
Mac OS X Notification Overview
Darwin > Runtime Architecture

2007-05-15

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, and Objective-C are trademarks of
Apple Inc., registered in the United States and
other countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Mac OS X Notification Overview 7

Organization of This Document 7

Chapter 1 Notification Basics 9

What Is a Notification? 9
What Is Coalescing? 10
What Types of Shared Store Can Be Used? 11
What Message-Passing Mechanisms Can Be Used? 11
How Should Notifications Be Named? 11

Chapter 2 Choosing a Notification Technology 13

Applications Communicating with Daemons 13
Mixed Carbon and Cocoa Applications 13
System-Provided Notifications 14

Chapter 3 Darwin Notification Concepts 15

Including Relevant Headers 15
Sending Notifications 15
Receiving Notifications 16

Receiving Notifications Using Signals 16
Receiving Notifications Using File Descriptors 17
Receiving Notifications Using Mach Messages 19
Receiving Notifications Manually 20

Chapter 4 Alternatives to Notification 21

Message Passing and Remote Procedure Call APIs 21
Apple Events 21
Distributed Objects 21
Other Message-Passing and Remote Procedure Call Technologies 21

Memory Mapping and Shared Memory 21

Document Revision History 23

3
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

4
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures

Chapter 1 Notification Basics 9

Figure 1-1 Notification with a shared data store 9

5
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

6
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

FIGURES

Notifications are a means of sharing state information between two applications, daemons, or other processes
in a way that is robust while maintaining good performance.

You should read this document if you are writing an application that uses interprocess communication. You
should also read this document if you need to learn about Darwin notifications (including kernel event
notifications).

Organization of This Document

This document is organized into four chapters:

 ■ “Notification Basics” (page 9)—describes notifications at a high level.

 ■ “Choosing a Notification Technology” (page 13)—highlights the differences between notification
technologies and provides guidance about what notification API you should use under different
circumstances.

 ■ “Darwin Notification Concepts” (page 15)—describes the Darwin notification mechanism.

 ■ “Alternatives to Notification” (page 21)—describes alternatives to notifications and provides guidelines
for their use.

Organization of This Document 7
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Mac OS X Notification
Overview

8 Organization of This Document
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Mac OS X Notification Overview

In modern computing, developers often need to find out when external information (such as configuration
files, the current time zone or time of day, and so on) changes.

There are many ways to solve this problem, of which notifications are just one. The main ways are:

 ■ Notifications—the subject of this document. Notifications are a combination of shared memory and
message passing.

 ■ Polling—pulling the needed information from another application or from a file on a regular basis. This
technique is wasteful of CPU resources and is thus strongly discouraged for general use. However, when
combined with shared memory, polling is useful in certain specialized environments.

 ■ Shared memory—providing a common repository for shared information that can be accessed through
pointers in multiple processes. This technique is used as part of notification mechanisms. However, by
itself, it is not a sufficient solution because of poor responsiveness. It is generally combined with either
message passing or polling.

 ■ Message passing—a “push” method in which the sending application tells the receiving application
that the information has changed. By itself, this is a good technique in terms of responsiveness, but it
can be problematic in terms of robustness because when a message is lost, the receiving application
cannot obtain the new value.

Although notification mechanisms differ greatly in the details of their implementation, they share a common
design goal: allowing the recipient of the notification to monitor a piece of information in such a way that
minimizes overhead while enabling designs that are robust even if a notification gets lost.

What Is a Notification?

At a high level, a notification is a message indicating that something has changed. Notification schemes
typically combine a shared data store with a message-passing mechanism.

Figure 1-1 Notification with a shared data store

Change notification
Application 1 Application 2

Shared
data store

What Is a Notification? 9
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Notification Basics

It is this combination that makes notification schemes powerful. With message passing by itself, you face a
tradeoff between performance and robustness. The UDP networking protocol, for example, is relatively
efficient but does not provide delivery guarantees. By contrast, TCP provides delivery guarantees, but the
extra overhead involved in doing so reduces performance.

Similarly, with shared storage by itself, you face a tradeoff between responsiveness and overall system
performance. If you check the shared storage frequently, the application would appear responsive to changes
in the shared state, but it would also hog CPU resources. By contrast, if you check less frequently, the CPU
load would be lessened, but the application would be less responsive.

By separating the data from the message, you can get robustness, responsiveness, and performance. Because
the message is sent to the receiving application, the receiving application does not have to constantly check
for a state change. This results in responsiveness without the performance penalties associated with polling.

Similarly, because the data store is shared, the receiving application can request the current information and
act on it at any time. Thus, that application could occasionally check the shared store to make certain the
data has not changed behind its back. Alternatively, it could do such a check before performing any particularly
critical operations to ensure correctness.

Thus, a notification can be compared to a bulletin board. If you are the keeper of the board, you can post
information on the board. You can tell other people that new information has been posted. Others can then
look at the board whenever it is convenient for them to do so. However, if someone fails to get such a
message, he or she can still look at the bulletin board before making a critical decision. If desired, people can
even wander by and look at the board without signing up to receive notices.

What Is Coalescing?

The word coalesce means “to unite”. In the context of notifications, if two notifications have identical content,
this means two things:

 ■ Identical messages can be reduced to a single message. You only need to receive one notification that
“variable X has changed” for correctness.

 ■ Nonidentical messages with small payloads can be sent to the receiving process as a group.

Coalescing notifications can have a significant effect on performance when a large number of notifications
are sent in a short period of time. By combining notifications, the extra context switching required to send
those additional notifications to the receiving application is eliminated. For this reason, you should try to
maximize coalescing as much as possible.

To maximize coalescing of messages, you should minimize the payload as much as possible. Darwin
notifications, for example, which carry no payload other than the name of the notification, can be coalesced
very easily.

10 What Is Coalescing?
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Notification Basics

What Types of Shared Store Can Be Used?

The shared data store used for a notification can be a file, POSIX or System V shared memory, a database
record, or something else entirely, at the discretion of the developer who creates the notification scheme.
The only hard and fast requirement for a shared store is that it must be accessible to both the sending and
the receiving application—that is, that it must actually be a shared store.

For notifications generated by Mac OS X components, the storage is usually a file on disk or a commpage
location (date and time changes, for example). However, the location need not be a single physical location
at all. Instead, it could be an application that gathers the information from throughout the file system or an
API for obtaining the data from lower levels of the operating system. For example, in response to a network
change notification, your application might ask the operating system for updated network interface information
through any number of APIs.

Applications often implement the shared store as part of one of the applications using POSIX or System V
shared memory. This has the advantage of not creating unnecessary files on disk, but it may make state
recovery after an application crash impossible. This may or may not be an issue, depending on the application
and the nature of the shared data.

Another common form of shared storage is a memory-mapped file. To memory map a file, you must first
create the file (of an appropriate length), then call mmap(2) on that file. When you are through with the file,
you delete it as you would any other temporary file. Memory mapping has the advantage of making state
recovery possible in the event of a crash. However, it has the disadvantage of polluting the buffer cache. If
your application depends on rapid disk I/O (such as an audio application) for correctness, you should probably
use shared memory instead.

What Message-Passing Mechanisms Can Be Used?

Notifications can be passed using any number of mechanisms, from Apple Events to UDP (and everything
in between). Most notifications, however, are sent with Darwin notifications (described in “Darwin Notification
Concepts” (page 15)) or a technology built on top of Darwin notifications, such as Core Foundation
notifications (described in CFNotificationCenter Reference) or Cocoa notifications (described in
NSNotificationCenter Class Reference).

How Should Notifications Be Named?

Notifications should be named using a reverse-DNS-style naming. For example, if the MkLinux team released
a daemon called kernel_daemon that provided a notification called kernel_loaded, that notification
would be named org.mklinux.kernel_daemon.kernel_loaded.

The reason for this naming convention is to avoid collisions; the notification namespace is shared across all
applications in the system, both at the Darwin notification level and at higher levels with Core Foundation
or Cocoa notifications.

Note: Notifications that begin with com.apple are reserved.

What Types of Shared Store Can Be Used? 11
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Notification Basics

12 How Should Notifications Be Named?
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Notification Basics

For the most part, the notification technology you choose should be appropriate for the type of programming
you are doing. Command-line tools and daemons should generally use Darwin notifications. High-level
applications should generally use either Core Foundation or Cocoa notifications.

This is not always true, however. In some cases, it may be more appropriate to choose a low-level notification
scheme even in a high-level application. This chapter describes some environments in which you should
choose a different technology than the most obvious choice.

Applications Communicating with Daemons

When applications and daemons must communicate with notifications, the best choice is not always obvious.

 ■ If the daemon is written with Cocoa or Core Foundation, you can use the Cocoa, Core Foundation, or
Darwin notification mechanism, at your option.

 ■ If the daemon is not based on Core Foundation (for example, most cross-platform open source software),
it is usually much easier to use Darwin notifications in the daemon because you can do so without
creating a run loop.

 ■ Darwin notifications are also easier to tie into existing UNIX/Linux daemons because these daemons
often already use signal handlers for event handling, and Darwin offers signal delivery as one of its
supported delivery methods.

 ■ For daemons that use file descriptors (select(2) loops), Darwin notifications can be integrated more
easily because it offers file descriptors as a supported delivery method. Using Darwin notifications directly
is significantly easier than rewriting the main program loop as a CFRunLoop (and, for open source
projects, is much more likely to be accepted into their official source tree).

Of course, you do not have to use the same API in your application as in the daemon. As long as you limit
your use of the Core Foundation or Cocoa notification APIs to empty messages (that is, messages with only
a name), you can use those APIs in your application and still use the Darwin notification API in your daemon.

Mixed Carbon and Cocoa Applications

Cocoa notifications (NSNotificationCenter) and Core Foundation notifications
(CFNotificationCenterRef) can communicate with each other, making it easy to provide notifications
between Carbon and Cocoa applications. However, because these types are not toll-free bridged, you cannot
cast between them.

Applications Communicating with Daemons 13
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Choosing a Notification Technology

For the most part, this is not a problem. However, if you need to post notifications from portions of your
application written in Carbon, it may be easier to use Core Foundation notifications throughout. This will
make it easier to share data structures between C and Objective-C portions of your code without introducing
redundancy.

Similarly, if you are adding notifications to Carbon and Cocoa applications simultaneously and need to write
any glue code that is common to both your Carbon and Cocoa applications, you may find it more convenient
to write a single notification module based on Core Foundation notifications in order to avoid maintaining
multiple versions of your glue code.

System-Provided Notifications

Many parts of Mac OS X provide notifications in other ways. Examples include the I/O Kit, Disk Arbitration,
System Configuration (configd), and kernel queues. To lean how to receive these notifications, you should
read Apple’s documentation about those technologies.

Kernel queues and kernel event notifications are a much better alternative to polling for file changes. Kernel
event notifications also provide a way to find out about a number of other kernel-related events. The kernel
queues mechanism is described in File System Events Programming Guide and in the manual pages for
kevent(2) and kqueue(2).

The I/O Kit notification mechanism is based around the IOService class. Registering for and posting
notifications is described in I/O Kit Fundamentals.

System Configuration notifications are provided through the System Configuration framework. You can learn
more about this framework by reading SystemConfigurationProgrammingGuidelines and SystemConfiguration
Framework Reference.

Disk Arbitration notifications can tell you when a volume is mounted or unmounted. (You can also learn
when volumes are mounted or unmounted using the File System Events API in Mac OS X v10.5 and later.)
You can learn more about Disk Arbitration notifications in Disk Arbitration Framework Reference.

14 System-Provided Notifications
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Choosing a Notification Technology

This chapter describes how to send and receive Darwin notifications. The Darwin notification system is
relatively straightforward for developers familiar with programming in other UNIX/Linux operating systems.
It ties into commonly used systems such as file descriptors and signals to provide delivery of messages to
the client process.

Darwin notifications are supported by the notifyd(8) daemon, a process that listens for incoming
notifications and redelivers those notifications to interested processes in a variety of ways.

Client processes

Notification
Sending process notifyd

Including Relevant Headers

When writing a tool that uses Darwin notifications, the following headers are commonly used:

#include <unistd.h> // good idea in general
#include <stdlib.h> // good idea in general

#include <strings.h> // for bcopy, used by FD_COPY macro
 // (file descriptor delivery)
#include <sys/select.h> // for select (file descriptors delivery)
#include <stdio.h> // for read (file descriptor delivery)

#include <signal.h> // for signal names (signal delivery)

#include <mach/message.h> // For mach message functions and types
 // (mach message delivery)

#include <notify.h> // for all notifications

Sending Notifications

Sending a Darwin notification is very simple. Just call the function notify_post. The function takes a single
argument that contains the name of the notification. (See “How Should Notifications Be Named?” (page 11)
for information about notification naming.)

Including Relevant Headers 15
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Darwin Notification Concepts

For example, if you integrate notifications into the Apache web server and want to notify it that its
configuration file has changed, you might send the notification with a call like the following:

if (notify_post("org.apache.httpd.configFileChanged")) {
 printf("Notification failed.\n"); exit(-1);
}

The function notify_post returns zero on success or an error code on failure. The possible error codes are
described in Status Codes in Darwin Notification API Reference.

Receiving Notifications

Darwin notifications provide four mechanisms for receiving notifications: signals, file descriptors, Mach
messages, and manual polling. This section describes these delivery mechanisms and explains when you
should choose each one.

When adding notification support to existing applications, you should choose whichever mechanism is easiest
to integrate into the application or tool. If your application already uses signal handling, you should use
signals. If your application already uses sockets or file descriptors, you should use file descriptors. And so on.

If you are writing a new application from scratch, file descriptors are the preferred notification transport
because they are more robust against message loss than signals and are easier to use than Mach messages.
Again, you should choose the mechanism that most closely fits the architecture of the tool you are writing.

As a general rule, you should only use the polling interface (described in “Receiving Notifications
Manually” (page 20)) if you need to check for a status change only occasionally.

Receiving Notifications Using Signals

To receive a signal when a new notification is posted, call the function notify_register_signal. This
function tells the notification daemon to send a signal to your process whenever it posts new messages.

Note: Although you can choose what signal notifyd sends to your process, some signals have special
purposes and should not be used for notifications.

The SIGALRM, SIGVTALRM, and SIGTHR (P_SIGTHR) signals are used for other purposes related to thread
scheduling and sleep(1)/usleep(3)/nanosleep(2) timers. If you use these signals for notifications,
unexpected behavior may result.

The SIGKILL signal cannot be trapped and thus cannot be used for notifications (unless your goal is to
terminate your application when the event occurs).

The following snippet shows how to register for the notification described in “Sending Notifications” (page
15):

int notification_token;

...

/* Set up a signal handler for SIGHUP */

16 Receiving Notifications
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Darwin Notification Concepts

signal(SIGHUP, &my_sighup_handler);

/* Tell notifyd to send SIGHUP when this notification
 is received. */

if (notify_register_signal(
 "org.apache.httpd.configFileChanged", SIGHUP,
 ¬ification_token)) {
 printf("Registration failed.\n"); exit(-1);
}

The function notify_register_signal returns zero on success or an error code on failure. The possible
error codes are described in Status Codes in Darwin Notification API Reference.

The value of notification_token is set to an integer value specific to the name for this notification. It is
your responsibility to keep track of these notification token values so that you can find out which notification
was posted (unless you are registering only for a single notification and don’t care about false positives
caused by signals not generated by notifyd).

Portability Note: In Mac OS X, signal handlers are not cleared when a signal handler returns. However, for
maximum portability, you should still get in the habit of calling signal at the end of your signal-handler
function. This will ensure that signal-handling code is portable across operating system environments.

After you register to receive a signals, you must then call notify_check to determine which (if any)
notification triggered the signal, as shown in the next snippet:

int was_posted;

if (notify_check(notification_token, &was_posted)) {
 printf("Call to notify_check failed.\n"); exit(-1);
}
if (was_posted) {
 /* The notification org.apache.httpd.configFileChanged
 was posted. */

}

The function notify_check returns zero on success or an error code on failure. The possible error codes
are described in Status Codes in Darwin Notification API Reference. The function returns a value through the
second parameter to indicate whether the notification has been posted since the last time you called
notify_check.

Receiving Notifications Using File Descriptors

Receiving notifications with file descriptors is relatively straightforward. First, you must call
notify_register_file_descriptor to register for notifications. For example, the following snippet
shows how to register for the notification sent in “Sending Notifications” (page 15):

int fd; /* file descriptor---one per process if
 NOTIFY_REUSE is set, else one per name */
int notification_token; /* notification token---one per name */

...

Receiving Notifications 17
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Darwin Notification Concepts

if (notify_register_file_descriptor("org.apache.httpd.configFileChanged",
 &fd,
 0,
 ¬ification_token)) {
 /* Something went wrong. Bail. */
 printf("Registration failed.\n"); exit(-1);

}

The function notify_register_file_descriptor returns zero on success or an error code on failure.
The possible error codes are described in Status Codes in Darwin Notification API Reference.

Note: The flag field is set to zero (0) in this call. You must not set the flag NOTIFY_REUSE until the second
and subsequent calls to notify_register_file_descriptor. This flag tells the notification library code
to reuse the existing file descriptor. If you use this flag, your code will not work correctly unless the file
descriptor value has been initialized by a previous call to notify_register_file_descriptor.

After you register for notification, you will begin receiving data through the returned file descriptor. You can
detect the arrival of new data using select(2) or poll(2), as shown in the following snippet:

fd_set receive_descriptors, receive_descriptors_copy;

FD_SET(fd, /* from call to notify_register_file_descriptor */
 &receive_descriptors);
FD_COPY(&receive_descriptors, &receive_descriptors_copy);
while (select(fd + 1, &receive_descriptors_copy,
 NULL, NULL, NULL) >= 0) {
 /* Data was received. */
 if (FD_ISSET(fd, &receive_descriptors_copy)) {
 /* Data was received on the right descriptor.
 Do something. */
 int token;

 /*! Read four bytes from the file descriptor. */
 if (read(fd, &token, sizeof(token)) != sizeof(token)) {
 /* An error occurred. Panic. */
 printf("Read error on descriptor. Exiting.\n");
 exit(-1);
 }

 /* At this point, the value in token should match one of the
 registration tokens returned through the fourth parameter
 of a previous call to notify_register_file_descriptor. */
 }

 FD_COPY(&receive_descriptors, &receive_descriptors_copy);
}

For more information about the select system call, see the manual page for select(2).

18 Receiving Notifications
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Darwin Notification Concepts

Receiving Notifications Using Mach Messages

If your tool or application uses Mach messages for communication, you may find it convenient to use Mach
messages for receiving notification. Communication based on Mach messaging is not recommended for use
in new designs because it is relatively easy to corrupt your application's memory if used incorrectly.

Note: This section assumes that you are already familiar with Mach IPC concepts such as ports and port
rights. Thus, it does not cover these concepts in any great detail. For more information, see Mach Overview.

You can register for Mach message–based notification on a Mach port by calling
notify_register_mach_port, as shown in the snippet below:

mach_port_name_t port; /* mach port---one per process if
 NOTIFY_REUSE is set, else one per name */
int notification_token; /* notification token---one per name */

/* Allocate a mach port. If you already have receive rights on a
 port and would prefer to use that, you can do so, of course. */
if (mach_port_allocate (mach_task_self(),
 MACH_PORT_RIGHT_RECEIVE, &port) != KERN_SUCCESS) {
 printf("Could not allocate mach port.\n"); exit(-1);
}

if (notify_register_mach_port("org.apache.httpd.configFileChanged",
 &port,
 NOTIFY_REUSE,
 ¬ification_token)) {
 /* Something went wrong. Bail. */
 printf("Registration failed.\n"); exit(-1);
}

The function notify_register_mach_port returns zero on success or an error code on failure. The possible
error codes are described in Status Codes in Darwin Notification API Reference.

If desired, you can let Mach allocate the port for you by skipping the call to mach_port_allocate and
passing in 0 instead of NOTIFY_REUSE.

Note: You must not set the flag NOTIFY_REUSE without allocating a port first. If you do not allocate a port
in advance, you must not use the NOTIFY_REUSE flag until the second and subsequent calls to
notify_register_file_descriptor. If you do, your application will probably crash.

This flag tells the notification library code to reuse the existing Mach port. The call will fail unless the Mach
port has been initialized and your Mach task holds receive rights on the port.

After you have registered for notification, you can receive messages on the port with the
mach_msg_overwrite call, as shown in the following snippet:

 struct {
 mach_msg_header_t hdr;
 int token;
 } mydatastructure;

 while (1) {

Receiving Notifications 19
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Darwin Notification Concepts

 mach_msg_overwrite(NULL, MACH_RCV_MSG,
 0, sizeof(mydatastructure), port, MACH_MSG_TIMEOUT_NONE,
 MACH_PORT_NULL, (mach_msg_header_t *)&mydatastructure,
 sizeof(mydatastructure.token));
 printf("Data received : %d (compare to %d).\n", mydatastructure.token,
 notification_token);
 }

Receiving Notifications Manually

Although it is not common to do so, you may sometimes find it useful to poll to see (on an occasional basis)
whether a particular notification has occurred. To do this, you must request a token corresponding to the
notification name by calling notify_register_check, as shown in the following snippet:

if (notify_register_check(
 "org.apache.httpd.configFileChanged", ¬ification_token)) {
 printf("Registration failed.\n"); exit(-1);
}

You can then check for notifications using notify_check (just as you would for signal delivery), as shown
in the following snippet:

int was_posted;
while (1) {
 sleep(1);

 if (notify_check(notification_token, &was_posted)) {
 printf("Call to notify_check failed.\n"); exit(-1);
 }
 if (was_posted) {
 /* The notification org.apache.httpd.configFileChanged
 was posted. */
 printf("Notification %d was posted.\n", notification_token);
 }
}

Note: Due to limitations in the underlying architecture, you may get a "false positive" result on the initial
call to notify_check when using this method.

The function notify_check returns zero on success or an error code on failure. The possible error codes
are described in Status Codes in Darwin Notification API Reference. The function returns a value through the
second parameter to indicate whether the notification has been posted since the last time you called
notify_check.

20 Receiving Notifications
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Darwin Notification Concepts

Notifications are just one possible solution. They are usually a good solution, but in some cases, you may
want to use a different means of interprocess data sharing. This chapter describes some alternative
mechanisms.

Message Passing and Remote Procedure Call APIs

Distributed objects, Apple events, and other similar technologies are good solutions when you need to
receive a response to indicate that the client has received a state change notification. This section briefly
describes these technologies and provides pointers to further documentation.

Apple Events

Apple events is a Carbon message passing API. The Apple Events API enables you to send an event notification
to another application and receive a response message. You can learn more in Apple Events Programming
Guide.

Distributed Objects

Distributed objects is a Cocoa remote procedure call API. Distributed objects enable one application to call
Objective-C methods in another application and receive the return value. You can learn more in Distributed
Objects Programming Topics.

Other Message-Passing and Remote Procedure Call Technologies

Other message-passing techniques in Mac OS X include Mach messaging, sockets, pipes, and standard input
and output. These techniques are explained in Cross-Architecture Plug-in Support in 64-Bit Transition Guide.

Memory Mapping and Shared Memory

Memory mapping and other shared memory techniques provide a good way to move large quantities of
data between two applications. When two applications need to move data on a continuous basis, polling
can be more efficient than notifications. For example, two audio applications connected by a buffer would
be a poor match for notifications because the receiving application must read data on a regular basis even
in the absence of a notification.

Mac OS X provides several ways to share memory, depending on your needs.

Message Passing and Remote Procedure Call APIs 21
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Alternatives to Notification

For audio, you should use the Audio Queue API (part of the Core Audio framework). This API is described in
Audio Queue Services Programming Guide and Audio Queue Services Reference.

For general memory sharing, the easiest mechanism to use is the mmap(2) system call. This system call allows
you to map a file or portion thereof into the memory space of your process, effectively giving you a read-only
or read-write pointer into the contents of the file itself. By mapping a file simultaneously into multiple
processes, you can easily create shared memory between these processes. (Note that before calling this
system call, you must first create the file, then extend it to an appropriate size.)

Two other ways to share memory are the POSIX and System V shared memory APIs. Because the POSIX shared
memory API is newer and more flexible, you should favor the POSIX shared memory API for new applications
unless you need to support other computing platforms where it are not available.

Note: Although you can create shared memory regions using Mach APIs (vm_allocate, vm_map, and so
on) directly, this is strongly discouraged.

You can learn more about POSIX shared memory in the shm_open(2) and shm_unlink(2) manual pages.

You can learn more about System V shared memory in the shmat(2), shmctl(2), shmget(2), and shmdt(2)
manual pages.

You can learn how to memory map files in the mmap(2) manual page. To find a simple example of this
technique, see Cross-Architecture Plug-in Support in 64-Bit Transition Guide.

22 Memory Mapping and Shared Memory
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Alternatives to Notification

This table describes the changes to Mac OS X Notification Overview.

NotesDate

New document that introduces Apple's notification technologies.2007-05-15

23
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

24
2007-05-15 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Mac OS X Notification Overview
	Contents
	Figures
	Introduction
	Notification Basics
	What Is a Notification?
	What Is Coalescing?
	What Types of Shared Store Can Be Used?
	What Message-Passing Mechanisms Can Be Used?
	How Should Notifications Be Named?

	Choosing a Notification Technology
	Applications Communicating with Daemons
	Mixed Carbon and Cocoa Applications
	System-Provided Notifications

	Darwin Notification Concepts
	Including Relevant Headers
	Sending Notifications
	Receiving Notifications
	Receiving Notifications Using Signals
	Receiving Notifications Using File Descriptors
	Receiving Notifications Using Mach Messages
	Receiving Notifications Manually

	Alternatives to Notification
	Message Passing and Remote Procedure Call APIs
	Apple Events
	Distributed Objects
	Other Message-Passing and Remote Procedure Call Technologies

	Memory Mapping and Shared Memory

	Revision History

