
Network Kernel Extensions (legacy)
Darwin > Kernel

2006-10-03

Apple Inc.
© 2003, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, eMac, Mac, Mac OS, New
York, Panther, and Power Mac are trademarks
of Apple Inc., registered in the United States
and other countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 About Network Kernel Extensions 9

NKE Implementation 10
Review of 4.4 BSD Network Architecture 10
NKE Types 10
Global and Programmatic NKEs 11
Tracking NKE Usage 11
Modifications to 4.4BSD Networking Architecture 12

PF_NKE Domain 12
Dispatch Functions 13
Connection from the Client Process 14

Implementing a Preference File for NKE 15
About Protocol Family NKEs 16
About Protocol Handler NKEs 16
About Socket NKEs 16
About Data Link NKEs 18

DLIL Static Functions 18
Changes to the ifnet and if_proto Structures 19
Installing and Removing Data Link NKEs 20
Sending Data 21
Receiving Data 22

For more information 23

Chapter 2 Using Network Kernel Extensions 25

Example: TCPLogger 25

Chapter 3 Network Kernel Extensions Reference 27

Kernel Utilities 27
_MALLOC 28
_FREE 28
kalloc 28
kfree 29
kprintf 29
psignal 29
splimp 29
splnet 30
splx 30
suser 30
timeout 30
tsleep 31

3
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

untimeout 31
wakeup 31

protosw Functions 31
pffindproto 31
pffindtype 32

ifaddr Functions 32
ifa_ifwithaddr 32
ifa_ifwithdstaddr 32
ifa_ifwithnet 32
ifa_ifwithaf 32
ifa_ifafree 32
ifa_ifaof_ifpforaddr 33

mbuf Functions 33
Caution About Using Malloc'd Memory In mbufs 33

Socket Functions 34
soabort 34
soaccept 34
sobind 34
soclose 34
soconnect 35
soconnect2 35
socreate 35
sodisconnect 35
sofree 35
sogetopt 35
sohasoutofband 35
solisten 36
soreceive 36
soflush 36
sosend 36
sosetopt 36
soshutdown 36

Socket Buffer Functions 36
sb_lock 37
sbappend 37
sbappendaddr 37
sbappendcontrol 37
sbappendrecord 37
sbcompress 37
sbdrop 37
sbdroprecord 38
sbflush 38
sbinsertoob 38
sbrelease 38
sbreserve 38
sbwait 38

4
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

socantrcvmore 38
socantsendmore 39
soisconnected 39
soisconnecting 39
soisdisconnected 39
soisdisconnecting 39
su_sonewconn1 39
soqinsque 39
soqremque 40
soreserve 40

Protocol Family NKE Functions 40
net_add_domain 40
net_del_domain 40
pffinddomain 41

Protocol Handler NKE Functions 41
net_add_proto 41
net_del_proto 42

Data Link NKE Functions 42
Calling the DLIL From the Network Layer 43
Calling the Network Layer From the DLIL 48
Calling the Driver Layer From the DLIL 50
Calling the DLIL From the Driver Layer 52
Calling Interface Modules From the DLIL 56
Calling the DLIL From a DLIL Filter 58

NKE Structures and Data Types 60
dlil_proto_reg_str 61
dlil_demux_desc 62
dlil_if_flt_str 63
dlil_pr_flt_str 65

Document Revision History 67

Glossary 69

5
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

6
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 1 About Network Kernel Extensions 9

Figure 1-1 4.4BSD network architecture 10
Figure 1-2 NKE architecture 11
Figure 1-3 Domain structure and protosw interconnections 17
Figure 1-4 Data Link Interface Layer 18
Figure 1-5 DLIL static functions 19
Figure 1-6 Sample ifnet structure in relation to a protocol and a network driver 20
Figure 1-7 Protocol and interface extensions in relation to the DLIL 21
Figure 1-8 Example of sending an IP packet 22
Figure 1-9 Example of receiving a packet 23
Listing 1-1 Dispatch example 13
Listing 1-2 Opening a PF_SYSTEM socket 15

7
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

8
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES AND LISTINGS

Important: The information provided in this document is relevant for Mac OS 10.1 through 10.3. Specific
mention is made for items which apply to newer releases of the OS.

An important change has long been noted in the <sys/mbuf.h> header file since the release of Mac OS X
10.2. Note that the header file is bracketed by the __APPLE_API_UNSTABLE define. The mbuf structure is a
key to the processing of packets in an NKE. As part of the formalizing the NKE APIs, it is expected that the
mbuf structure will be changed. Details will be provided in the future. Changes to the existing NKE API are
not expected be applied to System Updates to Mac OS X 10.3.x, however, bug fixes or features for future
systems may require some interim changes.

For all shipping releases of Mac OS X prior to 10.4, the Network Kernel Extensions (NKE) APIs have not been
officially supported. The legacy NKE architecture was implemented as an interim solution. The legacy API
was never designed to be officially supported. Other aspects of the OS X networking implementation have
received a higher priority, and so the interim solution has remained in effect to OS X 10.3.x.

The NKE mechanism for Mac OS X version 10.4 and later is described in the document NetworkKernel Extensions
Programming Guide.

Network kernel extensions (NKEs) provide a way to extend and modify the networking infrastructure of Mac
OS X while the kernel is running and therefore without requiring the kernel to be recompiled, relinked, or
rebooted.

NKEs allow you to

 ■ create protocol stacks that can be loaded and unloaded dynamically and configured automatically.

 ■ create modules that can be loaded and unloaded dynamically at specific positions in the network
hierarchy. These modules can monitor network traffic, modify network traffic, and receive notification
of asynchronous events at the data link and network layers from the driver layer, such as power
management events and interface status changes.

An NKE is a specific case of a Mac OS X kernel extension. It is a separately compiled module (produced, for
example, by XCode using the Kernel Extension project type).

An installed and enabled NKE is invoked automatically, depending on its position in the sequence of protocol
components, to process an incoming or an outgoing packet. Loading (installing) a kernel extension is handled
by the kextload(8) command line utility, which adds the NKE to the running Mac OS X kernel as part of the
kernel's address space. Eventually, the system will provide automatic mechanisms for loading extensions.
Currently, automatic loading is only possible for IOKit extensions and other extensions that IOKit extensions
depend on.

As a kernel extension, an NKE provides initialization and termination routines that the Kernel Extension
Manager invokes when it loads or unloads an NKE. The initialization routine handles any operations needed
to complete the incorporation of the NKE into the kernel, such as updating protosw and domain structures.
Similarly, the termination routine must remove references to the NKE from these structures in order to unload
itself successfully. NKEs must provide a mechanism, such as a reference count, to ensure that the NKE can
terminate without leaving dangling pointers.

9
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

NKE Implementation

Review of 4.4 BSD Network Architecture

Mac OS X is based on the 4.4BSD UNIX operating system. The following structures control the 4.4BSD network
architecture:

 ■ socket structure, which the kernel uses to keep track of sockets. The socket structure is referenced by
file descriptors from user mode.

 ■ domain structure, which describes protocol families.

 ■ protosw structure, which describes protocol handlers. (A protocol handler is the implementation of a
particular protocol in a protocol family.)

 ■ ifnet structure, which describes a network device and contains pointers to interface device driver
routines.

None of these structures is used uniformly throughout the 4.4BSD networking infrastructure. Instead, each
structure is used at a specific level, as shown in Figure 1-1 (page 10).

Figure 1-1 4.4BSD network architecture

The socket structure is used to manage the socket while the domain, protosw, and ifnet structures are
used to manage packet delivery to and from the network device.

NKE Types

Making the 4.4BSD network architecture dynamically extensible requires several NKE types that are used at
specific locations within the kernel.

 ■ socket NKEs, which reside between the network layer and protocol handlers and are invoked through a
protosw structure. Socket NKEs use a new set of override dispatch vectors that intercept specific socket
and socket buffer utility functions.

 ■ protocol family NKEs, which are collections of protocols that share a common addressing structure.
Internally, a domain structure and a chain of protosw structures describe each protocol.

10 NKE Implementation
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

 ■ protocol handler NKEs, which process packets for a particular protocol within the context of a protocol
family. A protosw structure describes a protocol handler and provides the mechanism by which the
handler is invoked to process incoming and outgoing packets and for invoking various control functions.

 ■ data link NKEs, which are inserted below the protocol layer and above the network interface layer. This
type of NKE can passively observe traffic as it flows in and out of the system (for example, a sniffer) or
can modify the traffic (for example, encrypting or performing address translation). Data link NKEs can
provide media support functions (performing demultiplexing, framing, and pre-output functions, such
as ARP) and can act as "filters" that are inserted between a protocol stack and a device or above a device.)

Figure 1-2 (page 11) summarizes the NKE architecture.

Figure 1-2 NKE architecture

Global and Programmatic NKEs

Socket NKEs can operate in one of two modes: programmatic or global.

A global NKE is an NKE that is automatically enabled for sockets of the type specified for the NKE.

A programmatic NKE is a socket NKE that is enabled only under program control, using socket options, for
a specfic socket.

Data link `filters' are essentially global in that they can't be accessed by specific sockets.

Tracking NKE Usage

To support the dynamic addition and removal of NKEs in Mac OS X, the kernel keeps track of the use of NKEs
by other parts of the system.

Use of protocol family NKEs is tracked by the dom_refs member of the domain structure, which has been
added to support NKEs in Mac OS X. The kernel's socreate function increments dom_refs each time
socreate is called to create a socket in an NKE domain. The socreate function is called when user-mode
applications call socket or when sonewconn successfully connects to a local listening socket. The dom_refs
member is decremented each time soclose is called to close a socket connection.

NKE Implementation 11
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

Use of protocol handler NKEs is tracked by the pr_refs member of the protosw structure, which has been
added to support NKEs in Mac OS X. Like the dom_refs member of the domain structure, the pr_refs
member of the protosw structure tracks the use of the protocol between calls to socreate and sonewconn
to create a socket and soclose to close a socket.

The most important aspect of removing an NKE is ensuring that all references to NKE resources are eliminated
and that all system resources allocated by the NKE are returned to the system. The NKE must track its use of
resources, such as socket structures and protocol control blocks, so that the NKE's termination routine can
eliminate references and return system resources.

Modifications to 4.4BSD Networking Architecture

To support NKEs in Mac OS X, the 4.4BSD domain and protosw structures were modified as follows:

 ■ The protosw array referenced by the domain structure is now a linked list, thereby removing the array's
upper bound. The new dom_maxprotohdr member defines the maximum protocol header size for the
domain. The new dom_refs member is a reference count that is incremented when a new socket for
this address family is created and is decremented when a socket for this address family is closed.

 ■ The protosw structure is no longer an array. The pr_nextmember has been added to link the structures
together. This change has implications for protox usage for AF_INET and AF_ISO input packet
processing. The pr_flags member is an unsigned integer instead of a short. NKE hooks have been
added to link NKE descriptors together (pr_sfilter).

PF_NKE Domain

Mac OS X defines a new domain -- the PF_SYSTEM domain-- whose purpose is to provide a way for applications
to configure and control NKEs. The PF_SYSTEM domain has two protocols, of which only one is of interest
for communications with the NKE:

 ■ The SYSPROTO_CONTROL protocol is used for configuring and controlling all NKEs.

Internally, the PF_SYSTEM domain’s initialization function is called when the PF_SYSTEM domain is initially
added to the system. The initialization function adds the SYSPROTO_CONTROL protocol to the domain’s
protosw list and performs other initialization tasks.

In the NKE's start method, register a Kernel Controller structure using the ctl_register function. The ctl_register
function is defined in <sys/kern_control.h>. The ctl_register call is prototyped as follows.

int ctl_register(struct kern_ctl_reg *userctl,
 void *userdata,
 kern_ctl_ref *ctlref);

The fields of the kern_ctl_reg structure are defined as follows.

ctl_id - unique 4 byte id for the controller. Enter a registered Creator ID. Go to the Apple Developer Creator
ID web page to register a unique ID. See http://developer.apple.com/dev/cftype/ for more information.

ctl_unit - the unit number for the controlller. A controller can be registered multiple times with the same
ctl_id, but for each instance and different unit number must be used.

12 PF_NKE Domain
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

http://developer.apple.com/dev/cftype/

ctl_flags - set to CTL_FLAG_PRIVILEGED which requires that the user must have admin privileges to
contact the controller.

ctl_sendsize - size of buffer reserved for sending messages. 0 = default value.

ctl_recvsize - size of buffer reserved for receiving messages. 0 = default value.

Dispatch Functions

ctl_connect - called when the client process calls connect on the socket with the id/unit number of the
registered controller.

clt_disconnect - called when the user client process closes the control socket.

ctl_write - called when the user client process writes data to the socket.

ctl_set - called when the user client process setsockopt to set the controller configuration.

ctl_get - called when the user client process calls getsockopt on the socket.

The following is a code example of this process.

Listing 1-1 Dispatch example

struct kern_ctl_reg ep_ctl;
// Initialize controller
bzero(&ep_ctl, sizeof(ep_ctl)); // sets ctl_unit to 0
ep_ctl.ctl_id = kEPCommID; // should be unique -
 // use a registered Creator ID here
ep_ctl.ctl_flags = CTL_FLAG_PRIVILEGED;
ep_ctl.ctl_write = EPHandleWrite;
ep_ctl.ctl_get = EPHandleGet;
ep_ctl.ctl_set = EPHandleSet;
ep_ctl.ctl_connect = EPHandleConnect;
ep_ctl.ctl_disconnect = EPHandleDisconnect;
error = ctl_register(&ep_ctl, &gEPState, &gEPState.ctlHandle);

int EPHandleSet(kern_ctl_ref ctlref, void *userdata, int opt, void *data, size_t len
)
{
 int error = EINVAL;
#if DO_LOG
 log(LOG_ERR, "EPHandleSet opt is %d\n", opt);
#endif

 switch (opt)
 {
 case kEPCommand1: // program defined symbol
 error = Do_First_Thing();
 break;

 case kEPCommand2: // program defined symbol
 error = Do_Command2();
 break;
 }

PF_NKE Domain 13
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

 return error;
}

int EPHandleGet(kern_ctl_ref ctlref, void *userdata, int opt, void *data, size_t *len
)
{
 int error = EINVAL;
#if DO_LOG
 log(LOG_ERR, "EPHandleGet opt is %d *****************\n", opt);
#endif
 return error;
}

int
EPHandleConnect(kern_ctl_ref ctlref, void *userdata)
{
#if DO_LOG
 log(LOG_ERR, "EPHandleConnect called\n");
#endif
 return (0);
}

void
EPHandleDisconnect(kern_ctl_ref ctlref, void *userdata)
{
#if DO_LOG
 log(LOG_ERR, "EPHandleDisconnect called\n");
#endif
 return;
}

int EPHandleWrite(kern_ctl_ref ctlref, void *userdata, struct mbuf *m)
{
#if DO_LOG
 log(LOG_ERR, "EPHandleWrite called\n");
#endif
 return (0);
}

Connection from the Client Process

After the NKE registers a Kernel Controller structure the application level process opens a PF_SYSTEM socket.
The application level process sets up the sockaddr_ctl structure with the required parametrs to communicate
with the NKE's Kernel Controller.

To communicate with the NKE, the client process opens a PF_SYSTEM socket using the socket call.

fd = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL);

The client process uses the connect call with the file descriptor returned from the socket call to establish a
connection with the NKE. In making the connect call, fill in the sockaddr_ctl structure as follows.

sc_len = sizeof(struct sockaddr_ctl);
sc_family = AF_SYSTEM;
ss_sysaddr = AF_SYS_CONTROL;

14 PF_NKE Domain
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

sc_id = set to value of ctl_id registered by the NKE in the ctl_reguster call
described above.
sc_unit = set to the unit number registered by the NKE in the ctl_register call
 described above.

The client process uses the setsockopt call to send commands to the NKE. Note that the option names are
user defined. The NKE defines what option names it will respond to, and the client process must pass only
supported option names to the NKE in the setsockopt call.

The client process uses the getsockopt call to get status information from the NKE. Note that the option
names are user defined. The NKE defines what option names it will respond to, and the client process must
pass only supported option names to the NKE in the setsockopt call.

The following is a code example for opening a PF_SYSTEM socket to communicate with an NKE

Listing 1-2 Opening a PF_SYSTEM socket

 struct sockaddr_ctl addr;
 int ret = 1;

 bzero(&addr, sizeof(addr)); // sets the sc_unit field to 0
 addr.sc_len = sizeof(addr);
 addr.sc_family = AF_SYSTEM;
 addr.ss_sysaddr = AF_SYS_CONTROL;
 addr.sc_id = kEPCommID; // should be unique - use a registered Creator ID here

 fd = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL);
 if (fd)
 {
 result = connect(fd, (struct sockaddr *)&addr, sizeof(addr));
 if (result)
 fprintf(stderr, "connect failed %d\n", result);
 }
 else
 fprintf(stderr, "failed to open socket\n");

 if (!result)
 {
 result = setsockopt(fd, SYSPROTO_CONTROL, kEPCommand1, NULL, 0);
 if (result)
 fprintf(stderr, "setsockopt failed on kEPCommand1 call - result was %d\n",
result);
 etc.

Implementing a Preference File for NKE

The question arises as to how an NKE can open a "preference file" in the start method. Under the existing
architecture, the NKE cannot reliably access a Preference File. When the system starts the NKE, there are no
APIs, which the NKE can use to open a file and read preference information. While the NKE could access its
info.plist, there is the assumption that the info.plist will not be changed across startups as this information
is cached by the system in order to expedite startups.

Implementing a Preference File for NKE 15
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

The proper way to dynamically configure an NKE is with a startup daemon or other application level process.
The daemon finds the NKE using the communication method described above, and passes in configuration
information that the NKE may require.

About Protocol Family NKEs

Adding and removing protocol family NKEs is accomplished by calling net_add_domain and
net_del_domain, respectively. These calls are described in “Protocol Family NKE Functions” (page 40). For
detailed information about implementing protocol families, see The Design and Implementation of
the 4.4 BSD Operating System by M. K. McKusick. et al. and TCP/IP Illustrated by Richard W.
Stevens.

About Protocol Handler NKEs

Adding and removing protocol handler NKEs is accomplished by callingnet_add_proto andnet_del_proto,
respectively. These calls are described in “Protocol Handler NKE Functions” (page 41). For detailed information
about implementing protocol families, see The Design and Implementation of the 4.4 BSD
Operating System by M. K. McKusick. et al. and TCP/IP Illustrated by Richard W. Stevens.

About Socket NKEs

Socket NKEs are installed in the kernel by calling register_sockfilter typically from the NKE's initialization
routine. Each socket NKE provides a descriptor structure that is linked into a global list (nf_list). A second
chain runs through the filter descriptor to link it to a protosw for global NKEs. Figure 1-3 (page 17) shows
the interconnections for these data structures.

16 About Protocol Family NKEs
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

Figure 1-3 Domain structure and protosw interconnections

When you call socreate to create a socket, any global NKEs associated with the corresponding protosw
structure are attached to the socket structure using the so_ext field to link together ketcb structures that
are allocated when the socket is created. (See Figure 1-3 (page 17).) These ketcb structures are initialized
to point to the extension descriptor and two dispatch vectors of intercept functions (one for socket operations
and one for socket buffer utilities).

The filter descriptor for a programmatic NKE is linked into the nf_list in the same way as are global NKEs
but the file descriptor does not appear in the list associated with a protosw. A program can call setsocketopt
using socket option SO_NKE) to insert a programmatic NKE into its NKE chain in the same way that it would
call setsocketopt to insert a global NKE.

Each socket NKE has two dispatch vectors, a sockif structure and a sockutil structure, that contain pointers
to the NKE's implementation of these functions. The functions are called when the corresponding socket
and sockbuf functions are are called. The dispatch vectors permit the NKE to selectively intercept socket
and socket buffer utilities. Here is an example:

int (*sf_sobind)(struct socket *, struct mbuf *, st kextcb);

The kernel's sobind function calls the NKE's bind entry point with the arguments passed to sobind and
the kextcb pointer for the NKE. The sockaddr structure contains the name of the local endpoint being
bound.

Each of the intercept functions can return an integer value. A return value of zero is interpreted to mean that
processing at the call site can continue. A non-zero return value is interpreted as an error (as defined in
<sys/errno.h>) that causes the processing of the packet or opertation to halt. If the return value is

About Socket NKEs 17
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

EJUSTRETURN, the calling function (for example, sobind) returns at that point with a value of zero. Otherwise,
the function returns the non-zero error code. In this way, an NKE can "swallow" a packet or an operation. An
NKE may reinject the packet at a later time. (Note that the injection mechanism is not yet defined.)

A program can insert a socket NKE on an open socket by calling setsockopt as follows:

setsockopt(s, SOL_SOCKET, SO_NKE, &so_nke, sizeof (struct so_nke);

The so_nke structure is defined as follows:

struct so_nke {
 unsigned int nke_handle;
 unsigned int nke_where;
 int nke_flags;
};

The nke_handle specifies the NKE to be linked to the socket (with the so_ext link). It is the programmer's
task to locate the appropriate NKE, assure that it is loaded, and retain the returned handle for use in the
setsockopt call.

The nke_where value specifies an NKE assumed to be in this linked list. If nke_where is NULL, the NKE
represented by nke_handle is linked at the beginning or end of the list, depending on the value of
nke_flags.

The nke_flags value specifies where, relative to nke_where, the NKE represented by nke_handle will be
placed. Possible values are NFF_BEFORE and NFF_AFTER defined in <net/kext_net.h>.

The nke_handle and nke_where values are assigned by Apple Computer from the same name space as
the type and creator codes used in Mac OS 8 and Mac OS 9 and using the same registration mechanism.

About Data Link NKEs

This section describes the programming interface for creating data link NKEs, which are inserted below the
protocol layer and above the network interface layer. Data link NKEs depend on the Data link interface layer
(DLIL), shown in Figure 1-4 (page 18), which provides a fixed point for the insertion of data link NKEs.

Figure 1-4 Data Link Interface Layer

DLIL Static Functions

The DLIL defines the following static functions, which are called by protocols and drivers:

18 About Data Link NKEs
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

 ■ dlil_attach_protocol, which attaches network protocol stacks to specific interfaces

 ■ dlil_detach_protocol, which detaches network protocol stacks from the interfaces to which they
were previously attached

 ■ dlil_if_attach, which registers network interfaces with the DLIL

 ■ dlil_if_detach, which deregisters network interfaces that have been registered with the DLIL

 ■ dlil_ioctl, which sends ioctl commands to a network driver

 ■ dlil_input, which sends data to the DLIL from a network driver

 ■ dlil_output, which sends data to a network driver

 ■ dlil_event, which processes events from other parts of the network and from IOKit components. (Note
that the event mechanisms are still under development.)

In Figure 1-5 (page 19), the DLIL static functions are shown in relation to the DLIL, the protocol layer, and
the network driver layer.

Figure 1-5 DLIL static functions

Changes to the ifnet and if_proto Structures

To support data link NKEs, the traditional ifnet structure as been extended in Mac OS X: the driver or
software that supports the driver must allocate a separate ifnet structure for each logical interface. When
an interface is attached (by calling dlil_if_attach)to the DLIL, the DLIL receives a pointer to that interface's
ifnet structure.

Each interface can transmit and receive packets for multiple network protocol families, so for each attached
protocol family the DLIL creates an if_proto structure chained off the ifnet structure for that interface.

The if_proto structure contains function pointers that the DLIL uses to pass incoming packets and event
information to the protocol stack, as well as a pointer to the protocol dependent "pre-output" function that
performs protocol-family specific operations such as network address translation on outbound packets.

About Data Link NKEs 19
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

Figure 1-6 (page 20) shows the ifnet and if_proto structures in relation to a generic protocol and a
generic interface.

Figure 1-6 Sample ifnet structure in relation to a protocol and a network driver

Installing and Removing Data Link NKEs

To support the dynamic insertion of filters into the data and control streams between the network layer and
the interface layer and the removal of inserted filters, the DLIL defines the following static functions:

 ■ dlil_attach_protocol_filter, which inserts an NKE between the DLIL and one of the attached
protocols. Such an extension is known as a DLIL protocol filter. This type of NKE provides access to all
function calls between the DLIL and the attached protocol for a specific protocol/interface pair.

 ■ dlil_attach_interface_filter, which inserts an NKE between the DLIL and an attached interface.
Such a filter is known as an DLIL interface filter. This type of NKE provides access to all frames flowing
to or from an interface.

 ■ dlil_detach_filter, which removes previously inserted DLIL protocol and interface filters.

Figure 1-7 (page 21) shows the relationship of protocol and interface filters to the protocol stack layer, DLIL,
and network driver layer.

20 About Data Link NKEs
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

Figure 1-7 Protocol and interface extensions in relation to the DLIL

Sending Data

Figure 1-8 (page 22) shows the sequence of calls required to send an IP packet over the MACE Ethernet
interface (en0).

About Data Link NKEs 21
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

Figure 1-8 Example of sending an IP packet

The following steps correspond to the numbers in Figure 1-8 (page 22) and describe the process of sending
a packet:

1. The ip_output routine in the IP protocol stack calls dlil_output, passing the dl_tag value for the
stack's attachment to en0.

2. Using the dl_tag value, the dlil_output function locates the dl_pre_outputpointer in the if_proto
structure for IP.

3. The dlil_output function uses the dl_pre_output pointer in the if_proto structure to call IP's
interface-specific output module. This module calls its arpresolve routine to resolve the target IP
address into a media access control (MAC) address.

4. When IP's interface-specific output module returns, the dlil_output function uses the if_framer
pointer in the ifnet structure to call the appropriate framing function in the DLIL interface module.
The framing function prepends interface-specific frame data to the packet.

5. The dlil_output function calls the function pointed to by the if_output field in the ifnet structure
for en0 and sends the frame to the MACE Ethernet driver.

Receiving Data

Figure 1-9 (page 23) shows the sequence of calls required to receive an IP packet from the MACE Ethernet
interface (en0).

22 About Data Link NKEs
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

Figure 1-9 Example of receiving a packet

The following steps correspond to the numbers in Figure 1-9 (page 23) and describe the process of receiving
a packet:

1. The MACE Ethernet driver or its support code calls dlil_inputwith pointers to its ifnet structure and
mbuf chain.

2. The dlil_input function uses the if_demux entry in the ifnet structure to call the demultiplexing
function for the interface family (Ethernet in this case).

3. The demultiplexing function identifies the frame and returns an if_proto pointer to dlil_input.

4. Thedlil_input function calls the protocol input module through thedl_inputpointer in theif_proto
structure.

Note: The Ethernet-specific module for IP receives the frame, removes the 802.2 or SNAP header (if any) and
delivers the packet to the protocol's ipintr routine.

For more information

The following sources provide additional information that may be of interest to developers of network kernel
extensions:

 ■ The Design and Implementation of the 4.4 BSD Operating System . M. K. McKusick. et al., Addison-Wesley,
Reading, 1996.

For more information 23
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

 ■ Unix Network Programming, Second Edition, Volume 1. Richard W. Stevens, Prentice Hall, New York, 1998.

 ■ TCP/IP Illustrated, Volume 1, The Protocols. Richard W. Stevens, Addison-Wesley, Reading, 1994.

 ■ TCP/IP Illustrated, Volume 2, The Implementation. Richard W. Stevens and Gary R. Wright, Addison-Wesley,
Reading, 1995.

 ■ TCP/IP Illustrated, Volume 3, Other Protocols. Richard W. Stevens, Addison-Wesley, Reading, 1996.

The following websites provide information about the Berkeley Software Distribution (BSD):

 ■ http://www.FreeBSD.org

 ■ http://www.NetBSD.org

 ■ http://www.OpenBSD.org/

24 For more information
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About Network Kernel Extensions

http://www.FreeBSD.org
http://www.NetBSD.org
http://www.OpenBSD.org/

This chapter provides an overview for the TCPLogger sample which is included in the NKE documentation
package.

Important: The information provided in this document is relevant for Mac OS 10.1 through 10.3. Specific
mention is made for items which apply to newer releases of the OS.

For all shipping releases of Mac OS X prior to 10.4, the Network Kernel Extensions (NKE) APIs have not been
officially supported. The legacy NKE architecture was implemented as an interim solution. The legacy API
was never designed to be officially supported. Other aspects of the OS X networking implementation have
received a higher priority, and so the interim solution has remained in effect to OS X 10.3.x.

The NKE mechanism for Mac OS X version 10.4 and later is described in the document NetworkKernel Extensions
Programming Guide.

Example: TCPLogger

tcplognke is a socket NKE which is invoked for each TCP connection. It records detailed information about
each connection, including the number of bytes sent to and from the system, the time the connection was
up, and the remote IP address. The tcplog command line utility demonstrates control of the tcplognke NKE
to enable/disable logging, dump log information, and specify different logging criteria.

When tcplognke is loaded and initialized, it installs itself in the TCP protocol structure ready for use and it
registers a Kernel Controller structure. The tcplog utility demonstrates the use of the PF_SYSTEM socket to
enable/disable logging in the tcplognke, to have the NKE send saved log information to the tool, for the tool
to display in the terminal window. Other command options are implemented in the tool to control the
operations of the NKE.

The tcplognke NKE keeps a buffer of connection records. If no control program attaches to it, the buffer is
continually overwritten as connections are established and terminated. To retain or view the information
that the tcplognke NKE gathers, use the enclosed tcplog command line utility. The tool configures the
tcplognke NKE to send log records to the tcplog program. The tcplog tool then loops, displaying and writing
log records as the tcplognke NKE creates them.

The source code for the tcplognke NKE and for the tcplog command line utility are available for the current
(10.4 and later) version of the NKE architecture as the tcplognke sample code project. See the Read Me file
with the TCPLogger sample code for more instructions on the design and use of the sample NKE.

The legacy tcplognke NKE (for 10.3 and earlier) is not published and is not supported. You must contact Apple
developer technical support to obtain this sample code.

Example: TCPLogger 25
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using Network Kernel Extensions

26 Example: TCPLogger
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Using Network Kernel Extensions

Important: The information provided in this document is relevant for Mac OS 10.1 through 10.3. Specific
mention is made for items which apply to newer releases of the OS.

For all shipping releases of Mac OS X prior to 10.4, the Network Kernel Extensions (NKE) APIs have not been
officially supported. The legacy NKE architecture was implemented as an interim solution. The legacy API
was never designed to be officially supported. Other aspects of the OS X networking implementation have
received a higher priority, and so the interim solution has remained in effect to OS X 10.3.x.

The NKE mechanism for Mac OS X version 10.4 and later is described in the document NetworkKernel Extensions
Programming Guide.

This chapter describes the functions that NKEs can call and NKE-specific data types. The functions are organized
into the following sections:

 ■ “Kernel Utilities” (page 27) lists the kernel utilities that NKEs can call.

 ■ “protosw Functions” (page 31) describes functions that access the protosw structure.

 ■ “ifaddr Functions” (page 32) describes functions that access the ifnet structure.

 ■ “mbuf Functions” (page 33) describes functions that access the mbuf structure.

 ■ “Socket Functions” (page 34) describes functions that access the socket structure.

 ■ “Socket Buffer Functions” (page 36) describes functions that access the sockbuf structure.

 ■ “Protocol Family NKE Functions” (page 40) describes NKE functions that protocol families call.

 ■ “Protocol Handler NKE Functions” (page 41) describes NKE functions that protocol handlers call.

 ■ “Data Link NKE Functions” (page 42) describes functions that data link NKEs call.

 ■ “NKE Structures and Data Types” (page 60) describes the NKE structures and data types.

Kernel Utilities

NKEs can call the following kernel utility functions:

 ■ _MALLOC (page 28)

 ■ _FREE (page 28)

 ■ kalloc (page 28)

 ■ kfree (page 29)

 ■ kprintf (page 29)

 ■ psignal (page 29)

Kernel Utilities 27
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

 ■ splimp (page 29)

 ■ splnet (page 30)

 ■ splx (page 30)

 ■ suser (page 30)

 ■ timeout (page 30)

 ■ tsleep (page 31)

 ■ untimeout (page 31)

 ■ wakeup (page 31)

_MALLOC

Allocates kernel memory.

 void *_MALLOC(size_t size, int type, int flags);

_MALLOC is much like the user-space malloc function, but it has additional parameters that require some
explanation.

The types argument is a number representing the type of data that will be stored in the argument. This is
used primarily for accounting purposes.These are described in <sys/malloc.h>.

The flags argument consists of some combination of M_WAITOK, M_NOWAIT, and M_ZERO.

The flag M_NOWAIT causes _MALLOC to immediately return a null pointer if no space is available rather than
waiting for space to become available. While this is appropriate for time-sensitive tasks that can be retried,
it is not always what you want.

The more traditional (and default) behavior is M_WAITOK, which indicates that it is safe to wait for space to
become available. If your code is in a critical path for performance, you should probably use M_NOWAIT if
possible, and depend on the networking stack to retry after resources become available.

Finally, the flag M_ZERO requests that the allocator should zero the resulting allocation before returning it.

_FREE

Frees memory allocated with _MALLOC

 void _FREE(void *addr, int type);

The type flag passed to _FREE must be the same as the flag passed to the corresponding _MALLOC

kalloc

Allocate kernel memory.

 void *kalloc(vm_size_t size);

28 Kernel Utilities
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

This is roughly the kernel equivalent of malloc. (See usage note at kfree (page 29).) This should generally
be used for memory associated with the loading and unloading of an NKE. For storing data coming from
outside sources (such as an mbuf), _MALLOC is more appropriate.

kfree

Frees memory allocated with kalloc (page 28).

 void kfree(void *data, vm_size_t size);

This behaves much like the user-space free.

Note: The kernel allocator does not keep track of allocation size. You are responsible for passing in the
original size yourself. If you pass in a different size, unpredictable behavior may result.

kprintf

Print text to the console.

 void kprintf(const char *format, ...);

Identical to printf in user space. It is not safe to call kprintf from within an interrupt context. This should
generally not be an issue, as you should avoid calling NKE functions from within an I/O Kit driver’s filter
routine as a matter of course, but it is worth noting.

psignal

Sends a signal to a user process.

 void psignal(struct proc *p, int sig);

splimp

Sets priority level to prevent execution of any kernel thread whose priority is less than or equal to “IMP”.

 spl_t splimp(void);

In effect, this prevents any concurrency with anything that would touch the networking stack’s data structures
at any level. The function returns the previous spl level in a form suitable to pass to splx (page 30).

Kernel Utilities 29
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

Note: IMP is a legacy term, short for Interface Message Processor, which was essentially the early term for a
network interface card (NIC).

splnet

Sets priority level to prevent execution of any kernel thread whose priority is less than or equal to “Net”.

 spl_t splnet(void);

This blocks interrupts from network devices and any execution that would result from those interrupts (at
the network stack level, not the I/O Kit level). The function returns the previous spl level in a form suitable
to pass to splx (page 30).

splx

Restores a previously-saved priority level.

 void splx(spl_t level);

The value passed in generally is the result of the use of another spl function. The spl_t type is an unsigned
int.

suser

Checks to see if a process is running as the super-user (root).

 int suser(struct proc *proc);

timeout

Sets a timeout for the next call to tsleep (page 31).

 void timeout(void (*)(void *)call_on_timeout, void *arg, int ticks);

The function call_on_timeout is called after some number of ticks. This timeout can be removed with
untimeout (page 31).

The length of a tick is system dependent, but the number of ticks per second can be obtained from the global
variable HZ.

This function returns immediately, and is usually followed by some operation, followed by a tsleep (page
31) call while waiting for the operation to complete. The operation (occurring in some other thread) would
typically end by calling untimeout (page 31) to prevent the error handler from being triggered, followed
by a call to wakeup (page 31) to actually wake the thread.

30 Kernel Utilities
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

tsleep

Sleep until an event is posted with wakeup (page 31) or until a timeout occurs. This is commonly combined
with a timeout value to bound the wait.

 int tsleep(void *chan, int pri, const char *wmesg, int timo);

The timeout value is measured in ticks. The length of a tick is system-dependent, but the number of ticks
per second can be obtained from the global variable HZ. To sleep until woken (as one might reasonably do
when used in conjunction with a call to timeout (page 30), you should pass the value zero (0) for timo.

The parameter chan should be a unique identifier specific to a given wait event. Usually such an event is
associated with the change in a variable, in which case the address of that variable makes a good value for
chan.

The parameter pri is the desired priority on wake. After another thread has called wakeup (page 31) on the
desired event (specified by the value of chan), your code will begin executing at the specified priority. If the
PCATCH flag is set on pri, signal handlers will be tried before and after the sleep.

This is frequently used in conjunction with timeout (page 30) and untimeout (page 31).

Returns 0 if awakened with wakeup, EWOULDBLOCK on timeout expiry, and ERESTART or EINTR if PCATCH
is set and a signal occurred, depending on whether the SA_RESTART flag is set on the signal.

untimeout

Unregisters a timeout previously registered with timeout (page 30).

 void untimeout(void (*)(void *), void *arg);

Note that untimeout does not wake the thread that called timeout (page 30). If this is desired, you must
explicitly do so using wakeup (page 31).

wakeup

Wakes a thread that is sleeping through a call to tsleep (page 31).

 void wakeup(void *chan);

protosw Functions

This section describes the functions that access the protosw structure.

pffindproto

The pffindproto function obtains the protosw corresponding to the protocol family, protocol, and protocol
type (or NULL). These values are passed to the socket(2) call from user mode.

protosw Functions 31
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

extern struct protosw *pffindproto(int, int, int);

pffindtype

The pffindtype function obtains the protosw corresponding to the protocol and protocol type requested.
These values are passed to the socket(2) call from user mode.

extern struct protosw *pffindtype(int, int);

ifaddr Functions

This section describes the functions that access the ifaddr structure.

ifa_ifwithaddr

The ifa_ifwithaddr function searches the ifnet list for an interface with a matching address.

struct ifaddr *ifa_ifwithaddr(struct sockaddr *);

ifa_ifwithdstaddr

The ifa_ifwithdstaddr function searches the ifnet list for an interface with a matching destination
address.

struct ifaddr *ifa_ifwithdstaddr(struct sockaddr *);

ifa_ifwithnet

The ifa_ifwithnet function searches the ifnet list for an interface with the most specific matching
address.

struct ifaddr *ifa_ifwithnet(struct sockaddr *);

ifa_ifwithaf

The ifa_ifwithaf function searches the ifnet list for an interface with the first matching address family.

struct ifaddr *ifa_ifwithaf(int);

ifa_ifafree

The ifa_ifafree function frees the specified ifaddr structure.

32 ifaddr Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

void ifafree(struct ifaddr*);

ifa_ifaof_ifpforaddr

The ifa_ifaof_ifpforaddr function searches the address list in the ifnet structure for the one matching
the sockaddr structure. The matching rules are exact match, destination address on point-to-point link,
matching network number, or same address family.

struct ifaddr *ifaof_ifpforaddr(struct sockaddr *, struct ifnet *);

mbuf Functions

For a description of the mbuf routines, go to FreeBSD website (http://www.freebsd.org), click on the
Manual-pages reference and search for "mbuf".

struct mbuf *m_copy(struct mbuf *, int, int, int);
struct mbuf *m_free(struct mbuf *);
struct mbuf *m_get(int, int);
struct mbuf *m_getclr(int, int);
struct mbuf *m_gethdr(int, int);
struct mbuf *m_prepend(struct mbuf *, int, int);
struct mbuf *m_pullup(struct mbuf *, int);
struct mbuf *m_retryhdr(int, int);
void m_adj(struct mbuf *, int);
int m_clalloc(int, int);
void m_freem(struct mbuf *);
struct mbuf *m_devget(char *, int, int, struct ifnet, void);
void m_cat(struct mbuf *, struct mbuf *);
void m_copydata(struct mbuf *, int, int, caddr_t);
void m_freem(struct mbuf *);
int m_leadingspace(struct mbuf *);
int m_trailingspace(struct mbuf *);

Caution About Using Malloc'd Memory In mbufs

Prior to the release of the Power Mac G5 and to Mac OS X 10.3.x, it was possible to use malloc'd memory to
hold data or packet headers on outbound mbufs. For compatibility with all G5's and Mac OS X 10.3.x and
later, any memory, containing outbound packet data or headers, must have a recognized I/O Address
compatible with PCI Address Translation.

When there is a requirement to obtain memory buffers to contain outbound packet data or headers, use the
standard mbuf routines as defined in </sys/mbuf.h> to allocate mbufs for your NKE needs. To understand
more about this requirement, refer to Tech Note 2090 "Driver Tuning on Panther or G5" Section "Background
Info on PCI Address Translation".

The standard mbuf routines have been modified to provide memory buffers, which are compatible for use
with the PCI bus. If your driver allocates memory with malloc, fills packet data into this memory, points the
mbuf to this memory, and sends the mbuf to the driver to be sent across the network, one symptom may
be that the hardware hangs on trying to send the packet.

mbuf Functions 33
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

http://www.freebsd.org
http://developer.apple.com/technotes/tn/tn2090.html

Note that the NKE may continue to malloc/free memory for it's own needs, such as for internal processing
of packet data. However, when processing is complete, outbound packet data must be placed in a buffer
with a recognized I/O Address, compatible with PCI Address Translation.

An additional note about memory allocation/de-allocation - malloc/free are potential preemption points
and may loose the funnel, which means that the NKE can get re-entered while doing a blocking malloc or a
free. While a free call is not likely to result in the loss of a funnel, it can happen. When doing a malloc/free,
the NKE should make sure that it's a safe point for the integrity of the data structures that it manipulates. For
more information about funnels, refer to the following web references:

 ■ http://www.kernelthread.com/mac/osx/arch_xnu.html

 ■ http://www.usenix.org/publications/library/proceedings/bsdcon02/full_papers/gerbarg/gerbarg_html/

Socket Functions

This section describes the socket functions. For additional information on the use of these functions, read
TCP/IP Illustrated, Volume 2 - The Implementation by Gary Wright and W. Richard Stevens, Addison Wesley,
ISBN 0-201-63354-X.

soabort

The soabort function calls the protocol's pr_abort function at slpnet.

soabort(struct socket *);

soaccept

The soaccept function calls the protocol's pr_accept function.

soaccept(struct socket *, struct mbuf *);

sobind

The sobind function calls the protocol's pr_bind function.

sobind(struct socket *, struct mbuf *);

soclose

The soclose function aborts pending and in-progress connections, calls sodisconnect for connected
sockets, and sleeps if any connections linger or block. It then calls the protocol's pr_detach function and
frees the socket.

soclose(struct socket *);

34 Socket Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

http://www.kernelthread.com/mac/osx/arch_xnu.html
http://www.usenix.org/publications/library/proceedings/bsdcon02/full_papers/gerbarg/gerbarg_html/

soconnect

If connected or connecting, the soconnect function tries to disconnect. It also calls the pr_connect function.

soconnect(struct socket *, struct mbuf *);

soconnect2

The soconnect2 function calls the pr_connect2 function. This function is generally not supported, but it
is used to support pipe usage in the AF_LOCAL domain.

soconnect2(struct socket *, struct socket *);

socreate

The socreate function links the protosw structure and the socket. It calls the protocol's pr_attach function.

socreate(int, struct socket**, int, int);

sodisconnect

The sodisconect function calls the protocol's pr_disconnect function.

sodisconnect(struct socket *);

sofree

The sofree function removes the caller from q0 and q queues, releases the send sockbuf, flushes the
receive sockbuf, and frees the socket.

sofree(struct socket *);

sogetopt

The sogetopt function processes SOL_SOCKET requests and always calls the PRCO_SETOPT function.

sogetopt(struct socket *, int, int, struct mbuf **);

sohasoutofband

The sohasoutofband function indicates that the caller has an out-of-band notifier.

sooutofband(struct socket *);

Socket Functions 35
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

solisten

The solisten function calls the protocol's pr_listen function and sets the queue backlog.

solisten(struct socket *, int);

soreceive

The soreceive function receives data.

soreceive(struct socket *, struct mbuf **, struct uio *, struct mbuf **, struct
 mbuf **, int *);

soflush

The soflush function locks the socket, marks it as "can't receive," unlocks the socket, and calls sbrelease.

soflush(struct socket *);

sosend

The sosend function sends data.

sosend(struct socket *, struct mbuf *, struct uio *, struct mbuf *, struct mbuf
 *, int);

sosetopt

The sosetopt function processes SOL_SOCKET requests and always calls the PRCO_SETOPT function.

sosetopt(struct socket *, int, int, struct mbuf *);

soshutdown

The soshutdown function calls the sorflush function (FREAD) and the pr_shutdown function (FWRITE).

soshutdown(struct socket *, int, int, struct mbuf *);

Socket Buffer Functions

This section describes the socket buffer functions.

36 Socket Buffer Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

sb_lock

The sb_lock function locks a sockbuf structure. It sets WANT and sleeps if the structure is already locked.

sb_lock(struct sockbuf *);

sbappend

The sbappend function conditionally calls sbappendrecord and calls sbcompress.

sbappend(struct sockbuf *, struct mbuf *);

sbappendaddr

The sbappendaddr function conditionally calls sbappendrecord and sbcompress.

sbappendaddr(struct sockbuf *, struct sockaddr *, struct mbuf *, struct mbuf
*);

sbappendcontrol

The sbappendcontrol function calls sbspace and sballoc.

sbappendcontrol(struct sockbuf *, struct mbuf *, struct mbuf *);

sbappendrecord

The sbappendrecord function calls sballoc and sbcompress.

sbappendrecord(struct sockbuf *, struct mbuf *);

sbcompress

The sbcompress function calls sballoc.

sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *);

sbdrop

The sbdrop function calls sbfree.

sbdrop(struct sockbuf *, int);

Socket Buffer Functions 37
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

sbdroprecord

The sbdroprecord function calls sbfree.

sbdroprecord(struct sockbuf *);

sbflush

The sbflush function calls sbfree.

sbflush(struct sockbuf *);

sbinsertoob

The sbinsertoob function calls sballoc and sbcompress.

sbinsertoob(struct sockbuf *, struct mbuf *);

sbrelease

The sbrelease function calls sbflush and clears the selwait structure.

sbrelease(struct sockbuf *);

sbreserve

The sbreserve function sets up the sockbuf counts.

sbreserve(struct sockbuf *, u_long);

sbwait

The sbwait function sets SB_WAIT and calls tsleep on sb_cc.

sbwait(struct sockbuf *);

socantrcvmore

The socantrcvmore function marks socket and wakes up readers.

socantrcvmore(struct socket *);

38 Socket Buffer Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

socantsendmore

The socantsendmore function marks socket and wakes up writers.

socantsendmore(struct socket *);

soisconnected

The soisconnected function sets state bits. It calls soqremque, soqinsque, sorwakeup, and sowwakeup.

soisconnected(struct socket *);

soisconnecting

The soisconnecting function sets state bits.

soisconnecting(struct socket *);

soisdisconnected

The soisdisconnected function sets state bits, calls timer wakeup, and wakes up readers and writers.

soisdisconnected(struct socket *);

soisdisconnecting

The soisdisconnecting function sets state bits, calls timer wakeup, and wakes up readers and writers.

soisdisconnecting(struct socket *);

su_sonewconn1

The su_sonewconn1 function allocates socket, sets state, inserts into head queue, and calls pr_attach.

struct socket *su_sonewconn1(struct socket *, int);

soqinsque

The soqinsque function adds the socket to q or q0 of "head."

soqinsque(struct socket *, struct socket *, int);

Socket Buffer Functions 39
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

soqremque

The soqremque function removes socket from q or q0 of "head."

soqremque(struct socket *, int);

soreserve

The soreserve function sets up send and receive sockbuf structures.

soreserve(struct socket *, u_long, u_long);

Protocol Family NKE Functions

This section describes the functions that support the dynamic addition and removal of protocol family NKEs.
For additional descriptions of these routines, go to the FreeBSD website, click on the Manual-pages reference
and search for "net_add_domain".

net_add_domain

Adds a domain structure to the kernel's domain list.

void net_add_domain(struct domain *domain);

domainOn input, a pointer to a domain structure to be linked into the system's list of domains.

function result: None.

DISCUSSION

The net_add_domain function adds a domain (represented by the domain parameter) to the kernel's list
of domains.

The net_add_domain function locks the domain structure, calls the domain's init function, and calls the
protocol's init function for each attached protocol. The domain's init function updates certain system
global structures, such as max_protohdr, and protects itself from repeated calls. You can choose whether
to include the protosw structures in domain. The alternative is to attach protocol handler NKEs by calling
“net_add_proto” (page 41).

This function does not return a value because it cannot fail.

net_del_domain

Removes a domain structure from the kernel's domain list.

int net_del_domain(struct domain *domain);

40 Protocol Family NKE Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

http://www.freebsd.org/

domainOn input, a pointer to the domain structure that is to be removed.

function result0 to indicate success, EBUSYwhen the reference count for the specified domain structure
is not zero, and EPFNOSUPPORT if the specified domain structure cannot be found.

DISCUSSION

The net_del_domain function removes a domain structure from the kernel's list of domain structures.

You are responsible for reclaiming resources and handling dangling pointers before you call net_del_domain.

This function is only called from a domain implementation.

pffinddomain

Finds a domain.

struct domain *pffinddomain(int x);

xOn input, a PK constant, such as PF_INET or PF_NKE.

function resultA pointer to the requested domain structure or NULL, which indicates that the domain
could not be found. If pffinddomain returns NULL, the caller should return EPFNOSUPPORT in addition to
performing normal error cleanup.

DISCUSSION

The pffinddomain function locates the domain structure for the specified protocol family in the kernel's
list of domain structures.

Note: This function depends on matching an integer value with a value in the kernel. You can verify that
the proper domain structure has been located by checking the value of the dom_name field in the domain
structure.

Protocol Handler NKE Functions

This section describes the functions that support the dynamic addition and removal of protocol handler
NKEs.

net_add_proto

Adds the specified protosw structure to the list of protosw structures for the specified domain.

int net_add_proto (struct protosw *protosw, struct domain *domain);

protoswOn input, a pointer to a protosw structure.

Protocol Handler NKE Functions 41
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

domainOn input, a pointer to a domain structure.

function result0 to indicate success or EEXISTS if the pr_type and the pr_protocol fields in the
protosw structure that is being added match the pr_type and pr_protocol fields in an existing protosw
entry for the specified domain.

DISCUSSION

The net_add_proto function adds the specified protosw to the domain's list of protosw structures.

If the protosw structure is successfully added, the protocol's init function (if present) is called.

net_del_proto

Removes a protosw structure from the list of protosw structures for the specified domain.

int net_del_proto(int type, int protocol, struct domain *domain);

type: On input, an integer value that specifies the type of the protosw structure that is to be removed.

protocol: On input, an integer value that specifies the protocol of the protosw structure that is to be
removed.

domain: On input, a pointer to a domain structure.

function result: 0 to indicate success or ENXIO if the specified values for type and protocol don't
match a protosw structure in the domain's list of protosw structures.

DISCUSSION

The net_del_proto function removes the specified protosw structure from the list of protosw structures
for the specified domain structure.

Data Link NKE Functions

This section describes the Data Link Layer Interface (DLIL) functions. The section is organized under the
following topics:

 ■ “Calling the DLIL From the Network Layer” (page 43)

 ■ “Calling the Network Layer From the DLIL” (page 48)

 ■ “Calling the Driver Layer From the DLIL” (page 50)

 ■ “Calling the DLIL From the Driver Layer” (page 52)

 ■ “Calling Interface Modules From the DLIL” (page 56)

 ■ “Calling the DLIL From a DLIL Filter” (page 58)

42 Data Link NKE Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

Calling the DLIL From the Network Layer

This section describes DLIL functions that are called from the network layer. The functions are

 ■ “dlil_attach_protocol_filter” (page 43) which is called to attach a protocol filter.

 ■ “dlil_attach_interface_filter” (page 44) which is called to attach an interface filter.

 ■ “dlil_attach_protocol” (page 45) which a protocol calls to attach itself to the DLIL.

 ■ “dlil_detach_filter” (page 45) which a protocol calls to attach itself to the DLIL.

 ■ “dlil_detach_protocol” (page 46) which a protocol calls to deattach itself from the DLIL.

 ■ “dlil_output” (page 46) which a protocol calls to send data to a network interface.

 ■ “dlil_ioctl” (page 47) which a protocol calls to send ioctl commands to a network interface.

dlil_attach_protocol_filter

Inserts a DLIL protocol filter between a protocol and the DLIL.

int dlil_attach_protocol_filter(u_long dl_tag, struct dlil_pr_flt_str
*protocol_filter, u_long *filter_id, int insertion_point);

dl_tagOn input, a value of type u_long, previously obtained by calling “dlil_attach_protocol” (page 45),
that identifies the protocol/interface pair between which the NKE is to be inserted.

protocol_filterA pointer to a dlil_pr_fil_str structure that contains pointers to the functions the
DLIL is to call when it intercepts calls. Each function pointed to by a member of this structure corresponds
to a function pointed to by the ifnet structure for this protocol/interface pair.

filter_idOn input, a pointer to a u_long. On output, filter_id points to a tag value that identifies the
NKE that has been inserted. The tag value is required to remove the NKE or insert another NKE after the
current NKE.

insertion_pointOn input, a value of type int. If this is the first DLIL protocol filter to be inserted, set
insertion_point to DLIL_LAST_FILTER. If this is the second or greater insertion, set insertion_point
to the value of filter_id returned by a previous call to dlil_attach_protocol_filter or to
DLIL_LAST_FILTER to insert the filter at the end of the chain of inserted filters.

function result0 for success.

DISCUSSION

The dlil_attach_protocol_filter function inserts a DLIL protocol filter between the specified protocol
and the DLIL.

When more than one DLIL protocol filter is inserted, the DLIL calls the appropriate function of the first filter
with the parameters provided by the caller. When that call returns successfully, the DLIL calls the appropriate
function for the second filter with the parameters returned by the first filter, and so on until the appropriate
functions have been called for each filter in the list. When the last filter in the list has been called, the DLIL
calls the original destination function with the parameters returned by the last filter.

The DLIL skips any function pointers that are NULL, which allows DLIL protocol filters to intercept only a
subset of the calls that may be made by a protocol to the interface to which the protocol is attached.

Data Link NKE Functions 43
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

If a DLIL protocol filter returns a status other zero (which indicates success) or EJUSTRETURN, the DLIL frees
any associated mbuf chain (for the filter_dl_pre_output and filter_dl_input functions only) and
returns with that status.

If a DLIL protocol filter returns a status of EJUSTRETURN, the DLIL returns zero to indicate success without
freeing any associated mbuf chain. The DLIL protocol filter is responsible for freeing or forwarding any
associated mbuf chain.

dlil_attach_interface_filter

Inserts a DLIL interface filter between the DLIL and the interface.

int dlil_attach_interface_filter(struct ifnet *ifnet_ptr,
 struct dlil_if_flt_str *interface_filter,
 int *filter_id,
 u_long insertion_point);

ifnet_ptrA pointer to the ifnet structure for this interface.

interface_filterA pointer to a dlil_if_fil_str structure that contains pointers to the function calls
that the DLIL is to call when the family interface module calls common network driver code for the specified
interface. Each function pointed to by a member of this structure corresponds to a function pointed to by
the ifnet structure.

filter_idOn input, a pointer to a value of type int. On output, filter_id points to a value that identifies
the NKE that has been inserted. This value is required to remove the NKE or insert another NKE after it.

insertion_pointOn input, a value of type u_long. If this is the first insertion, set insertion_point to
DLIL_LAST_FILTER. If this is the second or greater insertion, set insertion_point to the value of
filter_id returned by a previous call to dlil_attach_interface_filter or to DLIL_LAST_FILTER
to insert the filter at the end of the chain of inserted filters.

function result0 for success. Other possible errors are defined in <errno.h>.

DISCUSSION

The dlil_attach_interface_filter function inserts a DLIL interface filter between the DLIL and an
interface. When the filter is in place, the DLIL intercepts all calls between itself and the interface's driver and
passes the call and its parameters to the filter.

You can insert multiple DLIL interface filters, in which case the DLIL calls the filters in the order specified by
insertion_point at the time of insertion. The order in which filters are executed is reversed when an
incoming packet is being processed (that is, the last filter called for an outbound packet will be the first filter
called for an inbound packet).

When more than one DLIL interface filter is installed, the DLIL calls the appropriate function for the first filter
with the parameters provided by the caller. When that call returns successfully, the DLIL calls the appropriate
function for the second filter with the parameters returned by the first filter, and so on until the appropriate
functions have been called for each filter in the list. When the last filter has been called, the DLIL calls the
original destination function with the parameters returned by the last filter.

The DLIL skips any null function pointers, which allows DLIL interface filters to intercept only a subset of the
calls that the DLIL may make to the driver for the specified interface.

44 Data Link NKE Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

If a DLIL interface filter returns a status other than zero (which indicates success) or EJUSTRETURN, the DLIL
frees any associated mbuf chain (for the filter_if_output and filter_if_input functions only) and
returns with that status.

If a DLIL interface extension returns a status of EJUSTRETURN, the DLIL returns zero to indicate success. The
DLIL interface filter is responsible for freeing or forwarding any associated mbuf chain.

With a return value of zero, the DLIL continues to process the list of NKEs.

dlil_attach_protocol

Attaches a protocol to the DLIL for use with an interface.

int dlil_attach_protocol(struct dlil_proto_reg_str *proto_reg, u_long *dl_tag);

proto_regOn input, a pointer to a “dlil_proto_reg_str” (page 61) structure containing all of the information
required to complete the attachment.

dl_tagOn input, a pointer to a value of type u_long. On output, dl_tagpoints to an opaque value identifying
the interface/protocol pair that is passed in subsequent calls to the dlil_output, dlil_ioctl, and
dlil_detach functions.

function result0 for success and ENOENT if the specified interface does not exist. Other possible errors
are defined in <errno.h>.

DISCUSSION

The dlil_attach_protocol function attaches a protocol to the DLIL for use with a specific network interface.
For example, you would call dlil_attach_protocol to attach the TCP/IP protocol family to en0, which is
the first Ethernet family interface.

dlil_detach_filter

Removes a DLIL interface filter or a DLIL protocol filter.

int dlil_detach_filter(u_long filter_id);

filter_idA value of type u_long obtained by previously calling “dlil_attach_interface_filter” (page 44) or
“dlil_attach_protocol_filter” (page 43).

function result0 for success or ENOENT of the specified filter does not exist.

DISCUSSION

The dlil_detach_filter function removes a DLIL interface filter or a DLIL protocol filter that was previously
attached by calling “dlil_attach_interface_filter” (page 44) or “dlil_attach_protocol_filter” (page 43).

If the filter has a detach routine and a function pointer to it was supplied when the filter was attached, the
DLIL calls the filter's detach routine before detaching the filter. The detach routine should complete any clean
up tasks before it returns.

Data Link NKE Functions 45
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

dlil_detach_protocol

Detaches a protocol from the DLIL.

int dlil_detach_protocol(u_long dl_tag);

dl_tagOn input, a value of type u_long, previously obtained by calling “dlil_attach_protocol” (page 45),
that identifies the protocol and the interface from which the protocol is to be detached.

function result0 for success and ENOENT if the defined protocol is not currently attached. Other possible
errors are defined in <errno.h>.

DISCUSSION

The dlil_detach_protocol function detaches a protocol that was previously attached to the DLIL by
calling “dlil_attach_protocol” (page 45). Before detaching the protocol, the DLIL calls the detach filter callback
functions for any NKEs that may have been inserted between the protocol and the interface that is being
detached from.

The DLIL keeps a reference count of protocols attached to each interface. When the reference count reaches
zero as a result of calling dlil_detach_protocol, the DLIL calls the “if_free” (page 52) function for the
affected interface to notify the driver that no protocols are attached to the interface. The reference count
can only reach zero if the driver detaches the interface.

dlil_output

Sends data to a network interface.

int dlil_output (u_long dl_tag, struct mbuf *buffer, caddr_t route, struct
sockaddr *dest, int raw);

dl_tagOn input, a value of type u_long, previously obtained by calling “dlil_attach_protocol” (page 45),
that identifies the associated protocol/interface pair.

bufferOn input, a pointer to the mbuf chain, which may contain multiple packets.

routeOn input, a pointer to an opaque pointer-sized value whose use is specific to each protocol family, or
NULL.

destOn input, a pointer to an sockaddr structure that defines the target network address that the DLIL
passes to the associated dl_pre_output function. If raw is FALSE, this parameter is ignored.

rawOn input, a Boolean value. Setting raw to TRUE indicates that the mbuf chain pointed to by buffer
contains a link-level frame header (which means that no further processing by the protocol or by the interface
family modules is required). If raw is FALSE, protocol filters are not called, but any interface filters attached
to the target interface are called.

function result0 for success.

DISCUSSION

The dlil_output function is a DLIL function that the network layer calls in order to send data to a network
interface. The dlil_output function executes as follows:

46 Data Link NKE Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

1. If the raw parameter is TRUE, go to step 4. Otherwise, if the raw parameter is FALSE and the attached
protocol identified by dl_taghas defined a dl_pre_output function, the DLIL calls that dl_pre_output
function and passes to it all of the parameters passed to dl_output by the caller, as well as pointers to
two buffers in which the dl_pre_output function can pass back the frame type and destination data
link address.

2. If any data link protocol extensions are attached to the protocol/interface pair, those NKEs are called in
the order they were inserted. If any NKE returns a value other than zero for success or EJUSTRETURN,
the DLIL stops processing the packet, dlil_output frees the mbuf chain, and returns an error to its
caller. When any NKE returns EJUSTRETURN, packet processing terminates without freeing the mbuf
chain. In this case, the NKE is responsible for freeing or forwarding the mbuf chain.

3. If an if_framer function is defined for this interface, the DLIL calls the if_framer function. The
if_framer function adds any necessary link-level framing to the outbound packet. This function usually
prepends the frame header to the beginning of the mbuf chain.

4. If any data link interface NKEs have been attached to the interface specified by dl_tag, those NKEs are
called in the order they were inserted. If any NKE returns a value other than zero for success or
EJUSTRETURN, the DLIL stops processing the packet, frees the mbuf chain, and returns an error to its
caller. When any NKE returns EJUSTRETURN, packet processing terminates without freeing the mbuf
chain. In this case, the NKE is responsible for freeing or forwarding the mbuf chain.

5. As the last step, dlil_output calls if_output in order to pass the mbuf chain and a pointer to the
ifnet structure to the interface's driver.

dlil_ioctl

Accesses DLIL-specific or driver-specific functionality.

int dlil_ioctl (u_long dl_tag, struct ifnet *ifp, u_long ioctl_code, caddr_t
ioctl_arg);

dl_tagOn input, a value of type u_long, previously obtained by calling “dlil_attach_protocol” (page 45),
that identifies the associated protocol/interface pair. If not zero, the DLIL uses the value of dl_tag to identify
the target protocol module. If dl_tag is zero, ifp is not NULL, and the interface has defined an if_ioctl
function, the DLIL calls the interface's if_ioctl function and passes to it the parameters supplied by the
caller.

ifpOn input, a pointer to the ifnet structure associated with the target interface. This parameter is not
used if dl_tag is non-zero.

ioctl_codeOn input, a value of type u_long that specifies the specific ioctl function that is to be accessed.

ioctl_argOn input, a value of type caddr_t whose contents depend on the value of ioctl_code.

function result0 for success.

DISCUSSION

The dlil_ioctl function is a DLIL function that the network layer calls in order to send ioctl commands
to a network interface.

Data Link NKE Functions 47
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

Calling the Network Layer From the DLIL

This section describes network layerfunctions called by the DLIL. The functions are

 ■ “dl_pre_output” (page 48), which the DLIL calls in order to perform protocol-specific processing (such
as resolving the network address to a link-level address) for outbound packets.

 ■ “dl_input” (page 49), which the DLIL calls in order to pass incoming packets to the protocol.

 ■ “dl_offer” (page 49), which the DLIL calls in order to identify incoming frames.

 ■ “dl_event” (page 50), which the DLIL calls in order to pass events from the driver layer to a protocol.

dl_pre_output

Obtains the destination link address and frame type for outgoing packets.

int (*dl_pre_output) (struct mbuf *mbuf_ptr, caddr_t route_entry, struct sockaddr
 *dest, char *frame_type, char *dest_linkaddr, u_char dl_tag);

mbuf_ptrOn input, a pointer to an mbuf structure containing one or more outgoing packets.

route_entryOn input, a value of type caddr_t that is passed to the DLIL when a protocol calls
“dlil_output” (page 46).

destOn input, a pointer to a sockaddr structure that describes the packets' destination network address,
or NULL. This parameter is passed to the DLIL when the protocol calls “dlil_output” (page 46). The format of
the sockaddr structure is specific to each protocol family.

frame_typeOn input, a pointer to a byte array of undefined length. On output, frame_type contains the
frame type for this protocol.

dest_linkaddrOn input, a pointer to a byte array of undefined length. On output, dest_linkaddr contains
the destination link address.

dl_tagOn input, a value of type u_long, previously obtained by calling “dlil_attach_protocol” (page 45),
that identifies the associated protocol/interface pair.

function result0 for success. Errors are defined in <errno.h>.

DISCUSSION

The dl_pre_output function obtains the link address and frame type for outgoing packets whose destination
is described by the dest parameter.

The dl_pre_output function pointer in the if_proto structure is optionally defined when a protocol calls
the function “dlil_attach_protocol” (page 45) to register a protocol family. The DLIL calls the dl_pre_output
function when a protocol calls “dlil_output” (page 46).

In addition to defining the destination link address and the frame type, the dl_pre_output function may
also add a packet header, such as 802.2 or SNAP.

48 Data Link NKE Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

dl_input

Receives incoming packets.

int (*dl_input) (struct mbuf *mbuf_ptr, char *frame_header, struct ifnet
*ifnet_ptr, caddr_t dl_tag, int sync_ok);

mbuf_ptrOn input, a pointer to an mbuf structure.

frame_headerOn input, a pointer to a byte array of undefined length containing the frame header.

ifnet_ptrOn input, a pointer to the ifnet structure for this protocol/interface pair.

dl_tagOn input, a value of type u_long, previously obtained by calling “dlil_attach_protocol” (page 45),
that identifies the associated protocol/interface pair.

sync_okReserved.

function result0 for success. Errors are defined in <errno.h>.

DISCUSSION

The dl_input function is called by the DLIL. When a DLIL module receives a frame from the driver and
finishes interface-specific processing, it calls the target protocol through the dl_input function pointer. The
interface family's demultiplexing module identifies the target protocol by matching the data provided in the
demultiplexing descriptors when the protocol was attached.

The dl_input function pointer in the if_proto structure is defined by the input member of the
“dlil_proto_reg_str” (page 61) structure, which the function “dlil_attach_protocol” (page 45) passes to the
DLIL when a protocol is attached.

dl_offer

Examines unidentified frames.

int (*dl_offer) (struct mbuf *mbuf_ptr, char *frame_header; u_long dl_tag);

mbuf_ptrOn input, a pointer to an mbuf structure containing incoming frames.

dl_tagOn input, a value of type u_long, previously obtained by calling “dlil_attach_protocol” (page 45),
that identifies the associated protocol/interface pair.

frame_headerOn input, a pointer to a byte array containing the frame header as received from the driver.
The length of frame_header depends on the interface family.

function resultDLIL_FRAME_ACCEPTED or DLIL_FRAME_REJECTED.

DISCUSSION

The dl_offer function accepts or rejects a frame that was not identified by a protocol's demultiplexing
descriptors.

Data Link NKE Functions 49
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

When the interface family demultiplexing module receives a frame that does not match any of the protocol's
demultiplexing descriptors, the module calls any defined dl_offer function and passes to it the unidentified
frame. The dl_offer function can accept or reject the frame.

The dl_offer function pointer in the if_proto structure is optionally defined by the offer member of
the “dlil_proto_reg_str” (page 61) structure, which the “dlil_attach_protocol” (page 45) function passes to
the DLIL when a protocol is attached.

If a dl_offer function accepts the frame, the frame is not offered to any other protocol's dl_offer function.
If no dl_offer function accepts the frame, the frame is dropped.

Note: The dl_offer function only indicates whether it will accept the frame. It does not modify the frame
or start processing it. Processing occurs when dlil_input calls the protocol's dl_input function.

dl_event

Receives events passed by the DLIL from the interface's driver.

void (*dl_event) (struct event_msg *event, u_long dl_tag);

eventOn input, a pointer to an event_msg structure.

dl_tagOn input, a value of type u_long, previously obtained by calling “dlil_attach_protocol” (page 45),
that identifies the associated protocol/interface pair. The dl_event function uses dl_tag to determine the
interface that was the source of the event.

function resultNone.

DISCUSSION

The dl_event function receives events from the interface's driver. When the DLIL receives an event from
the driver, the module calls the defined dl_event functions of all protocols that are attached to the interface,
passing in event_msg an event-specific code and an event value that is interpreted by the dl_event function.

If “dlil_attach_protocol” (page 45) was called with a null pointer for the dl_event function, no action is
taken for that protocol family.

The dl_event function pointer in the if_proto structure is optionally defined by the event member of
“dlil_proto_reg_str” (page 61) structure, which “dlil_attach_protocol” (page 45) passes to the DLIL when a
protocol is attached.

Calling the Driver Layer From the DLIL

The functions described in this section are called by the DLIL to an interface's driver. The functions are

 ■ “if_output” (page 51), which the DLIL calls in order to pass outgoing packets to the interface's driver.

 ■ “if_ioctl” (page 51), which the DLIL calls in order to pass ioctl commands to the interface's driver.

 ■ “if_set_bpf_tap” (page 51), which the DLIL calls in order to enable or disable a binary packet filter tap.

 ■ “if_free” (page 52), which the DLIL calls in order to free the ifnet structure for an interface.

50 Data Link NKE Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

if_output

Accepts outgoing packets and passes them to the interface's driver.

int (*if_output) (struct ifnet *ifnet_ptr, struct mbuf *buffer);

ifnet_ptrOn input, a pointer to the ifnet structure for this interface.

bufferOn input, a pointer to an mbuf structure containing one or more outgoing packets.

function result0 for success. Errors are defined in <errno.h>.

DISCUSSION

The if_output function sends outgoing packets to the interface's driver. The DLIL calls if_output when
the associated protocol calls “dlil_output” (page 46).

The if_output function must accept all of the packets in the mbuf chain.

The if_output function pointer is defined in the interface's ifnet structure and is initialized by the interface
driver before the interface driver calls “dlil_if_attach” (page 53).

if_ioctl

Processes ioctl commands.

int (*if_ioctl) (struct ifnet *ifnet_ptr, u_long ioctl_code, caddr_t ioctl_arg);

ifnet_ptrOn input, a pointer to the ifnet structure for this interface.

ioctl_codeOn input, a value of type u_long containing the ioctl command.

ioctl_argOn input, a value of type caddr_t whose contents depend on the value of ioctl_code.

function result0 for success. Other results are specific to the driver's ioctl function.

DISCUSSION

The if_ioctl function accepts and processes ioctl commands that access driver-specific functionality.

The if_ioctl pointer is defined in the interface's ifnet structure and is initialized by the interface driver
before the interface driver calls “dlil_if_attach” (page 53).

if_set_bpf_tap

Enables or disables a binary packet filter tap for an interface.

int (*if_set_bpf_tap) (int mode, struct ifnet *ifnet_ptr, void (*bpf_callback)
 (struct ifnet *ifnet_ptr, struct mbuf *mbuf_ptr, int direction);

modeOn input, a value of type int that is BPF_TAP_DISABLE (to disable the tap), BPF_TAP_INPUT (to enable
the tap on incoming packets), BPF_TAP_OUTPUT (to enable the tap on outgoing packets), or
BPF_TAP_INPUT_OUTPUT (to enable the tap on incoming and outgoing packets).

Data Link NKE Functions 51
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

ifnet_ptrOn input, a pointer to the ifnet structure for this interface.

callbackOn input, a function pointer to the tap.

function result0 for success.

DISCUSSION

The if_set_bpf_tap function enables or disables a read-only binary packet filter tap for an interface. A
tap is different from a NKE in that it is read-only and that it operates within the driver. Any network driver
attached to the DLIL can be tapped.

The if_set_bpf_tap function pointer is defined in the interface's ifnet structure by the driver before the
driver calls “dlil_if_attach” (page 53).

If the value of the mode parameter is BPF_TAP_INPUT, BPF_TAP_OUTPUT, or BPF_TAP_INPUT_OUTPUT, the
bfp_callback parameter points to a C function the driver calls when transmitting or receiving data over
the interface (depending on the value of mode). If the value of mode is BPF_TAP_DISABLE, the tap is disabled
for incoming and outgoing packets.

When the driver calls its bpf_callback function, it passes a pointer to the interface's ifnet structure and
a pointer to the incoming or outgoing mbuf chain.

if_free

Frees the inet structure for an interface.

void (*if_free) (struct ifnet *ifnet_ptr);

ifnet_ptrOn input, a pointer to the ifnet structure that is to be freed.

function resultNone.

DISCUSSION

The if_free function frees the ifnet structure for an interface. It is called by the DLIL in response to a
previous dlil_if_detach call from the driver that returned DLIL_WAIT_FOR_FREE. Once all references
to the ifnet structure have been deallocated, the DLIL calls “if_free” (page 52) to notify the driver that the
associated ifnet structure pointed to by ifnet_ptr is no longer being referenced and can be deallocated.

The if_free pointer is defined in the interface's ifnet structure before the interface driver calls
“dlil_if_attach” (page 53).

Calling the DLIL From the Driver Layer

Drivers call the following DLIL functions:

 ■ “dlil_if_attach” (page 53) to attach an interface to the DLIL.

 ■ “dlil_if_detach” (page 53) to detach an interface from the DLIL.

 ■ “dlil_reg_if_modules” (page 54) to register an interface family module.

52 Data Link NKE Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

 ■ “dlil_find_dl_tag” (page 54) to locate the dl_tag value for a protocol and interface family pair.

 ■ “dlil_input” (page 55) to pass incoming packets to the DLIL.

 ■ “dlil_event” (page 55) to pass event codes to the DLIL.

dlil_if_attach

Attaches an interface to the DLIL for use by a specified protocol.

int dlil_if_attach(struct ifnet *ifnet_ptr);

ifnet_ptrA pointer to an ifnet structure containing all of the information required to complete the
attachment. The ifnet structure may be embedded within an interface-family-specific structure, in which
case the ifnet structure must be the first member of that structure.

function result0 for success and ENOENT if no interface family module is found. Other possible errors
are defined in errno.h.

DISCUSSION

The dlil_if_attach function attaches an interface to the DLIL. If the DLIL interface family module for the
specified interface has not been loaded, an error is returned. (See “dlil_reg_if_modules” (page 54).)

The DLIL calls the “add_if” (page 56) function for the interface family module in order to initialize the module's
portion of the ifnet structure and perform any module-specific tasks. At minimum, the add_if function is
responsible for initializing the “if_demux” (page 57) and if_framer function pointers in the ifnet structure.
Later, the DLIL uses the if_demux function pointer to call the demultiplexing descriptors for the interface
in order to demultiplex incoming frames and uses the if_framer function pointer to frame outbound
packets.

Once add_if initializes the members of the ifnet structure for which it is responsible, the DLIL places the
interface on the list of network interfaces, and dlil_if_attach returns.

dlil_if_detach

Detaches an interface from the DLIL.

int dlil_if_detach(struct ifnet *ifnet_ptr);

inet_ptrA pointer to an ifnet structure that was previously used to call “dlil_if_attach” (page 53).

function result0 for success. DLIL_WAIT_FOR_FREE if the driver must wait for the DLIL to call the
“if_free” (page 52) callback function before deallocating the ifnet structure.

DISCUSSION

The dlil_if_detach function detaches a network interface from the DLIL, thereby disabling communication
to and from the interface. Then the DLIL marks the interface as detached in the interface's ifnet structure.
To notify the protocols that are attached to the interface that the interface has been detached, the DLIL then
calls the dl_event function for all of the protocols have defined such a function. In response, attached
protocols should call dlil_detach_protocol to detach themselves from the interface.

Data Link NKE Functions 53
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

The protocols or the socket layer may still have references to the ifnet structure for the detached interface,
so interface drivers should wait to deallocate the interface's ifnet structure until the DLIL calls the interface's
“if_free” (page 52) function to notify the driver that all protocols have detached from the interface.

dlil_reg_if_modules

Registers an interface family.

dlil_reg_if_modules(u_longinterface_family, int (*add_if), int (*del_if), int
(*add_proto), int (*del_proto), int (*shutdown)());

interface_familyOn input, a value of type u_long specified that uniquely identifies the interface family.
Values for the current interface families are defined in <net/if_var.h>. You can define new interface family
values by contacting DTS.

add_ifOn input, a pointer to the interface family module's add_if function.

del_ifOn input, a pointer to the interface family module's del_if function.

add_protoOn input, a pointer to the interface family module's add_proto function.

del_protoOn input, a pointer to the interface family module's del_proto function.

shutdownOn input, a pointer to the interface family module's shutdown function.

function result0 for success. Other errors are defined in errno.h.

DISCUSSION

The dlil_reg_if_modules function registers an interface family module that contains the necessary
functions for processing inbound and outbound packets including if_demux and if_framer functions.
Any null function pointers are skipped in DLIL processing.

dlil_find_dl_tag

Gets the dl_tag for an interface and protocol family pair.

dlil_find_dl_tag(u_longif_family; short unit; u_long proto_family; u_long
*dl_tag);

if_familyOn input, a value of typeu_long that uniquely identifies the interface family. See<net/if_var.h>
for possible values.

unitOn input, a value of type short containing the unit number of the interface.

proto_familyOn input, a value of type u_long that uniquely identifies the protocol family. See
<net/if_var.h> for possible values.

dl_tagOn input, a pointer to a value of type u_long in which the dl_tag value for the specified interface
and protocol family pair is to be returned.

function result0 for success. EPROTONOSUPPORT if a matching pair is not found.

54 Data Link NKE Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

DISCUSSION

The dlil_find_dl_tag function locates the dl_tag value associated with the specified interface and
protocol family pair.

dlil_input

Passes incoming packets to the DLIL.

int dlil_input(struct ifnet *ifp, struct mbuf *m);

ifpOn input, a pointer to the ifnet structure for this interface.

mOn input, a pointer to the head of a chain of mbuf structures containing one or more incoming frames.

function result0 for success.

DISCUSSION

The dlil_input function is called by the driver layer to pass incoming frames from an interface to the DLIL.
The dlil_input function performs the following sequence:

1. Any interface filters attached to the associated interface are called.

2. Assuming all filters return successfully, “if_demux” (page 57) is called to determine the target protocol
family. If if_demux cannot find a matching protocol family, dlil_input calls the dl_offer functions
(if any) defined by the attached protocol families.

3. If no target protocol family is found, the frame is dropped.

4. Any protocol filters attached to the target protocol family/interface are called.

5. If all protocol filters return successfully, the frame is passed to the protocol family's dl_input function.
DLIL frame processing is finished.

dlil_event

Notifies the DLIL of significant events.

void (*dlil_event) (struct ifnet *ifnet_ptr, struct event_msg *event);

ifnet_ptrOn input, a pointer to the ifnet structure for this interface.

eventOn input, a pointer to an event_mgs structure containing a unique event code and a pointer to event
data.

function resultA result code.

Data Link NKE Functions 55
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

DISCUSSION

The dlil_event function is called by the driver layer to pass event codes, such as a change in the status of
power management, to the DLIL. The DLIL passes a pointer to the ifnet structure for this interface and the
event parameter to those protocols that are attached to this interface and that have provided a pointer to
a dl_event function for receiving events. The protocols may or may not react to any particular event code.

Calling Interface Modules From the DLIL

The DLIL calls the following interface module functions:

 ■ “add_if” (page 56) to add an interface.

 ■ “del_if” (page 56) to remove an interface.

 ■ “add_proto” (page 57) which is called to add a protocol.

 ■ “del_proto” (page 57) which is called to remove a protocol.

add_if

Adds an interface.

int (*add_if) struct ifnet *ifp);

ifpOn input, a pointer to the ifnet structure for the interface that is being added.

function result0 for success.

DISCUSSION

The add_if function is called by the DLIL in response to a call to “dlil_if_attach” (page 53). The DLIL calls
add_if in the interface family module in order to initialize the module's portion of the ifnet structure and
perform any module-specific tasks.

At minimum, the add_if function initializes the “if_demux” (page 57) and if_framer function pointers in
the ifnet structure. Later, the DLIL uses the if_demux function pointer to call the demultiplexing function
for the interface to demultiplex incoming frames and calls the if_framer function to frame outbound
packets.

del_if

Deinitializes portions of an ifnet structure.

int (*del_if) struct ifnet *ifp);

ifpOn input, a pointer to the ifnet structure for the interface that is being deinitialized.

function result0 for success.

56 Data Link NKE Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

DISCUSSION

The del_if function is called by the DLIL to notify an interface family module that an interface is being
detached. The interface family module should remove any references to the interface and associated structures.

add_proto

Adds a protocol.

int (*add_proto)(struct ddesc_head_str *demux_desc_head) struct if_proto *proto,
 u_long dl_tag);

demux_desc_headOn input, a pointer to the head of a linked list of one or more protocol demultiplexing
descriptors for the protocol that is being added.

protoOn input, a pointer to the if_proto structure for the protocol that is being added.

dl_tagOn input, a value of type u_long, previously obtained by calling “dlil_attach_protocol” (page 45),
that identifies the associated protocol/interface pair.

function result0 for success.

DISCUSSION

The add_proto function is an interface family module function that processes the passed demux descriptor
list, extracting any information needed to identify the attaching protocol in subsequent incoming frames.

del_proto

Removes a protocol.

int (*del_proto) (struct if_proto *proto, u_long dl_tag);

protoOn input, a pointer to the if_proto structure for the protocol that is being removed.

dl_tagOn input, a value of type u_long, previously obtained by calling “dlil_attach_protocol” (page 45),
that identifies the associated protocol/interface pair.

function result0 for success.

DISCUSSION

The del_proto function is called by the DLIL to remove a protocol family from an interface family module's
list of attached protocol families. Any references to the associated if_proto structure pointer should be
removed before returning.

if_demux

Locates demultiplexing descriptors.

void (*if_demux) (struct ifnet *ifnet_ptr, struct mbuf *mbuf_ptr, char *
frame_header);

Data Link NKE Functions 57
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

ifnet_ptrOn input, a pointer to the ifnet structure for this interface.

mbuf_ptrOn input, a pointer to an mbuf structure containing one or more incoming frames.

frame_headerOn input, a pointer to a character string in the mbuf structure containing a frame header.

function result0 for success.

DISCUSSION

The if_demux function is an interface family function called by “dl_input” (page 49) to determine the target
protocol family for an incoming frame. This function uses the demultiplexting data passed in from previous
calls to the add_proto function. When a match is found, if_demux returns the associated if_proto pointer.

Calling the DLIL From a DLIL Filter

DLIL filters call the following DLIL functions in order to inject data into a data path:

 ■ “dlil_inject_if_input” (page 58) is called by a DLIL interface filter to inject frames into the inbound data
path.

 ■ “dlil_inject_if_output” (page 59) is called by a DLIL interface filter to inject packets into the outbound
data path.

 ■ “dlil_inject_pr_input” (page 59) is called by a DLIL protocol filter to inject frames into the inbound data
path.

 ■ “dlil_inject_pr_output” (page 60) is called by a DLIL protocol filter to inject packets into the output data
path.

dlil_inject_if_input

Injects frames into the inbound data path from the interface filter level.

int dlil_inject_if_input (struct mbuf *buffer, char *frame_header, ulong from_id);

bufferOn input, a pointer to a chain of mbuf structures containing the packets that are to be injected.

frame_headerOn input, a pointer to a byte array of undefined length containing the frame header for the
frames that are to be injected.

from_idOn input, a value of type ulong containing the filter ID of the calling filter obtained by previously
calling “dlil_attach_interface_filter” (page 44). If from_id is set to DLIL_NULL_FILTER, all attached interface
filters are called.

function result0 for success.

DISCUSSION

The dlil_inject_if_input function is called by an interface filter NKE to inject frames into the inbound
data path. The frames can be frames that the filter generates or frames that were previously consumed.

58 Data Link NKE Functions
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

When a filter injects a frame, the DLIL invokes all of the input interface filter NKEs that would normally be
invoked after the filter identified by filter_id. The behavior is identical to the processing of a frame passed
to “dlil_input” (page 55) from the driver layer except that all interface filter NKEs preceding and including
the injecting filter are not executed.

dlil_inject_if_output

Injects packets into the outbound data path from the interface filter level.

int dlil_inject_if_output (struct mbuf *buffer, ulong from_id);

bufferOn input, a pointer to a chain of mbuf structures containing the packets that is to be injected.

from_idOn input, a value of type ulong containing the filter ID of the calling filter obtained by previously
calling “dlil_attach_interface_filter” (page 44). If from_id is set to DLIL_NULL_FILTER, all attached interface
filters are called.

function result0 for success.

DISCUSSION

The dlil_inject_if_output function is called by an interface filter NKE to inject frames into the outbound
data path. The packets can be packets that the filter generates or packets that were previously consumed.

When a filter injects a packet, the DLIL invokes all of the output interface filter NKEs that would normally be
invoked after the filter that calls “dlil_inject_if_output” (page 59). This behavior is identical to the last steps
of packet processing done by dlil_output, except that all output interface filter NKEs preceding and
including the injecting filter are not executed.

Note: The injected packets must contain any frame header that the driver layer requires.

dlil_inject_pr_input

Injects frames into the inbound data path from the protocol filter level.

int dlil_inject_pr_input (struct mbuf *buffer, char *frame_header, ulong from_id);

bufferOn input, a pointer to a chain of mbuf structures containing the data that is to be injected.

frame_headerOn input, a pointer to a byte array of undefined length containing the frame header for the
frames that are to be injected.

from_idOn input, the filter ID of the calling filter obtained by previously calling
“dlil_attach_protocol_filter” (page 43). If from_id is set to the constant DLIL_NULL_FILTER, all attached
interface filters are called.

function result0 for success.

DISCUSSION

The dlil_inject_pr_output function is called by a protocol filter NKE to inject frames into the outbound
data path. The frames can be frames that the filter generates or frames that were previously consumed.

Data Link NKE Functions 59
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

When a protocol filter calls dlil_inject_pr_output, the DLIL invokes all of the input protocol filter NKEs
that would normally be invoked after the filter that calls dlil_inject_pr_input. This behavior is identical
to the last steps of processing that occur when a frame is passed to “dl_input” (page 49), except that all
protocol filter NKEs preceding and including the injecting filter are not executed.

dlil_inject_pr_output

Injects packets into the outbound data path from the protocol filter level.

int dlil_inject_pr_output (struct mbuf *buffer,
 struct sockaddr *dest, int raw, char *frame_type,
 char *dst_linkaddr, ulong from_id);

bufferOn input, a pointer to a chain of mbuf structures containing the data that is to be injected.

destOn input, a pointer to an opaque pointer-sized variable whose use is specific to each protocol family,
or NULL.

rawOn input, a Boolean value. Setting raw to TRUE indicates that the mbuf chain pointed to by buffer
contains a link-level frame header, which means that no further processing by the protocol or the interface
family modules is required. The value of raw does not affect whether the DLIL calls any NKEs that are attached
to the protocol/interface pair.

frame_typeOn input, a pointer to a byte array of undefined length containing the frame type. The length
and content of frame_type are specific to each interface family.

dst_linkaddrA pointer to a byte array of undefined length containing the destination link address.

from_idOn input, a value of type ulong containing the filter ID of the calling filter obtained by previously
calling “dlil_attach_protocol_filter” (page 43). If from_id is set to DLIL_NULL_FILTER, all attached interface
filters are called.

function result0 for success.

DISCUSSION

The dlil_inject_pr_output function is called by a protocol filter NKE to inject packets into the outbound
data path. The packets can be packets that the filter generates or packets that were previously consumed.

When a protocol filter calls dlil_inject_pr_output, the DLIL invokes all of the output protocol filter NKEs
that would normally be invoked after the filter that calls dlil_inject_pr_output. This behavior is identical
to the execution of dlil_output following the call to dl_pre_output except that all output protocol filters
preceding and including the injecting filter are not executed.

NKE Structures and Data Types

This section describes the NKE structures and data types. The structures are

 ■ “dlil_proto_reg_str” (page 61) which provides the information necessary to attach a protocol to the
DLIL.

60 NKE Structures and Data Types
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

 ■ “dlil_demux_desc” (page 62) which provides the information necessary to identify a protocol's packets.

 ■ “dlil_if_flt_str” (page 63) which contains pointers to all of the functions the DLIL may call when sending
or receiving a frame from an interface.

 ■ “dlil_pr_flt_str” (page 65) which contains pointers to all of the functions the DLIL may call when it passes
a call to an NKE.

Note: With the exception of the ifnet structure, the DLIL makes its own copy of all structures that are
passed to it.

dlil_proto_reg_str

The dlil_proto_reg_str structure is passed as a parameter to the “dlil_attach_protocol” (page 45)
function, which attaches network protocol stacks to interfaces.

struct dlil_proto_reg_str {
 struct ddesc_head_str demux_desc_head;
 u_long interface_family;
 u_long protocol_family;
 short unit_number;
 int default_proto;
 dl_input_func input;
 dl_pre_output_func pre_output;
 dl_event_func event;
 dl_offer_func offer;
 dl_ioctl_func ioctl;
};

Field Descriptions

ddesc_head_str The head of a linked list of one or more protocol demultiplexing descriptors. Each
demultiplexing descriptor defines several sub-structures that are used to identity and demultiplex incoming
frames belonging to one or more attached protocols. When multiple methods of frame identification are
used for an interface family, a chain of demultiplexing descriptors may be passed to
“dlil_attach_protocol” (page 45) and to “add_if” (page 56) to identify each method.

interface_familyA unique unsigned long value that specifies the interface family. Values for current
interface families are defined in <net/if_var.h>. Developers may define new interface family values
through DTS.

protocol_familyA unique unsigned long value defined that specifies the protocol family being attached.
Values for current protocol families are defined in <net/dlil.h>. Developers may define new protocol
family values through DTS.

unit_numberSpecifies the unit number of the interface to which the protocol is to be attached. Together,
the interface_family and unit_number fields identify the interface to which the protocol is to be
attached.

default_protoReserved. Always 0.

NKE Structures and Data Types 61
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

input Contains a pointer to the function that the DLIL is to call in order to pass input packets to the protocol
stack.

pre_outputContains a pointer to the function that the DLIL is to call in order to perform protocol-specific
processing for outbound packets, such as adding an 802.2/SNAP header and defining the target address.

eventContains a pointer to the function that the DLIL is to call in order to notify the protocol stack of
asynchronous events, or is NULL. If this field is NULL, events are not passed to the protocol stack.

offer Contains a pointer to the function that the DLIL is to call in order to offer a frame to the attached
protocol, or is NULL. If offer is NULL, the DLIL will not be able to offer frames that cannot be identified to
the protocol and the frame may be dropped.

ioctlContains a pointer to the function that the DLIL is to call in order to send ioctl calls to the interface's
driver.

dlil_demux_desc

The dlil_demux_desc structure is a member of the “dlil_proto_reg_str” (page 61) structure. The
dlil_demux_desc structure is the head of a linked list of protocol demultiplexing descriptors that identify
the protocol's packets in incoming frames.

struct dlil_demux_desc {
 TAILQ_ENTRY(dlil_demux_desc) next;
 int type;
 u_char *native_type;
 union {
 struct {
 u_long proto_id_length;
 u_char *proto_d;
 u_char *proto_id_mask;
 } bitmask;
 struct {
 u_char dsap;
 u_char ssap;
 u_char control_code;
 u_char pad;
 } desc_802_2;
 struct {
 u_char dsap;
 u_char ssap;
 u_char control_code;
 u_char org[3];
 u_short protocol_type;
 } desc_802_2_SNAP;
 } variants;
} TAILQ_HEAD {
 ddesc_head_str,
 dlil_demux_desc
};

Field Descriptions

nextA link pointer used to chain multiple descriptors.

62 NKE Structures and Data Types
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

typeSpecifies which variant of the descriptor has been defined. For Ethernet, the possible values are
DESC_802_2, DESC_802_2_SNAP, and DESC_BITMASK.

native_typeA pointer to a byte array containing a self-identifying frame ID, such as the two-byte Ethertype
field in an Ethernet II frame. This field may be used by itself, may be used in combination with other identifying
information, or may not be used at all, in which case, its value is NULL.

variantsThree structures that comprise a union. The bitmask structure describes any combination of bits
that identify frames that do not match Ethernet 802.2 frames and Ethernet 802.2/SNAP frames. The
desc_802_2 structure and the desc_802_2_SNAP structure describe Ethernet 802.2 frames and Ethernet
802.2/SNAP frames, respectively.

For each Ethernet interface, the following sequence must take place. The actual implementation may optimize
the process.

1. The first if_proto structure is referenced. The structure is found through the proto_head pointer in
the associated ifnet structure.

2. The frame is compared with the first demultiplexing descriptor in the protocol's list of demultiplexing
descriptors (the bitmask structure).

3. If the native type is NULL or if the interface family's frame doesn't have a frame type field, go to step 4.
Otherwise, the octet string in native-type is compared with the interface family's native frame-type
specification field. The frame format for each interface family defines the number of bits to compare. If
there is a match and the proto_id and proto_id_mask fields are defined, go to step 4. If there is a
match and the proto_id and proto_id_mask fields are NULL, the frame is passed to the protocol's
input function, thereby terminating DLIL processing of the frame.

4. If the proto_id or proto_id_mask fields in the bitmask structure are NULL, or if the proto_id_length
field is 0, go to step 5. Otherwise, compare the first proto_id_length bytes of the frame's data field
with proto_id, ignoring any bits defined as zero in the proto_id_mask. If there is a match, the frame
is passed to the protocol's input function, thereby terminating DLIL processing of the frame.

5. This demultiplexing descriptor could not provide a match. Advance to the next demultiplexing descriptor
in the list and go to step 3.

6. None of the demultiplexing descriptors could provide a match. If there is another if_proto structure
in the interface's protocol list, go back to step 2 using the first demultiplexing descriptor for this protocol.

7. No match could be found using any demultiplexing descriptor for any of the protocols attached to the
interface. Go back through the if_proto structures for the attached protocols and call any defined
dl_offer function. If a dl_offer function returns DLIL_FRAME_ACCEPTED, the DLIL passes the frame
to the responding protocol's dl_input function, thereby terminating DLIL processing of the frame.

8. None of the protocols attached to this interface have accepted the frame. The mbuf chain is freed and
the frame is dropped.

The bitmask structure or one of the predefined 802.2 structures can be used to identify frames.

dlil_if_flt_str

The dlil_ir_flt_str structure is a parameter to the “dlil_attach_interface_filter” (page 44) function,
which inserts DLIL interface filters between the DLIL and an interface.

NKE Structures and Data Types 63
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

This structure contains pointers to all of the functions that are called at the point at which the filter is placed.

struct dlil_if_flt_str {
 caddr_t cookie;
 int (*filter_if_input)(caddr_t cookie,
 struct ifnet **ifnet_ptr,
 struct mbuf **mbuf_ptr,
 char **frame_ptr);
 int (*filter_if_event)(caddr_t cookie,
 struct ifnet **ifnet_ptr,
 struct event_msg **event_msg_ptr);
 int (*filter_if_output)(caddr_t cookie,
 struct ifnet **ifnet_ptr,
 struct mbuf **mbuf_ptr);
 int (*filter_if_ioctl)(caddr_t cookie,
 struct ifnet **ifnet_ptr,
 u_long ioctl_code_ptr,
 caddr_t ioctl_arg_ptr);
 int (*filter_if_free)(caddr_t cookie,
 struct ifnet **ifnet_ptr);
 int (*filter_detatch)(caddr_t cookie);

Field Descriptions

filter_if_inputA pointer to the filter_if_input function for this DLIL interface filter. The parameters
for this function are cookie, (an opaque value that is passed by the filter and is returned so that the filter
can identify one attachment among many attachments), a pointer to the ifnet structure for this interface,
a pointer to an mbuf structure, and pointer to the frame.

filter_if_eventA pointer to the filter_if_event function for this DLIL interface filter. The parameters
for this function are cookie, (an opaque value that is passed by the filter and is returned so that the filter
can identify one attachment among many attachments), a pointer to the ifnet structure for this interface,
and a pointer to an event_msg structure containing the event that is being passed to the extension.

filter_if_outputA pointer to the filter_if_output function for this DLIL interface filter. The parameters
for this function are cookie (an opaque value that is passed by the filter and is returned so that the filter
can identify one attachment among many attachments), a pointer to the ifnet structure for this interface,
and a pointer to the memory buffer for this packet.

filter_if_ioctlA pointer to the filter_if_ioctl function for this DLIL interface filter. The parameters
for this function are cookie (an opaque value that is passed by the filter and is returned so that the filter
can identify one attachment among many attachments), a pointer to the ifnet structure for this interface,
an unsigned long that points to the I/O control code for this call, and a pointer to parameters that the DLIL
passes to the filter_if_ioctl function.

filter_if_freeA pointer to the filter_if_free function for this DLIL interface filter. The parameters
for this function are cookie (an opaque value that is passed by the filter and is returned so that the filter
can identify one attachment among many attachments) and a pointer to the ifnet structure for this interface.

filter_detachA pointer to the filter_detach function for this DLIL interface filter. The parameter for
this function is cookie (an opaque value that is passed by the filter and is returned so that the filter can
identify one attachment among many attachments). For details, see “dlil_detach_filter” (page 45).

64 NKE Structures and Data Types
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

dlil_pr_flt_str

The dlil_pr_flt_str structure is a parameter to the function “dlil_attach_protocol_filter” (page 43), which
inserts DLIL protocol filters between a protocol and the DLIL.

This structure contains pointers to all of the functions that are called at the point at which the filter is placed.

struct dlil_if_flt_str {
 caddr_t cookie;
 int (*filter_dl_input)(caddr_t cookie,
 struct mbuf **m,
 char **frame_header,
 struct ifnet **ifp);
 int (*filter_dl_output)(caddr_t cookie,
 struct mbuf **m,
 struct ifnet **ifp,
 struct sockaddr **dest,
 char *dest_linkaddr,
 char *frame_type);
 int (*filter_dl_event)(caddr_t cookie,
 struct event_msg *event_msg);
 int (*filter_dl_ioctl)(caddr_t cookie,
 struct ifnet **ifp,
 u_long ioctl_cmd,
 caddr_t ioctl_arg);
 int (*filter_detach)(caddr_t cookie);
};

Field Descriptions

filter_dl_inputA pointer to the filter_dl_input function for this DLIL protocol filter. The parameters
for this function are cookie, (an opaque value that is passed by the filter and is returned so that the filter
can identify one attachment among many attachments), a pointer to an mbuf structure, and a pointer to the
ifnet structure for the interface.

filter_dl_outputA pointer to a filter_dl_output function for this DLIL protocol filter. The parameters
for this function are cookie (an opaque value that is passed by the filter and is returned so that the filter
can identify one attachment among many attachments), a pointer to the ifnet structure for the interface,
a pointer to the socket address for this destination, a pointer to the link address for this destination, and a
pointer to the frame type.

filter_dl_eventA pointer to the filter_pr_event function for this DLIL protocol filter. The parameters
for this function are cookie, (an opaque value that is passed by the filter and is returned so that the filter
can identify one attachment among many attachments), a pointer to the ifnet structure for the interface,
and a pointer to an event_msg structure containing the event that is being passed to the extension.

filter_dl_ioctlA pointer to a filter_if_ioctl function for this DLIL protocol filter. The parameters
for this function are cookie (an opaque value that is passed by the filter and is returned so that the filter
can identify one attachment among many attachments), a pointer to the ifnet structure for the interface,
an u_long that points to the I/O control command for this call, and a pointer to parameters that the DLIL
passes to the filter_if_ioctl function.

NKE Structures and Data Types 65
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

filter_detachA pointer to the filter_detach function for this DLIL protocol filter. The parameter for
this function is cookie (an opaque value that is passed by the filter and is returned so that the filter can
identify one attachment among many attachments).

66 NKE Structures and Data Types
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Network Kernel Extensions Reference

This table describes the changes to Network Kernel Extensions (legacy).

NotesDate

Clarified the availability of sample code.2006-10-03

Corrected some minor formatting issues.2005-10-04

Fixed error in code sample.2005-08-11

Fixed minor typographical errors.2005-06-04

Updated title to reflect legacy status. (This document covers Mac OS X v10.3
and earlier.)

2005-04-29

Initial republication2004-04-22

67
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

68
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

domain A complete protocol family.

extension A general term for an object module that
can be dynamically added to a running system. A
synonym for kernel extension.

Data Link Interface Layer (DLIL) The fixed part of
the network kernel extension architecture that exists
between protocol stacks and the network drivers.

data link interface module A network kernel
extension that handles demultiplexing or packet
framing.

data link NKE A network kernel extension that exists
between the protocol stacks and the device layer.

DLIL interface filter A network kernel extension that
is installed between the DLIL and one or more
network interfaces.

DLIL protocol filter A network kernel extension that
is installed between the DLIL and a network protocol
stack.

data link protocol module A network kernel
extension that handles the specific interface for the
protocol’s attachment to a particular interface family.

global NKE An NKE that is automatically enabled for
sockets of the type specified for the NKE.

network kernel extension (NKE) 1) The architecture
that allows modules to be added to the Mac OS X
networking subsystem while the system is running.
2) A module that can be added to a running system.

plug-in A general term for an object module that
can be dynamically added to a running system.

programmatic filter NKE An NKE that is enabled
only under program control, using socket options, for
a specific socket.

protocol family NKE A network kernel extension that
implements a domain.

protocol handler A network kernel extension that
implements a specific protocol within a domain.

socket NKE A network kernel extension that is
installed between the socket layer and the protocol
stack or network device layers.

69
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Glossary

70
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

	Network Kernel Extensions (legacy)
	Contents
	Figures and Listings
	About Network Kernel Extensions
	NKE Implementation
	Review of 4.4 BSD Network Architecture
	NKE Types
	Global and Programmatic NKEs
	Tracking NKE Usage
	Modifications to 4.4BSD Networking Architecture

	PF_NKE Domain
	Dispatch Functions
	Connection from the Client Process

	Implementing a Preference File for NKE
	About Protocol Family NKEs
	About Protocol Handler NKEs
	About Socket NKEs
	About Data Link NKEs
	DLIL Static Functions
	Changes to the ifnet and if_proto Structures
	Installing and Removing Data Link NKEs
	Sending Data
	Receiving Data

	For more information

	Using Network Kernel Extensions
	Example: TCPLogger

	Network Kernel Extensions Reference
	Kernel Utilities
	_MALLOC
	_FREE
	kalloc
	kfree
	kprintf
	psignal
	splimp
	splnet
	splx
	suser
	timeout
	tsleep
	untimeout
	wakeup

	protosw Functions
	pffindproto
	pffindtype

	ifaddr Functions
	ifa_ifwithaddr
	ifa_ifwithdstaddr
	ifa_ifwithnet
	ifa_ifwithaf
	ifa_ifafree
	ifa_ifaof_ifpforaddr

	mbuf Functions
	Caution About Using Malloc'd Memory In mbufs

	Socket Functions
	soabort
	soaccept
	sobind
	soclose
	soconnect
	soconnect2
	socreate
	sodisconnect
	sofree
	sogetopt
	sohasoutofband
	solisten
	soreceive
	soflush
	sosend
	sosetopt
	soshutdown

	Socket Buffer Functions
	sb_lock
	sbappend
	sbappendaddr
	sbappendcontrol
	sbappendrecord
	sbcompress
	sbdrop
	sbdroprecord
	sbflush
	sbinsertoob
	sbrelease
	sbreserve
	sbwait
	socantrcvmore
	socantsendmore
	soisconnected
	soisconnecting
	soisdisconnected
	soisdisconnecting
	su_sonewconn1
	soqinsque
	soqremque
	soreserve

	Protocol Family NKE Functions
	net_add_domain
	DISCUSSION

	net_del_domain
	DISCUSSION

	pffinddomain
	DISCUSSION

	Protocol Handler NKE Functions
	net_add_proto
	DISCUSSION

	net_del_proto
	DISCUSSION

	Data Link NKE Functions
	Calling the DLIL From the Network Layer
	dlil_attach_protocol_filter
	DISCUSSION

	dlil_attach_interface_filter
	DISCUSSION

	dlil_attach_protocol
	DISCUSSION

	dlil_detach_filter
	DISCUSSION

	dlil_detach_protocol
	DISCUSSION

	dlil_output
	DISCUSSION

	dlil_ioctl
	DISCUSSION

	Calling the Network Layer From the DLIL
	dl_pre_output
	DISCUSSION

	dl_input
	DISCUSSION

	dl_offer
	DISCUSSION

	dl_event
	DISCUSSION

	Calling the Driver Layer From the DLIL
	if_output
	DISCUSSION

	if_ioctl
	DISCUSSION

	if_set_bpf_tap
	DISCUSSION

	if_free
	DISCUSSION

	Calling the DLIL From the Driver Layer
	dlil_if_attach
	DISCUSSION

	dlil_if_detach
	DISCUSSION

	dlil_reg_if_modules
	DISCUSSION

	dlil_find_dl_tag
	DISCUSSION

	dlil_input
	DISCUSSION

	dlil_event
	DISCUSSION

	Calling Interface Modules From the DLIL
	add_if
	DISCUSSION

	del_if
	DISCUSSION

	add_proto
	DISCUSSION

	del_proto
	DISCUSSION

	if_demux
	DISCUSSION

	Calling the DLIL From a DLIL Filter
	dlil_inject_if_input
	DISCUSSION

	dlil_inject_if_output
	DISCUSSION

	dlil_inject_pr_input
	DISCUSSION

	dlil_inject_pr_output
	DISCUSSION

	NKE Structures and Data Types
	dlil_proto_reg_str
	Field Descriptions

	dlil_demux_desc
	Field Descriptions

	dlil_if_flt_str
	Field Descriptions

	dlil_pr_flt_str
	Field Descriptions

	Revision History
	Glossary

