ADC Home > Reference Library > Reference > Mac OS X > Mac OS X Man Pages

 

This document is a Mac OS X manual page. Manual pages are a command-line technology for providing documentation. You can view these manual pages locally using the man(1) command. These manual pages come from many different sources, and thus, have a variety of writing styles.

For more information about the manual page format, see the manual page for manpages(5).



PERLSOLARIS(1)                        Perl Programmers Reference Guide                        PERLSOLARIS(1)



NAME
       README.solaris - Perl version 5 on Solaris systems

DESCRIPTION
       This document describes various features of Sun's Solaris operating system that will affect how Perl
       version 5 (hereafter just perl) is compiled and/or runs.  Some issues relating to the older SunOS 4.x
       are also discussed, though they may be out of date.

       For the most part, everything should just work.

       Starting with Solaris 8, perl5.00503 (or higher) is supplied with the operating system, so you might
       not even need to build a newer version of perl at all.  The Sun-supplied version is installed in
       /usr/perl5 with /usr/bin/perl pointing to /usr/perl5/bin/perl.  Do not disturb that installation
       unless you really know what you are doing.  If you remove the perl supplied with the OS, you will
       render some bits of your system inoperable.  If you wish to install a newer version of perl, install
       it under a different prefix from /usr/perl5.  Common prefixes to use are /usr/local and /opt/perl.

       You may wish to put your version of perl in the PATH of all users by changing the link /usr/bin/perl.
       This is probably OK, as most perl scripts shipped with Solaris use an explicit path.  (There are a
       few exceptions, such as /usr/bin/rpm2cpio and /etc/rcm/scripts/README, but these are also suffi-ciently sufficiently
       ciently generic that the actual version of perl probably doesn't matter too much.)

       Solaris ships with a range of Solaris-specific modules.  If you choose to install your own version of
       perl you will find the source of many of these modules is available on CPAN under the Sun::Solaris::
       namespace.

       Solaris may include two versions of perl, e.g. Solaris 9 includes both 5.005_03 and 5.6.1.  This is
       to provide stability across Solaris releases, in cases where a later perl version has incompatibili-ties incompatibilities
       ties with the version included in the preceeding Solaris release.  The default perl version will
       always be the most recent, and in general the old version will only be retained for one Solaris
       release.  Note also that the default perl will NOT be configured to search for modules in the older
       version, again due to compatibility/stability concerns.  As a consequence if you upgrade Solaris, you
       will have to rebuild/reinstall any additional CPAN modules that you installed for the previous
       Solaris version.  See the CPAN manpage under 'autobundle' for a quick way of doing this.

       As an interim measure, you may either change the #! line of your scripts to specifically refer to the
       old perl version, e.g. on Solaris 9 use #!/usr/perl5/5.00503/bin/perl to use the perl version that
       was the default for Solaris 8, or if you have a large number of scripts it may be more convenient to
       make the old version of perl the default on your system.  You can do this by changing the appropriate
       symlinks under /usr/perl5 as follows (example for Solaris 9):

        # cd /usr/perl5
        # rm bin man pod
        # ln -s ./5.00503/bin
        # ln -s ./5.00503/man
        # ln -s ./5.00503/lib/pod
        # rm /usr/bin/perl
        # ln -s ../perl5/5.00503/bin/perl /usr/bin/perl

       In both cases this should only be considered to be a temporary measure - you should upgrade to the
       later version of perl as soon as is practicable.

       Note also that the perl command-line utilities (e.g. perldoc) and any that are added by modules that
       you install will be under /usr/perl5/bin, so that directory should be added to your PATH.

       Solaris Version Numbers.

       For consistency with common usage, perl's Configure script performs some minor manipulations on the
       operating system name and version number as reported by uname.  Here's a partial translation table:

                 Sun:                      perl's Configure:
        uname    uname -r   Name           osname     osvers
        SunOS    4.1.3     Solaris 1.1     sunos      4.1.3
        SunOS    5.6       Solaris 2.6     solaris    2.6
        SunOS    5.8       Solaris 8       solaris    2.8
        SunOS    5.9       Solaris 9       solaris    2.9
        SunOS    5.10      Solaris 10      solaris    2.10

       The complete table can be found in the Sun Managers' FAQ <ftp://ftp.cs.toronto.edu/pub/jdd/sunman-
       agers/faq under "9.1) Which Sun models run which versions of SunOS?".

RESOURCES
       There are many, many sources for Solaris information.  A few of the important ones for perl:

       Solaris FAQ
           The Solaris FAQ is available at <http://www.science.uva.nl/pub/solaris/solaris2.html.

           The Sun Managers' FAQ is available at <ftp://ftp.cs.toronto.edu/pub/jdd/sunmanagers/faq

       Precompiled Binaries
           Precompiled binaries, links to many sites, and much, much more are available at <http://www.sun-
           freeware.com/ and <http://www.blastwave.org/.

       Solaris Documentation
           All Solaris documentation is available on-line at <http://docs.sun.com/.

SETTING UP
       File Extraction Problems on Solaris.

       Be sure to use a tar program compiled under Solaris (not SunOS 4.x) to extract the perl-5.x.x.tar.gz
       file.  Do not use GNU tar compiled for SunOS4 on Solaris.  (GNU tar compiled for Solaris should be
       fine.)  When you run SunOS4 binaries on Solaris, the run-time system magically alters pathnames
       matching m#lib/locale# so that when tar tries to create lib/locale.pm, a file named lib/oldlocale.pm
       gets created instead.  If you found this advice too late and used a SunOS4-compiled tar anyway, you
       must find the incorrectly renamed file and move it back to lib/locale.pm.

       Compiler and Related Tools on Solaris.

       You must use an ANSI C compiler to build perl.  Perl can be compiled with either Sun's add-on C com-piler compiler
       piler or with gcc.  The C compiler that shipped with SunOS4 will not do.

       Include /usr/ccs/bin/ in your PATH.

       Several tools needed to build perl are located in /usr/ccs/bin/:  ar, as, ld, and make.  Make sure
       that /usr/ccs/bin/ is in your PATH.

       You need to make sure the following packages are installed (this info is extracted from the Solaris
       FAQ):

       for tools (sccs, lex, yacc, make, nm, truss, ld, as): SUNWbtool, SUNWsprot, SUNWtoo

       for libraries & headers: SUNWhea, SUNWarc, SUNWlibm, SUNWlibms, SUNWdfbh, SUNWcg6h, SUNWxwinc, SUN-Wolinc SUNWolinc
       Wolinc

       for 64 bit development: SUNWarcx, SUNWbtoox, SUNWdplx, SUNWscpux, SUNWsprox, SUNWtoox, SUNWlmsx, SUN-Wlmx, SUNWlmx,
       Wlmx, SUNWlibCx

       If you are in doubt which package contains a file you are missing, try to find an installation that
       has that file. Then do a

        $ grep /my/missing/file /var/sadm/install/contents

       This will display a line like this:

       /usr/include/sys/errno.h f none 0644 root bin 7471 37605 956241356 SUNWhea

       The last item listed (SUNWhea in this example) is the package you need.

       Avoid /usr/ucb/cc.

       You don't need to have /usr/ucb/ in your PATH to build perl.  If you want /usr/ucb/ in your PATH any-way, anyway,
       way, make sure that /usr/ucb/ is NOT in your PATH before the directory containing the right C com-piler. compiler.
       piler.

       Sun's C Compiler

       If you use Sun's C compiler, make sure the correct directory (usually /opt/SUNWspro/bin/) is in your
       PATH (before /usr/ucb/).

       GCC

       If you use gcc, make sure your installation is recent and complete.  perl versions since 5.6.0 build
       fine with gcc > 2.8.1 on Solaris >= 2.6.

       You must Configure perl with

        $ sh Configure -Dcc=gcc

       If you don't, you may experience strange build errors.

       If you have updated your Solaris version, you may also have to update your gcc.  For example, if you
       are running Solaris 2.6 and your gcc is installed under /usr/local, check in /usr/local/lib/gcc-lib
       and make sure you have the appropriate directory, sparc-sun-solaris2.6/ or i386-pc-solaris2.6/.  If
       gcc's directory is for a different version of Solaris than you are running, then you will need to
       rebuild gcc for your new version of Solaris.

       You can get a precompiled version of gcc from <http://www.sunfreeware.com/ or <http://www.blast-
       wave.org/. Make sure you pick up the package for your Solaris release.

       If you wish to use gcc to build add-on modules for use with the perl shipped with Solaris, you should
       use the Solaris::PerlGcc module which is available from CPAN.  The perl shipped with Solaris is con-figured configured
       figured and built with the Sun compilers, and the compiler configuration information stored in Con-fig.pm Config.pm
       fig.pm is therefore only relevant to the Sun compilers.  The Solaris:PerlGcc module contains a
       replacement Config.pm that is correct for gcc - see the module for details.

       GNU as and GNU ld

       The following information applies to gcc version 2.  Volunteers to update it as appropropriate for
       gcc version 3 would be appreciated.

       The versions of as and ld supplied with Solaris work fine for building perl.  There is normally no
       need to install the GNU versions to compile perl.

       If you decide to ignore this advice and use the GNU versions anyway, then be sure that they are rela-tively relatively
       tively recent.  Versions newer than 2.7 are apparently new enough.  Older versions may have trouble
       with dynamic loading.

       If you wish to use GNU ld, then you need to pass it the -Wl,-E flag.  The hints/solaris_2.sh file
       tries to do this automatically by setting the following Configure variables:

        ccdlflags="$ccdlflags -Wl,-E"
        lddlflags="$lddlflags -Wl,-E -G"

       However, over the years, changes in gcc, GNU ld, and Solaris ld have made it difficult to automati-cally automatically
       cally detect which ld ultimately gets called.  You may have to manually edit config.sh and add the
       -Wl,-E flags yourself, or else run Configure interactively and add the flags at the appropriate
       prompts.

       If your gcc is configured to use GNU as and ld but you want to use the Solaris ones instead to build
       perl, then you'll need to add -B/usr/ccs/bin/ to the gcc command line.  One convenient way to do that
       is with

        $ sh Configure -Dcc='gcc -B/usr/ccs/bin/'

       Note that the trailing slash is required.  This will result in some harmless warnings as Configure is
       run:

        gcc: file path prefix `/usr/ccs/bin/' never used

       These messages may safely be ignored.  (Note that for a SunOS4 system, you must use -B/bin/ instead.)

       Alternatively, you can use the GCC_EXEC_PREFIX environment variable to ensure that Sun's as and ld
       are used.  Consult your gcc documentation for further information on the -B option and the
       GCC_EXEC_PREFIX variable.

       Sun and GNU make

       The make under /usr/ccs/bin works fine for building perl.  If you have the Sun C compilers, you will
       also have a parallel version of make (dmake).  This works fine to build perl, but can sometimes cause
       problems when running 'make test' due to underspecified dependencies between the different test har-ness harness
       ness files.  The same problem can also affect the building of some add-on modules, so in those cases
       either specify '-m serial' on the dmake command line, or use /usr/ccs/bin/make instead.  If you wish
       to use GNU make, be sure that the set-group-id bit is not set.  If it is, then arrange your PATH so
       that /usr/ccs/bin/make is before GNU make or else have the system administrator disable the set-group-id setgroup-id
       group-id bit on GNU make.

       Avoid libucb.

       Solaris provides some BSD-compatibility functions in /usr/ucblib/libucb.a.  Perl will not build and
       run correctly if linked against -lucb since it contains routines that are incompatible with the stan-dard standard
       dard Solaris libc.  Normally this is not a problem since the solaris hints file prevents Configure
       from even looking in /usr/ucblib for libraries, and also explicitly omits -lucb.

       Environment for Compiling perl on Solaris

       PATH

       Make sure your PATH includes the compiler (/opt/SUNWspro/bin/ if you're using Sun's compiler) as well
       as /usr/ccs/bin/ to pick up the other development tools (such as make, ar, as, and ld).  Make sure
       your path either doesn't include /usr/ucb or that it includes it after the compiler and compiler
       tools and other standard Solaris directories.  You definitely don't want /usr/ucb/cc.

       LD_LIBRARY_PATH

       If you have the LD_LIBRARY_PATH environment variable set, be sure that it does NOT include /lib or
       /usr/lib.  If you will be building extensions that call third-party shared libraries (e.g. Berkeley
       DB) then make sure that your LD_LIBRARY_PATH environment variable includes the directory with that
       library (e.g. /usr/local/lib).

       If you get an error message

        dlopen: stub interception failed

       it is probably because your LD_LIBRARY_PATH environment variable includes a directory which is a sym-link symlink
       link to /usr/lib (such as /lib).  The reason this causes a problem is quite subtle.  The file
       libdl.so.1.0 actually *only* contains functions which generate 'stub interception failed' errors!
       The runtime linker intercepts links to "/usr/lib/libdl.so.1.0" and links in internal implementations
       of those functions instead.  [Thanks to Tim Bunce for this explanation.]

RUN CONFIGURE.
       See the INSTALL file for general information regarding Configure.  Only Solaris-specific issues are
       discussed here.  Usually, the defaults should be fine.

       64-bit perl on Solaris.

       See the INSTALL file for general information regarding 64-bit compiles.  In general, the defaults
       should be fine for most people.

       By default, perl-5.6.0 (or later) is compiled as a 32-bit application with largefile and long-long
       support.

       General 32-bit vs. 64-bit issues.

       Solaris 7 and above will run in either 32 bit or 64 bit mode on SPARC CPUs, via a reboot. You can
       build 64 bit apps whilst running 32 bit mode and vice-versa. 32 bit apps will run under Solaris run-ning running
       ning in either 32 or 64 bit mode.  64 bit apps require Solaris to be running 64 bit mode.

       Existing 32 bit apps are properly known as LP32, i.e. Longs and Pointers are 32 bit.  64-bit apps are
       more properly known as LP64.  The discriminating feature of a LP64 bit app is its ability to utilise
       a 64-bit address space.  It is perfectly possible to have a LP32 bit app that supports both 64-bit
       integers (long long) and largefiles (> 2GB), and this is the default for perl-5.6.0.

       For a more complete explanation of 64-bit issues, see the "Solaris 64-bit Developer's Guide" at
       <http://docs.sun.com/

       You can detect the OS mode using "isainfo -v", e.g.

        $ isainfo -v   # Ultra 30 in 64 bit mode
        64-bit sparcv9 applications
        32-bit sparc applications

       By default, perl will be compiled as a 32-bit application.  Unless you want to allocate more than ~
       4GB of memory inside perl, or unless you need more than 255 open file descriptors, you probably don't
       need perl to be a 64-bit app.

       Large File Support

       For Solaris 2.6 and onwards, there are two different ways for 32-bit applications to manipulate large
       files (files whose size is > 2GByte).  (A 64-bit application automatically has largefile support
       built in by default.)

       First is the "transitional compilation environment", described in lfcompile64(5).  According to the
       man page,

        The transitional compilation  environment  exports  all  the
        explicit 64-bit functions (xxx64()) and types in addition to
        all the regular functions (xxx()) and types. Both xxx()  and
        xxx64()  functions  are  available to the program source.  A
        32-bit application must use the xxx64() functions in  order
        to  access  large  files.  See the lf64(5) manual page for a
        complete listing of the 64-bit transitional interfaces.

       The transitional compilation environment is obtained with the following compiler and linker flags:

        getconf LFS64_CFLAGS        -D_LARGEFILE64_SOURCE
        getconf LFS64_LDFLAG        # nothing special needed
        getconf LFS64_LIBS          # nothing special needed

       Second is the "large file compilation environment", described in lfcompile(5).  According to the man
       page,

        Each interface named xxx() that needs to access 64-bit entities
        to  access  large  files maps to a xxx64() call in the
        resulting binary. All relevant data types are defined to  be
        of correct size (for example, off_t has a typedef definition
        for a 64-bit entity).

        An application compiled in this environment is able  to  use
        the  xxx()  source interfaces to access both large and small
        files, rather than having to explicitly utilize the  transitional
        xxx64()  interface  calls to access large files.

       Two exceptions are fseek() and ftell().  32-bit applications should use fseeko(3C) and ftello(3C).
       These will get automatically mapped to fseeko64() and ftello64().

       The large file compilation environment is obtained with

        getconf LFS_CFLAGS      -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64
        getconf LFS_LDFLAGS     # nothing special needed
        getconf LFS_LIBS        # nothing special needed

       By default, perl uses the large file compilation environment and relies on Solaris to do the underly-ing underlying
       ing mapping of interfaces.

       Building an LP64 perl

       To compile a 64-bit application on an UltraSparc with a recent Sun Compiler, you need to use the flag
       "-xarch=v9".  getconf(1) will tell you this, e.g.

        $ getconf -a | grep v9
        XBS5_LP64_OFF64_CFLAGS:         -xarch=v9
        XBS5_LP64_OFF64_LDFLAGS:        -xarch=v9
        XBS5_LP64_OFF64_LINTFLAGS:      -xarch=v9
        XBS5_LPBIG_OFFBIG_CFLAGS:       -xarch=v9
        XBS5_LPBIG_OFFBIG_LDFLAGS:      -xarch=v9
        XBS5_LPBIG_OFFBIG_LINTFLAGS:    -xarch=v9
        _XBS5_LP64_OFF64_CFLAGS:        -xarch=v9
        _XBS5_LP64_OFF64_LDFLAGS:       -xarch=v9
        _XBS5_LP64_OFF64_LINTFLAGS:     -xarch=v9
        _XBS5_LPBIG_OFFBIG_CFLAGS:      -xarch=v9
        _XBS5_LPBIG_OFFBIG_LDFLAGS:     -xarch=v9
        _XBS5_LPBIG_OFFBIG_LINTFLAGS:   -xarch=v9

       This flag is supported in Sun WorkShop Compilers 5.0 and onwards (now marketed under the name Forte)
       when used on Solaris 7 or later on UltraSparc systems.

       If you are using gcc, you would need to use -mcpu=v9 -m64 instead.  This option is not yet supported
       as of gcc 2.95.2; from install/SPECIFIC in that release:

        GCC version 2.95 is not able to compile code correctly for sparc64
        targets. Users of the Linux kernel, at least, can use the sparc32
        program to start up a new shell invocation with an environment that
        causes configure to recognize (via uname -a) the system as sparc-*-*
        instead.

       All this should be handled automatically by the hints file, if requested.

       Long Doubles.

       As of 5.8.1, long doubles are working if you use the Sun compilers (needed for additional math rou-tines routines
       tines not included in libm).

       Threads in perl on Solaris.

       It is possible to build a threaded version of perl on Solaris.  The entire perl thread implementation
       is still experimental, however, so beware.

       Malloc Issues with perl on Solaris.

       Starting from perl 5.7.1 perl uses the Solaris malloc, since the perl malloc breaks when dealing with
       more than 2GB of memory, and the Solaris malloc also seems to be faster.

       If you for some reason (such as binary backward compatibility) really need to use perl's malloc, you
       can rebuild perl from the sources and Configure the build with

        $ sh Configure -Dusemymalloc

       You should not use perl's malloc if you are building with gcc.  There are reports of core dumps,
       especially in the PDL module.  The problem appears to go away under -DDEBUGGING, so it has been dif-ficult difficult
       ficult to track down.  Sun's compiler appears to be okay with or without perl's malloc. [XXX further
       investigation is needed here.]

MAKE PROBLEMS.
       Dynamic Loading Problems With GNU as and GNU ld
           If you have problems with dynamic loading using gcc on SunOS or Solaris, and you are using GNU as
           and GNU ld, see the section "GNU as and GNU ld" above.

       ld.so.1: ./perl: fatal: relocation error:
           If you get this message on SunOS or Solaris, and you're using gcc, it's probably the GNU as or
           GNU ld problem in the previous item "GNU as and GNU ld".

       dlopen: stub interception failed
           The primary cause of the 'dlopen: stub interception failed' message is that the LD_LIBRARY_PATH
           environment variable includes a directory which is a symlink to /usr/lib (such as /lib).  See
           "LD_LIBRARY_PATH" above.

       #error "No DATAMODEL_NATIVE specified"
           This is a common error when trying to build perl on Solaris 2.6 with a gcc installation from
           Solaris 2.5 or 2.5.1.  The Solaris header files changed, so you need to update your gcc installa-tion. installation.
           tion.  You can either rerun the fixincludes script from gcc or take the opportunity to update
           your gcc installation.

       sh: ar: not found
           This is a message from your shell telling you that the command 'ar' was not found.  You need to
           check your PATH environment variable to make sure that it includes the directory with the 'ar'
           command.  This is a common problem on Solaris, where 'ar' is in the /usr/ccs/bin/ directory.

MAKE TEST
       op/stat.t test 4 in Solaris

       op/stat.t test 4 may fail if you are on a tmpfs of some sort.  Building in /tmp sometimes shows this
       behavior.  The test suite detects if you are building in /tmp, but it may not be able to catch all
       tmpfs situations.

       nss_delete core dump from op/pwent or op/grent

       See "nss_delete core dump from op/pwent or op/grent" in perlhpux.

PREBUILT BINARIES OF PERL FOR SOLARIS.
       You can pick up prebuilt binaries for Solaris from <http://www.sunfreeware.com/, <http://www.blast-
       wave.org, ActiveState <http://www.activestate.com/, and <http://www.perl.com/ under the Binaries
       list at the top of the page.  There are probably other sources as well.  Please note that these sites
       are under the control of their respective owners, not the perl developers.

RUNTIME ISSUES FOR PERL ON SOLARIS.
       Limits on Numbers of Open Files on Solaris.

       The stdio(3C) manpage notes that for LP32 applications, only 255 files may be opened using fopen(),
       and only file descriptors 0 through 255 can be used in a stream.  Since perl calls open() and then
       fdopen(3C) with the resulting file descriptor, perl is limited to 255 simultaneous open files, even
       if sysopen() is used.  If this proves to be an insurmountable problem, you can compile perl as a LP64
       application, see "Building an LP64 perl" for details.  Note also that the default resource limit for
       open file descriptors on Solaris is 255, so you will have to modify your ulimit or rctl (Solaris 9
       onwards) appropriately.

SOLARIS-SPECIFIC MODULES.
       See the modules under the Solaris:: and Sun::Solaris namespaces on CPAN, see
       <http://www.cpan.org/modules/by-module/Solaris/ and <http://www.cpan.org/modules/by-module/Sun/.

SOLARIS-SPECIFIC PROBLEMS WITH MODULES.
       Proc::ProcessTable on Solaris

       Proc::ProcessTable does not compile on Solaris with perl5.6.0 and higher if you have LARGEFILES
       defined.  Since largefile support is the default in 5.6.0 and later, you have to take special steps
       to use this module.

       The problem is that various structures visible via procfs use off_t, and if you compile with large-file largefile
       file support these change from 32 bits to 64 bits.  Thus what you get back from procfs doesn't match
       up with the structures in perl, resulting in garbage.  See proc(4) for further discussion.

       A fix for Proc::ProcessTable is to edit Makefile to explicitly remove the largefile flags from the
       ones MakeMaker picks up from Config.pm.  This will result in Proc::ProcessTable being built under the
       correct environment.  Everything should then be OK as long as Proc::ProcessTable doesn't try to share
       off_t's with the rest of perl, or if it does they should be explicitly specified as off64_t.

       BSD::Resource on Solaris

       BSD::Resource versions earlier than 1.09 do not compile on Solaris with perl 5.6.0 and higher, for
       the same reasons as Proc::ProcessTable.  BSD::Resource versions starting from 1.09 have a workaround
       for the problem.

       Net::SSLeay on Solaris

       Net::SSLeay requires a /dev/urandom to be present. This device is available from Solaris 9 onwards.
       For earlier Solaris versions you can either get the package SUNWski (packaged with several Sun soft-ware software
       ware products, for example the Sun WebServer, which is part of the Solaris Server Intranet Extension,
       or the Sun Directory Services, part of Solaris for ISPs) or download the ANDIrand package from
       <http://www.cosy.sbg.ac.at/~andi/. If you use SUNWski, make a symbolic link /dev/urandom pointing to
       /dev/random.  For more details, see Document ID27606 entitled "Differing /dev/random support require-ments requirements
       ments within Solaris[TM] Operating Environments", available at http://sunsolve.sun.com .

       It may be possible to use the Entropy Gathering Daemon (written in Perl!), available from
       <http://www.lothar.com/tech/crypto/.

SunOS 4.x
       In SunOS 4.x you most probably want to use the SunOS ld, /usr/bin/ld, since the more recent versions
       of GNU ld (like 2.13) do not seem to work for building Perl anymore.  When linking the extensions,
       the GNU ld gets very unhappy and spews a lot of errors like this

         ... relocation truncated to fit: BASE13 ...

       and dies.  Therefore the SunOS 4.1 hints file explicitly sets the ld to be /usr/bin/ld.

       As of Perl 5.8.1 the dynamic loading of libraries (DynaLoader, XSLoader) also seems to have become
       broken in in SunOS 4.x.  Therefore the default is to build Perl statically.

       Running the test suite in SunOS 4.1 is a bit tricky since the lib/Tie/File/t/09_gen_rs test hangs
       (subtest #51, FWIW) for some unknown reason.  Just stop the test and kill that particular Perl
       process.

       There are various other failures, that as of SunOS 4.1.4 and gcc 3.2.2 look a lot like gcc bugs.
       Many of the failures happen in the Encode tests, where for example when the test expects "0" you get
       "&#48;" which should after a little squinting look very odd indeed.  Another example is earlier in
       t/run/fresh_perl where chr(0xff) is expected but the test fails because the result is chr(0xff).
       Exactly.

       This is the "make test" result from the said combination:

         Failed 27 test scripts out of 745, 96.38% okay.

       Running the "harness" is painful because of the many failing Unicode-related tests will output
       megabytes of failure messages, but if one patiently waits, one gets these results:

        Failed Test                     Stat Wstat Total Fail  Failed  List of Failed
        -----------------------------------------------------------------------------... ----------------------------------------------------------------------------...
        ...
        ../ext/Encode/t/at-cn.t            4  1024    29    4  13.79%  14-17
        ../ext/Encode/t/at-tw.t           10  2560    17   10  58.82%  2 4 6 8 10 12
                                                                       14-17
        ../ext/Encode/t/enc_data.t        29  7424    ??   ??       %  ??
        ../ext/Encode/t/enc_eucjp.t       29  7424    ??   ??       %  ??
        ../ext/Encode/t/enc_module.t      29  7424    ??   ??       %  ??
        ../ext/Encode/t/encoding.t        29  7424    ??   ??       %  ??
        ../ext/Encode/t/grow.t            12  3072    24   12  50.00%  2 4 6 8 10 12 14
                                                                       16 18 20 22 24
         Failed Test                     Stat Wstat Total Fail  Failed  List of Failed
        ------------------------------------------------------------------------------../ext/Encode/t/guess.t -----------------------------------------------------------------------------../ext/Encode/t/guess.t
        ../ext/Encode/t/guess.t          255 65280    29   40 137.93%  10-29
        ../ext/Encode/t/jperl.t           29  7424    15   30 200.00%  1-15
        ../ext/Encode/t/mime-header.t      2   512    10    2  20.00%  2-3
        ../ext/Encode/t/perlio.t          22  5632    38   22  57.89%  1-4 9-16 19-20
                                                                       23-24 27-32
        ../ext/List/Util/t/shuffle.t       0   139    ??   ??       %  ??
        ../ext/PerlIO/t/encoding.t                    14    1   7.14%  11
        ../ext/PerlIO/t/fallback.t                     9    2  22.22%  3 5
        ../ext/Socket/t/socketpair.t       0     2    45   70 155.56%  11-45
        ../lib/CPAN/t/vcmp.t                          30    1   3.33%  25
        ../lib/Tie/File/t/09_gen_rs.t      0    15    ??   ??       %  ??
        ../lib/Unicode/Collate/t/test.t              199   30  15.08%  7 26-27 71-75
                                                                       81-88 95 101
                                                                       103-104 106 108-109 108109
                                                                       109 122 124 161
                                                                       169-172
        ../lib/sort.t                      0   139   119   26  21.85%  107-119
        op/alarm.t                                     4    1  25.00%  4
        op/utfhash.t                                  97    1   1.03%  31
        run/fresh_perl.t                              91    1   1.10%  32
        uni/tr_7jis.t                                 ??   ??       %  ??
        uni/tr_eucjp.t                    29  7424     6   12 200.00%  1-6
        uni/tr_sjis.t                     29  7424     6   12 200.00%  1-6
        56 tests and 467 subtests skipped.
        Failed 27/811 test scripts, 96.67% okay. 1383/75399 subtests failed, 98.17% okay.

       The alarm() test failure is caused by system() apparently blocking alarm().  That is probably a libc
       bug, and given that SunOS 4.x has been end-of-lifed years ago, don't hold your breath for a fix.  In
       addition to that, don't try anything too Unicode-y, especially with Encode, and you should be fine in
       SunOS 4.x.

AUTHOR
       The original was written by Andy Dougherty doughera@lafayette.edu drawing heavily on advice from Alan
       Burlison, Nick Ing-Simmons, Tim Bunce, and many other Solaris users over the years.

       Please report any errors, updates, or suggestions to perlbug@perl.org.



perl v5.8.8                                      2006-01-07                                   PERLSOLARIS(1)

Did this document help you?
Yes: Tell us what works for you.
It’s good, but: Report typos, inaccuracies, and so forth.
It wasn’t helpful: Tell us what would have helped.