ADC Home > Reference Library > Reference > Mac OS X > Mac OS X Man Pages

 

This document is a Mac OS X manual page. Manual pages are a command-line technology for providing documentation. You can view these manual pages locally using the man(1) command. These manual pages come from many different sources, and thus, have a variety of writing styles.

This manual page is associated with the Mac OS X developer tools. The software or headers described may not be present on your Mac OS X installation until you install the developer tools package. This package is available on your Mac OS X installation DVD, and the latest versions can be downloaded from developer.apple.com.

For more information about the manual page format, see the manual page for manpages(5).



BIO_f_ssl(3)                                       OpenSSL                                      BIO_f_ssl(3)



NAME
       BIO_f_ssl, BIO_set_ssl, BIO_get_ssl, BIO_set_ssl_mode, BIO_set_ssl_renegotiate_bytes,
       BIO_get_num_renegotiates, BIO_set_ssl_renegotiate_timeout, BIO_new_ssl, BIO_new_ssl_connect,
       BIO_new_buffer_ssl_connect, BIO_ssl_copy_session_id, BIO_ssl_shutdown - SSL BIO

SYNOPSIS
        #include <openssl/bio.h>
        #include <openssl/ssl.h>

        BIO_METHOD *BIO_f_ssl(void);

        #define BIO_set_ssl(b,ssl,c)   BIO_ctrl(b,BIO_C_SET_SSL,c,(char *)ssl)
        #define BIO_get_ssl(b,sslp)    BIO_ctrl(b,BIO_C_GET_SSL,0,(char *)sslp)
        #define BIO_set_ssl_mode(b,client)     BIO_ctrl(b,BIO_C_SSL_MODE,client,NULL)
        #define BIO_set_ssl_renegotiate_bytes(b,num) \
               BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_BYTES,num,NULL);
        #define BIO_set_ssl_renegotiate_timeout(b,seconds) \
               BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_TIMEOUT,seconds,NULL);
        #define BIO_get_num_renegotiates(b) \
               BIO_ctrl(b,BIO_C_SET_SSL_NUM_RENEGOTIATES,0,NULL);

        BIO *BIO_new_ssl(SSL_CTX *ctx,int client);
        BIO *BIO_new_ssl_connect(SSL_CTX *ctx);
        BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx);
        int BIO_ssl_copy_session_id(BIO *to,BIO *from);
        void BIO_ssl_shutdown(BIO *bio);

        #define BIO_do_handshake(b)    BIO_ctrl(b,BIO_C_DO_STATE_MACHINE,0,NULL)

DESCRIPTION
       BIO_f_ssl() returns the SSL BIO method. This is a filter BIO which is a wrapper round the OpenSSL SSL
       routines adding a BIO "flavour" to SSL I/O.

       I/O performed on an SSL BIO communicates using the SSL protocol with the SSLs read and write BIOs. If
       an SSL connection is not established then an attempt is made to establish one on the first I/O call.

       If a BIO is appended to an SSL BIO using BIO_push() it is automatically used as the SSL BIOs read and
       write BIOs.

       Calling BIO_reset() on an SSL BIO closes down any current SSL connection by calling SSL_shutdown().
       BIO_reset() is then sent to the next BIO in the chain: this will typically disconnect the underlying
       transport.  The SSL BIO is then reset to the initial accept or connect state.

       If the close flag is set when an SSL BIO is freed then the internal SSL structure is also freed using
       SSL_free().

       BIO_set_ssl() sets the internal SSL pointer of BIO b to ssl using the close flag c.

       BIO_get_ssl() retrieves the SSL pointer of BIO b, it can then be manipulated using the standard SSL
       library functions.

       BIO_set_ssl_mode() sets the SSL BIO mode to client. If client is 1 client mode is set. If client is 0
       server mode is set.

       BIO_set_ssl_renegotiate_bytes() sets the renegotiate byte count to num. When set after every num
       bytes of I/O (read and write) the SSL session is automatically renegotiated. num must be at least 512
       bytes.

       BIO_set_ssl_renegotiate_timeout() sets the renegotiate timeout to seconds. When the renegotiate
       timeout elapses the session is automatically renegotiated.

       BIO_get_num_renegotiates() returns the total number of session renegotiations due to I/O or timeout.

       BIO_new_ssl() allocates an SSL BIO using SSL_CTX ctx and using client mode if client is non zero.

       BIO_new_ssl_connect() creates a new BIO chain consisting of an SSL BIO (using ctx) followed by a
       connect BIO.

       BIO_new_buffer_ssl_connect() creates a new BIO chain consisting of a buffering BIO, an SSL BIO (using
       ctx) and a connect BIO.

       BIO_ssl_copy_session_id() copies an SSL session id between BIO chains from and to. It does this by
       locating the SSL BIOs in each chain and calling SSL_copy_session_id() on the internal SSL pointer.

       BIO_ssl_shutdown() closes down an SSL connection on BIO chain bio. It does this by locating the SSL
       BIO in the chain and calling SSL_shutdown() on its internal SSL pointer.

       BIO_do_handshake() attempts to complete an SSL handshake on the supplied BIO and establish the SSL
       connection. It returns 1 if the connection was established successfully. A zero or negative value is
       returned if the connection could not be established, the call BIO_should_retry() should be used for
       non blocking connect BIOs to determine if the call should be retried. If an SSL connection has
       already been established this call has no effect.

NOTES
       SSL BIOs are exceptional in that if the underlying transport is non blocking they can still request a
       retry in exceptional circumstances. Specifically this will happen if a session renegotiation takes
       place during a BIO_read() operation, one case where this happens is when SGC or step up occurs.

       In OpenSSL 0.9.6 and later the SSL flag SSL_AUTO_RETRY can be set to disable this behaviour. That is
       when this flag is set an SSL BIO using a blocking transport will never request a retry.

       Since unknown BIO_ctrl() operations are sent through filter BIOs the servers name and port can be set
       using BIO_set_host() on the BIO returned by BIO_new_ssl_connect() without having to locate the
       connect BIO first.

       Applications do not have to call BIO_do_handshake() but may wish to do so to separate the handshake
       process from other I/O processing.

RETURN VALUES
       TBA

EXAMPLE
       This SSL/TLS client example, attempts to retrieve a page from an SSL/TLS web server. The I/O routines
       are identical to those of the unencrypted example in BIO_s_connect(3).

        BIO *sbio, *out;
        int len;
        char tmpbuf[1024];
        SSL_CTX *ctx;
        SSL *ssl;

        ERR_load_crypto_strings();
        ERR_load_SSL_strings();
        OpenSSL_add_all_algorithms();

        /* We would seed the PRNG here if the platform didn't
         * do it automatically
         */

        ctx = SSL_CTX_new(SSLv23_client_method());

        /* We'd normally set some stuff like the verify paths and
         * mode here because as things stand this will connect to
         * any server whose certificate is signed by any CA.
         */

        sbio = BIO_new_ssl_connect(ctx);

        BIO_get_ssl(sbio, &ssl);

        if(!ssl) {
          fprintf(stderr, "Can't locate SSL pointer\n");
          /* whatever ... */
        }

        /* Don't want any retries */
        SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);

        /* We might want to do other things with ssl here */

        BIO_set_conn_hostname(sbio, "localhost:https");

        out = BIO_new_fp(stdout, BIO_NOCLOSE);
        if(BIO_do_connect(sbio) <= 0) {
               fprintf(stderr, "Error connecting to server\n");
               ERR_print_errors_fp(stderr);
               /* whatever ... */
        }

        if(BIO_do_handshake(sbio) <= 0) {
               fprintf(stderr, "Error establishing SSL connection\n");
               ERR_print_errors_fp(stderr);
               /* whatever ... */
        }

        /* Could examine ssl here to get connection info */

        BIO_puts(sbio, "GET / HTTP/1.0\n\n");
        for(;;) {
               len = BIO_read(sbio, tmpbuf, 1024);
               if(len <= 0) break;
               BIO_write(out, tmpbuf, len);
        }
        BIO_free_all(sbio);
        BIO_free(out);

       Here is a simple server example. It makes use of a buffering BIO to allow lines to be read from the
       SSL BIO using BIO_gets.  It creates a pseudo web page containing the actual request from a client and
       also echoes the request to standard output.

        BIO *sbio, *bbio, *acpt, *out;
        int len;
        char tmpbuf[1024];
        SSL_CTX *ctx;
        SSL *ssl;

        ERR_load_crypto_strings();
        ERR_load_SSL_strings();
        OpenSSL_add_all_algorithms();

        /* Might seed PRNG here */

        ctx = SSL_CTX_new(SSLv23_server_method());

        if (!SSL_CTX_use_certificate_file(ctx,"server.pem",SSL_FILETYPE_PEM)
               || !SSL_CTX_use_PrivateKey_file(ctx,"server.pem",SSL_FILETYPE_PEM)
               || !SSL_CTX_check_private_key(ctx)) {

               fprintf(stderr, "Error setting up SSL_CTX\n");
               ERR_print_errors_fp(stderr);
               return 0;
        }

        /* Might do other things here like setting verify locations and
         * DH and/or RSA temporary key callbacks
         */

        /* New SSL BIO setup as server */
        sbio=BIO_new_ssl(ctx,0);

        BIO_get_ssl(sbio, &ssl);

        if(!ssl) {
          fprintf(stderr, "Can't locate SSL pointer\n");
          /* whatever ... */
        }

        /* Don't want any retries */
        SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);

        /* Create the buffering BIO */

        bbio = BIO_new(BIO_f_buffer());

        /* Add to chain */
        sbio = BIO_push(bbio, sbio);

        acpt=BIO_new_accept("4433");

        /* By doing this when a new connection is established
         * we automatically have sbio inserted into it. The
         * BIO chain is now 'swallowed' by the accept BIO and
         * will be freed when the accept BIO is freed.
         */

        BIO_set_accept_bios(acpt,sbio);

        out = BIO_new_fp(stdout, BIO_NOCLOSE);

        /* Setup accept BIO */
        if(BIO_do_accept(acpt) <= 0) {
               fprintf(stderr, "Error setting up accept BIO\n");
               ERR_print_errors_fp(stderr);
               return 0;
        }

        /* Now wait for incoming connection */
        if(BIO_do_accept(acpt) <= 0) {
               fprintf(stderr, "Error in connection\n");
               ERR_print_errors_fp(stderr);
               return 0;
        }

        /* We only want one connection so remove and free
         * accept BIO
         */

        sbio = BIO_pop(acpt);

        BIO_free_all(acpt);

        if(BIO_do_handshake(sbio) <= 0) {
               fprintf(stderr, "Error in SSL handshake\n");
               ERR_print_errors_fp(stderr);
               return 0;
        }

        BIO_puts(sbio, "HTTP/1.0 200 OK\r\nContent-type: text/plain\r\n\r\n");
        BIO_puts(sbio, "\r\nConnection Established\r\nRequest headers:\r\n");
        BIO_puts(sbio, "--------------------------------------------------\r\n");

        for(;;) {
               len = BIO_gets(sbio, tmpbuf, 1024);
               if(len <= 0) break;
               BIO_write(sbio, tmpbuf, len);
               BIO_write(out, tmpbuf, len);
               /* Look for blank line signifying end of headers*/
               if((tmpbuf[0] == '\r') || (tmpbuf[0] == '\n')) break;
        }

        BIO_puts(sbio, "--------------------------------------------------\r\n");
        BIO_puts(sbio, "\r\n");

        /* Since there is a buffering BIO present we had better flush it */
        BIO_flush(sbio);

        BIO_free_all(sbio);

SEE ALSO
       TBA



0.9.7l                                           2003-11-28                                     BIO_f_ssl(3)

Did this document help you?
Yes: Tell us what works for you.
It’s good, but: Report typos, inaccuracies, and so forth.
It wasn’t helpful: Tell us what would have helped.