identifying the address of the socket.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

Constants

Callback Types
Types of socket activity that can cause the callback function of a CFSocket object to be called.

Constants 517
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

enum CFSocketCallBackType {
 kCFSocketNoCallBack = 0,
 kCFSocketReadCallBack = 1,
 kCFSocketAcceptCallBack = 2,
 kCFSocketDataCallBack = 3,
 kCFSocketConnectCallBack = 4,
 kCFSocketWriteCallBack = 8
};
typedef enum CFSocketCallBackType CFSocketCallBackType;

Constants
kCFSocketNoCallBack

No callback should be made for any activity.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketReadCallBack
The callback is called when data is available to be read or a new connection is waiting to be accepted.
The data is not automatically read; the callback must read the data itself.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketAcceptCallBack
New connections will be automatically accepted and the callback is called with the data argument
being a pointer to a CFSocketNativeHandle (page 516) of the child socket. This callback is usable
only with listening sockets.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketDataCallBack
Incoming data will be read in chunks in the background and the callback is called with the data
argument being a CFData object containing the read data.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketConnectCallBack
If a connection attempt is made in the background by calling CFSocketConnectToAddress (page
502) or CFSocketCreateConnectedToSocketSignature (page 505) with a negative timeout value,
this callback type is made when the connect finishes. In this case the data argument is either NULL
or a pointer to an SInt32 error code, if the connect failed. This callback will never be sent more than
once for a given socket.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketWriteCallBack
The callback is called when the socket is writable. This callback type may be useful when large amounts
of data are being sent rapidly over the socket and you want a notification when there is space in the
kernel buffers for more data.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

518 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

Discussion
The callback types for which a callback is made is determined when the CFSocket object is created, such as
with CFSocketCreate (page 504), or later with CFSocketEnableCallBacks (page 509) and
CFSocketDisableCallBacks (page 508).

The kCFSocketReadCallBack, kCFSocketAcceptCallBack, and kCFSocketDataCallBack callbacks
are mutually exclusive.

Version Notes
kCFSocketWriteCallBack is available in Mac OS X v10.2 and later.

CFSocket Flags
Flags that can be set on a CFSocket object to control its behavior.

enum {
 kCFSocketAutomaticallyReenableReadCallBack = 1,
 kCFSocketAutomaticallyReenableAcceptCallBack = 2,
 kCFSocketAutomaticallyReenableDataCallBack = 3,
 kCFSocketAutomaticallyReenableWriteCallBack = 8,
 kCFSocketCloseOnInvalidate = 128
};

Constants
kCFSocketAutomaticallyReenableReadCallBack

When enabled using CFSocketSetSocketFlags (page 514), the read callback is called every time
the sockets has data to be read. When disabled, the read callback is called only once the next time
data are available. The read callback is automatically reenabled by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

kCFSocketAutomaticallyReenableAcceptCallBack
When enabled using CFSocketSetSocketFlags (page 514), the accept callback is called every time
someone connects to your socket. When disabled, the accept callback is called only once the next
time a new socket connection is accepted. The accept callback is automatically reenabled by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

kCFSocketAutomaticallyReenableDataCallBack
When enabled using CFSocketSetSocketFlags (page 514), the data callback is called every time
the socket has read some data. When disabled, the data callback is called only once the next time
data are read. The data callback is automatically reenabled by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

kCFSocketAutomaticallyReenableWriteCallBack
When enabled using CFSocketSetSocketFlags (page 514), the write callback is called every time
more data can be written to the socket. When disabled, the write callback is called only the next time
data can be written. The write callback is not automatically reenabled by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

Constants 519
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

kCFSocketCloseOnInvalidate
When enabled using CFSocketSetSocketFlags (page 514), the native socket associated with a
CFSocket object is closed when the CFSocket object is invalidated. When disabled, the native socket
remains open. This option is enabled by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocket.h.

Discussion
The flags for a CFSocket object are set with CFSocketSetSocketFlags (page 514). To immediately enable
or disable a callback, use CFSocketEnableCallBacks (page 509) and CFSocketDisableCallBacks (page
508).

Error Codes
Error codes for many CFSocket functions.

enum CFSocketError {
 kCFSocketSuccess = 0,
 kCFSocketError = -1,
 kCFSocketTimeout = -2
};
typedef enum CFSocketError CFSocketError;

Constants
kCFSocketSuccess

The socket operation succeeded.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketError
The socket operation failed.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketTimeout
The socket operation timed out.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

520 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

CFSocket Reference

Derived From: CFPropertyList : CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFString.h
CFBase.h

Companion guides Property List Programming Topics for Core Foundation
Strings Programming Guide for Core Foundation
Data Formatting Guide for Core Foundation

Overview

CFString provides a suite of efficient string-manipulation and string-conversion functions. It offers seamless
Unicode support and facilitates the sharing of data between Carbon and Cocoa programs. CFString is relevant
for any Carbon application that uses strings. If your application supports (or is planning to support) Unicode,
CFString is recommended. CFString creates immutable strings—use CFMutableString to create and manage
a string that can be changed after it has been created.

CFString has two primitive functions, CFStringGetLength (page 561) and
CFStringGetCharacterAtIndex (page 554), that provide the basis for all other functions in its interface.
The CFStringGetLength function returns the total number (in terms of UTF-16 code pairs) of characters
in the string. The CFStringGetCharacterAtIndex function gives access to each character in the string
by index, with index values starting at 0.

CFString provides functions for finding and comparing strings. It also provides functions for reading numeric
values from strings, for combining strings in various ways, and for converting a string to different forms (such
as encoding and case changes). A number of functions, for example CFStringFindWithOptions, allow
you to specify a range over which to operate within a string. The specified range must not exceed the length
of the string. Debugging options may help you to catch any errors that arise if a range does exceed a string’s
length.

Like other Core Foundation types, CFStrings can be hashed using the CFHash (page 638) function. Note,
though, that hash values are not guaranteed to remain equal between releases of the operating system. In
particular, hash values are different between Mac OS X v10.3 and v10.4. If you need to make a hash value
persistent and consistent across different releases, you should use an alternate technique, such as SHA-1.

CFString is “toll-free bridged” with its Cocoa Foundation counterpart, NSString. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. Therefore,
in a method where you see an NSString * parameter, you can pass in a CFStringRef, and in a function
where you see a CFStringRef parameter, you can pass in an NSString instance. This also applies to concrete
subclasses of NSString. See Interchangeable Data Types for more information on toll-free bridging.

Overview 521
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Functions by Task

Creating a CFString

CFSTR (page 527)
Creates an immutable string from a constant compile-time string.

CFStringCreateArrayBySeparatingStrings (page 533)
Creates an array of CFString objects from a single CFString object.

CFStringCreateByCombiningStrings (page 535)
Creates a single string from the individual CFString objects that comprise the elements of an array.

CFStringCreateCopy (page 535)
Creates an immutable copy of a string.

CFStringCreateFromExternalRepresentation (page 537)
Creates a string from its “external representation.”

CFStringCreateWithBytes (page 538)
Creates a string from a buffer containing characters in a specified encoding.

CFStringCreateWithBytesNoCopy (page 539)
Creates a string from a buffer, containing characters in a specified encoding, that might serve as the
backing store for the new string.

CFStringCreateWithCharacters (page 540)
Creates a string from a buffer of Unicode characters.

CFStringCreateWithCharactersNoCopy (page 541)
Creates a string from a buffer of Unicode characters that might serve as the backing store for the
object.

CFStringCreateWithCString (page 542)
Creates an immutable string from a C string.

CFStringCreateWithCStringNoCopy (page 543)
Creates a CFString object from an external C string buffer that might serve as the backing store for
the object.

CFStringCreateWithFormat (page 545)
Creates an immutable string from a formatted string and a variable number of arguments.

CFStringCreateWithFormatAndArguments (page 546)
Creates an immutable string from a formatted string and a variable number of arguments (specified
in a parameter of type va_list).

CFStringCreateWithPascalString (page 546)
Creates an immutable CFString object from a Pascal string.

CFStringCreateWithPascalStringNoCopy (page 547)
Creates a CFString object from an external Pascal string buffer that might serve as the backing store
for the object.

CFStringCreateWithSubstring (page 548)
Creates an immutable string from a segment (substring) of an existing string.

522 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Searching Strings

CFStringCreateArrayWithFindResults (page 534)
Searches a string for multiple occurrences of a substring and creates an array of ranges identifying
the locations of these substrings within the target string.

CFStringFind (page 549)
Searches for a substring within a string and, if it is found, yields the range of the substring within the
object's characters.

CFStringFindCharacterFromSet (page 550)
Query the range of the first character contained in the specified character set.

CFStringFindWithOptions (page 551)
Searches for a substring within a range of the characters represented by a string and, if the substring
is found, returns its range within the object's characters.

CFStringFindWithOptionsAndLocale (page 552)
Returns a Boolean value that indicates whether a given string was found in a given source string.

CFStringGetLineBounds (page 561)
Given a range of characters in a string, obtains the line bounds—that is, the indexes of the first
character and the final characters of the lines containing the range.

Comparing Strings

CFStringCompare (page 527)
Compares one string with another string.

CFStringCompareWithOptions (page 528)
Compares a range of the characters in one string with that of another string.

CFStringCompareWithOptionsAndLocale (page 529)
Compares a range of the characters in one string with another string using a given locale.

CFStringHasPrefix (page 570)
Determines if the character data of a string begin with a specified sequence of characters.

CFStringHasSuffix (page 570)
Determines if a string ends with a specified sequence of characters.

Accessing Characters

CFStringCreateExternalRepresentation (page 536)
Creates an “external representation” of a CFString object, that is, a CFData object.

CFStringGetBytes (page 553)
Fetches a range of the characters from a string into a byte buffer after converting the characters to
a specified encoding.

CFStringGetCharacterAtIndex (page 554)
Returns the Unicode character at a specified location in a string.

CFStringGetCharacters (page 556)
Copies a range of the Unicode characters from a string to a user-provided buffer.

Functions by Task 523
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFStringGetCharactersPtr (page 556)
Quickly obtains a pointer to the contents of a string as a buffer of Unicode characters.

CFStringGetCharacterFromInlineBuffer (page 555)
Returns the Unicode character at a specific location in an in-line buffer.

CFStringGetCString (page 557)
Copies the character contents of a string to a local C string buffer after converting the characters to
a given encoding.

CFStringGetCStringPtr (page 558)
Quickly obtains a pointer to a C-string buffer containing the characters of a string in a given encoding.

CFStringGetLength (page 561)
Returns the number (in terms of UTF-16 code pairs) of Unicode characters in a string.

CFStringGetPascalString (page 566)
Copies the character contents of a CFString object to a local Pascal string buffer after converting the
characters to a requested encoding.

CFStringGetPascalStringPtr (page 567)
Quickly obtains a pointer to a Pascal buffer containing the characters of a string in a given encoding.

CFStringGetRangeOfComposedCharactersAtIndex (page 567)
Returns the range of the composed character sequence at a specified index.

CFStringInitInlineBuffer (page 571)
Initializes an in-line buffer to use for efficient access of a CFString object's characters.

Working With Encodings

CFStringConvertEncodingToIANACharSetName (page 530)
Returns the name of the IANA registry “charset” that is the closest mapping to a specified string
encoding.

CFStringConvertEncodingToNSStringEncoding (page 530)
Returns the Cocoa encoding constant that maps most closely to a given Core Foundation encoding
constant.

CFStringConvertEncodingToWindowsCodepage (page 531)
Returns the Windows codepage identifier that maps most closely to a given Core Foundation encoding
constant.

CFStringConvertIANACharSetNameToEncoding (page 531)
Returns the Core Foundation encoding constant that is the closest mapping to a given IANA registry
“charset” name.

CFStringConvertNSStringEncodingToEncoding (page 532)
Returns the Core Foundation encoding constant that is the closest mapping to a given Cocoa encoding.

CFStringConvertWindowsCodepageToEncoding (page 532)
Returns the Core Foundation encoding constant that is the closest mapping to a given Windows
codepage identifier.

CFStringGetFastestEncoding (page 559)
Returns for a CFString object the character encoding that requires the least conversion time.

CFStringGetListOfAvailableEncodings (page 562)
Returns a pointer to a list of string encodings supported by the current system.

524 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFStringGetMaximumSizeForEncoding (page 563)
Returns the maximum number of bytes a string of a specified length (in Unicode characters) will take
up if encoded in a specified encoding.

CFStringGetMostCompatibleMacStringEncoding (page 564)
Returns the most compatible Mac OS script value for the given input encoding.

CFStringGetNameOfEncoding (page 564)
Returns the canonical name of a specified string encoding.

CFStringGetSmallestEncoding (page 568)
Returns the smallest encoding on the current system for the character contents of a string.

CFStringGetSystemEncoding (page 568)
Returns the default encoding used by the operating system when it creates strings.

CFStringIsEncodingAvailable (page 571)
Determines whether a given Core Foundation string encoding is available on the current system.

Getting Numeric Values

CFStringGetDoubleValue (page 559)
Returns the primary double value represented by a string.

CFStringGetIntValue (page 560)
Returns the integer value represented by a string.

Getting String Properties

CFShowStr (page 526)
Prints the attributes of a string during debugging.

CFStringGetTypeID (page 569)
Returns the type identifier for the CFString opaque type.

String File System Representations

CFStringCreateWithFileSystemRepresentation (page 544)
Creates a CFString from a zero-terminated POSIX file system representation.

CFStringGetFileSystemRepresentation (page 560)
Extracts the contents of a string as a NULL-terminated 8-bit string appropriate for passing to POSIX
APIs.

CFStringGetMaximumSizeOfFileSystemRepresentation (page 563)
Determines the upper bound on the number of bytes required to hold the file system representation
of the string.

Functions by Task 525
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Getting Paragraph Bounds

CFStringGetParagraphBounds (page 565)
Given a range of characters in a string, obtains the paragraph bounds—that is, the indexes of the first
character and the final characters of the paragraph(s) containing the range.

Functions

CFShowStr
Prints the attributes of a string during debugging.

void CFShowStr (
 CFStringRef str
);

Parameters
str

The string whose attributes you want to print.

Discussion
Use this function to learn about specific attributes of a CFString object during debugging. These attributes
include the following:

 ■ Length (in Unicode characters)

 ■ Whether originally it was an 8-bit string and, if so, whether it was a C (HasNullByte) or Pascal
(HasLengthByte) string

 ■ Whether it is a mutable or an immutable object

 ■ The allocator used to create it

 ■ The memory address of the character contents and whether those contents are in-line

The information provided by this function is for debugging purposes only. The values of any of these attributes
might change between different releases and on different platforms. Note in particular that this function
does not show the contents of the string. If you want to display the contents of the string, use CFShow.

Special Considerations

You can use CFShowStr in one of two general ways. If your debugger supports function calls (such as gdb
does), call CFShowStr in the debugger:

(gdb) call (void) CFShowStr(string)
Length 11
IsEightBit 1
HasLengthByte 1
HasNullByte 1
InlineContents 1
Allocator SystemDefault
Mutable 0
Contents 0x4e7c0

526 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

You can also incorporate calls to CFShowStr in a test version of your code to print descriptions of CFString
objects to the console.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFSTR
Creates an immutable string from a constant compile-time string.

CFStringRef CFSTR (
 const char *cStr
);

Parameters
cStr

A constant C string (that is, text enclosed in double-quotation marks) from which the string is to be
created. The characters enclosed by the quotation marks must be ASCII characters, otherwise the
behavior is undefined.

Return Value
An immutable string, or NULL if there was a problem creating the object. The returned object is a constant.
You may retain and release it, similar to other immutable CFString objects, but are not required to do so—it
will remain valid until the program terminates.

Discussion
The CFSTR macro is a convenient way to create CFString representations of constant compile-time strings.

A value returned by CFSTR has the following semantics:

 ■ Values returned from CFSTR are not released by CFString—they are guaranteed to be valid until the
program terminates.

 ■ Values returned from CFSTR can be retained and released in a balanced fashion, like any other CFString,
but you are not required to do so.

Non-ASCII characters (that is, character codes greater than 127) are not supported. If you use them, the result
is undefined. Even if using them works for you in testing, it might not work if the user selects a different
language preference.

Note that when using this macro as an initializer, you must compile using the flag -fconstant-cfstrings
(see Options Controlling C Dialect).

CFStringCompare
Compares one string with another string.

Functions 527
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

http://developer.apple.com/documentation/DeveloperTools/gcc-3.3/gcc/C-Dialect-Options.html

CFComparisonResult CFStringCompare (
 CFStringRef theString1,
 CFStringRef theString2,
 CFOptionFlags compareOptions
);

Parameters
theString1

The first string to use in the comparison.

theString2
The second string to use in the comparison.

compareOptions
Flags that select different types of comparisons, such as localized comparison, case-insensitive
comparison, and non-literal comparison. If you want the default comparison behavior, pass 0. See
“String Comparison Flags” (page 574) for the available flags.

Return Value
A CFComparisonResult (page 764) value that indicates whether theString1 is equal to, less than, or
greater than theString2.

Discussion
You can affect how the comparison proceeds by specifying one or more option flags in compareOptions.
Not all comparison options are currently implemented.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageBrowserView
ImageClient
MoreIsBetter
MoreOSL
NSLMiniBrowser

Declared In
CFString.h

CFStringCompareWithOptions
Compares a range of the characters in one string with that of another string.

CFComparisonResult CFStringCompareWithOptions (
 CFStringRef theString1,
 CFStringRef theString2,
 CFRange rangeToCompare,
 CFOptionFlags compareOptions
);

Parameters
theString1

The first string to use in the comparison.

theString2
The second string to use in the comparison.

528 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

rangeToCompare
The range of characters in theString1 to be used in the comparison to theString2. To use the
whole string, pass the range CFRangeMake(0, CFStringGetLength(theString1)) or use
CFStringCompare (page 527). The specified range must not exceed the length of the string.

compareOptions
Flags that select different types of comparisons, such as localized comparison, case-insensitive
comparison, and non-literal comparison. If you want the default comparison behavior, pass 0. See
“String Comparison Flags” (page 574) for the available flags.

Return Value
A CFComparisonResult (page 764) value that indicates whether theString1 is equal to, less than, or
greater than theString2.

Discussion
You can affect how the comparison proceeds by specifying one or more option flags in compareOptions.

If you want to compare one entire string with another string, use the CFStringCompare (page 527) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringCompareWithOptionsAndLocale
Compares a range of the characters in one string with another string using a given locale.

CFComparisonResult CFStringCompareWithOptionsAndLocale (
 CFStringRef theString1,
 CFStringRef theString2,
 CFRange rangeToCompare,
 CFOptionFlags compareOptions,
 CFLocaleRef locale
);

Parameters
theString1

The first string to use in the comparison.

theString2
The second string to use in the comparison. The full range of this string is used.

rangeToCompare
The range of characters in theString1 to be used in the comparison to theString2. To use the
whole string, pass the range CFRangeMake(0, CFStringGetLength(theString1)). The specified
range must not exceed the bounds of the string.

compareOptions
Flags that select different types of comparisons, such as case-insensitive comparison and non-literal
comparison. If you want the default comparison behavior, pass 0. See “String Comparison Flags” (page
574) for the available flags. kCFCompareBackwards and kCFCompareAnchored are not applicable.

Functions 529
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

locale
The locale to use for the comparison. NULL specifies the canonical locale (the return value from
CFLocaleGetSystem (page 247)). The locale argument affects both equality and ordering algorithms.
For example, in some locales, accented characters are ordered immediately after the base; other
locales order them after “z”.

Return Value
A CFComparisonResult (page 764) value that indicates whether theString1 is equal to, less than, or
greater than theString2.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFString.h

CFStringConvertEncodingToIANACharSetName
Returns the name of the IANA registry “charset” that is the closest mapping to a specified string encoding.

CFStringRef CFStringConvertEncodingToIANACharSetName (
 CFStringEncoding encoding
);

Parameters
encoding

The Core Foundation string encoding to use.

Return Value
The name of the IANA “charset” that is the closest mapping to encoding. Returns NULL if the encoding is
not recognized.

Discussion
TheCFStringConvertIANACharSetNameToEncoding (page 531) function is complementary to this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringConvertEncodingToNSStringEncoding
Returns the Cocoa encoding constant that maps most closely to a given Core Foundation encoding constant.

UInt32 CFStringConvertEncodingToNSStringEncoding (
 CFStringEncoding encoding
);

Parameters
encoding

The Core Foundation string encoding to use.

530 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Return Value
The Cocoa encoding (of type NSStringEncoding) that is closest to the Core Foundation encoding encoding.
The behavior is undefined if an invalid string encoding is passed.

Discussion
The CFStringConvertNSStringEncodingToEncoding (page 532) function is complementary to this
function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
CFString.h

CFStringConvertEncodingToWindowsCodepage
Returns the Windows codepage identifier that maps most closely to a given Core Foundation encoding
constant.

UInt32 CFStringConvertEncodingToWindowsCodepage (
 CFStringEncoding encoding
);

Parameters
encoding

The Core Foundation string encoding to use.

Return Value
The Windows codepage value that is closest to the Core Foundation encoding encoding. The behavior is
undefined if an invalid string encoding is passed.

Discussion
TheCFStringConvertWindowsCodepageToEncoding (page 532) function is complementary to this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringConvertIANACharSetNameToEncoding
Returns the Core Foundation encoding constant that is the closest mapping to a given IANA registry “charset”
name.

Functions 531
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFStringEncoding CFStringConvertIANACharSetNameToEncoding (
 CFStringRef theString
);

Parameters
IANAName

The IANA “charset” name to use.

Return Value
The Core Foundation string encoding that is closest to the IANA “charset” IANAName. Returns the
kCFStringEncodingInvalidId (page 578) constant if the name is not recognized.

Discussion
TheCFStringConvertEncodingToIANACharSetName (page 530) function is complementary to this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringConvertNSStringEncodingToEncoding
Returns the Core Foundation encoding constant that is the closest mapping to a given Cocoa encoding.

CFStringEncoding CFStringConvertNSStringEncodingToEncoding (
 UInt32 encoding
);

Parameters
encoding

The Cocoa string encoding (of type NSStringEncoding) to use.

Return Value
The Core Foundation string encoding that is closest to the Cocoa string encoding encoding. Returns the
kCFStringEncodingInvalidId (page 578) constant if the mapping is not known.

Discussion
The CFStringConvertEncodingToNSStringEncoding (page 530) function is complementary to this
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringConvertWindowsCodepageToEncoding
Returns the Core Foundation encoding constant that is the closest mapping to a given Windows codepage
identifier.

532 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFStringEncoding CFStringConvertWindowsCodepageToEncoding (
 UInt32 codepage
);

Parameters
codepage

The Windows codepage identifier to use.

Return Value
The Core Foundation string encoding that is closest to the Windows codepage identifier codepage. Returns
the kCFStringEncodingInvalidId (page 578) constant if the mapping is not known.

Discussion
TheCFStringConvertEncodingToWindowsCodepage (page 531) function is complementary to this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringCreateArrayBySeparatingStrings
Creates an array of CFString objects from a single CFString object.

CFArrayRef CFStringCreateArrayBySeparatingStrings (
 CFAllocatorRef alloc,
 CFStringRef theString,
 CFStringRef separatorString
);

Parameters
alloc

The allocator to use to allocate memory for the new CFArray object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

theString
The string to be divided into substrings. The substrings should be separated by separatorString.

separatorString
A string containing the character or characters used to separate the substrings in theString.

Return Value
A new array that contains CFString objects that represent substrings of theString, or NULL if there was a
problem creating the object. The order of elements in the array is identical to the order of the substrings in
theString. If separatorString does not occur in theString, the result is an array containing theString.
If separatorString is equal to theString, then the result is an array containing two empty strings.
Ownership follows the Create Rule.

Discussion
This function provides a convenient way to convert units of data captured in a single string to a form (an
array) suitable for iterative processing. One or more delimiter characters (or “separator string”) separates the
substrings in the source string—these characters are frequently whitespace characters such as tabs and
newlines (carriage returns). For example, you might have a file containing a localized list of place names with
each name separated by a tab character. You could create a CFString object from this file and call this function
on the string to obtain a CFArray object whose elements are these place names.

Functions 533
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

See also CFStringCreateByCombiningStrings (page 535).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iTunesController
MoreIsBetter
MoreSCF
QISA

Declared In
CFString.h

CFStringCreateArrayWithFindResults
Searches a string for multiple occurrences of a substring and creates an array of ranges identifying the
locations of these substrings within the target string.

CFArrayRef CFStringCreateArrayWithFindResults (
 CFAllocatorRef alloc,
 CFStringRef theString,
 CFStringRef stringToFind,
 CFRange rangeToSearch,
 CFOptionFlags compareOptions
);

Parameters
alloc

The allocator to use to allocate memory for the new CFArray object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

theString
The string in which to search for stringToFind.

stringToFind
The string to search for in theString.

rangeToSearch
The range of characters within theString to be searched. The specified range must not exceed the
length of the string.

compareOptions
Flags that select different types of comparisons, such as localized comparison, case-insensitive
comparison, and non-literal comparison. If you want the default comparison behavior, pass 0. See
“String Comparison Flags” (page 574) for the available flags.

Return Value
An array that contains pointers to CFRange structures identifying the character locations of stringToFind
in theString. Returns NULL, if no matching substring is found in the source object, or if there was a problem
creating the array. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

534 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Declared In
CFString.h

CFStringCreateByCombiningStrings
Creates a single string from the individual CFString objects that comprise the elements of an array.

CFStringRef CFStringCreateByCombiningStrings (
 CFAllocatorRef alloc,
 CFArrayRef theArray,
 CFStringRef separatorString
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

theArray
An array of CFString objects to concatenate. This value should not be NULL.

separatorString
The string to insert between the substrings in the returned string. This value is commonly a whitespace
character such as a tab or a newline (carriage return). If this value is not a valid CFString object, an
assertion is raised.

Return Value
A string that contains a concatenation of the strings in theArray separated by separatorString. The
order of the substrings in the string is identical to the order of the elements in theArray.

If theArray is empty, returns an empty CFString object; if theArray contains one CFString object, that
object is returned (without the separator string). Returns NULL if there was a problem in creating the string.
Ownership follows the Create Rule.

Discussion
See also CFStringCreateArrayBySeparatingStrings (page 533).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MyFirstJNIProject

Declared In
CFString.h

CFStringCreateCopy
Creates an immutable copy of a string.

Functions 535
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFStringRef CFStringCreateCopy (
 CFAllocatorRef alloc,
 CFStringRef theString
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

theString
The string to copy.

Return Value
An immutable string whose contents are identical to theString. Returns NULL if there was a problem
copying the object. Ownership follows the Create Rule.

Discussion
The resulting object has the same Unicode contents as the original object, but it is always immutable. It
might also have different storage characteristics, and hence might reply differently to functions such as
CFStringGetCStringPtr (page 558). Also, if the specified allocator and the allocator of the original object
are the same, and the string is already immutable, this function may simply increment the retention count
without making a true copy. However, the resulting object is a true immutable copy, except the operation
was a lot more efficient.

You should use this function in situations where a string is or could be mutable, and you need to take a
snapshot of its current value. For example, you might decide to pass a copy of a string to a function that
stores its current value in a list for later use.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockBrowser
HID Calibrator
HID Explorer
NSLMiniBrowser
QTMetaData

Declared In
CFString.h

CFStringCreateExternalRepresentation
Creates an “external representation” of a CFString object, that is, a CFData object.

536 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFDataRef CFStringCreateExternalRepresentation (
 CFAllocatorRef alloc,
 CFStringRef theString,
 CFStringEncoding encoding,
 UInt8 lossByte
);

Parameters
alloc

The allocator to use to allocate memory for the new CFData object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

theString
The string to convert to an external representation.

encoding
The string encoding to use for the external representation.

lossByte
The character value to assign to characters that cannot be converted to the requested encoding. Pass
0 if you want conversion to stop at the first such error; if this happens, the function returns NULL.

Return Value
A CFData object that stores the characters of the CFString object as an “external representation.” Returns
NULL if no loss byte was specified and the function could not convert the characters to the specified encoding.
Ownership follows the Create Rule.

Discussion
In the CFData object form, the string can be written to disk as a file or be sent out over a network. If the
encoding of the characters in the data object is Unicode, the function may insert a BOM (byte-order marker)
to indicate endianness. However, representations created with encoding constants
kCFStringEncodingUTF16BE, kCFStringEncodingUTF16LE, kCFStringEncodingUTF32BE, and
kCFStringEncodingUTF32LE do not include a BOM because the byte order is explicitly indicated by the
letters “BE” (big-endian) and “LE” (little-endian).

This function allows the specification of a “loss byte” to represent characters that cannot be converted to
the requested encoding.

When you create an external representation from a CFMutableString object, it loses this mutability characteristic
when it is converted back to a CFString object.

The CFStringCreateFromExternalRepresentation (page 537) function complements this function by
creating a CFString object from an “external representation” CFData object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringCreateFromExternalRepresentation
Creates a string from its “external representation.”

Functions 537
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFStringRef CFStringCreateFromExternalRepresentation (
 CFAllocatorRef alloc,
 CFDataRef data,
 CFStringEncoding encoding
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

data
The CFData object containing bytes that hold the characters in the specified encoding.

encoding
The encoding to use when interpreting the bytes in the data argument.

Return Value
An immutable string containing the characters from data, or NULL if there was a problem creating the object.
Ownership follows the Create Rule.

Discussion
In the CFData object form, the string can be written to disk as a file or be sent out over a network. If the
encoding of the characters in the data object is Unicode, the function reads any BOM (byte order marker)
and properly resolves endianness.

TheCFStringCreateExternalRepresentation (page 536) function complements this function by creating
an “external representation” CFData object from a string.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringCreateWithBytes
Creates a string from a buffer containing characters in a specified encoding.

CFStringRef CFStringCreateWithBytes (
 CFAllocatorRef alloc,
 const UInt8 *bytes,
 CFIndex numBytes,
 CFStringEncoding encoding,
 Boolean isExternalRepresentation
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

bytes
A buffer containing characters in the encoding specified by encoding. The buffer must not contain
a length byte (as in Pascal buffers) or any terminating NULL character (as in C buffers).

538 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

numBytes
The number of bytes in bytes.

encoding
The string encoding of the characters in the buffer.

isExternalRepresentation
true if the characters in the byte buffer are in an “external representation” format—that is, whether
the buffer contains a BOM (byte order marker). This is usually the case for bytes that are read in from
a text file or received over the network. Otherwise, pass false.

Return Value
An immutable string, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Discussion
This function handles character data in an “external representation” format by interpreting any BOM (byte
order marker) character and performing any necessary byte swapping.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonMDEF
ImageClient
MFSLives
MoreIsBetter
NSLMiniBrowser

Declared In
CFString.h

CFStringCreateWithBytesNoCopy
Creates a string from a buffer, containing characters in a specified encoding, that might serve as the backing
store for the new string.

CFStringRef CFStringCreateWithBytesNoCopy (
 CFAllocatorRef alloc,
 const UInt8 *bytes,
 CFIndex numBytes,
 CFStringEncoding encoding,
 Boolean isExternalRepresentation,
 CFAllocatorRef contentsDeallocator
);

Parameters
alloc

The allocator to use to allocate memory for the new CFString object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

bytes
A buffer containing characters in the encoding specified by encoding. The buffer must not contain
a length byte (as in Pascal buffers) or any terminating NULL character (as in C buffers).

numBytes
The number of bytes in bytes.

Functions 539
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

encoding
The character encoding of bytes.

isExternalRepresentation
true if the characters in the byte buffer are in an “external representation” format—that is, whether
the buffer contains a BOM (byte order marker). This is usually the case for bytes that are read in from
a text file or received over the network. Otherwise, pass false.

contentsDeallocator
The allocator to use to deallocate bytes when it is no longer needed. You can pass NULL or
kCFAllocatorDefault to request the default allocator for this purpose. If the buffer does not need
to be deallocated, or if you want to assume responsibility for deallocating the buffer (and not have
the string deallocate it), pass kCFAllocatorNull.

Return Value
A new string whose contents are bytes. Ownership follows the Create Rule.

Discussion
This function takes an explicit length, and allows you to specify whether the data is an external format—that
is, whether to pay attention to the BOM character (if any) and do byte swapping if necessary

Special Considerations

If an error occurs during the creation of the string, then bytes is not deallocated. In this case, the caller is
responsible for freeing the buffer. This allows the caller to continue trying to create a string with the buffer,
without having the buffer deallocated.

Availability
Available in Mac OS X v10.5 and later.

See Also
CFStringCreateWithBytes (page 538)
CFStringCreateWithCharactersNoCopy (page 541)
CFStringCreateWithCStringNoCopy (page 543)
CFStringCreateWithPascalStringNoCopy (page 547)

Declared In
CFString.h

CFStringCreateWithCharacters
Creates a string from a buffer of Unicode characters.

CFStringRef CFStringCreateWithCharacters (
 CFAllocatorRef alloc,
 const UniChar *chars,
 CFIndex numChars
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

chars
The buffer of Unicode characters to copy into the new string.

540 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

numChars
The number of characters in the buffer pointed to by chars. Only this number of characters will be
copied to internal storage.

Return Value
An immutable string containing chars, or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Discussion
This function creates an immutable string from a client-supplied Unicode buffer. You must supply a count
of the characters in the buffer. This function always copies the characters in the provided buffer into internal
storage.

To save memory, this function might choose to store the characters internally in a 8-bit backing store. That
is, just because a buffer of UniChar characters was used to initialize the object does not mean you will get
back a non-NULL result from CFStringGetCharactersPtr (page 556).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Custom_HIView_Tutorial
MoreIsBetter
QISA
QTSetMovieAudioDevice
TypeServicesForUnicode

Declared In
CFString.h

CFStringCreateWithCharactersNoCopy
Creates a string from a buffer of Unicode characters that might serve as the backing store for the object.

CFStringRef CFStringCreateWithCharactersNoCopy (
 CFAllocatorRef alloc,
 const UniChar *chars,
 CFIndex numChars,
 CFAllocatorRef contentsDeallocator
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

chars
The Unicode buffer that has been allocated and initialized with Unicode characters.

numChars
The number of characters in the buffer pointed to by chars. Only this number of characters will be
copied to internal storage.

Functions 541
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

contentsDeallocator
The allocator to use to deallocate the external buffer when it is no longer needed. You can pass NULL
or kCFAllocatorDefault to request the default allocator for this purpose. If the buffer does not
need to be deallocated, or if you want to assume responsibility for deallocating the buffer (and not
have the string deallocate it), pass kCFAllocatorNull.

Return Value
An immutable string containing chars, or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Discussion
Unless the situation warrants otherwise, the returned object does not copy the external buffer to internal
storage but instead uses the buffer as its backing store. However, you should never count on the object using
the external buffer since it could copy the buffer to internal storage or might even dump the buffer altogether
and use alternative means for storing the characters.

The function includes a contentsDeallocator parameter with which to specify an allocator to use for
deallocating the external buffer when the string is deallocated. If you want to assume responsibility for
deallocating this memory, specify kCFAllocatorNull for this parameter.

If at creation time CFString decides it can't use the buffer, and there is a contentsDeallocator, it will use
this allocator to free the buffer at that time.

Special Considerations

If an error occurs during the creation of the string, then chars is not deallocated. In this case, the caller is
responsible for freeing the buffer. This allows the caller to continue trying to create a string with the buffer,
without having the buffer deallocated.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFStringCreateWithCharacters (page 540)
CFStringCreateWithBytesNoCopy (page 539)
CFStringCreateWithCStringNoCopy (page 543)
CFStringCreateWithPascalStringNoCopy (page 547)

Declared In
CFString.h

CFStringCreateWithCString
Creates an immutable string from a C string.

CFStringRef CFStringCreateWithCString (
 CFAllocatorRef alloc,
 const char *cStr,
 CFStringEncoding encoding
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

542 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

cStr
The NULL-terminated C string to be used to create the CFString object. The string must use an 8-bit
encoding.

encoding
The encoding of the characters in the C string. The encoding must specify an 8-bit encoding.

Return Value
An immutable string containing cStr (after stripping off the NULL terminating character), or NULL if there
was a problem creating the object. Ownership follows the Create Rule.

Discussion
A C string is a string of 8-bit characters terminated with an 8-bit NULL. Unichar and Unichar32 are not
considered C strings.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFFTPSample
DockBrowser
MoreIsBetter
NSLMiniBrowser
Quartz EB

Declared In
CFString.h

CFStringCreateWithCStringNoCopy
Creates a CFString object from an external C string buffer that might serve as the backing store for the object.

CFStringRef CFStringCreateWithCStringNoCopy (
 CFAllocatorRef alloc,
 const char *cStr,
 CFStringEncoding encoding,
 CFAllocatorRef contentsDeallocator
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

cStr
The NULL-terminated C string to be used to create the CFString object. The string must use an 8-bit
encoding.

encoding
The encoding of the characters in the C string. The encoding must specify an 8-bit encoding.

contentsDeallocator
The CFAllocator object to use to deallocate the external string buffer when it is no longer needed.
You can pass NULL or kCFAllocatorDefault to request the default allocator for this purpose. If
the buffer does not need to be deallocated, or if you want to assume responsibility for deallocating
the buffer (and not have the CFString object deallocate it), pass kCFAllocatorNull.

Functions 543
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Return Value
An immutable string containing cStr (after stripping off the NULL terminating character), or NULL if there
was a problem creating the object. Ownership follows the Create Rule.

Discussion
A C string is a string of 8-bit characters terminated with an 8-bit NULL. Unichar and Unichar32 are not
considered C strings.

Unless the situation warrants otherwise, the created object does not copy the external buffer to internal
storage but instead uses the buffer as its backing store. However, you should never assume that the object
is using the external buffer since the object might copy the buffer to internal storage or even dump the
buffer altogether and store the characters in another way.

The function includes a contentsDeallocator parameter with which to specify an allocator to use for
deallocating the external buffer when the CFString object is deallocated. If you want to assume responsibility
for deallocating this memory, specify kCFAllocatorNull for this parameter.

If at creation time the CFString object decides it can't use the buffer, and the function specifies a
contentsDeallocator allocator, it will use this allocator to free the buffer at that time.

Special Considerations

If an error occurs during the creation of the string, then cStr is not deallocated. In this case, the caller is
responsible for freeing the buffer. This allows the caller to continue trying to create a string with the buffer,
without having the buffer deallocated.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFStringCreateWithCString (page 542)
CFStringCreateWithBytesNoCopy (page 539)
CFStringCreateWithCharactersNoCopy (page 541)
CFStringCreateWithPascalStringNoCopy (page 547)

Declared In
CFString.h

CFStringCreateWithFileSystemRepresentation
Creates a CFString from a zero-terminated POSIX file system representation.

CFStringRef CFStringCreateWithFileSystemRepresentation (
 CFAllocatorRef alloc,
 const char *buffer
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

buffer
The C string that you want to convert.

544 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Return Value
A string that represents buffer. The result is NULL if there was a problem in creating the string (possible if
the conversion fails due to bytes in the buffer not being a valid sequence of bytes for the appropriate character
encoding). Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFString.h

CFStringCreateWithFormat
Creates an immutable string from a formatted string and a variable number of arguments.

CFStringRef CFStringCreateWithFormat (
 CFAllocatorRef alloc,
 CFDictionaryRef formatOptions,
 CFStringRef format,
 ...
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

formatOptions
A CFDictionary object containing formatting options for the string (such as the thousand-separator
character, which is dependent on locale). Currently, these options are an unimplemented feature.

format
The formatted string with printf-style specifiers. For information on supported specifiers, see String
Format Specifiers.

...
Variable list of the values to be inserted in format.

Return Value
An immutable string, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Calibrator
HID Explorer
HID Utilities Source
MoreIsBetter
QISA

Declared In
CFString.h

Functions 545
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFStringCreateWithFormatAndArguments
Creates an immutable string from a formatted string and a variable number of arguments (specified in a
parameter of type va_list).

CFStringRef CFStringCreateWithFormatAndArguments (
 CFAllocatorRef alloc,
 CFDictionaryRef formatOptions,
 CFStringRef format,
 va_list arguments
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

formatOptions
A CFDictionary object containing formatting options for the string (such as the thousand-separator
character, which is dependent on locale). Currently, these options are an unimplemented feature.

format
The formatted string with printf-style specifiers. For information on supported specifiers, see String
Format Specifiers.

arguments
The variable argument list of values to be inserted into the formatted string contained in format.

Return Value
An immutable string, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Discussion
The programming interface for variable argument lists (va_list, va_start, va_end, and so forth) is declared
in the standard C header file stdarg.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringCreateWithPascalString
Creates an immutable CFString object from a Pascal string.

CFStringRef CFStringCreateWithPascalString (
 CFAllocatorRef alloc,
 ConstStr255Param pStr,
 CFStringEncoding encoding
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

546 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

pStr
The Pascal string to be used to create the string.

encoding
The encoding of the characters in the Pascal string.

Return Value
An immutable string containing pStr, or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Discussion
This function creates an immutable CFString objects from the character contents of a Pascal string (after
stripping off the initial length byte).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AppearanceSampleUpdated
BasicInputMethod
Carbon Porting Tutorial
JustDraw
MoreIsBetter

Declared In
CFString.h

CFStringCreateWithPascalStringNoCopy
Creates a CFString object from an external Pascal string buffer that might serve as the backing store for the
object.

CFStringRef CFStringCreateWithPascalStringNoCopy (
 CFAllocatorRef alloc,
 ConstStr255Param pStr,
 CFStringEncoding encoding,
 CFAllocatorRef contentsDeallocator
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

pStr
The Pascal string to be used to create the string.

encoding
The encoding of the characters in the Pascal string.

contentsDeallocator
The CFAllocator object to use to deallocate the external string buffer when it is no longer needed.
Pass NULL or kCFAllocatorDefault to request the default allocator for this purpose. If the buffer
does not need to be deallocated, or if you want to assume responsibility for deallocating the buffer
(and not have the string deallocate it), pass kCFAllocatorNull.

Functions 547
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Return Value
An immutable string containing pStr, or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Discussion
This function creates an immutable CFString objects from the character contents of a Pascal string (after
stripping off the initial length byte).

Unless the situation warrants otherwise, the created object does not copy the external buffer to internal
storage but instead uses the buffer as its backing store. However, you should never assume that the object
is using the external buffer since the object might copy the buffer to internal storage or even dump the
buffer altogether and store the characters in another way.

The function includes a contentsDeallocator parameter with which to specify an allocator to use for
deallocating the external buffer when the string is deallocated. If you want to assume responsibility for
deallocating this memory, specify kCFAllocatorNull for this parameter.

If at creation time the string decides it can't use the buffer, and there is an allocator specified in the
contentsDeallocator parameter, it will use this allocator to free the buffer at that time.

Special Considerations

If an error occurs during the creation of the string, then pStr is not deallocated. In this case, the caller is
responsible for freeing the buffer. This allows the caller to continue trying to create a string with the buffer,
without having the buffer deallocated.

Availability
Available in Mac OS X v10.0 and later.

See Also
CFStringCreateWithPascalString (page 546)
CFStringCreateWithBytesNoCopy (page 539)
CFStringCreateWithCStringNoCopy (page 543)
CFStringCreateWithCharactersNoCopy (page 541)

Declared In
CFString.h

CFStringCreateWithSubstring
Creates an immutable string from a segment (substring) of an existing string.

CFStringRef CFStringCreateWithSubstring (
 CFAllocatorRef alloc,
 CFStringRef str,
 CFRange range
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

str
The string from which to create the new string.

548 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

range
The range of characters in str to copy. The specified range must not exceed the length of the string.

Return Value
An immutable string, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioQueueTools
DockBrowser
MoreIsBetter
MoreSCF
TypeServicesForUnicode

Declared In
CFString.h

CFStringFind
Searches for a substring within a string and, if it is found, yields the range of the substring within the object's
characters.

CFRange CFStringFind (
 CFStringRef theString,
 CFStringRef stringToFind,
 CFOptionFlags compareOptions
);

Parameters
theString

The string in which to search for stringToFind.

stringToFind
The string to search for in theString.

compareOptions
Flags that select different types of comparisons, such as localized comparison, case-insensitive
comparison, and non-literal comparison. If you want the default comparison behavior, pass 0. See
“String Comparison Flags” (page 574) for the available flags.

Return Value
The range of the located substring within theString. If a match is not located, the returned CFRange
structure will have a location of kCFNotFound (page 765) and a length of 0 (either of which is enough to
indicate failure).

Discussion
This function is a convenience when you want to know if the entire range of characters represented by a
string contains a particular substring. If you want to search only part of the characters of a string, use the
CFStringFindWithOptions (page 551) function. Both of these functions return upon finding the first
occurrence of the substring, so if you want to find out about multiple occurrences, call the
CFStringCreateArrayWithFindResults (page 534) function.

Functions 549
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Depending on the comparison-option flags specified, the length of the resulting range might be different
than the length of the search string.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioQueueTools
CIVideoDemoGL
TypeServicesForUnicode

Declared In
CFString.h

CFStringFindCharacterFromSet
Query the range of the first character contained in the specified character set.

Boolean CFStringFindCharacterFromSet (
 CFStringRef theString,
 CFCharacterSetRef theSet,
 CFRange rangeToSearch,
 CFOptionFlags searchOptions,
 CFRange *result
);

Parameters
theString

The string to search.

theSet
The character set against which the membership of characters is checked.

rangeToSearch
The range of characters within theString to search. If the range location or end point (defined by
the location plus length minus 1) are outside the index space of the string (0 to N-1 inclusive, where
N is the length of the string), the behavior is undefined. The specified range must not exceed the
length of the string. If the range length is negative, the behavior is undefined. The range may be
empty (length 0), in which case no search is performed.

searchOptions
The option flags to control the search behavior. The supported options are
kCFCompareBackwards (page 574) and kCFCompareAnchored (page 574). If other option flags are
specified, the behavior is undefined.

result
On return, a pointer to a CFRange structure (supplied by the caller) in which the search result is stored.
Note that the length of this range could be more than 1 (if the character in question is a multi-byte
character). If a pointer to an invalid structure is passed, the behavior is undefined.

Return Value
true if a character in the character set is found and result is filled, false otherwise.

Availability
Available in Mac OS X v10.2 and later.

550 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Declared In
CFString.h

CFStringFindWithOptions
Searches for a substring within a range of the characters represented by a string and, if the substring is found,
returns its range within the object's characters.

Boolean CFStringFindWithOptions (
 CFStringRef theString,
 CFStringRef stringToFind,
 CFRange rangeToSearch,
 CFOptionFlags searchOptions,
 CFRange *result
);

Parameters
theString

The string in which to to search for stringToFind.

stringToFind
The substring to search for in theString.

rangeToSearch
A range of the characters to search in theString. The specified range must not exceed the length
of the string.

searchOptions
The option flags to control the search behavior. The supported options are
kCFCompareBackwards (page 574), kCFCompareAnchored (page 574),
kCFCompareCaseInsensitive (page 574), kCFCompareNonliteral (page 574), and
kCFCompareLocalized (page 575) (available in Mac OS X v10.0 and later). Uses the current user
locale (the return value from CFLocaleCopyCurrent (page 240)) if kCFCompareLocalized is
specified. If other option flags are specified, the behavior is undefined.

result
On return, if the function result is true, contains the starting location and length of the found substring.
You may pass NULL if you only want to know if the substring exists in the larger string.

Return Value
true if the substring was found, false otherwise.

Discussion
This function allows you to search only part of the characters of a string for a substring. It returns the found
range indirectly, in the final result parameter. If you want to know if the entire range of characters
represented by a string contains a particular substring, you can use the convenience function
CFStringFind (page 549). Both of these functions return upon finding the first occurrence of the substring,
so if you want to find out about multiple occurrences, call the
CFStringCreateArrayWithFindResults (page 534) function.

Depending on the comparison-option flags specified, the length of the resulting range might be different
than the length of the search string.

Availability
Available in Mac OS X v10.0 and later.

Functions 551
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Related Sample Code
DockBrowser
MoreIsBetter
MoreOSL
MoreSCF
QISA

Declared In
CFString.h

CFStringFindWithOptionsAndLocale
Returns a Boolean value that indicates whether a given string was found in a given source string.

Boolean CFStringFindWithOptionsAndLocale (
 CFStringRef theString,
 CFStringRef stringToFind,
 CFRange rangeToSearch,
 CFOptionFlags searchOptions,
 CFLocaleRef locale,
 CFRange *result
);

Parameters
theString

The string in which to to search for stringToFind.

stringToFind
The substring to search for in theString.

rangeToSearch
A range of the characters to search in theString. The specified range must not exceed the length
of the string.

searchOptions
The option flags to control the search behavior. See “String Comparison Flags” (page 574) for
possible values. kCFCompareNumerically (page 575) is ignored.

locale
The locale to use for the search comparison. NULL specifies the canonical locale (the return value
from CFLocaleGetSystem (page 247)).

The locale argument affects the equality checking algorithm. For example, for the Turkish locale,
case-insensitive compare matches “I” to “ı” (Unicode code point U+0131, Latin Small Dotless I), not
the normal “i” character.

result
On return, if the function result is true contains the starting location and length of the found substring.
You may pass NULL if you only want to know if the theString contains stringToFind.

Return Value
true if the substring was found, false otherwise.

Discussion
If stringToFind is the empty string (zero length), nothing is found.

552 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFString.h

CFStringGetBytes
Fetches a range of the characters from a string into a byte buffer after converting the characters to a specified
encoding.

CFIndex CFStringGetBytes (
 CFStringRef theString,
 CFRange range,
 CFStringEncoding encoding,
 UInt8 lossByte,
 Boolean isExternalRepresentation,
 UInt8 *buffer,
 CFIndex maxBufLen,
 CFIndex *usedBufLen
);

Parameters
theString

The string upon which to operate.

range
The range of characters in theString to process. The specified range must not exceed the length
of the string.

encoding
The string encoding of the characters to copy to the byte buffer. 8, 16, and 32-bit encodings are
supported.

lossByte
A character (for example, '?') that should be substituted for characters that cannot be converted to
the specified encoding. Pass 0 if you do not want lossy conversion to occur.

isExternalRepresentation
true if you want the result to be in an “external representation” format, otherwise false. In an
“external representation” format, the result may contain a byte order marker (BOM) specifying
endianness and this function might have to perform byte swapping.

buffer
The byte buffer into which the converted characters are written. The buffer can be allocated on the
heap or stack. Pass NULL if you do not want conversion to take place but instead want to know if
conversion will succeed (the function result is greater than 0) and, if so, how many bytes are required
(usedBufLen).

maxBufLen
The size of buffer and the maximum number of bytes that can be written to it.

usedBufLen
On return, the number of converted bytes actually in buffer. You may pass NULL if you are not
interested in this information.

Return Value
The number of characters converted.

Functions 553
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Discussion
This function is the basic encoding-conversion function for CFString objects. As with the other functions that
get the character contents of CFString objects, it allows conversion to a supported 8-bit encoding. Unlike
most of those other functions, it also allows “lossy conversion.” The function permits the specification of a
“loss byte” in a parameter; if a character cannot be converted this character is substituted and conversion
proceeds. (With the other functions, conversion stops at the first error and the operation fails.)

Because this function takes a range and returns the number of characters converted, it can be called repeatedly
with a small fixed size buffer and different ranges of the string to do the conversion incrementally.

This function also handles any necessary manipulation of character data in an “external representation”
format. This format makes the data portable and persistent (disk-writable); in Unicode it often includes a
BOM (byte order marker) that specifies the endianness of the data.

The CFStringCreateExternalRepresentation (page 536) function also handles external representations
and performs lossy conversions. The complementary function CFStringCreateWithBytes (page 538)
creates a string from the characters in a byte buffer.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioburntest
bulkerase
databurntest
MoreIsBetter
QISA

Declared In
CFString.h

CFStringGetCharacterAtIndex
Returns the Unicode character at a specified location in a string.

UniChar CFStringGetCharacterAtIndex (
 CFStringRef theString,
 CFIndex idx
);

Parameters
theString

The string from which the Unicode character is obtained.

idx
The position of the Unicode character in the CFString.

Return Value
A Unicode character.

554 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Discussion
This function is typically called in a loop to fetch the Unicode characters of a string in sequence or to fetch
a character at a known position (first or last, for example). Using it in a loop can be inefficient, especially with
longer strings, so consider the CFStringGetCharacters (page 556) function or the in-line buffer functions
(CFStringInitInlineBuffer (page 571) and CFStringGetCharacterFromInlineBuffer (page 555))
as alternatives.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AuthForAll
MFSLives
MoreSCF

Declared In
CFString.h

CFStringGetCharacterFromInlineBuffer
Returns the Unicode character at a specific location in an in-line buffer.

UniChar CFStringGetCharacterFromInlineBuffer (
 CFStringInlineBuffer *buf,
 CFIndex idx
);

Parameters
buf

The initialized CFStringInlineBuffer (page 573) structure in which the characters are stored. You
should initialize the structure with the CFStringInitInlineBuffer (page 571) function.

idx
The location of a character in the in-line buffer buf. This index is relative to the range specified when
buf was created.

Return Value
A Unicode character, or 0 if a location outside the original range is specified.

Discussion
This function accesses one of the characters of a string written to an in-line buffer. It is typically called from
within a loop to access each character in the buffer in sequence. You should initialize the buffer with the
CFStringInitInlineBuffer (page 571) function. The in-line buffer functions, along with the
CFStringInlineBuffer (page 573) structure, give you fast access to the characters of a CFString object.
The technique for in-line buffer access combines the convenience of one-at-a-time character access with the
efficiency of bulk access.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

Functions 555
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFStringGetCharacters
Copies a range of the Unicode characters from a string to a user-provided buffer.

void CFStringGetCharacters (
 CFStringRef theString,
 CFRange range,
 UniChar *buffer
);

Parameters
theString

The string from which the characters are to be obtained.

range
The range of characters to copy. The specified range must not exceed the length of the string.

buffer
The UniChar buffer of length range.length that you have allocated on the stack or heap. On return,
the buffer contains the requested Unicode characters.

Discussion
Use this function to obtain some or all of the Unicode characters represented by a CFString object. If this
operation involves a large number of characters, the function call can be expensive in terms of memory.
Instead you might want to consider using the in-line buffer functions CFStringInitInlineBuffer (page
571) and CFStringGetCharacterFromInlineBuffer (page 555) to extract the characters incrementally.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonQuartzDrawingWPrinting
Custom_HIView_Tutorial
HITextViewDemo
MoreIsBetter
QISA

Declared In
CFString.h

CFStringGetCharactersPtr
Quickly obtains a pointer to the contents of a string as a buffer of Unicode characters.

const UniChar * CFStringGetCharactersPtr (
 CFStringRef theString
);

Parameters
theString

The string whose contents you wish to access.

Return Value
A pointer to a buffer of Unicode character, or NULL if the internal storage of theString does not allow this
to be returned efficiently.

556 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Discussion
This function either returns the requested pointer immediately, with no memory allocations and no copying,
or it returns NULL. If the latter is the result, call an alternative function such as CFStringGetCharacters (page
556) function to extract the characters.

Whether or not this function returns a valid pointer or NULL depends on many factors, all of which depend
on how the string was created and its properties. In addition, the function result might change between
different releases and on different platforms. So do not count on receiving a non-NULL result from this
function under any circumstances (except when the object is created with
CFStringCreateMutableWithExternalCharactersNoCopy (page 341)).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
TypeServicesForUnicode

Declared In
CFString.h

CFStringGetCString
Copies the character contents of a string to a local C string buffer after converting the characters to a given
encoding.

Boolean CFStringGetCString (
 CFStringRef theString,
 char *buffer,
 CFIndex bufferSize,
 CFStringEncoding encoding
);

Parameters
theString

The string whose contents you wish to access.

buffer
The C string buffer into which to copy the string. The buffer must be at least bufferSize bytes in
length. On return, the buffer contains the converted characters. If there is an error in conversion, the
buffer contains only partial results.

bufferSize
The length of the local buffer in bytes (accounting for the NULL-terminator byte).

encoding
The string encoding to which the character contents of theString should be converted. The encoding
must specify an 8-bit encoding.

Return Value
true upon success or false if the conversion fails or the provided buffer is too small.

Discussion
This function is useful when you need your own copy of a string’s character data as a C string. You also
typically call it as a “backup” when a prior call to the CFStringGetCStringPtr (page 558) function fails.

Functions 557
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFHostSample
HID Calibrator
HID Config Save
HID Explorer
MoreIsBetter

Declared In
CFString.h

CFStringGetCStringPtr
Quickly obtains a pointer to a C-string buffer containing the characters of a string in a given encoding.

const char * CFStringGetCStringPtr (
 CFStringRef theString,
 CFStringEncoding encoding
);

Parameters
theString

The string whose contents you wish to access.

encoding
The string encoding to which the character contents of theString should be converted. The encoding
must specify an 8-bit encoding.

Return Value
A pointer to a C string or NULL if the internal storage of theString does not allow this to be returned
efficiently.

Discussion
This function either returns the requested pointer immediately, with no memory allocations and no copying,
in constant time, or returns NULL. If the latter is the result, call an alternative function such as the
CFStringGetCString (page 557) function to extract the characters.

Whether or not this function returns a valid pointer or NULL depends on many factors, all of which depend
on how the string was created and its properties. In addition, the function result might change between
different releases and on different platforms. So do not count on receiving a non-NULL result from this
function under any circumstances.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ColorMatching
ColorSyncDevices
ColorSyncDevices-Cocoa
InkSample
NSLMiniBrowser

558 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Declared In
CFString.h

CFStringGetDoubleValue
Returns the primary double value represented by a string.

double CFStringGetDoubleValue (
 CFStringRef str
);

Parameters
str

A string that represents a double value. The only allowed characters are the ASCII digit characters
(ASCII 0x30 - 0x39), the plus sign (ASCII 0x2B), the minus sign (ASCII 0x2D), and the period character
(ASCII 0x2E).

Return Value
The double value represented by str, or 0.0 if there is a scanning error (if the string contains disallowed
characters or does not represent a double value).

Discussion
Consider the following example:

double val = CFStringGetDoubleValue(CFSTR("0.123"));

The variable val in this example would contain the value 0.123 after the function is called.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetFastestEncoding
Returns for a CFString object the character encoding that requires the least conversion time.

CFStringEncoding CFStringGetFastestEncoding (
 CFStringRef theString
);

Parameters
theString

The string for which to determine the fastest encoding.

Return Value
The string encoding to which theString can be converted the fastest.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

Functions 559
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFStringGetFileSystemRepresentation
Extracts the contents of a string as a NULL-terminated 8-bit string appropriate for passing to POSIX APIs.

Boolean CFStringGetFileSystemRepresentation (
 CFStringRef string,
 char *buffer,
 CFIndex maxBufLen
);

Parameters
string

The string to convert.

buffer
The C string buffer into which to copy the string. The buffer must be at least maxBufLen bytes in
length. On return, the buffer contains the converted characters.

maxBufLen
The maximum length of the buffer.

Return Value
true if the string is correctly converted; false if the conversion fails, or the results don’t fit into the buffer.

Discussion
You can use CFStringGetMaximumSizeOfFileSystemRepresentation (page 563) if you want to make
sure the buffer is of sufficient length.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFString.h

CFStringGetIntValue
Returns the integer value represented by a string.

SInt32 CFStringGetIntValue (
 CFStringRef str
);

Parameters
str

A string that represents a signed integer value. The only allowed characters are the ASCII digit characters
(ASCII 0x30 - 0x39), the plus sign (ASCII 0x2B), the minus sign (ASCII 0x2D), and the period character
(ASCII 0x2E).

Return Value
The signed integer value represented by str. The result is 0 if there is a scanning error (if the string contains
disallowed characters or does not represent an integer value) or INT_MAX or INT_MIN if there is an overflow
error.

Discussion
Consider the following example:

SInt32 val = CFStringGetIntValue(CFSTR("-123"));

560 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

The variable val in this example would contain the value -123 after the function is called.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetLength
Returns the number (in terms of UTF-16 code pairs) of Unicode characters in a string.

CFIndex CFStringGetLength (
 CFStringRef theString
);

Parameters
theString

The string to examine.

Return Value
The number (in terms of UTF-16 code pairs) of characters stored in theString.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Custom_HIView_Tutorial
MoreIsBetter
MoreSCF
QISA
TypeServicesForUnicode

Declared In
CFString.h

CFStringGetLineBounds
Given a range of characters in a string, obtains the line bounds—that is, the indexes of the first character
and the final characters of the lines containing the range.

void CFStringGetLineBounds (
 CFStringRef theString,
 CFRange range,
 CFIndex *lineBeginIndex,
 CFIndex *lineEndIndex,
 CFIndex *contentsEndIndex
);

Parameters
theString

The string containing the specified range of characters.

Functions 561
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

range
The range of characters to consider. The specified range must not exceed the length of the string.

lineBeginIndex
On return, the index of the first character of the containing line. Pass NULL if you do not want this
result.

lineEndIndex
On return, the index of the first character of the line after the specified range. Pass NULL if you do not
want this result.

contentsEndIndex
On return, the index of the last character of the containing line, excluding any line-separator characters.
Pass NULL if you are not interested in this result.

Discussion
This function is a convenience function for determining the beginning and ending indexes of one or more
lines in the given range of a string. It is useful, for example, when each line represents a “record” of some
sort; you might search for some substring, but want to extract the record of which the substring is a part.

To determine line separation, the function looks for the standard line-separator characters: carriage returns
(CR and CRLF), linefeeds (LF), and Unicode line and paragraph separators. The three final parameters of the
function indirectly return, in order, the index of the first character that starts the line, the index of the first
character of the next line (including end-of-line characters), and the index of the last character of the line
(excluding end-of-line characters). Pass NULL for any of these parameters if you aren't interested in the result.

To determine the number of characters in the line:

 ■ Subtract lineBeginIndex from lineEndIndex to find the number of characters in the line, including
the line separators.

 ■ Subtract lineBeginIndex from contentsEndIndex to find the number of characters in the line,
excluding the line separators.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetListOfAvailableEncodings
Returns a pointer to a list of string encodings supported by the current system.

const CFStringEncoding * CFStringGetListOfAvailableEncodings (
 void
);

Return Value
A pointer to a kCFStringEncodingInvalidId (page 578)-terminated list of enum constants, each of type
CFStringEncoding (page 572).

Availability
Available in Mac OS X v10.0 and later.

562 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
CFString.h

CFStringGetMaximumSizeForEncoding
Returns the maximum number of bytes a string of a specified length (in Unicode characters) will take up if
encoded in a specified encoding.

CFIndex CFStringGetMaximumSizeForEncoding (
 CFIndex length,
 CFStringEncoding encoding
);

Parameters
length

The number of Unicode characters to evaluate.

encoding
The string encoding for the number of characters specified by length.

Return Value
The maximum number of bytes that could be required to represent length number of Unicode characters
with the string encoding encoding. The number of bytes that the encoding actually ends up requiring when
converting any particular string could be less than this, but never more.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFHostSample
IOPrintSuperClasses
MoreIsBetter
simpleJavaLauncher

Declared In
CFString.h

CFStringGetMaximumSizeOfFileSystemRepresentation
Determines the upper bound on the number of bytes required to hold the file system representation of the
string.

CFIndex CFStringGetMaximumSizeOfFileSystemRepresentation (
 CFStringRef string
);

Parameters
string

The string to convert.

Functions 563
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Return Value
The upper bound on the number of bytes required to hold the file system representation of the string.

Discussion
The result is returned quickly as a rough approximation, and could be much larger than the actual space
required. The result includes space for the zero termination. If you are allocating a buffer for long-term storage,
you should reallocate it to be the right size after calling CFStringGetFileSystemRepresentation (page
560).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFString.h

CFStringGetMostCompatibleMacStringEncoding
Returns the most compatible Mac OS script value for the given input encoding.

CFStringEncoding CFStringGetMostCompatibleMacStringEncoding (
 CFStringEncoding encoding
);

Parameters
encoding

The encoding for which you wish to find a compatible Mac OS script value.

Return Value
The most compatible Mac OS script value for encoding.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
CFString.h

CFStringGetNameOfEncoding
Returns the canonical name of a specified string encoding.

CFStringRef CFStringGetNameOfEncoding (
 CFStringEncoding encoding
);

Parameters
encoding

The string encoding to use.

Return Value
Name of encoding; non-localized. Ownership follows the Get Rule.

564 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Discussion
This function returns the “canonical” name of the string encoding because the return value has to be the
same no matter what localization is chosen. In other words, it can't change based on the International
Preferences language panel setting. The canonical name is usually expressed in English.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetParagraphBounds
Given a range of characters in a string, obtains the paragraph bounds—that is, the indexes of the first character
and the final characters of the paragraph(s) containing the range.

void CFStringGetParagraphBounds (
 CFStringRef string,
 CFRange range,
 CFIndex *parBeginIndex,
 CFIndex *parEndIndex,
 CFIndex *contentsEndIndex
);

Parameters
theString

The string containing the specified range of characters.

range
The range of characters to consider. The specified range must not exceed the length of the string.

parBeginIndex
On return, the index of the first character of the containing paragraph. Pass NULL if you do not want
this result.

parEndIndex
On return, the index of the first character of the paragraph after the specified range. Pass NULL if you
do not want this result.

contentsEndIndex
On return, the index of the last character of the containing paragraph, excluding any
paragraph-separator characters. Pass NULL if you are not interested in this result.

Discussion
This function is the same as CFStringGetLineBounds (page 561)(), however it onlys look for paragraphs
(that is, it does not stop at Unicode NextLine or LineSeparator characters).

This function is a convenience function for determining the beginning and ending indexes of one or more
paragraph in the given range of a string. It is useful, for example, when each line represents a “record” of
some sort; you might search for some substring, but want to extract the record of which the substring is a
part.

To determine line separation, the function looks for the standard paragraph-separator characters: carriage
returns (CR and CRLF), linefeeds (LF), and Unicode paragraph separators. The three final parameters of the
function indirectly return, in order, the index of the first character that starts the line, the index of the first
character of the next line (including end-of-line characters), and the index of the last character of the line
(excluding end-of-line characters). Pass NULL for any of these parameters if you aren't interested in the result.

Functions 565
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

To determine the number of characters in the paragraph:

 ■ Subtract parBeginIndex from parEndIndex to find the number of characters in the paragraph,
including the paragraph separators.

 ■ Subtract parBeginIndex from contentsEndIndex to find the number of characters in the paragraph,
excluding the paragraph separators.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFString.h

CFStringGetPascalString
Copies the character contents of a CFString object to a local Pascal string buffer after converting the characters
to a requested encoding.

Boolean CFStringGetPascalString (
 CFStringRef theString,
 StringPtr buffer,
 CFIndex bufferSize,
 CFStringEncoding encoding
);

Parameters
theString

The string to examine.

buffer
The Pascal string buffer into which to copy the theString. The buffer must be at least bufferSize
bytes in length. On return, contains the converted characters. If there is an error in conversion, the
buffer contains only partial results.

bufferSize
The length of the local buffer in bytes (accounting for the length byte).

encoding
The string encoding to which the character contents of theString should be converted.

Return Value
true if the operation succeeds or false if the conversion fails or the provided buffer is too small.

Discussion
This function is useful when you need your own copy of a CFString object's character data as a Pascal string.
You can also call it as a “backup” operation when a prior call to the CFStringGetPascalStringPtr (page
567) function fails.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GrabBag
MoreIsBetter
QISA

566 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

QTKitTimeCode

Declared In
CFString.h

CFStringGetPascalStringPtr
Quickly obtains a pointer to a Pascal buffer containing the characters of a string in a given encoding.

ConstStringPtr CFStringGetPascalStringPtr (
 CFStringRef theString,
 CFStringEncoding encoding
);

Parameters
theString

The string to examine.

encoding
The string encoding to which the character contents of theString should be converted.

Return Value
A pointer to a Pascal string buffer or NULL if the internal storage of theString does not allow this to be
returned efficiently.

Discussion
This function either returns the requested pointer immediately, with no memory allocations and no copying,
in constant time, or returns NULL. If the latter is returned, call an alternative function such as the
CFStringGetPascalString (page 566) function to extract the characters.

Whether or not this function returns a valid pointer or NULL depends on many factors, all of which depend
on how the string was created and its properties. In addition, the function result might change between
different releases and on different platforms. So do not count on receiving a non-NULL result from this
function under any circumstances.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GrabBag

Declared In
CFString.h

CFStringGetRangeOfComposedCharactersAtIndex
Returns the range of the composed character sequence at a specified index.

Functions 567
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFRange CFStringGetRangeOfComposedCharactersAtIndex (
 CFStringRef theString,
 CFIndex theIndex
);

Parameters
theString

The string to examine.

theIndex
The index of the character contained in the composed character sequence. If the index is outside the
range of the string (0 to N-1 inclusive, where N is the length of the string), the behavior is undefined.

Return Value
The range of the composed character sequence.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFString.h

CFStringGetSmallestEncoding
Returns the smallest encoding on the current system for the character contents of a string.

CFStringEncoding CFStringGetSmallestEncoding (
 CFStringRef theString
);

Parameters
theString

The string for which to find the smallest encoding.

Return Value
The string encoding that has the smallest representation of theString.

Discussion
This function returns the supported encoding that requires the least space (in terms of bytes needed to
represent one character) to represent the character contents of a string. This information is not always
immediately available, so this function might need to compute it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringGetSystemEncoding
Returns the default encoding used by the operating system when it creates strings.

568 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFStringEncoding CFStringGetSystemEncoding (
 void
);

Return Value
The default string encoding.

Discussion
This function returns the default text encoding used by the OS when it creates strings. In Mac OS X, this
encoding is determined by the user's preferred language setting. The preferred language is the first language
listed in the International pane of the System Preferences.

In most situations you will not want to use this function, however, because your primary interest will be your
application's default text encoding. The application encoding is required when you create a CFStringRef from
strings stored in Resource Manager resources, which typically use one of the Mac encodings such as MacRoman
or MacJapanese.

To get your application's default text encoding, call the GetApplicationTextEncoding Carbon function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLCarbon1ContextPbuffer
GLCarbonSharedPbuffer
HID Utilities Source
NSLMiniBrowser
QISA

Declared In
CFString.h

CFStringGetTypeID
Returns the type identifier for the CFString opaque type.

CFTypeID CFStringGetTypeID (
 void
);

Return Value
The type identifier for the CFString opaque type.

Discussion
CFMutableString objects have the same type identifier as CFString objects.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DRDataBurnCarbonUI
DREraseCarbonUI
MoreIsBetter
MoreSCF

Functions 569
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

QISA

Declared In
CFString.h

CFStringHasPrefix
Determines if the character data of a string begin with a specified sequence of characters.

Boolean CFStringHasPrefix (
 CFStringRef theString,
 CFStringRef prefix
);

Parameters
theString

The string to search.

prefix
The prefix to search for.

Return Value
true if theString begins with prefix, false if otherwise.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AppleScriptRunner
HID Calibrator
MoreIsBetter
MoreSCF
QISA

Declared In
CFString.h

CFStringHasSuffix
Determines if a string ends with a specified sequence of characters.

Boolean CFStringHasSuffix (
 CFStringRef theString,
 CFStringRef suffix
);

Parameters
theString

The string to be evaluated.

suffix
The suffix to search for.

Return Value
true if theString ends with suffix, false otherwise.

570 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Calibrator
HID Config Save
HID Explorer
MoreIsBetter
QISA

Declared In
CFString.h

CFStringInitInlineBuffer
Initializes an in-line buffer to use for efficient access of a CFString object's characters.

void CFStringInitInlineBuffer (
 CFStringRef str,
 CFStringInlineBuffer *buf,
 CFRange range
);

Parameters
str

The string to copy to the in-line buffer.

buf
The (uninitialized) CFStringInlineBuffer (page 573) structure to initialize. On return, an initialized
structure that can be used in a CFStringGetCharacterFromInlineBuffer (page 555) function
call. Typically this buffer is allocated on the stack.

range
The range of characters in str to copy to buf. The specified range must not exceed the length of the
string.

Discussion
This function initializes an CFStringInlineBuffer (page 573) structure that can be used for accessing the
characters of a string. Once the buffer is initialized you can call the
CFStringGetCharacterFromInlineBuffer (page 555) function to access the characters in the buffer one
at a time. The in-line buffer functions, along with the CFStringInlineBuffer (page 573) structure, give
you fast access to the characters of a string. The technique for in-line buffer access combines the convenience
of one-at-a-time character access with the efficiency of bulk access.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringIsEncodingAvailable
Determines whether a given Core Foundation string encoding is available on the current system.

Functions 571
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Boolean CFStringIsEncodingAvailable (
 CFStringEncoding encoding
);

Parameters
encoding

The Core Foundation string encoding to test.

Return Value
true if the encoding is available, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

Data Types

CFStringCompareFlags
A CFOptionFlags (page 763) type for specifying options for string comparison .

typedef CFOptionFlags CFStringCompareFlags;

Discussion
See “String Comparison Flags” (page 574) for values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

CFStringEncoding
An integer type for constants used to specify supported string encodings in various CFString functions.

typedef UInt32 CFStringEncoding;

Discussion
This type is used to define the constants for the built-in encodings (see “Built-in String Encodings” (page 575)
for a list) and for platform-dependent encodings (see “External String Encodings” (page 578)). If CFString does
not recognize or support the string encoding of a particular string, CFString functions will identify the string’s
encoding as kCFStringEncodingInvalidId (page 578).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFString.h

572 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

CFStringEncodings
Index type for constants used to specify external string encodings.

typedef CFIndex CFStringEncodings;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFStringEncodingExt.h

CFStringInlineBuffer
Defines the buffer and related fields used for in-line buffer access of characters in CFString objects.

struct CFStringInlineBuffer {
 UniChar buffer[64];
 CFStringRef theString;
 const UniChar *directBuffer;
 CFRange rangeToBuffer;
 CFIndex bufferedRangeStart;
 CFIndex bufferedRangeEnd;
};

Discussion
This structure is used for in-line buffer access of characters contained by a CFString object. Use the
CFStringInitInlineBuffer (page 571) function for initializing the fields of this structure; do not do it
manually. Once the buffer is initialized, use the CFStringGetCharacterFromInlineBuffer (page 555)
function to access characters from the buffer. Do not access the fields directly as they might change between
releases.

The only reason this structure is not opaque is to allow the in-line functions to access its fields.

Declared In
CFString.h

CFStringRef
A reference to a CFString object.

typedef const struct __CFString *CFStringRef;

Discussion
The CFStringRef type refers to a CFString object, which “encapsulates” a Unicode string along with its
length. CFString is an opaque type that defines the characteristics and behavior of CFString objects.

Values of type CFStringRefmay refer to immutable or mutable strings, as CFMutableString objects respond
to all functions intended for immutable CFString objects. Functions which accept CFStringRef values, and
which need to hold on to the values immutably, should call CFStringCreateCopy (page 535) (instead of
CFRetain (page 639)) to do so.

Availability
Available in Mac OS X v10.0 and later.

Data Types 573
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Declared In
CFBase.h

Constants

String Comparison Flags
Flags that specify how string comparisons are performed.

enum CFStringCompareFlags {
 kCFCompareCaseInsensitive = 1,
 kCFCompareBackwards = 4,
 kCFCompareAnchored = 8,
 kCFCompareNonliteral = 16,
 kCFCompareLocalized = 32,
 kCFCompareNumerically = 64,
 kCFCompareDiacriticInsensitive = 128,
 kCFCompareWidthInsensitive = 256,
 kCFCompareForcedOrdering = 512
};

Constants
kCFCompareCaseInsensitive

Specifies that the comparison should ignore differences in case between alphabetical characters.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFCompareBackwards
Specifies that the comparison should start at the last elements of the entities being compared (for
example, strings or arrays).

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFCompareAnchored
Performs searching only on characters at the beginning or end of the range.

No match at the beginning or end means nothing is found, even if a matching sequence of characters
occurs elsewhere in the string.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFCompareNonliteral
Specifies that loose equivalence is acceptable, especially as pertains to diacritical marks.

For example, “ö” represented as two distinct characters (“o” and “umlaut”) is equivalent to “ö”
represented by a single character (“o-umlaut”). Note that this is not the same as diacritic insensitivity.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

574 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFCompareLocalized
Specifies that the comparison should take into account differences related to locale, such as the
thousands separator character.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFCompareNumerically
Specifies that represented numeric values should be used as the basis for comparison and not the
actual character values.

For example, “version 2” is less than “version 2.5”.

This comparison does not work if kCFCompareLocalized is specified on systems before Mac OS X
v10.3.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFCompareDiacriticInsensitive
Specifies that the comparison should ignore diacritic markers.

For example, “ö” (“o-umlaut”) is equivalent to “o”.

Diacritic markers are designated as all non-spacing marks below U+0510.

Available in Mac OS X v10.5 and later.

Declared in CFString.h.

kCFCompareWidthInsensitive
Specifies that the comparison should ignore width differences.

For example, “a” is equivalent to UFF41.

Available in Mac OS X v10.5 and later.

Declared in CFString.h.

kCFCompareForcedOrdering
Specifies that the comparison is forced to return either kCFCompareLessThan or
kCFCompareGreaterThan if the strings are equivalent but not strictly equal.

You use this option for stability when sorting (for example, with kCFCompareCaseInsensitive
specified “aaa” is greater than “AAA”).

Available in Mac OS X v10.5 and later.

Declared in CFString.h.

Discussion
These constants are flags intended for use in the comparison-option parameters in comparison functions
such as CFStringCompare (page 527). If you want to request multiple options, combine them with a
bitwise-OR operation.

Declared In
CFString.h

Built-in String Encodings
Encodings that are built-in on all platforms on which Mac OS X runs.

Constants 575
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

enum CFStringBuiltInEncodings {
 kCFStringEncodingMacRoman = 0,
 kCFStringEncodingWindowsLatin1 = 0x0500,
 kCFStringEncodingISOLatin1 = 0x0201,
 kCFStringEncodingNextStepLatin = 0x0B01,
 kCFStringEncodingASCII = 0x0600,
 kCFStringEncodingUnicode = 0x0100,
 kCFStringEncodingUTF8 = 0x08000100,
 kCFStringEncodingNonLossyASCII = 0x0BFF,

 kCFStringEncodingUTF16 = 0x0100,
 kCFStringEncodingUTF16BE = 0x10000100,
 kCFStringEncodingUTF16LE = 0x14000100,
 kCFStringEncodingUTF32 = 0x0c000100,
 kCFStringEncodingUTF32BE = 0x18000100,
 kCFStringEncodingUTF32LE = 0x1c000100
};
typedef enum CFStringBuiltInEncodings CFStringBuiltInEncodings;

Constants
kCFStringEncodingMacRoman

An encoding constant that identifies the Mac Roman encoding.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingWindowsLatin1
An encoding constant that identifies the Windows Latin 1 encoding (ANSI codepage 1252).

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingISOLatin1
An encoding constant that identifies the ISO Latin 1 encoding (ISO 8859-1)

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingNextStepLatin
An encoding constant that identifies the NextStep/OpenStep encoding.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingASCII
An encoding constant that identifies the ASCII encoding (decimal values 0 through 127).

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingUnicode
An encoding constant that identifies the Unicode encoding.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingUTF8
An encoding constant that identifies the UTF 8 encoding.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

576 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingNonLossyASCII
An encoding constant that identifies non-lossy ASCII encoding.

Available in Mac OS X v10.0 and later.

Declared in CFString.h.

kCFStringEncodingUTF16
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF16Format encoding
(alias of kCFStringEncodingUnicode).

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringEncodingUTF16BE
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF16BEFormat
encoding. This constant specifies big-endian byte order.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringEncodingUTF16LE
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF16LEFormat
encoding. This constant specifies little-endian byte order.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringEncodingUTF32
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF32Format encoding.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringEncodingUTF32BE
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF32BEFormat
encoding. This constant specifies big-endian byte order.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

kCFStringEncodingUTF32LE
An encoding constant that identifies kTextEncodingUnicodeDefault + kUnicodeUTF32LEFormat
encoding. This constant specifies little-endian byte order.

Available in Mac OS X v10.4 and later.

Declared in CFString.h.

Declared In
CFString.h

Invalid String Encoding Flag
Special value returned from functions to indicate a string encoding that is not supported or recognized by
CFString.

Constants 577
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

#define kCFStringEncodingInvalidId (0xffffffffU)

Constants
kCFStringEncodingInvalidId

Used as a function result to identify an encoding that is not supported or recognized by CFString.

Available in Mac OS X v10.2 and later.

Declared in CFString.h.

Declared In
CFString.h

External String Encodings
CFStringEncoding constants for encodings that may be supported by CFString.

578 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

enum {
 kCFStringEncodingMacRoman = 0L,
 kCFStringEncodingMacJapanese = 1,
 kCFStringEncodingMacChineseTrad = 2,
 kCFStringEncodingMacKorean = 3,
 kCFStringEncodingMacArabic = 4,
 kCFStringEncodingMacHebrew = 5,
 kCFStringEncodingMacGreek = 6,
 kCFStringEncodingMacCyrillic = 7,
 kCFStringEncodingMacDevanagari = 9,
 kCFStringEncodingMacGurmukhi = 10,
 kCFStringEncodingMacGujarati = 11,
 kCFStringEncodingMacOriya = 12,
 kCFStringEncodingMacBengali = 13,
 kCFStringEncodingMacTamil = 14,
 kCFStringEncodingMacTelugu = 15,
 kCFStringEncodingMacKannada = 16,
 kCFStringEncodingMacMalayalam = 17,
 kCFStringEncodingMacSinhalese = 18,
 kCFStringEncodingMacBurmese = 19,
 kCFStringEncodingMacKhmer = 20,
 kCFStringEncodingMacThai = 21,
 kCFStringEncodingMacLaotian = 22,
 kCFStringEncodingMacGeorgian = 23,
 kCFStringEncodingMacArmenian = 24,
 kCFStringEncodingMacChineseSimp = 25,
 kCFStringEncodingMacTibetan = 26,
 kCFStringEncodingMacMongolian = 27,
 kCFStringEncodingMacEthiopic = 28,
 kCFStringEncodingMacCentralEurRoman = 29,
 kCFStringEncodingMacVietnamese = 30,
 kCFStringEncodingMacExtArabic = 31,
 kCFStringEncodingMacSymbol = 33,
 kCFStringEncodingMacDingbats = 34,
 kCFStringEncodingMacTurkish = 35,
 kCFStringEncodingMacCroatian = 36,
 kCFStringEncodingMacIcelandic = 37,
 kCFStringEncodingMacRomanian = 38,
 kCFStringEncodingMacCeltic = 39,
 kCFStringEncodingMacGaelic = 40,
 kCFStringEncodingMacFarsi = 0x8C,
 kCFStringEncodingMacUkrainian = 0x98,
 kCFStringEncodingMacInuit = 0xEC,
 kCFStringEncodingMacVT100 = 0xFC,
 kCFStringEncodingMacHFS = 0xFF,
 kCFStringEncodingISOLatin1 = 0x0201,
 kCFStringEncodingISOLatin2 = 0x0202,
 kCFStringEncodingISOLatin3 = 0x0203,
 kCFStringEncodingISOLatin4 = 0x0204,
 kCFStringEncodingISOLatinCyrillic = 0x0205,
 kCFStringEncodingISOLatinArabic = 0x0206,
 kCFStringEncodingISOLatinGreek = 0x0207,
 kCFStringEncodingISOLatinHebrew = 0x0208,
 kCFStringEncodingISOLatin5 = 0x0209,
 kCFStringEncodingISOLatin6 = 0x020A,
 kCFStringEncodingISOLatinThai = 0x020B,
 kCFStringEncodingISOLatin7 = 0x020D,
 kCFStringEncodingISOLatin8 = 0x020E,

Constants 579
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

 kCFStringEncodingISOLatin9 = 0x020F,
 kCFStringEncodingISOLatin10 = 0x0210,
 kCFStringEncodingDOSLatinUS = 0x0400,
 kCFStringEncodingDOSGreek = 0x0405,
 kCFStringEncodingDOSBalticRim = 0x0406,
 kCFStringEncodingDOSLatin1 = 0x0410,
 kCFStringEncodingDOSGreek1 = 0x0411,
 kCFStringEncodingDOSLatin2 = 0x0412,
 kCFStringEncodingDOSCyrillic = 0x0413,
 kCFStringEncodingDOSTurkish = 0x0414,
 kCFStringEncodingDOSPortuguese = 0x0415,
 kCFStringEncodingDOSIcelandic = 0x0416,
 kCFStringEncodingDOSHebrew = 0x0417,
 kCFStringEncodingDOSCanadianFrench = 0x0418,
 kCFStringEncodingDOSArabic = 0x0419,
 kCFStringEncodingDOSNordic = 0x041A,
 kCFStringEncodingDOSRussian = 0x041B,
 kCFStringEncodingDOSGreek2 = 0x041C,
 kCFStringEncodingDOSThai = 0x041D,
 kCFStringEncodingDOSJapanese = 0x0420,
 kCFStringEncodingDOSChineseSimplif = 0x0421,
 kCFStringEncodingDOSKorean = 0x0422,
 kCFStringEncodingDOSChineseTrad = 0x0423,
 kCFStringEncodingWindowsLatin1 = 0x0500,
 kCFStringEncodingWindowsLatin2 = 0x0501,
 kCFStringEncodingWindowsCyrillic = 0x0502,
 kCFStringEncodingWindowsGreek = 0x0503,
 kCFStringEncodingWindowsLatin5 = 0x0504,
 kCFStringEncodingWindowsHebrew = 0x0505,
 kCFStringEncodingWindowsArabic = 0x0506,
 kCFStringEncodingWindowsBalticRim = 0x0507,
 kCFStringEncodingWindowsVietnamese = 0x0508,
 kCFStringEncodingWindowsKoreanJohab = 0x0510,
 kCFStringEncodingASCII = 0x0600,
 kCFStringEncodingANSEL = 0x0601,
 kCFStringEncodingJIS_X0201_76 = 0x0620,
 kCFStringEncodingJIS_X0208_83 = 0x0621,
 kCFStringEncodingJIS_X0208_90 = 0x0622,
 kCFStringEncodingJIS_X0212_90 = 0x0623,
 kCFStringEncodingJIS_C6226_78 = 0x0624,
 kCFStringEncodingShiftJIS_X0213_00 = 0x0628,
 kCFStringEncodingShiftJIS_X0213_MenKuTen = 0x0629,
 kCFStringEncodingGB_2312_80 = 0x0630,
 kCFStringEncodingGBK_95 = 0x0631,
 kCFStringEncodingGB_18030_2000 = 0x0632,
 kCFStringEncodingKSC_5601_87 = 0x0640,
 kCFStringEncodingKSC_5601_92_Johab = 0x0641,
 kCFStringEncodingCNS_11643_92_P1 = 0x0651,
 kCFStringEncodingCNS_11643_92_P2 = 0x0652,
 kCFStringEncodingCNS_11643_92_P3 = 0x0653,
 kCFStringEncodingISO_2022_JP = 0x0820,
 kCFStringEncodingISO_2022_JP_2 = 0x0821,
 kCFStringEncodingISO_2022_JP_1 = 0x0822,
 kCFStringEncodingISO_2022_JP_3 = 0x0823,
 kCFStringEncodingISO_2022_CN = 0x0830,
 kCFStringEncodingISO_2022_CN_EXT = 0x0831,
 kCFStringEncodingISO_2022_KR = 0x0840,
 kCFStringEncodingEUC_JP = 0x0920,

580 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

 kCFStringEncodingEUC_CN = 0x0930,
 kCFStringEncodingEUC_TW = 0x0931,
 kCFStringEncodingEUC_KR = 0x0940,
 kCFStringEncodingShiftJIS = 0x0A01,
 kCFStringEncodingKOI8_R = 0x0A02,
 kCFStringEncodingBig5 = 0x0A03,
 kCFStringEncodingMacRomanLatin1 = 0x0A04,
 kCFStringEncodingHZ_GB_2312 = 0x0A05,
 kCFStringEncodingBig5_HKSCS_1999 = 0x0A06,
 kCFStringEncodingVISCII = 0x0A07,
 kCFStringEncodingKOI8_U = 0x0A08,
 kCFStringEncodingBig5_E = 0x0A09,
 kCFStringEncodingNextStepLatin = 0x0B01,
 kCFStringEncodingNextStepJapanese = 0x0B02,
 kCFStringEncodingEBCDIC_US = 0x0C01,
 kCFStringEncodingEBCDIC_CP037 = 0x0C02,
};

Constants
kCFStringEncodingMacJapanese

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacChineseTrad

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacKorean

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacArabic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacHebrew

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacGreek

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacCyrillic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacDevanagari

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacGurmukhi

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Constants 581
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingMacGujarati

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacOriya

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacBengali

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacTamil

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacTelugu

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacKannada

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacMalayalam

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacSinhalese

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacBurmese

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacKhmer

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacThai

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacLaotian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacGeorgian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

582 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingMacArmenian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacChineseSimp

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacTibetan

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacMongolian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacEthiopic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacCentralEurRoman

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacVietnamese

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacExtArabic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacSymbol

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacDingbats

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacTurkish

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacCroatian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacIcelandic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Constants 583
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingMacRomanian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacCeltic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacGaelic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacFarsi
Like MacArabic but uses Farsi digits

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacUkrainian

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacInuit

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacVT100
VT100102 font from Comm Toolbox: Latin-1 repertoire + box drawing etc

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacHFS
Meta-value, should never appear in a table

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin2
ISO 8859-2

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin3
ISO 8859-3

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin4
ISO 8859-4

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

584 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingISOLatinCyrillic
ISO 8859-5

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatinArabic
ISO 8859-6, =ASMO 708, =DOS CP 708

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatinGreek
ISO 8859-7

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatinHebrew
ISO 8859-8

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin5
ISO 8859-9

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin6
ISO 8859-10

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatinThai
ISO 8859-11

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin7
ISO 8859-13

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin8
ISO 8859-14

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISOLatin9
ISO 8859-15

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Constants 585
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingISOLatin10
ISO 8859-16

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSLatinUS
code page 437

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSGreek
code page 737 (formerly code page 437G)

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSBalticRim
code page 775

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSLatin1
code page 850, "Multilingual"

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSGreek1
code page 851

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSLatin2
code page 852, Slavic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSCyrillic
code page 855, IBM Cyrillic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSTurkish
code page 857, IBM Turkish

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSPortuguese
code page 860

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

586 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingDOSIcelandic
code page 861

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSHebrew
code page 862

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSCanadianFrench
code page 863

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSArabic
code page 864

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSNordic
code page 865

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSRussian
code page 866

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSGreek2
code page 869, IBM Modern Greek

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSThai
code page 874, also for Windows

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSJapanese
code page 932, also for Windows

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSChineseSimplif
code page 936, also for Windows

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Constants 587
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingDOSKorean
code page 949, also for Windows; Unified Hangul Code

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingDOSChineseTrad
code page 950, also for Windows

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsLatin2
code page 1250, Central Europe

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsCyrillic
code page 1251, Slavic Cyrillic

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsGreek
code page 1253

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsLatin5
code page 1254, Turkish

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsHebrew
code page 1255

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsArabic
code page 1256

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsBalticRim
code page 1257

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingWindowsVietnamese
code page 1258

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

588 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingWindowsKoreanJohab
code page 1361, for Windows NT

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingANSEL
ANSEL (ANSI Z39.47)

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingJIS_X0201_76

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingJIS_X0208_83

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingJIS_X0208_90

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingJIS_X0212_90

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingJIS_C6226_78

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingShiftJIS_X0213_00
Shift-JIS format encoding of JIS X0213 planes 1 and 2

Available in Mac OS X v10.2 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingShiftJIS_X0213_MenKuTen
JIS X0213 in plane-row-column notation

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingGB_2312_80

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingGBK_95
annex to GB 13000-93; for Windows 95

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingGB_18030_2000

Available in Mac OS X v10.2 and later.

Declared in CFStringEncodingExt.h.

Constants 589
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingKSC_5601_87
same as KSC 5601-92 without Johab annex

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingKSC_5601_92_Johab
KSC 5601-92 Johab annex

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingCNS_11643_92_P1
CNS 11643-1992 plane 1

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingCNS_11643_92_P2
CNS 11643-1992 plane 2

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingCNS_11643_92_P3
CNS 11643-1992 plane 3 (was plane 14 in 1986 version)

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_JP

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_JP_2

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_JP_1
RFC 2237

Available in Mac OS X v10.2 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_JP_3
JIS X0213

Available in Mac OS X v10.2 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_CN

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingISO_2022_CN_EXT

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

590 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingISO_2022_KR

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEUC_JP
ISO 646, 1-byte katakana, JIS 208, JIS 212

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEUC_CN
ISO 646, GB 2312-80

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEUC_TW
ISO 646, CNS 11643-1992 Planes 1-16

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEUC_KR
ISO 646, KS C 5601-1987

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingShiftJIS
plain Shift-JIS

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingKOI8_R
Russian internet standard

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingBig5
Big-5 (has variants)

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingMacRomanLatin1
Mac OS Roman permuted to align with ISO Latin-1

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingHZ_GB_2312
HZ (RFC 1842, for Chinese mail & news)

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Constants 591
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

kCFStringEncodingBig5_HKSCS_1999
Big-5 with Hong Kong special char set supplement

Available in Mac OS X v10.2 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingVISCII
RFC 1456, Vietnamese

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingKOI8_U
RFC 2319, Ukrainian

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingBig5_E
Taiwan Big-5E standard

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingNextStepJapanese
NextStep Japanese encoding

Available in Mac OS X v10.4 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEBCDIC_US
basic EBCDIC-US

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

kCFStringEncodingEBCDIC_CP037
code page 037, extended EBCDIC (Latin-1 set) for US,Canada...

Available in Mac OS X v10.0 and later.

Declared in CFStringEncodingExt.h.

Discussion
See the CFStringEncodingExt.h header file for the most current list of external string encodings and for
more details.

Declared In
CFStringEncodingExt.h

592 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

CFString Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFStringTokenizer.h

Companion guide Strings Programming Guide for Core Foundation

Overview

CFStringTokenizer allows you tokenize strings into words, sentences or paragraphs in a language-neutral
way. It supports languages such as Japanese and Chinese that do not delimit words by spaces, as well as
de-compounding German compounds. You can obtain Latin transcription for tokens. It also provides language
identification API.

You can use a CFStringTokenizer to break a string into tokens (sub-strings) on the basis of words, sentences,
or paragraphs. When you create a tokenizer, you can supply options to further modify the tokenization—see
“Tokenization Modifiers” (page 601).

In addition, with CFStringTokenizer:

 ■ You can de-compound German compounds

 ■ You can identify the language used in a string (using
CFStringTokenizerCopyBestStringLanguage (page 596))

 ■ You can obtain Latin transcription for tokens

To find a token that includes the character specified by character index and set it as the current token, you
call CFStringTokenizerGoToTokenAtIndex (page 599). To advance to the next token and set it as the
current token, you call CFStringTokenizerAdvanceToNextToken (page 595). To get the range of current
token, you call CFStringTokenizerGetCurrentTokenRange (page 599). You can use
CFStringTokenizerCopyCurrentTokenAttribute (page 596) to get the attribute of the current token.
If the current token is a compound, you can call CFStringTokenizerGetCurrentSubTokens (page 598)
to retrieve the subtokens or derived subtokens contained in the compound token. To guess the language
of a string, you call CFStringTokenizerCopyBestStringLanguage (page 596).

CFStringTokenizer replaces the Language Analysis Manager (see Language Analysis Manager Reference). The
Language Analysis Manager API provides access to one specific language engine at a time. For example you
can create an analysis environment for Japanese tokenization, but it can't then be used to tokenize Chinese.
Such API is good when you develop a language specific applications that handle a specific language such
as input methods. It is not, however, convenient when you develop an internationalized applications which

Overview 593
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

handle text in language neutral way. Conceptually, CFStringTokenizer provides a higher level API that supports
typical tasks of internationalized applications. With CFStringTokenizer you can tokenize a string without
knowing the language.

The following Language Analysis Manager functionality is not available with CFStringTokenizer:

 ■ Obtaining the part of speech for a token

 ■ Obtaining alternative tokenization

 ■ Kana-Kanji conversion

Functions by Task

Creating a Tokenizer

CFStringTokenizerCreate (page 597)
Returns a tokenizer for a given string.

Setting the String

CFStringTokenizerSetString (page 600)
Sets the string for a tokenizer.

Changing the Location

CFStringTokenizerAdvanceToNextToken (page 595)
Advances the tokenizer to the next token and sets that as the current token.

CFStringTokenizerGoToTokenAtIndex (page 599)
Finds a token that includes the character at a given index, and set it as the current token.

Getting Information About the Current Token

CFStringTokenizerCopyCurrentTokenAttribute (page 596)
Returns a given attribute of the current token.

CFStringTokenizerGetCurrentTokenRange (page 599)
Returns the range of the current token.

CFStringTokenizerGetCurrentSubTokens (page 598)
Retrieves the subtokens or derived subtokens contained in the compound token.

594 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

Identifying a Language

CFStringTokenizerCopyBestStringLanguage (page 596)
Guesses a language of a given string and returns the guess as a BCP 47 string.

Getting the CFStringTokenizer Type ID

CFStringTokenizerGetTypeID (page 599)
Returns the type ID for CFStringTokenizer.

Functions

CFStringTokenizerAdvanceToNextToken
Advances the tokenizer to the next token and sets that as the current token.

CFStringTokenizerTokenType CFStringTokenizerAdvanceToNextToken (
 CFStringTokenizerRef tokenizer
);

Parameters
tokenizer

A CFStringTokenizer object.

Return Value
The type of the token if the tokenizer succeeded in finding a token and setting it as current token. Returns
kCFStringTokenizerTokenNone if the tokenizer failed to find a token. For possible values, see “Token
Types” (page 603).

Discussion
If there is no preceding call to CFStringTokenizerGoToTokenAtIndex (page 599) or
CFStringTokenizerAdvanceToNextToken, the function finds the first token in the range specified by the
CFStringTokenizerCreate (page 597). If there is a preceding, successful, call to
CFStringTokenizerGoToTokenAtIndex (page 599) or CFStringTokenizerAdvanceToNextToken and
there is a current token, proceeds to the next token. If a token is found, it is set as the current token and the
function returns true; otherwise the current token is invalidates and the function returns false.

You can obtain the range and attribute of the token calling
CFStringTokenizerGetCurrentTokenRange (page 599) and
CFStringTokenizerCopyCurrentTokenAttribute (page 596). If the token is a compound (with type
kCFStringTokenizerTokenHasSubTokensMask or
kCFStringTokenizerTokenHasDerivedSubTokensMask), you can obtain its subtokens and (or) derived
subtokens by calling CFStringTokenizerGetCurrentSubTokens (page 598).

Availability
Available in Mac OS X v10.5 and later.

See Also
CFStringTokenizerGoToTokenAtIndex (page 599)

Functions 595
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

Declared In
CFStringTokenizer.h

CFStringTokenizerCopyBestStringLanguage
Guesses a language of a given string and returns the guess as a BCP 47 string.

CFStringRef CFStringTokenizerCopyBestStringLanguage (
 CFStringRef string,
 CFRange range
);

Parameters
string

The string to test to identify the language.

range
The range of string to use for the test. If NULL, the first few hundred characters of the string are
examined.

Return Value
A language in BCP 47 form, or NULL if the language in string could not be identified. Ownership follows
the Create Rule.

Discussion
The result is not guaranteed to be accurate. Typically, the function requires 200-400 characters to reliably
guess the language of a string.

CRStringTokenizer recognizes the following languages:

ar (Arabic), bg (Bulgarian), cs (Czech), da (Danish), de (German), el (Greek), en (English), es (Spanish), fi (Finnish),
fr (French), he (Hebrew), hr (Croatian), hu (Hungarian), is (Icelandic), it (Italian), ja (Japanese), ko (Korean), nb
(Norwegian Bokmål), nl (Dutch), pl (Polish), pt (Portuguese), ro (Romanian), ru (Russian), sk (Slovak), sv
(Swedish), th (Thai), tr (Turkish), uk (Ukrainian), zh-Hans (Simplified Chinese), zh-Hant (Traditional Chinese).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFStringTokenizer.h

CFStringTokenizerCopyCurrentTokenAttribute
Returns a given attribute of the current token.

CFTypeRef CFStringTokenizerCopyCurrentTokenAttribute (
 CFStringTokenizerRef tokenizer,
 CFOptionFlags attribute
);

Parameters
tokenizer

A CFStringTokenizer object.

596 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

attribute
The token attribute to obtain. The value must be
kCFStringTokenizerAttributeLatinTranscription, or
kCFStringTokenizerAttributeLanguage.

Return Value
The attribute specified by attribute of the current token, or NULL if the current token does not have the
specified attribute or there is no current token. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFStringTokenizer.h

CFStringTokenizerCreate
Returns a tokenizer for a given string.

CFStringTokenizerRef CFStringTokenizerCreate (
 CFAllocatorRef alloc,
 CFStringRef string,
 CFRange range,
 CFOptionFlags options,
 CFLocaleRef locale
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

string
The string to tokenize.

range
The range of the characters in string to tokenize.

options
A tokenization unit option that specifies how string should be tokenized. The options can be
modified by adding unit modifier options to tell the tokenizer to prepare specified attributes when
it tokenizes string.

For possible values, see “Tokenization Modifiers” (page 601).

locale
A locale that specifies language- or region-specific behavior for the tokenization. You can pass NULL
to use the default system locale, although this is typically not recommended—instead use
CFLocaleCopyCurrent (page 240) to specify the locale of the current user.

For more information, see “Tokenization Modifiers” (page 601).

Return Value
A tokenizer to analyze the range range of string for the given locale and options. Ownership follows the
Create Rule.

Availability
Available in Mac OS X v10.5 and later.

Functions 597
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

Declared In
CFStringTokenizer.h

CFStringTokenizerGetCurrentSubTokens
Retrieves the subtokens or derived subtokens contained in the compound token.

CFIndex CFStringTokenizerGetCurrentSubTokens (
 CFStringTokenizerRef tokenizer,
 CFRange *ranges,
 CFIndex maxRangeLength,
 CFMutableArrayRef derivedSubTokens
);

Parameters
tokenizer

A CFStringTokenizer object.

tokenizer
Upon return, an array of CFRanges containing the ranges of subtokens. The ranges are relative to the
string specified to CFStringTokenizerCreate. This parameter can be NULL.

maxRangeLength
The maximum number of ranges to return.

derivedSubTokens
A CFMutableArray to which the derived subtokens are to be added. This parameter can be NULL.

Return Value
The number of ranges returned.

Discussion
If token type is kCFStringTokenizerTokenNone, the ranges array and derivedSubTokens array are
untouched and the return value is 0.

If token type is kCFStringTokenizerTokenNormal, the ranges array has one item filled in with the entire
range of the token (if maxRangeLength >= 1) and a string taken from the entire token range is added to
the derivedSubTokens array and the return value is 1.

If token type is kCFStringTokenizerTokenHasSubTokensMask or
kCFStringTokenizerTokenHasDerivedSubTokensMask, the ranges array is filled in with as many items
as there are subtokens (up to a limit of maxRangeLength).

The derivedSubTokens array will have sub tokens added even when the sub token is a substring of the
token. If token type is kCFStringTokenizerTokenHasSubTokensMask, the ordinary non-derived subtokens
are added to the derivedSubTokens array.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFStringTokenizer.h

598 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

CFStringTokenizerGetCurrentTokenRange
Returns the range of the current token.

CFRange CFStringTokenizerGetCurrentTokenRange (
 CFStringTokenizerRef tokenizer
);

Parameters
tokenizer

A CFStringTokenizer object.

Return Value
The range of the current token, or {kCFNotFound, 0} if there is no current token.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFStringTokenizer.h

CFStringTokenizerGetTypeID
Returns the type ID for CFStringTokenizer.

CFTypeID CFStringTokenizerGetTypeID (
 void
);

Return Value
The type ID for CFStringTokenizer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFStringTokenizer.h

CFStringTokenizerGoToTokenAtIndex
Finds a token that includes the character at a given index, and set it as the current token.

CFStringTokenizerTokenType CFStringTokenizerGoToTokenAtIndex (
 CFStringTokenizerRef tokenizer,
 CFIndex index
);

Parameters
tokenizer

A CFStringTokenizer object.

index
The index of a character in the string for tokenizer.

Functions 599
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

Return Value
The type of the token if the tokenizer succeeded in finding a token and setting it as the current token. Returns
kCFStringTokenizerTokenNone if the tokenizer failed to find a token. For possible values, see “Token
Types” (page 603).

Discussion
You can obtain the range and attribute of the token calling
CFStringTokenizerGetCurrentTokenRange (page 599) and
CFStringTokenizerCopyCurrentTokenAttribute (page 596). If the token is a compound (with type
kCFStringTokenizerTokenHasSubTokensMask or
kCFStringTokenizerTokenHasDerivedSubTokensMask), you can obtain its subtokens and (or) derived
subtokens by calling CFStringTokenizerGetCurrentSubTokens (page 598).

Availability
Available in Mac OS X v10.5 and later.

See Also
CFStringTokenizerAdvanceToNextToken (page 595)

Declared In
CFStringTokenizer.h

CFStringTokenizerSetString
Sets the string for a tokenizer.

void CFStringTokenizerSetString (
 CFStringTokenizerRef tokenizer,
 CFStringRef string,
 CFRange range
);

Parameters
tokenizer

A tokenizer.

string
The string for the tokenizer to tokenize.

range
The range of string to tokenize. The range of characters within the string to be tokenized. The specified
range must not exceed the length of the string.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFStringTokenizer.h

600 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

Data Types

CFStringTokenizerRef
A reference to a CFStringTokenizer object.

typedef struct __CFStringTokenizer * CFStringTokenizerRef;

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFStringTokenizer.h

CFStringTokenizerTokenType
Token types returned by CFStringTokenizerGoToTokenAtIndex (page 599) and
CFStringTokenizerAdvanceToNextToken (page 595).

typedef CFOptionFlags CFStringTokenizerTokenType;

Discussion
For possible values, see “Token Types” (page 603).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFStringTokenizer.h

Constants

Tokenization Modifiers
Tokenization options are used with CFStringTokenizerCreate (page 597) to specify how the string should
be tokenized

Data Types 601
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

enum {
 kCFStringTokenizerUnitWord = 0,
 kCFStringTokenizerUnitSentence = 1,
 kCFStringTokenizerUnitParagraph = 2,
 kCFStringTokenizerUnitLineBreak = 3,
 kCFStringTokenizerUnitWordBoundary = 4,
 kCFStringTokenizerAttributeLatinTranscription = 1L << 16,
 kCFStringTokenizerAttributeLanguage = 1L << 17
};

Constants
kCFStringTokenizerUnitWord

Specifies that a string should be tokenized by word. The locale parameter of
CFStringTokenizerCreate (page 597) is ignored.

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

kCFStringTokenizerUnitSentence
Specifies that a string should be tokenized by sentence. The locale parameter of
CFStringTokenizerCreate (page 597) is ignored.

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

kCFStringTokenizerUnitParagraph
Specifies that a string should be tokenized by paragraph. The locale parameter of
CFStringTokenizerCreate (page 597) is ignored.

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

kCFStringTokenizerUnitLineBreak
Specifies that a string should be tokenized by line break. The locale parameter of
CFStringTokenizerCreate (page 597) is ignored.

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

kCFStringTokenizerUnitWordBoundary
Specifies that a string should be tokenized by locale-sensitive word boundary.

You can use this constant in double-click range detection and whole word search. It is locale-sensitive.
If the locale is en_US_POSIX, a colon (U+003A) is treated as a word separator. If the locale parameter
of CFStringTokenizerCreate (page 597) is NULL, the locale from the global
AppleTextBreakLocale preference is used if it is available; otherwise the locale defaults to the first
locale in AppleLanguages.

kCFStringTokenizerUnitWordBoundary also returns space between words as a token.

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

kCFStringTokenizerAttributeLatinTranscription
Used with kCFStringTokenizerUnitWord, tells the tokenizer to prepare the Latin transcription
when it tokenizes the string.

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

602 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

kCFStringTokenizerAttributeLanguage
Tells the tokenizer to prepare the language (specified as an RFC 3066bis string) when it tokenizes the
string.

Used with kCFStringTokenizerUnitSentence (page 602) or
kCFStringTokenizerUnitParagraph (page 602).

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

Discussion
You use the tokenization unit options with CFStringTokenizerCreate (page 597) to specify how a string
should be tokenized.

You use the modifiers together with a tokenization unit to modify the way the string is tokenized.

You use the attribute specifiers to tell the tokenizer to prepare the specified attribute when it tokenizes the
given string. You can retrieve the attribute value by calling
CFStringTokenizerCopyCurrentTokenAttribute (page 596) with one of the attribute options.

The locale sensitivity of the tokenization unit options may change in a future release.

Declared In
CFStringTokenizer.h

Token Types
Token types returned by CFStringTokenizerGoToTokenAtIndex (page 599) and
CFStringTokenizerAdvanceToNextToken (page 595).

enum {
 kCFStringTokenizerTokenNone = 0,
 kCFStringTokenizerTokenNormal = 1,
 kCFStringTokenizerTokenHasSubTokensMask = 1L << 1,
 kCFStringTokenizerTokenHasDerivedSubTokensMask = 1L << 2,
 kCFStringTokenizerTokenHasHasNumbersMask = 1L << 3,
 kCFStringTokenizerTokenHasNonLettersMask = 1L << 4,
 kCFStringTokenizerTokenIsCJWordMask = 1L << 5
};

Constants
kCFStringTokenizerTokenNone

Has no token.

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

kCFStringTokenizerTokenNormal
Has a normal token.

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

Constants 603
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

kCFStringTokenizerTokenHasSubTokensMask
Compound token which may contain subtokens but with no derived subtokens.

You can obtain subtokens by calling CFStringTokenizerGetCurrentSubTokens (page 598).

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

kCFStringTokenizerTokenHasDerivedSubTokensMask
Compound token which may contain derived subtokens.

You can obtain subtokens and derived subtokens by calling
CFStringTokenizerGetCurrentSubTokens (page 598).

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

kCFStringTokenizerTokenHasHasNumbersMask
Appears to contain a number.

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

kCFStringTokenizerTokenHasNonLettersMask
Contains punctuation, symbols, and so on.

Given the way Unicode word break works, this means it is a standalone punctuation or symbol
character, or a string of such.

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

kCFStringTokenizerTokenIsCJWordMask
Contains kana and/or ideographs.

Available in Mac OS X v10.5 and later.

Declared in CFStringTokenizer.h.

Discussion
See http://www.unicode.org/reports/tr29/#Word_Boundaries for a detailed description of word boundaries.

Declared In
CFStringTokenizer.h

604 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

CFStringTokenizer Reference

http://www.unicode.org/reports/tr29/#Word_Boundaries

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFTimeZone.h
CFDate.h

Companion guide Dates and Times Programming Guide for Core Foundation

Overview

CFTimeZone defines the behavior of time zone objects. Time zone objects represent geopolitical regions.
Consequently, these objects have names for these regions. Time zone objects also represent a temporal
offset, either plus or minus, from Greenwich Mean Time (GMT) and an abbreviation (such as PST for Pacific
Standard Time).

CFTimeZone provides several functions to create time zone objects: CFTimeZoneCreateWithName (page
610) and CFTimeZoneCreateWithTimeIntervalFromGMT (page 611). CFTimeZone also permits you to set
the default time zone within your application using the CFTimeZoneSetDefault (page 615) function. You
can access this default time zone at any time with the CFTimeZoneCopyDefault (page 608) function.

CFTimeZone is “toll-free bridged” with its Cocoa Foundation counterpart, NSTimeZone. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSTimeZone * parameter, you can pass in a CFTimeZoneRef,
and in a function where you see a CFTimeZoneRef parameter, you can pass in an NSTimeZone instance.
This fact also applies to concrete subclasses of NSTimeZone. See Interchangeable Data Types for more
information on toll-free bridging.

Functions by Task

Creating a Time Zone

CFTimeZoneCreateWithName (page 610)
Returns the time zone object identified by a given name or abbreviation.

CFTimeZoneCreateWithTimeIntervalFromGMT (page 611)
Returns a time zone object for the specified time interval offset from Greenwich Mean Time (GMT).

CFTimeZoneCreate (page 609)
Creates a time zone with a given name and data.

Overview 605
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

System and Default Time Zones and Information

CFTimeZoneCopyAbbreviationDictionary (page 607)
Returns a dictionary holding the mappings of time zone abbreviations to time zone names.

CFTimeZoneCopyAbbreviation (page 607)
Returns the abbreviation of a time zone at a specified date.

CFTimeZoneCopyDefault (page 608)
Returns the default time zone set for your application.

CFTimeZoneCopySystem (page 609)
Returns the time zone currently used by the system.

CFTimeZoneSetDefault (page 615)
Sets the default time zone for your application the given time zone.

CFTimeZoneCopyKnownNames (page 608)
Returns an array of strings containing the names of all the time zones known to the system.

CFTimeZoneResetSystem (page 614)
Clears the previously determined system time zone, if any.

CFTimeZoneSetAbbreviationDictionary (page 615)
Sets the abbreviation dictionary to a given dictionary.

Getting Information About Time Zones

CFTimeZoneGetName (page 612)
Returns the geopolitical region name that identifies a given time zone.

CFTimeZoneCopyLocalizedName (page 608)
Returns the localized name of a given time zone.

CFTimeZoneGetSecondsFromGMT (page 613)
Returns the difference in seconds between the receiver and Greenwich Mean Time (GMT) at the
specified date.

CFTimeZoneGetData (page 611)
Returns the data that stores the information used by a time zone.

Getting Daylight Savings Time Information

CFTimeZoneIsDaylightSavingTime (page 614)
Returns whether or not a time zone is in daylight savings time at a specified date.

CFTimeZoneGetDaylightSavingTimeOffset (page 612)
Returns the daylight saving time offset for a time zone at a given time.

CFTimeZoneGetNextDaylightSavingTimeTransition (page 612)
Returns the time in a given time zone of the next daylight saving time transition after a given time.

606 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

Getting the CFTimeZone Type ID

CFTimeZoneGetTypeID (page 613)
Returns the type identifier for the CFTimeZone opaque type.

Functions

CFTimeZoneCopyAbbreviation
Returns the abbreviation of a time zone at a specified date.

CFStringRef CFTimeZoneCopyAbbreviation (
 CFTimeZoneRef tz,
 CFAbsoluteTime at
);

Parameters
tz

The time zone to use.

at
The absolute time at which to obtain the abbreviation.

Return Value
A string containing the time zone abbreviation of at. Ownership follows the Create Rule.

Discussion
Note that the abbreviation may be different at different dates. For example, during daylight savings time the
US/Eastern time zone has an abbreviation of "EDT." At other times, its abbreviation is "EST."

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTimeZone.h

CFTimeZoneCopyAbbreviationDictionary
Returns a dictionary holding the mappings of time zone abbreviations to time zone names.

CFDictionaryRef CFTimeZoneCopyAbbreviationDictionary (
 void
);

Return Value
A dictionary containing the mappings of time zone abbreviations to time zone names. Ownership follows
the Create Rule.

Discussion
More than one time zone may have the same abbreviation. For example, US/Pacific and Canada/Pacific both
use the abbreviation "PST." In these cases this function chooses a single name to map the abbreviation to.

Functions 607
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTimeZone.h

CFTimeZoneCopyDefault
Returns the default time zone set for your application.

CFTimeZoneRef CFTimeZoneCopyDefault (
 void
);

Return Value
A time zone representing the default time zone set for your application, or the system time zone if no default
is set. Ownership follows the Create Rule.

Discussion
If no default time zone is set, this function simply returns the result of the CFTimeZoneCopySystem (page
609) function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MFSLives

Declared In
CFTimeZone.h

CFTimeZoneCopyKnownNames
Returns an array of strings containing the names of all the time zones known to the system.

CFArrayRef CFTimeZoneCopyKnownNames (
 void
);

Return Value
An array containing CFString objects representing all the known time zone names. Ownership follows the
Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTimeZone.h

CFTimeZoneCopyLocalizedName
Returns the localized name of a given time zone.

608 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

CFStringRef CFTimeZoneCopyLocalizedName (
 CFTimeZoneRef tz,
 CFTimeZoneNameStyle style,
 CFLocaleRef locale
);

Parameters
tz

The time zone to analyze.

style
The style for the returned name.

locale
The locale for which to localize the returned name.

Return Value
The name of tz localized for locale. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFTimeZone.h

CFTimeZoneCopySystem
Returns the time zone currently used by the system.

CFTimeZoneRef CFTimeZoneCopySystem (
 void
);

Return Value
A time zone representing the time zone currently used by the system, or the GMT time zone if the current
zone cannot be determined. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CalendarView
SampleDS

Declared In
CFTimeZone.h

CFTimeZoneCreate
Creates a time zone with a given name and data.

Functions 609
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

CFTimeZoneRef CFTimeZoneCreate (
 CFAllocatorRef allocator,
 CFStringRef name,
 CFDataRef data
);

Parameters
allocator

The allocator object to use to allocate memory for the new time zone. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

name
The name of the time zone to create.

data
The data to use to initialize the time zone. The contents of the data should be the same as that found
within the time-zone files located at /usr/share/zoneinfo.

Return Value
A time zone corresponding to name and data. Ownership follows the Create Rule.

Discussion
You typically do not call this function directly. Use the CFTimeZoneCreateWithName (page 610) function
to obtain a time zone given its name.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTimeZone.h

CFTimeZoneCreateWithName
Returns the time zone object identified by a given name or abbreviation.

CFTimeZoneRef CFTimeZoneCreateWithName (
 CFAllocatorRef allocator,
 CFStringRef name,
 Boolean tryAbbrev
);

Parameters
allocator

The allocator object to use to allocate memory for the new time zone. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

name
The name or abbreviation of the time zone to obtain. The name may be in any of the formats
understood by the system, for example "EST", "Etc/GMT-2", "America/Argentina/Buenos_Aires",
"Europe/Monaco", "US/Pacific", or "posixrules". For a complete list of system names, you can see the
output of CFTimeZoneCopyKnownNames (page 608).

tryAbbrev
If false, assumes name is not an abbreviation and searches the time zone information directory for
a matching name. If true, tries to resolve name using the abbreviation dictionary first before searching
the information dictionary.

610 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

Return Value
A time zone corresponding to name, or NULL if no match was found. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTimeZone.h

CFTimeZoneCreateWithTimeIntervalFromGMT
Returns a time zone object for the specified time interval offset from Greenwich Mean Time (GMT).

CFTimeZoneRef CFTimeZoneCreateWithTimeIntervalFromGMT (
 CFAllocatorRef allocator,
 CFTimeInterval ti
);

Parameters
allocator

The allocator object to use to allocate memory for the new time zone. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

ti
The offset, from GMT, of the new time zone.

Return Value
A new time zone whose offset from GMT is given by the interval ti. The name of the new time zone is GMT
+/- the offset, in hours and minutes. Time zones created with this function never have daylight savings, and
the offset is constant no matter what the date. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTimeZone.h

CFTimeZoneGetData
Returns the data that stores the information used by a time zone.

CFDataRef CFTimeZoneGetData (
 CFTimeZoneRef tz
);

Parameters
tz

The time zone to analyze.

Return Value
The data used to store tz. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Functions 611
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

Declared In
CFTimeZone.h

CFTimeZoneGetDaylightSavingTimeOffset
Returns the daylight saving time offset for a time zone at a given time.

CFTimeInterval CFTimeZoneGetDaylightSavingTimeOffset (
 CFTimeZoneRef tz,
 CFAbsoluteTime at
);

Parameters
tz

The time zone to analyze.

at
The time in tz to test for daylight saving time offset.

Return Value
The daylight saving time offset for tz at at.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFTimeZone.h

CFTimeZoneGetName
Returns the geopolitical region name that identifies a given time zone.

CFStringRef CFTimeZoneGetName (
 CFTimeZoneRef tz
);

Parameters
tz

The time zone to analyze.

Return Value
A string containing the geopolitical region name that identifies tz. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTimeZone.h

CFTimeZoneGetNextDaylightSavingTimeTransition
Returns the time in a given time zone of the next daylight saving time transition after a given time.

612 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

CFAbsoluteTime CFTimeZoneGetNextDaylightSavingTimeTransition (
 CFTimeZoneRef tz,
 CFAbsoluteTime at
);

Parameters
tz

The time zone to analyze.

at
A time in tz.

Return Value
The time in tz of the next daylight saving time transition after at.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFTimeZone.h

CFTimeZoneGetSecondsFromGMT
Returns the difference in seconds between the receiver and Greenwich Mean Time (GMT) at the specified
date.

CFTimeInterval CFTimeZoneGetSecondsFromGMT (
 CFTimeZoneRef tz,
 CFAbsoluteTime at
);

Parameters
tz

The time zone to analyze.

at
The date at which the interval is to be computed.

Return Value
The difference in seconds between tz and GMT at the specified date, at.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MFSLives

Declared In
CFTimeZone.h

CFTimeZoneGetTypeID
Returns the type identifier for the CFTimeZone opaque type.

Functions 613
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

CFTypeID CFTimeZoneGetTypeID (
 void
);

Return Value
The type identifier for the CFTimeZone opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTimeZone.h

CFTimeZoneIsDaylightSavingTime
Returns whether or not a time zone is in daylight savings time at a specified date.

Boolean CFTimeZoneIsDaylightSavingTime (
 CFTimeZoneRef tz,
 CFAbsoluteTime at
);

Parameters
tz

The time zone to analyze.

at
The date in tz to test for daylight savings.

Return Value
true if tz is in daylight savings time at at, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTimeZone.h

CFTimeZoneResetSystem
Clears the previously determined system time zone, if any.

void CFTimeZoneResetSystem (
 void
);

Discussion
This function also resets the default time zone if it is the same as the system time zone.

Subsequent calls to CFTimeZoneCopySystem (page 609) will attempt to re-determine the system time zone.

Availability
Available in Mac OS X v10.0 and later.

614 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

Declared In
CFTimeZone.h

CFTimeZoneSetAbbreviationDictionary
Sets the abbreviation dictionary to a given dictionary.

void CFTimeZoneSetAbbreviationDictionary (
 CFDictionaryRef dict
);

Parameters
dict

A dictionary containing key-value pairs for looking up time zone names given their abbreviations.
The keys should be CFString objects containing the abbreviations; the values should be CFString
objects containing their corresponding geopolitical region names.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTimeZone.h

CFTimeZoneSetDefault
Sets the default time zone for your application the given time zone.

void CFTimeZoneSetDefault (
 CFTimeZoneRef tz
);

Parameters
tz

The time zone to use as default.

Discussion
There can be only one default time zone, so by setting a new default time zone, you lose the previous one.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTimeZone.h

Data Types

CFTimeZoneNameStyle
Index type for constants used to specify styles of time zone names.

Data Types 615
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

typedef CFIndex CFTimeZoneNameStyle;

Discussion
For values, see “Time Zone Name Styles” (page 616).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFTimeZone.h

CFTimeZoneRef
A reference to a CFTimeZone object.

typedef const struct __CFTimeZone *CFTimeZoneRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

Constants

Notification Name
Name of the notification posted when the time zone changes.

const CFStringRef kCFTimeZoneSystemTimeZoneDidChangeNotification;

Constants
kCFTimeZoneSystemTimeZoneDidChangeNotification

Name of the notification posted when the system time zone changes.

The object of the notification is the previous system time zone object. This notification carries no user
info.

Keep in mind that there is no order in how notifications are delivered to observers; frameworks or
other parts of your code may also be observing this notification to take their own actions, and these
may not have occurred by the time you receive the notification.

Available in Mac OS X v10.5 and later.

Declared in CFTimeZone.h.

Declared In
CFTimeZone.h

Time Zone Name Styles
Constants to specify styles for time zone names.

616 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

enum {
 kCFTimeZoneNameStyleStandard,
 kCFTimeZoneNameStyleShortStandard,
 kCFTimeZoneNameStyleDaylightSaving,
 kCFTimeZoneNameStyleShortDaylightSaving
};

Constants
kCFTimeZoneNameStyleStandard

Specifies the standard name style for a time zone.

Available in Mac OS X v10.5 and later.

Declared in CFTimeZone.h.

kCFTimeZoneNameStyleShortStandard
Specifies the short standard name style for a time zone.

Available in Mac OS X v10.5 and later.

Declared in CFTimeZone.h.

kCFTimeZoneNameStyleDaylightSaving
Specifies the daylight saving name style for a time zone.

Available in Mac OS X v10.5 and later.

Declared in CFTimeZone.h.

kCFTimeZoneNameStyleShortDaylightSaving
Specifies the short daylight saving name style for a time zone.

Available in Mac OS X v10.5 and later.

Declared in CFTimeZone.h.

Discussion
These constants are used with the function CFTimeZoneCopyLocalizedName (page 608).

Declared In
CFTimeZone.h

Constants 617
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

618 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

CFTimeZone Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFTree.h

Companion guide Collections Programming Topics for Core Foundation

Overview

You use CFTree to create tree structures that represent hierarchical organizations of information. In such
structures, each tree node has exactly one parent tree (except for the root tree, which has no parent) and
can have multiple children. Each CFTree object in the structure has a context associated with it; this context
includes some program-defined data as well as callbacks that operate on that data. The program-defined
data is often used as the basis for determining where CFTree objects fit within the structure. All CFTree objects
are mutable.

You create a CFTree object using the CFTreeCreate (page 622) function. This function takes an allocator
and pointer to a CFTreeGetContext (page 624) structure as parameters. The CFTreeContext (page 632)
structure contains the program-defined data and callbacks needed to describe, retain, and release that data.
If you do not implement these callbacks, your program-defined data will not be retained or released when
trees are added and removed from a parent.

Each CFTree object has a parent and list of children, all of which may be NULL. CFTree provides functions for
adding and removing tree objects from the tree structure. Use the CFTreeAppendChild (page 621),
CFTreeInsertSibling (page 626), or CFTreePrependChild (page 627) functions to add trees to a tree
structure, and the CFTreeRemove (page 627) or CFTreeRemoveAllChildren (page 628) functions to remove
trees.

For the purposes of memory management, CFTree can be thought of as a collection. Typically the only object
that retains a child tree is its parent. Usually, therefore, when you remove a child tree from a tree, the child
tree is destroyed. If you want to use a child tree after you remove it from its parent, you should retain the
child tree first, prior to removing it.

Releasing a tree releases its child trees, and all of their child trees (recursively). Note also that the final release
of a tree (when its retain count decreases to zero) causes all of its child trees, and all of their child trees
(recursively), to be destroyed, regardless of their retain counts. Releasing a child that is still in a tree is therefore
a programming error, and may cause your application to crash.

You can use any of the get functions (functions containing the word “Get”) to obtain the parent, children, or
attributes of a tree. For example, use CFTreeGetChildAtIndex (page 623) to obtain a child of a tree at a
specified location. In common with other Core Foundation “Get” functions, these functions do not retain the
tree that is returned. If you are making other modifications to the tree, you should either retain or make a
deep copy of the child tree returned.

Overview 619
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

You can apply a function to all children of a tree using the CFTreeApplyFunctionToChildren (page 622)
function, and sort children of a tree using the CFTreeSortChildren (page 629) function.

Functions by Task

Creating Trees

CFTreeCreate (page 622)
Creates a new CFTree object.

Modifying a Tree

CFTreeAppendChild (page 621)
Adds a new child to a tree as the last in its list of children.

CFTreeInsertSibling (page 626)
Inserts a new sibling after a given tree.

CFTreeRemoveAllChildren (page 628)
Removes all the children of a tree.

CFTreePrependChild (page 627)
Adds a new child to the specified tree as the first in its list of children.

CFTreeRemove (page 627)
Removes a tree from its parent.

CFTreeSetContext (page 628)
Replaces the context of a tree by releasing the old information pointer and retaining the new one.

Sorting a Tree

CFTreeSortChildren (page 629)
Sorts the immediate children of a tree using a specified comparator function.

Examining a Tree

CFTreeFindRoot (page 623)
Returns the root tree of a given tree.

CFTreeGetChildAtIndex (page 623)
Returns the child of a tree at the specified index.

CFTreeGetChildCount (page 624)
Returns the number of children in a tree.

CFTreeGetChildren (page 624)
Fills a buffer with children from the tree.

620 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

CFTreeGetContext (page 624)
Returns the context of the specified tree.

CFTreeGetFirstChild (page 625)
Returns the first child of a tree.

CFTreeGetNextSibling (page 625)
Returns the next sibling, adjacent to a given tree, in the parent's children list.

CFTreeGetParent (page 626)
Returns the parent of a given tree.

Performing an Operation on Tree Elements

CFTreeApplyFunctionToChildren (page 622)
Calls a function once for each immediate child of a tree.

Getting the Tree Type ID

CFTreeGetTypeID (page 626)
Returns the type identifier of the CFTree opaque type.

Functions

CFTreeAppendChild
Adds a new child to a tree as the last in its list of children.

void CFTreeAppendChild (
 CFTreeRef tree,
 CFTreeRef newChild
);

Parameters
tree

The tree to which to add newChild.

newChild
The child tree to add to tree. If this parameter is a tree which is already a child of any other tree, the
behavior is undefined.

Discussion
When a child tree is added to another tree, the child tree is retained by its new parent.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

Functions 621
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

CFTreeApplyFunctionToChildren
Calls a function once for each immediate child of a tree.

void CFTreeApplyFunctionToChildren (
 CFTreeRef tree,
 CFTreeApplierFunction applier,
 void *context
);

Parameters
tree

The tree to operate upon.

applier
The callback function to call once for each child in tree. The function must be able to apply to all
the values in the tree.

context
A pointer-sized program-defined value that is passed to the applier function, but is otherwise unused
by this function.

Discussion
Note that the applier only operates one level deep—it does not operate on descendants further removed
than the immediate children of a tree. If the tree is mutable, it is unsafe for the applied function to change
the contents of the tree.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeCreate
Creates a new CFTree object.

CFTreeRef CFTreeCreate (
 CFAllocatorRef allocator,
 const CFTreeContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new tree. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

context
The CFTreeContext (page 632) structure to be copied and used as the context of the new tree. The
information pointer will be retained by the tree if a retain function is provided. If this value is not a
valid C pointer to a CFTreeContext structure-sized block of storage, the result is undefined. If the
version number of the storage is not a valid CFTreeContext version number, the result is undefined.

Return Value
A new CFTree object. Ownership follows the Create Rule.

622 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeFindRoot
Returns the root tree of a given tree.

CFTreeRef CFTreeFindRoot (
 CFTreeRef tree
);

Parameters
tree

The tree to examine.

Return Value
The root of tree where root is defined as a tree without a parent. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetChildAtIndex
Returns the child of a tree at the specified index.

CFTreeRef CFTreeGetChildAtIndex (
 CFTreeRef tree,
 CFIndex idx
);

Parameters
tree

The tree to examine.

idx
The index of the child obtain. The value must be less than the number of children in tree.

Return Value
The child tree at idx. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

Functions 623
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

CFTreeGetChildCount
Returns the number of children in a tree.

CFIndex CFTreeGetChildCount (
 CFTreeRef tree
);

Parameters
tree

The tree to examine.

Return Value
The number of children in tree.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetChildren
Fills a buffer with children from the tree.

void CFTreeGetChildren (
 CFTreeRef tree,
 CFTreeRef *children
);

Parameters
tree

The tree to examine.

children
The C array of pointer-sized values to be filled with the children from tree. This value must be a valid
pointer to a C array of at least the size of the number of children in tree. Use the
CFTreeGetChildCount (page 624) function to obtain the number of children in tree. You are
responsible for retaining and releasing the returned objects as needed.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetContext
Returns the context of the specified tree.

624 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

void CFTreeGetContext (
 CFTreeRef tree,
 CFTreeContext *context
);

Parameters
tree

The tree to examine.

context
The CFTreeContext (page 632) structure to be filled in with the context of the specified tree. This
value must be a valid C pointer to a CFTreeContext structure-sized block of storage. If the version
number of the storage is not a valid CFTreeContext structure version number, the result is undefined.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetFirstChild
Returns the first child of a tree.

CFTreeRef CFTreeGetFirstChild (
 CFTreeRef tree
);

Parameters
tree

The tree to examine.

Return Value
The first child of tree. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetNextSibling
Returns the next sibling, adjacent to a given tree, in the parent's children list.

CFTreeRef CFTreeGetNextSibling (
 CFTreeRef tree
);

Parameters
tree

The tree to examine.

Functions 625
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

Return Value
The next sibling, adjacent to tree. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetParent
Returns the parent of a given tree.

CFTreeRef CFTreeGetParent (
 CFTreeRef tree
);

Parameters
tree

The tree to examine.

Return Value
The parent of tree. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeGetTypeID
Returns the type identifier of the CFTree opaque type.

CFTypeID CFTreeGetTypeID (
 void
);

Return Value
The type identifier of the CFTree opaque type.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeInsertSibling
Inserts a new sibling after a given tree.

626 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

void CFTreeInsertSibling (
 CFTreeRef tree,
 CFTreeRef newSibling
);

Parameters
tree

The tree after which to insert newSibling. tree must have a parent.

newSibling
The sibling to add. newSibling must not have a parent.

Discussion
When a child tree is added to another tree, the child tree is retained by its new parent.

If you want to manipulate an existing tree structure, since newSibling must not have a parent you need to
remove a tree from its parent in order to move it to a new position. If you do this, you should retain the tree
before you actually remove it from its parent (see CFTreeRemove (page 627)).

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreePrependChild
Adds a new child to the specified tree as the first in its list of children.

void CFTreePrependChild (
 CFTreeRef tree,
 CFTreeRef newChild
);

Parameters
tree

The tree to which to add newChild.

newChild
The child tree to add to tree. This value must not be a child of another tree.

Discussion
When a child tree is added to another tree, the child tree is retained by its new parent.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeRemove
Removes a tree from its parent.

Functions 627
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

void CFTreeRemove (
 CFTreeRef tree
);

Parameters
tree

The tree to remove from its parent.

Discussion
When a child tree is removed from its parent, the parent releases it. If you want to use the child after you
have removed it, you should ensure you retain it before removing it from its parent.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeRemoveAllChildren
Removes all the children of a tree.

void CFTreeRemoveAllChildren (
 CFTreeRef tree
);

Parameters
tree

The tree to modify.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeSetContext
Replaces the context of a tree by releasing the old information pointer and retaining the new one.

void CFTreeSetContext (
 CFTreeRef tree,
 const CFTreeContext *context
);

Parameters
tree

The tree to modify.

628 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

context
The CFTreeContext (page 632) structure to be copied and used as the context of the new tree. The
information pointer will be retained by the tree if a retain function is provided. If this value is not a
valid C pointer to a CFTreeContext structure-sized block of storage, the result is undefined. If the
version number of the storage is not a valid CFTreeContext version number, the result is undefined.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeSortChildren
Sorts the immediate children of a tree using a specified comparator function.

void CFTreeSortChildren (
 CFTreeRef tree,
 CFComparatorFunction comparator,
 void *context
);

Parameters
tree

The tree to sort.

comparator
The function with a comparator function type signature which is used in the sort operation to compare
children of the tree. The children of the tree are sorted from least to greatest according to this function.

context
A pointer-sized program-defined value that is passed to the comparator function, but is otherwise
unused by this function.

Discussion
Note that the comparator only operates one level deep and does not operate on descendants further removed
than the immediate children of a tree node.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

Callbacks

CFTreeApplierFunction
Type of the callback function used by the CFTree apply function.

Callbacks 629
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

typedef void (*CFTreeApplierFunction) (
 const void *value,
 void *context
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *value,
 void *context
);

Parameters
value

The current child of a tree that is being iterated.

context
The program-defined context parameter that was passed to the applier function.

Discussion
This callback is used by the CFTreeApplyFunctionToChildren (page 622) applier function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeCopyDescriptionCallBack
Callback function used to provide a description of the program-defined information pointer.

typedef CFStringRef (*CFTreeCopyDescriptionCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallBack (
 const void *info
);

Parameters
info

The program-supplied information pointer provided in a CFTreeContext (page 632) structure.

Return Value
A textual description of info. The caller is responsible for releasing this object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

630 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

CFTreeReleaseCallBack
Callback function used to release a previously retained program-defined information pointer.

typedef void (*CFTreeReleaseCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *info
);

Parameters
info

The program-supplied information pointer provided in a CFTreeContext (page 632) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeRetainCallBack
Callback function used to retain a program-defined information pointer.

typedef const void *(*CFTreeRetainCallBack) (
const void *info
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 const void *info
);

Parameters
info

The program-supplied information pointer provided in a CFTreeContext (page 632) structure.

Return Value
The value to use whenever the information pointer is retained, which is usually the info parameter passed
to this callback, but may be a different value if a different value should be used.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

Callbacks 631
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

Data Types

CFTreeContext
Structure containing program-defined data and callbacks for a CFTree object.

struct CFTreeContext {
 CFIndex version;
 void *info;
 CFTreeRetainCallBack retain;
 CFTreeReleaseCallBack release;
 CFTreeCopyDescriptionCallBack copyDescription;
};
typedef struct CFTreeContext CFTreeContext;

Fields
version

The version number of the structure type being passed in as a parameter to a CFTree creation function.
This structure is version 0.

info
A C pointer to a program-defined block of data, referred to as the information pointer.

retain
The callback used to retain the info field. If this parameter is not a pointer to a function of the correct
prototype, the behavior is undefined. This value may be NULL.

release
The callback used to release a previously retained info field. If this parameter is not a pointer to a
function of the correct prototype, the behavior is undefined. This value may be NULL.

copyDescription
The callback used to provide a description of the info field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

CFTreeRef
A reference to a CFTree object.

typedef struct __CFTree *CFTreeRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFTree.h

632 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

CFTree Reference

Derived From: None

Framework: CoreFoundation/CoreFoundation.h

Declared in CFBase.h
CFString.h

Companion guides Core Foundation Design Concepts
Memory Management Programming Guide for Core Foundation

Overview

All other Core Foundation opaque types derive from CFType. The functions, callbacks, data types, and
constants defined for CFType can be used by any derived opaque type. Hence, CFType functions are referred
to as “polymorphic functions.” You use CFType functions to retain and release objects, to compare and inspect
objects, get descriptions of objects and opaque types, and to get object allocators.

Functions by Task

Memory Management

CFGetAllocator (page 636)
Returns the allocator used to allocate a Core Foundation object.

CFGetRetainCount (page 636)
Returns the reference count of a Core Foundation object.

CFMakeCollectable (page 638)
Makes a newly-allocated Core Foundation object eligible for garbage collection.

CFRelease (page 639)
Releases a Core Foundation object.

CFRetain (page 639)
Retains a Core Foundation object.

Determining Equality

CFEqual (page 635)
Determines whether two Core Foundation objects are considered equal.

Overview 633
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

CFType Reference

Hashing

CFHash (page 638)
Returns a code that can be used to identify an object in a hashing structure.

Miscellaneous Functions

CFCopyDescription (page 634)
Returns a textual description of a Core Foundation object.

CFCopyTypeIDDescription (page 635)
Returns a textual description of a Core Foundation type, as identified by its type ID, which can be
used when debugging.

CFGetTypeID (page 637)
Returns the unique identifier of an opaque type to which a Core Foundation object belongs.

CFShow (page 640)
Prints a description of a Core Foundation object to stderr.

Functions

CFCopyDescription
Returns a textual description of a Core Foundation object.

CFStringRef CFCopyDescription (
 CFTypeRef cf
);

Parameters
cf

The CFType object (a generic reference of type CFTypeRef (page 642)) from which to derive a
description.

Return Value
A string that contains a description of cf. Ownership follows the Create Rule.

Discussion
The nature of the description differs by object. For example, a description of a CFArray object would include
descriptions of each of the elements in the collection.

You can use this function for debugging Core Foundation objects in your code. Note, however, that the
description for a given object may be different in different releases of the operating system. Do not create
dependencies in your code on the content or format of the information returned by this function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPrefsDumper
FSFileOperation

634 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

CFType Reference

MoreIsBetter
MoreSCF

Declared In
CFBase.h

CFCopyTypeIDDescription
Returns a textual description of a Core Foundation type, as identified by its type ID, which can be used when
debugging.

CFStringRef CFCopyTypeIDDescription (
 CFTypeID type_id
);

Parameters
theType

An integer of type CFTypeID (page 641) that uniquely identifies a Core Foundation opaque type.

Return Value
A string containing a type description. Ownership follows the Create Rule.

Discussion
You can use this function for debugging Core Foundation objects in your code. Note, however, that the
description for a given object may be different in different releases of the operating system. Do not create
dependencies in your code on the content or format of the information returned by this function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MoreIsBetter
MoreSCF

Declared In
CFBase.h

CFEqual
Determines whether two Core Foundation objects are considered equal.

Boolean CFEqual (
 CFTypeRef cf1,
 CFTypeRef cf2
);

Parameters
cf1

A CFType object to compare to cf2.

cf2
A CFType object to compare to cf1.

Functions 635
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

CFType Reference

Return Value
true if cf1 and cf2 are of the same type and considered equal, otherwise false.

Discussion
Equality is something specific to each Core Foundation opaque type. For example, two CFNumber objects
are equal if the numeric values they represent are equal. Two CFString objects are equal if they represent
identical sequences of characters, regardless of encoding.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
bulkerase
databurntest
MoreIsBetter
MoreSCF
QISA

Declared In
CFBase.h

CFGetAllocator
Returns the allocator used to allocate a Core Foundation object.

CFAllocatorRef CFGetAllocator (
 CFTypeRef cf
);

Parameters
cf

The CFType object to examine.

Return Value
The allocator used to allocate memory for cf.

Discussion
When you are creating a Core Foundation object sometimes you want to ensure that the block of memory
allocated for the object is from the same allocator used for another object. One way to do this is to reuse the
allocator assigned to an existing Core Foundation object when you call a “creation” function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFGetRetainCount
Returns the reference count of a Core Foundation object.

636 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

CFType Reference

CFIndex CFGetRetainCount (
 CFTypeRef cf
);

Parameters
cf

The CFType object to examine.

Return Value
A number representing the reference count of cf.

Discussion
You increment the reference count using the CFRetain (page 639) function, and decrement the reference
count using the CFRelease (page 639) function.

This function may useful for debugging memory leaks. You normally do not use this function, otherwise.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AuthForAll
BSDLLCTest
MoreIsBetter
MoreSCF
QISA

Declared In
CFBase.h

CFGetTypeID
Returns the unique identifier of an opaque type to which a Core Foundation object belongs.

CFTypeID CFGetTypeID (
 CFTypeRef cf
);

Parameters
cf

The CFType object to examine.

Return Value
A value of type CFTypeID (page 641) that identifies the opaque type of cf.

Discussion
This function returns a value that uniquely identifies the opaque type of any Core Foundation object. You
can compare this value with the known CFTypeID (page 641) identifier obtained with a “GetTypeID” function
specific to a type, for example CFDateGetTypeID (page 181). These values might change from release to
release or platform to platform.

Availability
Available in Mac OS X v10.0 and later.

Functions 637
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

CFType Reference

Related Sample Code
BSDLLCTest
CFFTPSample
MoreIsBetter
MoreSCF
QISA

Declared In
CFBase.h

CFHash
Returns a code that can be used to identify an object in a hashing structure.

CFHashCode CFHash (
 CFTypeRef cf
);

Parameters
cf

A CFType object to examine.

Return Value
An integer of type CFHashCode (page 641) that represents a hashing value for cf.

Discussion
Two objects that are equal (as determined by the CFEqual (page 635) function) have the same hashing value.
However, the converse is not true: two objects with the same hashing value might not be equal. That is,
hashing values are not necessarily unique.

The hashing value for an object might change from release to release or from platform to platform.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFMakeCollectable
Makes a newly-allocated Core Foundation object eligible for garbage collection.

CFTypeRef CFMakeCollectable (
 CFTypeRef cf
);

Parameters
cf

A CFType object to make collectable. This value must not be NULL.

Return Value
cf.

638 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

CFType Reference

Discussion
For more details, see Garbage Collection Programming Guide.

Special Considerations

If cf is NULL, this will cause a runtime error and your application will crash.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
AutomatorHandsOn

Declared In
CFBase.h

CFRelease
Releases a Core Foundation object.

void CFRelease (
 CFTypeRef cf
);

Parameters
cf

A CFType object to release. This value must not be NULL.

Discussion
If the retain count of cf becomes zero the memory allocated to the object is deallocated and the object is
destroyed. If you create, copy, or explicitly retain (see the CFRetain (page 639) function) a Core Foundation
object, you are responsible for releasing it when you no longer need it (seeMemoryManagement Programming
Guide for Core Foundation).

Special Considerations

If cf is NULL, this will cause a runtime error and your application will crash.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioburntest
HID Explorer
ImageClient
SeeMyFriends
TypeServicesForUnicode

Declared In
CFBase.h

CFRetain
Retains a Core Foundation object.

Functions 639
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

CFType Reference

CFTypeRef CFRetain (
 CFTypeRef cf
);

Parameters
cf

The CFType object to retain. This value must not be NULL

Return Value
The input value, cf.

Discussion
You should retain a Core Foundation object when you receive it from elsewhere (that is, you did not create
or copy it) and you want it to persist. If you retain a Core Foundation object you are responsible for releasing
it (see Memory Management Programming Guide for Core Foundation).

Special Considerations

If cf is NULL, this will cause a runtime error and your application will crash.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioburntest
databurntest
MoreIsBetter
MoreSCF
QISA

Declared In
CFBase.h

CFShow
Prints a description of a Core Foundation object to stderr.

void CFShow (
 CFTypeRef obj
);

Parameters
obj

A Core Foundation object derived from CFType. If obj is not a Core Foundation object, an assertion
is raised.

Discussion
The output is printed to the standard I/O standard error (stderr).

This function is useful as a debugging aid for Core Foundation objects. Because these objects are based on
opaque types, it is difficult to examine their contents directly. However, the opaque types implement
description function callbacks that return descriptions of their objects. This function invokes these callbacks.

640 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

CFType Reference

Special Considerations

You can use CFShow in one of two general ways. If your debugger supports function calls (such as gdb does),
call CFShow in the debugger:

(gdb) call (void) CFShow(string)
Hello World

You can also incorporate calls to CFShow in a test version of your code to print out "snapshots" of Core
Foundation objects to the console.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FSFileOperation
MoreIsBetter
MoreSCF
ProfileSystem
QISA

Declared In
CFString.h

Data Types

CFHashCode
A type for hash codes returned by the CFHash function.

typedef unsigned long CFHashCode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFTypeID
A type for unique, constant integer values that identify particular Core Foundation opaque types.

typedef unsigned long CFTypeID;

Discussion
Defines a type identifier in Core Foundation. A type ID is an integer that identifies the opaque type to which
a Core Foundation object “belongs.” You use type IDs in various contexts, such as when you are operating
on heterogeneous collections. Core Foundation provides programmatic interfaces for obtaining and evaluating
type IDs.

Data Types 641
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

CFType Reference

Because the value for a type ID can change from release to release, your code should not rely on stored or
hard-coded type IDs nor should it hard-code any observed properties of a type ID (such as, for example, it
being a small integer).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFTypeRef
An untyped "generic" reference to any Core Foundation object.

typedef const void * CFTypeRef;

Discussion
The CFTypeRef type is the base type defined in Core Foundation. It is used as the type and return value in
several polymorphic functions. It is a generic object reference that acts as a placeholder for other true Core
Foundation objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

642 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

CFType Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFURL.h

Overview

CFURL provides facilities for creating, parsing, and dereferencing URL strings. CFURL is useful to applications
that need to use URLs to access resources, including local files.

A CFURL object is composed of two parts—a base URL, which can be NULL, and a string that is resolved
relative to the base URL. A CFURL object whose string is fully resolved without a base URL is considered
absolute; all others are considered relative.

CFURL fails to create an object if the string passed is not well-formed (that is, if it does not comply with RFC
2396). Examples of cases that will not succeed are strings containing space characters and high-bit characters.
If a function fails to create a CFURL object, it returns NULL, which you must be prepared to handle. If you
create CFURL objects using file system paths, you should use the
CFURLCreateFromFileSystemRepresentation (page 659) and
CFURLCreateFromFileSystemRepresentationRelativeToBase (page 660) functions, which handle the
subtle differences between URL paths and file system paths.

For functions that read and write data from a URL, see Core Foundation URL Access Utilities Reference

CFURL is “toll-free bridged” with its Cocoa Foundation counterpart, NSURL. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object. In other
words, in a method where you see an NSURL * parameter, you can pass in a CFURLRef, and in a function
where you see a CFURLRef parameter, you can pass in an NSURL instance. This also applies to concrete
subclasses of NSURL. See Integrating Carbon and Cocoa in Your Application for more information on toll-free
bridging.

Functions by Task

Creating a CFURL

CFURLCopyAbsoluteURL (page 646)
Creates a new CFURL object by resolving the relative portion of a URL against its base.

Overview 643
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

CFURLCreateAbsoluteURLWithBytes (page 655)
Creates a new CFURL object by resolving the relative portion of a URL, specified as bytes, against its
given base URL.

CFURLCreateCopyAppendingPathComponent (page 656)
Creates a copy of a given URL and appends a path component.

CFURLCreateCopyAppendingPathExtension (page 657)
Creates a copy of a given URL and appends a path extension.

CFURLCreateCopyDeletingLastPathComponent (page 657)
Creates a copy of a given URL with the last path component deleted.

CFURLCreateCopyDeletingPathExtension (page 658)
Creates a copy of a given URL with its last path extension removed.

CFURLCreateFromFileSystemRepresentation (page 659)
Creates a new CFURL object for a file system entity using the native representation.

CFURLCreateFromFileSystemRepresentationRelativeToBase (page 660)
Creates a CFURL object from a native character string path relative to a base URL.

CFURLCreateFromFSRef (page 661)
Creates a URL from a given directory or file.

CFURLCreateWithBytes (page 664)
Creates a CFURL object using a given character bytes.

CFURLCreateWithFileSystemPath (page 665)
Creates a CFURL object using a local file system path string.

CFURLCreateWithFileSystemPathRelativeToBase (page 666)
Creates a CFURL object using a local file system path string relative to a base URL.

CFURLCreateWithString (page 667)
Creates a CFURL object using a given CFString object.

Accessing the Parts of a URL

CFURLCanBeDecomposed (page 646)
Determines if the given URL conforms to RFC 1808 and therefore can be decomposed.

CFURLCopyFileSystemPath (page 647)
Returns the path portion of a given URL.

CFURLCopyFragment (page 647)
Returns the fragment from a given URL.

CFURLCopyHostName (page 648)
Returns the host name of a given URL.

CFURLCopyLastPathComponent (page 649)
Returns the last path component of a given URL.

CFURLCopyNetLocation (page 649)
Returns the net location portion of a given URL.

CFURLCopyParameterString (page 650)
Returns the parameter string from a given URL.

CFURLCopyPassword (page 650)
Returns the password of a given URL.

644 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

CFURLCopyPath (page 651)
Returns the path portion of a given URL.

CFURLCopyPathExtension (page 652)
Returns the path extension of a given URL.

CFURLCopyQueryString (page 652)
Returns the query string of a given URL.

CFURLCopyResourceSpecifier (page 653)
Returns any additional resource specifiers after the path.

CFURLCopyScheme (page 653)
Returns the scheme portion of a given URL.

CFURLCopyStrictPath (page 654)
Returns the path portion of a given URL.

CFURLCopyUserName (page 654)
Returns the user name from a given URL.

CFURLGetPortNumber (page 671)
Returns the port number from a given URL.

CFURLHasDirectoryPath (page 672)
Determines if a given URL's path represents a directory.

Converting URLs to Other Representations

CFURLCreateData (page 658)
Creates a CFData object containing the content of a given URL.

CFURLCreateStringByAddingPercentEscapes (page 661)
Creates a copy of a string, replacing certain characters with the equivalent percent escape sequence
based on the specified encoding.

CFURLCreateStringByReplacingPercentEscapes (page 663)
Creates a new string by replacing any percent escape sequences with their character equivalent.

CFURLCreateStringByReplacingPercentEscapesUsingEncoding (page 663)
Creates a new string by replacing any percent escape sequences with their character equivalent.

CFURLGetFileSystemRepresentation (page 669)
Fills a buffer with the file system's native string representation of a given URL's path.

CFURLGetFSRef (page 670)
Converts a given URL to a file or directory object.

CFURLGetString (page 671)
Returns the URL as a CFString object.

Getting URL Properties

CFURLGetBaseURL (page 668)
Returns the base URL of a given URL if it exists.

CFURLGetBytes (page 669)
Returns by reference the byte representation of a URL object.

Functions by Task 645
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

CFURLGetByteRangeForComponent (page 668)
Returns the range of the specified component in the bytes of a URL.

CFURLGetTypeID (page 672)
Returns the type identifier for the CFURL opaque type.

Functions

CFURLCanBeDecomposed
Determines if the given URL conforms to RFC 1808 and therefore can be decomposed.

Boolean CFURLCanBeDecomposed (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to test.

Return Value
true if anURL conforms to RFC 1808, false otherwise.

Discussion
If a CFURL object can be decomposed, you can retrieve separately each of the four components (scheme,
net location, path, and resource specifier), as well as the base URL.

Relative URLs are permitted to have only paths (or a variety of other configurations); these are considered
decomposable if their base URL is decomposable. If no base URL is present, they are considered decomposable.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCopyAbsoluteURL
Creates a new CFURL object by resolving the relative portion of a URL against its base.

CFURLRef CFURLCopyAbsoluteURL (
 CFURLRef relativeURL
);

Parameters
relativeURL

The CFURL object to resolve.

Return Value
A new CFURL object, or NULL if relativeURL cannot be made absolute. Ownership follows the Create Rule.

646 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageClient

Declared In
CFURL.h

CFURLCopyFileSystemPath
Returns the path portion of a given URL.

CFStringRef CFURLCopyFileSystemPath (
 CFURLRef anURL,
 CFURLPathStyle pathStyle
);

Parameters
anURL

The CFURL object whose path you want to obtain.

pathStyle
The operating system path style to be used to create the path. See Path Style (page 675) for a list of
possible values.

Return Value
The URL's path in the format specified by pathStyle. Ownership follows the Create Rule.

Discussion
This function returns the URL's path as a file system path for a given path style.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioBurn
MoreAppleEvents
MoreIsBetter
RecordAudioToFile
SeeMyFriends

Declared In
CFURL.h

CFURLCopyFragment
Returns the fragment from a given URL.

Functions 647
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

CFStringRef CFURLCopyFragment (
 CFURLRef anURL,
 CFStringRef charactersToLeaveEscaped
);

Parameters
anURL

The CFURL object whose fragment you want to obtain.

charactersToLeaveEscaped
Characters whose percent escape sequences, such as %20 for a space character, you want to leave
intact. Pass NULL to specify that no percent escapes be replaced, or the empty string (CFSTR(""))
to specify that all be replaced.

Return Value
The fragment, or NULL if no fragment exists. Ownership follows the Create Rule.

Discussion
A fragment is the text following a "#". These are generally used to indicate locations within a single file. This
function removes all percent escape sequences except those for characters specified in
charactersToLeaveEscaped.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCopyHostName
Returns the host name of a given URL.

CFStringRef CFURLCopyHostName (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to examine.

Return Value
The host name of anURL. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageClient

Declared In
CFURL.h

648 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

CFURLCopyLastPathComponent
Returns the last path component of a given URL.

CFStringRef CFURLCopyLastPathComponent (
 CFURLRef url
);

Parameters
url

The CFURL object to examine.

Return Value
The last path component of url. Ownership follows the Create Rule.

Discussion
Note that if there is no last path component, this function returns an empty string. In the code sample shown
in Listing 48-1, lastPathComponent is an empty string.

Listing 48-1 Code sample illustrating CFURLCopyLastPathComponent

CFStringRef urlString = CFSTR("http://www.apple.com");
CFURLRef url = CFURLCreateWithString(NULL, urlString, NULL);
CFStringRef lastPathComponent = CFURLCopyLastPathComponent (url);

If urlString were created with CFSTR("http://www.apple.com/"), then lastPathComponent would
be a CFString object containing the character “/“.

See also CFURLCopyPathExtension (page 652).

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFFTPSample
HITextViewDemo
QTCarbonShell
RecentItems
SampleCMPlugIn

Declared In
CFURL.h

CFURLCopyNetLocation
Returns the net location portion of a given URL.

CFStringRef CFURLCopyNetLocation (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to examine.

Functions 649
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Return Value
The net location of anURL, or NULL if the URL cannot be decomposed (doesn't conform to RFC 1808).
Ownership follows the Create Rule.

Discussion
The URL net location is the portion of the URL that identifies the network address of the resource. It includes
the optional username and password, as well as the target machine’s IP address or host name.

This function leaves any percent escape sequences intact.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCopyParameterString
Returns the parameter string from a given URL.

CFStringRef CFURLCopyParameterString (
 CFURLRef anURL,
 CFStringRef charactersToLeaveEscaped
);

Parameters
anURL

The CFURL object to examine.

charactersToLeaveEscaped
Characters whose percent escape sequences, such as %20 for a space character, you want to leave
intact. Pass NULL to specify that no percent escapes be replaced, or the empty string (CFSTR(""))
to specify that all be replaced.

Return Value
The parameter string (as defined in RFC 1738), or NULL if no parameter string exists. Ownership follows the
Create Rule.

Discussion
This function removes all percent escape sequences except those for characters specified in
charactersToLeaveEscaped.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCopyPassword
Returns the password of a given URL.

650 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

CFStringRef CFURLCopyPassword (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to examine.

Return Value
The password, or NULL if no password exists. In some cases, this function may also return the empty string
(CFSTR("")) if no password exists. You should consider NULL and the empty string to be equivalent.
Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCopyPath
Returns the path portion of a given URL.

CFStringRef CFURLCopyPath (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to examine.

Return Value
The path of anURL, or NULL if the URL cannot be decomposed (doesn't conform to RFC 1808). Ownership
follows the Create Rule.

Discussion
This function does not resolve the URL against its base and replaces all percent escape sequences. This
function's return value includes any leading slash (giving the path the normal POSIX appearance), if present.
If this behavior is not appropriate, use CFURLCopyStrictPath (page 654) whose return value omits any
leading slash. You may also want to use the function CFURLCopyFileSystemPath (page 647), which returns
the URL's path as a file system path for the given path style. If the path is to be passed to file system calls,
you may also want to use the function CFURLGetFileSystemRepresentation (page 669), which returns
a C string.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageClient
iTunesController
SampleDS

Functions 651
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Declared In
CFURL.h

CFURLCopyPathExtension
Returns the path extension of a given URL.

CFStringRef CFURLCopyPathExtension (
 CFURLRef url
);

Parameters
url

The CFURL object to examine.

Return Value
The path extension of url, or NULL if no extension exists. Ownership follows the Create Rule.

Discussion
The path extension is the portion of the last path component which follows the final period, if there is one.
For example, for http:/www.apple.com/developer/macosx.today.html, the extension is html, and
for http:/www.apple.com/developer, there is no path extension.

See also CFURLCopyLastPathComponent (page 649).

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCopyQueryString
Returns the query string of a given URL.

CFStringRef CFURLCopyQueryString (
 CFURLRef anURL,
 CFStringRef charactersToLeaveEscaped
);

Parameters
anURL

The CFURL object to examine.

charactersToLeaveEscaped
Characters whose percent escape sequences, such as %20 for a space character, you want to leave
intact. Pass NULL to specify that no percent escapes be replaced, or the empty string (CFSTR(""))
to specify that all be replaced.

Return Value
The query string, or NULL if no parameter string exists. Ownership follows the Create Rule.

652 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Discussion
This function removes all percent escape sequences except those for characters specified in
charactersToLeaveEscaped.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCopyResourceSpecifier
Returns any additional resource specifiers after the path.

CFStringRef CFURLCopyResourceSpecifier (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to examine.

Return Value
The resource specifiers. Ownership follows the Create Rule.

Discussion
This function leaves any percent escape sequences intact. For decomposable URLs, this function returns
everything after the path. For URLs that cannot be decomposed, this function returns everything except the
scheme itself.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCopyScheme
Returns the scheme portion of a given URL.

CFStringRef CFURLCopyScheme (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to examine.

Return Value
The scheme of anURL. Ownership follows the Create Rule.

Functions 653
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Discussion
The URL scheme is the portion of the URL specifying the transport type. For example http, ftp, and rtsp
are schemes. This function leaves any percent escape sequences intact.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageClient

Declared In
CFURL.h

CFURLCopyStrictPath
Returns the path portion of a given URL.

CFStringRef CFURLCopyStrictPath (
 CFURLRef anURL,
 Boolean *isAbsolute
);

Parameters
anURL

The CFURL object to examine.

isAbsolute
On return, indicates whether the path of anURL is absolute.

Return Value
The path of anURL, or NULL if the URL cannot be decomposed (doesn't conform to RFC 1808). Ownership
follows the Create Rule.

Discussion
This function does not resolve the URL against its base and replaces all percent escape sequences. This
function's return value does not include a leading slash and uses isAbsolute to report whether the URL's
path is absolute. If this behavior is not appropriate, use the CFURLCopyPath (page 651) function whose return
value includes the leading slash (giving the path the normal POSIX appearance). You may also want to use
the CFURLCopyFileSystemPath (page 647) function, which returns the URL's path as a file system path for
the given path style. If the path is to be passed to file system calls, you may also want to use the function
CFURLGetFileSystemRepresentation (page 669), which returns a C string.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCopyUserName
Returns the user name from a given URL.

654 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

CFStringRef CFURLCopyUserName (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to examine.

Return Value
The user name, or NULL if no user name exists. In some cases, this function may also return the empty string
(CFSTR("")) if no username exists. You should consider NULL and the empty string to be equivalent.
Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCreateAbsoluteURLWithBytes
Creates a new CFURL object by resolving the relative portion of a URL, specified as bytes, against its given
base URL.

CFURLRef CFURLCreateAbsoluteURLWithBytes (
 CFAllocatorRef alloc,
 const UInt8 *relativeURLBytes,
 CFIndex length,
 CFStringEncoding encoding,
 CFURLRef baseURL,
 Boolean useCompatibilityMode
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

relativeURLBytes
The character bytes that represent a relative URL to convert into a CFURL object.

length
The number of bytes in relativeURLBytes.

encoding
The string encoding of the relativeURLBytes string. This encoding is also used to interpret percent
escape sequences.

baseURL
The URL to which relativeURLBytes is relative.

useCompatibilityMode
If true, the rules historically used on the web are used to resolve the string specified by the
relativeURLBytesparameter against baseURL. These rules are generally listed in the RFC as optional
or alternate interpretations. Otherwise, the strict rules from the RFC are used.

Functions 655
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Return Value
A new CFURL object, or NULL if relativeURLBytes cannot be made absolute. Ownership follows the Create
Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFURL.h

CFURLCreateCopyAppendingPathComponent
Creates a copy of a given URL and appends a path component.

CFURLRef CFURLCreateCopyAppendingPathComponent (
 CFAllocatorRef allocator,
 CFURLRef url,
 CFStringRef pathComponent,
 Boolean isDirectory
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

url
The CFURL object to which to append a path component.

pathComponent
The path component to append to url.

isDirectory
A Boolean value that specifies whether the string is treated as a directory path when resolving against
relative path components. Pass true if the new component indicates a directory, false otherwise.

Return Value
A copy of url appended with pathComponent. Ownership follows the Create Rule.

Discussion
The isDirectory argument specifies whether or not the new path component points to a file or a to
directory. Note that the URL syntax for a directory and for a file at otherwise the same location are slightly
different—directory URLs must end in “/”. If you have the URL http://www.apple.com/foo/ and you
append the path component bar, then if isDirectory is YES then the resulting URL is
http://www.apple.com/foo/bar/, whereas if isDirectory is NO then the resulting URL is
http://www.apple.com/foo/bar. This difference is particularly important if you resolve another URL
against this new URL. file.html relative to http://www.apple.com/foo/bar is
http://www.apple.com/foo/file.html, whereas file.html relative to
http://www.apple.com/foo/bar/ is http://www.apple.com/foo/bar/file.html.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
MoreIsBetter

656 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

PDEProject
QISA
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa

Declared In
CFURL.h

CFURLCreateCopyAppendingPathExtension
Creates a copy of a given URL and appends a path extension.

CFURLRef CFURLCreateCopyAppendingPathExtension (
 CFAllocatorRef allocator,
 CFURLRef url,
 CFStringRef extension
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

url
The CFURL object to which to append a path extension.

extension
The extension to append to url.

Return Value
A copy of url appended with extension. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCreateCopyDeletingLastPathComponent
Creates a copy of a given URL with the last path component deleted.

CFURLRef CFURLCreateCopyDeletingLastPathComponent (
 CFAllocatorRef allocator,
 CFURLRef url
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

Functions 657
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

url
The CFURL object whose last path component you want to delete.

Return Value
A copy of url with the last path component deleted. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Utilities Source
ImageClient

Declared In
CFURL.h

CFURLCreateCopyDeletingPathExtension
Creates a copy of a given URL with its last path extension removed.

CFURLRef CFURLCreateCopyDeletingPathExtension (
 CFAllocatorRef allocator,
 CFURLRef url
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

url
The CFURL object whose path extension you want to delete.

Return Value
A copy of url with its last path extension removed. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCreateData
Creates a CFData object containing the content of a given URL.

658 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

CFDataRef CFURLCreateData (
 CFAllocatorRef allocator,
 CFURLRef url,
 CFStringEncoding encoding,
 Boolean escapeWhitespace
);

Parameters
allocator

The allocator to use to allocate memory for the new CFData object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

url
The URL to convert into a CFData object.

encoding
The string encoding to use when converting url into a CFData object.

escapeWhitespace
true if you want to escape whitespace characters in the URL, false otherwise.

Return Value
A new CFData object containing the content of url. Ownership follows the Create Rule.

Discussion
This function escapes any character that is not 7-bit ASCII with the byte-code for the given encoding. If
escapeWhitespace is true, whitespace characters (' ', '\t', '\r', '\n') will be escaped as well. This is desirable
if you want to embed the URL into a larger text stream like HTML.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCreateFromFileSystemRepresentation
Creates a new CFURL object for a file system entity using the native representation.

CFURLRef CFURLCreateFromFileSystemRepresentation (
 CFAllocatorRef allocator,
 const UInt8 *buffer,
 CFIndex bufLen,
 Boolean isDirectory
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

buffer
The character bytes to convert into a CFURL object. This should be the path as you would use in POSIX
function calls.

Functions 659
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

bufLen
The number of bytes in the buffer.

isDirectory
A Boolean value that specifies whether the string is treated as a directory path when resolving against
relative path components—true if the pathname indicates a directory, false otherwise.

Return Value
A new CFURL object. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioQueueTools
CFFTPSample
CFPrefTopScores
MemoryBasedBundle
MoreIsBetter

Declared In
CFURL.h

CFURLCreateFromFileSystemRepresentationRelativeToBase
Creates a CFURL object from a native character string path relative to a base URL.

CFURLRef CFURLCreateFromFileSystemRepresentationRelativeToBase (
 CFAllocatorRef allocator,
 const UInt8 *buffer,
 CFIndex bufLen,
 Boolean isDirectory,
 CFURLRef baseURL
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

buffer
The character bytes to convert into a CFURL object. This should be the path as you would use in POSIX
function calls.

bufLen
The number of bytes in the buffer.

isDirectory
A Boolean value that specifies whether the string is treated as a directory path when resolving against
relative path components. Pass true if the pathname indicates a directory, false otherwise.

baseURL
The URL against which to resolve the path.

Return Value
A new CFURL object. Ownership follows the Create Rule.

660 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Discussion
This function takes a path name in the form of a native character string, resolves it against a base URL, and
returns a new CFURL object containing the result.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLCreateFromFSRef
Creates a URL from a given directory or file.

CFURLRef CFURLCreateFromFSRef (
 CFAllocatorRef allocator,
 const struct FSRef *fsRef
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

fsRef
The file or directory representing the URL.

Return Value
A new CFURL object. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
CarbonSketch
QTCarbonShell

Declared In
CFURL.h

CFURLCreateStringByAddingPercentEscapes
Creates a copy of a string, replacing certain characters with the equivalent percent escape sequence based
on the specified encoding.

Functions 661
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

CFStringRef CFURLCreateStringByAddingPercentEscapes (
 CFAllocatorRef allocator,
 CFStringRef originalString,
 CFStringRef charactersToLeaveUnescaped,
 CFStringRef legalURLCharactersToBeEscaped,
 CFStringEncoding encoding
);

Parameters
allocator

The allocator to use to allocate memory for the new CFString object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

originalString
The CFString object to copy.

charactersToLeaveUnescaped
Characters whose percent escape sequences you want to leave intact. Pass NULL to specify that all
escape sequences be replaced.

legalURLCharactersToBeEscaped
Legal characters to be escaped. Pass NULL to specify that no legal characters be replaced.

encoding
The encoding to use for the translation. If you are uncertain of the correct encoding, you should use
UTF-8, which is the encoding designated by RFC 2396 as the correct encoding for use in URLs.

Return Value
A copy of originalString replacing certain characters. If it does not need to be modified (no percent
escape sequences are missing), this function may merely return originalString with its reference count
incremented. Ownership follows the Create Rule.

Discussion
The characters escaped are all characters that are not legal URL characters (based on RFC 2396), plus any
characters in legalURLCharactersToBeEscaped, less any characters in charactersToLeaveUnescaped.
To simply correct any non-URL characters in an otherwise correct URL string, pass NULL for the allocator,
charactersToLeaveEscaped, and legalURLCharactersToBeEscaped parameters, and
kCFStringEncodingUTF8 as the encoding parameter.

It may be difficult to use this function to "clean up" unescaped or partially escaped URL strings where
sequences are unpredictable and you cannot specify charactersToLeaveUnescaped. Instead, you can
"pre-process" a URL string using CFURLCreateStringByReplacingPercentEscapesUsingEncoding (page 663)
then add the escape characters using CFURLCreateStringByAddingPercentEscapes (page 661), as shown in
the following code fragment.

CFStringRef originalURLString =
CFSTR("http://online.store.com/storefront/?request=get-document&doi=10.1175%2F1520-0426(2005)014%3C1157:DODADSS%3E2.0.CO%3B2");
CFStringRef preprocessedString =
 CFURLCreateStringByReplacingPercentEscapesUsingEncoding(kCFAllocatorDefault,
 originalURLString, CFSTR(""), kCFStringEncodingUTF8);
CFStringRef urlString =
 CFURLCreateStringByAddingPercentEscapes(kCFAllocatorDefault,
preprocessedString, NULL, NULL, kCFStringEncodingUTF8);
url = CFURLCreateWithString(kCFAllocatorDefault, urlString, NULL);

Availability
Available in CarbonLib v1.3 and later.
Available in Mac OS X v10.0 and later.

662 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Related Sample Code
CFNetworkHTTPDownload

Declared In
CFURL.h

CFURLCreateStringByReplacingPercentEscapes
Creates a new string by replacing any percent escape sequences with their character equivalent.

CFStringRef CFURLCreateStringByReplacingPercentEscapes (
 CFAllocatorRef allocator,
 CFStringRef originalString,
 CFStringRef charactersToLeaveEscaped
);

Parameters
allocator

The allocator to use to allocate memory for the new CFString object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

originalString
The CFString object to be copied and modified.

charactersToLeaveEscaped
Characters whose percent escape sequences, such as %20 for a space character, you want to leave
intact. Pass NULL to specify that no percent escapes be replaced, or the empty string (CFSTR(""))
to specify that all be replaced.

Return Value
A new CFString object, or NULL if the percent escapes cannot be converted to characters, assuming UTF-8
encoding. If no characters need to be replaced, this function returns the original string with its reference
count incremented. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFNetworkHTTPDownload

Declared In
CFURL.h

CFURLCreateStringByReplacingPercentEscapesUsingEncoding
Creates a new string by replacing any percent escape sequences with their character equivalent.

Functions 663
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

CFStringRef CFURLCreateStringByReplacingPercentEscapesUsingEncoding (
 CFAllocatorRef allocator,
 CFStringRef origString,
 CFStringRef charsToLeaveEscaped,
 CFStringEncoding encoding
);

Parameters
allocator

The allocator to use to allocate memory for the new CFString object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

originalString
The CFString object to be copied and modified.

charactersToLeaveEscaped
Characters whose percent escape sequences, such as %20 for a space character, you want to leave
intact. Pass NULL to specify that no percent escapes be replaced, or the empty string (CFSTR(""))
to specify that all be replaced.

encoding
Specifies the encoding to use when interpreting percent escapes.

Return Value
A new CFString object, or NULL if the percent escapes cannot be converted to characters, assuming the
encoding given by encoding. If no characters need to be replaced, this function returns the original string
with its reference count incremented. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFURL.h

CFURLCreateWithBytes
Creates a CFURL object using a given character bytes.

CFURLRef CFURLCreateWithBytes (
 CFAllocatorRef allocator,
 const UInt8 *URLBytes,
 CFIndex length,
 CFStringEncoding encoding,
 CFURLRef baseURL
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

URLBytes
The character bytes to convert into a CFURL object.

length
The number of bytes in URLBytes.

664 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

encoding
The string encoding of the URLBytes string. This encoding is also used to interpret percent escape
sequences.

baseURL
The URL to which URLBytes is relative. Pass NULL if URLBytes contains an absolute URL or if you
want to create a relative URL. If URLBytes contains an absolute URL, this parameter is ignored.

Return Value
A new CFURL object. Ownership follows the Create Rule.

Discussion
The specified string encoding will be used both to interpret URLBytes, and to interpret any percent-escapes
within the string.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor
DisplayURL
ImageBrowserView
RecentItems

Declared In
CFURL.h

CFURLCreateWithFileSystemPath
Creates a CFURL object using a local file system path string.

CFURLRef CFURLCreateWithFileSystemPath (
 CFAllocatorRef allocator,
 CFStringRef filePath,
 CFURLPathStyle pathStyle,
 Boolean isDirectory
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

filePath
The path string to convert to a CFURL object.

pathStyle
The operating system path style used in filePath. See Path Style (page 675) for a list of possible
values.

isDirectory
A Boolean value that specifies whether filePath is treated as a directory path when resolving against
relative path components. Pass true if the pathname indicates a directory, false otherwise.

Functions 665
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Return Value
A new CFURL object. Ownership follows the Create Rule.

Discussion
If filePath is not absolute, the resulting URL will be considered relative to the current working directory
(evaluated when this function is being invoked).

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageBrowserView
Quartz EB
SimpleUserClient
TexturePerformanceDemo
TextureRange

Declared In
CFURL.h

CFURLCreateWithFileSystemPathRelativeToBase
Creates a CFURL object using a local file system path string relative to a base URL.

CFURLRef CFURLCreateWithFileSystemPathRelativeToBase (
 CFAllocatorRef allocator,
 CFStringRef filePath,
 CFURLPathStyle pathStyle,
 Boolean isDirectory,
 CFURLRef baseURL
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

filePath
The path string to convert to a CFURL object.

pathStyle
The operating system path style used in the filePath string. See Path Style (page 675) for a list of
possible values.

isDirectory
A Boolean value that specifies whether filePath is treated as a directory path when resolving against
relative path components. Pass true if the pathname indicates a directory, false otherwise.

baseURL
The base URL against which to resolve the filePath.

Return Value
A new CFURL object. Ownership follows the Create Rule.

666 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Discussion
This function takes a path name in the form of a CFString object, resolves it against a base URL, and returns
a new CFURL object containing the result.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
Aperture Image Resizer

Declared In
CFURL.h

CFURLCreateWithString
Creates a CFURL object using a given CFString object.

CFURLRef CFURLCreateWithString (
 CFAllocatorRef allocator,
 CFStringRef URLString,
 CFURLRef baseURL
);

Parameters
allocator

The allocator to use to allocate memory for the new CFURL object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

URLString
The CFString object containing the URL string.

baseURL
The URL to which URLString is relative. Pass NULL if URLString contains an absolute URL or if you
want to create a relative URL. If URLString contains an absolute URL, baseURL is ignored.

Return Value
A new CFURL object. Ownership follows the Create Rule.

Discussion
Any escape sequences in URLString will be interpreted using UTF-8.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
AuthForAll
CFFTPSample
ComboBoxPrefs
DockBrowser
LocalServer

Declared In
CFURL.h

Functions 667
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

CFURLGetBaseURL
Returns the base URL of a given URL if it exists.

CFURLRef CFURLGetBaseURL (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to examine.

Return Value
A CFURL object representing the base URL of anURL. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLGetByteRangeForComponent
Returns the range of the specified component in the bytes of a URL.

CFRange CFURLGetByteRangeForComponent (
 CFURLRef url,
 CFURLComponentType component,
 CFRange *rangeIncludingSeparators
);

Parameters
anURL

The URL containing component.

component
The type of component in anURL whose range you want to obtain. See Component Type (page 673)
for possible values.

rangeIncludingSeparators
Specifies the range of component including the sequences that separate component from the previous
and next components. If there is no previous or next components, this function will match the range
of the component itself. If anURL does not contain component, rangeIncludingSeparators is set
to the location where the component would be inserted.

Return Value
The range of bytes for component in the buffer returned by the CFURLGetBytes (page 669) function. If
anURL does not contain component, the first part of the returned range is set to kCFNotFound (page 765).

Discussion
This function is intended to be used in conjunction with the CFURLGetBytes (page 669) function, since the
range returned is only applicable to the bytes returned by CFURLGetBytes (page 669).

Availability
Available in Mac OS X v10.3 and later.

668 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Related Sample Code
DisplayURL

Declared In
CFURL.h

CFURLGetBytes
Returns by reference the byte representation of a URL object.

CFIndex CFURLGetBytes (
 CFURLRef url,
 UInt8 *buffer,
 CFIndex bufferLength
);

Parameters
anURL

The URL object to convert to a byte representation.

buffer
The buffer where you want the bytes to be placed. If the buffer is of insufficient size, returns -1 and
no bytes are placed in buffer. If NULL the needed length is computed and returned. The returned
bytes are the original bytes from which the URL was created. If the URL was created from a string, the
bytes are the bytes of the string encoded via UTF-8.

bufferLength
The number of bytes in buffer.

Return Value
Returns the number of bytes in buffer that were filled. If the buffer is of insufficient size, returns -1.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
DisplayURL

Declared In
CFURL.h

CFURLGetFileSystemRepresentation
Fills a buffer with the file system's native string representation of a given URL's path.

Boolean CFURLGetFileSystemRepresentation (
 CFURLRef url,
 Boolean resolveAgainstBase,
 UInt8 *buffer,
 CFIndex maxBufLen
);

Parameters
url

The CFURL object whose native file system representation you want to obtain.

Functions 669
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

resolveAgainstBase
Pass true to return an absolute path name.

buffer
A pointer to a character buffer. On return, the buffer holds the native file system's representation of
url. The buffer is null-terminated. This parameter must be at least maxBufLen in size for the file
system in question to avoid failures for insufficiently large buffers.

maxBufLen
The maximum number of characters that can be written to buffer.

Return Value
true if successful, false if an error occurred.

Discussion
No more than maxBufLen bytes are written to buffer. If url requires more than maxBufLen bytes to
represent itself, including the terminating null byte, this function returns false. To avoid this possible failure,
you should pass a buffer with size of at least the maximum path length for the file system in question.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
CFPrefTopScores
EmbededAppleScripts
MoreIsBetter
QISA

Declared In
CFURL.h

CFURLGetFSRef
Converts a given URL to a file or directory object.

Boolean CFURLGetFSRef (
 CFURLRef url,
 struct FSRef *fsRef
);

Parameters
url

The CFURL object to convert to a file or directory object.

fsRef
Upon return, contains the file or directory object representing url.

Return Value
true if the conversion was successful, otherwise false.

Special Considerations

The function cannot create an FSRef object if the path specified by url contains an alias. The function can,
however, traverse symbolic links.

670 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

CFURLGetPortNumber
Returns the port number from a given URL.

SInt32 CFURLGetPortNumber (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to examine.

Return Value
The port number of anURL, or -1 if no port number exists.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageClient

Declared In
CFURL.h

CFURLGetString
Returns the URL as a CFString object.

CFStringRef CFURLGetString (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to convert into a CFString object.

Return Value
A string representation of anURL. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
AlbumToSlideshow
LoginItemsAE

Functions 671
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

QISA

Declared In
CFURL.h

CFURLGetTypeID
Returns the type identifier for the CFURL opaque type.

CFTypeID CFURLGetTypeID (
 void
);

Return Value
The type identifier for the CFURL opaque type.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
LoginItemsAE

Declared In
CFURL.h

CFURLHasDirectoryPath
Determines if a given URL's path represents a directory.

Boolean CFURLHasDirectoryPath (
 CFURLRef anURL
);

Parameters
anURL

The CFURL object to examine.

Return Value
true if anURL represents a directory, false otherwise.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CFFTPSample
ImageClient
MoreAppleEvents
MoreIsBetter
QISA

672 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Declared In
CFURL.h

Data Types

CFURLRef
A reference to a CFURL object.

typedef const struct __CFURL *CFURLRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFURL.h

Constants

Component Type
The types of components in a URL.

typedef enum {
 kCFURLComponentScheme = 1,
 kCFURLComponentNetLocation = 2,
 kCFURLComponentPath = 3,
 kCFURLComponentResourceSpecifier = 4,
 kCFURLComponentUser = 5,
 kCFURLComponentPassword = 6,
 kCFURLComponentUserInfo = 7,
 kCFURLComponentHost = 8,
 kCFURLComponentPort = 9,
 kCFURLComponentParameterString = 10,
 kCFURLComponentQuery = 11,
 kCFURLComponentFragment = 12
} CFURLComponentType;
typedef enum CFURLPathStyle CFURLPathStyle;

Constants
kCFURLComponentScheme

The URL’s scheme.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

kCFURLComponentNetLocation
The URL’s network location.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

Data Types 673
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

kCFURLComponentPath
The URL’s path component.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

kCFURLComponentResourceSpecifier
The URL’s resource specifier.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

kCFURLComponentUser
The URL’s user.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

kCFURLComponentPassword
The user’s password.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

kCFURLComponentUserInfo
The user’s information.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

kCFURLComponentHost
The URL’s host.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

kCFURLComponentPort
The URL’s port.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

kCFURLComponentParameterString
The URL’s parameter string.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

kCFURLComponentQuery
The URL’s query.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

kCFURLComponentFragment
The URL’s fragment.

Available in Mac OS X v10.3 and later.

Declared in CFURL.h.

Discussion
These constants are used by the CFURLGetByteRangeForComponent (page 668) function.

674 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Availability
Available in Mac OS X v10.3 and later.

Path Style
Options you can use to determine how CFURL functions parse a file system path name.

enum CFURLPathStyle {
 kCFURLPOSIXPathStyle = 0,
 kCFURLHFSPathStyle = 1,
 kCFURLWindowsPathStyle = 2
};
typedef enum CFURLPathStyle CFURLPathStyle;

Constants
kCFURLPOSIXPathStyle

Indicates a POSIX style path name. Components are slash delimited. A leading slash indicates an
absolute path; a trailing slash is not significant.

Available in Mac OS X v10.0 and later.

Declared in CFURL.h.

kCFURLHFSPathStyle
Indicates a HFS style path name. Components are colon delimited. A leading colon indicates a relative
path, otherwise the first path component denotes the volume.

Available in Mac OS X v10.0 and later.

Declared in CFURL.h.

kCFURLWindowsPathStyle
Indicates a Windows style path name.

Available in Mac OS X v10.0 and later.

Declared in CFURL.h.

Constants 675
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

676 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

CFURL Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFUserNotification.h

Companion guide Notification Programming Topics for Cocoa

Overview

A CFUserNotification object presents a simple dialog on the screen and optionally receives feedback
from the user. The contents of the dialog can include a header, a message, an icon, text fields, a pop-up
button, radio buttons or checkboxes, and up to three ordinary buttons. Use CFUserNotification in
processes that do not otherwise have user interfaces, but may need occasional interaction with the user.

You create a user notification with the CFUserNotificationCreate (page 678) function. You pass in a
dictionary whose keys describe the items to place into the dialog. (See "Dialog Description Keys" (page 689)
for the list of keys.) A set of flags passed to the function determines, among other things, whether secure
text fields are used (such as for password fields), whether radio buttons or checkboxes are used, and which
of these buttons are checked by default. You can also specify a timeout for the dialog, in which case the
dialog cancels itself if the user does not respond in the allotted time period.

A user notification displays its dialog as soon as it is created. If any reply is required, it may be awaited in one
of two ways: either synchronously, using CFUserNotificationReceiveResponse (page 684), or
asynchronously, using a run loop source created with CFUserNotificationCreateRunLoopSource (page
679). CFUserNotificationReceiveResponse (page 684) has a timeout parameter that determines how
long it will block (zero meaning indefinitely) and it may be called as many times as necessary until a response
arrives. If a user notification has not yet received a response, it may be updated with new information or it
may be cancelled. User notifications may not be reused.

CFUserNotification provides two convenience functions, CFUserNotificationDisplayNotice (page
681) and CFUserNotificationDisplayAlert (page 680), to display very basic dialogs that either require
no response from the user or require only a single button to be pressed, respectively.

Functions

CFUserNotificationCancel
Cancels a user notification dialog.

Overview 677
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

SInt32 CFUserNotificationCancel (
 CFUserNotificationRef userNotification
);

Parameters
userNotification

The user notification to cancel.

Return Value
0 if the cancel was successful; a non-0 value otherwise.

Discussion
You must cancel a user notification if you want to remove its dialog from the screen before the user dismisses
it. It is not sufficient to just release the object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

CFUserNotificationCheckBoxChecked
Returns a flag used to set or test a checkbox’s state.

CFOptionFlags CFUserNotificationCheckBoxChecked (
 CFIndex i
);

Parameters
idx

The index of the checkbox to set or test. The index corresponds to the order in which the checkbox
titles are listed in the kCFUserNotificationCheckBoxTitlesKey (page 691) array of the user
notification’s description dictionary. idx must be in the range 0 to 7.

Return Value
A flag that can be used either to set the state of a checkbox when creating a user notification with
CFUserNotificationCreate (page 678) or to test a checkbox’s state returned in a user notification’s
response flags, such as from CFUserNotificationReceiveResponse (page 684), when the notification
dialog is dismissed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

CFUserNotificationCreate
Creates a CFUserNotification object and displays its notification dialog on screen.

678 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

CFUserNotificationRef CFUserNotificationCreate (
 CFAllocatorRef allocator,
 CFTimeInterval timeout,
 CFOptionFlags flags,
 SInt32 *error,
 CFDictionaryRef dictionary
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

timeout
The time to wait before the notification dialog dismisses itself if the user does not respond. If 0, the
notification never times out.

flags
A set of flags describing the type of notification to display. These flags specify an alert level for the
notification (see Alert Levels (page 687)), determine whether radio buttons or checkboxes are to be
used (see Button Flags (page 689)), specify which, if any, of these buttons are checked by default (see
CFUserNotificationCheckBoxChecked (page 678)), specify whether any of the text fields are to
be secure text fields (see CFUserNotificationSecureTextField (page 685)), and determine which
element of a pop-up menu, if present, should be selected by default (see
CFUserNotificationPopUpSelection (page 684)). Combine these flags together by performing
a bitwise-OR operation with all the individual flags.

error
On return contains an integer error code. If 0, the user notification was successfully created and
displayed.

dictionary
A description of the elements to display in the notification dialog. The possible keys are listed in
"Dialog Description Keys" (page 689). The dictionary must contain a value for the key
kCFUserNotificationAlertHeaderKey (page 690), but the other keys are optional.

Return Value
The new CFUserNotification object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

CFUserNotificationCreateRunLoopSource
Creates a run loop source for a user notification.

Functions 679
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

CFRunLoopSourceRef CFUserNotificationCreateRunLoopSource (
 CFAllocatorRef allocator,
 CFUserNotificationRef userNotification,
 CFUserNotificationCallBack callout,
 CFIndex order
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

userNotification
The user notification to use.

callout
The callback function to invoke when the user notification dialog is dismissed.

order
A priority index indicating the order in which run loop sources are processed. User notifications
currently ignore this parameter. Pass 0 for this value.

Return Value
The new CFRunLoopSource object. Ownership follows the Create Rule.

Discussion
A run loop source needs to be added to a run loop before it can fire and call its callback function. To add the
source to a run loop, use CFRunLoopAddSource (page 445).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

CFUserNotificationDisplayAlert
Displays a user notification dialog and waits for a user response.

SInt32 CFUserNotificationDisplayAlert (
 CFTimeInterval timeout,
 CFOptionFlags flags,
 CFURLRef iconURL,
 CFURLRef soundURL,
 CFURLRef localizationURL,
 CFStringRef alertHeader,
 CFStringRef alertMessage,
 CFStringRef defaultButtonTitle,
 CFStringRef alternateButtonTitle,
 CFStringRef otherButtonTitle,
 CFOptionFlags *responseFlags
);

Parameters
timeout

The amount of time to wait for the user to dismiss the notification dialog before the dialog dismisses
itself. Pass 0 to have the dialog never time out.

680 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

flags
A set of flags describing the type of notification dialog to display. The value is normally just the alert
level from Alert Levels (page 687). If you don’t want a default button displayed, perform a bitwise-OR
operation with the alert level and the constantkCFUserNotificationNoDefaultButtonFlag (page
689).

iconURL
A file URL pointing to the icon to display in the dialog. If NULL, a default icon is used based on the
notification’s alert level specified in flags.

soundURL
Not used.

localizationURL
A file URL pointing to a bundle that contains localized versions of the strings displayed in the dialog.
Can be NULL.

alertHeader
The title of the notification dialog. Cannot be NULL.

alertMessage
The message string to display in the dialog. Can be NULL.

defaultButtonTitle
The title of the default button. If NULL, the string OK is used.

alternateButtonTitle
The title of an optional alternate button. Can be NULL.

otherButtonTitle
The title of an optional third button. Can be NULL.

responseFlags
On return, contains flags identifying how the notification was dismissed. See Response Codes (page
688) for details.

Return Value
0 if the cancel was successful; a non-0 value otherwise.

Discussion
This function blocks the current thread’s execution until the dialog is dismissed, either by the user or by
timing out.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

CFUserNotificationDisplayNotice
Displays a user notification dialog that does not need a user response.

Functions 681
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

SInt32 CFUserNotificationDisplayNotice (
 CFTimeInterval timeout,
 CFOptionFlags flags,
 CFURLRef iconURL,
 CFURLRef soundURL,
 CFURLRef localizationURL,
 CFStringRef alertHeader,
 CFStringRef alertMessage,
 CFStringRef defaultButtonTitle
);

Parameters
timeout

The amount of time to wait for the user to dismiss the notification dialog before the dialog dismisses
itself. Pass 0 to have the dialog never time out.

flags
A set of flags describing the type of notification dialog to display. The value is normally just the alert
level from Alert Levels (page 687). If you don’t want a default button displayed, perform a bitwise-OR
operation with the alert level and the constantkCFUserNotificationNoDefaultButtonFlag (page
689).

iconURL
A file URL pointing to the icon to display in the dialog. If NULL, a default icon is used based on the
notification’s alert level specified in flags.

soundURL
Not used.

localizationURL
A file URL pointing to a bundle that contains localized versions of the strings displayed in the dialog.
Can be NULL.

alertHeader
The title of the notification dialog. Cannot be NULL.

alertMessage
The message string to display in the dialog. Can be NULL.

defaultButtonTitle
The title of the default button. If NULL, the string OK is used.

Return Value
0 if the cancel was successful; a non-0 value otherwise.

Discussion
This function returns immediately. It does not wait for a user response after displaying the dialog.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
X11CallCarbonAndCocoa

Declared In
CFUserNotification.h

682 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

CFUserNotificationGetResponseDictionary
Returns the dictionary containing all the text field values from a dismissed notification dialog.

CFDictionaryRef CFUserNotificationGetResponseDictionary (
 CFUserNotificationRef userNotification
);

Parameters
userNotification

The user notification to use.

Return Value
A dictionary holding the values of all the text fields in userNotificationwhen it was dismissed. The values
are in an array stored with the key kCFUserNotificationTextFieldValuesKey (page 691). Ownership
follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

CFUserNotificationGetResponseValue
Extracts the values of the text fields from a dismissed notification dialog.

CFStringRef CFUserNotificationGetResponseValue (
 CFUserNotificationRef userNotification,
 CFStringRef key,
 CFIndex idx
);

Parameters
userNotification

The user notification to use.

key
The dictionary key identifying the text fields to use. Currently, only
kCFUserNotificationTextFieldValuesKey (page 691) is supported.

idx
The index of the text field value to return. The index corresponds to the order in which text fields are
listed in the kCFUserNotificationTextFieldTitlesKey (page 691) array in the user notification’s
description dictionary.

Return Value
The value of the text field identified by key and idx. Ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

Functions 683
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

CFUserNotificationGetTypeID
Returns the type identifier for the CFUserNotification opaque type.

CFTypeID CFUserNotificationGetTypeID (
 void
);

Return Value
The type identifier for the CFUserNotification opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

CFUserNotificationPopUpSelection
Returns a flag used to set the selected element of a pop-up menu.

CFOptionFlags CFUserNotificationPopUpSelection (
 CFIndex n
);

Parameters
idx

The index of the pop-up menu element to select. The index corresponds to the order in which the
pop-up menu elements are listed in the kCFUserNotificationPopUpTitlesKey (page 691) array
of the user notification’s description dictionary. idx must be in the range 0 to 255.

Return Value
A flag that can be used to set the selected element of a pop-up menu when creating a user notification with
CFUserNotificationCreate (page 678).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

CFUserNotificationReceiveResponse
Waits for the user to respond to a notification or for the notification to time out.

SInt32 CFUserNotificationReceiveResponse (
 CFUserNotificationRef userNotification,
 CFTimeInterval timeout,
 CFOptionFlags *responseFlags
);

Parameters
userNotification

The user notification to use.

684 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

timeout
The amount of time to wait for the user to respond to userNotification or for the notification to
time out. If neither happens before timeout passes, this function returns a non-0 value. If timeout
is 0, the function blocks until the user notification is dismissed.

responseFlags
On return, contains flags identifying how the notification was dismissed, the state of any checkboxes,
and the selected element of the pop-up menu. Bits 0-1 of the value hold an identifier for the button
pressed by the user (see Response Codes (page 688)). Extract the identifier by performing a bitwise-AND
operation with 0x3. Bits 8-15 of responseFlags hold the state of up to 8 checkboxes or radio buttons,
if present. Extract the flags by performing bitwise-AND operations with the return value of
CFUserNotificationCheckBoxChecked (page 678). Bits 24-31 hold the index number of the
element selected in a pop-up menu, if present. Extract the index by performing a 24-bit right shift:
responseFlags >> 24.

Return Value
0 if the cancel was successful; a non-0 value otherwise.

Discussion
Use this function to poll a user notification for a user response. You can call it any number of times on the
same user notification.

To avoid polling and blocking your thread’s execution, you can create a run loop source for the user notification
with CFUserNotificationCreateRunLoopSource (page 679). You will then receive a callback when the
dialog is dismissed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

CFUserNotificationSecureTextField
Returns a flag used to set the secure state of a text field.

CFOptionFlags CFUserNotificationSecureTextField (
 CFIndex i
);

Parameters
idx

The index of the text field to make secure. The index corresponds to the order in which the text fields
are listed in the kCFUserNotificationTextFieldTitlesKey (page 691) array of the user
notification’s description dictionary. idx must be in the range 0 to 7.

Return Value
A flag that can be used to set the secure state of a text field when creating a user notification with
CFUserNotificationCreate (page 678).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

Functions 685
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

CFUserNotificationUpdate
Updates a displayed user notification dialog with new user interface information.

SInt32 CFUserNotificationUpdate (
 CFUserNotificationRef userNotification,
 CFTimeInterval timeout,
 CFOptionFlags flags,
 CFDictionaryRef dictionary
);

Parameters
userNotification

The user notification to update.

timeout
The new timeout value for the dialog.

flags
A set of flags describing the type of notification to display. See CFUserNotificationCreate (page
678) for details.

dictionary
A description of the elements to display in the notification dialog. The possible keys are listed in
"Dialog Description Keys" (page 689).

Return Value
0 if the cancel was successful; a non-0 value otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

Callbacks

CFUserNotificationCallBack
Callback invoked when an asynchronous user notification dialog is dismissed.

typedef void (*CFUserNotificationCallBack) (
 CFUserNotificationRef userNotification,
 CFOptionFlags responseFlags
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFUserNotificationRef userNotification,
 CFOptionFlags responseFlags
);

686 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

Parameters
userNotification

The user notification that was dismissed.

responseFlags
On return, contains flags identifying how the notification was dismissed, the state of any checkboxes,
and the selected item of the pop-up menu. See CFUserNotificationReceiveResponse (page
684) for details.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

Data Types

CFUserNotificationRef
A reference to a user notification object.

typedef struct __CFUserNotification *CFUserNotificationRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUserNotification.h

Constants

Alert Levels
Flags identifying the seriousness of a user notification.

enum {
 kCFUserNotificationStopAlertLevel = 0,
 kCFUserNotificationNoteAlertLevel = 1,
 kCFUserNotificationCautionAlertLevel = 2,
 kCFUserNotificationPlainAlertLevel= 3
};

Constants
kCFUserNotificationStopAlertLevel

The notification is very serious.

A stop icon is displayed by default.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

Data Types 687
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

kCFUserNotificationNoteAlertLevel
The notification is not very serious.

A note icon is displayed by default.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationCautionAlertLevel
The notification is somewhat serious.

A caution icon is displayed by default.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationPlainAlertLevel
The notification is not serious.

An information icon is displayed by default.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

Discussion
If you specify an icon to display in the dialog, this icon overrides the default icon used for each alert level.

Response Codes
Response codes identifying the button that was pressed to dismiss a notification dialog.

enum {
 kCFUserNotificationDefaultResponse = 0,
 kCFUserNotificationAlternateResponse = 1,
 kCFUserNotificationOtherResponse = 2,
 kCFUserNotificationCancelResponse = 3
};

Constants
kCFUserNotificationDefaultResponse

The default button was pressed.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationAlternateResponse
The alternate button was pressed.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationOtherResponse
The third button was pressed.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

688 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

kCFUserNotificationCancelResponse
No button was pressed and the notification timed out.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

Discussion
To extract this value from the response flags of a dismissed notification (such as returned by
CFUserNotificationReceiveResponse (page 684)), you must perform a bitwise-AND operation between
the returned response flags and 0x3 before comparing the value to these constants.

Button Flags
Flags that alter the display of buttons in a user notification dialog.

enum {
 kCFUserNotificationNoDefaultButtonFlag = (1 << 5),
 kCFUserNotificationUseRadioButtonsFlag = (1 << 6)
};

Constants
kCFUserNotificationNoDefaultButtonFlag

Displays the dialog without the default, alternate, or other buttons.

The dialog remains on screen until it times out or you cancel it with
CFUserNotificationCancel (page 677). If you provide a title for the default button in the user
notification’s description dictionary, this flag is ignored and buttons show up normally.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationUseRadioButtonsFlag
Creates a group of radio buttons instead of checkboxes for the elements in the
kCFUserNotificationCheckBoxTitlesKey (page 691) array in the user notification’s description
dictionary.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

Discussion
You specify these flags when you create the user notification with CFUserNotificationCreate (page 678).

Dialog Description Keys
Keys used in a user notification’s description dictionary, which describes the contents of the notification
dialog to display.

Constants 689
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

const CFStringRef kCFUserNotificationIconURLKey;
const CFStringRef kCFUserNotificationSoundURLKey;
const CFStringRef kCFUserNotificationLocalizationURLKey;
const CFStringRef kCFUserNotificationAlertHeaderKey;
const CFStringRef kCFUserNotificationAlertMessageKey;
const CFStringRef kCFUserNotificationDefaultButtonTitleKey;
const CFStringRef kCFUserNotificationAlternateButtonTitleKey;
const CFStringRef kCFUserNotificationOtherButtonTitleKey;
const CFStringRef kCFUserNotificationProgressIndicatorValueKey;
const CFStringRef kCFUserNotificationPopUpTitlesKey;
const CFStringRef kCFUserNotificationTextFieldTitlesKey;
const CFStringRef kCFUserNotificationCheckBoxTitlesKey;
const CFStringRef kCFUserNotificationTextFieldValuesKey;
const CFStringRef kCFUserNotificationPopUpSelectionKey

Constants
kCFUserNotificationIconURLKey

A file URL pointing to the icon to display in the dialog.

If absent, a default icon based on the alert level is used.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationSoundURLKey
Not used.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationLocalizationURLKey
A file URL pointing to a bundle that contains localized versions of the strings displayed in the dialog.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationAlertHeaderKey
The title of the notification dialog.

This key is required.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationAlertMessageKey
The message string to display in the dialog.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationDefaultButtonTitleKey
The title of the default button.

If absent and the dialog is not being created with the
kCFUserNotificationNoDefaultButtonFlag (page 689) flag, a default button title of OK is used.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

690 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

kCFUserNotificationAlternateButtonTitleKey
The title of an optional alternate button.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationOtherButtonTitleKey
The title of an optional third button.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationProgressIndicatorValueKey
Not used.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationPopUpTitlesKey
The list of strings to display in a pop-up menu.

The array cannot have more than 256 elements.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationTextFieldTitlesKey
The list of titles for all the text fields to display.

If only one text field is to be displayed, you can pass its title string directly without putting it into an
array first.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationCheckBoxTitlesKey
The list of titles for all the checkboxes or radio buttons to display.

The array cannot have more than 8 elements. If only one checkbox is to be displayed, you can pass
its title string directly without putting it into an array first.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationTextFieldValuesKey
The list of values to put into the text fields. If only one text field is to be displayed, you can pass its
value string directly without putting it into an array first.

Available in Mac OS X v10.0 and later.

Declared in CFUserNotification.h.

kCFUserNotificationPopUpSelectionKey
The item that was selected from a pop-up menu.

Available in Mac OS X v10.3 and later.

Declared in CFUserNotification.h.

Discussion
When creating the user notification with CFUserNotificationCreate (page 678), the description dictionary
must have a value for kCFUserNotificationAlertHeaderKey (page 690). All other keys are optional.

Constants 691
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

The button title keys must be given in right-to-left order—you therefore must use the
kCFUserNotificationDefaultButtonTitleKey constant for the rightmost button even if it is conceptually
not a "default" button (for example, if you want a single "Cancel" button that should not have color, should
not pulse, and should not have return for a key equivalent). If, however, you set the
kCFUserNotificationNoDefaultButtonFlag, the rightmost button does not behave as a default button
(although it will still be the "default" button in the sense of using
kCFUserNotificationDefaultButtonTitleKey andkCFUserNotificationDefaultResponse). The
following code fragment shows how you can create a notification that contains a single "Cancel" button that
does not behave as a default button.

const void* keys[] = {kCFUserNotificationAlertHeaderKey,
 kCFUserNotificationProgressIndicatorValueKey,
 kCFUserNotificationDefaultButtonTitleKey};
const void* values[] = {CFSTR("Progress"),
 kCFBooleanTrue,
 CFSTR("Cancel")};
CFDictionaryRef parameters = CFDictionaryCreate(0, keys, values,
 sizeof(keys)/sizeof(*keys), &kCFTypeDictionaryKeyCallBacks,
 &kCFTypeDictionaryValueCallBacks);
SInt32 err = 0;
CFUserNotificationCreate(kCFAllocatorDefault, 0,
 kCFUserNotificationPlainAlertLevel |
kCFUserNotificationNoDefaultButtonFlag,
 &err, parameters);

If you set the kCFUserNotificationNoDefaultButtonFlag flag and do not specify a value for
kCFUserNotificationDefaultButtonTitleKey, the notification will have no buttons.

692 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CFUserNotification Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFUUID.h

Companion guide Plug-ins

Overview

CFUUID objects are used by plug-ins to uniquely identify types, interfaces, and factories. When creating a
new type, host developers must generate UUIDs to identify the type as well as its interfaces and factories.

UUIDs (Universally Unique Identifiers), also known as GUIDs (Globally Unique Identifiers) or IIDs (Interface
Identifiers), are 128-bit values guaranteed to be unique. A UUID is made unique over both space and time
by combining a value unique to the computer on which it was generated—usually the Ethernet hardware
address—and a value representing the number of 100-nanosecond intervals since October 15, 1582 at
00:00:00.

The standard format for UUIDs represented in ASCII is a string punctuated by hyphens, for example
68753A44-4D6F-1226-9C60-0050E4C00067. The hex representation looks, as you might expect, like a
list of numerical values preceded by 0x. For example, 0xD7, 0x36, 0x95, 0x0A, 0x4D, 0x6E, 0x12,
0x26, 0x80, 0x3A, 0x00, 0x50, 0xE4, 0xC0, 0x00, 0x67 . To use a UUID, you simply create it
and then copy the resulting strings into your header and C language source files. Because a UUID is expressed
simply as an array of bytes, there are no endianness considerations for different platforms.

You can create a CFUUID object, and thereby generate a UUID, using any one of the CFUUIDCreate...
functions. Use the CFUUIDGetConstantUUIDWithBytes (page 698) function if you want to declare a UUID
constant in a #define statement. You can get the raw bytes of an existing CFUUID object using the
CFUUIDGetUUIDBytes (page 700) function.

Functions by Task

Creating CFUUID Objects

CFUUIDCreate (page 694)
Creates a Universally Unique Identifier (UUID) object.

CFUUIDCreateFromString (page 695)
Creates a CFUUID object for a specified string.

Overview 693
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CFUUID Reference

CFUUIDCreateFromUUIDBytes (page 695)
Creates a CFUUID object from raw UUID bytes.

CFUUIDCreateWithBytes (page 697)
Creates a CFUUID object from raw UUID bytes.

Getting Information About CFUUID Objects

CFUUIDCreateString (page 696)
Returns the string representation of a specified CFUUID object.

CFUUIDGetConstantUUIDWithBytes (page 698)
Returns a CFUUID object from raw UUID bytes.

CFUUIDGetUUIDBytes (page 700)
Returns the value of a UUID object as raw bytes.

Getting the CFUUID Type Identifier

CFUUIDGetTypeID (page 700)
Returns the type identifier for all CFUUID objects.

Functions

CFUUIDCreate
Creates a Universally Unique Identifier (UUID) object.

CFUUIDRef CFUUIDCreate (
 CFAllocatorRef alloc
);

Parameters
alloc

The allocator to use to allocate memory for the new CFUUID object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

Return Value
A new CFUUID object. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
AutomatorHandsOn
People
StickiesExample

694 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CFUUID Reference

Declared In
CFUUID.h

CFUUIDCreateFromString
Creates a CFUUID object for a specified string.

CFUUIDRef CFUUIDCreateFromString (
 CFAllocatorRef alloc,
 CFStringRef uuidStr
);

Parameters
alloc

The allocator to use to allocate memory for the new CFUUID object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

uuidStr
A string containing a UUID. The standard format for UUIDs represented in ASCII is a string punctuated
by hyphens, for example 68753A44-4D6F-1226-9C60-0050E4C00067.

Return Value
A new CFUUID object, or if a CFUUID object of the same value already exists, the existing instance with its
reference count incremented. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
iSpend
PDEProject
Spotlight
SpotlightFortunes

Declared In
CFUUID.h

CFUUIDCreateFromUUIDBytes
Creates a CFUUID object from raw UUID bytes.

CFUUIDRef CFUUIDCreateFromUUIDBytes (
 CFAllocatorRef alloc,
 CFUUIDBytes bytes
);

Parameters
alloc

The allocator to use to allocate memory for the new CFUUID object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

Functions 695
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CFUUID Reference

bytes
Raw UUID bytes to use to create the CFUUID object.

Return Value
A new CFUUID object. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
iSpend
SampleCMPlugIn
Spotlight
SpotlightFortunes

Declared In
CFUUID.h

CFUUIDCreateString
Returns the string representation of a specified CFUUID object.

CFStringRef CFUUIDCreateString (
 CFAllocatorRef alloc,
 CFUUIDRef uuid
);

Parameters
alloc

The allocator to use to allocate memory for the new string. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

uuid
The CFUUID object whose string representation to obtain.

Return Value
The string representation of uuid. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
AutomatorHandsOn
IdentitySample
PDEProject
People
StickiesExample

Declared In
CFUUID.h

696 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CFUUID Reference

CFUUIDCreateWithBytes
Creates a CFUUID object from raw UUID bytes.

CFUUIDRef CFUUIDCreateWithBytes (
 CFAllocatorRef alloc,
 UInt8 byte0,
 UInt8 byte1,
 UInt8 byte2,
 UInt8 byte3,
 UInt8 byte4,
 UInt8 byte5,
 UInt8 byte6,
 UInt8 byte7,
 UInt8 byte8,
 UInt8 byte9,
 UInt8 byte10,
 UInt8 byte11,
 UInt8 byte12,
 UInt8 byte13,
 UInt8 byte14,
 UInt8 byte15
);

Parameters
alloc

The allocator to use to allocate memory for the new CFUUID object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

byte0
Raw byte number 0.

byte1
Raw byte number 1.

byte2
Raw byte number 2.

byte3
Raw byte number 3.

byte4
Raw byte number 4.

byte5
Raw byte number 5.

byte6
Raw byte number 6.

byte7
Raw byte number 7.

byte8
Raw byte number 8.

byte9
Raw byte number 9.

byte10
Raw byte number 10.

Functions 697
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CFUUID Reference

byte11
Raw byte number 11.

byte12
Raw byte number 12.

byte13
Raw byte number 13.

byte14
Raw byte number 14.

byte15
Raw byte number 15.

Return Value
A new CFUUID object, or, if a CFUUID object of the same value already exists, the existing instance with its
reference count incremented. Ownership follows the Create Rule.

Discussion
.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFUUID.h

CFUUIDGetConstantUUIDWithBytes
Returns a CFUUID object from raw UUID bytes.

CFUUIDRef CFUUIDGetConstantUUIDWithBytes (
 CFAllocatorRef alloc,
 UInt8 byte0,
 UInt8 byte1,
 UInt8 byte2,
 UInt8 byte3,
 UInt8 byte4,
 UInt8 byte5,
 UInt8 byte6,
 UInt8 byte7,
 UInt8 byte8,
 UInt8 byte9,
 UInt8 byte10,
 UInt8 byte11,
 UInt8 byte12,
 UInt8 byte13,
 UInt8 byte14,
 UInt8 byte15
);

Parameters
alloc

The allocator to use to allocate memory for the new CFUUID object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

698 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CFUUID Reference

byte0
Raw byte number 0.

byte1
Raw byte number 1.

byte2
Raw byte number 2.

byte3
Raw byte number 3.

byte4
Raw byte number 4.

byte5
Raw byte number 5.

byte6
Raw byte number 6.

byte7
Raw byte number 7.

byte8
Raw byte number 8.

byte9
Raw byte number 9.

byte10
Raw byte number 10.

byte11
Raw byte number 11.

byte12
Raw byte number 12.

byte13
Raw byte number 13.

byte14
Raw byte number 14.

byte15
Raw byte number 15.

Return Value
A CFUUID object. Ownership follows the Get Rule.

Discussion
This function can be used in headers to declare a UUID constant with #define.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFUUID.h

Functions 699
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CFUUID Reference

CFUUIDGetTypeID
Returns the type identifier for all CFUUID objects.

CFTypeID CFUUIDGetTypeID (
 void
);

Return Value
The type identifier for the CFUUID opaque type.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFUUID.h

CFUUIDGetUUIDBytes
Returns the value of a UUID object as raw bytes.

CFUUIDBytes CFUUIDGetUUIDBytes (
 CFUUIDRef uuid
);

Parameters
uuid

The CFUUID object to examine.

Return Value
The value of uuid represented as raw bytes.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Related Sample Code
BasicPlugIn
SCSIOldAndNew
simpleAVC
USBPrivateDataSample

Declared In
CFUUID.h

Data Types

CFUUIDBytes
A 128-bit struct that represents a UUID as raw bytes.

700 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CFUUID Reference

typedef struct {
 UInt8 byte0;
 UInt8 byte1;
 UInt8 byte2;
 UInt8 byte3;
 UInt8 byte4;
 UInt8 byte5;
 UInt8 byte6;
 UInt8 byte7;
 UInt8 byte8;
 UInt8 byte9;
 UInt8 byte10;
 UInt8 byte11;
 UInt8 byte12;
 UInt8 byte13;
 UInt8 byte14;
 UInt8 byte15;
} CFUUIDBytes;

Fields
byte0

The first byte.

byte1
The second byte.

byte2
The third byte.

byte3
The fourth byte.

byte4
The fifth byte.

byte5
The sixth byte.

byte6
The seventh byte.

byte7
The eighth byte.

byte8
The ninth byte.

byte9
The tenth byte.

byte10
The eleventh byte.

byte11
The twelfth byte.

byte12
The thirteenth byte.

byte13
The fourteenth byte.

Data Types 701
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CFUUID Reference

byte14
The fifteenth byte.

byte15
The sixteenth byte.

Discussion
This structure can be obtained from a CFUUID object using the CFUUIDGetUUIDBytes (page 700) function.
This structure is can be passed to functions that expect a raw UUID.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUUID.h

CFUUIDRef
A reference to a CFUUID object.

typedef const struct __CFUUID *CFUUIDRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFUUID.h

702 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CFUUID Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFStream.h

Overview

CFWriteStream provides an interface for writing a byte stream either synchronously or asynchronously.
You can create streams that write bytes to a block of memory, a file, or a generic socket. All streams need to
be opened, using CFWriteStreamOpen (page 710), before writing.

Use CFReadStream for reading byte streams, and for the functions, such as
CFStreamCreatePairWithSocketToHost (page 825), that create socket streams).

CFWriteStream is “toll-free bridged” with its Cocoa Foundation counterpart, NSOutputStream. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSOutputStream * parameter, you can pass in a
CFWriteStreamRef, and in a function where you see a CFWriteStreamRef parameter, you can pass in an
NSOutputStream instance. Note, however, that you may have either a delegate or callbacks but not both.
See Interchangeable Data Types for more information on toll-free bridging.

Functions by Task

Creating a Write Stream

CFWriteStreamCreateWithAllocatedBuffers (page 706)
Creates a writable stream for a growable block of memory.

CFWriteStreamCreateWithBuffer (page 707)
Creates a writable stream for a fixed-size block of memory.

CFWriteStreamCreateWithFile (page 708)
Creates a writable stream for a file.

Opening and Closing a Stream

CFWriteStreamClose (page 705)
Closes a writable stream.

Overview 703
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

CFWriteStreamOpen (page 710)
Opens a stream for writing.

Writing to a Stream

CFWriteStreamWrite (page 713)
Writes data to a writable stream.

Scheduling a Write Stream

CFWriteStreamScheduleWithRunLoop (page 710)
Schedules a stream into a run loop.

CFWriteStreamUnscheduleFromRunLoop (page 713)
Removes a stream from a particular run loop.

Examining Stream Properties

CFWriteStreamCanAcceptBytes (page 705)
Returns whether a writable stream can accept new data without blocking.

CFWriteStreamCopyProperty (page 706)
Returns the value of a property for a stream.

CFWriteStreamCopyError (page 705)
Returns the error associated with a stream.

CFWriteStreamGetError (page 708)
Returns the error status of a stream. (Deprecated. Use CFWriteStreamCopyError (page 705) instead.)

CFWriteStreamGetStatus (page 709)
Returns the current state of a stream.

Setting Stream Properties

CFWriteStreamSetClient (page 711)
Assigns a client to a stream, which receives callbacks when certain events occur.

CFWriteStreamSetProperty (page 712)
Sets the value of a property for a stream.

Getting the CFWriteStream Type ID

CFWriteStreamGetTypeID (page 709)
Returns the type identifier of all CFWriteStream objects.

704 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

Functions

CFWriteStreamCanAcceptBytes
Returns whether a writable stream can accept new data without blocking.

Boolean CFWriteStreamCanAcceptBytes (
 CFWriteStreamRef stream
);

Parameters
stream

The stream to examine.

Return Value
true if data can be written to stream without blocking, false otherwise. If stream cannot tell if data can
be written without actually trying to write the data, this function returns true.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CFStream.h

CFWriteStreamClose
Closes a writable stream.

void CFWriteStreamClose (
 CFWriteStreamRef stream
);

Parameters
stream

The stream to close.

Discussion
This function terminates the flow of bytes and releases any system resources required by the stream. The
stream is removed from any run loops in which it was scheduled. Once closed, the stream cannot be reopened.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample

Declared In
CFStream.h

CFWriteStreamCopyError
Returns the error associated with a stream.

Functions 705
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

CFErrorRef CFWriteStreamCopyError (
 CFReadStreamRef stream
);

Parameters
stream

The stream to examine.

Return Value
A CFError object that describes the current problem with stream, or NULL if there is no error. Ownership
follows the Create Rule.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CFStream.h

CFWriteStreamCopyProperty
Returns the value of a property for a stream.

CFTypeRef CFWriteStreamCopyProperty (
 CFWriteStreamRef stream,
 CFStringRef propertyName
);

Parameters
stream

The stream to examine.

propertyName
The name of the stream property to obtain. The available properties for standard Core Foundation
streams are listed in “Stream Properties.” (page 832)

Return Value
The value of the property propertyName. Ownership follows the Create Rule.

Discussion
Each type of stream can define a set of properties that either describe or configure individual streams. A
property can be any interesting information about a stream. Examples include the headers from an HTTP
transmission, the expected number of bytes, file permission information, and so on. Use
CFWriteStreamSetProperty (page 712) to modify the value of a property, although some properties are
read-only.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CFStream.h

CFWriteStreamCreateWithAllocatedBuffers
Creates a writable stream for a growable block of memory.

706 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

CFWriteStreamRef CFWriteStreamCreateWithAllocatedBuffers (
 CFAllocatorRef alloc,
 CFAllocatorRef bufferAllocator
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

bufferAllocator
The allocator to use to allocate memory for the stream’s memory buffers. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

Return Value
A new write stream. Ownership follows the Create Rule.

Discussion
New buffers are allocated using bufferAllocator as bytes are written to the stream. At any point, you can
recover the bytes thus far written by asking for the property kCFStreamPropertyDataWritten with
CFWriteStreamCopyProperty (page 706).

You must open the stream, using CFWriteStreamOpen (page 710), before writing to it.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CFStream.h

CFWriteStreamCreateWithBuffer
Creates a writable stream for a fixed-size block of memory.

CFWriteStreamRef CFWriteStreamCreateWithBuffer (
 CFAllocatorRef alloc,
 UInt8 *buffer,
 CFIndex bufferCapacity
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

buffer
The memory buffer into which to write data. This buffer must exist for the lifetime of the stream.

bufferCapacity
The size of buffer and the maximum number of bytes that can be written.

Return Value
A new write stream, or NULL on failure. Ownership follows the Create Rule.

Discussion
When buffer is filled after writing bufferCapacity bytes, the stream is exhausted and its status becomes
kCFStreamStatusAtEnd (page 828).

Functions 707
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

You must open the stream, using CFWriteStreamOpen (page 710), before writing to it.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CFStream.h

CFWriteStreamCreateWithFile
Creates a writable stream for a file.

CFWriteStreamRef CFWriteStreamCreateWithFile (
 CFAllocatorRef alloc,
 CFURLRef fileURL
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

fileURL
The URL of the file to which to write. The URL must use a file scheme.

Return Value
The new write stream, or NULL on failure. Ownership follows the Create Rule.

Discussion
The stream overwrites an existing file unless you set the kCFStreamPropertyAppendToFile to
kCFBooleanTrue with CFWriteStreamSetProperty (page 712), in which case the stream appends data
to the file.

You must open the stream, using CFWriteStreamOpen (page 710), before writing to it.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample

Declared In
CFStream.h

CFWriteStreamGetError
Returns the error status of a stream. (Deprecated. Use CFWriteStreamCopyError (page 705) instead.)

708 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

CFStreamError CFWriteStreamGetError (
 CFWriteStreamRef stream
);

Parameters
stream

The stream to examine.

Return Value
The error status of stream returned in a CFStreamError structure.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample

Declared In
CFStream.h

CFWriteStreamGetStatus
Returns the current state of a stream.

CFStreamStatus CFWriteStreamGetStatus (
 CFWriteStreamRef stream
);

Parameters
stream

The stream to examine.

Return Value
The current state of stream. See CFStreamStatus (page 827) for the list of possible states.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CFStream.h

CFWriteStreamGetTypeID
Returns the type identifier of all CFWriteStream objects.

CFTypeID CFWriteStreamGetTypeID (
 void
);

Return Value
The type identifier for the CFWriteStream opaque type.

Availability
Available in Mac OS X v10.1 and later.

Functions 709
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

Related Sample Code
CFFTPSample

Declared In
CFStream.h

CFWriteStreamOpen
Opens a stream for writing.

Boolean CFWriteStreamOpen (
 CFWriteStreamRef stream
);

Parameters
stream

The stream to open.

Return Value
true if stream was successfully opened, false otherwise. If stream is not in the
kCFStreamStatusNotOpen (page 828) state, this function returns false.

Discussion
Opening a stream causes it to reserve all the system resources it requires. If the stream can open in the
background without blocking, this function always returns true. To learn when a background open operation
completes, you can either schedule the stream into a run loop with
CFWriteStreamScheduleWithRunLoop (page 710) and wait for the stream’s client (set with
CFWriteStreamSetClient (page 711)) to be notified or you can poll the stream using
CFWriteStreamGetStatus (page 709), waiting for a status of kCFStreamStatusOpen (page 828) or
kCFStreamStatusError (page 828).

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample

Declared In
CFStream.h

CFWriteStreamScheduleWithRunLoop
Schedules a stream into a run loop.

void CFWriteStreamScheduleWithRunLoop (
 CFWriteStreamRef stream,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
stream

The stream to schedule.

710 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

runLoop
The run loop in which to schedule stream.

runLoopMode
The run loop mode of runLoop in which to schedule stream.

Discussion
After scheduling stream into a run loop, its client (set with CFWriteStreamSetClient (page 711)) is notified
when various events happen with the stream, such as when it finishes opening, when it can accept new
bytes, and when an error occurs. A stream can be scheduled into multiple run loops and run loop modes.
Use CFWriteStreamUnscheduleFromRunLoop (page 713) to later remove stream from the run loop.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample

Declared In
CFStream.h

CFWriteStreamSetClient
Assigns a client to a stream, which receives callbacks when certain events occur.

Boolean CFWriteStreamSetClient (
 CFWriteStreamRef stream,
 CFOptionFlags streamEvents,
 CFWriteStreamClientCallBack clientCB,
 CFStreamClientContext *clientContext
);

Parameters
stream

The stream to modify.

streamEvents
The set of events for which the client should receive callbacks. The events are listed in
CFStreamEventType (page 831). If you pass kCFStreamEventNone (page 831), the current client for
stream is removed.

clientCB
The client callback function to call when one of the events requested in streamEvents occurs. If
NULL, the current client for stream is removed.

clientContext
A structure holding contextual information for the stream client. The function copies the information
out of the structure, so the memory pointed to by clientContext does not need to persist beyond
the function call. If NULL, the current client for stream is removed.

Return Value
true if the stream supports asynchronous notification, false otherwise.

Discussion
To avoid polling and blocking, you can register a client to hear about interesting events that occur on a
stream. Only one client per stream is allowed; registering a new client replaces the previous one.

Functions 711
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

Once you have set a client, you need to schedule the stream in a run loop using
CFWriteStreamScheduleWithRunLoop (page 710) so that the client can receive the asynchronous
notifications. You can schedule each stream in multiple run loops (for example, if you are using a thread
pool). It is the caller's responsibility to ensure that at least one of the scheduled run loops is being run,
otherwise the callback cannot be called.

Although all Core Foundation streams currently support asynchronous notification, future stream types may
not. If a stream does not support asynchronous notification, this function returns false. Typically, such
streams never block for device I/O (for example, a stream writing to memory) and don’t benefit from
asynchronous notification.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample

Declared In
CFStream.h

CFWriteStreamSetProperty
Sets the value of a property for a stream.

Boolean CFWriteStreamSetProperty (
 CFWriteStreamRef stream,
 CFStringRef propertyName,
 CFTypeRef propertyValue
);

Parameters
stream

The stream to modify.

propertyName
The name of the property to set. The available properties for standard Core Foundation streams are
listed in “Stream Properties.” (page 832)

propertyValue
The value to which to set the property propertyName for stream. The allowed data type of the value
depends on the property being set.

Return Value
true if stream recognizes and accepts the given property-value pair, false otherwise.

Discussion
Each type of stream can define a set of properties that either describe or configure individual streams. A
property can be any interesting information about a stream. Examples include the headers from an HTTP
transmission, the expected number of bytes, file permission information, and so on. Properties that can be
set configure the behavior of the stream and may be modifiable only at particular times, such as before the
stream has been opened. (In fact, you should assume that you can set properties only before opening the
stream, unless otherwise noted.) To read the value of a property use CFWriteStreamCopyProperty (page
706), although some properties are write-only.

Availability
Available in Mac OS X v10.2 and later.

712 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

Related Sample Code
CFFTPSample
CocoaEcho
CocoaHTTPServer
CocoaSOAP

Declared In
CFStream.h

CFWriteStreamUnscheduleFromRunLoop
Removes a stream from a particular run loop.

void CFWriteStreamUnscheduleFromRunLoop (
 CFWriteStreamRef stream,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
stream

The stream to remove.

runLoop
The run loop from which to remove stream.

runLoopMode
The run loop mode of runLoop from which to remove stream.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample

Declared In
CFStream.h

CFWriteStreamWrite
Writes data to a writable stream.

CFIndex CFWriteStreamWrite (
 CFWriteStreamRef stream,
 const UInt8 *buffer,
 CFIndex bufferLength
);

Parameters
stream

The stream to which to write.

buffer
The buffer holding the data to write.

Functions 713
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

bufferLength
The number of bytes from buffer to write.

Return Value
The number of bytes successfully written, 0 if the stream has been filled to capacity (for fixed-length streams),
or -1 if either the stream is not open or an error occurs.

Discussion
If stream is in the process of opening, this function waits until it has completed. If the stream is not full, this
call blocks until at least one byte is written; it does not block until all the bytes in buffer is written. To avoid
blocking, call this function only if CFWriteStreamCanAcceptBytes (page 705) returns true or after the
stream’s client (set with CFWriteStreamSetClient (page 711)) is notified of a
kCFStreamEventCanAcceptBytes (page 831) event.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CFFTPSample

Declared In
CFStream.h

Callbacks

CFWriteStreamClientCallBack
Callback invoked when certain types of activity takes place on a writable stream.

typedef void (*CFWriteStreamClientCallBack) (
 CFWriteStreamRef stream,
 CFStreamEventType eventType,
 void *clientCallBackInfo
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFWriteStreamRef stream,
 CFStreamEventType eventType,
 void *clientCallBackInfo
);

Parameters
stream

The stream that experienced the event eventType.

eventType
The event that caused the callback to be called. The possible events are listed in “Stream Events.” (page
831).

714 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

clientCallBackInfo
The infomember of the CFStreamClientContext (page 827) structure that was used when setting
the client for stream.

Discussion
This callback is called only for the events requested when setting the client with
CFWriteStreamSetClient (page 711).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFStream.h

Data Types

CFWriteStreamRef
A reference to a writable stream object.

typedef struct __CFWriteStream *CFWriteStreamRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFStream.h

Data Types 715
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

716 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CFWriteStream Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFXMLNode.h

Companion guide XML Programming Topics for Core Foundation

Overview

A CFXMLNode object describes an individual XML construct—like a tag, or a comment, or a string of character
data. CFXMLNode is intended to be used with the CFXMLParser and CFXMLTree opaque types.

Each CFXMLNode object contains three main pieces of information—the node's type, the data string, and a
pointer to an additional information data structure. A CFXMLNode object’s type is one of the enumerations
described in Node Type Code (page 728). The data string is always a CFString object; the meaning of the
string is dependent on the node's type. The format of the additional data is also dependent on the node's
type; in general, there is a custom structure for each type that requires additional data. See Node Type
Code (page 728) for the mapping from a node type to meaning of the data string, and structure of the
additional information. Note that these structures are versioned and may change as the parser changes. The
current version can always be identified by the kCFXMLNodeCurrentVersion (page 728) constant; earlier
versions can be identified and used by passing earlier values for the version number (although the older
structures would have been removed from the header).

You create a CFXMLNode object using one of the create or copy functions. Use the
CFXMLNodeGetTypeCode (page 720),CFXMLNodeGetString (page 719), andCFXMLNodeGetInfoPtr (page
719) functions to get the node type, data string, and additional information respectively. Use the
CFXMLNodeGetVersion (page 720) function to get a node’s version number.

Functions

CFXMLNodeCreate
Creates a new CFXMLNode.

Overview 717
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

CFXMLNodeRef CFXMLNodeCreate (
 CFAllocatorRef alloc,
 CFXMLNodeTypeCode xmlType,
 CFStringRef dataString,
 const void *additionalInfoPtr,
 CFIndex version
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

xmlType
Type identifier code for the XML structure you want this node to describe.

dataString
The XML data.

additionalInfoPtr
A pointer to a structure containing additional information about the XML data.

version
The version number of the CFXMLNode object you want to create. Pass one of the pre-defined
constants, typically kCFXMLNodeCurrentVersion (page 728).

Return Value
A new CFXMLNode object. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLNodeCreateCopy
Creates a copy of a CFXMLNode object.

CFXMLNodeRef CFXMLNodeCreateCopy (
 CFAllocatorRef alloc,
 CFXMLNodeRef origNode
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

origNode
The node to copy. Do not pass NULL.

Return Value
A new CFXMLNode object. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.

718 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLNodeGetInfoPtr
Returns the additional information pointer of a CFXMLNode object.

const void * CFXMLNodeGetInfoPtr (
 CFXMLNodeRef node
);

Parameters
node

The CFXMLNode object to examine.

Return Value
A pointer to a structure containing additional information. The CFXMLNode version together with the node’s
type determines the expected structure. See Node Type Code (page 728) for information about the possible
structures returned. If the returned value is a Core Foundation object, ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLNodeGetString
Returns the data string from a CFXMLNode.

CFStringRef CFXMLNodeGetString (
 CFXMLNodeRef node
);

Parameters
node

The CFXMLNode object to examine.

Return Value
The data string from node. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

Functions 719
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

CFXMLNodeGetTypeCode
Returns the XML structure type code for a CFXMLNode object.

CFXMLNodeTypeCode CFXMLNodeGetTypeCode (
 CFXMLNodeRef node
);

Parameters
node

The CFXMLNode object to examine.

Return Value
The type code for node.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLNodeGetTypeID
Returns the type identifier code for the CFXMLNode opaque type.

CFTypeID CFXMLNodeGetTypeID (
 void
);

Return Value
The type identifier for the CFXMLNode opaque type.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLNodeGetVersion
Returns the version number for a CFXMLNode object.

CFIndex CFXMLNodeGetVersion (
 CFXMLNodeRef node
);

Parameters
node

The CFXMLNode object to examine.

Return Value
The version number of node.

720 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

Data Types

CFXMLAttributeDeclarationInfo
Contains information about an element attribute definition.

struct CFXMLAttributeDeclarationInfo {
 CFStringRef attributeName;
 CFStringRef typeString;
 CFStringRef defaultString;
};
typedef struct CFXMLAttributeDeclarationInfo CFXMLAttributeDeclarationInfo;

Fields
attributeName

The name of the attribute.

typeString
Describes the declaration of a single attribute.

defaultString
The attribute's default value.

Discussion
This structure is part of the definition of the CFXMLAttributeListDeclarationInfo (page 721) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLAttributeListDeclarationInfo
Contains a list of the attributes associated with an element.

struct CFXMLAttributeListDeclarationInfo {
 CFIndex numberOfAttributes;
 CFXMLAttributeDeclarationInfo *attributes;
};
typedef struct CFXMLAttributeListDeclarationInfo CFXMLAttributeListDeclarationInfo;

Fields
numberOfAttributes

The number of attributes in the array.

Data Types 721
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

attributes
A C array of attributes.

Discussion
A pointer to this structure is included in the CFXMLNode object passed to your application when the parser
encounters an attribute declaration in the DTD. Use the CFXMLNodeGetInfoPtr (page 719) function to
obtain the pointer to this structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLDocumentInfo
Contains the source URL and text encoding information for the XML document.

struct CFXMLDocumentInfo {
 CFURLRef sourceURL;
 CFStringEncoding encoding;
};
typedef struct CFXMLDocumentInfo CFXMLDocumentInfo;

Fields
sourceURL

The source URL of the XML document.

encoding
The text encoding of the XML document.

Discussion
A pointer to this structure is included in the CFXMLNode object passed to your application when the parser
encounters the XML declaration. Use the CFXMLNodeGetInfoPtr (page 719) function to obtain the pointer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLDocumentTypeInfo
Contains the external ID of the DTD.

struct CFXMLDocumentTypeInfo {
 CFXMLExternalID externalID;
};
typedef struct CFXMLDocumentTypeInfo CFXMLDocumentTypeInfo;

Fields
externalID

The external ID of the DTD.

722 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

Discussion
A pointer to this structure is included in the CFXMLNode object passed to your application when the parser
encounters the beginning of the DTD. Use the CFXMLNodeGetInfoPtr (page 719) function to obtain a pointer
to this structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLElementInfo
Contains a list of element attributes packaged as CFDictionary key/value pairs.

struct CFXMLElementInfo {
 CFDictionaryRef attributes;
 CFArrayRef attributeOrder;
 Boolean isEmpty;
};
typedef struct CFXMLElementInfo CFXMLElementInfo;

Fields
attributes

The dictionary of attribute values.

attributeOrder
An array specifying the order in which the attributes appeared in the XML document.

isEmpty
A flag indicating whether the element was expressed in closed form.

Discussion
A pointer to this structure is included in the CFXMLNode object passed to your application when the parser
encounters an element containing attributes. Use the CFXMLNodeGetInfoPtr (page 719) function to obtain
the pointer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLElementTypeDeclarationInfo
Contains a description of the element type.

struct CFXMLElementTypeDeclarationInfo {
 CFStringRef contentDescription;
};
typedef struct CFXMLElementTypeDeclarationInfo CFXMLElementTypeDeclarationInfo;

Fields
contentDescription

A textual description of the element type.

Data Types 723
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

Discussion
A pointer to this structure is included in the CFXMLNode passed to your application when the parser encounters
and element type declaration. Use the CFXMLNodeGetInfoPtr (page 719) function to obtain a pointer to
this structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLEntityInfo
Contains information describing an XML entity.

struct CFXMLEntityInfo {
 CFXMLEntityTypeCode entityType;
 CFStringRef replacementText;
 CFXMLExternalID entityID;
 CFStringRef notationName;
};
typedef struct CFXMLEntityInfo CFXMLEntityInfo;

Fields
entityType

The entity type code.

replacementText
NULL if entityType is external or unparsed, otherwise the text that the entity should be replaced
with.

entityID
entityID.systemID will be NULL if entityType is internal.

notationName
NULL if entityType is parsed.

Discussion
A pointer to this structure is included in the CFXMLNode object passed to your application when the parser
encounters an entity declaration. Use the CFXMLNodeGetInfoPtr (page 719) function to obtain a pointer
to this structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLEntityReferenceInfo
Contains information describing an XML entity reference.

724 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

struct CFXMLEntityReferenceInfo {
 CFXMLEntityTypeCode entityType;
};
typedef struct CFXMLEntityReferenceInfo CFXMLEntityReferenceInfo;

Fields
entityType

The entity type code.

Discussion
A pointer to this structure is included in the CFXMLNode object passed to your application when the parser
encounters an entity reference. Use the CFXMLNodeGetInfoPtr (page 719) function to obtain the pointer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLExternalID
Contains the system and public IDs for an external entity reference.

struct CFXMLExternalID {
 CFURLRef systemID;
 CFStringRef publicID;
};
typedef struct CFXMLExternalID CFXMLExternalID;

Fields
systemID

The systemID URL.

publicID
The publicID string.

Discussion
This structure is part of the definition of theCFXMLDocumentTypeInfo (page 722),CFXMLNotationInfo (page
726), and CFXMLEntityInfo (page 724) structures.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLNodeRef
A reference to a CFXMLNode object.

typedef const struct __CFXMLNode *CFXMLNodeRef;

Availability
Available in Mac OS X v10.0 and later.

Data Types 725
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

Declared In
CFXMLNode.h

CFXMLNotationInfo
Contains the external ID of the notation.

struct CFXMLNotationInfo {
 CFXMLExternalID externalID;
};
typedef struct CFXMLNotationInfo CFXMLNotationInfo;

Fields
externalID

The external ID of the notation.

Discussion
A pointer to this structure is included in the CFXMLNode object passed to your application when the parser
encounters a notation element. Use the CFXMLNodeGetInfoPtr (page 719) function to obtain a pointer to
this structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLProcessingInstructionInfo
Contains the text of the processing instruction.

struct CFXMLProcessingInstructionInfo {
 CFStringRef dataString;
};
typedef struct CFXMLProcessingInstructionInfo CFXMLProcessingInstructionInfo;

Fields
dataString

The text of the processing instruction.

Discussion
A pointer to this structure is included in the CFXMLNode object passed to your application when the parser
encounters a processing instruction. Use the CFXMLNodeGetInfoPtr (page 719) function to obtain the
pointer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

726 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

Constants

Entity Type Code
The entity type identification codes that the parser uses to describe XML entities.

enum CFXMLEntityTypeCode {
 kCFXMLEntityTypeParameter = 0,
 kCFXMLEntityTypeParsedInternal = 1,
 kCFXMLEntityTypeParsedExternal = 2,
 kCFXMLEntityTypeUnparsed = 3,
 kCFXMLEntityTypeCharacter = 4
};
typedef enum CFXMLEntityTypeCode CFXMLEntityTypeCode;

Constants
kCFXMLEntityTypeParameter

Implies a parsed, internal entity.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLEntityTypeParsedInternal
Indicates a parsed, internal entity.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLEntityTypeParsedExternal
Indicates a parsed, external entity.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLEntityTypeUnparsed
Indicates an unparsed entity.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLEntityTypeCharacter
Indicates a character entity type.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

Discussion
These codes are used with the CFXMLEntityInfo (page 724) and CFXMLEntityReferenceInfo (page 724)
structures.

Node Current Version
The version of a CFXMLNode object.

Constants 727
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

enum {
 kCFXMLNodeCurrentVersion = 1
};

Constants
kCFXMLNodeCurrentVersion

The current version of CFXMLNode objects.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

Node Type Code
The various XML data type identification codes that the parser uses to describe XML structures.

enum CFXMLNodeTypeCode {
 kCFXMLNodeTypeDocument = 1,
 kCFXMLNodeTypeElement = 2,
 kCFXMLNodeTypeAttribute = 3,
 kCFXMLNodeTypeProcessingInstruction = 4,
 kCFXMLNodeTypeComment = 5,
 kCFXMLNodeTypeText = 6,
 kCFXMLNodeTypeCDATASection = 7,
 kCFXMLNodeTypeDocumentFragment = 8,
 kCFXMLNodeTypeEntity = 9,
 kCFXMLNodeTypeEntityReference = 10,
 kCFXMLNodeTypeDocumentType = 11,
 kCFXMLNodeTypeWhitespace = 12,
 kCFXMLNodeTypeNotation = 13,
 kCFXMLNodeTypeElementTypeDeclaration = 14,
 kCFXMLNodeTypeAttributeListDeclaration = 15
};
typedef enum CFXMLNodeTypeCode CFXMLNodeTypeCode;

Constants
kCFXMLNodeTypeDocument

Indicates a document where the data string is NULL and the additional information is a pointer to a
CFXMLDocumentInfo (page 722) structure.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeElement
Indicates an element where the data string is the name of the tag and the additional information is
a pointer to a CFXMLElementInfo (page 723) structure.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeAttribute
Currently not used.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

728 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

kCFXMLNodeTypeProcessingInstruction
Indicates a processing instruction where the data string is the name of the target and the additional
information is a pointer to a CFXMLProcessingInstructionInfo (page 726) structure.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeComment
Indicates a comment section where the data string is the text of the comment and the additional
information is NULL.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeText
Indicates a text section where the data string is the text’s contents and the additional information is
NULL.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeCDATASection
Indicates a CDATA section where the data string is the text of the CDATA and the additional information
is NULL.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeDocumentFragment
Currently not used.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeEntity
Indicates an entity where the data string is the name of the entity and the additional information is
a pointer to a CFXMLEntityInfo (page 724) structure.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeEntityReference
Indicates an entity reference where the data string is the name of the referenced entity and the
additional information is a pointer to a CFXMLEntityReferenceInfo (page 724) structure.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeDocumentType
Indicates a document type where the data string is the name given to the top-level element and the
additional information is a pointer to a CFXMLDocumentTypeInfo (page 722) structure.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeWhitespace
Indicates white space where the data string is the text of the white space and the additional information
is NULL.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

Constants 729
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

kCFXMLNodeTypeNotation
Indicates a notation where the data string is the notation name and the additional information is a
pointer to a CFXMLNotationInfo (page 726) structure.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeElementTypeDeclaration
Indicates an element type declaration where the data string is the tag name and the additional
information is a pointer to a CFXMLElementTypeDeclarationInfo (page 723) structure.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

kCFXMLNodeTypeAttributeListDeclaration
Indicates an attribute list declaration where the data string is the tag name and the additional
information is a pointer to a CFXMLAttributeListDeclarationInfo (page 721) structure.

Available in Mac OS X v10.0 and later.

Declared in CFXMLNode.h.

Discussion
When the parser encounters a new XML structure, its data type and contents are placed in a CFXMLNode
object.

730 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

CFXMLNode Reference

Derived From: CFType

Framework: CoreFoundation/CoreFoundation.h

Declared in CFXMLParser.h

Companion guide XML Programming Topics for Core Foundation

Overview

CFXMLParser provides an XML parser you can use to find and extract data in XML documents. You can use
a high-level interface to load an XML document into a Core Foundation collection object. A low-level
callback-based interface allows you to perform any action you wish on an XML structured type when it is
detected by the parser. This opaque type is relevant for applications that need information about an XML
document's structure or content.

Functions

CFXMLParserAbort
Causes a parser to abort with the given error code and description.

void CFXMLParserAbort (
 CFXMLParserRef parser,
 CFXMLParserStatusCode errorCode,
 CFStringRef errorDescription
);

Parameters
parser

The parser to abort.

errorCode
The error code to return to the parser.

errorDescription
The error description string to return to the parser. This value may not be NULL.

Discussion
This function cannot be called asynchronously. In other words, it must be called from within a parser callback
function.

Overview 731
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserCopyErrorDescription
Returns the user-readable description of the current error condition.

CFStringRef CFXMLParserCopyErrorDescription (
 CFXMLParserRef parser
);

Parameters
parser

The XML parser to examine.

Return Value
A user-readable description of the current error condition, or NULL if no error occurred. Ownership follows
the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserCreate
Creates a new XML parser for the specified XML data.

CFXMLParserRef CFXMLParserCreate (
 CFAllocatorRef allocator,
 CFDataRef xmlData,
 CFURLRef dataSource,
 CFOptionFlags parseOptions,
 CFIndex versionOfNodes,
 CFXMLParserCallBacks *callBacks,
 CFXMLParserContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

xmlData
The XML data to parse. Do not pass NULL.

732 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

dataSource
The URL from which the XML data was obtained. The URL is used to resolve any relative references
found in XML Data. Pass NULL if a valid URL is unavailable.

parseOptions
Flags which control how the XML data will be parsed. See Parsing Options (page 748) for the list of
available options.

versionOfNodes
Determines which version of CFXMLNode objects are produced by the parser.

callBacks
Callbacks called by the parser as the XML is processed. The callbacks are called as each XML tag is
encountered, when an external entity needs to be resolved, and when an error occurs. See
CFXMLParserCallBacks (page 744) and the individual callbacks for more details. Do not pass NULL.

context
Determines what, if any, information pointer is passed to the callbacks as the parse progresses;
context may be NULL.

Return Value
The newly created parser. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserCreateWithDataFromURL
Creates a new XML parser for the specified XML data at the specified URL.

CFXMLParserRef CFXMLParserCreateWithDataFromURL (
 CFAllocatorRef allocator,
 CFURLRef dataSource,
 CFOptionFlags parseOptions,
 CFIndex versionOfNodes,
 CFXMLParserCallBacks *callBacks,
 CFXMLParserContext *context
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

dataSource
The URL from which to load the XML data. The URL is used to resolve any relative references found
in XML Data. It must be a valid CFURL object; NULL is an unacceptable value.

parseOptions
Flags which control how the XML data will be parsed. See Parsing Options (page 748) for the list of
available options.

versionOfNodes
Determines which version of CFXMLNode objects are produced by the parser.

Functions 733
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

callBacks
Callbacks called by the parser as the XML is processed. The callbacks are called as each XML tag is
encountered, when an external entity needs to be resolved, and when an error occurs. See
CFXMLParserCallBacks (page 744) and the individual callbacks for more details. Do not pass NULL.

context
Determines what, if any, information pointer is passed to the callbacks as the parse progresses; may
be NULL.

Return Value
The newly created parser. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserGetCallBacks
Returns the callbacks associated with an XML parser when it was created.

void CFXMLParserGetCallBacks (
 CFXMLParserRef parser,
 CFXMLParserCallBacks *callBacks
);

Parameters
parser

The XML parser to examine.

callBacks
On return, contains the callbacks for parser.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserGetContext
Returns the context for an XML parser.

void CFXMLParserGetContext (
 CFXMLParserRef parser,
 CFXMLParserContext *context
);

Parameters
parser

The XML parser to examine.

734 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

context
On return, a pointer to the context structure for parser.

Discussion
If you set a context for the parser, it will be passed to you as a parameter in each of the parser callback
functions. The context data structure is application defined and associated with a parser using one of the
CFXMLParserCreate... functions.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserGetDocument
Returns the top-most object returned by the create XML structure callback.

void *CFXMLParserGetDocument (
 CFXMLParserRef parser
);

Parameters
parser

The XML parser to examine.

Return Value
The top-most object returned by the createXMLStructure field in the CFXMLParserCallBacks (page
744) structure. If the returned value is a Core Foundation object, ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserGetLineNumber
Returns the line number of the current parse location.

CFIndex CFXMLParserGetLineNumber (
 CFXMLParserRef parser
);

Parameters
parser

The XML parser to examine.

Return Value
The line number of the current location.

Functions 735
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

Discussion
This function is typically used in conjunction with the CFXMLParserHandleErrorCallBack (page 741)
function so that error location information can be reported.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserGetLocation
Returns the character index of the current parse location.

CFIndex CFXMLParserGetLocation (
 CFXMLParserRef parser
);

Parameters
parser

The XML parser to examine.

Return Value
The character index of the current parse location.

Discussion
This function is typically used in conjunction with the CFXMLParserHandleErrorCallBack (page 741)
function so that error location information can be reported.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserGetSourceURL
Returns the URL for the XML data being parsed.

CFURLRef CFXMLParserGetSourceURL (
 CFXMLParserRef parser
);

Parameters
parser

The XML parser to examine.

Return Value
The URL for the XML document being parsed. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.

736 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserGetStatusCode
Returns a numeric code indicating the current status of the parser.

CFXMLParserStatusCode CFXMLParserGetStatusCode (
 CFXMLParserRef parser
);

Parameters
parser

The XML parser to examine.

Return Value
A status code indicating the current parser. See Parser Status Codes (page 746) for a list of possible status
codes.

Discussion
If an error has occurred, the code for the last error is returned. If no error has occurred, a status code is
returned.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserGetTypeID
Returns the type identifier for the CFXMLParser opaque type.

CFTypeID CFXMLParserGetTypeID ();

Return Value
The type identifier for the CFXMLParser opaque type.

Availability
Available in CarbonLib v1.3 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserParse
Begins a parse of the XML data that was associated with the parser when it was created.

Functions 737
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

Boolean CFXMLParserParse (
 CFXMLParserRef parser
);

Parameters
parser

The XML parser to start.

Return Value
true if the parse was successful, false otherwise.

Discussion
Upon success, use the CFXMLParserGetDocument (page 735) function to get the product of the parse. Upon
failure, use the CFXMLParserGetContext (page 734) or CFXMLParserCopyErrorDescription (page 732)
functions to get information about the error. It is an error to call the CFXMLParserParse (page 737) function
while a parse is already underway.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

Callbacks

CFXMLParserAddChildCallBack
Callback function invoked by the parser to notify your application of parent/child relationships between XML
structures.

typedef void (*CFXMLParserAddChildCallBack) (
 CFXMLParserRef parser,
 void *parent,
 void *child,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFXMLParserRef parser,
 void *parent,
 void *child,
 void *info
);

Parameters
parser

The CFXMLParser object making the callback.

738 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

parent
The program-defined value representing the XML element to whom child is being added. This value
was returned by the CFXMLParserCreateXMLStructureCallBack (page 740) callback when this
element’s open tag was detected.

child
The program-defined value representing the XML element that is being added to parent. This value
was returned by the CFXMLParserCreateXMLStructureCallBack (page 740) callback when this
element’s open tag was detected.

info
The program-defined context data you specified in the CFXMLParserContext (page 745) structure
when creating the parser.

Discussion
If the CFXMLParserCreateXMLStructureCallBack (page 740) function returns NULL for a given structure,
that structure is omitted entirely, and this callback will not be called for either a NULL child or parent.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserCopyDescriptionCallBack
Callback function invoked by the parser when handling the information pointer.

typedef CFStringRef (*CFXMLParserCopyDescriptionCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallBack (
 const void *info
);

Parameters
info

The program-defined context data you specified in the CFXMLParserContext (page 745) structure
when creating the parser.

Return Value
A textual description of info. The caller is responsible for releasing this object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

Callbacks 739
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

CFXMLParserCreateXMLStructureCallBack
Callback function invoked when the parser encounters an XML open tag.

typedef void *(*CFXMLParserCreateXMLStructureCallBack) (
 CFXMLParserRef parser,
 CFXMLNodeRef nodeDesc,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void *MyCallBack (
 CFXMLParserRef parser,
 CFXMLNodeRef nodeDesc,
 void *info
);

Parameters
parser

The CFXMLParser object making the callback.

nodeDesc
The CFXMLNode object that represents the XML structure encountered.

info
The program-defined context data you specified in the CFXMLParserContext (page 745) structure
when creating the parser.

Return Value
A program-defined value representing the new XML element or NULL to indicate that the given structure
should be skipped. This value is passed to the other callbacks.

Discussion
If NULL is returned for a given structure, only minimal parsing is done for that structure (enough to correctly
determine its end, and to extract any data necessary for the remainder of the parse, such as Entity definitions).
This callback (or any of the tree-creation callbacks) will not be called for any children of the skipped structure.
The only exception is that the top-most element will always be reported even if NULL was returned for the
document as a whole. For performance reasons, the node passed to this callback cannot be safely retained
by the client; the node as a whole must be copied (using the CFXMLNodeCreateCopy (page 718) function),
or its contents must be extracted and copied. You are required to implement this callback for the parser to
operate.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserEndXMLStructureCallBack
Callback function invoked by the parser to notify your application that an XML structure (and all its children)
have been completely parsed.

740 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

typedef void (*CFXMLParserEndXMLStructureCallBack) (
 CFXMLParserRef parser,
 void *xmlType,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFXMLParserRef parser,
 void *xmlType,
 void *info
);

Parameters
parser

The CFXMLParser object making the callback.

xmlType
The program-defined value representing the XML element whose end tag has been detected. This
value was returned by the CFXMLParserCreateXMLStructureCallBack (page 740) callback.

info
The program-defined context data you specified in the CFXMLParserContext (page 745) structure
when creating the parser.

Discussion
As elements are encountered, this callback is called first, then the CFXMLParserAddChildCallBack (page
738) callback to add the new structure to its parent, then the CFXMLParserAddChildCallBack (page 738)
callback (potentially several times) to add the new structure's children to it, and then finally the
CFXMLParserEndXMLStructureCallBack (page 740) callback to show that the structure has been fully
parsed.This callback is optional.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserHandleErrorCallBack
Callback function invoked by the parser to notify your application that an error has occurred.

typedef Boolean (*CFXMLParserHandleErrorCallBack) (
 CFXMLParserRef parser,
 CFXMLParserStatusCode error,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

Boolean MyCallBack (
 CFXMLParserRef parser,
 CFXMLParserStatusCode error,
 void *info

Callbacks 741
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

);

Parameters
parser

A CFXMLParser object making the callback.

error
A status code describing the error.

info
The program-defined context data you specified in the CFXMLParserContext (page 745) structure
when creating the parser.

Return Value
true if the parser should continue parsing the XML, false if the parser should stop.

Discussion
If this callback is not defined, the parser will silently attempt to recover. Otherwise, this callback may return
false to force the parser to stop. If this callback returns true, the parser will attempt to recover (fatal errors
will still cause the parse to abort immediately). This callback is optional.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserReleaseCallBack
Callback function invoked by the parser when it wants to release a reference to the information pointer.

typedef void (*CFXMLParserReleaseCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *info
);

Parameters
info

The program-defined context data you specified in the CFXMLParserContext (page 745) structure
when creating the parser.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

742 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

CFXMLParserResolveExternalEntityCallBack
Callback function invoked by the parser to notify your application that an external entity has been referenced.

typedef CFDataRef (*CFXMLParserResolveExternalEntityCallBack) (
 CFXMLParserRef parser,
 CFXMLExternalID *extID,
 void *info
);

If you name your function MyCallBack, you would declare it like this:

CFDataRef MyCallBack (
 CFXMLParserRef parser,
 CFXMLExternalID *extID,
 void *info
);

Parameters
parser

The CFXMLParser object making the callback.

extID
The identifier for the external entity.

info
The program-defined context data you specified in the CFXMLParserContext (page 745) structure
when creating the parser.

Return Value
The external entity or NULL if it should not be resolved.

Discussion
If this callback is not defined, the parser uses its internal routines to try and resolve the entity. Otherwise, if
this callback returns NULL, a place holder for the external entity is inserted into the tree. In this manner, the
parser's client can prevent any external network or file accesses. This callback is optional.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserRetainCallBack
Callback function invoked by the parser when it needs another reference to the information pointer.

typedef const void *(*CFXMLParserRetainCallBack) (
 const void *info
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 const void *info
);

Callbacks 743
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

Parameters
info

The program-defined context data you specified in the CFXMLParserContext (page 745) structure
when creating the parser.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

Data Types

CFXMLParserCallBacks
Contains version information and function pointers to callbacks needed when parsing XML.

struct CFXMLParserCallBacks {
 CFIndex version;
 CFXMLParserCreateXMLStructureCallBack createXMLStructure;
 CFXMLParserAddChildCallBack addChild;
 CFXMLParserEndXMLStructureCallBack endXMLStructure;
 CFXMLParserResolveExternalEntityCallBack resolveExternalEntity;
 CFXMLParserHandleErrorCallBack handleError;
};
typedef struct CFXMLParserCallBacks CFXMLParserCallBacks;

Fields
version

Version number. Must be 0.

createXMLStructure
Called when an XML structure is created.

addChild
Called when a child is added.

endXMLStructure
Called when an XML structure has ended.

resolveExternalEntity
Called when an external entity needs to be resolved.

handleError
Called when a parse error needs to be handled.

Discussion
This structure is passed to one of the CFXMLParserCreate... functions. Only the createXMLStructure,
addChild, and endXMLStructure fields are required. Set the others to NULL if you don't wish to implement
them.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

744 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

CFXMLParserContext
Contains version information and function pointers to callbacks used when handling a program-defined
context.

struct CFXMLParserContext {
 CFIndex version;
 void *info;
 CFXMLParserRetainCallBack retain;
 CFXMLParserReleaseCallBack release;
 CFXMLParserCopyDescriptionCallBack copyDescription;
};
typedef struct CFXMLParserContext CFXMLParserContext;

Fields
version

Version number of this structure. Must be 0.

info
An arbitrary program-defined value passed to all the callbacks in this structure and in the
CFXMLParserCallBacks (page 744) structure.

retain
A retain callback for your program-defined context data. Optional.

release
A release callback for your program-defined context data. Optional.

copyDescription
A copy description callback for your program-defined context data. Optional.

Discussion
You can associate a context with a parser when the parser is created. The context can be anything you wish
and will be passed as a parameter to all of the XML parser callbacks.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLParserRef
A reference to an XML parser object.

typedef struct __CFXMLParser *CFXMLParserRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

Data Types 745
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

Constants

Parser Status Codes
The various status and error flags that can be returned by the parser.

enum CFXMLParserStatusCode {
 kCFXMLStatusParseNotBegun = -2,
 kCFXMLStatusParseInProgress = -1,
 kCFXMLStatusParseSuccessful = 0,
 kCFXMLErrorUnexpectedEOF = 1,
 kCFXMLErrorUnknownEncoding = 2,
 kCFXMLErrorEncodingConversionFailure = 3,
 kCFXMLErrorMalformedProcessingInstruction = 4,
 kCFXMLErrorMalformedDTD = 5,
 kCFXMLErrorMalformedName = 6,
 kCFXMLErrorMalformedCDSect = 7,
 kCFXMLErrorMalformedCloseTag = 8,
 kCFXMLErrorMalformedStartTag = 9,
 kCFXMLErrorMalformedDocument = 10,
 kCFXMLErrorElementlessDocument = 11,
 kCFXMLErrorMalformedComment = 12,
 kCFXMLErrorMalformedCharacterReference = 13,
 kCFXMLErrorMalformedParsedCharacterData = 14,
 kCFXMLErrorNoData = 15
};
typedef enum CFXMLParserStatusCode CFXMLParserStatusCode;

Constants
kCFXMLStatusParseNotBegun

Indicates the parser has not begun.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLStatusParseInProgress
Indicates the parser is in progress.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLStatusParseSuccessful
Indicates the parser was successful.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorUnexpectedEOF
Indicates an unexpected EOF occurred.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorUnknownEncoding
Indicates an unknown encoding error.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

746 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

kCFXMLErrorEncodingConversionFailure
Indicates an encoding conversion error.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorMalformedProcessingInstruction
Indicates a malformed processing instruction.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorMalformedDTD
Indicates a malformed DTD.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorMalformedName
Indicates a malformed name.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorMalformedCDSect
Indicates a malformed CDATA section.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorMalformedCloseTag
Indicates a malformed close tag.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorMalformedStartTag
Indicates a malformed start tag.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorMalformedDocument
Indicates a malformed document.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorElementlessDocument
Indicates a document containing no elements.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorMalformedComment
Indicates a malformed comment.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

Constants 747
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

kCFXMLErrorMalformedCharacterReference
Indicates a malformed character reference.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorMalformedParsedCharacterData
Indicates malformed character data.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLErrorNoData
Indicates a no data error.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

Discussion
Parser status is determined by calling the CFXMLParserGetStatusCode (page 737) function. The parser
reports errors to your application by invoking the CFXMLParserHandleErrorCallBack (page 741) function.

Parsing Options
Options you can use to control the parser's treatment of an XML document.

enum CFXMLParserOptions {
 kCFXMLParserValidateDocument = (1 << 0),
 kCFXMLParserSkipMetaData = (1 << 1),
 kCFXMLParserReplacePhysicalEntities = (1 << 2),
 kCFXMLParserSkipWhitespace = (1 << 3),
 kCFXMLParserResolveExternalEntities = (1 << 4),
 kCFXMLParserAddImpliedAttributes = (1 << 5),
 kCFXMLParserAllOptions = 0x00FFFFFF,
 kCFXMLParserNoOptions = 0
};
typedef enum CFXMLParserOptions CFXMLParserOptions;

Constants
kCFXMLParserValidateDocument

Validates the document against its grammar from the DTD, reporting any errors. Currently not
supported.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLParserSkipMetaData
Silently skip over metadata constructs (the DTD and comments).

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLParserReplacePhysicalEntities
Replaces declared entities like <. Note that other than the 5 predefined entities (lt, gt, quot, amp,
apos), these must be defined in the DTD. Currently not supported.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

748 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

kCFXMLParserSkipWhitespace
Skip over all whitespace that does not abut non-whitespace character data. In other words, given
“<foo> <bar> blah </bar></foo>,” the whitespace between foo's open tag and bar's open tag
would be suppressed, but the whitespace around blah would be preserved.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLParserResolveExternalEntities
Resolves all external entities.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLParserAddImpliedAttributes
Where the DTD specifies implied attribute-value pairs for a particular element, add those pairs to any
occurrences of the element in the element tree. Currently not supported.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLParserAllOptions
Makes the parser do the most work, returning only the pure elementtree.

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

kCFXMLParserNoOptions
Leaves the XML as "intact" as possible (reports all structures; performs no replacements).

Available in Mac OS X v10.0 and later.

Declared in CFXMLParser.h.

Discussion
These are the various options you use to configure the parser. An option flag of 0
(kCFXMLParserNoOptions (page 749)) leaves the XML as "intact" as possible (reports all structures; performs
no replacements). Hence, to make the parser do the most work, returning only the pure element tree, set
the option flag to kCFXMLParserAllOptions (page 749).

Constants 749
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

750 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

CFXMLParser Reference

Derived From: CFTree Reference : CFType Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFXMLParser.h
CFXMLNode.h

Companion guide XML Programming Topics for Core Foundation

Overview

A CFXMLTree object is simply a CFTree object whose context data is known to be a CFXMLNode object.
CFXMLTree is derived from CFTree—you can pass CFXMLTree objects in all the CFTree functions. As such, a
CFXMLTree object can be used to represent an entire XML document; the CFTree object provides the tree
structure of the document, while the CFXMLNode objects identify and describe the nodes of the tree. An
XML document can be parsed to a CFXMLTree object, and a CFXMLTree object can generate the data for the
equivalent XML document. This opaque type is expected to be used in conjunction with CFXMLParser and
CFXMLNode objects.

Functions

CFXMLCreateStringByEscapingEntities
Given a CFString object containing XML source with unescaped entities, returns a string with specified XML
entities escaped.

CFStringRef CFXMLCreateStringByEscapingEntities(
 CFAllocatorRef allocator,
 CFStringRef string,
 CFDictionaryRef entitiesDictionary,
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

string
Any CFString object that may contain XML source. This function translates any substring that is mapped
to an entity in entitiesDictionary to the specified entity.

Overview 751
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

CFXMLTree Reference

entitiesDictionary
Specifies the entities to be replaced. Dictionary keys should be the entity names (for example, “para”
for ¶), and the values should be CFString objects containing the expansion. Pass NULL to indicate
no entities other than the standard five.

Return Value
A CFString object derived from stringwith substrings identified in entitiesDictionary escaped to their
corresponding entities. Ownership follows the Create Rule.

Discussion
The standard five predefined entities are automatically supported.

As an example of using this function, say you apply this function to string “Refer to ¶ 5 of the contract” with
a key of “para” mapped to “¶” in entitiesDictionary. The resulting string is “Refer to ¶ 5 of the
contract”.

Note: Currently, only the standard predefined entities are supported; passing NULL for entitiesDictionary
is sufficient.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFXMLParser.h

CFXMLCreateStringByUnescapingEntities
Given a CFString object containing XML source with escaped entities, returns a string with specified XML
entities unescaped.

CFStringRef CFXMLCreateStringByUnescapingEntities(
 CFAllocatorRef allocator,
 CFStringRef string,
 CFDictionaryRef entitiesDictionary,
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

string
Any CFString object that may contain XML source. This function translates any entity that is mapped
to an substring in entitiesDictionary to the specified substring.

entitiesDictionary
Specifies the entities to be replaced. Dictionary keys should be the entity names (for example, “para”
for ¶), and the values should be CFString objects containing the expansion. Pass NULL to indicate
no entities other than the standard five.

Return Value
A CFString object derived from stringwith entities identified in entitiesDictionary unescaped to their
corresponding substrings. Ownership follows the Create Rule.

752 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

CFXMLTree Reference

Discussion
The standard five predefined entities are automatically supported.

As an example of using this function, say you apply this function to string “Refer to ¶ 5 of the contract”
with a key of “para” mapped to “¶” in entitiesDictionary. The resulting string is “Refer to ¶ 5 of the
contract”.

Note: Currently, only the standard predefined entities are supported; passing NULL for entitiesDictionary
is sufficient.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFXMLParser.h

CFXMLTreeCreateFromData
Parses the given XML data and returns the resulting CFXMLTree object.

CFXMLTreeRef CFXMLTreeCreateFromData (
 CFAllocatorRef allocator,
 CFDataRef xmlData,
 CFURLRef dataSource,
 CFOptionFlags parseOptions,
 CFIndex versionOfNodes
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

xmlData
The XML data you wish to parse.

dataSource
The URL from which the XML data was obtained. The URL is used to resolve any relative references
found in xmlData. Pass NULL if a valid URL is unavailable.

parseOptions
Flags which control how the XML data will be parsed. See Parsing Options (page 748) for the list
of available options.

versionOfNodes
Determines which version of CFXMLNode objects are produced by the parser.

Return Value
A new CFXMLTree object containing the data from the specified XML document. Ownership follows the
Create Rule.

Functions 753
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

CFXMLTree Reference

Discussion
This function represents the high-level interface to the XML parser. This single function creates a parser for
the specified XML data using the specified options. The parser creates and returns a CFXMLTree object that
you can examine and modify with the CFTree functions or obtain the node using the
CFXMLTreeGetNode (page 757) function and examine its attributes using CFXMLNode functions.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLTreeCreateFromDataWithError
Parses the given XML data and returns the resulting CFXMLTree object and any error information.

CFXMLTreeRef CFXMLTreeCreateFromDataWithError (
 CFAllocatorRef allocator,
 CFDataRef xmlData,
 CFURLRef dataSource,
 CFOptionFlags parseOptions,
 CFIndex versionOfNodes
 CFDictionaryRef *errorDict
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

xmlData
The XML data you wish to parse.

dataSource
The URL from which the XML data was obtained. The URL is used to resolve any relative references
found in xmlData. Pass NULL if a valid URL is unavailable.

parseOptions
Flags which control how the XML data will be parsed. See Parsing Options (page 748) for the list
of available options.

versionOfNodes
Determines which version of CFXMLNode objects are produced by the parser. The current version is
1.

errorDict
Upon return, if an error occurs contains a CFDictionary object that describes the error. If no errors
occur, this parameter is not changed. Pass NULL if you don’t want error information. See “Error
Dictionary Keys” (page 757) for a description of the key-value pairs in this dictionary. Ownership follows
the Create Rule.

Return Value
A new CFXMLTree object containing the data from the specified XML document. Ownership follows the
Create Rule.

754 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

CFXMLTree Reference

Discussion
Use this function instead of CFXMLTreeCreateFromData (page 753) if you need access to XML parsing errors.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFXMLParser.h

CFXMLTreeCreateWithDataFromURL
Creates a new CFXMLTree object by loading the data to be parsed directly from a data source.

CFXMLTreeRef CFXMLTreeCreateWithDataFromURL (
 CFAllocatorRef allocator,
 CFURLRef dataSource,
 CFOptionFlags parseOptions,
 CFIndex versionOfNodes
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

dataSource
The URL from which the XML data is obtained. The URL is used to resolve any relative references
found in XML Data. Pass NULL if a valid URL is unavailable.

parseOptions
Flags which control how the XML data will be parsed. See Parsing Options (page 748) for the list
of available options.

versionOfNodes
Determines which version of CFXMLNode objects are produced by the parser.

Return Value
A new CFXMLTree object containing the data from the specified XML data source. Ownership follows the
Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

CFXMLTreeCreateWithNode
Creates a childless, parentless CFXMLTree object node for a CFXMLNode object.

Functions 755
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

CFXMLTree Reference

CFXMLTreeRef CFXMLTreeCreateWithNode (
 CFAllocatorRef allocator,
 CFXMLNodeRef node
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

node
The CFXMLNode object to use when creating the new CFXMLTree object.

Return Value
A CFXMLTree object. Ownership follows the Create Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

CFXMLTreeCreateXMLData
Generates an XML document from a CFXMLTree object which is ready to be written to permanent storage.

CFDataRef CFXMLTreeCreateXMLData (
 CFAllocatorRef allocator,
 CFXMLTreeRef xmlTree
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

xmlTree
The CFXMLTree object you wish to convert to an XML document.

Return Value
The XML data. Ownership follows the Create Rule.

Discussion
This function will not regenerate entity references replaced at the parse time (except those required for
syntactic correctness). If you need this you must manually walk the tree and re-insert any entity references
that should appear in the final output file.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLParser.h

756 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

CFXMLTree Reference

CFXMLTreeGetNode
Returns the node of a CFXMLTree object.

CFXMLNodeRef CFXMLTreeGetNode (
 CFXMLTreeRef xmlTree
);

Parameters
xmlTree

The CFXMLTree object whose node you wish to obtain.

Return Value
The node of xmlTree. Ownership follows the Get Rule.

Availability
Available in CarbonLib v1.1 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

Data Types

CFXMLTreeRef
A reference to a CFXMLTree object.

typedef CFTreeRef CFXMLTreeRef;

Discussion
When using the high-level parser API, XML data is parsed to a special CFTree object which is simply a
CFXMLTree object with known contexts and callbacks. The nodes of a CFXMLTree may be queried using the
basic CFTree functions (to report on the structure of the tree itself), or via the functions here (to report on
the XML contents of the nodes).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFXMLNode.h

Constants

Error Dictionary Keys
The keys used in an error dictionary returned by some functions to provide more information about XML
parse errors.

Data Types 757
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

CFXMLTree Reference

const CFStringRef kCFXMLTreeErrorDescription;
const CFStringRef kCFXMLTreeErrorLineNumber;
const CFStringRef kCFXMLTreeErrorLocation;
const CFStringRef kCFXMLTreeErrorStatusCode;

Constants
kCFXMLTreeErrorDescription

Dictionary key whose value is a CFString containing a readable description of the error.

Available in Mac OS X v10.3 and later.

Declared in CFXMLParser.h.

kCFXMLTreeErrorLineNumber
Dictionary key whose value is a CFNumber containing the line number where the error was detected.
This may not be the line number where the actual XML error is located.

Available in Mac OS X v10.3 and later.

Declared in CFXMLParser.h.

kCFXMLTreeErrorLocation
Dictionary key whose value is a CFNumber containing the byte location where the error was detected.

Available in Mac OS X v10.3 and later.

Declared in CFXMLParser.h.

kCFXMLTreeErrorStatusCode
Dictionary key whose value is a CFNumber containing the error status code. See CFXMLParser Reference
for possible status code values.

Available in Mac OS X v10.3 and later.

Declared in CFXMLParser.h.

Discussion
These keys are used in the error dictionary returned by the CFXMLTreeCreateFromDataWithError (page
754) function.

Availability
Available in Mac OS X v10.3 and later.

758 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

CFXMLTree Reference

759
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART II

Managers

760
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART II

Managers

Framework: CoreFoundation/CoreFoundation.h

Declared in CFBase.h

Companion guide Core Foundation Design Concepts

Overview

Core Foundation defines a number of miscellaneous symbols that are either used by many different opaque
types, such as CFIndex (page 763), or apply to Core Foundation as a whole, such as
kCFCoreFoundationVersionNumber (page 765). These symbols are collected together and documented
here.

Functions

CFRangeMake
Declares and initializes a CFRange structure.

CFRange CFRangeMake (
 CFIndex loc,
 CFIndex len
);

Parameters
loc

The starting location of the range.

len
The length of the range.

Return Value
An initialized structure of type CFRange (page 764).

Discussion
This is an in-line convenience function for creating initialized CFRange (page 764) structures.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest

Overview 761
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

Base Utilities Reference

HID Calibrator
HID Config Save
HID Explorer
QTCarbonShell

Declared In
CFBase.h

Callbacks

CFComparatorFunction
Callback function that compares two values. You provide a pointer to this callback in certain Core Foundation
sorting functions.

typedef CFComparisonResult (*CFComparatorFunction) (
 const void *val1,
 const void *val2,
 void *context
);

If you name your function MyCallBack, you would declare it like this:

CFComparisonResult MyCallBack (
 const void *val1,
 const void *val2,
 void *context
);

Parameters
val1

The first value to compare.

val2
The second value to compare.

context
An untyped pointer to the context of the evaluation.

The meaning of this value and its use are defined by each comparator function. This value is usually
passed to a sort function, such as CFArraySortValues (page 285), which then passes it, unchanged,
to the comparator function.

Return Value
A CFComparisonResult value that indicates whether the val1 is equal to, less than, or greater than val2.
See “Comparison Results” (page 764) for a list of possible values.

Discussion
If you need to sort the elements in a collection using special criteria, you can implement a comparator function
with the signature defined by this prototype. You pass a pointer to this function in one of the “sort” functions,
such as CFArray's CFArraySortValues (page 285).

762 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

Base Utilities Reference

You can also pass pointers to standard Core Foundation comparator functions such as
CFStringCompare (page 527) and CFDateCompare (page 179).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Data Types

CFIndex
An integer type used throughout Core Foundation in several programmatic roles: as an array index and for
count, size, and length parameters and return values.

typedef SInt32 CFIndex;

Discussion
Core Foundation types as CFIndex all parameters and return values that might grow over time as the
processor's address size changes. On architectures where pointer sizes are a different size (say, 64 bits)
CFIndex might be declared to be also 64 bits, independent of the size of int.

If you type your own variables that interact with Core Foundation as CFIndex, your code will have a higher
degree of source compatibility in the future.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

CFOptionFlags
A bitfield used for passing special allocation and other requests into Core Foundation functions.

typedef UInt32 CFOptionFlags;

Discussion
The flag bits are specific to particular opaque types and functions in Core Foundation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Data Types 763
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

Base Utilities Reference

CFRange
A structure representing a range of sequential items in a container, such as characters in a buffer or elements
in a collection.

struct CFRange {
 CFIndex location;
 CFIndex length;
};
typedef struct CFRange CFRange;

Fields
location

An integer representing the starting location of the range.

length
An integer representing the number of items in the range.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFBase.h

Constants

Comparison Results
Constants returned by comparison functions, indicating whether a value is equal to, less than, or greater
than another value.

enum CFComparisonResult {
 kCFCompareLessThan = -1,
 kCFCompareEqualTo = 0,
 kCFCompareGreaterThan = 1
};
typedef enum CFComparisonResult CFComparisonResult;

Constants
kCFCompareLessThan

Returned by a comparison function if the first value is less than the second value.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

kCFCompareEqualTo
Returned by a comparison function if the first value is equal to the second value.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

kCFCompareGreaterThan
Returned by a comparison function if the first value is greater than the second value.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

764 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

Base Utilities Reference

Declared In
CFBase.h

Value Not Found
Special value returned when a Core Foundation function cannot locate a requested value.

enum {
 kCFNotFound = -1
};

Constants
kCFNotFound

A constant that indicates that a search operation did not succeed in locating the target value.

Available in Mac OS X v10.0 and later.

Declared in CFBase.h.

Declared In
CFBase.h

Current Framework Version Number
Current version number of the Core Foundation framework.

double kCFCoreFoundationVersionNumber;

Constants
kCFCoreFoundationVersionNumber

The current version of the Core Foundation framework. Compare this value to the values in “Framework
Version Numbers” (page 765). Although this variable was added to the CFBase.h header file in Mac
OS X v10.1, it was available and can be used in Mac OS X v10.0.

Available in Mac OS X v10.1 and later.

Declared in CFBase.h.

Declared In
CFBase.h

Framework Version Numbers
Version numbers of the Core Foundation framework.

Constants 765
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

Base Utilities Reference

#define kCFCoreFoundationVersionNumber10_0 196.4
#define kCFCoreFoundationVersionNumber10_0_3 196.5
#define kCFCoreFoundationVersionNumber10_1 226.0
#define kCFCoreFoundationVersionNumber10_1_2 227.2
#define kCFCoreFoundationVersionNumber10_1_4 227.3
#define kCFCoreFoundationVersionNumber10_2 263.0
#define kCFCoreFoundationVersionNumber10_2_1 263.10
#define kCFCoreFoundationVersionNumber10_2_2 263.10
#define kCFCoreFoundationVersionNumber10_2_3 263.30
#define kCFCoreFoundationVersionNumber10_2_4 263.30
#define kCFCoreFoundationVersionNumber10_2_5 263.50
#define kCFCoreFoundationVersionNumber10_2_6 263.50
#define kCFCoreFoundationVersionNumber10_2_7 263.50
#define kCFCoreFoundationVersionNumber10_2_8 263.50
#define kCFCoreFoundationVersionNumber10_3 299.00
#define kCFCoreFoundationVersionNumber10_3_1 299.00
#define kCFCoreFoundationVersionNumber10_3_2 299.00
#define kCFCoreFoundationVersionNumber10_3_3 299.30
#define kCFCoreFoundationVersionNumber10_3_4 299.31
#define kCFCoreFoundationVersionNumber10_3_5 299.31
#define kCFCoreFoundationVersionNumber10_3_6 299.32
#define kCFCoreFoundationVersionNumber10_3_7 299.33
#define kCFCoreFoundationVersionNumber10_3_8 299.33
#define kCFCoreFoundationVersionNumber10_3_9 299.35
#define kCFCoreFoundationVersionNumber10_4 368.00
#define kCFCoreFoundationVersionNumber10_4_1 368.10
#define kCFCoreFoundationVersionNumber10_4_2 368.11
#define kCFCoreFoundationVersionNumber10_4_3 368.18
#define kCFCoreFoundationVersionNumber10_4_4_Intel 368.26
#define kCFCoreFoundationVersionNumber10_4_4_PowerPC 368.25
#define kCFCoreFoundationVersionNumber10_4_5_Intel 368.26
#define kCFCoreFoundationVersionNumber10_4_5_PowerPC 368.25
#define kCFCoreFoundationVersionNumber10_4_6_Intel 368.26
#define kCFCoreFoundationVersionNumber10_4_6_PowerPC 368.25
#define kCFCoreFoundationVersionNumber10_4_7 368.27

Constants
kCFCoreFoundationVersionNumber10_0

The Core Foundation framework version in Mac OS X version 10.0.

Available in Mac OS X v10.1 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_0_3
The Core Foundation framework version in Mac OS X version 10.0.3.

Available in Mac OS X v10.1 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_1
The Core Foundation framework version in Mac OS X version 10.1.

Available in Mac OS X v10.2 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_1_2
The Core Foundation framework version in Mac OS X version 10.1.2.

Available in Mac OS X v10.3 and later.

Declared in CFBase.h.

766 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

Base Utilities Reference

kCFCoreFoundationVersionNumber10_1_4
The Core Foundation framework version in Mac OS X version 10.1.4.

Available in Mac OS X v10.3 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_2
The Core Foundation framework version in Mac OS X version 10.2.

Available in Mac OS X v10.3 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_2_1
The Core Foundation framework version in Mac OS X version 10.2.1.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_2_2
The Core Foundation framework version in Mac OS X version 10.2.2.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_2_3
The Core Foundation framework version in Mac OS X version 10.2.3.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_2_4
The Core Foundation framework version in Mac OS X version 10.2.4.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_2_5
The Core Foundation framework version in Mac OS X version 10.2.5.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_2_6
The Core Foundation framework version in Mac OS X version 10.2.6.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_2_7
The Core Foundation framework version in Mac OS X version 10.2.7.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_2_8
The Core Foundation framework version in Mac OS X version 10.2.8.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

Constants 767
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

Base Utilities Reference

kCFCoreFoundationVersionNumber10_3
The Core Foundation framework version in Mac OS X version 10.3.

Available in Mac OS X v10.4 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_3_1
The Core Foundation framework version in Mac OS X version 10.3.1.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_3_2
The Core Foundation framework version in Mac OS X version 10.3.2.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_3_3
The Core Foundation framework version in Mac OS X version 10.3.3.

Available in Mac OS X v10.4 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_3_4
The Core Foundation framework version in Mac OS X version 10.3.4.

Available in Mac OS X v10.4 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_3_5
The Core Foundation framework version in Mac OS X version 10.3.5.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_3_6
The Core Foundation framework version in Mac OS X version 10.3.6.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_3_7
The Core Foundation framework version in Mac OS X version 10.3.7.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_3_8
The Core Foundation framework version in Mac OS X version 10.3.8.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_3_9
The Core Foundation framework version in Mac OS X version 10.3.9.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

768 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

Base Utilities Reference

kCFCoreFoundationVersionNumber10_4
The Core Foundation framework version in Mac OS X version 10.4.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_4_1
The Core Foundation framework version in Mac OS X version 10.4.1.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_4_2
The Core Foundation framework version in Mac OS X version 10.4.2.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_4_3
The Core Foundation framework version in Mac OS X version 10.4.3.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_4_4_Intel
The Core Foundation framework version in Mac OS X version 10.4.4 on Intel-based Macintosh
computers.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_4_4_PowerPC
The Core Foundation framework version in Mac OS X version 10.4.4 on PowerPC-based Macintosh
computers.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_4_5_Intel
The Core Foundation framework version in Mac OS X version 10.4.5 on Intel-based Macintosh
computers.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_4_5_PowerPC
The Core Foundation framework version in Mac OS X version 10.4.5 on PowerPC-based Macintosh
computers.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_4_6_Intel
The Core Foundation framework version in Mac OS X version 10.4.6 on Intel-based Macintosh
computers.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

Constants 769
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

Base Utilities Reference

kCFCoreFoundationVersionNumber10_4_6_PowerPC
The Core Foundation framework version in Mac OS X version 10.4.6 on PowerPC-based Macintosh
computers.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

kCFCoreFoundationVersionNumber10_4_7
The Core Foundation framework version in Mac OS X version 10.4.7.

Available in Mac OS X v10.5 and later.

Declared in CFBase.h.

Discussion
Compare these values to the value of the kCFCoreFoundationVersionNumber (page 765) variable to
identify on which version of the Core Foundation framework your code is executing.

Declared In
CFBase.h

770 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

Base Utilities Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFByteOrder.h

Companion guide Memory Management Programming Guide for Core Foundation

Overview

When handling binary data transmitted or shared across platforms, you need be concerned with how each
platform stores numerical values. A platform stores values either in big-endian or little-endian format. On
big-endian machines, such as PowerPC machines, values are stored with the most-significant bytes first in
memory; on little-endian machines, such as Pentium machines, values are stored with the least-significant
bytes first. A multibyte value transmitted to a platform with a different format will be misinterpreted if it is
not converted properly by one of the computers.

You identify the native format of the current platform using the CFByteOrderGetCurrent (page 771)
function. Use functions such as CFSwapInt32BigToHost (page 777) and
CFConvertFloat32HostToSwapped (page 772) to convert values between different byte order formats.

Functions

CFByteOrderGetCurrent
Returns the byte order of the current computer.

CFByteOrder CFByteOrderGetCurrent (
 void
);

Return Value
The byte order of the current computer. See “Byte Order Flags” (page 782) for the list of possible return values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

Overview 771
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

CFConvertDoubleHostToSwapped
Converts a 64-bit double from the host’s native byte order to a platform-independent format.

CFSwappedFloat64 CFConvertDoubleHostToSwapped (
 double arg
);

Parameters
arg

The real value to convert.

Return Value
A structure holding the real value in a canonical byte order.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFConvertDoubleSwappedToHost
Converts a 64-bit double from a platform-independent format to the host’s native byte order.

double CFConvertDoubleSwappedToHost (
 CFSwappedFloat64 arg
);

Parameters
arg

A structure holding the real value to convert.

Return Value
The real value in the host’s native format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFConvertFloat32HostToSwapped
Converts a 32-bit float from the host’s native byte order to a platform-independent format.

CFSwappedFloat32 CFConvertFloat32HostToSwapped (
 Float32 arg
);

Parameters
arg

The real value to convert.

Return Value
A structure holding the real value in a canonical byte order.

772 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFConvertFloat32SwappedToHost
Converts a 32-bit float from a platform-independent format to the host’s native byte order.

Float32 CFConvertFloat32SwappedToHost (
 CFSwappedFloat32 arg
);

Parameters
arg

A structure holding the real value to convert.

Return Value
The real value in the host’s native format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFConvertFloat64HostToSwapped
Converts a 64-bit float from the host’s native byte order to a platform-independent format.

CFSwappedFloat64 CFConvertFloat64HostToSwapped (
 Float64 arg
);

Parameters
arg

The real value to convert.

Return Value
A structure holding the real value in a canonical byte order.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFConvertFloat64SwappedToHost
Converts a 64-bit float from a platform-independent format to the host’s native byte order.

Functions 773
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

Float64 CFConvertFloat64SwappedToHost (
 CFSwappedFloat64 arg
);

Parameters
arg

A structure holding the real value to convert.

Return Value
The real value in the host’s native format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFConvertFloatHostToSwapped
Converts a 32-bit float from the host’s native byte order to a platform-independent format.

CFSwappedFloat32 CFConvertFloatHostToSwapped (
 float arg
);

Parameters
arg

The real value to convert.

Return Value
A structure holding the real value in a canonical byte order.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFConvertFloatSwappedToHost
Converts a 32-bit float from a platform-independent format to the host’s native byte order.

float CFConvertFloatSwappedToHost (
 CFSwappedFloat32 arg
);

Parameters
arg

A structure holding the real value to convert.

Return Value
The real value in the host’s native format.

Availability
Available in Mac OS X v10.0 and later.

774 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

Declared In
CFByteOrder.h

CFSwapInt16
Swaps the bytes of a 16-bit integer.

uint16_t CFSwapInt16 (
 uint16_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFSwapInt16BigToHost
Converts a 16-bit integer from big-endian format to the host’s native byte order.

uint16_t CFSwapInt16BigToHost (
 uint16_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is big-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFSwapInt16HostToBig
Converts a 16-bit integer from the host’s native byte order to big-endian format.

Functions 775
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

uint16_t CFSwapInt16HostToBig (
 uint16_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is big-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFSwapInt16HostToLittle
Converts a 16-bit integer from the host’s native byte order to little-endian format.

uint16_t CFSwapInt16HostToLittle (
 uint16_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is little-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFSwapInt16LittleToHost
Converts a 16-bit integer from little-endian format to the host’s native byte order.

uint16_t CFSwapInt16LittleToHost (
 uint16_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is little-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

776 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

Declared In
CFByteOrder.h

CFSwapInt32
Swaps the bytes of a 32-bit integer.

uint32_t CFSwapInt32 (
 uint32_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFSwapInt32BigToHost
Converts a 32-bit integer from big-endian format to the host’s native byte order.

uint32_t CFSwapInt32BigToHost (
 uint32_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is big-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioQueueTools
TabsShowcase

Declared In
CFByteOrder.h

CFSwapInt32HostToBig
Converts a 32-bit integer from the host’s native byte order to big-endian format.

Functions 777
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

uint32_t CFSwapInt32HostToBig (
 uint32_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is big-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioQueueTools
HIFleetingControls
RecordAudioToFile
TabsShowcase

Declared In
CFByteOrder.h

CFSwapInt32HostToLittle
Converts a 32-bit integer from the host’s native byte order to little-endian format.

uint32_t CFSwapInt32HostToLittle (
 uint32_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is little-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFSwapInt32LittleToHost
Converts a 32-bit integer from little-endian format to the host’s native byte order.

778 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

uint32_t CFSwapInt32LittleToHost (
 uint32_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is little-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFSwapInt64
Swaps the bytes of a 64-bit integer.

uint64_t CFSwapInt64 (
 uint64_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFSwapInt64BigToHost
Converts a 64-bit integer from big-endian format to the host’s native byte order.

uint64_t CFSwapInt64BigToHost (
 uint64_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is big-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

Functions 779
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

Declared In
CFByteOrder.h

CFSwapInt64HostToBig
Converts a 64-bit integer from the host’s native byte order to big-endian format.

uint64_t CFSwapInt64HostToBig (
 uint64_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is big-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFSwapInt64HostToLittle
Converts a 64-bit integer from the host’s native byte order to little-endian format.

uint64_t CFSwapInt64HostToLittle (
 uint64_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is little-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFSwapInt64LittleToHost
Converts a 64-bit integer from little-endian format to the host’s native byte order.

780 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

uint64_t CFSwapInt64LittleToHost (
 uint64_t arg
);

Parameters
arg

The integer whose bytes should be swapped.

Return Value
The integer with its bytes swapped. If the host is little-endian, this function returns arg unchanged.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

Data Types

CFSwappedFloat32
Structure holding a 32-bit float value in a platform-independent byte order.

struct CFSwappedFloat32 {
 uint32_t v;
};
typedef struct CFSwappedFloat32 CFSwappedFloat32;

Fields
v

A 32-bit float value stored with a platform-independent byte order.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFByteOrder.h

CFSwappedFloat64
Structure holding a 64-bit float value in a platform-independent byte order.

struct CFSwappedFloat64 {
 uint64_t v;
};
typedef struct CFSwappedFloat64 CFSwappedFloat64;

Fields
v

A 64-bit float value stored with a platform-independent byte order.

Availability
Available in Mac OS X v10.0 and later.

Data Types 781
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

Declared In
CFByteOrder.h

Constants

Byte Order Flags
Flags that identify byte order.

enum __CFByteOrder {
 CFByteOrderUnknown,
 CFByteOrderLittleEndian,
 CFByteOrderBigEndian
};
typedef enum __CFByteOrder CFByteOrder;

Constants
CFByteOrderUnknown

The byte order is unknown.

Available in Mac OS X v10.0 and later.

Declared in CFByteOrder.h.

CFByteOrderLittleEndian
Multi-byte values are stored with the least-significant bytes stored first. Pentium CPUs are little endian.

Available in Mac OS X v10.0 and later.

Declared in CFByteOrder.h.

CFByteOrderBigEndian
Multi-byte values are stored with the most-significant bytes stored first. PowerPC CPUs are big endian.

Available in Mac OS X v10.0 and later.

Declared in CFByteOrder.h.

782 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

Byte-Order Utilities Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFURLAccess.h

Overview

Core Foundation URL Access Utilities give you convenient system-independent methods of creating, reading,
updating, or deleting a URL resource.

Given a CFURL object that holds either a file or http URL, you can read the resource’s data with the
CFURLCreateDataAndPropertiesFromResource (page 783) function. You can write data to the URL
resource, possibly creating a new file, with the CFURLWriteDataAndPropertiesToResource (page 786)
function. Finally, you can destroy, or delete, the resource pointed to by the URL with the
CFURLDestroyResource (page 785) function.

Functions

CFURLCreateDataAndPropertiesFromResource
Loads the data and properties referred to by a given URL.

Boolean CFURLCreateDataAndPropertiesFromResource (
 CFAllocatorRef alloc,
 CFURLRef url,
 CFDataRef *resourceData,
 CFDictionaryRef *properties,
 CFArrayRef desiredProperties,
 SInt32 *errorCode
);

Parameters
allocator

The allocator to use to allocate memory for the new CFData and CFDictionary objects returned
in resourceData and properties. Pass NULL or kCFAllocatorDefault to use the current default
allocator.

url
The URL referring to the data and/or properties you wish to load.

resourceData
On return, contains a CFData object containing the data referred to by url. Ownership follows the
Create Rule.

Overview 783
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

Core Foundation URL Access Utilities
Reference

properties
On return, a pointer to a CFDictionary object containing the resource properties referred to by
url. Ownership follows the Create Rule.

desiredProperties
A list of the properties you wish to obtain and return in properties. See “File URL Properties” (page
788) and “HTTP URL Properties” (page 789) for the list of available properties.

errorCode
0 if successful, otherwise an error code indicating the nature of the problem. See “Error Codes” (page
787) for a list of possible error codes.

Return Value
true if successful, false otherwise.

Discussion
If you are interested in loading only the resource data or the resource's properties, pass NULL for the one
you don't want. If properties is non-NULL and desiredProperties is NULL then all properties are fetched.
Note that as much work as possible is done even if false is returned. For instance, if one property is not
available, the others are fetched anyway. This function is intended for convenience, not performance.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Calibrator
HID Utilities Source
MoreIsBetter
QISA
SeeMyFriends

Declared In
CFURLAccess.h

CFURLCreatePropertyFromResource
Returns a given property specified by a given URL and property string.

CFTypeRef CFURLCreatePropertyFromResource (
 CFAllocatorRef alloc,
 CFURLRef url,
 CFStringRef property,
 SInt32 *errorCode
);

Parameters
allocator

The allocator to use to to allocate memory for the new CFType object for the requested property.
Pass NULL or kCFAllocatorDefault to use the current default allocator.

url
The CFURL object referring to the resource whose properties are loaded.

784 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

Core Foundation URL Access Utilities Reference

property
The name of the property you wish to load. Pass one of the provided string constants indicating the
property. See “File URL Properties” (page 788) and “HTTP URL Properties” (page 789) for the list of
available properties.

errorCode
On return, 0 if successful, otherwise an error code indicating the nature of the problem. See “Error
Codes” (page 787) for a list of possible error codes.

Return Value
If successful, the requested property as a CFType object, NULL otherwise. Ownership follows the Create Rule.

Discussion
This is a convenience function for retrieving individual property values which calls through to
CFURLCreateDataAndPropertiesFromResource (page 783).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFURLAccess.h

CFURLDestroyResource
Destroys a resource indicated by a given URL.

Boolean CFURLDestroyResource (
 CFURLRef url,
 SInt32 *errorCode
);

Parameters
url

The CFURL object of the resource to destroy.

errorCode
On return, 0 if successful, otherwise an error code indicating the nature of the problem. See “Error
Codes” (page 787) for a list of possible error codes.

Return Value
true if successful, false otherwise.

Discussion
If url uses an http scheme, an http DELETE request is sent to the resource. If url uses a file scheme, then:

 ■ if the reference is a file, the file is deleted;

 ■ if the reference is a directory and the directory is empty, the directory is deleted;

 ■ if the reference is a directory and the directory is not empty, the function returns false and errorCode
contains kCFURLUnknownError.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFURLAccess.h

Functions 785
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

Core Foundation URL Access Utilities Reference

CFURLWriteDataAndPropertiesToResource
Writes the given data and properties to a given URL.

Boolean CFURLWriteDataAndPropertiesToResource (
 CFURLRef url,
 CFDataRef dataToWrite,
 CFDictionaryRef propertiesToWrite,
 SInt32 *errorCode
);

Parameters
url

The resource to write.

dataToWrite
The data to write. Pass NULL to write only properties.

propertiesToWrite
The properties to write. Pass NULL to write only data. See “File URL Properties” (page 788) and “HTTP
URL Properties” (page 789) for the list of available properties.

errorCode
Upon return, 0 if successful, otherwise contains an error code indicating the nature of the problem.
See “Error Codes” (page 787) for a list of possible error codes.

Return Value
true if successful, false otherwise.

Discussion
Properties not present in propertiesToWrite are left unchanged, hence if propertiesToWrite is NULL
or empty, the URL's properties are not changed at all.

If url uses a file scheme and it references a file, the contents of dataToWrite are written to the referenced
file, overwriting any preexisting data, and the file’s properties are modified according to propertiesToWrite.
If the file does not exist, but all intermediate directories along the path do already exist, the file is created
(otherwise it is not).

If url uses a file scheme and it references a directory (the last path character is "/"), the contents of
dataToWrite are ignored, but if the parameter value is not NULL—and all intermediate directories along
the path do already exist—a new directory is created (otherwise it is not).

If url uses an http scheme, an http PUT request is sent to the resource with propertiesToWrite as the
header fields and dataToWrite as the data.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPrefTopScores
ImageBrowserView
MoreIsBetter
SeeMyFriends

Declared In
CFURLAccess.h

786 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

Core Foundation URL Access Utilities Reference

Constants

Error Codes
CFURL error codes.

enum CFURLError {
 kCFURLUnknownError = -10,
 kCFURLUnknownSchemeError = -11,
 kCFURLResourceNotFoundError = -12,
 kCFURLResourceAccessViolationError = -13,
 kCFURLRemoteHostUnavailableError = -14,
 kCFURLImproperArgumentsError = -15,
 kCFURLUnknownPropertyKeyError = -16,
 kCFURLPropertyKeyUnavailableError = -17,
 kCFURLTimeoutError = -18
};
typedef enum CFURLError CFURLError;

Constants
kCFURLUnknownError

Indicates an unknown error.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLUnknownSchemeError
Indicates that the scheme is not recognized.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLResourceNotFoundError
Indicates a resource was not found.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLResourceAccessViolationError
Indicates an error in accessing a resource.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLRemoteHostUnavailableError
Indicates a remote host is unavailable.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLImproperArgumentsError
Indicates one or more arguments are improper.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

Constants 787
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

Core Foundation URL Access Utilities Reference

kCFURLUnknownPropertyKeyError
Indicates a property key is unknown.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLPropertyKeyUnavailableError
Indicates a property key was unavailable.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLTimeoutError
Indicates a timeout.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CFURLAccess.h

File URL Properties
Properties for file URL resources.

const CFStringRef kCFURLFileExists;
const CFStringRef kCFURLFileDirectoryContents;
const CFStringRef kCFURLFileLength;
const CFStringRef kCFURLFileLastModificationTime;
const CFStringRef kCFURLFilePOSIXMode;
const CFStringRef kCFURLFileOwnerID;

Constants
kCFURLFileExists

A CFBoolean object indicating whether the file referred to by a URL exists.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLFileDirectoryContents
A CFArray object holding CFURL objects for the contents of a directory referred to by a URL.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLFileLength
A CFNumber object holding the file’s length in bytes.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLFileLastModificationTime
A CFDate object holding the file’s modification time.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

788 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

Core Foundation URL Access Utilities Reference

kCFURLFilePOSIXMode
A CFNumber holding the file’s POSIX mode as given in /usr/include/sys/stat.h.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLFileOwnerID
A CFNumber holding the file owner's UID.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CFURLAccess.h

HTTP URL Properties
Properties for HTTP URL resources.

const CFStringRef kCFURLHTTPStatusCode;
const CFStringRef kCFURLHTTPStatusLine;

Constants
kCFURLHTTPStatusCode

A CFNumber object holding the status code of an HTTP request.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

kCFURLHTTPStatusLine
A CFString object holding the status line of an HTTP request.

Available in Mac OS X v10.0 and later.

Declared in CFURLAccess.h.

Discussion
In addition to the above properties, each field within an HTTP request or response header is itself a property.
You can specify a header field by using the field name as the property name.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CFURLAccess.h

Constants 789
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

Core Foundation URL Access Utilities Reference

790 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 57

Core Foundation URL Access Utilities Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFPreferences.h

Companion guide Preferences Programming Topics for Core Foundation

Overview

Core Foundation provides a simple, standard way to manage user (and application) preferences. Core
Foundation stores preferences as key-value pairs that are assigned a scope using a combination of user name,
application ID, and host (computer) names. This makes it possible to save and retrieve preferences that apply
to different classes of users. Core Foundation preferences is useful to all applications that support user
preferences. Note that modification of some preferences domains (those not belonging to the “Current User”)
requires Admin privileges—see Authorization Services Programming Guide for information on how to gain
suitable privileges.

Unlike some other Core Foundation types, CFPreferences is not toll-free bridged to its corresponding Cocoa
Foundation framework class (NSUserDefaults).

Functions by Task

Several functions return a preference value as a Core Foundation property list object. You can use the function
CFGetTypeID (page 637) to determine the value’s type. For more information about property lists, see Property
List Programming Topics for Core Foundation.

Getting Preference Values

CFPreferencesCopyAppValue (page 795)
Obtains a preference value for the specified key and application.

CFPreferencesCopyKeyList (page 796)
Constructs and returns the list of all keys set in the specified domain.

CFPreferencesCopyMultiple (page 796)
Returns a dictionary containing preference values for multiple keys.

CFPreferencesCopyValue (page 797)
Returns a preference value for a given domain.

CFPreferencesGetAppBooleanValue (page 798)
Convenience function that directly obtains a boolean preference value for the specified key.

Overview 791
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

CFPreferencesGetAppIntegerValue (page 799)
Convenience function that directly obtains an integer preference value for the specified key.

Setting Preference Values

CFPreferencesSetAppValue (page 800)
Adds, modifies, or removes a preference.

CFPreferencesSetMultiple (page 801)
Convenience function that allows you to set and remove multiple preference values.

CFPreferencesSetValue (page 801)
Adds, modifies, or removes a preference value for the specified domain.

Synchronizing Preferences

CFPreferencesAppSynchronize (page 793)
Writes to permanent storage all pending changes to the preference data for the application, and
reads the latest preference data from permanent storage.

CFPreferencesSynchronize (page 802)
For the specified domain, writes all pending changes to preference data to permanent storage, and
reads latest preference data from permanent storage.

Adding and Removing Suite Preferences

CFPreferencesAddSuitePreferencesToApp (page 792)
Adds suite preferences to an application’s preference search chain.

CFPreferencesRemoveSuitePreferencesFromApp (page 799)
Removes suite preferences from an application’s search chain.

Miscellaneous Functions

CFPreferencesAppValueIsForced (page 794)
Determines whether or not a given key has been imposed on the user.

CFPreferencesCopyApplicationList (page 794)
Constructs and returns the list of all applications that have preferences in the scope of the specified
user and host.

Functions

CFPreferencesAddSuitePreferencesToApp
Adds suite preferences to an application’s preference search chain.

792 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

void CFPreferencesAddSuitePreferencesToApp (
 CFStringRef applicationID,
 CFStringRef suiteID
);

Parameters
applicationID

The ID of the application to which to add suite preferences, typically
kCFPreferencesCurrentApplication (page 804). Do not pass NULL or
kCFPreferencesAnyApplication (page 804). Takes the form of a Java package name,com.foosoft.

suiteID
The ID of the application suite preferences to add. Takes the form of a Java package name,
com.foosoft.

Discussion
Suite preferences allow you to maintain a set of preferences that are common to all applications in the suite.
When a suite is added to an application’s search chain, all of the domains pertaining to that suite are inserted
into the chain. Suite preferences are added between the “Current Application” domains and the “Any
Application” domains. If you add multiple suite preferences to one application, the order of the suites in the
search chain is non-deterministic. You can override a suite preference for a given application by defining the
same preference key in the application specific preferences.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFPreferences.h

CFPreferencesAppSynchronize
Writes to permanent storage all pending changes to the preference data for the application, and reads the
latest preference data from permanent storage.

Boolean CFPreferencesAppSynchronize (
 CFStringRef applicationID
);

Parameters
applicationID

The ID of the application whose preferences to write to storage, typically
kCFPreferencesCurrentApplication (page 804). Do not pass NULL or
kCFPreferencesAnyApplication (page 804). Takes the form of a Java package name,com.foosoft.

Return Value
true if synchronization was successful, otherwise false.

Discussion
Calling the function CFPreferencesSetAppValue (page 800) is not in itself sufficient for storing preferences.
The CFPreferencesAppSynchronize function writes to permanent storage all pending preference changes
for the application. Typically you would call this function after multiple calls to
CFPreferencesSetAppValue (page 800). Conversely, preference data is cached after it is first read. Changes
made externally are not automatically incorporated. The CFPreferencesAppSynchronize function reads
the latest preferences from permanent storage.

Functions 793
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ComboBoxPrefs
DTSCarbonShell
HID Config Save
QTCarbonShell
RecentItems

Declared In
CFPreferences.h

CFPreferencesAppValueIsForced
Determines whether or not a given key has been imposed on the user.

Boolean CFPreferencesAppValueIsForced (
 CFStringRef key,
 CFStringRef applicationID
);

Parameters
key

The key you are querying.

applicationID
The application’s ID, typically kCFPreferencesCurrentApplication (page 804). Do not pass NULL
or kCFPreferencesAnyApplication (page 804). Takes the form of a Java package name,
com.foosoft.

Return Value
true if value of the key cannot be changed by the user, otherwise false.

Discussion
In cases where machines and/or users are under some kind of management, you should use this function to
determine whether or not to disable UI elements corresponding to those preference keys.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFPreferences.h

CFPreferencesCopyApplicationList
Constructs and returns the list of all applications that have preferences in the scope of the specified user and
host.

794 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

CFArrayRef CFPreferencesCopyApplicationList (
 CFStringRef userName,
 CFStringRef hostName
);

Parameters
userName

kCFPreferencesCurrentUser (page 804) to search the current-user domain, otherwise
kCFPreferencesAnyUser (page 804) to search the any-user domain.

hostName
kCFPreferencesCurrentHost (page 804) to search the current-host domain, otherwise
kCFPreferencesAnyHost (page 804) to search the any-host domain.

Return Value
The list of application IDs. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPrefsDumper

Declared In
CFPreferences.h

CFPreferencesCopyAppValue
Obtains a preference value for the specified key and application.

CFPropertyListRef CFPreferencesCopyAppValue (
 CFStringRef key,
 CFStringRef applicationID
);

Parameters
key

The preference key whose value to obtain.

applicationID
The identifier of the application whose preferences to search, typically
kCFPreferencesCurrentApplication (page 804). Do not pass NULL or
kCFPreferencesAnyApplication (page 804). Takes the form of a Java package name,com.foosoft.

Return Value
The preference data for the specified key and application. If no value was located, returns NULL. Ownership
follows the Create Rule.

Discussion
Note that values returned from this function are immutable, even if you have recently set the value using a
mutable object.

Availability
Available in Mac OS X v10.0 and later.

Functions 795
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

Related Sample Code
ComboBoxPrefs
DockBrowser
DTSCarbonShell
GrabBag
QTCarbonShell

Declared In
CFPreferences.h

CFPreferencesCopyKeyList
Constructs and returns the list of all keys set in the specified domain.

CFArrayRef CFPreferencesCopyKeyList (
 CFStringRef applicationID,
 CFStringRef userName,
 CFStringRef hostName
);

Parameters
applicationID

The ID of the application whose preferences to search. Takes the form of a Java package name,
com.foosoft.

userName
kCFPreferencesCurrentUser (page 804) to search the current-user domain, otherwise
kCFPreferencesAnyUser (page 804) to search the any-user domain.

hostName
kCFPreferencesCurrentHost (page 804) to search the current-host domain, otherwise
kCFPreferencesAnyHost (page 804) to search the any-host domain.

Return Value
The list of keys. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFPreferences.h

CFPreferencesCopyMultiple
Returns a dictionary containing preference values for multiple keys.

796 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

CFDictionaryRef CFPreferencesCopyMultiple (
 CFArrayRef keysToFetch,
 CFStringRef applicationID,
 CFStringRef userName,
 CFStringRef hostName
);

Parameters
keysToFetch

An array of preference keys the values of which to obtain.

applicationID
The ID of the application whose preferences are searched. Takes the form of a Java package name,
such as com.foosoft.

userName
kCFPreferencesCurrentUser (page 804) to search the current-user domain, otherwise
kCFPreferencesAnyUser (page 804) to search the any-user domain.

hostName
kCFPreferencesCurrentHost (page 804) to search the current-host domain, otherwise
kCFPreferencesAnyHost (page 804) to search the any-host domain.

Return Value
A dictionary containing the preference values for the keys specified by keysToFetch for the specified domain.
If no values were located, returns an empty dictionary. Ownership follows the Create Rule.

Discussion
Note that values returned from this function are immutable, even if you have recently set the value using a
mutable object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPrefsDumper

Declared In
CFPreferences.h

CFPreferencesCopyValue
Returns a preference value for a given domain.

CFPropertyListRef CFPreferencesCopyValue (
 CFStringRef key,
 CFStringRef applicationID,
 CFStringRef userName,
 CFStringRef hostName
);

Parameters
key

Preferences key for the value to obtain.

Functions 797
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

applicationID
The ID of the application whose preferences are searched. Takes the form of a Java package name,
such as com.foosoft.

userName
kCFPreferencesCurrentUser (page 804) if to search the current-user domain, otherwise
kCFPreferencesAnyUser (page 804) to search the any-user domain.

hostName
kCFPreferencesCurrentHost (page 804) if to search the current-host domain, otherwise
kCFPreferencesAnyHost (page 804) to search the any-host domain.

Return Value
The preference data for the specified domain. If the no value was located, returns NULL. Ownership follows
the Create Rule.

Discussion
This function is the primitive get mechanism for the higher level preference function
CFPreferencesCopyAppValue (page 795) Unlike the high-level function,CFPreferencesCopyValue (page
797) searches only the exact domain specified. Do not use this function directly unless you have a need. All
arguments must be non-NULL. Do not use arbitrary user and host names, instead pass the pre-defined domain
qualifier constants.

Note that values returned from this function are immutable, even if you have recently set the value using a
mutable object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFPreferences.h

CFPreferencesGetAppBooleanValue
Convenience function that directly obtains a boolean preference value for the specified key.

Boolean CFPreferencesGetAppBooleanValue (
 CFStringRef key,
 CFStringRef applicationID,
 Boolean *keyExistsAndHasValidFormat
);

Parameters
key

The preference key whose value to obtain. The key must specify a preference whose value is of type
Boolean.

applicationID
The identifier of the application whose preferences are searched, typically
kCFPreferencesCurrentApplication (page 804). Do not pass NULL or
kCFPreferencesAnyApplication (page 804). Takes the form of a Java package name, such as
com.foosoft.

keyExistsAndHasValidFormat
On return, true if the preference value for the specified key was located and found to be of type
Boolean, otherwise false.

798 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

Return Value
The preference data for the specified key and application, or if no value was located, false.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DTSCarbonShell
QTCarbonShell
RecentItems

Declared In
CFPreferences.h

CFPreferencesGetAppIntegerValue
Convenience function that directly obtains an integer preference value for the specified key.

CFIndex CFPreferencesGetAppIntegerValue (
 CFStringRef key,
 CFStringRef applicationID,
 Boolean *keyExistsAndHasValidFormat
);

Parameters
key

The preference key whose value you wish to obtain. The key must specify a preference whose value
is of type int.

applicationID
The identifier of the application whose preferences you wish to search, typically
kCFPreferencesCurrentApplication (page 804). Do not pass NULL or
kCFPreferencesAnyApplication (page 804). Takes the form of a Java package name,com.foosoft.

keyExistsAndHasValidFormat
On return, indicates whether the preference value for the specified key was located and found to be
of type int.

Return Value
The preference data for the specified key and application. If no value was located, 0 is returned.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFPreferences.h

CFPreferencesRemoveSuitePreferencesFromApp
Removes suite preferences from an application’s search chain.

Functions 799
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

void CFPreferencesRemoveSuitePreferencesFromApp (
 CFStringRef applicationID,
 CFStringRef suiteID
);

Parameters
applicationID

The ID of the application from which to remove suite preferences, typically
kCFPreferencesCurrentApplication (page 804). Do not pass NULL or
kCFPreferencesAnyApplication (page 804). Takes the form of a Java package name,com.foosoft.

suiteID
The ID of the application suite preferences to remove. Takes the form of a Java package name,
com.foosoft.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFPreferences.h

CFPreferencesSetAppValue
Adds, modifies, or removes a preference.

void CFPreferencesSetAppValue (
 CFStringRef key,
 CFPropertyListRef value,
 CFStringRef applicationID
);

Parameters
key

The preference key whose value you wish to set.

value
The value to set for the specified key and application. Pass NULL to remove the specified key from
the application’s preferences.

applicationID
The ID of the application whose preferences you wish to create or modify, typically
kCFPreferencesCurrentApplication (page 804). Do not pass NULL or
kCFPreferencesAnyApplication (page 804). Takes the form of a Java package name,com.foosoft.

Discussion
New preference values are stored in the standard application preference location, ~/Library/Preferences/.
When called with kCFPreferencesCurrentApplication (page 804), modifications are performed in the
preference domain “Current User, Current Application, Any Host.” If you need to create preferences in some
other domain, use the low-level function CFPreferencesSetValue (page 801).

You must call the CFPreferencesAppSynchronize (page 793) function in order for your changes to be
saved to permanent storage.

Availability
Available in Mac OS X v10.0 and later.

800 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

Related Sample Code
DockBrowser
DTSCarbonShell
GrabBag
QTCarbonShell
RecentItems

Declared In
CFPreferences.h

CFPreferencesSetMultiple
Convenience function that allows you to set and remove multiple preference values.

void CFPreferencesSetMultiple (
 CFDictionaryRef keysToSet,
 CFArrayRef keysToRemove,
 CFStringRef applicationID,
 CFStringRef userName,
 CFStringRef hostName
);

Parameters
keysToSet

A dictionary containing the key/value pairs for the preferences to set.

keysToRemove
An array containing a list of keys to remove.

applicationID
The ID of the application whose preferences you wish to modify. Takes the form of a Java package
name, com.foosoft.

userName
kCFPreferencesCurrentUser (page 804) to modify the current user’s preferences, otherwise
kCFPreferencesAnyUser (page 804) to modify the preferences of all users.

hostName
kCFPreferencesCurrentHost (page 804) to modify the preferences of the current host, otherwise
kCFPreferencesAnyHost (page 804) to modify the preferences of all hosts.

Discussion
Behavior is undefined if a key is in both keysToSet and keysToRemove

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFPreferences.h

CFPreferencesSetValue
Adds, modifies, or removes a preference value for the specified domain.

Functions 801
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

void CFPreferencesSetValue (
 CFStringRef key,
 CFPropertyListRef value,
 CFStringRef applicationID,
 CFStringRef userName,
 CFStringRef hostName
);

Parameters
key

Preferences key for the value you wish to set.

value
The value to set for key and application. Pass NULL to remove key from the domain.

applicationID
The ID of the application whose preferences you wish to modify. Takes the form of a Java package
name, com.foosoft.

userName
kCFPreferencesCurrentUser (page 804) to modify the current user’s preferences, otherwise
kCFPreferencesAnyUser (page 804) to modify the preferences of all users.

hostName
kCFPreferencesCurrentHost (page 804) to modify the preferences of the current host, otherwise
kCFPreferencesAnyHost (page 804) to modify the preferences of all hosts.

Discussion
This function is the primitive set mechanism for the higher level preference function
CFPreferencesSetAppValue (page 800). Only the exact domain specified is modified. Do not use this
function directly unless you have a specific need. All arguments except value must be non-NULL. Do not
use arbitrary user and host names, instead pass the pre-defined constants.

You must call the CFPreferencesSynchronize (page 802) function in order for your changes to be saved
to permanent storage. Note that you can only save preferences for “Any User” if you have Admin privileges.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPrefTopScores

Declared In
CFPreferences.h

CFPreferencesSynchronize
For the specified domain, writes all pending changes to preference data to permanent storage, and reads
latest preference data from permanent storage.

802 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

Boolean CFPreferencesSynchronize (
 CFStringRef applicationID,
 CFStringRef userName,
 CFStringRef hostName
);

Parameters
applicationID

The ID of the application whose preferences you wish to modify. Takes the form of a Java package
name, com.foosoft.

userName
kCFPreferencesCurrentUser (page 804) to modify the current user’s preferences, otherwise
kCFPreferencesAnyUser (page 804) to modify the preferences of all users.

hostName
kCFPreferencesCurrentHost (page 804) to search the current-host domain, otherwise
kCFPreferencesAnyHost (page 804) to search the any-host domain.

Return Value
true if synchronization was successful, false if an error occurred.

Discussion
This function is the primitive synchronize mechanism for the higher level preference function
CFPreferencesAppSynchronize (page 793); it writes updated preferences to permanent storage, and
reads the latest preferences from permanent storage. Only the exact domain specified is modified. Note that
to modify “Any User” preferences requires Admin privileges—see Authorization Services Programming Guide.

Do not use this function directly unless you have a specific need. All arguments must be non- NULL. Do not
use arbitrary user and host names, instead pass the pre-defined constants.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CFPrefTopScores

Declared In
CFPreferences.h

Constants

Application, Host, and User Keys
Keys used to specify the common preference domains.

Constants 803
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

const CFStringRef kCFPreferencesAnyApplication;
const CFStringRef kCFPreferencesAnyHost;
const CFStringRef kCFPreferencesAnyUser;
const CFStringRef kCFPreferencesCurrentApplication;
const CFStringRef kCFPreferencesCurrentHost;
const CFStringRef kCFPreferencesCurrentUser;

Constants
kCFPreferencesAnyApplication

Indicates a preference that applies to any application.

Available in Mac OS X v10.0 and later.

Declared in CFPreferences.h.

kCFPreferencesAnyHost
Indicates a preference that applies to any host.

This domain is currently unsupported.

Available in Mac OS X v10.0 and later.

Declared in CFPreferences.h.

kCFPreferencesAnyUser
Indicates a preference that applies to any user.

This domain is currently unsupported.

Available in Mac OS X v10.0 and later.

Declared in CFPreferences.h.

kCFPreferencesCurrentApplication
Indicates a preference that applies only to the current application.

Available in Mac OS X v10.0 and later.

Declared in CFPreferences.h.

kCFPreferencesCurrentHost
Indicates a preference that applies only to the current host.

Available in Mac OS X v10.0 and later.

Declared in CFPreferences.h.

kCFPreferencesCurrentUser
Indicates a preference that applies only to the current user.

Available in Mac OS X v10.0 and later.

Declared in CFPreferences.h.

804 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 58

Preferences Utilities Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFSocket.h

Overview

Name server functionality is currently inoperable in Mac OS X.

Functions

CFSocketCopyRegisteredSocketSignature
Returns a socket signature registered with a CFSocket name server.

CFSocketError CFSocketCopyRegisteredSocketSignature (
 const CFSocketSignature *nameServerSignature,
 CFTimeInterval timeout,
 CFStringRef name,
 CFSocketSignature *signature,
 CFDataRef *nameServerAddress
);

Parameters
nameServerSignature

The socket signature for the name server. If NULL, this function contacts the default server, which is
assumed to be a local process using TCP/IP to listen on the port number returned from
CFSocketGetDefaultNameRegistryPortNumber (page 807). If nameServerSignature is
incomplete, the missing values are replaced with the default server’s values, if appropriate.

timeout
The time to wait for the server to accept a connection and to reply to the registration request.

name
The name of the registered socket signature to retrieve.

signature
A pointer to a CFSocketSignature structure into which the retrieved socket signature is copied.

nameServerAddress
A pointer to a CFData object into which the name server’s address is copied. Pass NULL if you do not
want the server’s address.

Overview 805
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

Socket Name Server Utilities Reference

Return Value
An error code indicating success or failure.

Discussion
Once you have the socket signature, you can open a connection to that socket with
CFSocketCreateConnectedToSocketSignature (page 505).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketCopyRegisteredValue
Returns a value registered with a CFSocket name server.

CFSocketError CFSocketCopyRegisteredValue (
 const CFSocketSignature *nameServerSignature,
 CFTimeInterval timeout,
 CFStringRef name,
 CFPropertyListRef *value,
 CFDataRef *nameServerAddress
);

Parameters
nameServerSignature

The socket signature for the name server. If NULL, this function contacts the default server, which is
assumed to be a local process using TCP/IP to listen on the port number returned from
CFSocketGetDefaultNameRegistryPortNumber (page 807). If nameServerSignature is
incomplete, the missing values are replaced with the default server’s values, if appropriate.

timeout
The time to wait for the server to accept a connection and to reply to the registration request.

name
The name of the registered value to return.

value
A pointer to the property list object into which the retrieved value should be copied.

nameServerAddress
A pointer to a CFData object into which the name server’s address is copied. Pass NULL if you do not
want the server’s address.

Return Value
An error code indicating success or failure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

806 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

Socket Name Server Utilities Reference

CFSocketGetDefaultNameRegistryPortNumber
Returns the default port number with which to connect to a CFSocket name server.

UInt16 CFSocketGetDefaultNameRegistryPortNumber (
 void
);

Return Value
The default port number with which to connect to a CFSocket name server.

Discussion
If you do not provide a name server signature or leave out the socket address in the signature when calling
one of the name registry functions, such as CFSocketRegisterSocketSignature (page 807), the returned
port number is used for the connection.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketRegisterSocketSignature
Registers a socket signature with a CFSocket name server.

CFSocketError CFSocketRegisterSocketSignature (
 const CFSocketSignature *nameServerSignature,
 CFTimeInterval timeout,
 CFStringRef name,
 const CFSocketSignature *signature
);

Parameters
nameServerSignature

The socket signature for the name server. If NULL, this function contacts the default server, which is
assumed to be a local process using TCP/IP to listen on the port number returned from
CFSocketGetDefaultNameRegistryPortNumber (page 807). If nameServerSignature is
incomplete, the missing values are replaced with the default server’s values, if appropriate.

timeout
The time to wait for the server to accept a connection and to reply to the registration request.

name
The name with which to register signature.

signature
The socket signature to register.

Return Value
An error code indicating success or failure.

Discussion
Once a socket signature is registered, other processes can retrieve it with
CFSocketCopyRegisteredSocketSignature (page 805) and then open a connection to your socket using
CFSocketCreateConnectedToSocketSignature (page 505).

Functions 807
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

Socket Name Server Utilities Reference

To remove a registered socket signature from the name server, use CFSocketUnregister (page 809).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketRegisterValue
Registers a property-list value with a CFSocket name server.

CFSocketError CFSocketRegisterValue (
 const CFSocketSignature *nameServerSignature,
 CFTimeInterval timeout,
 CFStringRef name,
 CFPropertyListRef value
);

Parameters
nameServerSignature

The socket signature for the name server. If NULL, this function contacts the default server, which is
assumed to be a local process using TCP/IP to listen on the port number returned from
CFSocketGetDefaultNameRegistryPortNumber (page 807). If nameServerSignature is
incomplete, the missing values are replaced with the default server’s values, if appropriate.

timeout
The time to wait for the server to accept a connection and to reply to the registration request.

name
The name with which to register value.

value
The property-list value to register.

Return Value
An error code indicating success or failure.

Discussion
To remove a registered value from the name server, use CFSocketUnregister (page 809).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketSetDefaultNameRegistryPortNumber
Sets the default port number with which to connect to a CFSocket name server.

808 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

Socket Name Server Utilities Reference

void CFSocketSetDefaultNameRegistryPortNumber (
 UInt16 port
);

Parameters
port

The port number to use to connect to the CFSocket name server.

Discussion
If you do not provide a name server signature or leave out the socket address in the signature when calling
one of the name registry functions, such as CFSocketRegisterSocketSignature (page 807), port will
be used for the connection.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

CFSocketUnregister
Unregisters a value or socket signature with a CFSocket name server.

CFSocketError CFSocketUnregister (
 const CFSocketSignature *nameServerSignature,
 CFTimeInterval timeout,
 CFStringRef name
);

Parameters
nameServerSignature

The socket signature for the name server. If NULL, this function contacts the default server, which is
assumed to be a local process using TCP/IP to listen on the port number returned from
CFSocketGetDefaultNameRegistryPortNumber (page 807). If nameServerSignature is
incomplete, the missing values are replaced with the default server’s values, if appropriate.

timeout
The time to wait for the server to accept a connection and to reply to the registration request.

name
The name of the property-list value or socket signature to unregister.

Return Value
An error code indicating success or failure.

Discussion
The value being unregistered was previously registered with CFSocketRegisterValue (page 808) or
CFSocketRegisterSocketSignature (page 807).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFSocket.h

Functions 809
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

Socket Name Server Utilities Reference

Constants

CFSocket Name Server Keys
Not used.

const CFStringRef kCFSocketCommandKey;
const CFStringRef kCFSocketNameKey;
const CFStringRef kCFSocketValueKey;
const CFStringRef kCFSocketResultKey;
const CFStringRef kCFSocketErrorKey;
const CFStringRef kCFSocketRegisterCommand;
const CFStringRef kCFSocketRetrieveCommand;

Constants
kCFSocketCommandKey

Not used.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketNameKey
Not used.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketValueKey
Not used.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketResultKey
Not used.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketErrorKey
Not used.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketRegisterCommand
Not used.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

kCFSocketRetrieveCommand
Not used.

Available in Mac OS X v10.0 and later.

Declared in CFSocket.h.

Declared In
CFSocket.h

810 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 59

Socket Name Server Utilities Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFDate.h

Companion guide Dates and Times Programming Guide for Core Foundation

Overview

Core Foundation measures time in units of seconds. The base data type is the CFTimeInterval (page 818),
which measures the difference in seconds between two times. Fixed times, or dates, are defined by the
CFAbsoluteTime (page 817) data type, which measures the time interval between a particular date and the
absolute reference date of Jan 1 2001 00:00:00 GMT.

The CFGregorianDate (page 817) structure represents absolute times in terms of the Gregorian calendar.
Functions such as CFAbsoluteTimeGetGregorianDate (page 814) use a CFTimeZone object to obtain the
local time in a particular time zone.

The CFDate opaque type wraps an absolute time into a CFType-base object, allowing you to put time objects
into into collections and property lists and to be handled by other object-oriented parts of Core Foundation.

Functions

CFAbsoluteTimeAddGregorianUnits
Adds a time interval, expressed as Gregorian units, to a given absolute time.

CFAbsoluteTime CFAbsoluteTimeAddGregorianUnits (
 CFAbsoluteTime at,
 CFTimeZoneRef tz,
 CFGregorianUnits units
);

Parameters
at

The absolute time to which the interval is added.

tz
The time zone to use for time correction. Pass NULL for GMT.

units
The time interval to add to at.

Overview 811
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

Time Utilities Reference

Return Value
An absolute time value equal to the sum of at and units.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CalendarView

Declared In
CFDate.h

CFAbsoluteTimeGetCurrent
Returns the current system absolute time.

CFAbsoluteTime CFAbsoluteTimeGetCurrent ();

Return Value
The current absolute time.

Discussion
Absolute time is measured in seconds relative to the absolute reference date of Jan 1 2001 00:00:00 GMT. A
positive value represents a date after the reference date, a negative value represents a date before it. For
example, the absolute time -32940326 is equivalent to December 16th, 1999 at 17:54:34. Repeated calls to
this function do not guarantee monotonically increasing results. The system time may decrease due to
synchronization with external time references or due to an explicit user change of the clock.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AudioQueueTools
ColorSyncDevices
NSGLImage
OpenGL Screensaver
Worm

Declared In
CFDate.h

CFAbsoluteTimeGetDayOfWeek
Returns an integer representing the day of the week indicated by the specified absolute time.

SInt32 CFAbsoluteTimeGetDayOfWeek (
 CFAbsoluteTime at,
 CFTimeZoneRef tz
);

Parameters
at

The absolute time to convert.

812 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

Time Utilities Reference

tz
The time zone to use for time correction. Pass NULL for GMT.

Return Value
An integer (1-7) representing the day of the week specified by at. Per ISO-8601, Monday is represented by
1, Tuesday by 2, and so on.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CalendarView

Declared In
CFDate.h

CFAbsoluteTimeGetDayOfYear
Returns an integer representing the day of the year indicated by the specified absolute time.

SInt32 CFAbsoluteTimeGetDayOfYear (
 CFAbsoluteTime at,
 CFTimeZoneRef tz
);

Parameters
at

The absolute time to convert.

tz
The time zone to use for time correction. Pass NULL for GMT.

Return Value
An integer (1-366) representing the day of the year specified by at.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

CFAbsoluteTimeGetDifferenceAsGregorianUnits
Computes the time difference between two specified absolute times and returns the result as an interval in
Gregorian units.

Functions 813
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

Time Utilities Reference

CFGregorianUnits CFAbsoluteTimeGetDifferenceAsGregorianUnits (
 CFAbsoluteTime at1,
 CFAbsoluteTime at2,
 CFTimeZoneRef tz,
 CFOptionFlags unitFlags
);

Parameters
at1

An absolute time.

at2
An absolute time.

tz
The time zone to use for time correction. Pass NULL for GMT.

unitFlags
A mask that specifies which Gregorian unit fields to use when converting the absolute time difference
into a Gregorian interval. See Gregorian Unit Flags (page 818) for a list of values from which to construct
the mask.

Return Value
The difference between the specified absolute times (as at1 - at2—if at1 is earlier than at2, the result is
negative) expressed in the units specified by unitFlags.

Discussion
The temporal difference is expressed as accurately as possible, given the units specified. For example, if you
asked for the number of months and hours between 2:30pm on April 8 2005 and 5:45pm September 9 2005,
the result would be 5 months and 27 hours.

The following example prints the number of hours and minutes between the current time (now) and the
reference date (1 January 2001 00:00:00 GMT).

CFAbsoluteTime now = CFAbsoluteTimeGetCurrent ();

CFGregorianUnits units = CFAbsoluteTimeGetDifferenceAsGregorianUnits
 (now, 0, NULL, (kCFGregorianUnitsHours | kCFGregorianUnitsMinutes));

CFStringRef output = CFStringCreateWithFormat
 (NULL, 0, CFSTR("hours: %d; minutes: %d"), units.hours, units.minutes);
CFShow(output);

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

CFAbsoluteTimeGetGregorianDate
Converts an absolute time value into a Gregorian date.

814 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

Time Utilities Reference

CFGregorianDate CFAbsoluteTimeGetGregorianDate (
 CFAbsoluteTime at,
 CFTimeZoneRef tz
);

Parameters
at

The absolute time value to convert.

tz
The time zone to use for time correction. Pass NULL for GMT.

Return Value
The Gregorian date equivalent for at.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CalendarView
SampleDS

Declared In
CFDate.h

CFAbsoluteTimeGetWeekOfYear
Returns an integer representing the week of the year indicated by the specified absolute time.

SInt32 CFAbsoluteTimeGetWeekOfYear (
 CFAbsoluteTime at,
 CFTimeZoneRef tz
);

Parameters
at

The absolute time to convert.

tz
The time zone to use for time correction. Pass NULL for GMT.

Return Value
An integer (1-53) representing the week of the year specified by at. The numbering follows the ISO 8601
definition of week.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

CFGregorianDateGetAbsoluteTime
Converts a Gregorian date value into an absolute time value.

Functions 815
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

Time Utilities Reference

CFAbsoluteTime CFGregorianDateGetAbsoluteTime (
 CFGregorianDate gdate,
 CFTimeZoneRef tz
);

Parameters
gdate

The Gregorian date to convert.

tz
The time zone to use for time correction. Pass NULL for GMT.

Return Value
The absolute time equivalent of gdate.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CalendarView

Declared In
CFDate.h

CFGregorianDateIsValid
Checks the specified fields of a CFGregorianDate structure for valid values.

Boolean CFGregorianDateIsValid (
 CFGregorianDate gdate,
 CFOptionFlags unitFlags
);

Parameters
gdate

The CFGregorianDate structure whose fields to validate.

unitFlags
A mask that specifies which Gregorian unit fields to validate. See Gregorian Unit Flags (page 818) for
a list of values from which to construct the mask.

Return Value
true if the specified fields are valid, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

816 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

Time Utilities Reference

Data Types

CFAbsoluteTime
Type used to represent a specific point in time relative to the absolute reference date of 1 Jan 2001 00:00:00
GMT.

typedef CFTimeInterval CFAbsoluteTime;

Discussion
Absolute time is measured by the number of seconds between the reference date and the specified date.
Negative values indicate dates/times before the reference date. Positive values indicate dates/times after the
reference date.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

CFGregorianDate
Structure used to represent a point in time using the Gregorian calendar.

struct CFGregorianDate {
 SInt32 year;
 SInt8 month;
 SInt8 day;
 SInt8 hour;
 SInt8 minute;
 double second;
};
typedef struct CFGregorianDate CFGregorianDate;

Discussion
CFGregorianDate is implemented using the smallest data type appropriate for the range of possible values.
For example, there are only 12 months in the Gregorian year, so there is no need to use an integer type larger
than 8 bits. To represent a time interval in Gregorian units, use a CFGregorianUnits (page 817).

The month and day units are 1-based: the index for January is 1, and the index for the first day of the month
is 1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

CFGregorianUnits
Structure used to represent a time interval in Gregorian units.

Data Types 817
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

Time Utilities Reference

struct CFGregorianUnits {
 SInt32 years;
 SInt32 months;
 SInt32 days;
 SInt32 hours;
 SInt32 minutes;
 double seconds;
};
typedef struct CFGregorianUnits CFGregorianUnits;

Discussion
A CFGregorianUnits is used to represent arbitrary time intervals (to represent a point in time using Gregorian
units, use a CFGregorianDate (page 817)). Each field can take values up to the maximum possible for its
data type. Negative values are also valid.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

CFTimeInterval
Type used to represent elapsed time in seconds.

typedef double CFTimeInterval;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDate.h

Constants

CFGregorianUnitFlags
These option flags are used as a mask to indicate a specific set of fields in the CFGregorianDate or
CFGregorianUnits structures.

818 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

Time Utilities Reference

enum CFGregorianUnitFlags {
 kCFGregorianUnitsYears = (1 << 0),
 kCFGregorianUnitsMonths = (1 << 1),
 kCFGregorianUnitsDays = (1 << 2),
 kCFGregorianUnitsHours = (1 << 3),
 kCFGregorianUnitsMinutes = (1 << 4),
 kCFGregorianUnitsSeconds = (1 << 5),
 kCFGregorianAllUnits = 0x00FFFFFF
};
typedef enum CFGregorianUnitFlags CFGregorianUnitFlags;

Constants
kCFGregorianUnitsYears

Specifies the year field.

Available in Mac OS X v10.0 and later.

Declared in CFDate.h.

kCFGregorianUnitsMonths
Specifies the month field.

Available in Mac OS X v10.0 and later.

Declared in CFDate.h.

kCFGregorianUnitsDays
Specifies the day field.

Available in Mac OS X v10.0 and later.

Declared in CFDate.h.

kCFGregorianUnitsHours
Specifies the hours field.

Available in Mac OS X v10.0 and later.

Declared in CFDate.h.

kCFGregorianUnitsMinutes
Specifies the minutes field.

Available in Mac OS X v10.0 and later.

Declared in CFDate.h.

kCFGregorianUnitsSeconds
Specifies the seconds field.

Available in Mac OS X v10.0 and later.

Declared in CFDate.h.

kCFGregorianAllUnits
Specifies all fields.

Available in Mac OS X v10.0 and later.

Declared in CFDate.h.

Discussion
These flags are used with functions such as CFGregorianDateIsValid (page 816) and
CFAbsoluteTimeGetDifferenceAsGregorianUnits (page 813) which operate on a CFGregorianDate or
CFGregorianUnits structure. For more details, see the discussion of those functions.

Declared In
CFDate.h

Constants 819
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

Time Utilities Reference

Predefined Time Interval Values
Time intervals between the absolute reference date and certain other dates.

const CFTimeInterval kCFAbsoluteTimeIntervalSince1970;
const CFTimeInterval kCFAbsoluteTimeIntervalSince1904;

Constants
kCFAbsoluteTimeIntervalSince1970

The time interval between 1 January 1970 and the reference date 1 January 2001 00:00:00 GMT.

Available in Mac OS X v10.0 and later.

Declared in CFDate.h.

kCFAbsoluteTimeIntervalSince1904
The time interval between 1 January 1904 and the reference date 1 January 2001 00:00:00 GMT.

Available in Mac OS X v10.0 and later.

Declared in CFDate.h.

820 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 60

Time Utilities Reference

821
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART III

Other References

822
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART III

Other References

Framework: CoreFoundation/CoreFoundation.h

Declared in CoreFoundation/CFStream.h

Companion guides Getting Started with Networking
CFNetwork Programming Guide

Overview

This document describes the generic CFStream functions, data types, and constants. See also
CFReadStreamRef (page 439) and CFWriteStreamRef (page 715) for functions and constants specific to
read and write streams respectively.

Functions

CFStreamCreateBoundPair
Creates a pair of read and write streams.

void CFStreamCreateBoundPair (
 CFAllocatorRef alloc,
 CFReadStreamRef *readStream,
 CFWriteStreamRef *writeStream,
 CFIndex transferBufferSize
);

Parameters
alloc

The allocator to use to allocate memory for the new objects. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

readStream
Upon return, a readable stream. Ownership follows the Create Rule.

writeStream
Upon return, a writable. Ownership follows the Create Rule.

transferBufferSize
The size of the buffer to use to transfer data from readStream to writeStream.

Availability
Available in Mac OS X v10.5 and later.

Overview 823
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

Declared In
CFStream.h

CFStreamCreatePairWithPeerSocketSignature
Creates readable and writable streams connected to a socket.

void CFStreamCreatePairWithPeerSocketSignature (
 CFAllocatorRef alloc,
 const CFSocketSignature *signature,
 CFReadStreamRef *readStream,
 CFWriteStreamRef *writeStream
);

Parameters
alloc

The allocator to use to allocate memory for the new objects. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

signature
A CFSocketSignature structure identifying the communication protocol and address to which the
socket streams should connect.

readStream
On return, a readable stream connected to the socket address in signature. If you pass NULL, this
function will not create a readable stream. Ownership follows the Create Rule.

writeStream
On return, a writable stream connected to the socket address in signature. If you pass NULL, this
function will not create a writable stream. Ownership follows the Create Rule.

Discussion
The streams do not open a connection to the socket until one of the streams is opened.

Most properties are shared by both streams. Setting the property for one stream automatically sets the
property for the other.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFStream.h

CFStreamCreatePairWithSocket
Creates readable and writable streams connected to a socket.

824 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

void CFStreamCreatePairWithSocket (
 CFAllocatorRef alloc,
 CFSocketNativeHandle sock,
 CFReadStreamRef *readStream,
 CFWriteStreamRef *writeStream
);

Parameters
alloc

The allocator to use to allocate memory for the new objects. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

sock
The pre-existing (and already connected) socket which the socket streams should use.

readStream
Upon return, a readable stream connected to the socket address in signature. If you pass NULL, this
function will not create a readable stream. Ownership follows the Create Rule.

writeStream
Upon return, a writable stream connected to the socket address in signature. If you pass NULL, this
function will not create a writable stream. Ownership follows the Create Rule.

Discussion
Most properties are shared by both streams. Setting the property for one stream automatically sets the
property for the other.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CocoaEcho
CocoaHTTPServer
CocoaSOAP

Declared In
CFStream.h

CFStreamCreatePairWithSocketToHost
Creates readable and writable streams connected to a TCP/IP port of a particular host.

void CFStreamCreatePairWithSocketToHost (
 CFAllocatorRef alloc,
 CFStringRef host,
 UInt32 port,
 CFReadStreamRef *readStream,
 CFWriteStreamRef *writeStream
);

Parameters
alloc

The allocator to use to allocate memory for the CFReadStream and CFWriteStream objects. Pass
NULL or kCFAllocatorDefault to use the current default allocator.

Functions 825
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

host
The host name to which the socket streams should connect. The host can be specified using an IPv4
or IPv6 address or a fully qualified DNS host name.

port
The TCP port number to which the socket streams should connect.

readStream
Upon return, a readable stream connected to the socket address in port. If you pass NULL, this function
will not create a readable stream. Ownership follows the Create Rule.

writeStream
Upon return, a writable stream connected to the socket address in port. If you pass NULL, this function
will not create a writable stream. Ownership follows the Create Rule.

Discussion
The streams do not open a connection to the specified host until one of the streams is opened.

Most properties are shared by both streams. Setting the property for one stream automatically sets the
property for the other.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CFStream.h

Data Types

CFStreamError
The structure returned by CFReadStreamGetError (page 432) and CFWriteStreamGetError (page 708).
(Deprecated. UseCFReadStreamCopyError (page 429) andCFWriteStreamCopyError (page 705) instead.)

typedef struct {
CFStreamErrorDomain domain;
SInt32 error
} CFStreamError;

Fields
domain

The error domain that should be used to interpret the error. See CFStream Error Domain
Constants (page 829) for possible values.

error
The error code.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CFStream.h

826 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

CFStreamClientContext
A structure provided when an application registers itself to receive stream-related events.

struct CFStreamClientContext {
 CFIndex version;
 void *info;
 void *(*retain)(void *info);
 void (*release)(void *info);
 CFStringRef (*copyDescription)(void *info);
} CFStreamClientContext;

Fields
version

An integer of type CFIndex. Currently the only valid value is zero.

info
A pointer to allocated memory containing user-defined data that will be valid for as long as the client
is registered with the stream. You may assign NULL if your callback function doesn’t want to receive
user-defined data.

retain
A pointer to a function callback that retains the data pointed to by the info field.You may set this
function pointer to NULL.

release
A pointer to a function callback that releases the data pointed to by the info field.You may set this
function pointer to NULL but doing so might result in memory leaks.

copyDescription
A pointer to a function callback that provides a description of the data pointed to by the info field.
In implementing this function, return a reference to a CFString object that describes your allocator,
particularly some characteristics of your user-defined data. You may set this function pointer to NULL,
in which case Core Foundation will provide a rudimentary description.

Declared In
CoreFoundation/CFStream.h

Constants

CFStream Status Constants
Constants that describe the status of a stream.

Constants 827
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

typedef enum {
 kCFStreamStatusNotOpen = 0,
 kCFStreamStatusOpening,
 kCFStreamStatusOpen,
 kCFStreamStatusReading,
 kCFStreamStatusWriting,
 kCFStreamStatusAtEnd,
 kCFStreamStatusClosed,
 kCFStreamStatusError
} CFStreamStatus;

Constants
kCFStreamStatusNotOpen

The stream is not open for reading or writing.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamStatusOpening
The stream is being opened for reading or for writing.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamStatusOpen
The stream is open.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamStatusReading
The stream is being read from.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamStatusWriting
The stream is being written to.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamStatusAtEnd
There is no more data to read, or no more data can be written.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamStatusClosed
The stream is closed.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamStatusError
An error occurred on the stream.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

828 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

Discussion
The CFStreamStatus enumeration defines constants that describe the status of a stream. These values are
returned by CFReadStreamGetStatus (page 433) and CFWriteStreamGetStatus (page 709).

Declared In
CoreFoundation/CFStream.h

CFStream Error Domain Constants
Defines constants for values returned in the domain field of the CFStreamError structure. (Deprecated.
These constants are returned by CFReadStreamGetError (page 432) and CFWriteStreamGetError (page
708); use CFReadStreamCopyError (page 429) and CFWriteStreamCopyError (page 705) instead.)

typedef enum {
 kCFStreamErrorDomainCustom = -1,
 kCFStreamErrorDomainPOSIX = 1,
 kCFStreamErrorDomainMacOSStatus,
} CFStreamErrorDomain;

Constants
kCFStreamErrorDomainCustom

The error code is a custom error code.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamErrorDomainPOSIX
The error code is an error code defined in errno.h.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamErrorDomainMacOSStatus
The error is an OSStatus value defined in MacErrors.h.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

Discussion
These constants indicate how the error code in the error field in the CFStreamError (page 826) structure
should be interpreted.

Declared In
CoreFoundation/CFStream.h

CFStream Error Domain Constants (CFHost)
Defines constants for values returned in the domain field of the CFStreamError structure.

Constants 829
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

const SInt32 kCFStreamErrorDomainNetDB;
const SInt32 kCFStreamErrorDomainNetServices;
const SInt32 kCFstreamErrorDomainMach;
const SInt32 kCFStreamErrorDomainFTP;
const SInt32 kCFStreamErrorDomainHTTP;
const int kCFStreamErrorDomainSOCKS;
const SInt32 kCFStreamErrorDomainSystemConfiguration;
const int kCFStreamErrorDomainSSL;

Constants
kCFStreamErrorDomainNetDB

The error code is an error code defined in netdb.h.

Available in Mac OS X v10.3 and later.

Declared in CFHost.h.

kCFStreamErrorDomainNetServices
The error code is a CFNetService error code. For details, see the CFNetService Error Constants
enumeration.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFStreamErrorDomainMach
The error code is a Mach error code defined in mach/error.h.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFStreamErrorDomainFTP
The error code is an FTP error code.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamErrorDomainHTTP
The error code is an HTTP error code.

Available in Mac OS X v10.1 and later.

Declared in CFHTTPStream.h.

kCFStreamErrorDomainSOCKS
The error code is a SOCKS proxy error.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamErrorDomainSystemConfiguration
The error code is a system configuration error code as defined in
System/ConfigurationSystemConfiguration.h.

Available in Mac OS X v10.3 and later.

Declared in CFHost.h.

kCFStreamErrorDomainSSL
The error code is an SSL error code as defined in Security/SecureTransport.h.

Available in Mac OS X v10.1 and later.

Declared in CFSocketStream.h.

830 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

Discussion
These constants indicate how the error code in the error field in the CFStreamError (page 826) structure
should be interpreted.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CFNetwork.framework/CFHost.h

CFStream Event Type Constants
Defines constants for stream-related events.

typedef enum {
kCFStreamEventNone = 0,
kCFStreamEventOpenCompleted = 1,
kCFStreamEventHasBytesAvailable = 2,
kCFStreamEventCanAcceptBytes = 4,
kCFStreamEventErrorOccurred = 8,
kCFStreamEventEndEncountered = 16
} CFStreamEventType;

Constants
kCFStreamEventNone

No event has occurred.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamEventOpenCompleted
The open has completed successfully.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamEventHasBytesAvailable
The stream has bytes to be read.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamEventCanAcceptBytes
The stream can accept bytes for writing.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamEventErrorOccurred
An error has occurred on the stream.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamEventEndEncountered
The end of the stream has been reached.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

Constants 831
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

Discussion
This enumeration defines constants for stream-related events.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CoreFoundation/CFStream.h

Stream Properties
Stream property names that can be set or copied.

const CFStringRef kCFStreamPropertyAppendToFile;
const CFStringRef kCFStreamPropertyFileCurrentOffset;
const CFStringRef kCFStreamPropertyDataWritten;
const CFStringRef kCFStreamPropertySocketNativeHandle;
const CFStringRef kCFStreamPropertySocketRemoteHostName;
const CFStringRef kCFStreamPropertySocketRemotePortNumber;

Constants
kCFStreamPropertyDataWritten

Value is a CFData object that contains all the bytes written to a writable memory stream. You cannot
modify this value.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamPropertyAppendToFile
Value is a CFBoolean value that indicates whether to append the written data to a file, if it already
exists, rather than to replace its contents.

You must set this value before opening the writable file stream. The default value is kCFBooleanFalse,
indicating that the stream should replace any pre-existing file. You cannot read this value.

Declared in CFStream.h.

Available in Mac OS X version 10.2 and later.

kCFStreamPropertyFileCurrentOffset
Value is a CFNumber object containing the current file offset.

Available in Mac OS X v10.3 and later.

Declared in CFStream.h.

kCFStreamPropertySocketNativeHandle
Value is a CFData object that contains the native handle for a socket stream—of type
CFSocketNativeHandle (page 516)—to which the socket stream is connected.

This property is only available for socket streams. You cannot modify this value. You can read this
value at any time.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

832 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

kCFStreamPropertySocketRemoteHostName
Value is a CFString object containing the name of the host to which the socket stream is connected
or NULL if unknown.

You cannot modify this value. You can read this value at any time.]

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamPropertySocketRemotePortNumber
Value is a CFNumber object containing the remote port number to which the socket stream is
connected or NULL if unknown.

You cannot modify this value. You can read this value at any time.]

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

Discussion
Use CFReadStreamCopyProperty (page 430) or CFWriteStreamCopyProperty (page 706) to read the
property values. Use CFReadStreamSetProperty (page 437) or CFWriteStreamSetProperty (page 712)
to set the property values.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CoreFoundation/CFStream.h

Constants 833
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

834 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 61

CFStream Reference

This article lists the symbols added to CoreFoundation.framework in Mac OS X v10.5.

C Symbols

All of the header files with new symbols are listed alphabetically, with their new symbols described.

CFBase.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

CF_EXTERN_C_BEGIN

CF_EXTERN_C_END

kCFCoreFoundationVersionNumber10_1_1

kCFCoreFoundationVersionNumber10_1_3

The Core Foundation framework version in
Mac OS X version 10.2.1.

kCFCoreFoundationVersionNumber10_2_1

The Core Foundation framework version in
Mac OS X version 10.2.2.

kCFCoreFoundationVersionNumber10_2_2

The Core Foundation framework version in
Mac OS X version 10.2.3.

kCFCoreFoundationVersionNumber10_2_3

The Core Foundation framework version in
Mac OS X version 10.2.4.

kCFCoreFoundationVersionNumber10_2_4

The Core Foundation framework version in
Mac OS X version 10.2.5.

kCFCoreFoundationVersionNumber10_2_5

The Core Foundation framework version in
Mac OS X version 10.2.6.

kCFCoreFoundationVersionNumber10_2_6

The Core Foundation framework version in
Mac OS X version 10.2.7.

kCFCoreFoundationVersionNumber10_2_7

C Symbols 835
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

The Core Foundation framework version in
Mac OS X version 10.2.8.

kCFCoreFoundationVersionNumber10_2_8

The Core Foundation framework version in
Mac OS X version 10.3.1.

kCFCoreFoundationVersionNumber10_3_1

The Core Foundation framework version in
Mac OS X version 10.3.2.

kCFCoreFoundationVersionNumber10_3_2

The Core Foundation framework version in
Mac OS X version 10.3.5.

kCFCoreFoundationVersionNumber10_3_5

The Core Foundation framework version in
Mac OS X version 10.3.6.

kCFCoreFoundationVersionNumber10_3_6

The Core Foundation framework version in
Mac OS X version 10.3.7.

kCFCoreFoundationVersionNumber10_3_7

The Core Foundation framework version in
Mac OS X version 10.3.8.

kCFCoreFoundationVersionNumber10_3_8

The Core Foundation framework version in
Mac OS X version 10.3.9.

kCFCoreFoundationVersionNumber10_3_9

The Core Foundation framework version in
Mac OS X version 10.4.

kCFCoreFoundationVersionNumber10_4

The Core Foundation framework version in
Mac OS X version 10.4.1.

kCFCoreFoundationVersionNumber10_4_1

kCFCoreFoundationVersionNumber10_4_10

kCFCoreFoundationVersionNumber10_4_11

The Core Foundation framework version in
Mac OS X version 10.4.2.

kCFCoreFoundationVersionNumber10_4_2

The Core Foundation framework version in
Mac OS X version 10.4.3.

kCFCoreFoundationVersionNumber10_4_3

The Core Foundation framework version in
Mac OS X version 10.4.4 on Intel-based
Macintosh computers.

kCFCoreFoundationVersionNumber10_4_4_Intel

The Core Foundation framework version in
Mac OS X version 10.4.4 on PowerPC-based
Macintosh computers.

kCFCoreFoundationVersionNumber10_4_4_PowerPC

The Core Foundation framework version in
Mac OS X version 10.4.5 on Intel-based
Macintosh computers.

kCFCoreFoundationVersionNumber10_4_5_Intel

The Core Foundation framework version in
Mac OS X version 10.4.5 on PowerPC-based
Macintosh computers.

kCFCoreFoundationVersionNumber10_4_5_PowerPC

836 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

The Core Foundation framework version in
Mac OS X version 10.4.6 on Intel-based
Macintosh computers.

kCFCoreFoundationVersionNumber10_4_6_Intel

The Core Foundation framework version in
Mac OS X version 10.4.6 on PowerPC-based
Macintosh computers.

kCFCoreFoundationVersionNumber10_4_6_PowerPC

The Core Foundation framework version in
Mac OS X version 10.4.7.

kCFCoreFoundationVersionNumber10_4_7

kCFCoreFoundationVersionNumber10_4_8

kCFCoreFoundationVersionNumber10_4_9

CFBundle.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns an array of CFNumbers representing the
architectures a given bundle provides.

CFBundleCopyExecutableArchitectures (page
108)

Returns an array of CFNumbers representing the
architectures a given URL provides.

CFBundleCopyExecutableArchitecturesForURL
 (page 109)

Returns a Boolean value that indicates whether a
given bundle is loaded, attempting to load it if
necessary.

CFBundleLoadExecutableAndReturnError (page
132)

Returns a Boolean value that indicates whether a
given bundle is loaded or appears to be loadable.

CFBundlePreflightExecutable (page 134)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Type that identifies a distinct reference number for a
resource map.

CFBundleRefNum (page 138)

Specifies the 32-bit Intel architecture.kCFBundleExecutableArchitectureI386

Specifies the 32-bit PowerPC architecture.kCFBundleExecutableArchitecturePPC

Specifies the 64-bit PowerPC architecture.kCFBundleExecutableArchitecturePPC64

Specifies the 64-bit Intel architecture.kCFBundleExecutableArchitectureX86_64

C Symbols 837
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

CFByteOrder.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

CF_USE_OSBYTEORDER_H

CFCalendar.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns by reference the start time and duration of a given
calendar unit that contains a given absolute time.

CFCalendarGetTimeRangeOfUnit
 (page 153)

CFCharacterSet.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Newline character set (U000A ~ U000D, U0085, U2028, and
U2029).

kCFCharacterSetNewline

CFDateFormatter.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specifies the Gregorian start date
property, a CFDate object.

kCFDateFormatterGregorianStartDate

Specifies the long era symbols property,
a CFArray of CFString objects.

kCFDateFormatterLongEraSymbols

838 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Specifies the quarter symbols property,
a CFArray of CFString objects.

kCFDateFormatterQuarterSymbols

Specifies the short quarter symbols
property, a CFArray of CFString objects.

kCFDateFormatterShortQuarterSymbols

Specifies the short standalone month
symbols property, a CFArray of CFString
objects.

kCFDateFormatterShortStandaloneMonthSymbols

Specifies the short standalone quarter
symbols property, a CFArray of CFString
objects.

kCFDateFormatterShortStandaloneQuarterSymbols

Specifies the short standalone weekday
symbols property, a CFArray of CFString
objects.

kCFDateFormatterShortStandaloneWeekdaySymbols

Specifies the standalone month symbols
property, a CFArray of CFString objects.

kCFDateFormatterStandaloneMonthSymbols

Specifies the standalone quarter
symbols property, a CFArray of CFString
objects.

kCFDateFormatterStandaloneQuarterSymbols

Specifies the standalone weekday
symbols property, a CFArray of CFString
objects.

kCFDateFormatterStandaloneWeekdaySymbols

Specifies the very short month symbols
property, a CFArray of CFString objects.

kCFDateFormatterVeryShortMonthSymbols

Specifies the very short standalone
month symbols property, a CFArray of
CFString objects.

kCFDateFormatterVeryShortStandaloneMonthSymbols

Specifies the very short standalone
weekday symbols property, a CFArray
of CFString objects.

kCFDateFormatterVeryShortStandaloneWeekdaySymbols

Specifies the very short weekday
symbols property, a CFArray of CFString
objects.

kCFDateFormatterVeryShortWeekdaySymbols

CFError.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

C Symbols 839
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Returns a human-presentable description for a given
error.

CFErrorCopyDescription (page 218)

Returns a human-presentable failure reason for a given
error.

CFErrorCopyFailureReason (page 219)

Returns a human presentable recovery suggestion for
a given error.

CFErrorCopyRecoverySuggestion (page 220)

Returns the user info dictionary for a given CFError.CFErrorCopyUserInfo (page 220)

Creates a new CFError object.CFErrorCreate (page 221)

Creates a new CFError object using given keys and
values to create the user info dictionary.

CFErrorCreateWithUserInfoKeysAndValues
 (page 221)

Returns the error code for a given CFError.CFErrorGetCode (page 222)

Returns the error domain for a given CFError.CFErrorGetDomain (page 223)

Returns the type identifier for the CFError opaque type.CFErrorGetTypeID (page 223)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

A reference to a CFError object.CFErrorRef (page 224)

Key to identify the description in the userInfo
dictionary.

kCFErrorDescriptionKey (page 225)

A constant that specified the Cocoa domain.kCFErrorDomainCocoa

A constant that specified the Mach domain.kCFErrorDomainMach

A constant that specified the OS domain.kCFErrorDomainOSStatus

A constant that specified the POSIX domain.kCFErrorDomainPOSIX

Key to identify the end user-presentable description
in the userInfo dictionary.

kCFErrorLocalizedDescriptionKey (page
225)

Key to identify the end user-presentable failure reason
in the userInfo dictionary.

kCFErrorLocalizedFailureReasonKey (page
225)

Key to identify the end user-presentable recovery
suggestion in the userInfo dictionary.

kCFErrorLocalizedRecoverySuggestionKey
 (page 225)

Key to identify the underlying error in the userInfo
dictionary.

kCFErrorUnderlyingErrorKey

840 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

CFFileDescriptor.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Creates a new CFFileDescriptor.CFFileDescriptorCreate (page 229)

Creates a new runloop source for a given
CFFileDescriptor.

CFFileDescriptorCreateRunLoopSource
 (page 230)

Disables callbacks for a given CFFileDescriptor.CFFileDescriptorDisableCallBacks (page
230)

Enables callbacks for a given CFFileDescriptor.CFFileDescriptorEnableCallBacks (page
231)

Gets the context for a given CFFileDescriptor.CFFileDescriptorGetContext (page 231)

Returns the native file descriptor for a given
CFFileDescriptor.

CFFileDescriptorGetNativeDescriptor
 (page 232)

Returns the type identifier for the CFFileDescriptor
opaque type.

CFFileDescriptorGetTypeID (page 232)

Invalidates the native file descriptor for a given
CFFileDescriptor.

CFFileDescriptorInvalidate (page 232)

Returns a Boolean value that indicates whether the
native file descriptor for a given CFFileDescriptor is valid.

CFFileDescriptorIsValid (page 233)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

CFFileDescriptorCallBack

Defines a structure for the context of a
CFFileDescriptor.

CFFileDescriptorContext (page 234)

Defines a type for the native file descriptor.CFFileDescriptorNativeDescriptor (page 233)

A reference to an CFFileDescriptor object.CFFileDescriptorRef (page 234)

Identifies the read callback.kCFFileDescriptorReadCallBack

Identifies the write callback.kCFFileDescriptorWriteCallBack

C Symbols 841
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

CFLocale.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns an array of strings that represents ISO currency
codes for currencies in common use.

CFLocaleCopyCommonISOCurrencyCodes
 (page 239)

Returns the array of canonicalized locale IDs that the user
prefers.

CFLocaleCopyPreferredLanguages (page
242)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Identifier for the notification sent if the current
locale changes.

kCFLocaleCurrentLocaleDidChangeNotification

CFNumber.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

CGFloat value.kCFNumberCGFloatType (page 379)

NSInteger value.kCFNumberNSIntegerType (page 379)

CFNumberFormatter.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specifies the grouping symbol to use when
placing a currency value within a string, a
CFString object.

kCFNumberFormatterCurrencyGroupingSeparator

842 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Specifies whether the formatter is lenient,
aCFBoolean object.

kCFNumberFormatterIsLenient

Specifies the maximum number of significant
digits to use, aCFNumber object.

kCFNumberFormatterMaxSignificantDigits

Specifies the minimum number of significant
digits to use, aCFNumber object.

kCFNumberFormatterMinSignificantDigits

Specifies the whether the formatter uses
significant digits, a CFBoolean object.

kCFNumberFormatterUseSignificantDigits

CFRunLoop.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns the main CFRunLoop object.CFRunLoopGetMain (page 450)

CFStream.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns the error associated with a stream.CFReadStreamCopyError (page 429)

Creates a pair of read and write streams.CFStreamCreateBoundPair (page 823)

Returns the error associated with a stream.CFWriteStreamCopyError (page 705)

CFString.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Compares a range of the characters in one string with
another string using a given locale.

CFStringCompareWithOptionsAndLocale
 (page 529)

C Symbols 843
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Creates a string from a buffer, containing characters in a
specified encoding, that might serve as the backing store
for the new string.

CFStringCreateWithBytesNoCopy (page
539)

Returns a Boolean value that indicates whether a given
string was found in a given source string.

CFStringFindWithOptionsAndLocale
 (page 552)

Folds a given string into the form specified by optional
flags.

CFStringFold (page 344)

Given a range of characters in a string, obtains the
paragraph bounds—that is, the indexes of the first
character and the final characters of the paragraph(s)
containing the range.

CFStringGetParagraphBounds (page 565)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specifies that the comparison should ignore diacritic markers.kCFCompareDiacriticInsensitive

Specifies that the comparison is forced to return either
kCFCompareLessThan or kCFCompareGreaterThan if the
strings are equivalent but not strictly equal.

kCFCompareForcedOrdering

Specifies that the comparison should ignore width differences.kCFCompareWidthInsensitive

The identifier of a transform to remove diacritic markings.kCFStringTransformStripDiacritics
 (page 355)

CFStringEncodingExt.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

kCFStringEncodingShiftJIS_X0213

CFStringTokenizer.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

844 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Advances the tokenizer to the next token and
sets that as the current token.

CFStringTokenizerAdvanceToNextToken (page
595)

Guesses a language of a given string and returns
the guess as a BCP 47 string.

CFStringTokenizerCopyBestStringLanguage
 (page 596)

Returns a given attribute of the current token.CFStringTokenizerCopyCurrentTokenAttribute
 (page 596)

Returns a tokenizer for a given string.CFStringTokenizerCreate (page 597)

Retrieves the subtokens or derived subtokens
contained in the compound token.

CFStringTokenizerGetCurrentSubTokens (page
598)

Returns the range of the current token.CFStringTokenizerGetCurrentTokenRange (page
599)

Returns the type ID for CFStringTokenizer.CFStringTokenizerGetTypeID (page 599)

Finds a token that includes the character at a
given index, and set it as the current token.

CFStringTokenizerGoToTokenAtIndex (page 599)

Sets the string for a tokenizer.CFStringTokenizerSetString (page 600)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

A reference to a CFStringTokenizer object.CFStringTokenizerRef (page 601)

Token types returned by
CFStringTokenizerGoToTokenAtIndex and
CFStringTokenizerAdvanceToNextToken.

CFStringTokenizerTokenType (page 601)

Tells the tokenizer to prepare the language
(specified as an RFC 3066bis string) when it
tokenizes the string.

kCFStringTokenizerAttributeLanguage

Used with kCFStringTokenizerUnitWord,
tells the tokenizer to prepare the Latin
transcription when it tokenizes the string.

kCFStringTokenizerAttributeLatinTranscription

Compound token which may contain
derived subtokens.

kCFStringTokenizerTokenHasDerivedSubTokensMask

Appears to contain a number.kCFStringTokenizerTokenHasHasNumbersMask

Contains punctuation, symbols, and so on.kCFStringTokenizerTokenHasNonLettersMask

Compound token which may contain
subtokens but with no derived subtokens.

kCFStringTokenizerTokenHasSubTokensMask

C Symbols 845
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Contains kana and/or ideographs.kCFStringTokenizerTokenIsCJWordMask

Has no token.kCFStringTokenizerTokenNone

Has a normal token.kCFStringTokenizerTokenNormal

Specifies that a string should be tokenized
by line break. The locale parameter of
CFStringTokenizerCreate is ignored.

kCFStringTokenizerUnitLineBreak

Specifies that a string should be tokenized
by paragraph. The locale parameter of
CFStringTokenizerCreate is ignored.

kCFStringTokenizerUnitParagraph (page 602)

Specifies that a string should be tokenized
by sentence. The locale parameter of
CFStringTokenizerCreate is ignored.

kCFStringTokenizerUnitSentence (page 602)

Specifies that a string should be tokenized
by word. The locale parameter of
CFStringTokenizerCreate is ignored.

kCFStringTokenizerUnitWord

Specifies that a string should be tokenized
by locale-sensitive word boundary.

kCFStringTokenizerUnitWordBoundary

CFTimeZone.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns the localized name of a given time
zone.

CFTimeZoneCopyLocalizedName (page 608)

Returns the daylight saving time offset for a
time zone at a given time.

CFTimeZoneGetDaylightSavingTimeOffset (page 612)

Returns the time in a given time zone of the
next daylight saving time transition after a
given time.

CFTimeZoneGetNextDaylightSavingTimeTransition
 (page 612)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Index type for constants used to specify
styles of time zone names.

CFTimeZoneNameStyle (page 615)

846 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

Specifies the daylight saving name style for
a time zone.

kCFTimeZoneNameStyleDaylightSaving

Specifies the short daylight saving name
style for a time zone.

kCFTimeZoneNameStyleShortDaylightSaving

Specifies the short standard name style for
a time zone.

kCFTimeZoneNameStyleShortStandard

Specifies the standard name style for a time
zone.

kCFTimeZoneNameStyleStandard

Name of the notification posted when the
system time zone changes.

kCFTimeZoneSystemTimeZoneDidChangeNotification

C Symbols 847
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

848 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.5 Symbol Changes

This article lists the symbols added to CoreFoundation.framework in Mac OS X v10.4.

C Symbols

All of the header files with new symbols are listed alphabetically, with their new symbols described.

CFAttributedString.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Defers internal consistency-checking and
coalescing for a mutable attributed string.

CFAttributedStringBeginEditing (page 289)

Creates an attributed string with specified string
and attributes.

CFAttributedStringCreate (page 55)

Creates an immutable copy of an attributed string.CFAttributedStringCreateCopy (page 55)

Creates a mutable attributed string.CFAttributedStringCreateMutable (page 289)

Creates a mutable copy of an attributed string.CFAttributedStringCreateMutableCopy (page
290)

Creates a sub-attributed string from the specified
range.

CFAttributedStringCreateWithSubstring (page
56)

Re-enables internal consistency-checking and
coalescing for a mutable attributed string.

CFAttributedStringEndEditing (page 290)

Returns the value of a given attribute of an
attributed string at a specified location.

CFAttributedStringGetAttribute (page 57)

Returns the value of a given attribute of an
attributed string at a specified location.

CFAttributedStringGetAttribute-
AndLongestEffectiveRange (page 57)

Returns the attributes of an attributed string at a
specified location.

CFAttributedStringGetAttributes (page 58)

C Symbols 849
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Returns the attributes of an attributed string at a
specified location.

CFAttributedStringGetAttributes-
AndLongestEffectiveRange (page 59)

Returns the length of the attributed string in
characters.

CFAttributedStringGetLength (page 59)

Gets as a mutable string the string for an attributed
string.

CFAttributedStringGetMutableString (page
291)

Returns the string for an attributed string.CFAttributedStringGetString (page 60)

Returns the type identifier for the
CFAttributedString opaque type.

CFAttributedStringGetTypeID (page 60)

Removes the value of a single attribute over a
specified range.

CFAttributedStringRemoveAttribute (page 291)

Replaces the attributed substring over a range
with another attributed string.

CFAttributedStringReplaceAttributedString
 (page 292)

Modifies the string of an attributed string.CFAttributedStringReplaceString (page 292)

Sets the value of a single attribute over the
specified range.

CFAttributedStringSetAttribute (page 293)

Sets the value of attributes of a mutable attributed
string over a specified range.

CFAttributedStringSetAttributes (page 294)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

A reference to a CFAttributedString object.CFAttributedStringRef (page 61)

A reference to a CFMutableAttributedString object.CFMutableAttributedStringRef (page 294)

CFBase.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Makes a newly-allocated Core Foundation object eligible for
garbage collection.

CFMakeCollectable (page 638)

850 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

This allocator explicitly uses the default malloc zone,
returned by malloc_default_zone().

kCFAllocatorMallocZone

The Core Foundation framework version in Mac OS X
version 10.3.

kCFCoreFoundationVersionNumber10_3

The Core Foundation framework version in Mac OS X
version 10.3.3.

kCFCoreFoundationVersionNumber10_3_3

The Core Foundation framework version in Mac OS X
version 10.3.4.

kCFCoreFoundationVersionNumber10_3_4

CFCalendar.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Computes the absolute time when specified components
are added to a given absolute time.

CFCalendarAddComponents (page 144)

Computes the absolute time from components in a
description string.

CFCalendarComposeAbsoluteTime (page
145)

Returns a copy of the logical calendar for the current user.CFCalendarCopyCurrent (page 146)

Returns a locale object for a specified calendar.CFCalendarCopyLocale (page 146)

Returns a time zone object for a specified calendar.CFCalendarCopyTimeZone (page 147)

Returns a calendar object for the calendar identified by a
calendar identifier.

CFCalendarCreateWithIdentifier (page
147)

Computes the components which are indicated by the
componentDesc description string for the given absolute
time.

CFCalendarDecomposeAbsoluteTime (page
148)

Computes the difference between the two absolute times,
in terms of specified calendrical components.

CFCalendarGetComponentDifference
 (page 149)

Returns the index of first weekday for a specified calendar.CFCalendarGetFirstWeekday (page 150)

Returns the given calendar’s identifier.CFCalendarGetIdentifier (page 150)

C Symbols 851
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Returns the maximum range limits of the values that a
specified unit can take on in a given calendar.

CFCalendarGetMaximumRangeOfUnit (page
150)

Returns the minimum number of days in the first week of
a specified calendar.

CFCalendarGetMinimumDaysInFirstWeek
 (page 151)

Returns the minimum range limits of the values that a
specified unit can take on in a given calendar.

CFCalendarGetMinimumRangeOfUnit (page
151)

Returns the ordinal number of a calendrical unit within a
larger unit at a specified absolute time.

CFCalendarGetOrdinalityOfUnit (page
152)

Returns the range of values that one unit can take on
within a larger unit during which a specific absolute time
occurs.

CFCalendarGetRangeOfUnit (page 153)

Returns the type identifier for the CFCalendar opaque type.CFCalendarGetTypeID (page 154)

Sets the first weekday for a calendar.CFCalendarSetFirstWeekday (page 154)

Sets the locale for a calendar.CFCalendarSetLocale (page 155)

Sets the minimum number of days in the first week of a
specified calendar.

CFCalendarSetMinimumDaysInFirstWeek
 (page 155)

Sets the time zone for a calendar.CFCalendarSetTimeZone (page 155)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

A reference to a CFCalendar object.CFCalendarRef (page 156)

CFCalendarUnit constants are used to specify calendrical
units, such as day or month, in various calendar calculations.

CFCalendarUnit (page 156)

Specifies that the components specified for calendar
components should be incremented and wrap around to
zero/one on overflow, but should not cause higher units to
be incremented.

kCFCalendarComponentsWrap (page 158)

Specifies the day unit.kCFCalendarUnitDay

Specifies the era unit.kCFCalendarUnitEra

Specifies the hour unit.kCFCalendarUnitHour

Specifies the minute unit.kCFCalendarUnitMinute

Specifies the month unit.kCFCalendarUnitMonth

Specifies the second unit.kCFCalendarUnitSecond

852 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Specifies the week unit.kCFCalendarUnitWeek

Specifies the weekday unit.kCFCalendarUnitWeekday

Specifies the ordinal weekday unit.kCFCalendarUnitWeekdayOrdinal

Specifies the year unit.kCFCalendarUnitYear

CFDateFormatter.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specifies the AM symbol property, a CFString object.kCFDateFormatterAMSymbol

Specifies the calendar property, a CFCalendar object.kCFDateFormatterCalendar

Specifies the default date property, a CFDate object.kCFDateFormatterDefaultDate

Specifies the era symbols property, a CFArray of CFString
objects.

kCFDateFormatterEraSymbols

Specifies the month symbols property, a CFArray of
CFString objects.

kCFDateFormatterMonthSymbols

Specifies the PM symbol property, a CFString object.kCFDateFormatterPMSymbol

Specifies the short month symbols property, a CFArray of
CFString objects.

kCFDateFormatterShortMonthSymbols

Specifies the short weekday symbols property, a CFArray
of CFString objects.

kCFDateFormatterShortWeekdaySymbols

Specifies the property representing the date from which
two-digit years start, a CFDate object.

kCFDateFormatterTwoDigitStartDate

Specifies the weekday symbols property, a CFArray of
CFString objects.

kCFDateFormatterWeekdaySymbols

CFLocale.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

C Symbols 853
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Returns an array of CFString objects that
represents all locales for which locale data is
available.

CFLocaleCopyAvailableLocaleIdentifiers (page
239)

Returns the display name for the given value.CFLocaleCopyDisplayNameForPropertyValue (page
240)

Returns an array of CFString objects that
represents all known legal ISO country codes.

CFLocaleCopyISOCountryCodes (page 241)

Returns an array of CFString objects that
represents all known legal ISO currency codes.

CFLocaleCopyISOCurrencyCodes (page 241)

Returns an array of CFString objects that
represents all known legal ISO language codes.

CFLocaleCopyISOLanguageCodes (page 242)

Returns a canonical language identifier by
mapping an arbitrary locale identification
string to the canonical identifier

CFLocaleCreateCanonicalLanguage-
IdentifierFromString (page 243)

Returns a dictionary containing the result from
parsing a locale ID consisting of language,
script, country, variant, and keyword/value
pairs.

CFLocaleCreateComponentsFromLocaleIdentifier
 (page 245)

Returns a locale identifier consisting of
language, script, country, variant, and
keyword/value pairs derived from a dictionary
containing the source information.

CFLocaleCreateLocaleIdentifierFromComponents
 (page 246)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specifies the Buddhist calendar.kCFBuddhistCalendar

Specifies the Chinese calendar.kCFChineseCalendar

Specifies the Hebrew calendar.kCFHebrewCalendar

Specifies the Islamic calendar.kCFIslamicCalendar

Specifies the Islamic Civil calendar.kCFIslamicCivilCalendar

Specifies the Japanese calendar.kCFJapaneseCalendar

Specifies the locale calendar.kCFLocaleCalendar

Specifies the locale calendar identifier.kCFLocaleCalendarIdentifier

Specifies the locale collation identifier.kCFLocaleCollationIdentifier

854 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Specifies the locale country code.kCFLocaleCountryCode

Specifies the locale character set.kCFLocaleExemplarCharacterSet

Specifies locale identifier.kCFLocaleIdentifier

Specifies the locale language code.kCFLocaleLanguageCode

Specifies the locale script code.kCFLocaleScriptCode

Specifies the whether the locale uses the metric system.kCFLocaleUsesMetricSystem

Specifies the locale variant code.kCFLocaleVariantCode

CFNotificationCenter.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns the application’s Darwin notification
center.

CFNotificationCenterGetDarwinNotifyCenter
 (page 360)

Returns the application’s local notification center.CFNotificationCenterGetLocalCenter (page
361)

CFNumberFormatter.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specifies the international currency symbol
to use when placing a formatted number
within a string, a CFString object.

kCFNumberFormatterInternationalCurrencySymbol

Specifies the multiplier to use when placing
a formatted number within a string, a
CFNumber object.

kCFNumberFormatterMultiplier

Specifies the minus sign prefix symbol to use
when placing a formatted number within a
string, a CFString object.

kCFNumberFormatterNegativePrefix

C Symbols 855
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

Specifies the minus sign suffix symbol to use
when placing a formatted number within a
string, a CFString object.

kCFNumberFormatterNegativeSuffix

Specifies the per mill (1/1000) symbol to use
when placing a formatted number within a
string, a CFString object.

kCFNumberFormatterPerMillSymbol

Specifies the plus sign prefix symbol to use
when placing a formatted number within a
string, a CFString object.

kCFNumberFormatterPositivePrefix

Specifies the plus sign suffix symbol to use
when placing a formatted number within a
string, a CFString object.

kCFNumberFormatterPositiveSuffix

Specifies a spelled out format.kCFNumberFormatterSpellOutStyle

CFString.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Creates a CFString from a
zero-terminated POSIX file system
representation.

CFStringCreateWithFileSystemRepresentation (page
544)

Extracts the contents of a string as a
NULL-terminated 8-bit string appropriate
for passing to POSIX APIs.

CFStringGetFileSystemRepresentation (page 560)

Determines the upper bound on the
number of bytes required to hold the file
system representation of the string.

CFStringGetMaximumSizeOfFileSystemRepresentation
 (page 563)

Perform in-place transliteration on a
mutable string.

CFStringTransform (page 350)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

An encoding constant that identifies
kTextEncodingUnicodeDefault + kUnicodeUTF16Format
encoding (alias of kCFStringEncodingUnicode).

kCFStringEncodingUTF16

856 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

An encoding constant that identifies
kTextEncodingUnicodeDefault +
kUnicodeUTF16BEFormat encoding. This constant
specifies big-endian byte order.

kCFStringEncodingUTF16BE

An encoding constant that identifies
kTextEncodingUnicodeDefault +
kUnicodeUTF16LEFormat encoding. This constant
specifies little-endian byte order.

kCFStringEncodingUTF16LE

An encoding constant that identifies
kTextEncodingUnicodeDefault + kUnicodeUTF32Format
encoding.

kCFStringEncodingUTF32

An encoding constant that identifies
kTextEncodingUnicodeDefault +
kUnicodeUTF32BEFormat encoding. This constant
specifies big-endian byte order.

kCFStringEncodingUTF32BE

An encoding constant that identifies
kTextEncodingUnicodeDefault +
kUnicodeUTF32LEFormat encoding. This constant
specifies little-endian byte order.

kCFStringEncodingUTF32LE

The identifier of a reversible transform to convert
full-width characters to their half-width equivalents.

kCFStringTransformFullwidthHalfwidth
 (page 354)

The identifier of a reversible transform to transliterate
text to Katakana from Hiragana.

kCFStringTransformHiraganaKatakana
 (page 354)

The identifier of a reversible transform to transliterate
text to Arabic from Latin.

kCFStringTransformLatinArabic (page 355)

The identifier of a reversible transform to transliterate
text to Cyrillic from Latin.

kCFStringTransformLatinCyrillic (page
355)

The identifier of a reversible transform to transliterate
text to Greek from Latin.

kCFStringTransformLatinGreek (page 355)

The identifier of a reversible transform to transliterate
text to Hangul from Latin.

kCFStringTransformLatinHangul (page 355)

The identifier of a reversible transform to transliterate
text to Hebrew from Latin.

kCFStringTransformLatinHebrew (page 355)

The identifier of a reversible transform to transliterate
text to Hiragana from Latin.

kCFStringTransformLatinHiragana (page
354)

The identifier of a reversible transform to transliterate
text to Katakana from Latin.

kCFStringTransformLatinKatakana (page
354)

The identifier of a reversible transform to transliterate
text to Thai from Latin.

kCFStringTransformLatinThai (page 355)

C Symbols 857
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

The identifier of a reversible transform to transliterate
text to Latin from ideographs interpreted as Mandarin
Chinese.

kCFStringTransformMandarinLatin (page
354)

The identifier of a transform to strip combining marks
(accents or diacritics).

kCFStringTransformStripCombiningMarks
 (page 354)

The identifier of a transform to transliterate all text
possible to Latin script. Ideographs are transliterated as
Mandarin Chinese.

kCFStringTransformToLatin (page 354)

The identifier of a reversible transform to transliterate
characters other than printable ASCII (minus braces) to
their Unicode character name in braces.

kCFStringTransformToUnicodeName (page
355)

The identifier of a reversible transform to transliterate
characters other than printable ASCII to XML/HTML
numeric entities.

kCFStringTransformToXMLHex (page 355)

CFStringEncodingExt.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

ANSEL (ANSI Z39.47)kCFStringEncodingANSEL

Taiwan Big-5E standardkCFStringEncodingBig5_E

ISO 8859-16kCFStringEncodingISOLatin10

RFC 2319, UkrainiankCFStringEncodingKOI8_U

NextStep Japanese encodingkCFStringEncodingNextStepJapanese

JIS X0213 in plane-row-column notationkCFStringEncodingShiftJIS_X0213_MenKuTen

RFC 1456, VietnamesekCFStringEncodingVISCII

858 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.4 Symbol Changes

This article lists the symbols added to CoreFoundation.framework in Mac OS X v10.3.

C Symbols

All of the header files with new symbols are listed alphabetically, with their new symbols described.

CFBase.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

The Core Foundation framework version in Mac OS X
version 10.1.2.

kCFCoreFoundationVersionNumber10_1_2

The Core Foundation framework version in Mac OS X
version 10.1.4.

kCFCoreFoundationVersionNumber10_1_4

The Core Foundation framework version in Mac OS X
version 10.2.

kCFCoreFoundationVersionNumber10_2

CFCharacterSet.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Creates a new character set with the values from a given
character set.

CFCharacterSetCreateCopy (page 161)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

C Symbols 859
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Symbol character set (Unicode General Category S*).kCFCharacterSetSymbol

CFDateFormatter.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns a copy of a date formatter’s value for a
given key.

CFDateFormatterCopyProperty (page 184)

Creates a new CFDateFormatter object, localized
to the given locale, which will format dates to
the given date and time styles.

CFDateFormatterCreate (page 185)

Returns a date object representing a given
string.

CFDateFormatterCreateDateFromString (page 186)

Returns a string representation of the given
absolute time using the specified date
formatter.

CFDateFormatterCreateStringWithAbsoluteTime
 (page 187)

Returns a string representation of the given date
using the specified date formatter.

CFDateFormatterCreateStringWithDate (page 187)

Returns an absolute time object representing a
given string.

CFDateFormatterGetAbsoluteTimeFromString
 (page 188)

Returns the date style used to create the given
date formatter object.

CFDateFormatterGetDateStyle (page 189)

Returns a format string for the given date
formatter object.

CFDateFormatterGetFormat (page 189)

Returns the locale object used to create the
given date formatter object.

CFDateFormatterGetLocale (page 189)

Returns the time style used to create the given
date formatter object.

CFDateFormatterGetTimeStyle (page 190)

Returns the type identifier for CFDateFormatter.CFDateFormatterGetTypeID (page 190)

Sets the format string of the given date
formatter to the specified value.

CFDateFormatterSetFormat (page 190)

Sets a date formatter property using a key-value
pair.

CFDateFormatterSetProperty (page 191)

860 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

A reference to a CFDateFormatter object.CFDateFormatterRef (page 192)

Data type for predefined date and time format styles.CFDateFormatterStyle (page 192)

Specifies the calendar name, a CFString object.kCFDateFormatterCalendarName
 (page 195)

The original format string for the formatter (given the date &
time style and locale specified at creation).

kCFDateFormatterDefaultFormat

Specifies a full style with complete details, such as “Tuesday,
April 12, 1952 AD” or “3:30:42pm PST”.

kCFDateFormatterFullStyle

Specifies the lenient property, a CFBoolean object where a true
value indicates that the parsing of strings into date or absolute
time values will be fuzzy.

kCFDateFormatterIsLenient (page
194)

Specifies a long style, typically with full text, such as “November
23, 1937” or “3:30:32pm”.

kCFDateFormatterLongStyle

Specifies a medium style, typically with abbreviated text, such
as “Nov 23, 1937”.

kCFDateFormatterMediumStyle

Specifies no output.kCFDateFormatterNoStyle

Specifies a short style, typically numeric only, such as “11/23/37”
or “3:30pm”.

kCFDateFormatterShortStyle

Specifies the time zone property, a CFTimeZone object.kCFDateFormatterTimeZone

The name of the calendar currently supported by the
kCFDateFormatterCalendarName property.

kCFGregorianCalendar (page 197)

CFLocale.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns a copy of the logical locale for
the current user.

CFLocaleCopyCurrent (page 240)

Creates a locale for the given arbitrary
locale identifier.

CFLocaleCreate (page 242)

C Symbols 861
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Returns a canonical locale identifier
from given language and region codes.

CFLocaleCreateCanonicalLocaleIdentifier-
FromScriptManagerCodes (page 243)

Returns a canonical locale identifier by
mapping an arbitrary locale
identification string to the canonical
identifier.

CFLocaleCreateCanonicalLocaleIdentifierFromString
 (page 244)

Returns a copy of a locale.CFLocaleCreateCopy (page 245)

Returns the given locale's identifier.CFLocaleGetIdentifier (page 246)

Returns the root, canonical locale.CFLocaleGetSystem (page 247)

Returns the type identifier for the
CFLocale opaque type.

CFLocaleGetTypeID (page 247)

Returns the corresponding value for the
given key of a locale’s key-value pair.

CFLocaleGetValue (page 247)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

A reference to a CFLocale object.CFLocaleRef (page 248)

Specifies the locale currency code.kCFLocaleCurrencyCode

Specifies the currency symbol.kCFLocaleCurrencySymbol

Specifies the decimal point string.kCFLocaleDecimalSeparator

Specifies the separator string between groups of digits.kCFLocaleGroupingSeparator

Specifies the measurement system used.kCFLocaleMeasurementSystem (page 249)

CFNotificationCenter.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Posts a notification for an object using
specified options.

CFNotificationCenterPostNotificationWithOptions
 (page 362)

862 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Delivers the notification immediately.kCFNotificationDeliverImmediately

Delivers the notification to all sessions.kCFNotificationPostToAllSessions

CFNumberFormatter.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns a copy of a number formatter’s
value for a given key.

CFNumberFormatterCopyProperty (page 382)

Creates a new CFNumberFormatter object,
localized to the given locale, which will
format numbers to the given style.

CFNumberFormatterCreate (page 383)

Returns a number object representing a
given string.

CFNumberFormatterCreateNumberFromString (page
383)

Returns a string representation of the given
number using the specified number
formatter.

CFNumberFormatterCreateStringWithNumber (page
384)

Returns a string representation of the given
number or value using the specified number
formatter.

CFNumberFormatterCreateStringWithValue (page 385)

Returns the number of fraction digits that
should be displayed, and the rounding
increment, for a given currency.

CFNumberFormatterGetDecimalInfoForCurrencyCode
 (page 385)

Returns a format string for the given
number formatter object.

CFNumberFormatterGetFormat (page 386)

Returns the locale object used to create the
given number formatter object.

CFNumberFormatterGetLocale (page 387)

Returns the number style used to create the
given number formatter object.

CFNumberFormatterGetStyle (page 387)

Returns the type identifier for the
CFNumberFormatter opaque type.

CFNumberFormatterGetTypeID (page 387)

C Symbols 863
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Returns a number or value representing a
given string.

CFNumberFormatterGetValueFromString (page 388)

Sets the format string of a number
formatter.

CFNumberFormatterSetFormat (page 388)

Sets a number formatter property using a
key-value pair.

CFNumberFormatterSetProperty (page 389)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Type for constants specifying how numbers
should be parsed.

CFNumberFormatterOptionFlags (page 389)

Type for constants specifying how numbers
should be padded.

CFNumberFormatterPadPosition (page 390)

A reference to a CFNumberFormatter object.CFNumberFormatterRef (page 390)

These constants are used to specify how
numbers should be rounded.

CFNumberFormatterRoundingMode (page 397)

Type for constants specifying a formatter style.CFNumberFormatterStyle (page 390)

Specifies if the result of converting a value to
a string should always contain the decimal
separator, even if the number is an integer.

kCFNumberFormatterAlwaysShowDecimalSeparator

Specifies the currency code, a CFString object.kCFNumberFormatterCurrencyCode (page 392)

Specifies the currency decimal separator, a
CFString object.

kCFNumberFormatterCurrencyDecimalSeparator

Specifies a currency style format.kCFNumberFormatterCurrencyStyle

Specifies the symbol for the currency, a
CFString object.

kCFNumberFormatterCurrencySymbol

Specifies the decimal separator, a CFString
object.

kCFNumberFormatterDecimalSeparator

Specifies a decimal style format.kCFNumberFormatterDecimalStyle

The original format string for the formatter
(given the date and time style and locale
specified at creation), a CFString object.

kCFNumberFormatterDefaultFormat

Specifies the exponent symbol (“E” or “e”) in
the scientific notation of numbers (for
example, as in 1.0e+56), a CFString object.

kCFNumberFormatterExponentSymbol

864 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Specifies the width of a formatted number
within a string that is either left justified or
right justified based on the value of
kCFNumberFormatterPaddingPosition, a
CFNumber object.

kCFNumberFormatterFormatWidth

Specifies the grouping separator, a CFString
object.

kCFNumberFormatterGroupingSeparator

Specifies how often the “thousands” or
grouping separator appears, as in “10,000,000”,
a CFNumber object.

kCFNumberFormatterGroupingSize

Specifies the string that is used to represent
the symbol for infinity, a CFString object.

kCFNumberFormatterInfinitySymbol

Specifies the maximum number of digits after
a decimal point, a CFNumber object.

kCFNumberFormatterMaxFractionDigits

Specifies the maximum number of integer
digits before a decimal point, a CFNumber
object.

kCFNumberFormatterMaxIntegerDigits

Specifies the minimum number of digits after
a decimal point, a CFNumber object.

kCFNumberFormatterMinFractionDigits

Specifies the minimum number of integer
digits before a decimal point, a CFNumber
object.

kCFNumberFormatterMinIntegerDigits

Specifies the symbol for the minus sign, a
CFString object.

kCFNumberFormatterMinusSign

Specifies the string that is used to represent
NaN (“not a number”) when values are
converted to strings, a CFString object.

kCFNumberFormatterNaNSymbol

Specifies no style.kCFNumberFormatterNoStyle

Specifies the number of padding characters
after the prefix.

kCFNumberFormatterPadAfterPrefix

Specifies the number of padding characters
after the suffix.

kCFNumberFormatterPadAfterSuffix

Specifies the number of padding characters
before the prefix.

kCFNumberFormatterPadBeforePrefix

Specifies the number of padding characters
before the suffix.

kCFNumberFormatterPadBeforeSuffix

Specifies the padding character to use when
placing a formatted number within a string, a
CFString object.

kCFNumberFormatterPaddingCharacter

C Symbols 865
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Specifies the position of a formatted number
within a string, a CFNumber object.

kCFNumberFormatterPaddingPosition (page 395)

Specifies that only integers should be parsed.kCFNumberFormatterParseIntegersOnly (page 397)

Specifies a percent style format.kCFNumberFormatterPercentStyle

Specifies the string that is used to represent
the percent symbol, a CFString object.

kCFNumberFormatterPercentSymbol

Specifies the symbol for the plus sign, a
CFString object.

kCFNumberFormatterPlusSign

Round up to next larger number with the
proper number of fraction digits.

kCFNumberFormatterRoundCeiling

Round down to next larger number with the
proper number of fraction digits.

kCFNumberFormatterRoundDown

Round down to next larger number with the
proper number of fraction digits.

kCFNumberFormatterRoundFloor

Round down when a 5 follows putative last
digit.

kCFNumberFormatterRoundHalfDown

Round the last digit, when followed by a 5,
toward an even digit (.25 -> .2, .35 -> .4)

kCFNumberFormatterRoundHalfEven

Round up when a 5 follows putative last digit.kCFNumberFormatterRoundHalfUp

Specifies a positive rounding increment, or 0.0
to disable rounding, a CFNumber object.

kCFNumberFormatterRoundingIncrement

Specifies how the last digit is rounded, as
when 3.1415926535... is rounded to three
decimal places, as in 3.142, a CFNumber object.
See “Rounding Modes” for possible values.

kCFNumberFormatterRoundingMode

Round up to next larger number with the
proper number of fraction digits.

kCFNumberFormatterRoundUp

Specifies a scientific style format.kCFNumberFormatterScientificStyle

Specifies how often the secondary grouping
separator appears, a CFNumber object. See
Unicode Technical Standard #35 for more
information.

kCFNumberFormatterSecondaryGroupingSize

Specifies if the grouping separator should be
used, a CFBoolean object.

kCFNumberFormatterUseGroupingSeparator

Specifies the string that is used to represent
zero, a CFString object.

kCFNumberFormatterZeroSymbol

866 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

CFStream.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Value is a CFNumber object containing the current file
offset.

kCFStreamPropertyFileCurrentOffset (page
832)

CFURL.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Creates a new CFURL object by resolving the relative portion
of a URL, specified as bytes, against its given base URL.

CFURLCreateAbsoluteURLWithBytes
 (page 655)

Creates a new string by replacing any percent escape
sequences with their character equivalent.

CFURLCreateStringByReplacing-
PercentEscapesUsingEncoding (page
663)

Returns the range of the specified component in the bytes
of a URL.

CFURLGetByteRangeForComponent (page
668)

Returns by reference the byte representation of a URL object.CFURLGetBytes (page 669)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

The types of components in a URL.CFURLComponentType (page 673)

The URL’s fragment.kCFURLComponentFragment

The URL’s host.kCFURLComponentHost

The URL’s network location.kCFURLComponentNetLocation

The URL’s parameter string.kCFURLComponentParameterString

The user’s password.kCFURLComponentPassword

The URL’s path component.kCFURLComponentPath

C Symbols 867
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

The URL’s port.kCFURLComponentPort

The URL’s query.kCFURLComponentQuery

The URL’s resource specifier.kCFURLComponentResourceSpecifier

The URL’s scheme.kCFURLComponentScheme

The URL’s user.kCFURLComponentUser

The user’s information.kCFURLComponentUserInfo

CFUserNotification.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

The item that was selected from a pop-up menu.kCFUserNotificationPopUpSelectionKey

CFXMLParser.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Given a CFString object containing XML source with
unescaped entities, returns a string with specified XML
entities escaped.

CFXMLCreateStringByEscapingEntities
 (page 751)

Given a CFString object containing XML source with
escaped entities, returns a string with specified XML
entities unescaped.

CFXMLCreateStringByUnescapingEntities
 (page 752)

Parses the given XML data and returns the resulting
CFXMLTree object and any error information.

CFXMLTreeCreateFromDataWithError (page
754)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Dictionary key whose value is a CFString containing a readable
description of the error.

kCFXMLTreeErrorDescription
 (page 758)

868 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

Dictionary key whose value is a CFNumber containing the line
number where the error was detected. This may not be the line
number where the actual XML error is located.

kCFXMLTreeErrorLineNumber
 (page 758)

Dictionary key whose value is a CFNumber containing the byte
location where the error was detected.

kCFXMLTreeErrorLocation (page
758)

Dictionary key whose value is a CFNumber containing the error
status code. See CFXMLParser Reference for possible status code
values.

kCFXMLTreeErrorStatusCode
 (page 758)

C Symbols 869
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

870 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.3 Symbol Changes

This article lists the symbols added to CoreFoundation.framework in Mac OS X v10.2.

C Symbols

All of the header files with new symbols are listed alphabetically, with their new symbols described.

CFBase.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Returns the type identifier for the CFNull opaque type.CFNullGetTypeID (page 369)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

A reference to a CFNull object.CFNullRef (page 370)

The Core Foundation framework version in Mac OS X
version 10.1.

kCFCoreFoundationVersionNumber10_1

The singleton CFNull object.kCFNull (page 370)

NS_NEW_API

CFBundle.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

C Symbols 871
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.2 Symbol Changes

Returns the information dictionary for a given URL
location.

CFBundleCopyInfoDictionaryForURL (page
110)

Given an array of possible localizations and preferred
locations, returns the one or more of them that
CFBundle would use, without reference to the current
application context.

CFBundleCopyLocalizationsForPreferences
 (page 111)

Returns an array containing the localizations for a
bundle or executable at a particular location.

CFBundleCopyLocalizationsForURL (page 112)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Returns a localized version of a localization string.CFCopyLocalizedStringWithDefaultValue
 (page 137)

Allows an unbundled application that handles
localization itself to specify which localizations it has
available.

kCFBundleLocalizationsKey (page 140)

CFCharacterSet.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Creates a new immutable character set that is the invert
of the specified character set.

CFCharacterSetCreateInvertedSet (page
161)

Reports whether or not a character set contains at least
one member character in the specified plane.

CFCharacterSetHasMemberInPlane (page
164)

Reports whether or not a given UTF-32 character is in a
character set.

CFCharacterSetIsLongCharacterMember
 (page 165)

Reports whether or not a character set is a superset of
another set.

CFCharacterSetIsSupersetOfSet (page
166)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

872 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.2 Symbol Changes

Titlecase character set (Unicode General Category Lt).kCFCharacterSetCapitalizedLetter

CFPreferences.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Determines whether or not a given key has been imposed
on the user.

CFPreferencesAppValueIsForced (page
794)

CFPropertyList.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Creates a property list using data from a stream.CFPropertyListCreateFromStream (page 421)

Determines if a property list is valid.CFPropertyListIsValid (page 423)

Writes the bytes of a property list serialization out to
a stream.

CFPropertyListWriteToStream (page 424)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Specifies the format of a property list.CFPropertyListFormat (page 425)

Binary format version 1.0.kCFPropertyListBinaryFormat_v1_0

OpenStep format (use of this format is discouraged).kCFPropertyListOpenStepFormat

XML format version 1.0.kCFPropertyListXMLFormat_v1_0

C Symbols 873
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.2 Symbol Changes

CFSocket.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Disables the callback function of a CFSocket object for certain
types of socket activity.

CFSocketDisableCallBacks (page 508)

Enables the callback function of a CFSocket object for certain
types of socket activity.

CFSocketEnableCallBacks (page 509)

Returns flags that control certain behaviors of a CFSocket
object.

CFSocketGetSocketFlags (page 510)

Sets flags that control certain behaviors of a CFSocket object.CFSocketSetSocketFlags (page 514)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

When enabled using CFSocketSetSocketFlags,
the accept callback is called every time
someone connects to your socket.

kCFSocketAutomaticallyReenableAcceptCallBack

When enabled using CFSocketSetSocketFlags,
the data callback is called every time the
socket has read some data.

kCFSocketAutomaticallyReenableDataCallBack

When enabled using CFSocketSetSocketFlags,
the read callback is called every time the
sockets has data to be read.

kCFSocketAutomaticallyReenableReadCallBack

When enabled using CFSocketSetSocketFlags,
the write callback is called every time more
data can be written to the socket.

kCFSocketAutomaticallyReenableWriteCallBack

When enabled using CFSocketSetSocketFlags,
the native socket associated with a CFSocket
object is closed when the CFSocket object is
invalidated. When disabled, the native socket
remains open. This option is enabled by
default.

kCFSocketCloseOnInvalidate

874 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.2 Symbol Changes

The callback is called when the socket is
writable. This callback type may be useful
when large amounts of data are being sent
rapidly over the socket and you want a
notification when there is space in the kernel
buffers for more data.

kCFSocketWriteCallBack

CFStream.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Sets the value of a property for a stream.CFReadStreamSetProperty (page 437)

Creates readable and writable streams connected
to a socket.

CFStreamCreatePairWithPeerSocketSignature
 (page 824)

Sets the value of a property for a stream.CFWriteStreamSetProperty (page 712)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Value is a CFBoolean value that indicates whether to append the
written data to a file, if it already exists, rather than to replace its
contents.

kCFStreamPropertyAppendToFile
 (page 832)

CFString.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Replaces all occurrences of a substring within
a given range.

CFStringFindAndReplace (page 343)

Query the range of the first character contained
in the specified character set.

CFStringFindCharacterFromSet (page 550)

Returns the range of the composed character
sequence at a specified index.

CFStringGetRangeOfComposedCharactersAtIndex
 (page 567)

C Symbols 875
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.2 Symbol Changes

Normalizes the string into the specified form as
described in Unicode Technical Report #15.

CFStringNormalize (page 346)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Unicode normalization forms as described in Unicode
Technical Report #15.

CFStringNormalizationForm (page 353)

Used as a function result to identify an encoding that is
not supported or recognized by CFString.

kCFStringEncodingInvalidId (page 578)

Canonical decomposition followed by canonical
composition.

kCFStringNormalizationFormC (page 353)

Canonical decomposition.kCFStringNormalizationFormD (page 353)

Compatibility decomposition followed by canonical
composition.

kCFStringNormalizationFormKC (page 353)

Compatibility decomposition.kCFStringNormalizationFormKD (page 353)

CFStringEncodingExt.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Big-5 with Hong Kong special char set
supplement

kCFStringEncodingBig5_HKSCS_1999

kCFStringEncodingGB_18030_2000

RFC 2237kCFStringEncodingISO_2022_JP_1

JIS X0213kCFStringEncodingISO_2022_JP_3

Shift-JIS format encoding of JIS X0213 planes
1 and 2

kCFStringEncodingShiftJIS_X0213_00

876 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.2 Symbol Changes

This article lists the symbols added to CoreFoundation.framework in Mac OS X v10.1.

C Symbols

All of the header files with new symbols are listed alphabetically, with their new symbols described.

CFBase.h

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

The current version of the Core Foundation framework.kCFCoreFoundationVersionNumber (page
765)

The Core Foundation framework version in Mac OS X
version 10.0.

kCFCoreFoundationVersionNumber10_0

The Core Foundation framework version in Mac OS X
version 10.0.3.

kCFCoreFoundationVersionNumber10_0_3

TYPE_BOOL

CFStream.h

Functions

All of the new functions in this header file are listed alphabetically, with links to documentation and abstracts,
if available.

Closes a readable stream.CFReadStreamClose (page 429)

Returns the value of a property for a stream.CFReadStreamCopyProperty (page 430)

Creates a readable stream for a block of memory.CFReadStreamCreateWithBytesNoCopy (page
430)

C Symbols 877
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.1 Symbol Changes

Creates a readable stream for a file.CFReadStreamCreateWithFile (page 431)

Returns a pointer to a stream’s internal buffer of
unread data, if possible.

CFReadStreamGetBuffer (page 431)

Returns the error status of a stream.CFReadStreamGetError (page 432)

Returns the current state of a stream.CFReadStreamGetStatus (page 433)

Returns the type identifier the CFReadStream opaque
type.

CFReadStreamGetTypeID (page 433)

Returns a Boolean value that indicates whether a
readable stream has data that can be read without
blocking.

CFReadStreamHasBytesAvailable (page 433)

Opens a stream for reading.CFReadStreamOpen (page 434)

Reads data from a readable stream.CFReadStreamRead (page 434)

Schedules a stream into a run loop.CFReadStreamScheduleWithRunLoop (page 435)

Assigns a client to a stream, which receives callbacks
when certain events occur.

CFReadStreamSetClient (page 436)

Removes a read stream from a given run loop.CFReadStreamUnscheduleFromRunLoop (page
438)

Creates readable and writable streams connected to
a socket.

CFStreamCreatePairWithSocket (page 824)

Creates readable and writable streams connected to
a TCP/IP port of a particular host.

CFStreamCreatePairWithSocketToHost (page
825)

Returns whether a writable stream can accept new
data without blocking.

CFWriteStreamCanAcceptBytes (page 705)

Closes a writable stream.CFWriteStreamClose (page 705)

Returns the value of a property for a stream.CFWriteStreamCopyProperty (page 706)

Creates a writable stream for a growable block of
memory.

CFWriteStreamCreateWithAllocatedBuffers
 (page 706)

Creates a writable stream for a fixed-size block of
memory.

CFWriteStreamCreateWithBuffer (page 707)

Creates a writable stream for a file.CFWriteStreamCreateWithFile (page 708)

Returns the error status of a stream.CFWriteStreamGetError (page 708)

Returns the current state of a stream.CFWriteStreamGetStatus (page 709)

Returns the type identifier of all CFWriteStream
objects.

CFWriteStreamGetTypeID (page 709)

878 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.1 Symbol Changes

Opens a stream for writing.CFWriteStreamOpen (page 710)

Schedules a stream into a run loop.CFWriteStreamScheduleWithRunLoop (page
710)

Assigns a client to a stream, which receives callbacks
when certain events occur.

CFWriteStreamSetClient (page 711)

Removes a stream from a particular run loop.CFWriteStreamUnscheduleFromRunLoop (page
713)

Writes data to a writable stream.CFWriteStreamWrite (page 713)

Data Types & Constants

All of the new data types and constants in this header file are listed alphabetically, with links to documentation
and abstracts, if available.

Callback invoked when certain types of activity takes
place on a readable stream.

CFReadStreamClientCallBack (page 438)

A reference to a readable stream object.CFReadStreamRef (page 439)

A structure that contains program-defined data and
callbacks with which you can configure a stream’s
client behavior.

CFStreamClientContext (page 440)

The structure returned by CFReadStreamGetError and
CFWriteStreamGetError.

CFStreamError (page 826)

Defines constants for values returned in the domain
field of the CFStreamError structure.

CFStreamErrorDomain (page 829)

Defines constants for stream-related events.CFStreamEventType (page 831)

Constants that describe the status of a stream.CFStreamStatus (page 827)

Callback invoked when certain types of activity takes
place on a writable stream.

CFWriteStreamClientCallBack (page 714)

A reference to a writable stream object.CFWriteStreamRef (page 715)

The error code is a custom error code.kCFStreamErrorDomainCustom (page 829)

The error is an OSStatus value defined in MacErrors.h.kCFStreamErrorDomainMacOSStatus (page 829)

The error code is an error code defined in errno.h.kCFStreamErrorDomainPOSIX (page 829)

The stream can accept bytes for writing.kCFStreamEventCanAcceptBytes (page 831)

The end of the stream has been reached.kCFStreamEventEndEncountered (page 831)

An error has occurred on the stream.kCFStreamEventErrorOccurred (page 831)

C Symbols 879
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.1 Symbol Changes

The stream has bytes to be read.kCFStreamEventHasBytesAvailable (page 831)

No event has occurred.kCFStreamEventNone (page 831)

The open has completed successfully.kCFStreamEventOpenCompleted (page 831)

Value is a CFData object that contains all the bytes
written to a writable memory stream. You cannot
modify this value.

kCFStreamPropertyDataWritten (page 832)

Value is a CFData object that contains the native
handle for a socket stream—of type
CFSocketNativeHandle—to which the socket stream
is connected.

kCFStreamPropertySocketNativeHandle (page
832)

Value is a CFString object containing the name of the
host to which the socket stream is connected or NULL
if unknown.

kCFStreamPropertySocketRemoteHostName
 (page 833)

Value is a CFNumber object containing the remote
port number to which the socket stream is connected
or NULL if unknown.

kCFStreamPropertySocketRemotePortNumber
 (page 833)

There is no more data to read, or no more data can
be written.

kCFStreamStatusAtEnd (page 828)

The stream is closed.kCFStreamStatusClosed (page 828)

An error occurred on the stream.kCFStreamStatusError (page 828)

The stream is not open for reading or writing.kCFStreamStatusNotOpen (page 828)

The stream is open.kCFStreamStatusOpen (page 828)

The stream is being opened for reading or for writing.kCFStreamStatusOpening (page 828)

The stream is being read from.kCFStreamStatusReading (page 828)

The stream is being written to.kCFStreamStatusWriting (page 828)

880 C Symbols
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

10.1 Symbol Changes

This table describes the changes to Core Foundation Framework Reference.

NotesDate

Updated for Mac OS X v10.5. Added link to CFFileDescriptor reference.2007-10-31

Includes new API for Leopard.2007-01-07

First publication of this content as a collection of previously published
documents.

2006-05-23

881
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

882
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

Alert Levels 687
Application, Host, and User Keys 803
Architecture Types 140

B

Boolean Values 99
Built-in String Encodings 575
Button Flags 689
Byte Order Flags 782

C

Calendar Names 197
Callback Identifiers 235
Callback Types 517
CFAbsoluteTime data type 817
CFAbsoluteTimeAddGregorianUnits function 811
CFAbsoluteTimeGetCurrent function 812
CFAbsoluteTimeGetDayOfWeek function 812
CFAbsoluteTimeGetDayOfYear function 813
CFAbsoluteTimeGetDifferenceAsGregorianUnits

function 813
CFAbsoluteTimeGetGregorianDate function 814
CFAbsoluteTimeGetWeekOfYear function 815
CFAllocatorAllocate function 22
CFAllocatorAllocateCallBack callback 28
CFAllocatorContext structure 33
CFAllocatorCopyDescriptionCallBack callback 29
CFAllocatorCreate function 23
CFAllocatorDeallocate function 23
CFAllocatorDeallocateCallBack callback 30
CFAllocatorGetContext function 24
CFAllocatorGetDefault function 25
CFAllocatorGetPreferredSizeForSize function 25
CFAllocatorGetTypeID function 26

CFAllocatorPreferredSizeCallBack callback 30
CFAllocatorReallocate function 26
CFAllocatorReallocateCallBack callback 31
CFAllocatorRef data type 35
CFAllocatorReleaseCallBack callback 32
CFAllocatorRetainCallBack callback 32
CFAllocatorSetDefault function 27
CFArrayAppendArray function 277
CFArrayAppendValue function 278
CFArrayApplierFunction callback 47
CFArrayApplyFunction function 39
CFArrayBSearchValues function 39
CFArrayCallBacks structure 51
CFArrayContainsValue function 40
CFArrayCopyDescriptionCallBack callback 48
CFArrayCreate function 41
CFArrayCreateCopy function 42
CFArrayCreateMutable function 279
CFArrayCreateMutableCopy function 280
CFArrayEqualCallBack callback 49
CFArrayExchangeValuesAtIndices function 281
CFArrayGetCount function 43
CFArrayGetCountOfValue function 44
CFArrayGetFirstIndexOfValue function 44
CFArrayGetLastIndexOfValue function 45
CFArrayGetTypeID function 46
CFArrayGetValueAtIndex function 46
CFArrayGetValues function 47
CFArrayInsertValueAtIndex function 281
CFArrayRef data type 51
CFArrayReleaseCallBack callback 49
CFArrayRemoveAllValues function 282
CFArrayRemoveValueAtIndex function 282
CFArrayReplaceValues function 283
CFArrayRetainCallBack callback 50
CFArraySetValueAtIndex function 284
CFArraySortValues function 285
CFAttributedStringBeginEditing function 289
CFAttributedStringCreate function 55
CFAttributedStringCreateCopy function 55
CFAttributedStringCreateMutable function 289

883
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Index

CFAttributedStringCreateMutableCopy function
290

CFAttributedStringCreateWithSubstring function
56

CFAttributedStringEndEditing function 290
CFAttributedStringGetAttribute function 57
CFAttributedStringGetAttributeAndLongestEffective-

Range function 57
CFAttributedStringGetAttributes function 58
CFAttributedStringGetAttributesAndLongestEffective-

Range function 59
CFAttributedStringGetLength function 59
CFAttributedStringGetMutableString function 291
CFAttributedStringGetString function 60
CFAttributedStringGetTypeID function 60
CFAttributedStringRef data type 61
CFAttributedStringRemoveAttribute function 291
CFAttributedStringReplaceAttributedString

function 292
CFAttributedStringReplaceString function 292
CFAttributedStringSetAttribute function 293
CFAttributedStringSetAttributes function 294
CFBagAddValue function 298
CFBagApplierFunction callback 70
CFBagApplyFunction function 64
CFBagCallBacks structure 74
CFBagContainsValue function 65
CFBagCopyDescriptionCallBack callback 70
CFBagCreate function 65
CFBagCreateCopy function 66
CFBagCreateMutable function 298
CFBagCreateMutableCopy function 299
CFBagEqualCallBack callback 71
CFBagGetCount function 67
CFBagGetCountOfValue function 67
CFBagGetTypeID function 68
CFBagGetValue function 68
CFBagGetValueIfPresent function 69
CFBagGetValues function 69
CFBagHashCallBack callback 72
CFBagRef data type 74
CFBagReleaseCallBack callback 72
CFBagRemoveAllValues function 300
CFBagRemoveValue function 300
CFBagReplaceValue function 301
CFBagRetainCallBack callback 73
CFBagSetValue function 301
CFBinaryHeapAddValue function 77
CFBinaryHeapApplierFunction callback 83
CFBinaryHeapApplyFunction function 77
CFBinaryHeapCallBacks structure 86
CFBinaryHeapCompareCallBack callback 84
CFBinaryHeapCompareContext structure 87

CFBinaryHeapContainsValue function 78
CFBinaryHeapCopyDescriptionCallBack callback

84
CFBinaryHeapCreate function 78
CFBinaryHeapCreateCopy function 79
CFBinaryHeapGetCount function 80
CFBinaryHeapGetCountOfValue function 80
CFBinaryHeapGetMinimum function 81
CFBinaryHeapGetMinimumIfPresent function 81
CFBinaryHeapGetTypeID function 82
CFBinaryHeapGetValues function 82
CFBinaryHeapRef data type 87
CFBinaryHeapReleaseCallBack callback 85
CFBinaryHeapRemoveAllValues function 83
CFBinaryHeapRemoveMinimumValue function 83
CFBinaryHeapRetainCallBack callback 85
CFBit data type 95
CFBitVectorContainsBit function 90
CFBitVectorCreate function 90
CFBitVectorCreateCopy function 91
CFBitVectorCreateMutable function 304
CFBitVectorCreateMutableCopy function 304
CFBitVectorFlipBitAtIndex function 305
CFBitVectorFlipBits function 305
CFBitVectorGetBitAtIndex function 92
CFBitVectorGetBits function 92
CFBitVectorGetCount function 92
CFBitVectorGetCountOfBit function 93
CFBitVectorGetFirstIndexOfBit function 93
CFBitVectorGetLastIndexOfBit function 94
CFBitVectorGetTypeID function 95
CFBitVectorRef data type 95
CFBitVectorSetAllBits function 306
CFBitVectorSetBitAtIndex function 306
CFBitVectorSetBits function 307
CFBitVectorSetCount function 307
CFBooleanGetTypeID function 97
CFBooleanGetValue function 98
CFBooleanRef data type 98
CFBundleCloseBundleResourceMap function 106
CFBundleCopyAuxiliaryExecutableURL function 106
CFBundleCopyBuiltInPlugInsURL function 107
CFBundleCopyBundleLocalizations function 107
CFBundleCopyBundleURL function 108
CFBundleCopyExecutableArchitectures function

108
CFBundleCopyExecutableArchitecturesForURL

function 109
CFBundleCopyExecutableURL function 109
CFBundleCopyInfoDictionaryForURL function 110
CFBundleCopyInfoDictionaryInDirectory function

110

884
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CFBundleCopyLocalizationsForPreferences
function 111

CFBundleCopyLocalizationsForURL function 112
CFBundleCopyLocalizedString function 112
CFBundleCopyPreferredLocalizationsFromArray

function 113
CFBundleCopyPrivateFrameworksURL function 113
CFBundleCopyResourcesDirectoryURL function 114
CFBundleCopyResourceURL function 115
CFBundleCopyResourceURLForLocalization function

115
CFBundleCopyResourceURLInDirectory function 116
CFBundleCopyResourceURLsOfType function 117
CFBundleCopyResourceURLsOfTypeForLocalization

function 118
CFBundleCopyResourceURLsOfTypeInDirectory

function 119
CFBundleCopySharedFrameworksURL function 119
CFBundleCopySharedSupportURL function 120
CFBundleCopySupportFilesDirectoryURL function

120
CFBundleCreate function 121
CFBundleCreateBundlesFromDirectory function 122
CFBundleGetAllBundles function 122
CFBundleGetBundleWithIdentifier function 123
CFBundleGetDataPointerForName function 123
CFBundleGetDataPointersForNames function 124
CFBundleGetDevelopmentRegion function 124
CFBundleGetFunctionPointerForName function 125
CFBundleGetFunctionPointersForNames function

126
CFBundleGetIdentifier function 126
CFBundleGetInfoDictionary function 127
CFBundleGetLocalInfoDictionary function 127
CFBundleGetMainBundle function 128
CFBundleGetPackageInfo function 128
CFBundleGetPackageInfoInDirectory function 129
CFBundleGetPlugIn function 129
CFBundleGetTypeID function 130
CFBundleGetValueForInfoDictionaryKey function

130
CFBundleGetVersionNumber function 131
CFBundleIsExecutableLoaded function 131
CFBundleLoadExecutable function 132
CFBundleLoadExecutableAndReturnError function

132
CFBundleOpenBundleResourceFiles function 133
CFBundleOpenBundleResourceMap function 134
CFBundlePreflightExecutable function 134
CFBundleRef data type 138
CFBundleRefNum data type 138
CFBundleUnloadExecutable function 135
CFByteOrderBigEndian constant 782

CFByteOrderGetCurrent function 771
CFByteOrderLittleEndian constant 782
CFByteOrderUnknown constant 782
CFCalendarAddComponents function 144
CFCalendarComposeAbsoluteTime function 145
CFCalendarCopyCurrent function 146
CFCalendarCopyLocale function 146
CFCalendarCopyTimeZone function 147
CFCalendarCreateWithIdentifier function 147
CFCalendarDecomposeAbsoluteTime function 148
CFCalendarGetComponentDifference function 149
CFCalendarGetFirstWeekday function 150
CFCalendarGetIdentifier function 150
CFCalendarGetMaximumRangeOfUnit function 150
CFCalendarGetMinimumDaysInFirstWeek function

151
CFCalendarGetMinimumRangeOfUnit function 151
CFCalendarGetOrdinalityOfUnit function 152
CFCalendarGetRangeOfUnit function 153
CFCalendarGetTimeRangeOfUnit function 153
CFCalendarGetTypeID function 154
CFCalendarRef data type 156
CFCalendarSetFirstWeekday function 154
CFCalendarSetLocale function 155
CFCalendarSetMinimumDaysInFirstWeek function

155
CFCalendarSetTimeZone function 155
CFCalendarUnit 156
CFCharacterSetAddCharactersInRange function 310
CFCharacterSetAddCharactersInString function

311
CFCharacterSetCreateBitmapRepresentation

function 160
CFCharacterSetCreateCopy function 161
CFCharacterSetCreateInvertedSet function 161
CFCharacterSetCreateMutable function 311
CFCharacterSetCreateMutableCopy function 311
CFCharacterSetCreateWithBitmapRepresentation

function 162
CFCharacterSetCreateWithCharactersInRange

function 163
CFCharacterSetCreateWithCharactersInString

function 163
CFCharacterSetGetPredefined function 164
CFCharacterSetGetTypeID function 164
CFCharacterSetHasMemberInPlane function 164
CFCharacterSetIntersect function 312
CFCharacterSetInvert function 312
CFCharacterSetIsCharacterMember function 165
CFCharacterSetIsLongCharacterMember function

165
CFCharacterSetIsSupersetOfSet function 166
CFCharacterSetPredefinedSet data type 166

885
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CFCharacterSetRef data type 167
CFCharacterSetRemoveCharactersInRange function

313
CFCharacterSetRemoveCharactersInString function

313
CFCharacterSetUnion function 314
CFComparatorFunction callback 762
CFConvertDoubleHostToSwapped function 772
CFConvertDoubleSwappedToHost function 772
CFConvertFloat32HostToSwapped function 772
CFConvertFloat32SwappedToHost function 773
CFConvertFloat64HostToSwapped function 773
CFConvertFloat64SwappedToHost function 773
CFConvertFloatHostToSwapped function 774
CFConvertFloatSwappedToHost function 774
CFCopyDescription function 634
CFCopyLocalizedString macro 135
CFCopyLocalizedStringFromTable macro 136
CFCopyLocalizedStringFromTableInBundlemacro

136
CFCopyLocalizedStringWithDefaultValue macro

137
CFCopyTypeIDDescription function 635
CFDataAppendBytes function 315
CFDataCreate function 172
CFDataCreateCopy function 173
CFDataCreateMutable function 316
CFDataCreateMutableCopy function 317
CFDataCreateWithBytesNoCopy function 174
CFDataDeleteBytes function 317
CFDataGetBytePtr function 175
CFDataGetBytes function 176
CFDataGetLength function 176
CFDataGetMutableBytePtr function 318
CFDataGetTypeID function 172
CFDataIncreaseLength function 318
CFDataRef data type 177
CFDataReplaceBytes function 319
CFDataSetLength function 319
CFDateCompare function 179
CFDateCreate function 180
CFDateFormatterCopyProperty function 184
CFDateFormatterCreate function 185
CFDateFormatterCreateDateFromString function

186
CFDateFormatterCreateStringWithAbsoluteTime

function 187
CFDateFormatterCreateStringWithDate function

187
CFDateFormatterGetAbsoluteTimeFromString

function 188
CFDateFormatterGetDateStyle function 189
CFDateFormatterGetFormat function 189

CFDateFormatterGetLocale function 189
CFDateFormatterGetTimeStyle function 190
CFDateFormatterGetTypeID function 190
CFDateFormatterRef data type 192
CFDateFormatterSetFormat function 190
CFDateFormatterSetProperty function 191
CFDateFormatterStyle data type 192
CFDateGetAbsoluteTime function 180
CFDateGetTimeIntervalSinceDate function 181
CFDateGetTypeID function 181
CFDateRef data type 182
CFDictionaryAddValue function 322
CFDictionaryApplierFunction callback 209
CFDictionaryApplyFunction function 201
CFDictionaryContainsKey function 201
CFDictionaryContainsValue function 202
CFDictionaryCopyDescriptionCallBack callback

210
CFDictionaryCreate function 203
CFDictionaryCreateCopy function 204
CFDictionaryCreateMutable function 323
CFDictionaryCreateMutableCopy function 324
CFDictionaryEqualCallBack callback 211
CFDictionaryGetCount function 205
CFDictionaryGetCountOfKey function 205
CFDictionaryGetCountOfValue function 206
CFDictionaryGetKeysAndValues function 206
CFDictionaryGetTypeID function 207
CFDictionaryGetValue function 208
CFDictionaryGetValueIfPresent function 208
CFDictionaryHashCallBack callback 211
CFDictionaryKeyCallBacks structure 213
CFDictionaryRef data type 214
CFDictionaryReleaseCallBack callback 212
CFDictionaryRemoveAllValues function 325
CFDictionaryRemoveValue function 325
CFDictionaryReplaceValue function 326
CFDictionaryRetainCallBack callback 212
CFDictionarySetValue function 326
CFDictionaryValueCallBacks structure 214
CFEqual function 635
CFErrorCopyDescription function 218
CFErrorCopyFailureReason function 219
CFErrorCopyRecoverySuggestion function 220
CFErrorCopyUserInfo function 220
CFErrorCreate function 221
CFErrorCreateWithUserInfoKeysAndValues function

221
CFErrorGetCode function 222
CFErrorGetDomain function 223
CFErrorGetTypeID function 223
CFErrorRef data type 224
CFFileDescriptorCallBack data type 234

886
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CFFileDescriptorContext data type 234
CFFileDescriptorCreate function 229
CFFileDescriptorCreateRunLoopSource function

230
CFFileDescriptorDisableCallBacks function 230
CFFileDescriptorEnableCallBacks function 231
CFFileDescriptorGetContext function 231
CFFileDescriptorGetNativeDescriptor function

232
CFFileDescriptorGetTypeID function 232
CFFileDescriptorInvalidate function 232
CFFileDescriptorIsValid function 233
CFFileDescriptorNativeDescriptor data type 233
CFFileDescriptorRef data type 234
CFGetAllocator function 636
CFGetRetainCount function 636
CFGetTypeID function 637
CFGregorianDate structure 817
CFGregorianDateGetAbsoluteTime function 815
CFGregorianDateIsValid function 816
CFGregorianUnitFlags 818
CFGregorianUnits structure 817
CFHash function 638
CFHashCode data type 641
CFIndex data type 763
CFLocaleCopyAvailableLocaleIdentifiers function

239
CFLocaleCopyCommonISOCurrencyCodes function 239
CFLocaleCopyCurrent function 240
CFLocaleCopyDisplayNameForPropertyValue

function 240
CFLocaleCopyISOCountryCodes function 241
CFLocaleCopyISOCurrencyCodes function 241
CFLocaleCopyISOLanguageCodes function 242
CFLocaleCopyPreferredLanguages function 242
CFLocaleCreate function 242
CFLocaleCreateCanonicalLanguageIdentifierFrom-

String function 243
CFLocaleCreateCanonicalLocaleIdentifierFromScript-

ManagerCodes function 243
CFLocaleCreateCanonicalLocaleIdentifierFromString

function 244
CFLocaleCreateComponentsFromLocaleIdentifier

function 245
CFLocaleCreateCopy function 245
CFLocaleCreateLocaleIdentifierFromComponents

function 246
CFLocaleGetIdentifier function 246
CFLocaleGetSystem function 247
CFLocaleGetTypeID function 247
CFLocaleGetValue function 247
CFLocaleRef data type 248
CFMachPortCallBack callback 260

CFMachPortContext structure 261
CFMachPortCreate function 254
CFMachPortCreateRunLoopSource function 255
CFMachPortCreateWithPort function 256
CFMachPortGetContext function 256
CFMachPortGetInvalidationCallBack function 257
CFMachPortGetPort function 257
CFMachPortGetTypeID function 258
CFMachPortInvalidate function 258
CFMachPortInvalidationCallBack callback 260
CFMachPortIsValid function 259
CFMachPortRef data type 262
CFMachPortSetInvalidationCallBack function 259
CFMakeCollectable function 638
CFMessagePortCallBack callback 272
CFMessagePortContext structure 273
CFMessagePortCreateLocal function 264
CFMessagePortCreateRemote function 265
CFMessagePortCreateRunLoopSource function 266
CFMessagePortGetContext function 267
CFMessagePortGetInvalidationCallBack function

267
CFMessagePortGetName function 268
CFMessagePortGetTypeID function 268
CFMessagePortInvalidate function 268
CFMessagePortInvalidationCallBack callback 273
CFMessagePortIsRemote function 269
CFMessagePortIsValid function 269
CFMessagePortRef data type 274
CFMessagePortSendRequest Error Codes 274
CFMessagePortSendRequest function 270
CFMessagePortSetInvalidationCallBack function

271
CFMessagePortSetName function 271
CFMutableArrayRef data type 285
CFMutableAttributedStringRef data type 294
CFMutableBagRef data type 302
CFMutableBitVectorRef data type 308
CFMutableCharacterSetRef data type 314
CFMutableDataRef data type 320
CFMutableDictionaryRef data type 327
CFMutableSetRef data type 333
CFMutableStringRef data type 352
CFNotificationCallback callback 364
CFNotificationCenterAddObserver function 358
CFNotificationCenterGetDarwinNotifyCenter

function 360
CFNotificationCenterGetDistributedCenter

function 360
CFNotificationCenterGetLocalCenter function 361
CFNotificationCenterGetTypeID function 361
CFNotificationCenterPostNotification function

361

887
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CFNotificationCenterPostNotificationWithOptions
function 362

CFNotificationCenterRef data type 365
CFNotificationCenterRemoveEveryObserver

function 363
CFNotificationCenterRemoveObserver function 364
CFNotificationSuspensionBehaviorCoalesce

constant 366
CFNotificationSuspensionBehaviorDeliverImmediately

constant 366
CFNotificationSuspensionBehaviorDrop constant

366
CFNotificationSuspensionBehaviorHold constant

366
CFNullGetTypeID function 369
CFNullRef data type 370
CFNumberCompare function 372
CFNumberCreate function 373
CFNumberFormatterCopyProperty function 382
CFNumberFormatterCreate function 383
CFNumberFormatterCreateNumberFromString

function 383
CFNumberFormatterCreateStringWithNumber

function 384
CFNumberFormatterCreateStringWithValue function

385
CFNumberFormatterGetDecimalInfoForCurrencyCode

function 385
CFNumberFormatterGetFormat function 386
CFNumberFormatterGetLocale function 387
CFNumberFormatterGetStyle function 387
CFNumberFormatterGetTypeID function 387
CFNumberFormatterGetValueFromString function

388
CFNumberFormatterOptionFlags data type 389
CFNumberFormatterPadPosition data type 390
CFNumberFormatterRef data type 390
CFNumberFormatterSetFormat function 388
CFNumberFormatterSetProperty function 389
CFNumberFormatterStyle data type 390
CFNumberGetByteSize function 374
CFNumberGetType function 374
CFNumberGetTypeID function 375
CFNumberGetValue function 375
CFNumberIsFloatType function 376
CFNumberRef data type 377
CFOptionFlags data type 763
CFPlugInAddInstanceForFactory function 402
CFPlugInCreate function 403
CFPlugInDynamicRegisterFunction callback 410
CFPlugInFactoryFunction callback 411
CFPlugInFindFactoriesForPlugInType function 403

CFPlugInFindFactoriesForPlugInTypeInPlugIn
function 404

CFPlugInGetBundle function 404
CFPlugInGetTypeID function 405
CFPlugInInstanceCreate function 405
CFPlugInInstanceCreateWithInstanceDataSize

function 415
CFPlugInInstanceDeallocateInstanceDataFunction

callback 417
CFPlugInInstanceGetFactoryName function 415
CFPlugInInstanceGetInstanceData function 416
CFPlugInInstanceGetInterfaceFunction callback

417
CFPlugInInstanceGetInterfaceFunctionTable

function 416
CFPlugInInstanceGetTypeID function 416
CFPlugInInstanceRef data type 418
CFPlugInIsLoadOnDemand function 406
CFPlugInRef data type 412
CFPlugInRegisterFactoryFunction function 406
CFPlugInRegisterFactoryFunctionByName function

407
CFPlugInRegisterPlugInType function 407
CFPlugInRemoveInstanceForFactory function 408
CFPlugInSetLoadOnDemand function 408
CFPlugInUnloadFunction callback 411
CFPlugInUnregisterFactory function 409
CFPlugInUnregisterPlugInType function 409
CFPreferencesAddSuitePreferencesToApp function

792
CFPreferencesAppSynchronize function 793
CFPreferencesAppValueIsForced function 794
CFPreferencesCopyApplicationList function 794
CFPreferencesCopyAppValue function 795
CFPreferencesCopyKeyList function 796
CFPreferencesCopyMultiple function 796
CFPreferencesCopyValue function 797
CFPreferencesGetAppBooleanValue function 798
CFPreferencesGetAppIntegerValue function 799
CFPreferencesRemoveSuitePreferencesFromApp

function 799
CFPreferencesSetAppValue function 800
CFPreferencesSetMultiple function 801
CFPreferencesSetValue function 801
CFPreferencesSynchronize function 802
CFPropertyListCreateDeepCopy function 420
CFPropertyListCreateFromStream function 421
CFPropertyListCreateFromXMLData function 422
CFPropertyListCreateXMLData function 423
CFPropertyListIsValid function 423
CFPropertyListRef data type 425
CFPropertyListWriteToStream function 424
CFRange structure 764

888
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CFRangeMake function 761
CFReadStreamClientCallBack callback 438
CFReadStreamClose function 429
CFReadStreamCopyError function 429
CFReadStreamCopyProperty function 430
CFReadStreamCreateWithBytesNoCopy function 430
CFReadStreamCreateWithFile function 431
CFReadStreamGetBuffer function 431
CFReadStreamGetError function 432
CFReadStreamGetStatus function 433
CFReadStreamGetTypeID function 433
CFReadStreamHasBytesAvailable function 433
CFReadStreamOpen function 434
CFReadStreamRead function 434
CFReadStreamRef data type 439
CFReadStreamScheduleWithRunLoop function 435
CFReadStreamSetClient function 436
CFReadStreamSetProperty function 437
CFReadStreamUnscheduleFromRunLoop function 438
CFRelease function 639
CFRetain function 639
CFRunLoopAddCommonMode function 443
CFRunLoopAddObserver function 444
CFRunLoopAddSource function 445
CFRunLoopAddTimer function 446
CFRunLoopCancelCallBack callback 471
CFRunLoopContainsObserver function 446
CFRunLoopContainsSource function 447
CFRunLoopContainsTimer function 448
CFRunLoopCopyAllModes function 449
CFRunLoopCopyCurrentMode function 449
CFRunLoopEqualCallBack callback 472
CFRunLoopGetCurrent function 450
CFRunLoopGetMain function 450
CFRunLoopGetNextTimerFireDate function 450
CFRunLoopGetPortCallBack callback 473
CFRunLoopGetTypeID function 451
CFRunLoopHashCallBack callback 473
CFRunLoopIsWaiting function 451
CFRunLoopMachPerformCallBack callback 474
CFRunLoopObserverCallBack callback 463
CFRunLoopObserverContext structure 464
CFRunLoopObserverCreate function 459
CFRunLoopObserverDoesRepeat function 460
CFRunLoopObserverGetActivities function 461
CFRunLoopObserverGetContext function 461
CFRunLoopObserverGetOrder function 462
CFRunLoopObserverGetTypeID function 462
CFRunLoopObserverInvalidate function 462
CFRunLoopObserverIsValid function 463
CFRunLoopObserverRef data type 465
CFRunLoopPerformCallBack callback 475
CFRunLoopRef data type 457

CFRunLoopRemoveObserver function 452
CFRunLoopRemoveSource function 452
CFRunLoopRemoveTimer function 453
CFRunLoopRun function 454
CFRunLoopRunInMode Exit Codes 457
CFRunLoopRunInMode function 454
CFRunLoopScheduleCallBack callback 475
CFRunLoopSourceContext structure 476
CFRunLoopSourceContext1 structure 477
CFRunLoopSourceCreate function 468
CFRunLoopSourceGetContext function 468
CFRunLoopSourceGetOrder function 469
CFRunLoopSourceGetTypeID function 469
CFRunLoopSourceInvalidate function 470
CFRunLoopSourceIsValid function 470
CFRunLoopSourceRef data type 478
CFRunLoopSourceSignal function 471
CFRunLoopStop function 455
CFRunLoopTimerCallBack callback 485
CFRunLoopTimerContext structure 485
CFRunLoopTimerCreate function 479
CFRunLoopTimerDoesRepeat function 481
CFRunLoopTimerGetContext function 481
CFRunLoopTimerGetInterval function 481
CFRunLoopTimerGetNextFireDate function 482
CFRunLoopTimerGetOrder function 482
CFRunLoopTimerGetTypeID function 483
CFRunLoopTimerInvalidate function 483
CFRunLoopTimerIsValid function 484
CFRunLoopTimerRef data type 486
CFRunLoopTimerSetNextFireDate function 484
CFRunLoopWakeUp function 456
CFSetAddValue function 329
CFSetApplierFunction callback 495
CFSetApplyFunction function 488
CFSetCallBacks structure 498
CFSetContainsValue function 489
CFSetCopyDescriptionCallBack callback 495
CFSetCreate function 490
CFSetCreateCopy function 491
CFSetCreateMutable function 330
CFSetCreateMutableCopy function 331
CFSetEqualCallBack callback 496
CFSetGetCount function 491
CFSetGetCountOfValue function 492
CFSetGetTypeID function 492
CFSetGetValue function 493
CFSetGetValueIfPresent function 493
CFSetGetValues function 494
CFSetHashCallBack callback 496
CFSetRef data type 499
CFSetReleaseCallBack callback 497
CFSetRemoveAllValues function 331

889
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CFSetRemoveValue function 332
CFSetReplaceValue function 332
CFSetRetainCallBack callback 498
CFSetSetValue function 333
CFShow function 640
CFShowStr function 526
CFSocket Flags 519
CFSocket Name Server Keys 810
CFSocketCallBack callback 515
CFSocketConnectToAddress function 502
CFSocketContext structure 516
CFSocketCopyAddress function 503
CFSocketCopyPeerAddress function 503
CFSocketCopyRegisteredSocketSignature function

805
CFSocketCopyRegisteredValue function 806
CFSocketCreate function 504
CFSocketCreateConnectedToSocketSignature

function 505
CFSocketCreateRunLoopSource function 506
CFSocketCreateWithNative function 507
CFSocketCreateWithSocketSignature function 507
CFSocketDisableCallBacks function 508
CFSocketEnableCallBacks function 509
CFSocketGetContext function 509
CFSocketGetDefaultNameRegistryPortNumber

function 807
CFSocketGetNative function 510
CFSocketGetSocketFlags function 510
CFSocketGetTypeID function 511
CFSocketInvalidate function 511
CFSocketIsValid function 512
CFSocketNativeHandle data type 516
CFSocketRef data type 517
CFSocketRegisterSocketSignature function 807
CFSocketRegisterValue function 808
CFSocketSendData function 512
CFSocketSetAddress function 513
CFSocketSetDefaultNameRegistryPortNumber

function 808
CFSocketSetSocketFlags function 514
CFSocketSignature structure 517
CFSocketUnregister function 809
CFSTR function 527
CFStream Error Domain Constants 829
CFStream Error Domain Constants (CFHost) 829
CFStream Event Type Constants 831
CFStream Status Constants 827
CFStreamClientContext structure 440, 827
CFStreamCreateBoundPair function 823
CFStreamCreatePairWithPeerSocketSignature

function 824
CFStreamCreatePairWithSocket function 824

CFStreamCreatePairWithSocketToHost function 825
CFStreamError structure 826
CFStringAppend function 335
CFStringAppendCharacters function 336
CFStringAppendCString function 336
CFStringAppendFormat function 337
CFStringAppendFormatAndArguments function 338
CFStringAppendPascalString function 339
CFStringCapitalize function 339
CFStringCompare function 527
CFStringCompareFlags data type 572
CFStringCompareWithOptions function 528
CFStringCompareWithOptionsAndLocale function

529
CFStringConvertEncodingToIANACharSetName

function 530
CFStringConvertEncodingToNSStringEncoding

function 530
CFStringConvertEncodingToWindowsCodepage

function 531
CFStringConvertIANACharSetNameToEncoding

function 531
CFStringConvertNSStringEncodingToEncoding

function 532
CFStringConvertWindowsCodepageToEncoding

function 532
CFStringCreateArrayBySeparatingStrings function

533
CFStringCreateArrayWithFindResults function 534
CFStringCreateByCombiningStrings function 535
CFStringCreateCopy function 535
CFStringCreateExternalRepresentation function

536
CFStringCreateFromExternalRepresentation

function 537
CFStringCreateMutable function 340
CFStringCreateMutableCopy function 340
CFStringCreateMutableWithExternalCharactersNoCopy

function 341
CFStringCreateWithBytes function 538
CFStringCreateWithBytesNoCopy function 539
CFStringCreateWithCharacters function 540
CFStringCreateWithCharactersNoCopy function 541
CFStringCreateWithCString function 542
CFStringCreateWithCStringNoCopy function 543
CFStringCreateWithFileSystemRepresentation

function 544
CFStringCreateWithFormat function 545
CFStringCreateWithFormatAndArguments function

546
CFStringCreateWithPascalString function 546
CFStringCreateWithPascalStringNoCopy function

547

890
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CFStringCreateWithSubstring function 548
CFStringDelete function 343
CFStringEncoding data type 572
CFStringEncodings data type 573
CFStringFind function 549
CFStringFindAndReplace function 343
CFStringFindCharacterFromSet function 550
CFStringFindWithOptions function 551
CFStringFindWithOptionsAndLocale function 552
CFStringFold function 344
CFStringGetBytes function 553
CFStringGetCharacterAtIndex function 554
CFStringGetCharacterFromInlineBuffer function

555
CFStringGetCharacters function 556
CFStringGetCharactersPtr function 556
CFStringGetCString function 557
CFStringGetCStringPtr function 558
CFStringGetDoubleValue function 559
CFStringGetFastestEncoding function 559
CFStringGetFileSystemRepresentation function

560
CFStringGetIntValue function 560
CFStringGetLength function 561
CFStringGetLineBounds function 561
CFStringGetListOfAvailableEncodings function

562
CFStringGetMaximumSizeForEncoding function 563
CFStringGetMaximumSizeOfFileSystemRepresentation

function 563
CFStringGetMostCompatibleMacStringEncoding

function 564
CFStringGetNameOfEncoding function 564
CFStringGetParagraphBounds function 565
CFStringGetPascalString function 566
CFStringGetPascalStringPtr function 567
CFStringGetRangeOfComposedCharactersAtIndex

function 567
CFStringGetSmallestEncoding function 568
CFStringGetSystemEncoding function 568
CFStringGetTypeID function 569
CFStringHasPrefix function 570
CFStringHasSuffix function 570
CFStringInitInlineBuffer function 571
CFStringInlineBuffer structure 573
CFStringInsert function 345
CFStringIsEncodingAvailable function 571
CFStringLowercase function 346
CFStringNormalize function 346
CFStringPad function 347
CFStringRef data type 573
CFStringReplace function 348
CFStringReplaceAll function 349

CFStringSetExternalCharactersNoCopy function
349

CFStringTokenizerAdvanceToNextToken function
595

CFStringTokenizerCopyBestStringLanguage
function 596

CFStringTokenizerCopyCurrentTokenAttribute
function 596

CFStringTokenizerCreate function 597
CFStringTokenizerGetCurrentSubTokens function

598
CFStringTokenizerGetCurrentTokenRange function

599
CFStringTokenizerGetTypeID function 599
CFStringTokenizerGoToTokenAtIndex function 599
CFStringTokenizerRef data type 601
CFStringTokenizerSetString function 600
CFStringTokenizerTokenType data type 601
CFStringTransform function 350
CFStringTrim function 351
CFStringTrimWhitespace function 351
CFStringUppercase function 351
CFSwapInt16 function 775
CFSwapInt16BigToHost function 775
CFSwapInt16HostToBig function 775
CFSwapInt16HostToLittle function 776
CFSwapInt16LittleToHost function 776
CFSwapInt32 function 777
CFSwapInt32BigToHost function 777
CFSwapInt32HostToBig function 777
CFSwapInt32HostToLittle function 778
CFSwapInt32LittleToHost function 778
CFSwapInt64 function 779
CFSwapInt64BigToHost function 779
CFSwapInt64HostToBig function 780
CFSwapInt64HostToLittle function 780
CFSwapInt64LittleToHost function 780
CFSwappedFloat32 structure 781
CFSwappedFloat64 structure 781
CFTimeInterval data type 818
CFTimeZoneCopyAbbreviation function 607
CFTimeZoneCopyAbbreviationDictionary function

607
CFTimeZoneCopyDefault function 608
CFTimeZoneCopyKnownNames function 608
CFTimeZoneCopyLocalizedName function 608
CFTimeZoneCopySystem function 609
CFTimeZoneCreate function 609
CFTimeZoneCreateWithName function 610
CFTimeZoneCreateWithTimeIntervalFromGMT

function 611
CFTimeZoneGetData function 611

891
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CFTimeZoneGetDaylightSavingTimeOffset function
612

CFTimeZoneGetName function 612
CFTimeZoneGetNextDaylightSavingTimeTransition

function 612
CFTimeZoneGetSecondsFromGMT function 613
CFTimeZoneGetTypeID function 613
CFTimeZoneIsDaylightSavingTime function 614
CFTimeZoneNameStyle data type 615
CFTimeZoneRef data type 616
CFTimeZoneResetSystem function 614
CFTimeZoneSetAbbreviationDictionary function

615
CFTimeZoneSetDefault function 615
CFTreeAppendChild function 621
CFTreeApplierFunction callback 629
CFTreeApplyFunctionToChildren function 622
CFTreeContext structure 632
CFTreeCopyDescriptionCallBack callback 630
CFTreeCreate function 622
CFTreeFindRoot function 623
CFTreeGetChildAtIndex function 623
CFTreeGetChildCount function 624
CFTreeGetChildren function 624
CFTreeGetContext function 624
CFTreeGetFirstChild function 625
CFTreeGetNextSibling function 625
CFTreeGetParent function 626
CFTreeGetTypeID function 626
CFTreeInsertSibling function 626
CFTreePrependChild function 627
CFTreeRef data type 632
CFTreeReleaseCallBack callback 631
CFTreeRemove function 627
CFTreeRemoveAllChildren function 628
CFTreeRetainCallBack callback 631
CFTreeSetContext function 628
CFTreeSortChildren function 629
CFTypeID data type 641
CFTypeRef data type 642
CFURLCanBeDecomposed function 646
CFURLCopyAbsoluteURL function 646
CFURLCopyFileSystemPath function 647
CFURLCopyFragment function 647
CFURLCopyHostName function 648
CFURLCopyLastPathComponent function 649
CFURLCopyNetLocation function 649
CFURLCopyParameterString function 650
CFURLCopyPassword function 650
CFURLCopyPath function 651
CFURLCopyPathExtension function 652
CFURLCopyQueryString function 652
CFURLCopyResourceSpecifier function 653

CFURLCopyScheme function 653
CFURLCopyStrictPath function 654
CFURLCopyUserName function 654
CFURLCreateAbsoluteURLWithBytes function 655
CFURLCreateCopyAppendingPathComponent function

656
CFURLCreateCopyAppendingPathExtension function

657
CFURLCreateCopyDeletingLastPathComponent

function 657
CFURLCreateCopyDeletingPathExtension function

658
CFURLCreateData function 658
CFURLCreateDataAndPropertiesFromResource

function 783
CFURLCreateFromFileSystemRepresentation

function 659
CFURLCreateFromFileSystemRepresentationRelativeTo-

Base function 660
CFURLCreateFromFSRef function 661
CFURLCreatePropertyFromResource function 784
CFURLCreateStringByAddingPercentEscapes

function 661
CFURLCreateStringByReplacingPercentEscapes

function 663
CFURLCreateStringByReplacingPercentEscapesUsing-

Encoding function 663
CFURLCreateWithBytes function 664
CFURLCreateWithFileSystemPath function 665
CFURLCreateWithFileSystemPathRelativeToBase

function 666
CFURLCreateWithString function 667
CFURLDestroyResource function 785
CFURLGetBaseURL function 668
CFURLGetByteRangeForComponent function 668
CFURLGetBytes function 669
CFURLGetFileSystemRepresentation function 669
CFURLGetFSRef function 670
CFURLGetPortNumber function 671
CFURLGetString function 671
CFURLGetTypeID function 672
CFURLHasDirectoryPath function 672
CFURLRef data type 673
CFURLWriteDataAndPropertiesToResource function

786
CFUserNotificationCallBack callback 686
CFUserNotificationCancel function 677
CFUserNotificationCheckBoxChecked function 678
CFUserNotificationCreate function 678
CFUserNotificationCreateRunLoopSource function

679
CFUserNotificationDisplayAlert function 680
CFUserNotificationDisplayNotice function 681

892
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CFUserNotificationGetResponseDictionary
function 683

CFUserNotificationGetResponseValue function 683
CFUserNotificationGetTypeID function 684
CFUserNotificationPopUpSelection function 684
CFUserNotificationReceiveResponse function 684
CFUserNotificationRef data type 687
CFUserNotificationSecureTextField function 685
CFUserNotificationUpdate function 686
CFUUIDBytes structure 700
CFUUIDCreate function 694
CFUUIDCreateFromString function 695
CFUUIDCreateFromUUIDBytes function 695
CFUUIDCreateString function 696
CFUUIDCreateWithBytes function 697
CFUUIDGetConstantUUIDWithBytes function 698
CFUUIDGetTypeID function 700
CFUUIDGetUUIDBytes function 700
CFUUIDRef data type 702
CFWriteStreamCanAcceptBytes function 705
CFWriteStreamClientCallBack callback 714
CFWriteStreamClose function 705
CFWriteStreamCopyError function 705
CFWriteStreamCopyProperty function 706
CFWriteStreamCreateWithAllocatedBuffers

function 706
CFWriteStreamCreateWithBuffer function 707
CFWriteStreamCreateWithFile function 708
CFWriteStreamGetError function 708
CFWriteStreamGetStatus function 709
CFWriteStreamGetTypeID function 709
CFWriteStreamOpen function 710
CFWriteStreamRef data type 715
CFWriteStreamScheduleWithRunLoop function 710
CFWriteStreamSetClient function 711
CFWriteStreamSetProperty function 712
CFWriteStreamUnscheduleFromRunLoop function 713
CFWriteStreamWrite function 713
CFXMLAttributeDeclarationInfo structure 721
CFXMLAttributeListDeclarationInfo structure 721
CFXMLCreateStringByEscapingEntities function

751
CFXMLCreateStringByUnescapingEntities function

752
CFXMLDocumentInfo structure 722
CFXMLDocumentTypeInfo structure 722
CFXMLElementInfo structure 723
CFXMLElementTypeDeclarationInfo structure 723
CFXMLEntityInfo structure 724
CFXMLEntityReferenceInfo structure 724
CFXMLExternalID structure 725
CFXMLNodeCreate function 717
CFXMLNodeCreateCopy function 718

CFXMLNodeGetInfoPtr function 719
CFXMLNodeGetString function 719
CFXMLNodeGetTypeCode function 720
CFXMLNodeGetTypeID function 720
CFXMLNodeGetVersion function 720
CFXMLNodeRef data type 725
CFXMLNotationInfo structure 726
CFXMLParserAbort function 731
CFXMLParserAddChildCallBack callback 738
CFXMLParserCallBacks structure 744
CFXMLParserContext structure 745
CFXMLParserCopyDescriptionCallBack callback 739
CFXMLParserCopyErrorDescription function 732
CFXMLParserCreate function 732
CFXMLParserCreateWithDataFromURL function 733
CFXMLParserCreateXMLStructureCallBack callback

740
CFXMLParserEndXMLStructureCallBack callback 740
CFXMLParserGetCallBacks function 734
CFXMLParserGetContext function 734
CFXMLParserGetDocument function 735
CFXMLParserGetLineNumber function 735
CFXMLParserGetLocation function 736
CFXMLParserGetSourceURL function 736
CFXMLParserGetStatusCode function 737
CFXMLParserGetTypeID function 737
CFXMLParserHandleErrorCallBack callback 741
CFXMLParserParse function 737
CFXMLParserRef data type 745
CFXMLParserReleaseCallBack callback 742
CFXMLParserResolveExternalEntityCallBack

callback 743
CFXMLParserRetainCallBack callback 743
CFXMLProcessingInstructionInfo structure 726
CFXMLTreeCreateFromData function 753
CFXMLTreeCreateFromDataWithError function 754
CFXMLTreeCreateWithDataFromURL function 755
CFXMLTreeCreateWithNode function 755
CFXMLTreeCreateXMLData function 756
CFXMLTreeGetNode function 757
CFXMLTreeRef data type 757
Common Mode Flag 458
Comparison Results 764
Component Type 673
Component Wrapping Options 158
Current Framework Version Number 765

D

Date Formatter Property Keys 194
Date Formatter Styles 192
Default Run Loop Mode 458

893
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Dialog Description Keys 689

E

Entity Type Code 727
Error Codes 520, 787
Error Dictionary Keys 757
Error domains 224
External String Encodings 578

F

File URL Properties 788
Framework Version Numbers 765

H

HTTP URL Properties 789

I

Information Property List Keys 139, 412
Invalid String Encoding Flag 577

K

kCFAbsoluteTimeIntervalSince1904 constant 820
kCFAbsoluteTimeIntervalSince1970 constant 820
kCFAllocatorDefault constant 35
kCFAllocatorMalloc constant 36
kCFAllocatorMallocZone constant 36
kCFAllocatorNull constant 36
kCFAllocatorSystemDefault constant 35
kCFAllocatorUseContext constant 36
kCFBooleanFalse constant 99
kCFBooleanTrue constant 99
kCFBuddhistCalendar constant 251
kCFBundleDevelopmentRegionKey constant 139
kCFBundleExecutableArchitectureI386 constant

140
kCFBundleExecutableArchitecturePPC constant

140
kCFBundleExecutableArchitecturePPC64 constant

140

kCFBundleExecutableArchitectureX86_64 constant
140

kCFBundleExecutableKey constant 139
kCFBundleIdentifierKey constant 139
kCFBundleInfoDictionaryVersionKey constant 139
kCFBundleLocalizationsKey constant 140
kCFBundleNameKey constant 140
kCFBundleVersionKey constant 139
kCFCalendarComponentsWrap constant 158
kCFCalendarUnitDay constant 157
kCFCalendarUnitEra constant 157
kCFCalendarUnitHour constant 157
kCFCalendarUnitMinute constant 157
kCFCalendarUnitMonth constant 157
kCFCalendarUnitSecond constant 157
kCFCalendarUnitWeek constant 157
kCFCalendarUnitWeekday constant 158
kCFCalendarUnitWeekdayOrdinal constant 158
kCFCalendarUnitYear constant 157
kCFCharacterSetAlphaNumeric constant 169
kCFCharacterSetCapitalizedLetter constant 169
kCFCharacterSetControl constant 168
kCFCharacterSetDecimalDigit constant 168
kCFCharacterSetDecomposable constant 169
kCFCharacterSetIllegal constant 169
kCFCharacterSetLetter constant 168
kCFCharacterSetLowercaseLetter constant 168
kCFCharacterSetNewline constant 169
kCFCharacterSetNonBase constant 169
kCFCharacterSetPunctuation constant 169
kCFCharacterSetSymbol constant 169
kCFCharacterSetUppercaseLetter constant 168
kCFCharacterSetWhitespace constant 168
kCFCharacterSetWhitespaceAndNewline constant

168
kCFChineseCalendar constant 251
kCFCompareAnchored constant 574
kCFCompareBackwards constant 574
kCFCompareCaseInsensitive constant 574
kCFCompareDiacriticInsensitive constant 575
kCFCompareEqualTo constant 764
kCFCompareForcedOrdering constant 575
kCFCompareGreaterThan constant 764
kCFCompareLessThan constant 764
kCFCompareLocalized constant 575
kCFCompareNonliteral constant 574
kCFCompareNumerically constant 575
kCFCompareWidthInsensitive constant 575
kCFCopyStringBagCallBacks constant 75
kCFCopyStringDictionaryKeyCallBacks constant

216
kCFCopyStringSetCallBacks constant 500
kCFCoreFoundationVersionNumber constant 765

894
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCFCoreFoundationVersionNumber10_0 constant
766

kCFCoreFoundationVersionNumber10_0_3 constant
766

kCFCoreFoundationVersionNumber10_1 constant
766

kCFCoreFoundationVersionNumber10_1_2 constant
766

kCFCoreFoundationVersionNumber10_1_4 constant
767

kCFCoreFoundationVersionNumber10_2 constant
767

kCFCoreFoundationVersionNumber10_2_1 constant
767

kCFCoreFoundationVersionNumber10_2_2 constant
767

kCFCoreFoundationVersionNumber10_2_3 constant
767

kCFCoreFoundationVersionNumber10_2_4 constant
767

kCFCoreFoundationVersionNumber10_2_5 constant
767

kCFCoreFoundationVersionNumber10_2_6 constant
767

kCFCoreFoundationVersionNumber10_2_7 constant
767

kCFCoreFoundationVersionNumber10_2_8 constant
767

kCFCoreFoundationVersionNumber10_3 constant
768

kCFCoreFoundationVersionNumber10_3_1 constant
768

kCFCoreFoundationVersionNumber10_3_2 constant
768

kCFCoreFoundationVersionNumber10_3_3 constant
768

kCFCoreFoundationVersionNumber10_3_4 constant
768

kCFCoreFoundationVersionNumber10_3_5 constant
768

kCFCoreFoundationVersionNumber10_3_6 constant
768

kCFCoreFoundationVersionNumber10_3_7 constant
768

kCFCoreFoundationVersionNumber10_3_8 constant
768

kCFCoreFoundationVersionNumber10_3_9 constant
768

kCFCoreFoundationVersionNumber10_4 constant
769

kCFCoreFoundationVersionNumber10_4_1 constant
769

kCFCoreFoundationVersionNumber10_4_2 constant
769

kCFCoreFoundationVersionNumber10_4_3 constant
769

kCFCoreFoundationVersionNumber10_4_4_Intel
constant 769

kCFCoreFoundationVersionNumber10_4_4_PowerPC
constant 769

kCFCoreFoundationVersionNumber10_4_5_Intel
constant 769

kCFCoreFoundationVersionNumber10_4_5_PowerPC
constant 769

kCFCoreFoundationVersionNumber10_4_6_Intel
constant 769

kCFCoreFoundationVersionNumber10_4_6_PowerPC
constant 770

kCFCoreFoundationVersionNumber10_4_7 constant
770

kCFDateFormatterAMSymbol constant 196
kCFDateFormatterCalendar constant 195
kCFDateFormatterCalendarName constant 195
kCFDateFormatterDefaultDate constant 195
kCFDateFormatterDefaultFormat constant 195
kCFDateFormatterEraSymbols constant 195
kCFDateFormatterFullStyle constant 193
kCFDateFormatterGregorianStartDate constant

197
kCFDateFormatterIsLenient constant 194
kCFDateFormatterLongEraSymbols constant 196
kCFDateFormatterLongStyle constant 193
kCFDateFormatterMediumStyle constant 193
kCFDateFormatterMonthSymbols constant 195
kCFDateFormatterNoStyle constant 193
kCFDateFormatterPMSymbol constant 196
kCFDateFormatterQuarterSymbols constant 197
kCFDateFormatterShortMonthSymbols constant 195
kCFDateFormatterShortQuarterSymbols constant

197
kCFDateFormatterShortStandaloneMonthSymbols

constant 196
kCFDateFormatterShortStandaloneQuarterSymbols

constant 197
kCFDateFormatterShortStandaloneWeekdaySymbols

constant 196
kCFDateFormatterShortStyle constant 193
kCFDateFormatterShortWeekdaySymbols constant

195
kCFDateFormatterStandaloneMonthSymbols

constant 196
kCFDateFormatterStandaloneQuarterSymbols

constant 197
kCFDateFormatterStandaloneWeekdaySymbols

constant 196

895
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCFDateFormatterTimeZone constant 194
kCFDateFormatterTwoDigitStartDate constant 195
kCFDateFormatterVeryShortMonthSymbols constant

196
kCFDateFormatterVeryShortStandaloneMonthSymbols

constant 196
kCFDateFormatterVeryShortStandaloneWeekdaySymbols

constant 197
kCFDateFormatterVeryShortWeekdaySymbols

constant 196
kCFDateFormatterWeekdaySymbols constant 195
kCFErrorDescriptionKey constant 225
kCFErrorDomainCocoa constant 224
kCFErrorDomainMach constant 224
kCFErrorDomainOSStatus constant 224
kCFErrorDomainPOSIX constant 224
kCFErrorLocalizedDescriptionKey constant 225
kCFErrorLocalizedFailureReasonKey constant 225
kCFErrorLocalizedRecoverySuggestionKey

constant 225
kCFErrorUnderlyingErrorKey constant 225
kCFFileDescriptorReadCallBack constant 235
kCFFileDescriptorWriteCallBack constant 235
kCFGregorianAllUnits constant 819
kCFGregorianCalendar constant 197, 251
kCFGregorianUnitsDays constant 819
kCFGregorianUnitsHours constant 819
kCFGregorianUnitsMinutes constant 819
kCFGregorianUnitsMonths constant 819
kCFGregorianUnitsSeconds constant 819
kCFGregorianUnitsYears constant 819
kCFHebrewCalendar constant 252
kCFIslamicCalendar constant 252
kCFIslamicCivilCalendar constant 252
kCFJapaneseCalendar constant 252
kCFLocaleCalendar constant 251
kCFLocaleCalendarIdentifier constant 250
kCFLocaleCollationIdentifier constant 251
kCFLocaleCountryCode constant 250
kCFLocaleCurrencyCode constant 249
kCFLocaleCurrencySymbol constant 249
kCFLocaleCurrentLocaleDidChangeNotification

constant 252
kCFLocaleDecimalSeparator constant 249
kCFLocaleExemplarCharacterSet constant 250
kCFLocaleGroupingSeparator constant 249
kCFLocaleIdentifier constant 250
kCFLocaleLanguageCode constant 250
kCFLocaleMeasurementSystem constant 249
kCFLocaleScriptCode constant 250
kCFLocaleUsesMetricSystem constant 251
kCFLocaleVariantCode constant 250
kCFMessagePortIsInvalid constant 275

kCFMessagePortReceiveTimeout constant 275
kCFMessagePortSendTimeout constant 275
kCFMessagePortSuccess constant 275
kCFMessagePortTransportError constant 275
kCFNotFound constant 765
kCFNotificationDeliverImmediately constant 367
kCFNotificationPostToAllSessions constant 367
kCFNull constant 370
kCFNumberCFIndexType constant 379
kCFNumberCGFloatType constant 379
kCFNumberCharType constant 378
kCFNumberDoubleType constant 379
kCFNumberFloat32Type constant 378
kCFNumberFloat64Type constant 378
kCFNumberFloatType constant 379
kCFNumberFormatterAlwaysShowDecimalSeparator

constant 393
kCFNumberFormatterCurrencyCode constant 392
kCFNumberFormatterCurrencyDecimalSeparator

constant 393
kCFNumberFormatterCurrencyGroupingSeparator

constant 396
kCFNumberFormatterCurrencyStyle constant 391
kCFNumberFormatterCurrencySymbol constant 394
kCFNumberFormatterDecimalSeparator constant

393
kCFNumberFormatterDecimalStyle constant 391
kCFNumberFormatterDefaultFormat constant 395
kCFNumberFormatterExponentSymbol constant 394
kCFNumberFormatterFormatWidth constant 395
kCFNumberFormatterGroupingSeparator constant

393
kCFNumberFormatterGroupingSize constant 394
kCFNumberFormatterInfinitySymbol constant 393
kCFNumberFormatterInternationalCurrencySymbol

constant 396
kCFNumberFormatterIsLenient constant 396
kCFNumberFormatterMaxFractionDigits constant

394
kCFNumberFormatterMaxIntegerDigits constant

394
kCFNumberFormatterMaxSignificantDigits

constant 396
kCFNumberFormatterMinFractionDigits constant

394
kCFNumberFormatterMinIntegerDigits constant

394
kCFNumberFormatterMinSignificantDigits

constant 396
kCFNumberFormatterMinusSign constant 393
kCFNumberFormatterMultiplier constant 395
kCFNumberFormatterNaNSymbol constant 393
kCFNumberFormatterNegativePrefix constant 396

896
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCFNumberFormatterNegativeSuffix constant 396
kCFNumberFormatterNoStyle constant 391
kCFNumberFormatterPadAfterPrefix constant 398
kCFNumberFormatterPadAfterSuffix constant 399
kCFNumberFormatterPadBeforePrefix constant 398
kCFNumberFormatterPadBeforeSuffix constant 398
kCFNumberFormatterPaddingCharacter constant

395
kCFNumberFormatterPaddingPosition constant 395
kCFNumberFormatterParseIntegersOnly constant

397
kCFNumberFormatterPercentStyle constant 391
kCFNumberFormatterPercentSymbol constant 393
kCFNumberFormatterPerMillSymbol constant 396
kCFNumberFormatterPlusSign constant 394
kCFNumberFormatterPositivePrefix constant 395
kCFNumberFormatterPositiveSuffix constant 395
kCFNumberFormatterRoundCeiling constant 397
kCFNumberFormatterRoundDown constant 397
kCFNumberFormatterRoundFloor constant 397
kCFNumberFormatterRoundHalfDown constant 398
kCFNumberFormatterRoundHalfEven constant 398
kCFNumberFormatterRoundHalfUp constant 398
kCFNumberFormatterRoundingIncrement constant

395
kCFNumberFormatterRoundingMode constant 395
kCFNumberFormatterRoundUp constant 398
kCFNumberFormatterScientificStyle constant 391
kCFNumberFormatterSecondaryGroupingSize

constant 394
kCFNumberFormatterSpellOutStyle constant 391
kCFNumberFormatterUseGroupingSeparator

constant 393
kCFNumberFormatterUseSignificantDigits

constant 396
kCFNumberFormatterZeroSymbol constant 393
kCFNumberIntType constant 378
kCFNumberLongLongType constant 378
kCFNumberLongType constant 378
kCFNumberMaxType constant 379
kCFNumberNaN constant 379
kCFNumberNegativeInfinity constant 380
kCFNumberNSIntegerType constant 379
kCFNumberPositiveInfinity constant 380
kCFNumberShortType constant 378
kCFNumberSInt16Type constant 378
kCFNumberSInt32Type constant 378
kCFNumberSInt64Type constant 378
kCFNumberSInt8Type constant 377
kCFPlugInDynamicRegisterFunctionKey constant

412
kCFPlugInDynamicRegistrationKey constant 412
kCFPlugInFactoriesKey constant 413

kCFPlugInTypesKey constant 413
kCFPlugInUnloadFunctionKey constant 413
kCFPreferencesAnyApplication constant 804
kCFPreferencesAnyHost constant 804
kCFPreferencesAnyUser constant 804
kCFPreferencesCurrentApplication constant 804
kCFPreferencesCurrentHost constant 804
kCFPreferencesCurrentUser constant 804
kCFPropertyListBinaryFormat_v1_0 constant 426
kCFPropertyListImmutable constant 426
kCFPropertyListMutableContainers constant 426
kCFPropertyListMutableContainersAndLeaves

constant 426
kCFPropertyListOpenStepFormat constant 426
kCFPropertyListXMLFormat_v1_0 constant 426
kCFRunLoopAfterWaiting constant 466
kCFRunLoopAllActivities constant 466
kCFRunLoopBeforeSources constant 465
kCFRunLoopBeforeTimers constant 465
kCFRunLoopBeforeWaiting constant 466
kCFRunLoopCommonModes constant 458
kCFRunLoopDefaultMode constant 458
kCFRunLoopEntry constant 465
kCFRunLoopExit constant 466
kCFRunLoopRunFinished constant 457
kCFRunLoopRunHandledSource constant 457
kCFRunLoopRunStopped constant 457
kCFRunLoopRunTimedOut constant 457
kCFSocketAcceptCallBack constant 518
kCFSocketAutomaticallyReenableAcceptCallBack

constant 519
kCFSocketAutomaticallyReenableDataCallBack

constant 519
kCFSocketAutomaticallyReenableReadCallBack

constant 519
kCFSocketAutomaticallyReenableWriteCallBack

constant 519
kCFSocketCloseOnInvalidate constant 520
kCFSocketCommandKey constant 810
kCFSocketConnectCallBack constant 518
kCFSocketDataCallBack constant 518
kCFSocketError constant 520
kCFSocketErrorKey constant 810
kCFSocketNameKey constant 810
kCFSocketNoCallBack constant 518
kCFSocketReadCallBack constant 518
kCFSocketRegisterCommand constant 810
kCFSocketResultKey constant 810
kCFSocketRetrieveCommand constant 810
kCFSocketSuccess constant 520
kCFSocketTimeout constant 520
kCFSocketValueKey constant 810
kCFSocketWriteCallBack constant 518

897
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCFStreamErrorDomainCustom constant 829
kCFStreamErrorDomainFTP constant 830
kCFStreamErrorDomainHTTP constant 830
kCFStreamErrorDomainMach constant 830
kCFStreamErrorDomainMacOSStatus constant 829
kCFStreamErrorDomainNetDB constant 830
kCFStreamErrorDomainNetServices constant 830
kCFStreamErrorDomainPOSIX constant 829
kCFStreamErrorDomainSOCKS constant 830
kCFStreamErrorDomainSSL constant 830
kCFStreamErrorDomainSystemConfiguration

constant 830
kCFStreamEventCanAcceptBytes constant 831
kCFStreamEventEndEncountered constant 831
kCFStreamEventErrorOccurred constant 831
kCFStreamEventHasBytesAvailable constant 831
kCFStreamEventNone constant 831
kCFStreamEventOpenCompleted constant 831
kCFStreamPropertyAppendToFile constant 832
kCFStreamPropertyDataWritten constant 832
kCFStreamPropertyFileCurrentOffset constant

832
kCFStreamPropertySocketNativeHandle constant

832
kCFStreamPropertySocketRemoteHostName constant

833
kCFStreamPropertySocketRemotePortNumber

constant 833
kCFStreamStatusAtEnd constant 828
kCFStreamStatusClosed constant 828
kCFStreamStatusError constant 828
kCFStreamStatusNotOpen constant 828
kCFStreamStatusOpen constant 828
kCFStreamStatusOpening constant 828
kCFStreamStatusReading constant 828
kCFStreamStatusWriting constant 828
kCFStringBinaryHeapCallBacks constant 87
kCFStringEncodingANSEL constant 589
kCFStringEncodingASCII constant 576
kCFStringEncodingBig5 constant 591
kCFStringEncodingBig5_E constant 592
kCFStringEncodingBig5_HKSCS_1999 constant 592
kCFStringEncodingCNS_11643_92_P1 constant 590
kCFStringEncodingCNS_11643_92_P2 constant 590
kCFStringEncodingCNS_11643_92_P3 constant 590
kCFStringEncodingDOSArabic constant 587
kCFStringEncodingDOSBalticRim constant 586
kCFStringEncodingDOSCanadianFrench constant

587
kCFStringEncodingDOSChineseSimplif constant

587
kCFStringEncodingDOSChineseTrad constant 588
kCFStringEncodingDOSCyrillic constant 586

kCFStringEncodingDOSGreek constant 586
kCFStringEncodingDOSGreek1 constant 586
kCFStringEncodingDOSGreek2 constant 587
kCFStringEncodingDOSHebrew constant 587
kCFStringEncodingDOSIcelandic constant 587
kCFStringEncodingDOSJapanese constant 587
kCFStringEncodingDOSKorean constant 588
kCFStringEncodingDOSLatin1 constant 586
kCFStringEncodingDOSLatin2 constant 586
kCFStringEncodingDOSLatinUS constant 586
kCFStringEncodingDOSNordic constant 587
kCFStringEncodingDOSPortuguese constant 586
kCFStringEncodingDOSRussian constant 587
kCFStringEncodingDOSThai constant 587
kCFStringEncodingDOSTurkish constant 586
kCFStringEncodingEBCDIC_CP037 constant 592
kCFStringEncodingEBCDIC_US constant 592
kCFStringEncodingEUC_CN constant 591
kCFStringEncodingEUC_JP constant 591
kCFStringEncodingEUC_KR constant 591
kCFStringEncodingEUC_TW constant 591
kCFStringEncodingGBK_95 constant 589
kCFStringEncodingGB_18030_2000 constant 589
kCFStringEncodingGB_2312_80 constant 589
kCFStringEncodingHZ_GB_2312 constant 591
kCFStringEncodingInvalidId constant 578
kCFStringEncodingISOLatin1 constant 576
kCFStringEncodingISOLatin10 constant 586
kCFStringEncodingISOLatin2 constant 584
kCFStringEncodingISOLatin3 constant 584
kCFStringEncodingISOLatin4 constant 584
kCFStringEncodingISOLatin5 constant 585
kCFStringEncodingISOLatin6 constant 585
kCFStringEncodingISOLatin7 constant 585
kCFStringEncodingISOLatin8 constant 585
kCFStringEncodingISOLatin9 constant 585
kCFStringEncodingISOLatinArabic constant 585
kCFStringEncodingISOLatinCyrillic constant 585
kCFStringEncodingISOLatinGreek constant 585
kCFStringEncodingISOLatinHebrew constant 585
kCFStringEncodingISOLatinThai constant 585
kCFStringEncodingISO_2022_CN constant 590
kCFStringEncodingISO_2022_CN_EXT constant 590
kCFStringEncodingISO_2022_JP constant 590
kCFStringEncodingISO_2022_JP_1 constant 590
kCFStringEncodingISO_2022_JP_2 constant 590
kCFStringEncodingISO_2022_JP_3 constant 590
kCFStringEncodingISO_2022_KR constant 591
kCFStringEncodingJIS_C6226_78 constant 589
kCFStringEncodingJIS_X0201_76 constant 589
kCFStringEncodingJIS_X0208_83 constant 589
kCFStringEncodingJIS_X0208_90 constant 589
kCFStringEncodingJIS_X0212_90 constant 589

898
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCFStringEncodingKOI8_R constant 591
kCFStringEncodingKOI8_U constant 592
kCFStringEncodingKSC_5601_87 constant 590
kCFStringEncodingKSC_5601_92_Johab constant

590
kCFStringEncodingMacArabic constant 581
kCFStringEncodingMacArmenian constant 583
kCFStringEncodingMacBengali constant 582
kCFStringEncodingMacBurmese constant 582
kCFStringEncodingMacCeltic constant 584
kCFStringEncodingMacCentralEurRoman constant

583
kCFStringEncodingMacChineseSimp constant 583
kCFStringEncodingMacChineseTrad constant 581
kCFStringEncodingMacCroatian constant 583
kCFStringEncodingMacCyrillic constant 581
kCFStringEncodingMacDevanagari constant 581
kCFStringEncodingMacDingbats constant 583
kCFStringEncodingMacEthiopic constant 583
kCFStringEncodingMacExtArabic constant 583
kCFStringEncodingMacFarsi constant 584
kCFStringEncodingMacGaelic constant 584
kCFStringEncodingMacGeorgian constant 582
kCFStringEncodingMacGreek constant 581
kCFStringEncodingMacGujarati constant 582
kCFStringEncodingMacGurmukhi constant 581
kCFStringEncodingMacHebrew constant 581
kCFStringEncodingMacHFS constant 584
kCFStringEncodingMacIcelandic constant 583
kCFStringEncodingMacInuit constant 584
kCFStringEncodingMacJapanese constant 581
kCFStringEncodingMacKannada constant 582
kCFStringEncodingMacKhmer constant 582
kCFStringEncodingMacKorean constant 581
kCFStringEncodingMacLaotian constant 582
kCFStringEncodingMacMalayalam constant 582
kCFStringEncodingMacMongolian constant 583
kCFStringEncodingMacOriya constant 582
kCFStringEncodingMacRoman constant 576
kCFStringEncodingMacRomanian constant 584
kCFStringEncodingMacRomanLatin1 constant 591
kCFStringEncodingMacSinhalese constant 582
kCFStringEncodingMacSymbol constant 583
kCFStringEncodingMacTamil constant 582
kCFStringEncodingMacTelugu constant 582
kCFStringEncodingMacThai constant 582
kCFStringEncodingMacTibetan constant 583
kCFStringEncodingMacTurkish constant 583
kCFStringEncodingMacUkrainian constant 584
kCFStringEncodingMacVietnamese constant 583
kCFStringEncodingMacVT100 constant 584
kCFStringEncodingNextStepJapanese constant 592
kCFStringEncodingNextStepLatin constant 576

kCFStringEncodingNonLossyASCII constant 577
kCFStringEncodingShiftJIS constant 591
kCFStringEncodingShiftJIS_X0213_00 constant

589
kCFStringEncodingShiftJIS_X0213_MenKuTen

constant 589
kCFStringEncodingUnicode constant 576
kCFStringEncodingUTF16 constant 577
kCFStringEncodingUTF16BE constant 577
kCFStringEncodingUTF16LE constant 577
kCFStringEncodingUTF32 constant 577
kCFStringEncodingUTF32BE constant 577
kCFStringEncodingUTF32LE constant 577
kCFStringEncodingUTF8 constant 576
kCFStringEncodingVISCII constant 592
kCFStringEncodingWindowsArabic constant 588
kCFStringEncodingWindowsBalticRim constant 588
kCFStringEncodingWindowsCyrillic constant 588
kCFStringEncodingWindowsGreek constant 588
kCFStringEncodingWindowsHebrew constant 588
kCFStringEncodingWindowsKoreanJohab constant

589
kCFStringEncodingWindowsLatin1 constant 576
kCFStringEncodingWindowsLatin2 constant 588
kCFStringEncodingWindowsLatin5 constant 588
kCFStringEncodingWindowsVietnamese constant

588
kCFStringNormalizationFormC constant 353
kCFStringNormalizationFormD constant 353
kCFStringNormalizationFormKC constant 353
kCFStringNormalizationFormKD constant 353
kCFStringTokenizerAttributeLanguage constant

603
kCFStringTokenizerAttributeLatinTranscription

constant 602
kCFStringTokenizerTokenHasDerivedSubTokensMask

constant 604
kCFStringTokenizerTokenHasHasNumbersMask

constant 604
kCFStringTokenizerTokenHasNonLettersMask

constant 604
kCFStringTokenizerTokenHasSubTokensMask

constant 604
kCFStringTokenizerTokenIsCJWordMask constant

604
kCFStringTokenizerTokenNone constant 603
kCFStringTokenizerTokenNormal constant 603
kCFStringTokenizerUnitLineBreak constant 602
kCFStringTokenizerUnitParagraph constant 602
kCFStringTokenizerUnitSentence constant 602
kCFStringTokenizerUnitWord constant 602
kCFStringTokenizerUnitWordBoundary constant

602

899
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCFStringTransformFullwidthHalfwidth constant
354

kCFStringTransformHiraganaKatakana constant
354

kCFStringTransformLatinArabic constant 355
kCFStringTransformLatinCyrillic constant 355
kCFStringTransformLatinGreek constant 355
kCFStringTransformLatinHangul constant 355
kCFStringTransformLatinHebrew constant 355
kCFStringTransformLatinHiragana constant 354
kCFStringTransformLatinKatakana constant 354
kCFStringTransformLatinThai constant 355
kCFStringTransformMandarinLatin constant 354
kCFStringTransformStripCombiningMarks constant

354
kCFStringTransformStripDiacritics constant 355
kCFStringTransformToLatin constant 354
kCFStringTransformToUnicodeName constant 355
kCFStringTransformToXMLHex constant 355
kCFTimeZoneNameStyleDaylightSaving constant

617
kCFTimeZoneNameStyleShortDaylightSaving

constant 617
kCFTimeZoneNameStyleShortStandard constant 617
kCFTimeZoneNameStyleStandard constant 617
kCFTimeZoneSystemTimeZoneDidChangeNotification

constant 616
kCFTypeArrayCallBacks constant 52
kCFTypeBagCallBacks constant 75
kCFTypeDictionaryKeyCallBacks constant 216
kCFTypeDictionaryValueCallBacks constant 216
kCFTypeSetCallBacks constant 500
kCFURLComponentFragment constant 674
kCFURLComponentHost constant 674
kCFURLComponentNetLocation constant 673
kCFURLComponentParameterString constant 674
kCFURLComponentPassword constant 674
kCFURLComponentPath constant 674
kCFURLComponentPort constant 674
kCFURLComponentQuery constant 674
kCFURLComponentResourceSpecifier constant 674
kCFURLComponentScheme constant 673
kCFURLComponentUser constant 674
kCFURLComponentUserInfo constant 674
kCFURLFileDirectoryContents constant 788
kCFURLFileExists constant 788
kCFURLFileLastModificationTime constant 788
kCFURLFileLength constant 788
kCFURLFileOwnerID constant 789
kCFURLFilePOSIXMode constant 789
kCFURLHFSPathStyle constant 675
kCFURLHTTPStatusCode constant 789
kCFURLHTTPStatusLine constant 789

kCFURLImproperArgumentsError constant 787
kCFURLPOSIXPathStyle constant 675
kCFURLPropertyKeyUnavailableError constant 788
kCFURLRemoteHostUnavailableError constant 787
kCFURLResourceAccessViolationError constant

787
kCFURLResourceNotFoundError constant 787
kCFURLTimeoutError constant 788
kCFURLUnknownError constant 787
kCFURLUnknownPropertyKeyError constant 788
kCFURLUnknownSchemeError constant 787
kCFURLWindowsPathStyle constant 675
kCFUserNotificationAlertHeaderKey constant 690
kCFUserNotificationAlertMessageKey constant

690
kCFUserNotificationAlternateButtonTitleKey

constant 691
kCFUserNotificationAlternateResponse constant

688
kCFUserNotificationCancelResponse constant 689
kCFUserNotificationCautionAlertLevel constant

688
kCFUserNotificationCheckBoxTitlesKey constant

691
kCFUserNotificationDefaultButtonTitleKey

constant 690
kCFUserNotificationDefaultResponse constant

688
kCFUserNotificationIconURLKey constant 690
kCFUserNotificationLocalizationURLKey constant

690
kCFUserNotificationNoDefaultButtonFlag

constant 689
kCFUserNotificationNoteAlertLevel constant 688
kCFUserNotificationOtherButtonTitleKey

constant 691
kCFUserNotificationOtherResponse constant 688
kCFUserNotificationPlainAlertLevel constant

688
kCFUserNotificationPopUpSelectionKey constant

691
kCFUserNotificationPopUpTitlesKey constant 691
kCFUserNotificationProgressIndicatorValueKey

constant 691
kCFUserNotificationSoundURLKey constant 690
kCFUserNotificationStopAlertLevel constant 687
kCFUserNotificationTextFieldTitlesKey constant

691
kCFUserNotificationTextFieldValuesKey constant

691
kCFUserNotificationUseRadioButtonsFlag

constant 689
kCFXMLEntityTypeCharacter constant 727

900
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCFXMLEntityTypeParameter constant 727
kCFXMLEntityTypeParsedExternal constant 727
kCFXMLEntityTypeParsedInternal constant 727
kCFXMLEntityTypeUnparsed constant 727
kCFXMLErrorElementlessDocument constant 747
kCFXMLErrorEncodingConversionFailure constant

747
kCFXMLErrorMalformedCDSect constant 747
kCFXMLErrorMalformedCharacterReference

constant 748
kCFXMLErrorMalformedCloseTag constant 747
kCFXMLErrorMalformedComment constant 747
kCFXMLErrorMalformedDocument constant 747
kCFXMLErrorMalformedDTD constant 747
kCFXMLErrorMalformedName constant 747
kCFXMLErrorMalformedParsedCharacterData

constant 748
kCFXMLErrorMalformedProcessingInstruction

constant 747
kCFXMLErrorMalformedStartTag constant 747
kCFXMLErrorNoData constant 748
kCFXMLErrorUnexpectedEOF constant 746
kCFXMLErrorUnknownEncoding constant 746
kCFXMLNodeCurrentVersion constant 728
kCFXMLNodeTypeAttribute constant 728
kCFXMLNodeTypeAttributeListDeclaration

constant 730
kCFXMLNodeTypeCDATASection constant 729
kCFXMLNodeTypeComment constant 729
kCFXMLNodeTypeDocument constant 728
kCFXMLNodeTypeDocumentFragment constant 729
kCFXMLNodeTypeDocumentType constant 729
kCFXMLNodeTypeElement constant 728
kCFXMLNodeTypeElementTypeDeclaration constant

730
kCFXMLNodeTypeEntity constant 729
kCFXMLNodeTypeEntityReference constant 729
kCFXMLNodeTypeNotation constant 730
kCFXMLNodeTypeProcessingInstruction constant

729
kCFXMLNodeTypeText constant 729
kCFXMLNodeTypeWhitespace constant 729
kCFXMLParserAddImpliedAttributes constant 749
kCFXMLParserAllOptions constant 749
kCFXMLParserNoOptions constant 749
kCFXMLParserReplacePhysicalEntities constant

748
kCFXMLParserResolveExternalEntities constant

749
kCFXMLParserSkipMetaData constant 748
kCFXMLParserSkipWhitespace constant 749
kCFXMLParserValidateDocument constant 748
kCFXMLStatusParseInProgress constant 746

kCFXMLStatusParseNotBegun constant 746
kCFXMLStatusParseSuccessful constant 746
kCFXMLTreeErrorDescription constant 758
kCFXMLTreeErrorLineNumber constant 758
kCFXMLTreeErrorLocation constant 758
kCFXMLTreeErrorStatusCode constant 758
Keys for the user info dictionary 225

L

Locale Calendar Identifiers 251
Locale Change Notification 252
Locale Property Keys 248

N

Node Current Version 727
Node Type Code 728
Notification Delivery Suspension Behavior 366
Notification Name 616
Notification Posting Options 367
Number Format Options 397
Number Formatter Property Keys 392
Number Formatter Styles 391
Number Types 377

P

Padding Positions 398
Parser Status Codes 746
Parsing Options 748
Path Style 675
Predefined Allocators 35
Predefined Callback Structures 52, 75, 87, 215, 500
Predefined CFCharacterSet Selector Values 167
Predefined Time Interval Values 820
Predefined Value 370
Predefined Values 379
Property List Formats 425
Property List Mutability Options 426

R

Response Codes 688
Rounding Modes 397
Run Loop Activities 465

901
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

S

Stream Properties 832
String Comparison Flags 574
String Normalization Forms 353

T

Time Zone Name Styles 616
Token Types 603
Tokenization Modifiers 601
Transform Identifiers for CFStringTransform 353

V

Value Not Found 765

902
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

	Core Foundation Framework Reference
	Contents
	Tables and Listings
	Introduction
	Part I: Opaque Types
	CFAllocator Reference
	Overview
	Functions by Task
	Creating an Allocator
	Managing Memory with an Allocator
	Getting and Setting the Default Allocator
	Getting an Allocator's Context
	Getting the CFAllocator Type ID

	Functions
	CFAllocatorAllocate
	CFAllocatorCreate
	CFAllocatorDeallocate
	CFAllocatorGetContext
	CFAllocatorGetDefault
	CFAllocatorGetPreferredSizeForSize
	CFAllocatorGetTypeID
	CFAllocatorReallocate
	CFAllocatorSetDefault

	Callbacks
	CFAllocatorAllocateCallBack
	CFAllocatorCopyDescriptionCallBack
	CFAllocatorDeallocateCallBack
	CFAllocatorPreferredSizeCallBack
	CFAllocatorReallocateCallBack
	CFAllocatorReleaseCallBack
	CFAllocatorRetainCallBack

	Data Types
	CFAllocatorContext
	CFAllocatorRef

	Constants
	Predefined Allocators

	CFArray Reference
	Overview
	Functions by Task
	Creating an Array
	Examining an Array
	Applying a Function to Elements
	Getting the CFArray Type ID

	Functions
	CFArrayApplyFunction
	CFArrayBSearchValues
	CFArrayContainsValue
	CFArrayCreate
	CFArrayCreateCopy
	CFArrayGetCount
	CFArrayGetCountOfValue
	CFArrayGetFirstIndexOfValue
	CFArrayGetLastIndexOfValue
	CFArrayGetTypeID
	CFArrayGetValueAtIndex
	CFArrayGetValues

	Callbacks
	CFArrayApplierFunction
	CFArrayCopyDescriptionCallBack
	CFArrayEqualCallBack
	CFArrayReleaseCallBack
	CFArrayRetainCallBack

	Data Types
	CFArrayCallBacks
	CFArrayRef

	Constants
	Predefined Callback Structures

	CFAttributedString Reference
	Overview
	Functions by Task
	Creating a CFAttributedString
	Accessing Attributes
	Getting Attributed String Properties

	Functions
	CFAttributedStringCreate
	CFAttributedStringCreateCopy
	CFAttributedStringCreateWithSubstring
	CFAttributedStringGetAttribute
	CFAttributedStringGetAttributeAndLongestEffectiveRange
	CFAttributedStringGetAttributes
	CFAttributedStringGetAttributesAndLongestEffectiveRange
	CFAttributedStringGetLength
	CFAttributedStringGetString
	CFAttributedStringGetTypeID

	Data Types
	CFAttributedStringRef

	CFBag Reference
	Overview
	Functions by Task
	Creating a Bag
	Examining a Bag
	Applying a Function to the Contents of a Bag
	Getting the CFBag Type ID

	Functions
	CFBagApplyFunction
	CFBagContainsValue
	CFBagCreate
	CFBagCreateCopy
	CFBagGetCount
	CFBagGetCountOfValue
	CFBagGetTypeID
	CFBagGetValue
	CFBagGetValueIfPresent
	CFBagGetValues

	Callbacks
	CFBagApplierFunction
	CFBagCopyDescriptionCallBack
	CFBagEqualCallBack
	CFBagHashCallBack
	CFBagReleaseCallBack
	CFBagRetainCallBack

	Data Types
	CFBagCallBacks
	CFBagRef

	Constants
	Predefined Callback Structures

	CFBinaryHeap Reference
	Overview
	Functions
	CFBinaryHeapAddValue
	CFBinaryHeapApplyFunction
	CFBinaryHeapContainsValue
	CFBinaryHeapCreate
	CFBinaryHeapCreateCopy
	CFBinaryHeapGetCount
	CFBinaryHeapGetCountOfValue
	CFBinaryHeapGetMinimum
	CFBinaryHeapGetMinimumIfPresent
	CFBinaryHeapGetTypeID
	CFBinaryHeapGetValues
	CFBinaryHeapRemoveAllValues
	CFBinaryHeapRemoveMinimumValue

	Callbacks
	CFBinaryHeapApplierFunction
	CFBinaryHeapCompareCallBack
	CFBinaryHeapCopyDescriptionCallBack
	CFBinaryHeapReleaseCallBack
	CFBinaryHeapRetainCallBack

	Data Types
	CFBinaryHeapCallBacks
	CFBinaryHeapCompareContext
	CFBinaryHeapRef

	Constants
	Predefined Callback Structures

	CFBitVector Reference
	Overview
	Functions by Task
	Creating a Bit Vector
	Getting Information About a Bit Vector
	Getting the CFBitVector Type ID

	Functions
	CFBitVectorContainsBit
	CFBitVectorCreate
	CFBitVectorCreateCopy
	CFBitVectorGetBitAtIndex
	CFBitVectorGetBits
	CFBitVectorGetCount
	CFBitVectorGetCountOfBit
	CFBitVectorGetFirstIndexOfBit
	CFBitVectorGetLastIndexOfBit
	CFBitVectorGetTypeID

	Data Types
	CFBit
	CFBitVectorRef

	CFBoolean Reference
	Overview
	Functions
	CFBooleanGetTypeID
	CFBooleanGetValue

	Data Types
	CFBooleanRef

	Constants
	Boolean Values

	CFBundle Reference
	Overview
	Functions by Task
	Creating and Accessing Bundles
	Loading and Unloading a Bundle
	Finding Locations in a Bundle
	Locating Bundle Resources
	Managing Localizations
	Managing Executable Code
	Getting Bundle Properties
	Getting the CFBundle Type ID

	Functions
	CFBundleCloseBundleResourceMap
	CFBundleCopyAuxiliaryExecutableURL
	CFBundleCopyBuiltInPlugInsURL
	CFBundleCopyBundleLocalizations
	CFBundleCopyBundleURL
	CFBundleCopyExecutableArchitectures
	CFBundleCopyExecutableArchitecturesForURL
	CFBundleCopyExecutableURL
	CFBundleCopyInfoDictionaryForURL
	CFBundleCopyInfoDictionaryInDirectory
	CFBundleCopyLocalizationsForPreferences
	CFBundleCopyLocalizationsForURL
	CFBundleCopyLocalizedString
	CFBundleCopyPreferredLocalizationsFromArray
	CFBundleCopyPrivateFrameworksURL
	CFBundleCopyResourcesDirectoryURL
	CFBundleCopyResourceURL
	CFBundleCopyResourceURLForLocalization
	CFBundleCopyResourceURLInDirectory
	CFBundleCopyResourceURLsOfType
	CFBundleCopyResourceURLsOfTypeForLocalization
	CFBundleCopyResourceURLsOfTypeInDirectory
	CFBundleCopySharedFrameworksURL
	CFBundleCopySharedSupportURL
	CFBundleCopySupportFilesDirectoryURL
	CFBundleCreate
	CFBundleCreateBundlesFromDirectory
	CFBundleGetAllBundles
	CFBundleGetBundleWithIdentifier
	CFBundleGetDataPointerForName
	CFBundleGetDataPointersForNames
	CFBundleGetDevelopmentRegion
	CFBundleGetFunctionPointerForName
	CFBundleGetFunctionPointersForNames
	CFBundleGetIdentifier
	CFBundleGetInfoDictionary
	CFBundleGetLocalInfoDictionary
	CFBundleGetMainBundle
	CFBundleGetPackageInfo
	CFBundleGetPackageInfoInDirectory
	CFBundleGetPlugIn
	CFBundleGetTypeID
	CFBundleGetValueForInfoDictionaryKey
	CFBundleGetVersionNumber
	CFBundleIsExecutableLoaded
	CFBundleLoadExecutable
	CFBundleLoadExecutableAndReturnError
	CFBundleOpenBundleResourceFiles
	CFBundleOpenBundleResourceMap
	CFBundlePreflightExecutable
	CFBundleUnloadExecutable
	CFCopyLocalizedString
	CFCopyLocalizedStringFromTable
	CFCopyLocalizedStringFromTableInBundle
	CFCopyLocalizedStringWithDefaultValue

	Data Types
	CFBundleRef
	CFBundleRefNum

	Constants
	Information Property List Keys
	Architecture Types

	CFCalendar Reference
	Overview
	Functions by Task
	Creating a Calendar
	Calendrical Calculations
	Getting Ranges of Units
	Getting and Setting the Time Zone
	Getting the Identifier
	Getting and Setting the Locale
	Getting and Setting Day Information
	Getting the Type ID

	Functions
	CFCalendarAddComponents
	CFCalendarComposeAbsoluteTime
	CFCalendarCopyCurrent
	CFCalendarCopyLocale
	CFCalendarCopyTimeZone
	CFCalendarCreateWithIdentifier
	CFCalendarDecomposeAbsoluteTime
	CFCalendarGetComponentDifference
	CFCalendarGetFirstWeekday
	CFCalendarGetIdentifier
	CFCalendarGetMaximumRangeOfUnit
	CFCalendarGetMinimumDaysInFirstWeek
	CFCalendarGetMinimumRangeOfUnit
	CFCalendarGetOrdinalityOfUnit
	CFCalendarGetRangeOfUnit
	CFCalendarGetTimeRangeOfUnit
	CFCalendarGetTypeID
	CFCalendarSetFirstWeekday
	CFCalendarSetLocale
	CFCalendarSetMinimumDaysInFirstWeek
	CFCalendarSetTimeZone

	Data Types
	CFCalendarRef

	Constants
	CFCalendarUnit
	Component Wrapping Options

	CFCharacterSet Reference
	Overview
	Functions by Task
	Creating Character Sets
	Getting Predefined Character Sets
	Querying Character Sets
	Getting the Character Set Type Identifier

	Functions
	CFCharacterSetCreateBitmapRepresentation
	CFCharacterSetCreateCopy
	CFCharacterSetCreateInvertedSet
	CFCharacterSetCreateWithBitmapRepresentation
	CFCharacterSetCreateWithCharactersInRange
	CFCharacterSetCreateWithCharactersInString
	CFCharacterSetGetPredefined
	CFCharacterSetGetTypeID
	CFCharacterSetHasMemberInPlane
	CFCharacterSetIsCharacterMember
	CFCharacterSetIsLongCharacterMember
	CFCharacterSetIsSupersetOfSet

	Data Types
	CFCharacterSetPredefinedSet
	CFCharacterSetRef

	Constants
	Predefined CFCharacterSet Selector Values

	CFData Reference
	Overview
	Functions by Task
	Creating a CFData Object
	Examining a CFData Object
	Getting the CFData Type ID

	Functions
	CFDataGetTypeID
	CFDataCreate
	CFDataCreateCopy
	CFDataCreateWithBytesNoCopy
	CFDataGetBytePtr
	CFDataGetBytes
	CFDataGetLength

	Data Types
	CFDataRef

	CFDate Reference
	Overview
	Functions
	CFDateCompare
	CFDateCreate
	CFDateGetAbsoluteTime
	CFDateGetTimeIntervalSinceDate
	CFDateGetTypeID

	Data Types
	CFDateRef

	CFDateFormatter Reference
	Overview
	Functions by Task
	Creating a Date Formatter
	Configuring a Date Formatter
	Parsing Strings
	Creating Strings From Data
	Getting Information About a Date Formatter
	Getting the CFDateFormatter Type ID

	Functions
	CFDateFormatterCopyProperty
	CFDateFormatterCreate
	CFDateFormatterCreateDateFromString
	CFDateFormatterCreateStringWithAbsoluteTime
	CFDateFormatterCreateStringWithDate
	CFDateFormatterGetAbsoluteTimeFromString
	CFDateFormatterGetDateStyle
	CFDateFormatterGetFormat
	CFDateFormatterGetLocale
	CFDateFormatterGetTimeStyle
	CFDateFormatterGetTypeID
	CFDateFormatterSetFormat
	CFDateFormatterSetProperty

	Data Types
	CFDateFormatterRef
	CFDateFormatterStyle

	Constants
	Date Formatter Styles
	Date Formatter Property Keys
	Calendar Names

	CFDictionary Reference
	Overview
	Functions by Task
	Creating a dictionary
	Examining a dictionary
	Applying a function to a dictionary
	Getting the CFDictionary type ID

	Functions
	CFDictionaryApplyFunction
	CFDictionaryContainsKey
	CFDictionaryContainsValue
	CFDictionaryCreate
	CFDictionaryCreateCopy
	CFDictionaryGetCount
	CFDictionaryGetCountOfKey
	CFDictionaryGetCountOfValue
	CFDictionaryGetKeysAndValues
	CFDictionaryGetTypeID
	CFDictionaryGetValue
	CFDictionaryGetValueIfPresent

	Callbacks
	CFDictionaryApplierFunction
	CFDictionaryCopyDescriptionCallBack
	CFDictionaryEqualCallBack
	CFDictionaryHashCallBack
	CFDictionaryReleaseCallBack
	CFDictionaryRetainCallBack

	Data Types
	CFDictionaryKeyCallBacks
	CFDictionaryRef
	CFDictionaryValueCallBacks

	Constants
	Predefined Callback Structures

	CFError Reference
	Overview
	Functions by Task
	Creating a CFError
	Getting Information About an Error
	Getting the CFError Type ID

	Functions
	CFErrorCopyDescription
	CFErrorCopyFailureReason
	CFErrorCopyRecoverySuggestion
	CFErrorCopyUserInfo
	CFErrorCreate
	CFErrorCreateWithUserInfoKeysAndValues
	CFErrorGetCode
	CFErrorGetDomain
	CFErrorGetTypeID

	Data Types
	CFErrorRef

	Constants
	Error domains
	Keys for the user info dictionary

	CFFileDescriptor Reference
	Overview
	Functions by Task
	Creating a CFFileDescriptor
	Getting Information About a File Descriptor
	Invalidating a File Descriptor
	Managing Callbacks
	Creating a Run Loop Source
	Getting the CFFileDescriptor Type ID

	Functions
	CFFileDescriptorCreate
	CFFileDescriptorCreateRunLoopSource
	CFFileDescriptorDisableCallBacks
	CFFileDescriptorEnableCallBacks
	CFFileDescriptorGetContext
	CFFileDescriptorGetNativeDescriptor
	CFFileDescriptorGetTypeID
	CFFileDescriptorInvalidate
	CFFileDescriptorIsValid

	Data Types
	CFFileDescriptorNativeDescriptor
	CFFileDescriptorCallBack
	CFFileDescriptorContext
	CFFileDescriptorRef

	Constants
	Callback Identifiers

	CFLocale Reference
	Overview
	Functions by Task
	Creating a Locale
	Getting System Locale Information
	Getting ISO Information
	Language Preferences
	Getting Information About a Locale
	Getting and Creating Locale Identifiers
	Getting the CFLocale Type ID

	Functions
	CFLocaleCopyAvailableLocaleIdentifiers
	CFLocaleCopyCommonISOCurrencyCodes
	CFLocaleCopyCurrent
	CFLocaleCopyDisplayNameForPropertyValue
	CFLocaleCopyISOCountryCodes
	CFLocaleCopyISOCurrencyCodes
	CFLocaleCopyISOLanguageCodes
	CFLocaleCopyPreferredLanguages
	CFLocaleCreate
	CFLocaleCreateCanonicalLanguageIdentifierFromString
	CFLocaleCreateCanonicalLocaleIdentifierFromScriptManagerCodes
	CFLocaleCreateCanonicalLocaleIdentifierFromString
	CFLocaleCreateComponentsFromLocaleIdentifier
	CFLocaleCreateCopy
	CFLocaleCreateLocaleIdentifierFromComponents
	CFLocaleGetIdentifier
	CFLocaleGetSystem
	CFLocaleGetTypeID
	CFLocaleGetValue

	Data Types
	CFLocaleRef

	Constants
	Locale Property Keys
	Locale Calendar Identifiers
	Locale Change Notification

	CFMachPort Reference
	Overview
	Functions by Task
	Creating a CFMachPort Object
	Configuring a CFMachPort Object
	Examining a CFMachPort Object
	Getting the CFMachPort Type ID

	Functions
	CFMachPortCreate
	CFMachPortCreateRunLoopSource
	CFMachPortCreateWithPort
	CFMachPortGetContext
	CFMachPortGetInvalidationCallBack
	CFMachPortGetPort
	CFMachPortGetTypeID
	CFMachPortInvalidate
	CFMachPortIsValid
	CFMachPortSetInvalidationCallBack

	Callbacks
	CFMachPortCallBack
	CFMachPortInvalidationCallBack

	Data Types
	CFMachPortContext
	CFMachPortRef

	CFMessagePort Reference
	Overview
	Functions by Task
	Creating a CFMessagePort Object
	Configuring a CFMessagePort Object
	Using a Message Port
	Examining a Message Port
	Getting the CFMessagePort Type ID

	Functions
	CFMessagePortCreateLocal
	CFMessagePortCreateRemote
	CFMessagePortCreateRunLoopSource
	CFMessagePortGetContext
	CFMessagePortGetInvalidationCallBack
	CFMessagePortGetName
	CFMessagePortGetTypeID
	CFMessagePortInvalidate
	CFMessagePortIsRemote
	CFMessagePortIsValid
	CFMessagePortSendRequest
	CFMessagePortSetInvalidationCallBack
	CFMessagePortSetName

	Callbacks
	CFMessagePortCallBack
	CFMessagePortInvalidationCallBack

	Data Types
	CFMessagePortContext
	CFMessagePortRef

	Constants
	CFMessagePortSendRequest Error Codes

	CFMutableArray Reference
	Overview
	Functions
	CFArrayAppendArray
	CFArrayAppendValue
	CFArrayCreateMutable
	CFArrayCreateMutableCopy
	CFArrayExchangeValuesAtIndices
	CFArrayInsertValueAtIndex
	CFArrayRemoveAllValues
	CFArrayRemoveValueAtIndex
	CFArrayReplaceValues
	CFArraySetValueAtIndex
	CFArraySortValues

	Data Types
	CFMutableArrayRef

	CFMutableAttributedString Reference
	Overview
	Functions by Task
	Creating a CFMutableAttributedString
	Modifying a CFMutableAttributedString

	Functions
	CFAttributedStringBeginEditing
	CFAttributedStringCreateMutable
	CFAttributedStringCreateMutableCopy
	CFAttributedStringEndEditing
	CFAttributedStringGetMutableString
	CFAttributedStringRemoveAttribute
	CFAttributedStringReplaceAttributedString
	CFAttributedStringReplaceString
	CFAttributedStringSetAttribute
	CFAttributedStringSetAttributes

	Data Types
	CFMutableAttributedStringRef

	CFMutableBag Reference
	Overview
	Functions by Task
	Creating a Mutable Bag
	Modifying a Mutable Bag

	Functions
	CFBagAddValue
	CFBagCreateMutable
	CFBagCreateMutableCopy
	CFBagRemoveAllValues
	CFBagRemoveValue
	CFBagReplaceValue
	CFBagSetValue

	Data Types
	CFMutableBagRef

	CFMutableBitVector Reference
	Overview
	Functions by Task
	Creating a CFMutableBitVector Object
	Modifying a Bit Vector

	Functions
	CFBitVectorCreateMutable
	CFBitVectorCreateMutableCopy
	CFBitVectorFlipBitAtIndex
	CFBitVectorFlipBits
	CFBitVectorSetAllBits
	CFBitVectorSetBitAtIndex
	CFBitVectorSetBits
	CFBitVectorSetCount

	Data Types
	CFMutableBitVectorRef

	CFMutableCharacterSet Reference
	Overview
	Functions by Task
	Creating a Mutable Character Set
	Adding Characters
	Removing Characters
	Logical Operations

	Functions
	CFCharacterSetAddCharactersInRange
	CFCharacterSetAddCharactersInString
	CFCharacterSetCreateMutable
	CFCharacterSetCreateMutableCopy
	CFCharacterSetIntersect
	CFCharacterSetInvert
	CFCharacterSetRemoveCharactersInRange
	CFCharacterSetRemoveCharactersInString
	CFCharacterSetUnion

	Data Types
	CFMutableCharacterSetRef

	CFMutableData Reference
	Overview
	Functions
	CFDataAppendBytes
	CFDataCreateMutable
	CFDataCreateMutableCopy
	CFDataDeleteBytes
	CFDataGetMutableBytePtr
	CFDataIncreaseLength
	CFDataReplaceBytes
	CFDataSetLength

	Data Types
	CFMutableDataRef

	CFMutableDictionary Reference
	Overview
	Functions by Task
	Creating a Mutable Dictionary
	Modifying a Dictionary

	Functions
	CFDictionaryAddValue
	CFDictionaryCreateMutable
	CFDictionaryCreateMutableCopy
	CFDictionaryRemoveAllValues
	CFDictionaryRemoveValue
	CFDictionaryReplaceValue
	CFDictionarySetValue

	Data Types
	CFMutableDictionaryRef

	CFMutableSet Reference
	Overview
	Functions
	CFSetAddValue
	CFSetCreateMutable
	CFSetCreateMutableCopy
	CFSetRemoveAllValues
	CFSetRemoveValue
	CFSetReplaceValue
	CFSetSetValue

	Data Types
	CFMutableSetRef

	CFMutableString Reference
	Overview
	Functions
	CFStringAppend
	CFStringAppendCharacters
	CFStringAppendCString
	CFStringAppendFormat
	CFStringAppendFormatAndArguments
	CFStringAppendPascalString
	CFStringCapitalize
	CFStringCreateMutable
	CFStringCreateMutableCopy
	CFStringCreateMutableWithExternalCharactersNoCopy
	CFStringDelete
	CFStringFindAndReplace
	CFStringFold
	CFStringInsert
	CFStringLowercase
	CFStringNormalize
	CFStringPad
	CFStringReplace
	CFStringReplaceAll
	CFStringSetExternalCharactersNoCopy
	CFStringTransform
	CFStringTrim
	CFStringTrimWhitespace
	CFStringUppercase

	Data Types
	CFMutableStringRef

	Constants
	String Normalization Forms
	Transform Identifiers for CFStringTransform

	CFNotificationCenter Reference
	Overview
	Functions by Task
	Accessing a Notification Center
	Posting a Notification
	Adding and Removing Observers
	Getting the CFNotificationCenter Type ID

	Functions
	CFNotificationCenterAddObserver
	CFNotificationCenterGetDarwinNotifyCenter
	CFNotificationCenterGetDistributedCenter
	CFNotificationCenterGetLocalCenter
	CFNotificationCenterGetTypeID
	CFNotificationCenterPostNotification
	CFNotificationCenterPostNotificationWithOptions
	CFNotificationCenterRemoveEveryObserver
	CFNotificationCenterRemoveObserver

	Callbacks
	CFNotificationCallback

	Data Types
	CFNotificationCenterRef

	Constants
	Notification Delivery Suspension Behavior
	Notification Posting Options

	CFNull Reference
	Overview
	Functions
	CFNullGetTypeID

	Data Types
	CFNullRef

	Constants
	Predefined Value

	CFNumber Reference
	Overview
	Functions by Task
	Creating a Number
	Getting Information About Numbers
	Comparing Numbers
	Getting the CFNumber Type ID

	Functions
	CFNumberCompare
	CFNumberCreate
	CFNumberGetByteSize
	CFNumberGetType
	CFNumberGetTypeID
	CFNumberGetValue
	CFNumberIsFloatType

	Data Types
	CFNumberRef

	Constants
	Number Types
	Predefined Values

	CFNumberFormatter Reference
	Overview
	Functions by Task
	Creating a Number Formatter
	Configuring a Number Formatter
	Formatting Values
	Examining a Number Formatter
	Getting the CFNumberFormatter Type ID

	Functions
	CFNumberFormatterCopyProperty
	CFNumberFormatterCreate
	CFNumberFormatterCreateNumberFromString
	CFNumberFormatterCreateStringWithNumber
	CFNumberFormatterCreateStringWithValue
	CFNumberFormatterGetDecimalInfoForCurrencyCode
	CFNumberFormatterGetFormat
	CFNumberFormatterGetLocale
	CFNumberFormatterGetStyle
	CFNumberFormatterGetTypeID
	CFNumberFormatterGetValueFromString
	CFNumberFormatterSetFormat
	CFNumberFormatterSetProperty

	Data Types
	CFNumberFormatterOptionFlags
	CFNumberFormatterPadPosition
	CFNumberFormatterRef
	CFNumberFormatterStyle

	Constants
	Number Formatter Styles
	Number Formatter Property Keys
	Number Format Options
	Rounding Modes
	Padding Positions

	CFPlugIn Reference
	Overview
	Functions by Task
	Creating Plug-Ins
	Registration
	CFPlugIn Miscellaneous Functions

	Functions
	CFPlugInAddInstanceForFactory
	CFPlugInCreate
	CFPlugInFindFactoriesForPlugInType
	CFPlugInFindFactoriesForPlugInTypeInPlugIn
	CFPlugInGetBundle
	CFPlugInGetTypeID
	CFPlugInInstanceCreate
	CFPlugInIsLoadOnDemand
	CFPlugInRegisterFactoryFunction
	CFPlugInRegisterFactoryFunctionByName
	CFPlugInRegisterPlugInType
	CFPlugInRemoveInstanceForFactory
	CFPlugInSetLoadOnDemand
	CFPlugInUnregisterFactory
	CFPlugInUnregisterPlugInType

	Callbacks
	CFPlugInDynamicRegisterFunction
	CFPlugInFactoryFunction
	CFPlugInUnloadFunction

	Data Types
	CFPlugInRef

	Constants
	Information Property List Keys

	CFPlugInInstance Reference
	Overview
	Functions
	CFPlugInInstanceCreateWithInstanceDataSize
	CFPlugInInstanceGetFactoryName
	CFPlugInInstanceGetInstanceData
	CFPlugInInstanceGetInterfaceFunctionTable
	CFPlugInInstanceGetTypeID

	Callbacks
	CFPlugInInstanceDeallocateInstanceDataFunction
	CFPlugInInstanceGetInterfaceFunction

	Data Types
	CFPlugInInstanceRef

	CFPropertyList Reference
	Overview
	Functions by Task
	Creating a Property List
	Exporting a Property List
	Validating a Property List

	Functions
	CFPropertyListCreateDeepCopy
	CFPropertyListCreateFromStream
	CFPropertyListCreateFromXMLData
	CFPropertyListCreateXMLData
	CFPropertyListIsValid
	CFPropertyListWriteToStream

	Data Types
	CFPropertyListRef

	Constants
	Property List Formats
	Property List Mutability Options

	CFReadStream Reference
	Overview
	Functions by Task
	Creating a Read Stream
	Opening and Closing a Read Stream
	Reading from a Stream
	Scheduling a Read Stream
	Examining Stream Properties
	Setting Stream Properties
	Getting the CFReadStream Type ID

	Functions
	CFReadStreamClose
	CFReadStreamCopyError
	CFReadStreamCopyProperty
	CFReadStreamCreateWithBytesNoCopy
	CFReadStreamCreateWithFile
	CFReadStreamGetBuffer
	CFReadStreamGetError
	CFReadStreamGetStatus
	CFReadStreamGetTypeID
	CFReadStreamHasBytesAvailable
	CFReadStreamOpen
	CFReadStreamRead
	CFReadStreamScheduleWithRunLoop
	CFReadStreamSetClient
	CFReadStreamSetProperty
	CFReadStreamUnscheduleFromRunLoop

	Callbacks
	CFReadStreamClientCallBack

	Data Types
	CFReadStreamRef
	CFStreamClientContext

	CFRunLoop Reference
	Overview
	Functions by Task
	Getting a Run Loop
	Starting and Stopping a Run Loop
	Managing Sources
	Managing Observers
	Managing Run Loop Modes
	Managing Timers
	Getting the CFRunLoop Type ID

	Functions
	CFRunLoopAddCommonMode
	CFRunLoopAddObserver
	CFRunLoopAddSource
	CFRunLoopAddTimer
	CFRunLoopContainsObserver
	CFRunLoopContainsSource
	CFRunLoopContainsTimer
	CFRunLoopCopyAllModes
	CFRunLoopCopyCurrentMode
	CFRunLoopGetCurrent
	CFRunLoopGetMain
	CFRunLoopGetNextTimerFireDate
	CFRunLoopGetTypeID
	CFRunLoopIsWaiting
	CFRunLoopRemoveObserver
	CFRunLoopRemoveSource
	CFRunLoopRemoveTimer
	CFRunLoopRun
	CFRunLoopRunInMode
	CFRunLoopStop
	CFRunLoopWakeUp

	Data Types
	CFRunLoopRef

	Constants
	CFRunLoopRunInMode Exit Codes
	Common Mode Flag
	Default Run Loop Mode

	CFRunLoopObserver Reference
	Overview
	Functions
	CFRunLoopObserverCreate
	CFRunLoopObserverDoesRepeat
	CFRunLoopObserverGetActivities
	CFRunLoopObserverGetContext
	CFRunLoopObserverGetOrder
	CFRunLoopObserverGetTypeID
	CFRunLoopObserverInvalidate
	CFRunLoopObserverIsValid

	Callbacks
	CFRunLoopObserverCallBack

	Data Types
	CFRunLoopObserverContext
	CFRunLoopObserverRef

	Constants
	Run Loop Activities

	CFRunLoopSource Reference
	Overview
	Functions
	CFRunLoopSourceCreate
	CFRunLoopSourceGetContext
	CFRunLoopSourceGetOrder
	CFRunLoopSourceGetTypeID
	CFRunLoopSourceInvalidate
	CFRunLoopSourceIsValid
	CFRunLoopSourceSignal

	Callbacks
	CFRunLoopCancelCallBack
	CFRunLoopEqualCallBack
	CFRunLoopGetPortCallBack
	CFRunLoopHashCallBack
	CFRunLoopMachPerformCallBack
	CFRunLoopPerformCallBack
	CFRunLoopScheduleCallBack

	Data Types
	CFRunLoopSourceContext
	CFRunLoopSourceContext1
	CFRunLoopSourceRef

	CFRunLoopTimer Reference
	Overview
	Functions
	CFRunLoopTimerCreate
	CFRunLoopTimerDoesRepeat
	CFRunLoopTimerGetContext
	CFRunLoopTimerGetInterval
	CFRunLoopTimerGetNextFireDate
	CFRunLoopTimerGetOrder
	CFRunLoopTimerGetTypeID
	CFRunLoopTimerInvalidate
	CFRunLoopTimerIsValid
	CFRunLoopTimerSetNextFireDate

	Callbacks
	CFRunLoopTimerCallBack

	Data Types
	CFRunLoopTimerContext
	CFRunLoopTimerRef

	CFSet Reference
	Overview
	Functions by Task
	Creating Sets
	Examining a Set
	Applying a Function to Set Members
	Getting the CFSet Type ID

	Functions
	CFSetApplyFunction
	CFSetContainsValue
	CFSetCreate
	CFSetCreateCopy
	CFSetGetCount
	CFSetGetCountOfValue
	CFSetGetTypeID
	CFSetGetValue
	CFSetGetValueIfPresent
	CFSetGetValues

	Callbacks
	CFSetApplierFunction
	CFSetCopyDescriptionCallBack
	CFSetEqualCallBack
	CFSetHashCallBack
	CFSetReleaseCallBack
	CFSetRetainCallBack

	Data Types
	CFSetCallBacks
	CFSetRef

	Constants
	Predefined Callback Structures

	CFSocket Reference
	Overview
	Functions by Task
	Creating Sockets
	Configuring Sockets
	Using Sockets

	Functions
	CFSocketConnectToAddress
	CFSocketCopyAddress
	CFSocketCopyPeerAddress
	CFSocketCreate
	CFSocketCreateConnectedToSocketSignature
	CFSocketCreateRunLoopSource
	CFSocketCreateWithNative
	CFSocketCreateWithSocketSignature
	CFSocketDisableCallBacks
	CFSocketEnableCallBacks
	CFSocketGetContext
	CFSocketGetNative
	CFSocketGetSocketFlags
	CFSocketGetTypeID
	CFSocketInvalidate
	CFSocketIsValid
	CFSocketSendData
	CFSocketSetAddress
	CFSocketSetSocketFlags

	Callbacks
	CFSocketCallBack

	Data Types
	CFSocketContext
	CFSocketNativeHandle
	CFSocketRef
	CFSocketSignature

	Constants
	Callback Types
	CFSocket Flags
	Error Codes

	CFString Reference
	Overview
	Functions by Task
	Creating a CFString
	Searching Strings
	Comparing Strings
	Accessing Characters
	Working With Encodings
	Getting Numeric Values
	Getting String Properties
	String File System Representations
	Getting Paragraph Bounds

	Functions
	CFShowStr
	CFSTR
	CFStringCompare
	CFStringCompareWithOptions
	CFStringCompareWithOptionsAndLocale
	CFStringConvertEncodingToIANACharSetName
	CFStringConvertEncodingToNSStringEncoding
	CFStringConvertEncodingToWindowsCodepage
	CFStringConvertIANACharSetNameToEncoding
	CFStringConvertNSStringEncodingToEncoding
	CFStringConvertWindowsCodepageToEncoding
	CFStringCreateArrayBySeparatingStrings
	CFStringCreateArrayWithFindResults
	CFStringCreateByCombiningStrings
	CFStringCreateCopy
	CFStringCreateExternalRepresentation
	CFStringCreateFromExternalRepresentation
	CFStringCreateWithBytes
	CFStringCreateWithBytesNoCopy
	CFStringCreateWithCharacters
	CFStringCreateWithCharactersNoCopy
	CFStringCreateWithCString
	CFStringCreateWithCStringNoCopy
	CFStringCreateWithFileSystemRepresentation
	CFStringCreateWithFormat
	CFStringCreateWithFormatAndArguments
	CFStringCreateWithPascalString
	CFStringCreateWithPascalStringNoCopy
	CFStringCreateWithSubstring
	CFStringFind
	CFStringFindCharacterFromSet
	CFStringFindWithOptions
	CFStringFindWithOptionsAndLocale
	CFStringGetBytes
	CFStringGetCharacterAtIndex
	CFStringGetCharacterFromInlineBuffer
	CFStringGetCharacters
	CFStringGetCharactersPtr
	CFStringGetCString
	CFStringGetCStringPtr
	CFStringGetDoubleValue
	CFStringGetFastestEncoding
	CFStringGetFileSystemRepresentation
	CFStringGetIntValue
	CFStringGetLength
	CFStringGetLineBounds
	CFStringGetListOfAvailableEncodings
	CFStringGetMaximumSizeForEncoding
	CFStringGetMaximumSizeOfFileSystemRepresentation
	CFStringGetMostCompatibleMacStringEncoding
	CFStringGetNameOfEncoding
	CFStringGetParagraphBounds
	CFStringGetPascalString
	CFStringGetPascalStringPtr
	CFStringGetRangeOfComposedCharactersAtIndex
	CFStringGetSmallestEncoding
	CFStringGetSystemEncoding
	CFStringGetTypeID
	CFStringHasPrefix
	CFStringHasSuffix
	CFStringInitInlineBuffer
	CFStringIsEncodingAvailable

	Data Types
	CFStringCompareFlags
	CFStringEncoding
	CFStringEncodings
	CFStringInlineBuffer
	CFStringRef

	Constants
	String Comparison Flags
	Built-in String Encodings
	Invalid String Encoding Flag
	External String Encodings

	CFStringTokenizer Reference
	Overview
	Functions by Task
	Creating a Tokenizer
	Setting the String
	Changing the Location
	Getting Information About the Current Token
	Identifying a Language
	Getting the CFStringTokenizer Type ID

	Functions
	CFStringTokenizerAdvanceToNextToken
	CFStringTokenizerCopyBestStringLanguage
	CFStringTokenizerCopyCurrentTokenAttribute
	CFStringTokenizerCreate
	CFStringTokenizerGetCurrentSubTokens
	CFStringTokenizerGetCurrentTokenRange
	CFStringTokenizerGetTypeID
	CFStringTokenizerGoToTokenAtIndex
	CFStringTokenizerSetString

	Data Types
	CFStringTokenizerRef
	CFStringTokenizerTokenType

	Constants
	Tokenization Modifiers
	Token Types

	CFTimeZone Reference
	Overview
	Functions by Task
	Creating a Time Zone
	System and Default Time Zones and Information
	Getting Information About Time Zones
	Getting Daylight Savings Time Information
	Getting the CFTimeZone Type ID

	Functions
	CFTimeZoneCopyAbbreviation
	CFTimeZoneCopyAbbreviationDictionary
	CFTimeZoneCopyDefault
	CFTimeZoneCopyKnownNames
	CFTimeZoneCopyLocalizedName
	CFTimeZoneCopySystem
	CFTimeZoneCreate
	CFTimeZoneCreateWithName
	CFTimeZoneCreateWithTimeIntervalFromGMT
	CFTimeZoneGetData
	CFTimeZoneGetDaylightSavingTimeOffset
	CFTimeZoneGetName
	CFTimeZoneGetNextDaylightSavingTimeTransition
	CFTimeZoneGetSecondsFromGMT
	CFTimeZoneGetTypeID
	CFTimeZoneIsDaylightSavingTime
	CFTimeZoneResetSystem
	CFTimeZoneSetAbbreviationDictionary
	CFTimeZoneSetDefault

	Data Types
	CFTimeZoneNameStyle
	CFTimeZoneRef

	Constants
	Notification Name
	Time Zone Name Styles

	CFTree Reference
	Overview
	Functions by Task
	Creating Trees
	Modifying a Tree
	Sorting a Tree
	Examining a Tree
	Performing an Operation on Tree Elements
	Getting the Tree Type ID

	Functions
	CFTreeAppendChild
	CFTreeApplyFunctionToChildren
	CFTreeCreate
	CFTreeFindRoot
	CFTreeGetChildAtIndex
	CFTreeGetChildCount
	CFTreeGetChildren
	CFTreeGetContext
	CFTreeGetFirstChild
	CFTreeGetNextSibling
	CFTreeGetParent
	CFTreeGetTypeID
	CFTreeInsertSibling
	CFTreePrependChild
	CFTreeRemove
	CFTreeRemoveAllChildren
	CFTreeSetContext
	CFTreeSortChildren

	Callbacks
	CFTreeApplierFunction
	CFTreeCopyDescriptionCallBack
	CFTreeReleaseCallBack
	CFTreeRetainCallBack

	Data Types
	CFTreeContext
	CFTreeRef

	CFType Reference
	Overview
	Functions by Task
	Memory Management
	Determining Equality
	Hashing
	Miscellaneous Functions

	Functions
	CFCopyDescription
	CFCopyTypeIDDescription
	CFEqual
	CFGetAllocator
	CFGetRetainCount
	CFGetTypeID
	CFHash
	CFMakeCollectable
	CFRelease
	CFRetain
	CFShow

	Data Types
	CFHashCode
	CFTypeID
	CFTypeRef

	CFURL Reference
	Overview
	Functions by Task
	Creating a CFURL
	Accessing the Parts of a URL
	Converting URLs to Other Representations
	Getting URL Properties

	Functions
	CFURLCanBeDecomposed
	CFURLCopyAbsoluteURL
	CFURLCopyFileSystemPath
	CFURLCopyFragment
	CFURLCopyHostName
	CFURLCopyLastPathComponent
	CFURLCopyNetLocation
	CFURLCopyParameterString
	CFURLCopyPassword
	CFURLCopyPath
	CFURLCopyPathExtension
	CFURLCopyQueryString
	CFURLCopyResourceSpecifier
	CFURLCopyScheme
	CFURLCopyStrictPath
	CFURLCopyUserName
	CFURLCreateAbsoluteURLWithBytes
	CFURLCreateCopyAppendingPathComponent
	CFURLCreateCopyAppendingPathExtension
	CFURLCreateCopyDeletingLastPathComponent
	CFURLCreateCopyDeletingPathExtension
	CFURLCreateData
	CFURLCreateFromFileSystemRepresentation
	CFURLCreateFromFileSystemRepresentationRelativeToBase
	CFURLCreateFromFSRef
	CFURLCreateStringByAddingPercentEscapes
	CFURLCreateStringByReplacingPercentEscapes
	CFURLCreateStringByReplacingPercentEscapesUsingEncoding
	CFURLCreateWithBytes
	CFURLCreateWithFileSystemPath
	CFURLCreateWithFileSystemPathRelativeToBase
	CFURLCreateWithString
	CFURLGetBaseURL
	CFURLGetByteRangeForComponent
	CFURLGetBytes
	CFURLGetFileSystemRepresentation
	CFURLGetFSRef
	CFURLGetPortNumber
	CFURLGetString
	CFURLGetTypeID
	CFURLHasDirectoryPath

	Data Types
	CFURLRef

	Constants
	Component Type
	Path Style

	CFUserNotification Reference
	Overview
	Functions
	CFUserNotificationCancel
	CFUserNotificationCheckBoxChecked
	CFUserNotificationCreate
	CFUserNotificationCreateRunLoopSource
	CFUserNotificationDisplayAlert
	CFUserNotificationDisplayNotice
	CFUserNotificationGetResponseDictionary
	CFUserNotificationGetResponseValue
	CFUserNotificationGetTypeID
	CFUserNotificationPopUpSelection
	CFUserNotificationReceiveResponse
	CFUserNotificationSecureTextField
	CFUserNotificationUpdate

	Callbacks
	CFUserNotificationCallBack

	Data Types
	CFUserNotificationRef

	Constants
	Alert Levels
	Response Codes
	Button Flags
	Dialog Description Keys

	CFUUID Reference
	Overview
	Functions by Task
	Creating CFUUID Objects
	Getting Information About CFUUID Objects
	Getting the CFUUID Type Identifier

	Functions
	CFUUIDCreate
	CFUUIDCreateFromString
	CFUUIDCreateFromUUIDBytes
	CFUUIDCreateString
	CFUUIDCreateWithBytes
	CFUUIDGetConstantUUIDWithBytes
	CFUUIDGetTypeID
	CFUUIDGetUUIDBytes

	Data Types
	CFUUIDBytes
	CFUUIDRef

	CFWriteStream Reference
	Overview
	Functions by Task
	Creating a Write Stream
	Opening and Closing a Stream
	Writing to a Stream
	Scheduling a Write Stream
	Examining Stream Properties
	Setting Stream Properties
	Getting the CFWriteStream Type ID

	Functions
	CFWriteStreamCanAcceptBytes
	CFWriteStreamClose
	CFWriteStreamCopyError
	CFWriteStreamCopyProperty
	CFWriteStreamCreateWithAllocatedBuffers
	CFWriteStreamCreateWithBuffer
	CFWriteStreamCreateWithFile
	CFWriteStreamGetError
	CFWriteStreamGetStatus
	CFWriteStreamGetTypeID
	CFWriteStreamOpen
	CFWriteStreamScheduleWithRunLoop
	CFWriteStreamSetClient
	CFWriteStreamSetProperty
	CFWriteStreamUnscheduleFromRunLoop
	CFWriteStreamWrite

	Callbacks
	CFWriteStreamClientCallBack

	Data Types
	CFWriteStreamRef

	CFXMLNode Reference
	Overview
	Functions
	CFXMLNodeCreate
	CFXMLNodeCreateCopy
	CFXMLNodeGetInfoPtr
	CFXMLNodeGetString
	CFXMLNodeGetTypeCode
	CFXMLNodeGetTypeID
	CFXMLNodeGetVersion

	Data Types
	CFXMLAttributeDeclarationInfo
	CFXMLAttributeListDeclarationInfo
	CFXMLDocumentInfo
	CFXMLDocumentTypeInfo
	CFXMLElementInfo
	CFXMLElementTypeDeclarationInfo
	CFXMLEntityInfo
	CFXMLEntityReferenceInfo
	CFXMLExternalID
	CFXMLNodeRef
	CFXMLNotationInfo
	CFXMLProcessingInstructionInfo

	Constants
	Entity Type Code
	Node Current Version
	Node Type Code

	CFXMLParser Reference
	Overview
	Functions
	CFXMLParserAbort
	CFXMLParserCopyErrorDescription
	CFXMLParserCreate
	CFXMLParserCreateWithDataFromURL
	CFXMLParserGetCallBacks
	CFXMLParserGetContext
	CFXMLParserGetDocument
	CFXMLParserGetLineNumber
	CFXMLParserGetLocation
	CFXMLParserGetSourceURL
	CFXMLParserGetStatusCode
	CFXMLParserGetTypeID
	CFXMLParserParse

	Callbacks
	CFXMLParserAddChildCallBack
	CFXMLParserCopyDescriptionCallBack
	CFXMLParserCreateXMLStructureCallBack
	CFXMLParserEndXMLStructureCallBack
	CFXMLParserHandleErrorCallBack
	CFXMLParserReleaseCallBack
	CFXMLParserResolveExternalEntityCallBack
	CFXMLParserRetainCallBack

	Data Types
	CFXMLParserCallBacks
	CFXMLParserContext
	CFXMLParserRef

	Constants
	Parser Status Codes
	Parsing Options

	CFXMLTree Reference
	Overview
	Functions
	CFXMLCreateStringByEscapingEntities
	CFXMLCreateStringByUnescapingEntities
	CFXMLTreeCreateFromData
	CFXMLTreeCreateFromDataWithError
	CFXMLTreeCreateWithDataFromURL
	CFXMLTreeCreateWithNode
	CFXMLTreeCreateXMLData
	CFXMLTreeGetNode

	Data Types
	CFXMLTreeRef

	Constants
	Error Dictionary Keys

	Part II: Managers
	Base Utilities Reference
	Overview
	Functions
	CFRangeMake

	Callbacks
	CFComparatorFunction

	Data Types
	CFIndex
	CFOptionFlags
	CFRange

	Constants
	Comparison Results
	Value Not Found
	Current Framework Version Number
	Framework Version Numbers

	Byte-Order Utilities Reference
	Overview
	Functions
	CFByteOrderGetCurrent
	CFConvertDoubleHostToSwapped
	CFConvertDoubleSwappedToHost
	CFConvertFloat32HostToSwapped
	CFConvertFloat32SwappedToHost
	CFConvertFloat64HostToSwapped
	CFConvertFloat64SwappedToHost
	CFConvertFloatHostToSwapped
	CFConvertFloatSwappedToHost
	CFSwapInt16
	CFSwapInt16BigToHost
	CFSwapInt16HostToBig
	CFSwapInt16HostToLittle
	CFSwapInt16LittleToHost
	CFSwapInt32
	CFSwapInt32BigToHost
	CFSwapInt32HostToBig
	CFSwapInt32HostToLittle
	CFSwapInt32LittleToHost
	CFSwapInt64
	CFSwapInt64BigToHost
	CFSwapInt64HostToBig
	CFSwapInt64HostToLittle
	CFSwapInt64LittleToHost

	Data Types
	CFSwappedFloat32
	CFSwappedFloat64

	Constants
	Byte Order Flags

	Core Foundation URL Access Utilities Reference
	Overview
	Functions
	CFURLCreateDataAndPropertiesFromResource
	CFURLCreatePropertyFromResource
	CFURLDestroyResource
	CFURLWriteDataAndPropertiesToResource

	Constants
	Error Codes
	File URL Properties
	HTTP URL Properties

	Preferences Utilities Reference
	Overview
	Functions by Task
	Getting Preference Values
	Setting Preference Values
	Synchronizing Preferences
	Adding and Removing Suite Preferences
	Miscellaneous Functions

	Functions
	CFPreferencesAddSuitePreferencesToApp
	CFPreferencesAppSynchronize
	CFPreferencesAppValueIsForced
	CFPreferencesCopyApplicationList
	CFPreferencesCopyAppValue
	CFPreferencesCopyKeyList
	CFPreferencesCopyMultiple
	CFPreferencesCopyValue
	CFPreferencesGetAppBooleanValue
	CFPreferencesGetAppIntegerValue
	CFPreferencesRemoveSuitePreferencesFromApp
	CFPreferencesSetAppValue
	CFPreferencesSetMultiple
	CFPreferencesSetValue
	CFPreferencesSynchronize

	Constants
	Application, Host, and User Keys

	Socket Name Server Utilities Reference
	Overview
	Functions
	CFSocketCopyRegisteredSocketSignature
	CFSocketCopyRegisteredValue
	CFSocketGetDefaultNameRegistryPortNumber
	CFSocketRegisterSocketSignature
	CFSocketRegisterValue
	CFSocketSetDefaultNameRegistryPortNumber
	CFSocketUnregister

	Constants
	CFSocket Name Server Keys

	Time Utilities Reference
	Overview
	Functions
	CFAbsoluteTimeAddGregorianUnits
	CFAbsoluteTimeGetCurrent
	CFAbsoluteTimeGetDayOfWeek
	CFAbsoluteTimeGetDayOfYear
	CFAbsoluteTimeGetDifferenceAsGregorianUnits
	CFAbsoluteTimeGetGregorianDate
	CFAbsoluteTimeGetWeekOfYear
	CFGregorianDateGetAbsoluteTime
	CFGregorianDateIsValid

	Data Types
	CFAbsoluteTime
	CFGregorianDate
	CFGregorianUnits
	CFTimeInterval

	Constants
	CFGregorianUnitFlags
	Predefined Time Interval Values

	Part III: Other References
	CFStream Reference
	Overview
	Functions
	CFStreamCreateBoundPair
	CFStreamCreatePairWithPeerSocketSignature
	CFStreamCreatePairWithSocket
	CFStreamCreatePairWithSocketToHost

	Data Types
	CFStreamError
	CFStreamClientContext

	Constants
	CFStream Status Constants
	CFStream Error Domain Constants
	CFStream Error Domain Constants (CFHost)
	CFStream Event Type Constants
	Stream Properties

	10.5 Symbol Changes
	C Symbols
	CFBase.h
	Data Types & Constants

	CFBundle.h
	Functions
	Data Types & Constants

	CFByteOrder.h
	Data Types & Constants

	CFCalendar.h
	Functions

	CFCharacterSet.h
	Data Types & Constants

	CFDateFormatter.h
	Data Types & Constants

	CFError.h
	Functions
	Data Types & Constants

	CFFileDescriptor.h
	Functions
	Data Types & Constants

	CFLocale.h
	Functions
	Data Types & Constants

	CFNumber.h
	Data Types & Constants

	CFNumberFormatter.h
	Data Types & Constants

	CFRunLoop.h
	Functions

	CFStream.h
	Functions

	CFString.h
	Functions
	Data Types & Constants

	CFStringEncodingExt.h
	Data Types & Constants

	CFStringTokenizer.h
	Functions
	Data Types & Constants

	CFTimeZone.h
	Functions
	Data Types & Constants

	10.4 Symbol Changes
	C Symbols
	CFAttributedString.h
	Functions
	Data Types & Constants

	CFBase.h
	Functions
	Data Types & Constants

	CFCalendar.h
	Functions
	Data Types & Constants

	CFDateFormatter.h
	Data Types & Constants

	CFLocale.h
	Functions
	Data Types & Constants

	CFNotificationCenter.h
	Functions

	CFNumberFormatter.h
	Data Types & Constants

	CFString.h
	Functions
	Data Types & Constants

	CFStringEncodingExt.h
	Data Types & Constants

	10.3 Symbol Changes
	C Symbols
	CFBase.h
	Data Types & Constants

	CFCharacterSet.h
	Functions
	Data Types & Constants

	CFDateFormatter.h
	Functions
	Data Types & Constants

	CFLocale.h
	Functions
	Data Types & Constants

	CFNotificationCenter.h
	Functions
	Data Types & Constants

	CFNumberFormatter.h
	Functions
	Data Types & Constants

	CFStream.h
	Data Types & Constants

	CFURL.h
	Functions
	Data Types & Constants

	CFUserNotification.h
	Data Types & Constants

	CFXMLParser.h
	Functions
	Data Types & Constants

	10.2 Symbol Changes
	C Symbols
	CFBase.h
	Functions
	Data Types & Constants

	CFBundle.h
	Functions
	Data Types & Constants

	CFCharacterSet.h
	Functions
	Data Types & Constants

	CFPreferences.h
	Functions

	CFPropertyList.h
	Functions
	Data Types & Constants

	CFSocket.h
	Functions
	Data Types & Constants

	CFStream.h
	Functions
	Data Types & Constants

	CFString.h
	Functions
	Data Types & Constants

	CFStringEncodingExt.h
	Data Types & Constants

	10.1 Symbol Changes
	C Symbols
	CFBase.h
	Data Types & Constants

	CFStream.h
	Functions
	Data Types & Constants

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	N
	P
	R
	S
	T
	V

